if_vlan.c revision 1.149 1 /* $NetBSD: if_vlan.c,v 1.149 2019/12/12 02:15:43 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.149 2019/12/12 02:15:43 pgoyette Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mbuf.h>
92 #include <sys/queue.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/systm.h>
96 #include <sys/proc.h>
97 #include <sys/kauth.h>
98 #include <sys/mutex.h>
99 #include <sys/kmem.h>
100 #include <sys/cpu.h>
101 #include <sys/pserialize.h>
102 #include <sys/psref.h>
103 #include <sys/pslist.h>
104 #include <sys/atomic.h>
105 #include <sys/device.h>
106 #include <sys/module.h>
107
108 #include <net/bpf.h>
109 #include <net/if.h>
110 #include <net/if_dl.h>
111 #include <net/if_types.h>
112 #include <net/if_ether.h>
113 #include <net/if_vlanvar.h>
114
115 #ifdef INET
116 #include <netinet/in.h>
117 #include <netinet/if_inarp.h>
118 #endif
119 #ifdef INET6
120 #include <netinet6/in6_ifattach.h>
121 #include <netinet6/in6_var.h>
122 #include <netinet6/nd6.h>
123 #endif
124
125 #include "ioconf.h"
126
127 struct vlan_mc_entry {
128 LIST_ENTRY(vlan_mc_entry) mc_entries;
129 /*
130 * A key to identify this entry. The mc_addr below can't be
131 * used since multiple sockaddr may mapped into the same
132 * ether_multi (e.g., AF_UNSPEC).
133 */
134 struct ether_multi *mc_enm;
135 struct sockaddr_storage mc_addr;
136 };
137
138 struct ifvlan_linkmib {
139 struct ifvlan *ifvm_ifvlan;
140 const struct vlan_multisw *ifvm_msw;
141 int ifvm_encaplen; /* encapsulation length */
142 int ifvm_mtufudge; /* MTU fudged by this much */
143 int ifvm_mintu; /* min transmission unit */
144 uint16_t ifvm_proto; /* encapsulation ethertype */
145 uint16_t ifvm_tag; /* tag to apply on packets */
146 struct ifnet *ifvm_p; /* parent interface of this vlan */
147
148 struct psref_target ifvm_psref;
149 };
150
151 struct ifvlan {
152 struct ethercom ifv_ec;
153 struct ifvlan_linkmib *ifv_mib; /*
154 * reader must use vlan_getref_linkmib()
155 * instead of direct dereference
156 */
157 kmutex_t ifv_lock; /* writer lock for ifv_mib */
158 pserialize_t ifv_psz;
159
160 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
161 LIST_ENTRY(ifvlan) ifv_list;
162 struct pslist_entry ifv_hash;
163 int ifv_flags;
164 };
165
166 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
167
168 #define ifv_if ifv_ec.ec_if
169
170 #define ifv_msw ifv_mib.ifvm_msw
171 #define ifv_encaplen ifv_mib.ifvm_encaplen
172 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
173 #define ifv_mintu ifv_mib.ifvm_mintu
174 #define ifv_tag ifv_mib.ifvm_tag
175
176 struct vlan_multisw {
177 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
178 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
179 void (*vmsw_purgemulti)(struct ifvlan *);
180 };
181
182 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
183 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
184 static void vlan_ether_purgemulti(struct ifvlan *);
185
186 const struct vlan_multisw vlan_ether_multisw = {
187 .vmsw_addmulti = vlan_ether_addmulti,
188 .vmsw_delmulti = vlan_ether_delmulti,
189 .vmsw_purgemulti = vlan_ether_purgemulti,
190 };
191
192 static int vlan_clone_create(struct if_clone *, int);
193 static int vlan_clone_destroy(struct ifnet *);
194 static int vlan_config(struct ifvlan *, struct ifnet *, uint16_t);
195 static int vlan_ioctl(struct ifnet *, u_long, void *);
196 static void vlan_start(struct ifnet *);
197 static int vlan_transmit(struct ifnet *, struct mbuf *);
198 static void vlan_unconfig(struct ifnet *);
199 static int vlan_unconfig_locked(struct ifvlan *, struct ifvlan_linkmib *);
200 static void vlan_hash_init(void);
201 static int vlan_hash_fini(void);
202 static int vlan_tag_hash(uint16_t, u_long);
203 static struct ifvlan_linkmib* vlan_getref_linkmib(struct ifvlan *,
204 struct psref *);
205 static void vlan_putref_linkmib(struct ifvlan_linkmib *, struct psref *);
206 static void vlan_linkmib_update(struct ifvlan *, struct ifvlan_linkmib *);
207 static struct ifvlan_linkmib* vlan_lookup_tag_psref(struct ifnet *,
208 uint16_t, struct psref *);
209
210 static struct {
211 kmutex_t lock;
212 LIST_HEAD(vlan_ifvlist, ifvlan) list;
213 } ifv_list __cacheline_aligned;
214
215
216 #if !defined(VLAN_TAG_HASH_SIZE)
217 #define VLAN_TAG_HASH_SIZE 32
218 #endif
219 static struct {
220 kmutex_t lock;
221 struct pslist_head *lists;
222 u_long mask;
223 } ifv_hash __cacheline_aligned = {
224 .lists = NULL,
225 .mask = 0,
226 };
227
228 pserialize_t vlan_psz __read_mostly;
229 static struct psref_class *ifvm_psref_class __read_mostly;
230
231 struct if_clone vlan_cloner =
232 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
233
234 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
235 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
236
237 static inline int
238 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
239 {
240 int e;
241
242 KERNEL_LOCK_UNLESS_NET_MPSAFE();
243 e = ifpromisc(ifp, pswitch);
244 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
245
246 return e;
247 }
248
249 static inline int
250 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
251 {
252 int e;
253
254 KERNEL_LOCK_UNLESS_NET_MPSAFE();
255 e = ifpromisc_locked(ifp, pswitch);
256 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
257
258 return e;
259 }
260
261 void
262 vlanattach(int n)
263 {
264
265 /*
266 * Nothing to do here, initialization is handled by the
267 * module initialization code in vlaninit() below.
268 */
269 }
270
271 static void
272 vlaninit(void)
273 {
274 mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
275 LIST_INIT(&ifv_list.list);
276
277 mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
278 vlan_psz = pserialize_create();
279 ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
280 if_clone_attach(&vlan_cloner);
281
282 vlan_hash_init();
283 MODULE_HOOK_SET(if_vlan_vlan_input_hook, vlan_input);
284 }
285
286 static int
287 vlandetach(void)
288 {
289 bool is_empty;
290 int error;
291
292 mutex_enter(&ifv_list.lock);
293 is_empty = LIST_EMPTY(&ifv_list.list);
294 mutex_exit(&ifv_list.lock);
295
296 if (!is_empty)
297 return EBUSY;
298
299 error = vlan_hash_fini();
300 if (error != 0)
301 return error;
302
303 if_clone_detach(&vlan_cloner);
304 psref_class_destroy(ifvm_psref_class);
305 pserialize_destroy(vlan_psz);
306 mutex_destroy(&ifv_hash.lock);
307 mutex_destroy(&ifv_list.lock);
308
309 MODULE_HOOK_UNSET(if_vlan_vlan_input_hook);
310 return 0;
311 }
312
313 static void
314 vlan_reset_linkname(struct ifnet *ifp)
315 {
316
317 /*
318 * We start out with a "802.1Q VLAN" type and zero-length
319 * addresses. When we attach to a parent interface, we
320 * inherit its type, address length, address, and data link
321 * type.
322 */
323
324 ifp->if_type = IFT_L2VLAN;
325 ifp->if_addrlen = 0;
326 ifp->if_dlt = DLT_NULL;
327 if_alloc_sadl(ifp);
328 }
329
330 static int
331 vlan_clone_create(struct if_clone *ifc, int unit)
332 {
333 struct ifvlan *ifv;
334 struct ifnet *ifp;
335 struct ifvlan_linkmib *mib;
336 int rv;
337
338 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK | M_ZERO);
339 mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
340 ifp = &ifv->ifv_if;
341 LIST_INIT(&ifv->ifv_mc_listhead);
342
343 mib->ifvm_ifvlan = ifv;
344 mib->ifvm_p = NULL;
345 psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
346
347 mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
348 ifv->ifv_psz = pserialize_create();
349 ifv->ifv_mib = mib;
350
351 mutex_enter(&ifv_list.lock);
352 LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
353 mutex_exit(&ifv_list.lock);
354
355 if_initname(ifp, ifc->ifc_name, unit);
356 ifp->if_softc = ifv;
357 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
358 ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
359 #ifdef NET_MPSAFE
360 ifp->if_extflags |= IFEF_MPSAFE;
361 #endif
362 ifp->if_start = vlan_start;
363 ifp->if_transmit = vlan_transmit;
364 ifp->if_ioctl = vlan_ioctl;
365 IFQ_SET_READY(&ifp->if_snd);
366
367 rv = if_initialize(ifp);
368 if (rv != 0) {
369 aprint_error("%s: if_initialize failed(%d)\n", ifp->if_xname,
370 rv);
371 goto fail;
372 }
373
374 vlan_reset_linkname(ifp);
375 if_register(ifp);
376 return 0;
377
378 fail:
379 mutex_enter(&ifv_list.lock);
380 LIST_REMOVE(ifv, ifv_list);
381 mutex_exit(&ifv_list.lock);
382
383 mutex_destroy(&ifv->ifv_lock);
384 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
385 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
386 free(ifv, M_DEVBUF);
387
388 return rv;
389 }
390
391 static int
392 vlan_clone_destroy(struct ifnet *ifp)
393 {
394 struct ifvlan *ifv = ifp->if_softc;
395
396 mutex_enter(&ifv_list.lock);
397 LIST_REMOVE(ifv, ifv_list);
398 mutex_exit(&ifv_list.lock);
399
400 IFNET_LOCK(ifp);
401 vlan_unconfig(ifp);
402 IFNET_UNLOCK(ifp);
403 if_detach(ifp);
404
405 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
406 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
407 pserialize_destroy(ifv->ifv_psz);
408 mutex_destroy(&ifv->ifv_lock);
409 free(ifv, M_DEVBUF);
410
411 return 0;
412 }
413
414 /*
415 * Configure a VLAN interface.
416 */
417 static int
418 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
419 {
420 struct ifnet *ifp = &ifv->ifv_if;
421 struct ifvlan_linkmib *nmib = NULL;
422 struct ifvlan_linkmib *omib = NULL;
423 struct ifvlan_linkmib *checkmib;
424 struct psref_target *nmib_psref = NULL;
425 const uint16_t vid = EVL_VLANOFTAG(tag);
426 int error = 0;
427 int idx;
428 bool omib_cleanup = false;
429 struct psref psref;
430
431 /* VLAN ID 0 and 4095 are reserved in the spec */
432 if ((vid == 0) || (vid == 0xfff))
433 return EINVAL;
434
435 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
436 mutex_enter(&ifv->ifv_lock);
437 omib = ifv->ifv_mib;
438
439 if (omib->ifvm_p != NULL) {
440 error = EBUSY;
441 goto done;
442 }
443
444 /* Duplicate check */
445 checkmib = vlan_lookup_tag_psref(p, vid, &psref);
446 if (checkmib != NULL) {
447 vlan_putref_linkmib(checkmib, &psref);
448 error = EEXIST;
449 goto done;
450 }
451
452 *nmib = *omib;
453 nmib_psref = &nmib->ifvm_psref;
454
455 psref_target_init(nmib_psref, ifvm_psref_class);
456
457 switch (p->if_type) {
458 case IFT_ETHER:
459 {
460 struct ethercom *ec = (void *)p;
461 struct vlanid_list *vidmem;
462
463 nmib->ifvm_msw = &vlan_ether_multisw;
464 nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
465 nmib->ifvm_mintu = ETHERMIN;
466
467 if (ec->ec_nvlans++ == 0) {
468 IFNET_LOCK(p);
469 error = ether_enable_vlan_mtu(p);
470 IFNET_UNLOCK(p);
471 if (error >= 0) {
472 if (error) {
473 ec->ec_nvlans--;
474 goto done;
475 }
476 nmib->ifvm_mtufudge = 0;
477 } else {
478 /*
479 * Fudge the MTU by the encapsulation size. This
480 * makes us incompatible with strictly compliant
481 * 802.1Q implementations, but allows us to use
482 * the feature with other NetBSD
483 * implementations, which might still be useful.
484 */
485 nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
486 }
487 error = 0;
488 }
489 /* Add a vid to the list */
490 vidmem = kmem_alloc(sizeof(struct vlanid_list), KM_SLEEP);
491 vidmem->vid = vid;
492 ETHER_LOCK(ec);
493 SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidmem, vid_list);
494 ETHER_UNLOCK(ec);
495
496 if (ec->ec_vlan_cb != NULL) {
497 /*
498 * Call ec_vlan_cb(). It will setup VLAN HW filter or
499 * HW tagging function.
500 */
501 error = (*ec->ec_vlan_cb)(ec, vid, true);
502 if (error) {
503 ec->ec_nvlans--;
504 if (ec->ec_nvlans == 0) {
505 IFNET_LOCK(p);
506 (void)ether_disable_vlan_mtu(p);
507 IFNET_UNLOCK(p);
508 }
509 goto done;
510 }
511 }
512 /*
513 * If the parent interface can do hardware-assisted
514 * VLAN encapsulation, then propagate its hardware-
515 * assisted checksumming flags and tcp segmentation
516 * offload.
517 */
518 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
519 ifp->if_capabilities = p->if_capabilities &
520 (IFCAP_TSOv4 | IFCAP_TSOv6 |
521 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
522 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
523 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
524 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
525 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx);
526 }
527
528 /*
529 * We inherit the parent's Ethernet address.
530 */
531 ether_ifattach(ifp, CLLADDR(p->if_sadl));
532 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
533 break;
534 }
535
536 default:
537 error = EPROTONOSUPPORT;
538 goto done;
539 }
540
541 nmib->ifvm_p = p;
542 nmib->ifvm_tag = vid;
543 ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
544 #ifdef INET6
545 KERNEL_LOCK_UNLESS_NET_MPSAFE();
546 if (in6_present)
547 nd6_setmtu(ifp);
548 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
549 #endif
550 ifv->ifv_if.if_flags = p->if_flags &
551 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
552
553 /*
554 * Inherit the if_type from the parent. This allows us
555 * to participate in bridges of that type.
556 */
557 ifv->ifv_if.if_type = p->if_type;
558
559 PSLIST_ENTRY_INIT(ifv, ifv_hash);
560 idx = vlan_tag_hash(vid, ifv_hash.mask);
561
562 mutex_enter(&ifv_hash.lock);
563 PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
564 mutex_exit(&ifv_hash.lock);
565
566 vlan_linkmib_update(ifv, nmib);
567 nmib = NULL;
568 nmib_psref = NULL;
569 omib_cleanup = true;
570
571 done:
572 mutex_exit(&ifv->ifv_lock);
573
574 if (nmib_psref)
575 psref_target_destroy(nmib_psref, ifvm_psref_class);
576 if (nmib)
577 kmem_free(nmib, sizeof(*nmib));
578 if (omib_cleanup)
579 kmem_free(omib, sizeof(*omib));
580
581 return error;
582 }
583
584 /*
585 * Unconfigure a VLAN interface.
586 */
587 static void
588 vlan_unconfig(struct ifnet *ifp)
589 {
590 struct ifvlan *ifv = ifp->if_softc;
591 struct ifvlan_linkmib *nmib = NULL;
592 int error;
593
594 KASSERT(IFNET_LOCKED(ifp));
595
596 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
597
598 mutex_enter(&ifv->ifv_lock);
599 error = vlan_unconfig_locked(ifv, nmib);
600 mutex_exit(&ifv->ifv_lock);
601
602 if (error)
603 kmem_free(nmib, sizeof(*nmib));
604 }
605 static int
606 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
607 {
608 struct ifnet *p;
609 struct ifnet *ifp = &ifv->ifv_if;
610 struct psref_target *nmib_psref = NULL;
611 struct ifvlan_linkmib *omib;
612 int error = 0;
613
614 KASSERT(IFNET_LOCKED(ifp));
615 KASSERT(mutex_owned(&ifv->ifv_lock));
616
617 ifp->if_flags &= ~(IFF_UP | IFF_RUNNING);
618
619 omib = ifv->ifv_mib;
620 p = omib->ifvm_p;
621
622 if (p == NULL) {
623 error = -1;
624 goto done;
625 }
626
627 *nmib = *omib;
628 nmib_psref = &nmib->ifvm_psref;
629 psref_target_init(nmib_psref, ifvm_psref_class);
630
631 /*
632 * Since the interface is being unconfigured, we need to empty the
633 * list of multicast groups that we may have joined while we were
634 * alive and remove them from the parent's list also.
635 */
636 (*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
637
638 /* Disconnect from parent. */
639 switch (p->if_type) {
640 case IFT_ETHER:
641 {
642 struct ethercom *ec = (void *)p;
643 struct vlanid_list *vlanidp;
644 uint16_t vid = EVL_VLANOFTAG(nmib->ifvm_tag);
645
646 ETHER_LOCK(ec);
647 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
648 if (vlanidp->vid == vid) {
649 SIMPLEQ_REMOVE(&ec->ec_vids, vlanidp,
650 vlanid_list, vid_list);
651 break;
652 }
653 }
654 ETHER_UNLOCK(ec);
655 if (vlanidp != NULL)
656 kmem_free(vlanidp, sizeof(*vlanidp));
657
658 if (ec->ec_vlan_cb != NULL) {
659 /*
660 * Call ec_vlan_cb(). It will setup VLAN HW filter or
661 * HW tagging function.
662 */
663 (void)(*ec->ec_vlan_cb)(ec, vid, false);
664 }
665 if (--ec->ec_nvlans == 0) {
666 IFNET_LOCK(p);
667 (void)ether_disable_vlan_mtu(p);
668 IFNET_UNLOCK(p);
669 }
670
671 /* XXX ether_ifdetach must not be called with IFNET_LOCK */
672 mutex_exit(&ifv->ifv_lock);
673 IFNET_UNLOCK(ifp);
674 ether_ifdetach(ifp);
675 IFNET_LOCK(ifp);
676 mutex_enter(&ifv->ifv_lock);
677
678 /* if_free_sadl must be called with IFNET_LOCK */
679 if_free_sadl(ifp, 1);
680
681 /* Restore vlan_ioctl overwritten by ether_ifdetach */
682 ifp->if_ioctl = vlan_ioctl;
683 vlan_reset_linkname(ifp);
684 break;
685 }
686
687 default:
688 panic("%s: impossible", __func__);
689 }
690
691 nmib->ifvm_p = NULL;
692 ifv->ifv_if.if_mtu = 0;
693 ifv->ifv_flags = 0;
694
695 mutex_enter(&ifv_hash.lock);
696 PSLIST_WRITER_REMOVE(ifv, ifv_hash);
697 pserialize_perform(vlan_psz);
698 mutex_exit(&ifv_hash.lock);
699 PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
700
701 vlan_linkmib_update(ifv, nmib);
702
703 mutex_exit(&ifv->ifv_lock);
704
705 nmib_psref = NULL;
706 kmem_free(omib, sizeof(*omib));
707
708 #ifdef INET6
709 KERNEL_LOCK_UNLESS_NET_MPSAFE();
710 /* To delete v6 link local addresses */
711 if (in6_present)
712 in6_ifdetach(ifp);
713 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
714 #endif
715
716 if ((ifp->if_flags & IFF_PROMISC) != 0)
717 vlan_safe_ifpromisc_locked(ifp, 0);
718 if_down_locked(ifp);
719 ifp->if_capabilities = 0;
720 mutex_enter(&ifv->ifv_lock);
721 done:
722
723 if (nmib_psref)
724 psref_target_destroy(nmib_psref, ifvm_psref_class);
725
726 return error;
727 }
728
729 static void
730 vlan_hash_init(void)
731 {
732
733 ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
734 &ifv_hash.mask);
735 }
736
737 static int
738 vlan_hash_fini(void)
739 {
740 int i;
741
742 mutex_enter(&ifv_hash.lock);
743
744 for (i = 0; i < ifv_hash.mask + 1; i++) {
745 if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
746 ifv_hash) != NULL) {
747 mutex_exit(&ifv_hash.lock);
748 return EBUSY;
749 }
750 }
751
752 for (i = 0; i < ifv_hash.mask + 1; i++)
753 PSLIST_DESTROY(&ifv_hash.lists[i]);
754
755 mutex_exit(&ifv_hash.lock);
756
757 hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
758
759 ifv_hash.lists = NULL;
760 ifv_hash.mask = 0;
761
762 return 0;
763 }
764
765 static int
766 vlan_tag_hash(uint16_t tag, u_long mask)
767 {
768 uint32_t hash;
769
770 hash = (tag >> 8) ^ tag;
771 hash = (hash >> 2) ^ hash;
772
773 return hash & mask;
774 }
775
776 static struct ifvlan_linkmib *
777 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
778 {
779 struct ifvlan_linkmib *mib;
780 int s;
781
782 s = pserialize_read_enter();
783 mib = sc->ifv_mib;
784 if (mib == NULL) {
785 pserialize_read_exit(s);
786 return NULL;
787 }
788 membar_datadep_consumer();
789 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
790 pserialize_read_exit(s);
791
792 return mib;
793 }
794
795 static void
796 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
797 {
798 if (mib == NULL)
799 return;
800 psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
801 }
802
803 static struct ifvlan_linkmib *
804 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
805 {
806 int idx;
807 int s;
808 struct ifvlan *sc;
809
810 idx = vlan_tag_hash(tag, ifv_hash.mask);
811
812 s = pserialize_read_enter();
813 PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
814 ifv_hash) {
815 struct ifvlan_linkmib *mib = sc->ifv_mib;
816 if (mib == NULL)
817 continue;
818 if (mib->ifvm_tag != tag)
819 continue;
820 if (mib->ifvm_p != ifp)
821 continue;
822
823 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
824 pserialize_read_exit(s);
825 return mib;
826 }
827 pserialize_read_exit(s);
828 return NULL;
829 }
830
831 static void
832 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
833 {
834 struct ifvlan_linkmib *omib = ifv->ifv_mib;
835
836 KASSERT(mutex_owned(&ifv->ifv_lock));
837
838 membar_producer();
839 ifv->ifv_mib = nmib;
840
841 pserialize_perform(ifv->ifv_psz);
842 psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
843 }
844
845 /*
846 * Called when a parent interface is detaching; destroy any VLAN
847 * configuration for the parent interface.
848 */
849 void
850 vlan_ifdetach(struct ifnet *p)
851 {
852 struct ifvlan *ifv;
853 struct ifvlan_linkmib *mib, **nmibs;
854 struct psref psref;
855 int error;
856 int bound;
857 int i, cnt = 0;
858
859 bound = curlwp_bind();
860
861 mutex_enter(&ifv_list.lock);
862 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
863 mib = vlan_getref_linkmib(ifv, &psref);
864 if (mib == NULL)
865 continue;
866
867 if (mib->ifvm_p == p)
868 cnt++;
869
870 vlan_putref_linkmib(mib, &psref);
871 }
872 mutex_exit(&ifv_list.lock);
873
874 if (cnt == 0) {
875 curlwp_bindx(bound);
876 return;
877 }
878
879 /*
880 * The value of "cnt" does not increase while ifv_list.lock
881 * and ifv->ifv_lock are released here, because the parent
882 * interface is detaching.
883 */
884 nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
885 for (i = 0; i < cnt; i++) {
886 nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
887 }
888
889 mutex_enter(&ifv_list.lock);
890
891 i = 0;
892 LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
893 struct ifnet *ifp = &ifv->ifv_if;
894
895 /* IFNET_LOCK must be held before ifv_lock. */
896 IFNET_LOCK(ifp);
897 mutex_enter(&ifv->ifv_lock);
898
899 /* XXX ifv_mib = NULL? */
900 if (ifv->ifv_mib->ifvm_p == p) {
901 KASSERTMSG(i < cnt,
902 "no memory for unconfig, parent=%s", p->if_xname);
903 error = vlan_unconfig_locked(ifv, nmibs[i]);
904 if (!error) {
905 nmibs[i] = NULL;
906 i++;
907 }
908
909 }
910
911 mutex_exit(&ifv->ifv_lock);
912 IFNET_UNLOCK(ifp);
913 }
914
915 mutex_exit(&ifv_list.lock);
916
917 curlwp_bindx(bound);
918
919 for (i = 0; i < cnt; i++) {
920 if (nmibs[i])
921 kmem_free(nmibs[i], sizeof(*nmibs[i]));
922 }
923
924 kmem_free(nmibs, sizeof(*nmibs) * cnt);
925
926 return;
927 }
928
929 static int
930 vlan_set_promisc(struct ifnet *ifp)
931 {
932 struct ifvlan *ifv = ifp->if_softc;
933 struct ifvlan_linkmib *mib;
934 struct psref psref;
935 int error = 0;
936 int bound;
937
938 bound = curlwp_bind();
939 mib = vlan_getref_linkmib(ifv, &psref);
940 if (mib == NULL) {
941 curlwp_bindx(bound);
942 return EBUSY;
943 }
944
945 if ((ifp->if_flags & IFF_PROMISC) != 0) {
946 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
947 error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
948 if (error == 0)
949 ifv->ifv_flags |= IFVF_PROMISC;
950 }
951 } else {
952 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
953 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
954 if (error == 0)
955 ifv->ifv_flags &= ~IFVF_PROMISC;
956 }
957 }
958 vlan_putref_linkmib(mib, &psref);
959 curlwp_bindx(bound);
960
961 return error;
962 }
963
964 static int
965 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
966 {
967 struct lwp *l = curlwp;
968 struct ifvlan *ifv = ifp->if_softc;
969 struct ifaddr *ifa = (struct ifaddr *) data;
970 struct ifreq *ifr = (struct ifreq *) data;
971 struct ifnet *pr;
972 struct ifcapreq *ifcr;
973 struct vlanreq vlr;
974 struct ifvlan_linkmib *mib;
975 struct psref psref;
976 int error = 0;
977 int bound;
978
979 switch (cmd) {
980 case SIOCSIFMTU:
981 bound = curlwp_bind();
982 mib = vlan_getref_linkmib(ifv, &psref);
983 if (mib == NULL) {
984 curlwp_bindx(bound);
985 error = EBUSY;
986 break;
987 }
988
989 if (mib->ifvm_p == NULL) {
990 vlan_putref_linkmib(mib, &psref);
991 curlwp_bindx(bound);
992 error = EINVAL;
993 } else if (
994 ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
995 ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
996 vlan_putref_linkmib(mib, &psref);
997 curlwp_bindx(bound);
998 error = EINVAL;
999 } else {
1000 vlan_putref_linkmib(mib, &psref);
1001 curlwp_bindx(bound);
1002
1003 error = ifioctl_common(ifp, cmd, data);
1004 if (error == ENETRESET)
1005 error = 0;
1006 }
1007
1008 break;
1009
1010 case SIOCSETVLAN:
1011 if ((error = kauth_authorize_network(l->l_cred,
1012 KAUTH_NETWORK_INTERFACE,
1013 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1014 NULL)) != 0)
1015 break;
1016 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
1017 break;
1018
1019 if (vlr.vlr_parent[0] == '\0') {
1020 bound = curlwp_bind();
1021 mib = vlan_getref_linkmib(ifv, &psref);
1022 if (mib == NULL) {
1023 curlwp_bindx(bound);
1024 error = EBUSY;
1025 break;
1026 }
1027
1028 if (mib->ifvm_p != NULL &&
1029 (ifp->if_flags & IFF_PROMISC) != 0)
1030 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
1031
1032 vlan_putref_linkmib(mib, &psref);
1033 curlwp_bindx(bound);
1034
1035 vlan_unconfig(ifp);
1036 break;
1037 }
1038 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
1039 error = EINVAL; /* check for valid tag */
1040 break;
1041 }
1042 if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
1043 error = ENOENT;
1044 break;
1045 }
1046
1047 error = vlan_config(ifv, pr, vlr.vlr_tag);
1048 if (error != 0)
1049 break;
1050
1051 /* Update promiscuous mode, if necessary. */
1052 vlan_set_promisc(ifp);
1053
1054 ifp->if_flags |= IFF_RUNNING;
1055 break;
1056
1057 case SIOCGETVLAN:
1058 memset(&vlr, 0, sizeof(vlr));
1059 bound = curlwp_bind();
1060 mib = vlan_getref_linkmib(ifv, &psref);
1061 if (mib == NULL) {
1062 curlwp_bindx(bound);
1063 error = EBUSY;
1064 break;
1065 }
1066 if (mib->ifvm_p != NULL) {
1067 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
1068 mib->ifvm_p->if_xname);
1069 vlr.vlr_tag = mib->ifvm_tag;
1070 }
1071 vlan_putref_linkmib(mib, &psref);
1072 curlwp_bindx(bound);
1073 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1074 break;
1075
1076 case SIOCSIFFLAGS:
1077 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1078 break;
1079 /*
1080 * For promiscuous mode, we enable promiscuous mode on
1081 * the parent if we need promiscuous on the VLAN interface.
1082 */
1083 bound = curlwp_bind();
1084 mib = vlan_getref_linkmib(ifv, &psref);
1085 if (mib == NULL) {
1086 curlwp_bindx(bound);
1087 error = EBUSY;
1088 break;
1089 }
1090
1091 if (mib->ifvm_p != NULL)
1092 error = vlan_set_promisc(ifp);
1093 vlan_putref_linkmib(mib, &psref);
1094 curlwp_bindx(bound);
1095 break;
1096
1097 case SIOCADDMULTI:
1098 mutex_enter(&ifv->ifv_lock);
1099 mib = ifv->ifv_mib;
1100 if (mib == NULL) {
1101 error = EBUSY;
1102 mutex_exit(&ifv->ifv_lock);
1103 break;
1104 }
1105
1106 error = (mib->ifvm_p != NULL) ?
1107 (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
1108 mib = NULL;
1109 mutex_exit(&ifv->ifv_lock);
1110 break;
1111
1112 case SIOCDELMULTI:
1113 mutex_enter(&ifv->ifv_lock);
1114 mib = ifv->ifv_mib;
1115 if (mib == NULL) {
1116 error = EBUSY;
1117 mutex_exit(&ifv->ifv_lock);
1118 break;
1119 }
1120 error = (mib->ifvm_p != NULL) ?
1121 (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
1122 mib = NULL;
1123 mutex_exit(&ifv->ifv_lock);
1124 break;
1125
1126 case SIOCSIFCAP:
1127 ifcr = data;
1128 /* make sure caps are enabled on parent */
1129 bound = curlwp_bind();
1130 mib = vlan_getref_linkmib(ifv, &psref);
1131 if (mib == NULL) {
1132 curlwp_bindx(bound);
1133 error = EBUSY;
1134 break;
1135 }
1136
1137 if (mib->ifvm_p == NULL) {
1138 vlan_putref_linkmib(mib, &psref);
1139 curlwp_bindx(bound);
1140 error = EINVAL;
1141 break;
1142 }
1143 if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
1144 ifcr->ifcr_capenable) {
1145 vlan_putref_linkmib(mib, &psref);
1146 curlwp_bindx(bound);
1147 error = EINVAL;
1148 break;
1149 }
1150
1151 vlan_putref_linkmib(mib, &psref);
1152 curlwp_bindx(bound);
1153
1154 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1155 error = 0;
1156 break;
1157 case SIOCINITIFADDR:
1158 bound = curlwp_bind();
1159 mib = vlan_getref_linkmib(ifv, &psref);
1160 if (mib == NULL) {
1161 curlwp_bindx(bound);
1162 error = EBUSY;
1163 break;
1164 }
1165
1166 if (mib->ifvm_p == NULL) {
1167 error = EINVAL;
1168 vlan_putref_linkmib(mib, &psref);
1169 curlwp_bindx(bound);
1170 break;
1171 }
1172 vlan_putref_linkmib(mib, &psref);
1173 curlwp_bindx(bound);
1174
1175 ifp->if_flags |= IFF_UP;
1176 #ifdef INET
1177 if (ifa->ifa_addr->sa_family == AF_INET)
1178 arp_ifinit(ifp, ifa);
1179 #endif
1180 break;
1181
1182 default:
1183 error = ether_ioctl(ifp, cmd, data);
1184 }
1185
1186 return error;
1187 }
1188
1189 static int
1190 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
1191 {
1192 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
1193 struct vlan_mc_entry *mc;
1194 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1195 struct ifvlan_linkmib *mib;
1196 int error;
1197
1198 KASSERT(mutex_owned(&ifv->ifv_lock));
1199
1200 if (sa->sa_len > sizeof(struct sockaddr_storage))
1201 return EINVAL;
1202
1203 error = ether_addmulti(sa, &ifv->ifv_ec);
1204 if (error != ENETRESET)
1205 return error;
1206
1207 /*
1208 * This is a new multicast address. We have to tell parent
1209 * about it. Also, remember this multicast address so that
1210 * we can delete it on unconfigure.
1211 */
1212 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
1213 if (mc == NULL) {
1214 error = ENOMEM;
1215 goto alloc_failed;
1216 }
1217
1218 /*
1219 * Since ether_addmulti() returned ENETRESET, the following two
1220 * statements shouldn't fail. Here ifv_ec is implicitly protected
1221 * by the ifv_lock lock.
1222 */
1223 error = ether_multiaddr(sa, addrlo, addrhi);
1224 KASSERT(error == 0);
1225
1226 ETHER_LOCK(&ifv->ifv_ec);
1227 mc->mc_enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1228 ETHER_UNLOCK(&ifv->ifv_ec);
1229
1230 KASSERT(mc->mc_enm != NULL);
1231
1232 memcpy(&mc->mc_addr, sa, sa->sa_len);
1233 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
1234
1235 mib = ifv->ifv_mib;
1236
1237 KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1238 error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
1239 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1240
1241 if (error != 0)
1242 goto ioctl_failed;
1243 return error;
1244
1245 ioctl_failed:
1246 LIST_REMOVE(mc, mc_entries);
1247 free(mc, M_DEVBUF);
1248
1249 alloc_failed:
1250 (void)ether_delmulti(sa, &ifv->ifv_ec);
1251 return error;
1252 }
1253
1254 static int
1255 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
1256 {
1257 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
1258 struct ether_multi *enm;
1259 struct vlan_mc_entry *mc;
1260 struct ifvlan_linkmib *mib;
1261 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1262 int error;
1263
1264 KASSERT(mutex_owned(&ifv->ifv_lock));
1265
1266 /*
1267 * Find a key to lookup vlan_mc_entry. We have to do this
1268 * before calling ether_delmulti for obvious reasons.
1269 */
1270 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
1271 return error;
1272
1273 ETHER_LOCK(&ifv->ifv_ec);
1274 enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1275 ETHER_UNLOCK(&ifv->ifv_ec);
1276 if (enm == NULL)
1277 return EINVAL;
1278
1279 LIST_FOREACH(mc, &ifv->ifv_mc_listhead, mc_entries) {
1280 if (mc->mc_enm == enm)
1281 break;
1282 }
1283
1284 /* We woun't delete entries we didn't add */
1285 if (mc == NULL)
1286 return EINVAL;
1287
1288 error = ether_delmulti(sa, &ifv->ifv_ec);
1289 if (error != ENETRESET)
1290 return error;
1291
1292 /* We no longer use this multicast address. Tell parent so. */
1293 mib = ifv->ifv_mib;
1294 error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
1295
1296 if (error == 0) {
1297 /* And forget about this address. */
1298 LIST_REMOVE(mc, mc_entries);
1299 free(mc, M_DEVBUF);
1300 } else {
1301 (void)ether_addmulti(sa, &ifv->ifv_ec);
1302 }
1303
1304 return error;
1305 }
1306
1307 /*
1308 * Delete any multicast address we have asked to add from parent
1309 * interface. Called when the vlan is being unconfigured.
1310 */
1311 static void
1312 vlan_ether_purgemulti(struct ifvlan *ifv)
1313 {
1314 struct vlan_mc_entry *mc;
1315 struct ifvlan_linkmib *mib;
1316
1317 KASSERT(mutex_owned(&ifv->ifv_lock));
1318 mib = ifv->ifv_mib;
1319 if (mib == NULL) {
1320 return;
1321 }
1322
1323 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
1324 (void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
1325 sstocsa(&mc->mc_addr));
1326 LIST_REMOVE(mc, mc_entries);
1327 free(mc, M_DEVBUF);
1328 }
1329 }
1330
1331 static void
1332 vlan_start(struct ifnet *ifp)
1333 {
1334 struct ifvlan *ifv = ifp->if_softc;
1335 struct ifnet *p;
1336 struct ethercom *ec;
1337 struct mbuf *m;
1338 struct ifvlan_linkmib *mib;
1339 struct psref psref;
1340 int error;
1341
1342 mib = vlan_getref_linkmib(ifv, &psref);
1343 if (mib == NULL)
1344 return;
1345 p = mib->ifvm_p;
1346 ec = (void *)mib->ifvm_p;
1347
1348 ifp->if_flags |= IFF_OACTIVE;
1349
1350 for (;;) {
1351 IFQ_DEQUEUE(&ifp->if_snd, m);
1352 if (m == NULL)
1353 break;
1354
1355 #ifdef ALTQ
1356 /*
1357 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
1358 * defined.
1359 */
1360 KERNEL_LOCK(1, NULL);
1361 /*
1362 * If ALTQ is enabled on the parent interface, do
1363 * classification; the queueing discipline might
1364 * not require classification, but might require
1365 * the address family/header pointer in the pktattr.
1366 */
1367 if (ALTQ_IS_ENABLED(&p->if_snd)) {
1368 switch (p->if_type) {
1369 case IFT_ETHER:
1370 altq_etherclassify(&p->if_snd, m);
1371 break;
1372 default:
1373 panic("%s: impossible (altq)", __func__);
1374 }
1375 }
1376 KERNEL_UNLOCK_ONE(NULL);
1377 #endif /* ALTQ */
1378
1379 bpf_mtap(ifp, m, BPF_D_OUT);
1380 /*
1381 * If the parent can insert the tag itself, just mark
1382 * the tag in the mbuf header.
1383 */
1384 if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1385 vlan_set_tag(m, mib->ifvm_tag);
1386 } else {
1387 /*
1388 * insert the tag ourselves
1389 */
1390 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1391 if (m == NULL) {
1392 printf("%s: unable to prepend encap header",
1393 p->if_xname);
1394 ifp->if_oerrors++;
1395 continue;
1396 }
1397
1398 switch (p->if_type) {
1399 case IFT_ETHER:
1400 {
1401 struct ether_vlan_header *evl;
1402
1403 if (m->m_len < sizeof(struct ether_vlan_header))
1404 m = m_pullup(m,
1405 sizeof(struct ether_vlan_header));
1406 if (m == NULL) {
1407 printf("%s: unable to pullup encap "
1408 "header", p->if_xname);
1409 ifp->if_oerrors++;
1410 continue;
1411 }
1412
1413 /*
1414 * Transform the Ethernet header into an
1415 * Ethernet header with 802.1Q encapsulation.
1416 */
1417 memmove(mtod(m, void *),
1418 mtod(m, char *) + mib->ifvm_encaplen,
1419 sizeof(struct ether_header));
1420 evl = mtod(m, struct ether_vlan_header *);
1421 evl->evl_proto = evl->evl_encap_proto;
1422 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1423 evl->evl_tag = htons(mib->ifvm_tag);
1424
1425 /*
1426 * To cater for VLAN-aware layer 2 ethernet
1427 * switches which may need to strip the tag
1428 * before forwarding the packet, make sure
1429 * the packet+tag is at least 68 bytes long.
1430 * This is necessary because our parent will
1431 * only pad to 64 bytes (ETHER_MIN_LEN) and
1432 * some switches will not pad by themselves
1433 * after deleting a tag.
1434 */
1435 const size_t min_data_len = ETHER_MIN_LEN -
1436 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1437 if (m->m_pkthdr.len < min_data_len) {
1438 m_copyback(m, m->m_pkthdr.len,
1439 min_data_len - m->m_pkthdr.len,
1440 vlan_zero_pad_buff);
1441 }
1442 break;
1443 }
1444
1445 default:
1446 panic("%s: impossible", __func__);
1447 }
1448 }
1449
1450 if ((p->if_flags & IFF_RUNNING) == 0) {
1451 m_freem(m);
1452 continue;
1453 }
1454
1455 error = if_transmit_lock(p, m);
1456 if (error) {
1457 /* mbuf is already freed */
1458 ifp->if_oerrors++;
1459 continue;
1460 }
1461 ifp->if_opackets++;
1462 }
1463
1464 ifp->if_flags &= ~IFF_OACTIVE;
1465
1466 /* Remove reference to mib before release */
1467 vlan_putref_linkmib(mib, &psref);
1468 }
1469
1470 static int
1471 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1472 {
1473 struct ifvlan *ifv = ifp->if_softc;
1474 struct ifnet *p;
1475 struct ethercom *ec;
1476 struct ifvlan_linkmib *mib;
1477 struct psref psref;
1478 int error;
1479 size_t pktlen = m->m_pkthdr.len;
1480 bool mcast = (m->m_flags & M_MCAST) != 0;
1481
1482 mib = vlan_getref_linkmib(ifv, &psref);
1483 if (mib == NULL) {
1484 m_freem(m);
1485 return ENETDOWN;
1486 }
1487
1488 p = mib->ifvm_p;
1489 ec = (void *)mib->ifvm_p;
1490
1491 bpf_mtap(ifp, m, BPF_D_OUT);
1492
1493 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
1494 goto out;
1495 if (m == NULL)
1496 goto out;
1497
1498 /*
1499 * If the parent can insert the tag itself, just mark
1500 * the tag in the mbuf header.
1501 */
1502 if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1503 vlan_set_tag(m, mib->ifvm_tag);
1504 } else {
1505 /*
1506 * insert the tag ourselves
1507 */
1508 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1509 if (m == NULL) {
1510 printf("%s: unable to prepend encap header",
1511 p->if_xname);
1512 ifp->if_oerrors++;
1513 error = ENOBUFS;
1514 goto out;
1515 }
1516
1517 switch (p->if_type) {
1518 case IFT_ETHER:
1519 {
1520 struct ether_vlan_header *evl;
1521
1522 if (m->m_len < sizeof(struct ether_vlan_header))
1523 m = m_pullup(m,
1524 sizeof(struct ether_vlan_header));
1525 if (m == NULL) {
1526 printf("%s: unable to pullup encap "
1527 "header", p->if_xname);
1528 ifp->if_oerrors++;
1529 error = ENOBUFS;
1530 goto out;
1531 }
1532
1533 /*
1534 * Transform the Ethernet header into an
1535 * Ethernet header with 802.1Q encapsulation.
1536 */
1537 memmove(mtod(m, void *),
1538 mtod(m, char *) + mib->ifvm_encaplen,
1539 sizeof(struct ether_header));
1540 evl = mtod(m, struct ether_vlan_header *);
1541 evl->evl_proto = evl->evl_encap_proto;
1542 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1543 evl->evl_tag = htons(mib->ifvm_tag);
1544
1545 /*
1546 * To cater for VLAN-aware layer 2 ethernet
1547 * switches which may need to strip the tag
1548 * before forwarding the packet, make sure
1549 * the packet+tag is at least 68 bytes long.
1550 * This is necessary because our parent will
1551 * only pad to 64 bytes (ETHER_MIN_LEN) and
1552 * some switches will not pad by themselves
1553 * after deleting a tag.
1554 */
1555 const size_t min_data_len = ETHER_MIN_LEN -
1556 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1557 if (m->m_pkthdr.len < min_data_len) {
1558 m_copyback(m, m->m_pkthdr.len,
1559 min_data_len - m->m_pkthdr.len,
1560 vlan_zero_pad_buff);
1561 }
1562 break;
1563 }
1564
1565 default:
1566 panic("%s: impossible", __func__);
1567 }
1568 }
1569
1570 if ((p->if_flags & IFF_RUNNING) == 0) {
1571 m_freem(m);
1572 error = ENETDOWN;
1573 goto out;
1574 }
1575
1576 error = if_transmit_lock(p, m);
1577 if (error) {
1578 /* mbuf is already freed */
1579 ifp->if_oerrors++;
1580 } else {
1581
1582 ifp->if_opackets++;
1583 ifp->if_obytes += pktlen;
1584 if (mcast)
1585 ifp->if_omcasts++;
1586 }
1587
1588 out:
1589 /* Remove reference to mib before release */
1590 vlan_putref_linkmib(mib, &psref);
1591 return error;
1592 }
1593
1594 /*
1595 * Given an Ethernet frame, find a valid vlan interface corresponding to the
1596 * given source interface and tag, then run the real packet through the
1597 * parent's input routine.
1598 */
1599 void
1600 vlan_input(struct ifnet *ifp, struct mbuf *m)
1601 {
1602 struct ifvlan *ifv;
1603 uint16_t vid;
1604 struct ifvlan_linkmib *mib;
1605 struct psref psref;
1606 bool have_vtag;
1607
1608 have_vtag = vlan_has_tag(m);
1609 if (have_vtag) {
1610 vid = EVL_VLANOFTAG(vlan_get_tag(m));
1611 m->m_flags &= ~M_VLANTAG;
1612 } else {
1613 struct ether_vlan_header *evl;
1614
1615 if (ifp->if_type != IFT_ETHER) {
1616 panic("%s: impossible", __func__);
1617 }
1618
1619 if (m->m_len < sizeof(struct ether_vlan_header) &&
1620 (m = m_pullup(m,
1621 sizeof(struct ether_vlan_header))) == NULL) {
1622 printf("%s: no memory for VLAN header, "
1623 "dropping packet.\n", ifp->if_xname);
1624 return;
1625 }
1626 evl = mtod(m, struct ether_vlan_header *);
1627 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1628
1629 vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1630
1631 /*
1632 * Restore the original ethertype. We'll remove
1633 * the encapsulation after we've found the vlan
1634 * interface corresponding to the tag.
1635 */
1636 evl->evl_encap_proto = evl->evl_proto;
1637 }
1638
1639 mib = vlan_lookup_tag_psref(ifp, vid, &psref);
1640 if (mib == NULL) {
1641 m_freem(m);
1642 ifp->if_noproto++;
1643 return;
1644 }
1645 KASSERT(mib->ifvm_encaplen == ETHER_VLAN_ENCAP_LEN);
1646
1647 ifv = mib->ifvm_ifvlan;
1648 if ((ifv->ifv_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
1649 (IFF_UP | IFF_RUNNING)) {
1650 m_freem(m);
1651 ifp->if_noproto++;
1652 goto out;
1653 }
1654
1655 /*
1656 * Now, remove the encapsulation header. The original
1657 * header has already been fixed up above.
1658 */
1659 if (!have_vtag) {
1660 memmove(mtod(m, char *) + mib->ifvm_encaplen,
1661 mtod(m, void *), sizeof(struct ether_header));
1662 m_adj(m, mib->ifvm_encaplen);
1663 }
1664
1665 m_set_rcvif(m, &ifv->ifv_if);
1666
1667 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
1668 goto out;
1669 if (m == NULL)
1670 goto out;
1671
1672 m->m_flags &= ~M_PROMISC;
1673 if_input(&ifv->ifv_if, m);
1674 out:
1675 vlan_putref_linkmib(mib, &psref);
1676 }
1677
1678 /*
1679 * Module infrastructure
1680 */
1681 #include "if_module.h"
1682
1683 IF_MODULE(MODULE_CLASS_DRIVER, vlan, NULL)
1684