if_vlan.c revision 1.164 1 /* $NetBSD: if_vlan.c,v 1.164 2021/10/05 04:09:49 yamaguchi Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.164 2021/10/05 04:09:49 yamaguchi Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mbuf.h>
92 #include <sys/queue.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/systm.h>
96 #include <sys/proc.h>
97 #include <sys/kauth.h>
98 #include <sys/mutex.h>
99 #include <sys/kmem.h>
100 #include <sys/cpu.h>
101 #include <sys/pserialize.h>
102 #include <sys/psref.h>
103 #include <sys/pslist.h>
104 #include <sys/atomic.h>
105 #include <sys/device.h>
106 #include <sys/module.h>
107
108 #include <net/bpf.h>
109 #include <net/if.h>
110 #include <net/if_dl.h>
111 #include <net/if_types.h>
112 #include <net/if_ether.h>
113 #include <net/if_vlanvar.h>
114
115 #ifdef INET
116 #include <netinet/in.h>
117 #include <netinet/if_inarp.h>
118 #endif
119 #ifdef INET6
120 #include <netinet6/in6_ifattach.h>
121 #include <netinet6/in6_var.h>
122 #include <netinet6/nd6.h>
123 #endif
124
125 #include "ioconf.h"
126
127 struct vlan_mc_entry {
128 LIST_ENTRY(vlan_mc_entry) mc_entries;
129 /*
130 * A key to identify this entry. The mc_addr below can't be
131 * used since multiple sockaddr may mapped into the same
132 * ether_multi (e.g., AF_UNSPEC).
133 */
134 struct ether_multi *mc_enm;
135 struct sockaddr_storage mc_addr;
136 };
137
138 struct ifvlan_linkmib {
139 struct ifvlan *ifvm_ifvlan;
140 const struct vlan_multisw *ifvm_msw;
141 int ifvm_encaplen; /* encapsulation length */
142 int ifvm_mtufudge; /* MTU fudged by this much */
143 int ifvm_mintu; /* min transmission unit */
144 uint16_t ifvm_proto; /* encapsulation ethertype */
145 uint16_t ifvm_tag; /* tag to apply on packets */
146 struct ifnet *ifvm_p; /* parent interface of this vlan */
147
148 struct psref_target ifvm_psref;
149 };
150
151 struct ifvlan {
152 struct ethercom ifv_ec;
153 struct ifvlan_linkmib *ifv_mib; /*
154 * reader must use vlan_getref_linkmib()
155 * instead of direct dereference
156 */
157 kmutex_t ifv_lock; /* writer lock for ifv_mib */
158 pserialize_t ifv_psz;
159 void *ifv_linkstate_hook;
160 void *ifv_ifdetach_hook;
161
162 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
163 struct pslist_entry ifv_hash;
164 int ifv_flags;
165 bool ifv_stopping;
166 };
167
168 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
169
170 #define ifv_if ifv_ec.ec_if
171
172 #define ifv_msw ifv_mib.ifvm_msw
173 #define ifv_encaplen ifv_mib.ifvm_encaplen
174 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
175 #define ifv_mintu ifv_mib.ifvm_mintu
176 #define ifv_tag ifv_mib.ifvm_tag
177
178 struct vlan_multisw {
179 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
180 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
181 void (*vmsw_purgemulti)(struct ifvlan *);
182 };
183
184 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
185 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
186 static void vlan_ether_purgemulti(struct ifvlan *);
187
188 const struct vlan_multisw vlan_ether_multisw = {
189 .vmsw_addmulti = vlan_ether_addmulti,
190 .vmsw_delmulti = vlan_ether_delmulti,
191 .vmsw_purgemulti = vlan_ether_purgemulti,
192 };
193
194 static int vlan_clone_create(struct if_clone *, int);
195 static int vlan_clone_destroy(struct ifnet *);
196 static int vlan_config(struct ifvlan *, struct ifnet *, uint16_t);
197 static int vlan_ioctl(struct ifnet *, u_long, void *);
198 static void vlan_start(struct ifnet *);
199 static int vlan_transmit(struct ifnet *, struct mbuf *);
200 static void vlan_link_state_changed(void *);
201 static void vlan_ifdetach(void *);
202 static void vlan_unconfig(struct ifnet *);
203 static int vlan_unconfig_locked(struct ifvlan *, struct ifvlan_linkmib *);
204 static void vlan_hash_init(void);
205 static int vlan_hash_fini(void);
206 static int vlan_tag_hash(uint16_t, u_long);
207 static struct ifvlan_linkmib* vlan_getref_linkmib(struct ifvlan *,
208 struct psref *);
209 static void vlan_putref_linkmib(struct ifvlan_linkmib *, struct psref *);
210 static void vlan_linkmib_update(struct ifvlan *, struct ifvlan_linkmib *);
211 static struct ifvlan_linkmib* vlan_lookup_tag_psref(struct ifnet *,
212 uint16_t, struct psref *);
213
214 #if !defined(VLAN_TAG_HASH_SIZE)
215 #define VLAN_TAG_HASH_SIZE 32
216 #endif
217 static struct {
218 kmutex_t lock;
219 struct pslist_head *lists;
220 u_long mask;
221 } ifv_hash __cacheline_aligned = {
222 .lists = NULL,
223 .mask = 0,
224 };
225
226 pserialize_t vlan_psz __read_mostly;
227 static struct psref_class *ifvm_psref_class __read_mostly;
228
229 struct if_clone vlan_cloner =
230 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
231
232 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
233 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
234
235 static uint32_t nvlanifs;
236
237 static inline int
238 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
239 {
240 int e;
241
242 KERNEL_LOCK_UNLESS_NET_MPSAFE();
243 e = ifpromisc(ifp, pswitch);
244 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
245
246 return e;
247 }
248
249 __unused static inline int
250 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
251 {
252 int e;
253
254 KERNEL_LOCK_UNLESS_NET_MPSAFE();
255 e = ifpromisc_locked(ifp, pswitch);
256 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
257
258 return e;
259 }
260
261 void
262 vlanattach(int n)
263 {
264
265 /*
266 * Nothing to do here, initialization is handled by the
267 * module initialization code in vlaninit() below.
268 */
269 }
270
271 static void
272 vlaninit(void)
273 {
274 nvlanifs = 0;
275
276 mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
277 vlan_psz = pserialize_create();
278 ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
279 if_clone_attach(&vlan_cloner);
280
281 vlan_hash_init();
282 MODULE_HOOK_SET(if_vlan_vlan_input_hook, vlan_input);
283 }
284
285 static int
286 vlandetach(void)
287 {
288 int error;
289
290 if (nvlanifs > 0)
291 return EBUSY;
292
293 error = vlan_hash_fini();
294 if (error != 0)
295 return error;
296
297 if_clone_detach(&vlan_cloner);
298 psref_class_destroy(ifvm_psref_class);
299 pserialize_destroy(vlan_psz);
300 mutex_destroy(&ifv_hash.lock);
301
302 MODULE_HOOK_UNSET(if_vlan_vlan_input_hook);
303 return 0;
304 }
305
306 static void
307 vlan_reset_linkname(struct ifnet *ifp)
308 {
309
310 /*
311 * We start out with a "802.1Q VLAN" type and zero-length
312 * addresses. When we attach to a parent interface, we
313 * inherit its type, address length, address, and data link
314 * type.
315 */
316
317 ifp->if_type = IFT_L2VLAN;
318 ifp->if_addrlen = 0;
319 ifp->if_dlt = DLT_NULL;
320 if_alloc_sadl(ifp);
321 }
322
323 static int
324 vlan_clone_create(struct if_clone *ifc, int unit)
325 {
326 struct ifvlan *ifv;
327 struct ifnet *ifp;
328 struct ifvlan_linkmib *mib;
329
330 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK | M_ZERO);
331 mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
332 ifp = &ifv->ifv_if;
333 LIST_INIT(&ifv->ifv_mc_listhead);
334
335 mib->ifvm_ifvlan = ifv;
336 mib->ifvm_p = NULL;
337 psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
338
339 mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
340 ifv->ifv_psz = pserialize_create();
341 ifv->ifv_mib = mib;
342
343 atomic_inc_uint(&nvlanifs);
344
345 if_initname(ifp, ifc->ifc_name, unit);
346 ifp->if_softc = ifv;
347 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
348 #ifdef NET_MPSAFE
349 ifp->if_extflags = IFEF_MPSAFE;
350 #endif
351 ifp->if_start = vlan_start;
352 ifp->if_transmit = vlan_transmit;
353 ifp->if_ioctl = vlan_ioctl;
354 IFQ_SET_READY(&ifp->if_snd);
355 if_initialize(ifp);
356 /*
357 * Set the link state to down.
358 * When the parent interface attaches we will use that link state.
359 * When the parent interface link state changes, so will ours.
360 * When the parent interface detaches, set the link state to down.
361 */
362 ifp->if_link_state = LINK_STATE_DOWN;
363
364 vlan_reset_linkname(ifp);
365 if_register(ifp);
366 return 0;
367 }
368
369 static int
370 vlan_clone_destroy(struct ifnet *ifp)
371 {
372 struct ifvlan *ifv = ifp->if_softc;
373
374 atomic_dec_uint(&nvlanifs);
375
376 IFNET_LOCK(ifp);
377 vlan_unconfig(ifp);
378 IFNET_UNLOCK(ifp);
379 if_detach(ifp);
380
381 psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
382 kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
383 pserialize_destroy(ifv->ifv_psz);
384 mutex_destroy(&ifv->ifv_lock);
385 free(ifv, M_DEVBUF);
386
387 return 0;
388 }
389
390 /*
391 * Configure a VLAN interface.
392 */
393 static int
394 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
395 {
396 struct ifnet *ifp = &ifv->ifv_if;
397 struct ifvlan_linkmib *nmib = NULL;
398 struct ifvlan_linkmib *omib = NULL;
399 struct ifvlan_linkmib *checkmib;
400 struct psref_target *nmib_psref = NULL;
401 const uint16_t vid = EVL_VLANOFTAG(tag);
402 int error = 0;
403 int idx;
404 bool omib_cleanup = false;
405 struct psref psref;
406
407 /* VLAN ID 0 and 4095 are reserved in the spec */
408 if ((vid == 0) || (vid == 0xfff))
409 return EINVAL;
410
411 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
412 mutex_enter(&ifv->ifv_lock);
413 omib = ifv->ifv_mib;
414
415 if (omib->ifvm_p != NULL) {
416 error = EBUSY;
417 goto done;
418 }
419
420 /* Duplicate check */
421 checkmib = vlan_lookup_tag_psref(p, vid, &psref);
422 if (checkmib != NULL) {
423 vlan_putref_linkmib(checkmib, &psref);
424 error = EEXIST;
425 goto done;
426 }
427
428 *nmib = *omib;
429 nmib_psref = &nmib->ifvm_psref;
430
431 psref_target_init(nmib_psref, ifvm_psref_class);
432
433 switch (p->if_type) {
434 case IFT_ETHER:
435 {
436 struct ethercom *ec = (void *)p;
437 struct vlanid_list *vidmem;
438
439 nmib->ifvm_msw = &vlan_ether_multisw;
440 nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
441 nmib->ifvm_mintu = ETHERMIN;
442
443 if (ec->ec_nvlans++ == 0) {
444 IFNET_LOCK(p);
445 error = ether_enable_vlan_mtu(p);
446 IFNET_UNLOCK(p);
447 if (error >= 0) {
448 if (error) {
449 ec->ec_nvlans--;
450 goto done;
451 }
452 nmib->ifvm_mtufudge = 0;
453 } else {
454 /*
455 * Fudge the MTU by the encapsulation size. This
456 * makes us incompatible with strictly compliant
457 * 802.1Q implementations, but allows us to use
458 * the feature with other NetBSD
459 * implementations, which might still be useful.
460 */
461 nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
462 }
463 error = 0;
464 }
465 /* Add a vid to the list */
466 vidmem = kmem_alloc(sizeof(struct vlanid_list), KM_SLEEP);
467 vidmem->vid = vid;
468 ETHER_LOCK(ec);
469 SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidmem, vid_list);
470 ETHER_UNLOCK(ec);
471
472 if (ec->ec_vlan_cb != NULL) {
473 /*
474 * Call ec_vlan_cb(). It will setup VLAN HW filter or
475 * HW tagging function.
476 */
477 error = (*ec->ec_vlan_cb)(ec, vid, true);
478 if (error) {
479 ec->ec_nvlans--;
480 if (ec->ec_nvlans == 0) {
481 IFNET_LOCK(p);
482 (void)ether_disable_vlan_mtu(p);
483 IFNET_UNLOCK(p);
484 }
485 goto done;
486 }
487 }
488 /*
489 * If the parent interface can do hardware-assisted
490 * VLAN encapsulation, then propagate its hardware-
491 * assisted checksumming flags and tcp segmentation
492 * offload.
493 */
494 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
495 ifp->if_capabilities = p->if_capabilities &
496 (IFCAP_TSOv4 | IFCAP_TSOv6 |
497 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
498 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
499 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
500 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
501 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx);
502 }
503
504 /*
505 * We inherit the parent's Ethernet address.
506 */
507 ether_ifattach(ifp, CLLADDR(p->if_sadl));
508 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
509 break;
510 }
511
512 default:
513 error = EPROTONOSUPPORT;
514 goto done;
515 }
516
517 nmib->ifvm_p = p;
518 nmib->ifvm_tag = vid;
519 ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
520 ifv->ifv_if.if_flags = p->if_flags &
521 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
522
523 /*
524 * Inherit the if_type from the parent. This allows us
525 * to participate in bridges of that type.
526 */
527 ifv->ifv_if.if_type = p->if_type;
528
529 PSLIST_ENTRY_INIT(ifv, ifv_hash);
530 idx = vlan_tag_hash(vid, ifv_hash.mask);
531
532 mutex_enter(&ifv_hash.lock);
533 PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
534 mutex_exit(&ifv_hash.lock);
535
536 vlan_linkmib_update(ifv, nmib);
537 nmib = NULL;
538 nmib_psref = NULL;
539 omib_cleanup = true;
540
541 ifv->ifv_ifdetach_hook = ether_ifdetachhook_establish(p,
542 vlan_ifdetach, ifp);
543
544 /*
545 * We inherit the parents link state.
546 */
547 ifv->ifv_linkstate_hook = if_linkstate_change_establish(p,
548 vlan_link_state_changed, ifv);
549 if_link_state_change(&ifv->ifv_if, p->if_link_state);
550
551 done:
552 mutex_exit(&ifv->ifv_lock);
553
554 if (nmib_psref)
555 psref_target_destroy(nmib_psref, ifvm_psref_class);
556 if (nmib)
557 kmem_free(nmib, sizeof(*nmib));
558 if (omib_cleanup)
559 kmem_free(omib, sizeof(*omib));
560
561 return error;
562 }
563
564 /*
565 * Unconfigure a VLAN interface.
566 */
567 static void
568 vlan_unconfig(struct ifnet *ifp)
569 {
570 struct ifvlan *ifv = ifp->if_softc;
571 struct ifvlan_linkmib *nmib = NULL;
572 int error;
573
574 KASSERT(IFNET_LOCKED(ifp));
575
576 nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
577
578 mutex_enter(&ifv->ifv_lock);
579 error = vlan_unconfig_locked(ifv, nmib);
580 mutex_exit(&ifv->ifv_lock);
581
582 if (error)
583 kmem_free(nmib, sizeof(*nmib));
584 }
585 static int
586 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
587 {
588 struct ifnet *p;
589 struct ifnet *ifp = &ifv->ifv_if;
590 struct psref_target *nmib_psref = NULL;
591 struct ifvlan_linkmib *omib;
592 int error = 0;
593
594 KASSERT(IFNET_LOCKED(ifp));
595 KASSERT(mutex_owned(&ifv->ifv_lock));
596
597 if (ifv->ifv_stopping) {
598 error = -1;
599 goto done;
600 }
601
602 ifp->if_flags &= ~(IFF_UP | IFF_RUNNING);
603
604 omib = ifv->ifv_mib;
605 p = omib->ifvm_p;
606
607 if (p == NULL) {
608 error = -1;
609 goto done;
610 }
611
612 *nmib = *omib;
613 nmib_psref = &nmib->ifvm_psref;
614 psref_target_init(nmib_psref, ifvm_psref_class);
615
616 /*
617 * Since the interface is being unconfigured, we need to empty the
618 * list of multicast groups that we may have joined while we were
619 * alive and remove them from the parent's list also.
620 */
621 (*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
622
623 /* Disconnect from parent. */
624 switch (p->if_type) {
625 case IFT_ETHER:
626 {
627 struct ethercom *ec = (void *)p;
628 struct vlanid_list *vlanidp;
629 uint16_t vid = EVL_VLANOFTAG(nmib->ifvm_tag);
630
631 ETHER_LOCK(ec);
632 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
633 if (vlanidp->vid == vid) {
634 SIMPLEQ_REMOVE(&ec->ec_vids, vlanidp,
635 vlanid_list, vid_list);
636 break;
637 }
638 }
639 ETHER_UNLOCK(ec);
640 if (vlanidp != NULL)
641 kmem_free(vlanidp, sizeof(*vlanidp));
642
643 if (ec->ec_vlan_cb != NULL) {
644 /*
645 * Call ec_vlan_cb(). It will setup VLAN HW filter or
646 * HW tagging function.
647 */
648 (void)(*ec->ec_vlan_cb)(ec, vid, false);
649 }
650 if (--ec->ec_nvlans == 0) {
651 IFNET_LOCK(p);
652 (void)ether_disable_vlan_mtu(p);
653 IFNET_UNLOCK(p);
654 }
655
656 /* XXX ether_ifdetach must not be called with IFNET_LOCK */
657 ifv->ifv_stopping = true;
658 mutex_exit(&ifv->ifv_lock);
659 IFNET_UNLOCK(ifp);
660 ether_ifdetach(ifp);
661 IFNET_LOCK(ifp);
662 mutex_enter(&ifv->ifv_lock);
663 ifv->ifv_stopping = false;
664
665 /* if_free_sadl must be called with IFNET_LOCK */
666 if_free_sadl(ifp, 1);
667
668 /* Restore vlan_ioctl overwritten by ether_ifdetach */
669 ifp->if_ioctl = vlan_ioctl;
670 vlan_reset_linkname(ifp);
671 break;
672 }
673
674 default:
675 panic("%s: impossible", __func__);
676 }
677
678 nmib->ifvm_p = NULL;
679 ifv->ifv_if.if_mtu = 0;
680 ifv->ifv_flags = 0;
681
682 mutex_enter(&ifv_hash.lock);
683 PSLIST_WRITER_REMOVE(ifv, ifv_hash);
684 pserialize_perform(vlan_psz);
685 mutex_exit(&ifv_hash.lock);
686 PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
687 if_linkstate_change_disestablish(p,
688 ifv->ifv_linkstate_hook, NULL);
689
690 vlan_linkmib_update(ifv, nmib);
691 if_link_state_change(ifp, LINK_STATE_DOWN);
692
693 /*XXX ether_ifdetachhook_disestablish must not called with IFNET_LOCK */
694 IFNET_UNLOCK(ifp);
695 ether_ifdetachhook_disestablish(p, ifv->ifv_ifdetach_hook,
696 &ifv->ifv_lock);
697 mutex_exit(&ifv->ifv_lock);
698 IFNET_LOCK(ifp);
699
700 nmib_psref = NULL;
701 kmem_free(omib, sizeof(*omib));
702
703 #ifdef INET6
704 KERNEL_LOCK_UNLESS_NET_MPSAFE();
705 /* To delete v6 link local addresses */
706 if (in6_present)
707 in6_ifdetach(ifp);
708 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
709 #endif
710
711 if_down_locked(ifp);
712 ifp->if_capabilities = 0;
713 mutex_enter(&ifv->ifv_lock);
714 done:
715 if (nmib_psref)
716 psref_target_destroy(nmib_psref, ifvm_psref_class);
717
718 return error;
719 }
720
721 static void
722 vlan_hash_init(void)
723 {
724
725 ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
726 &ifv_hash.mask);
727 }
728
729 static int
730 vlan_hash_fini(void)
731 {
732 int i;
733
734 mutex_enter(&ifv_hash.lock);
735
736 for (i = 0; i < ifv_hash.mask + 1; i++) {
737 if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
738 ifv_hash) != NULL) {
739 mutex_exit(&ifv_hash.lock);
740 return EBUSY;
741 }
742 }
743
744 for (i = 0; i < ifv_hash.mask + 1; i++)
745 PSLIST_DESTROY(&ifv_hash.lists[i]);
746
747 mutex_exit(&ifv_hash.lock);
748
749 hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
750
751 ifv_hash.lists = NULL;
752 ifv_hash.mask = 0;
753
754 return 0;
755 }
756
757 static int
758 vlan_tag_hash(uint16_t tag, u_long mask)
759 {
760 uint32_t hash;
761
762 hash = (tag >> 8) ^ tag;
763 hash = (hash >> 2) ^ hash;
764
765 return hash & mask;
766 }
767
768 static struct ifvlan_linkmib *
769 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
770 {
771 struct ifvlan_linkmib *mib;
772 int s;
773
774 s = pserialize_read_enter();
775 mib = atomic_load_consume(&sc->ifv_mib);
776 if (mib == NULL) {
777 pserialize_read_exit(s);
778 return NULL;
779 }
780 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
781 pserialize_read_exit(s);
782
783 return mib;
784 }
785
786 static void
787 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
788 {
789 if (mib == NULL)
790 return;
791 psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
792 }
793
794 static struct ifvlan_linkmib *
795 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
796 {
797 int idx;
798 int s;
799 struct ifvlan *sc;
800
801 idx = vlan_tag_hash(tag, ifv_hash.mask);
802
803 s = pserialize_read_enter();
804 PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
805 ifv_hash) {
806 struct ifvlan_linkmib *mib = atomic_load_consume(&sc->ifv_mib);
807 if (mib == NULL)
808 continue;
809 if (mib->ifvm_tag != tag)
810 continue;
811 if (mib->ifvm_p != ifp)
812 continue;
813
814 psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
815 pserialize_read_exit(s);
816 return mib;
817 }
818 pserialize_read_exit(s);
819 return NULL;
820 }
821
822 static void
823 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
824 {
825 struct ifvlan_linkmib *omib = ifv->ifv_mib;
826
827 KASSERT(mutex_owned(&ifv->ifv_lock));
828
829 atomic_store_release(&ifv->ifv_mib, nmib);
830
831 pserialize_perform(ifv->ifv_psz);
832 psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
833 }
834
835 /*
836 * Called when a parent interface is detaching; destroy any VLAN
837 * configuration for the parent interface.
838 */
839 static void
840 vlan_ifdetach(void *xifp)
841 {
842 struct ifnet *ifp;
843
844 ifp = (struct ifnet *)xifp;
845
846 /* IFNET_LOCK must be held before ifv_lock. */
847 IFNET_LOCK(ifp);
848 vlan_unconfig(ifp);
849 IFNET_UNLOCK(ifp);
850 }
851
852 static int
853 vlan_set_promisc(struct ifnet *ifp)
854 {
855 struct ifvlan *ifv = ifp->if_softc;
856 struct ifvlan_linkmib *mib;
857 struct psref psref;
858 int error = 0;
859 int bound;
860
861 bound = curlwp_bind();
862 mib = vlan_getref_linkmib(ifv, &psref);
863 if (mib == NULL) {
864 curlwp_bindx(bound);
865 return EBUSY;
866 }
867
868 if ((ifp->if_flags & IFF_PROMISC) != 0) {
869 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
870 error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
871 if (error == 0)
872 ifv->ifv_flags |= IFVF_PROMISC;
873 }
874 } else {
875 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
876 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
877 if (error == 0)
878 ifv->ifv_flags &= ~IFVF_PROMISC;
879 }
880 }
881 vlan_putref_linkmib(mib, &psref);
882 curlwp_bindx(bound);
883
884 return error;
885 }
886
887 static int
888 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
889 {
890 struct lwp *l = curlwp;
891 struct ifvlan *ifv = ifp->if_softc;
892 struct ifaddr *ifa = (struct ifaddr *) data;
893 struct ifreq *ifr = (struct ifreq *) data;
894 struct ifnet *pr;
895 struct ifcapreq *ifcr;
896 struct vlanreq vlr;
897 struct ifvlan_linkmib *mib;
898 struct psref psref;
899 int error = 0;
900 int bound;
901
902 switch (cmd) {
903 case SIOCSIFMTU:
904 bound = curlwp_bind();
905 mib = vlan_getref_linkmib(ifv, &psref);
906 if (mib == NULL) {
907 curlwp_bindx(bound);
908 error = EBUSY;
909 break;
910 }
911
912 if (mib->ifvm_p == NULL) {
913 vlan_putref_linkmib(mib, &psref);
914 curlwp_bindx(bound);
915 error = EINVAL;
916 } else if (
917 ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
918 ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
919 vlan_putref_linkmib(mib, &psref);
920 curlwp_bindx(bound);
921 error = EINVAL;
922 } else {
923 vlan_putref_linkmib(mib, &psref);
924 curlwp_bindx(bound);
925
926 error = ifioctl_common(ifp, cmd, data);
927 if (error == ENETRESET)
928 error = 0;
929 }
930
931 break;
932
933 case SIOCSETVLAN:
934 if ((error = kauth_authorize_network(l->l_cred,
935 KAUTH_NETWORK_INTERFACE,
936 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
937 NULL)) != 0)
938 break;
939 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
940 break;
941
942 if (vlr.vlr_parent[0] == '\0') {
943 bound = curlwp_bind();
944 mib = vlan_getref_linkmib(ifv, &psref);
945 if (mib == NULL) {
946 curlwp_bindx(bound);
947 error = EBUSY;
948 break;
949 }
950
951 if (mib->ifvm_p != NULL &&
952 (ifp->if_flags & IFF_PROMISC) != 0)
953 error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
954
955 vlan_putref_linkmib(mib, &psref);
956 curlwp_bindx(bound);
957
958 vlan_unconfig(ifp);
959 break;
960 }
961 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
962 error = EINVAL; /* check for valid tag */
963 break;
964 }
965 if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
966 error = ENOENT;
967 break;
968 }
969
970 error = vlan_config(ifv, pr, vlr.vlr_tag);
971 if (error != 0)
972 break;
973
974 /* Update promiscuous mode, if necessary. */
975 vlan_set_promisc(ifp);
976
977 ifp->if_flags |= IFF_RUNNING;
978 break;
979
980 case SIOCGETVLAN:
981 memset(&vlr, 0, sizeof(vlr));
982 bound = curlwp_bind();
983 mib = vlan_getref_linkmib(ifv, &psref);
984 if (mib == NULL) {
985 curlwp_bindx(bound);
986 error = EBUSY;
987 break;
988 }
989 if (mib->ifvm_p != NULL) {
990 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
991 mib->ifvm_p->if_xname);
992 vlr.vlr_tag = mib->ifvm_tag;
993 }
994 vlan_putref_linkmib(mib, &psref);
995 curlwp_bindx(bound);
996 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
997 break;
998
999 case SIOCSIFFLAGS:
1000 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1001 break;
1002 /*
1003 * For promiscuous mode, we enable promiscuous mode on
1004 * the parent if we need promiscuous on the VLAN interface.
1005 */
1006 bound = curlwp_bind();
1007 mib = vlan_getref_linkmib(ifv, &psref);
1008 if (mib == NULL) {
1009 curlwp_bindx(bound);
1010 error = EBUSY;
1011 break;
1012 }
1013
1014 if (mib->ifvm_p != NULL)
1015 error = vlan_set_promisc(ifp);
1016 vlan_putref_linkmib(mib, &psref);
1017 curlwp_bindx(bound);
1018 break;
1019
1020 case SIOCADDMULTI:
1021 mutex_enter(&ifv->ifv_lock);
1022 mib = ifv->ifv_mib;
1023 if (mib == NULL) {
1024 error = EBUSY;
1025 mutex_exit(&ifv->ifv_lock);
1026 break;
1027 }
1028
1029 error = (mib->ifvm_p != NULL) ?
1030 (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
1031 mib = NULL;
1032 mutex_exit(&ifv->ifv_lock);
1033 break;
1034
1035 case SIOCDELMULTI:
1036 mutex_enter(&ifv->ifv_lock);
1037 mib = ifv->ifv_mib;
1038 if (mib == NULL) {
1039 error = EBUSY;
1040 mutex_exit(&ifv->ifv_lock);
1041 break;
1042 }
1043 error = (mib->ifvm_p != NULL) ?
1044 (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
1045 mib = NULL;
1046 mutex_exit(&ifv->ifv_lock);
1047 break;
1048
1049 case SIOCSIFCAP:
1050 ifcr = data;
1051 /* make sure caps are enabled on parent */
1052 bound = curlwp_bind();
1053 mib = vlan_getref_linkmib(ifv, &psref);
1054 if (mib == NULL) {
1055 curlwp_bindx(bound);
1056 error = EBUSY;
1057 break;
1058 }
1059
1060 if (mib->ifvm_p == NULL) {
1061 vlan_putref_linkmib(mib, &psref);
1062 curlwp_bindx(bound);
1063 error = EINVAL;
1064 break;
1065 }
1066 if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
1067 ifcr->ifcr_capenable) {
1068 vlan_putref_linkmib(mib, &psref);
1069 curlwp_bindx(bound);
1070 error = EINVAL;
1071 break;
1072 }
1073
1074 vlan_putref_linkmib(mib, &psref);
1075 curlwp_bindx(bound);
1076
1077 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1078 error = 0;
1079 break;
1080 case SIOCINITIFADDR:
1081 bound = curlwp_bind();
1082 mib = vlan_getref_linkmib(ifv, &psref);
1083 if (mib == NULL) {
1084 curlwp_bindx(bound);
1085 error = EBUSY;
1086 break;
1087 }
1088
1089 if (mib->ifvm_p == NULL) {
1090 error = EINVAL;
1091 vlan_putref_linkmib(mib, &psref);
1092 curlwp_bindx(bound);
1093 break;
1094 }
1095 vlan_putref_linkmib(mib, &psref);
1096 curlwp_bindx(bound);
1097
1098 ifp->if_flags |= IFF_UP;
1099 #ifdef INET
1100 if (ifa->ifa_addr->sa_family == AF_INET)
1101 arp_ifinit(ifp, ifa);
1102 #endif
1103 break;
1104
1105 default:
1106 error = ether_ioctl(ifp, cmd, data);
1107 }
1108
1109 return error;
1110 }
1111
1112 static int
1113 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
1114 {
1115 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
1116 struct vlan_mc_entry *mc;
1117 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1118 struct ifvlan_linkmib *mib;
1119 int error;
1120
1121 KASSERT(mutex_owned(&ifv->ifv_lock));
1122
1123 if (sa->sa_len > sizeof(struct sockaddr_storage))
1124 return EINVAL;
1125
1126 error = ether_addmulti(sa, &ifv->ifv_ec);
1127 if (error != ENETRESET)
1128 return error;
1129
1130 /*
1131 * This is a new multicast address. We have to tell parent
1132 * about it. Also, remember this multicast address so that
1133 * we can delete it on unconfigure.
1134 */
1135 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
1136 if (mc == NULL) {
1137 error = ENOMEM;
1138 goto alloc_failed;
1139 }
1140
1141 /*
1142 * Since ether_addmulti() returned ENETRESET, the following two
1143 * statements shouldn't fail. Here ifv_ec is implicitly protected
1144 * by the ifv_lock lock.
1145 */
1146 error = ether_multiaddr(sa, addrlo, addrhi);
1147 KASSERT(error == 0);
1148
1149 ETHER_LOCK(&ifv->ifv_ec);
1150 mc->mc_enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1151 ETHER_UNLOCK(&ifv->ifv_ec);
1152
1153 KASSERT(mc->mc_enm != NULL);
1154
1155 memcpy(&mc->mc_addr, sa, sa->sa_len);
1156 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
1157
1158 mib = ifv->ifv_mib;
1159
1160 KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1161 error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
1162 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1163
1164 if (error != 0)
1165 goto ioctl_failed;
1166 return error;
1167
1168 ioctl_failed:
1169 LIST_REMOVE(mc, mc_entries);
1170 free(mc, M_DEVBUF);
1171
1172 alloc_failed:
1173 (void)ether_delmulti(sa, &ifv->ifv_ec);
1174 return error;
1175 }
1176
1177 static int
1178 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
1179 {
1180 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
1181 struct ether_multi *enm;
1182 struct vlan_mc_entry *mc;
1183 struct ifvlan_linkmib *mib;
1184 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1185 int error;
1186
1187 KASSERT(mutex_owned(&ifv->ifv_lock));
1188
1189 /*
1190 * Find a key to lookup vlan_mc_entry. We have to do this
1191 * before calling ether_delmulti for obvious reasons.
1192 */
1193 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
1194 return error;
1195
1196 ETHER_LOCK(&ifv->ifv_ec);
1197 enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1198 ETHER_UNLOCK(&ifv->ifv_ec);
1199 if (enm == NULL)
1200 return EINVAL;
1201
1202 LIST_FOREACH(mc, &ifv->ifv_mc_listhead, mc_entries) {
1203 if (mc->mc_enm == enm)
1204 break;
1205 }
1206
1207 /* We woun't delete entries we didn't add */
1208 if (mc == NULL)
1209 return EINVAL;
1210
1211 error = ether_delmulti(sa, &ifv->ifv_ec);
1212 if (error != ENETRESET)
1213 return error;
1214
1215 /* We no longer use this multicast address. Tell parent so. */
1216 mib = ifv->ifv_mib;
1217 error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
1218
1219 if (error == 0) {
1220 /* And forget about this address. */
1221 LIST_REMOVE(mc, mc_entries);
1222 free(mc, M_DEVBUF);
1223 } else {
1224 (void)ether_addmulti(sa, &ifv->ifv_ec);
1225 }
1226
1227 return error;
1228 }
1229
1230 /*
1231 * Delete any multicast address we have asked to add from parent
1232 * interface. Called when the vlan is being unconfigured.
1233 */
1234 static void
1235 vlan_ether_purgemulti(struct ifvlan *ifv)
1236 {
1237 struct vlan_mc_entry *mc;
1238 struct ifvlan_linkmib *mib;
1239
1240 KASSERT(mutex_owned(&ifv->ifv_lock));
1241 mib = ifv->ifv_mib;
1242 if (mib == NULL) {
1243 return;
1244 }
1245
1246 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
1247 (void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
1248 sstocsa(&mc->mc_addr));
1249 LIST_REMOVE(mc, mc_entries);
1250 free(mc, M_DEVBUF);
1251 }
1252 }
1253
1254 static void
1255 vlan_start(struct ifnet *ifp)
1256 {
1257 struct ifvlan *ifv = ifp->if_softc;
1258 struct ifnet *p;
1259 struct ethercom *ec;
1260 struct mbuf *m;
1261 struct ifvlan_linkmib *mib;
1262 struct psref psref;
1263 struct ether_header *eh;
1264 int error;
1265
1266 mib = vlan_getref_linkmib(ifv, &psref);
1267 if (mib == NULL)
1268 return;
1269
1270 if (__predict_false(mib->ifvm_p == NULL)) {
1271 vlan_putref_linkmib(mib, &psref);
1272 return;
1273 }
1274
1275 p = mib->ifvm_p;
1276 ec = (void *)mib->ifvm_p;
1277
1278 ifp->if_flags |= IFF_OACTIVE;
1279
1280 for (;;) {
1281 IFQ_DEQUEUE(&ifp->if_snd, m);
1282 if (m == NULL)
1283 break;
1284
1285 if (m->m_len < sizeof(*eh)) {
1286 m = m_pullup(m, sizeof(*eh));
1287 if (m == NULL) {
1288 if_statinc(ifp, if_oerrors);
1289 continue;
1290 }
1291 }
1292
1293 eh = mtod(m, struct ether_header *);
1294 if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
1295 m_freem(m);
1296 if_statinc(ifp, if_noproto);
1297 continue;
1298 }
1299
1300 #ifdef ALTQ
1301 /*
1302 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
1303 * defined.
1304 */
1305 KERNEL_LOCK(1, NULL);
1306 /*
1307 * If ALTQ is enabled on the parent interface, do
1308 * classification; the queueing discipline might
1309 * not require classification, but might require
1310 * the address family/header pointer in the pktattr.
1311 */
1312 if (ALTQ_IS_ENABLED(&p->if_snd)) {
1313 switch (p->if_type) {
1314 case IFT_ETHER:
1315 altq_etherclassify(&p->if_snd, m);
1316 break;
1317 default:
1318 panic("%s: impossible (altq)", __func__);
1319 }
1320 }
1321 KERNEL_UNLOCK_ONE(NULL);
1322 #endif /* ALTQ */
1323
1324 bpf_mtap(ifp, m, BPF_D_OUT);
1325 /*
1326 * If the parent can insert the tag itself, just mark
1327 * the tag in the mbuf header.
1328 */
1329 if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1330 vlan_set_tag(m, mib->ifvm_tag);
1331 } else {
1332 /*
1333 * insert the tag ourselves
1334 */
1335 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1336 if (m == NULL) {
1337 printf("%s: unable to prepend encap header",
1338 p->if_xname);
1339 if_statinc(ifp, if_oerrors);
1340 continue;
1341 }
1342
1343 switch (p->if_type) {
1344 case IFT_ETHER:
1345 {
1346 struct ether_vlan_header *evl;
1347
1348 if (m->m_len < sizeof(struct ether_vlan_header))
1349 m = m_pullup(m,
1350 sizeof(struct ether_vlan_header));
1351 if (m == NULL) {
1352 printf("%s: unable to pullup encap "
1353 "header", p->if_xname);
1354 if_statinc(ifp, if_oerrors);
1355 continue;
1356 }
1357
1358 /*
1359 * Transform the Ethernet header into an
1360 * Ethernet header with 802.1Q encapsulation.
1361 */
1362 memmove(mtod(m, void *),
1363 mtod(m, char *) + mib->ifvm_encaplen,
1364 sizeof(struct ether_header));
1365 evl = mtod(m, struct ether_vlan_header *);
1366 evl->evl_proto = evl->evl_encap_proto;
1367 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1368 evl->evl_tag = htons(mib->ifvm_tag);
1369
1370 /*
1371 * To cater for VLAN-aware layer 2 ethernet
1372 * switches which may need to strip the tag
1373 * before forwarding the packet, make sure
1374 * the packet+tag is at least 68 bytes long.
1375 * This is necessary because our parent will
1376 * only pad to 64 bytes (ETHER_MIN_LEN) and
1377 * some switches will not pad by themselves
1378 * after deleting a tag.
1379 */
1380 const size_t min_data_len = ETHER_MIN_LEN -
1381 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1382 if (m->m_pkthdr.len < min_data_len) {
1383 m_copyback(m, m->m_pkthdr.len,
1384 min_data_len - m->m_pkthdr.len,
1385 vlan_zero_pad_buff);
1386 }
1387 break;
1388 }
1389
1390 default:
1391 panic("%s: impossible", __func__);
1392 }
1393 }
1394
1395 if ((p->if_flags & IFF_RUNNING) == 0) {
1396 m_freem(m);
1397 continue;
1398 }
1399
1400 error = if_transmit_lock(p, m);
1401 if (error) {
1402 /* mbuf is already freed */
1403 if_statinc(ifp, if_oerrors);
1404 continue;
1405 }
1406 if_statinc(ifp, if_opackets);
1407 }
1408
1409 ifp->if_flags &= ~IFF_OACTIVE;
1410
1411 /* Remove reference to mib before release */
1412 vlan_putref_linkmib(mib, &psref);
1413 }
1414
1415 static int
1416 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1417 {
1418 struct ifvlan *ifv = ifp->if_softc;
1419 struct ifnet *p;
1420 struct ethercom *ec;
1421 struct ifvlan_linkmib *mib;
1422 struct psref psref;
1423 struct ether_header *eh;
1424 int error;
1425 size_t pktlen = m->m_pkthdr.len;
1426 bool mcast = (m->m_flags & M_MCAST) != 0;
1427
1428 if (m->m_len < sizeof(*eh)) {
1429 m = m_pullup(m, sizeof(*eh));
1430 if (m == NULL) {
1431 if_statinc(ifp, if_oerrors);
1432 return ENOBUFS;
1433 }
1434 }
1435
1436 eh = mtod(m, struct ether_header *);
1437 if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
1438 m_freem(m);
1439 if_statinc(ifp, if_noproto);
1440 return EPROTONOSUPPORT;
1441 }
1442
1443 mib = vlan_getref_linkmib(ifv, &psref);
1444 if (mib == NULL) {
1445 m_freem(m);
1446 return ENETDOWN;
1447 }
1448
1449 if (__predict_false(mib->ifvm_p == NULL)) {
1450 vlan_putref_linkmib(mib, &psref);
1451 m_freem(m);
1452 return ENETDOWN;
1453 }
1454
1455 p = mib->ifvm_p;
1456 ec = (void *)mib->ifvm_p;
1457
1458 bpf_mtap(ifp, m, BPF_D_OUT);
1459
1460 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
1461 goto out;
1462 if (m == NULL)
1463 goto out;
1464
1465 /*
1466 * If the parent can insert the tag itself, just mark
1467 * the tag in the mbuf header.
1468 */
1469 if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1470 vlan_set_tag(m, mib->ifvm_tag);
1471 } else {
1472 /*
1473 * insert the tag ourselves
1474 */
1475 M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
1476 if (m == NULL) {
1477 printf("%s: unable to prepend encap header",
1478 p->if_xname);
1479 if_statinc(ifp, if_oerrors);
1480 error = ENOBUFS;
1481 goto out;
1482 }
1483
1484 switch (p->if_type) {
1485 case IFT_ETHER:
1486 {
1487 struct ether_vlan_header *evl;
1488
1489 if (m->m_len < sizeof(struct ether_vlan_header))
1490 m = m_pullup(m,
1491 sizeof(struct ether_vlan_header));
1492 if (m == NULL) {
1493 printf("%s: unable to pullup encap "
1494 "header", p->if_xname);
1495 if_statinc(ifp, if_oerrors);
1496 error = ENOBUFS;
1497 goto out;
1498 }
1499
1500 /*
1501 * Transform the Ethernet header into an
1502 * Ethernet header with 802.1Q encapsulation.
1503 */
1504 memmove(mtod(m, void *),
1505 mtod(m, char *) + mib->ifvm_encaplen,
1506 sizeof(struct ether_header));
1507 evl = mtod(m, struct ether_vlan_header *);
1508 evl->evl_proto = evl->evl_encap_proto;
1509 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1510 evl->evl_tag = htons(mib->ifvm_tag);
1511
1512 /*
1513 * To cater for VLAN-aware layer 2 ethernet
1514 * switches which may need to strip the tag
1515 * before forwarding the packet, make sure
1516 * the packet+tag is at least 68 bytes long.
1517 * This is necessary because our parent will
1518 * only pad to 64 bytes (ETHER_MIN_LEN) and
1519 * some switches will not pad by themselves
1520 * after deleting a tag.
1521 */
1522 const size_t min_data_len = ETHER_MIN_LEN -
1523 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1524 if (m->m_pkthdr.len < min_data_len) {
1525 m_copyback(m, m->m_pkthdr.len,
1526 min_data_len - m->m_pkthdr.len,
1527 vlan_zero_pad_buff);
1528 }
1529 break;
1530 }
1531
1532 default:
1533 panic("%s: impossible", __func__);
1534 }
1535 }
1536
1537 if ((p->if_flags & IFF_RUNNING) == 0) {
1538 m_freem(m);
1539 error = ENETDOWN;
1540 goto out;
1541 }
1542
1543 error = if_transmit_lock(p, m);
1544 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1545 if (error) {
1546 /* mbuf is already freed */
1547 if_statinc_ref(nsr, if_oerrors);
1548 } else {
1549 if_statinc_ref(nsr, if_opackets);
1550 if_statadd_ref(nsr, if_obytes, pktlen);
1551 if (mcast)
1552 if_statinc_ref(nsr, if_omcasts);
1553 }
1554 IF_STAT_PUTREF(ifp);
1555
1556 out:
1557 /* Remove reference to mib before release */
1558 vlan_putref_linkmib(mib, &psref);
1559 return error;
1560 }
1561
1562 /*
1563 * Given an Ethernet frame, find a valid vlan interface corresponding to the
1564 * given source interface and tag, then run the real packet through the
1565 * parent's input routine.
1566 */
1567 void
1568 vlan_input(struct ifnet *ifp, struct mbuf *m)
1569 {
1570 struct ifvlan *ifv;
1571 uint16_t vid;
1572 struct ifvlan_linkmib *mib;
1573 struct psref psref;
1574 bool have_vtag;
1575
1576 have_vtag = vlan_has_tag(m);
1577 if (have_vtag) {
1578 vid = EVL_VLANOFTAG(vlan_get_tag(m));
1579 m->m_flags &= ~M_VLANTAG;
1580 } else {
1581 struct ether_vlan_header *evl;
1582
1583 if (ifp->if_type != IFT_ETHER) {
1584 panic("%s: impossible", __func__);
1585 }
1586
1587 if (m->m_len < sizeof(struct ether_vlan_header) &&
1588 (m = m_pullup(m,
1589 sizeof(struct ether_vlan_header))) == NULL) {
1590 printf("%s: no memory for VLAN header, "
1591 "dropping packet.\n", ifp->if_xname);
1592 return;
1593 }
1594
1595 if (m_makewritable(&m, 0,
1596 sizeof(struct ether_vlan_header), M_DONTWAIT)) {
1597 m_freem(m);
1598 if_statinc(ifp, if_ierrors);
1599 return;
1600 }
1601
1602 evl = mtod(m, struct ether_vlan_header *);
1603 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1604
1605 vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1606
1607 /*
1608 * Restore the original ethertype. We'll remove
1609 * the encapsulation after we've found the vlan
1610 * interface corresponding to the tag.
1611 */
1612 evl->evl_encap_proto = evl->evl_proto;
1613 }
1614
1615 mib = vlan_lookup_tag_psref(ifp, vid, &psref);
1616 if (mib == NULL) {
1617 m_freem(m);
1618 if_statinc(ifp, if_noproto);
1619 return;
1620 }
1621 KASSERT(mib->ifvm_encaplen == ETHER_VLAN_ENCAP_LEN);
1622
1623 ifv = mib->ifvm_ifvlan;
1624 if ((ifv->ifv_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
1625 (IFF_UP | IFF_RUNNING)) {
1626 m_freem(m);
1627 if_statinc(ifp, if_noproto);
1628 goto out;
1629 }
1630
1631 /*
1632 * Now, remove the encapsulation header. The original
1633 * header has already been fixed up above.
1634 */
1635 if (!have_vtag) {
1636 memmove(mtod(m, char *) + mib->ifvm_encaplen,
1637 mtod(m, void *), sizeof(struct ether_header));
1638 m_adj(m, mib->ifvm_encaplen);
1639 }
1640
1641 /*
1642 * Drop promiscuously received packets if we are not in
1643 * promiscuous mode
1644 */
1645 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0 &&
1646 (ifp->if_flags & IFF_PROMISC) &&
1647 (ifv->ifv_if.if_flags & IFF_PROMISC) == 0) {
1648 struct ether_header *eh;
1649
1650 eh = mtod(m, struct ether_header *);
1651 if (memcmp(CLLADDR(ifv->ifv_if.if_sadl),
1652 eh->ether_dhost, ETHER_ADDR_LEN) != 0) {
1653 m_freem(m);
1654 if_statinc(&ifv->ifv_if, if_ierrors);
1655 goto out;
1656 }
1657 }
1658
1659 m_set_rcvif(m, &ifv->ifv_if);
1660
1661 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
1662 goto out;
1663 if (m == NULL)
1664 goto out;
1665
1666 m->m_flags &= ~M_PROMISC;
1667 if_input(&ifv->ifv_if, m);
1668 out:
1669 vlan_putref_linkmib(mib, &psref);
1670 }
1671
1672 /*
1673 * If the parent link state changed, the vlan link state should change also.
1674 */
1675 static void
1676 vlan_link_state_changed(void *xifv)
1677 {
1678 struct ifvlan *ifv = xifv;
1679 struct ifnet *ifp, *p;
1680 struct ifvlan_linkmib *mib;
1681 struct psref psref;
1682
1683 mib = vlan_getref_linkmib(ifv, &psref);
1684 if (mib == NULL)
1685 return;
1686
1687 if (mib->ifvm_p == NULL) {
1688 vlan_putref_linkmib(mib, &psref);
1689 return;
1690 }
1691
1692 ifp = &ifv->ifv_if;
1693 p = mib->ifvm_p;
1694 if_link_state_change(ifp, p->if_link_state);
1695
1696 vlan_putref_linkmib(mib, &psref);
1697 }
1698
1699 /*
1700 * Module infrastructure
1701 */
1702 #include "if_module.h"
1703
1704 IF_MODULE(MODULE_CLASS_DRIVER, vlan, NULL)
1705