Home | History | Annotate | Line # | Download | only in net
if_vlan.c revision 1.164
      1 /*	$NetBSD: if_vlan.c,v 1.164 2021/10/05 04:09:49 yamaguchi Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright 1998 Massachusetts Institute of Technology
     34  *
     35  * Permission to use, copy, modify, and distribute this software and
     36  * its documentation for any purpose and without fee is hereby
     37  * granted, provided that both the above copyright notice and this
     38  * permission notice appear in all copies, that both the above
     39  * copyright notice and this permission notice appear in all
     40  * supporting documentation, and that the name of M.I.T. not be used
     41  * in advertising or publicity pertaining to distribution of the
     42  * software without specific, written prior permission.  M.I.T. makes
     43  * no representations about the suitability of this software for any
     44  * purpose.  It is provided "as is" without express or implied
     45  * warranty.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
     48  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
     49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
     51  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     53  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
     54  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     55  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     56  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     57  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
     61  * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
     62  */
     63 
     64 /*
     65  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.  Might be
     66  * extended some day to also handle IEEE 802.1P priority tagging.  This is
     67  * sort of sneaky in the implementation, since we need to pretend to be
     68  * enough of an Ethernet implementation to make ARP work.  The way we do
     69  * this is by telling everyone that we are an Ethernet interface, and then
     70  * catch the packets that ether_output() left on our output queue when it
     71  * calls if_start(), rewrite them for use by the real outgoing interface,
     72  * and ask it to send them.
     73  *
     74  * TODO:
     75  *
     76  *	- Need some way to notify vlan interfaces when the parent
     77  *	  interface changes MTU.
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.164 2021/10/05 04:09:49 yamaguchi Exp $");
     82 
     83 #ifdef _KERNEL_OPT
     84 #include "opt_inet.h"
     85 #include "opt_net_mpsafe.h"
     86 #endif
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/kernel.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/queue.h>
     93 #include <sys/socket.h>
     94 #include <sys/sockio.h>
     95 #include <sys/systm.h>
     96 #include <sys/proc.h>
     97 #include <sys/kauth.h>
     98 #include <sys/mutex.h>
     99 #include <sys/kmem.h>
    100 #include <sys/cpu.h>
    101 #include <sys/pserialize.h>
    102 #include <sys/psref.h>
    103 #include <sys/pslist.h>
    104 #include <sys/atomic.h>
    105 #include <sys/device.h>
    106 #include <sys/module.h>
    107 
    108 #include <net/bpf.h>
    109 #include <net/if.h>
    110 #include <net/if_dl.h>
    111 #include <net/if_types.h>
    112 #include <net/if_ether.h>
    113 #include <net/if_vlanvar.h>
    114 
    115 #ifdef INET
    116 #include <netinet/in.h>
    117 #include <netinet/if_inarp.h>
    118 #endif
    119 #ifdef INET6
    120 #include <netinet6/in6_ifattach.h>
    121 #include <netinet6/in6_var.h>
    122 #include <netinet6/nd6.h>
    123 #endif
    124 
    125 #include "ioconf.h"
    126 
    127 struct vlan_mc_entry {
    128 	LIST_ENTRY(vlan_mc_entry)	mc_entries;
    129 	/*
    130 	 * A key to identify this entry.  The mc_addr below can't be
    131 	 * used since multiple sockaddr may mapped into the same
    132 	 * ether_multi (e.g., AF_UNSPEC).
    133 	 */
    134 	struct ether_multi	*mc_enm;
    135 	struct sockaddr_storage		mc_addr;
    136 };
    137 
    138 struct ifvlan_linkmib {
    139 	struct ifvlan *ifvm_ifvlan;
    140 	const struct vlan_multisw *ifvm_msw;
    141 	int	ifvm_encaplen;	/* encapsulation length */
    142 	int	ifvm_mtufudge;	/* MTU fudged by this much */
    143 	int	ifvm_mintu;	/* min transmission unit */
    144 	uint16_t ifvm_proto;	/* encapsulation ethertype */
    145 	uint16_t ifvm_tag;	/* tag to apply on packets */
    146 	struct ifnet *ifvm_p;	/* parent interface of this vlan */
    147 
    148 	struct psref_target ifvm_psref;
    149 };
    150 
    151 struct ifvlan {
    152 	struct ethercom ifv_ec;
    153 	struct ifvlan_linkmib *ifv_mib;	/*
    154 					 * reader must use vlan_getref_linkmib()
    155 					 * instead of direct dereference
    156 					 */
    157 	kmutex_t ifv_lock;		/* writer lock for ifv_mib */
    158 	pserialize_t ifv_psz;
    159 	void *ifv_linkstate_hook;
    160 	void *ifv_ifdetach_hook;
    161 
    162 	LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
    163 	struct pslist_entry ifv_hash;
    164 	int ifv_flags;
    165 	bool ifv_stopping;
    166 };
    167 
    168 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
    169 
    170 #define	ifv_if		ifv_ec.ec_if
    171 
    172 #define	ifv_msw		ifv_mib.ifvm_msw
    173 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
    174 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
    175 #define	ifv_mintu	ifv_mib.ifvm_mintu
    176 #define	ifv_tag		ifv_mib.ifvm_tag
    177 
    178 struct vlan_multisw {
    179 	int	(*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
    180 	int	(*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
    181 	void	(*vmsw_purgemulti)(struct ifvlan *);
    182 };
    183 
    184 static int	vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
    185 static int	vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
    186 static void	vlan_ether_purgemulti(struct ifvlan *);
    187 
    188 const struct vlan_multisw vlan_ether_multisw = {
    189 	.vmsw_addmulti = vlan_ether_addmulti,
    190 	.vmsw_delmulti = vlan_ether_delmulti,
    191 	.vmsw_purgemulti = vlan_ether_purgemulti,
    192 };
    193 
    194 static int	vlan_clone_create(struct if_clone *, int);
    195 static int	vlan_clone_destroy(struct ifnet *);
    196 static int	vlan_config(struct ifvlan *, struct ifnet *, uint16_t);
    197 static int	vlan_ioctl(struct ifnet *, u_long, void *);
    198 static void	vlan_start(struct ifnet *);
    199 static int	vlan_transmit(struct ifnet *, struct mbuf *);
    200 static void	vlan_link_state_changed(void *);
    201 static void	vlan_ifdetach(void *);
    202 static void	vlan_unconfig(struct ifnet *);
    203 static int	vlan_unconfig_locked(struct ifvlan *, struct ifvlan_linkmib *);
    204 static void	vlan_hash_init(void);
    205 static int	vlan_hash_fini(void);
    206 static int	vlan_tag_hash(uint16_t, u_long);
    207 static struct ifvlan_linkmib*	vlan_getref_linkmib(struct ifvlan *,
    208     struct psref *);
    209 static void	vlan_putref_linkmib(struct ifvlan_linkmib *, struct psref *);
    210 static void	vlan_linkmib_update(struct ifvlan *, struct ifvlan_linkmib *);
    211 static struct ifvlan_linkmib*	vlan_lookup_tag_psref(struct ifnet *,
    212     uint16_t, struct psref *);
    213 
    214 #if !defined(VLAN_TAG_HASH_SIZE)
    215 #define VLAN_TAG_HASH_SIZE 32
    216 #endif
    217 static struct {
    218 	kmutex_t lock;
    219 	struct pslist_head *lists;
    220 	u_long mask;
    221 } ifv_hash __cacheline_aligned = {
    222 	.lists = NULL,
    223 	.mask = 0,
    224 };
    225 
    226 pserialize_t vlan_psz __read_mostly;
    227 static struct psref_class *ifvm_psref_class __read_mostly;
    228 
    229 struct if_clone vlan_cloner =
    230     IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
    231 
    232 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
    233 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
    234 
    235 static uint32_t nvlanifs;
    236 
    237 static inline int
    238 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
    239 {
    240 	int e;
    241 
    242 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
    243 	e = ifpromisc(ifp, pswitch);
    244 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
    245 
    246 	return e;
    247 }
    248 
    249 __unused static inline int
    250 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
    251 {
    252 	int e;
    253 
    254 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
    255 	e = ifpromisc_locked(ifp, pswitch);
    256 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
    257 
    258 	return e;
    259 }
    260 
    261 void
    262 vlanattach(int n)
    263 {
    264 
    265 	/*
    266 	 * Nothing to do here, initialization is handled by the
    267 	 * module initialization code in vlaninit() below.
    268 	 */
    269 }
    270 
    271 static void
    272 vlaninit(void)
    273 {
    274 	nvlanifs = 0;
    275 
    276 	mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
    277 	vlan_psz = pserialize_create();
    278 	ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
    279 	if_clone_attach(&vlan_cloner);
    280 
    281 	vlan_hash_init();
    282 	MODULE_HOOK_SET(if_vlan_vlan_input_hook, vlan_input);
    283 }
    284 
    285 static int
    286 vlandetach(void)
    287 {
    288 	int error;
    289 
    290 	if (nvlanifs > 0)
    291 		return EBUSY;
    292 
    293 	error = vlan_hash_fini();
    294 	if (error != 0)
    295 		return error;
    296 
    297 	if_clone_detach(&vlan_cloner);
    298 	psref_class_destroy(ifvm_psref_class);
    299 	pserialize_destroy(vlan_psz);
    300 	mutex_destroy(&ifv_hash.lock);
    301 
    302 	MODULE_HOOK_UNSET(if_vlan_vlan_input_hook);
    303 	return 0;
    304 }
    305 
    306 static void
    307 vlan_reset_linkname(struct ifnet *ifp)
    308 {
    309 
    310 	/*
    311 	 * We start out with a "802.1Q VLAN" type and zero-length
    312 	 * addresses.  When we attach to a parent interface, we
    313 	 * inherit its type, address length, address, and data link
    314 	 * type.
    315 	 */
    316 
    317 	ifp->if_type = IFT_L2VLAN;
    318 	ifp->if_addrlen = 0;
    319 	ifp->if_dlt = DLT_NULL;
    320 	if_alloc_sadl(ifp);
    321 }
    322 
    323 static int
    324 vlan_clone_create(struct if_clone *ifc, int unit)
    325 {
    326 	struct ifvlan *ifv;
    327 	struct ifnet *ifp;
    328 	struct ifvlan_linkmib *mib;
    329 
    330 	ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK | M_ZERO);
    331 	mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
    332 	ifp = &ifv->ifv_if;
    333 	LIST_INIT(&ifv->ifv_mc_listhead);
    334 
    335 	mib->ifvm_ifvlan = ifv;
    336 	mib->ifvm_p = NULL;
    337 	psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
    338 
    339 	mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
    340 	ifv->ifv_psz = pserialize_create();
    341 	ifv->ifv_mib = mib;
    342 
    343 	atomic_inc_uint(&nvlanifs);
    344 
    345 	if_initname(ifp, ifc->ifc_name, unit);
    346 	ifp->if_softc = ifv;
    347 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    348 #ifdef NET_MPSAFE
    349 	ifp->if_extflags = IFEF_MPSAFE;
    350 #endif
    351 	ifp->if_start = vlan_start;
    352 	ifp->if_transmit = vlan_transmit;
    353 	ifp->if_ioctl = vlan_ioctl;
    354 	IFQ_SET_READY(&ifp->if_snd);
    355 	if_initialize(ifp);
    356 	/*
    357 	 * Set the link state to down.
    358 	 * When the parent interface attaches we will use that link state.
    359 	 * When the parent interface link state changes, so will ours.
    360 	 * When the parent interface detaches, set the link state to down.
    361 	 */
    362 	ifp->if_link_state = LINK_STATE_DOWN;
    363 
    364 	vlan_reset_linkname(ifp);
    365 	if_register(ifp);
    366 	return 0;
    367 }
    368 
    369 static int
    370 vlan_clone_destroy(struct ifnet *ifp)
    371 {
    372 	struct ifvlan *ifv = ifp->if_softc;
    373 
    374 	atomic_dec_uint(&nvlanifs);
    375 
    376 	IFNET_LOCK(ifp);
    377 	vlan_unconfig(ifp);
    378 	IFNET_UNLOCK(ifp);
    379 	if_detach(ifp);
    380 
    381 	psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
    382 	kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
    383 	pserialize_destroy(ifv->ifv_psz);
    384 	mutex_destroy(&ifv->ifv_lock);
    385 	free(ifv, M_DEVBUF);
    386 
    387 	return 0;
    388 }
    389 
    390 /*
    391  * Configure a VLAN interface.
    392  */
    393 static int
    394 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
    395 {
    396 	struct ifnet *ifp = &ifv->ifv_if;
    397 	struct ifvlan_linkmib *nmib = NULL;
    398 	struct ifvlan_linkmib *omib = NULL;
    399 	struct ifvlan_linkmib *checkmib;
    400 	struct psref_target *nmib_psref = NULL;
    401 	const uint16_t vid = EVL_VLANOFTAG(tag);
    402 	int error = 0;
    403 	int idx;
    404 	bool omib_cleanup = false;
    405 	struct psref psref;
    406 
    407 	/* VLAN ID 0 and 4095 are reserved in the spec */
    408 	if ((vid == 0) || (vid == 0xfff))
    409 		return EINVAL;
    410 
    411 	nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
    412 	mutex_enter(&ifv->ifv_lock);
    413 	omib = ifv->ifv_mib;
    414 
    415 	if (omib->ifvm_p != NULL) {
    416 		error = EBUSY;
    417 		goto done;
    418 	}
    419 
    420 	/* Duplicate check */
    421 	checkmib = vlan_lookup_tag_psref(p, vid, &psref);
    422 	if (checkmib != NULL) {
    423 		vlan_putref_linkmib(checkmib, &psref);
    424 		error = EEXIST;
    425 		goto done;
    426 	}
    427 
    428 	*nmib = *omib;
    429 	nmib_psref = &nmib->ifvm_psref;
    430 
    431 	psref_target_init(nmib_psref, ifvm_psref_class);
    432 
    433 	switch (p->if_type) {
    434 	case IFT_ETHER:
    435 	    {
    436 		struct ethercom *ec = (void *)p;
    437 		struct vlanid_list *vidmem;
    438 
    439 		nmib->ifvm_msw = &vlan_ether_multisw;
    440 		nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
    441 		nmib->ifvm_mintu = ETHERMIN;
    442 
    443 		if (ec->ec_nvlans++ == 0) {
    444 			IFNET_LOCK(p);
    445 			error = ether_enable_vlan_mtu(p);
    446 			IFNET_UNLOCK(p);
    447 			if (error >= 0) {
    448 				if (error) {
    449 					ec->ec_nvlans--;
    450 					goto done;
    451 				}
    452 				nmib->ifvm_mtufudge = 0;
    453 			} else {
    454 				/*
    455 				 * Fudge the MTU by the encapsulation size. This
    456 				 * makes us incompatible with strictly compliant
    457 				 * 802.1Q implementations, but allows us to use
    458 				 * the feature with other NetBSD
    459 				 * implementations, which might still be useful.
    460 				 */
    461 				nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
    462 			}
    463 			error = 0;
    464 		}
    465 		/* Add a vid to the list */
    466 		vidmem = kmem_alloc(sizeof(struct vlanid_list), KM_SLEEP);
    467 		vidmem->vid = vid;
    468 		ETHER_LOCK(ec);
    469 		SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidmem, vid_list);
    470 		ETHER_UNLOCK(ec);
    471 
    472 		if (ec->ec_vlan_cb != NULL) {
    473 			/*
    474 			 * Call ec_vlan_cb(). It will setup VLAN HW filter or
    475 			 * HW tagging function.
    476 			 */
    477 			error = (*ec->ec_vlan_cb)(ec, vid, true);
    478 			if (error) {
    479 				ec->ec_nvlans--;
    480 				if (ec->ec_nvlans == 0) {
    481 					IFNET_LOCK(p);
    482 					(void)ether_disable_vlan_mtu(p);
    483 					IFNET_UNLOCK(p);
    484 				}
    485 				goto done;
    486 			}
    487 		}
    488 		/*
    489 		 * If the parent interface can do hardware-assisted
    490 		 * VLAN encapsulation, then propagate its hardware-
    491 		 * assisted checksumming flags and tcp segmentation
    492 		 * offload.
    493 		 */
    494 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
    495 			ifp->if_capabilities = p->if_capabilities &
    496 			    (IFCAP_TSOv4 | IFCAP_TSOv6 |
    497 				IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx |
    498 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    499 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
    500 				IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
    501 				IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx);
    502 		}
    503 
    504 		/*
    505 		 * We inherit the parent's Ethernet address.
    506 		 */
    507 		ether_ifattach(ifp, CLLADDR(p->if_sadl));
    508 		ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
    509 		break;
    510 	    }
    511 
    512 	default:
    513 		error = EPROTONOSUPPORT;
    514 		goto done;
    515 	}
    516 
    517 	nmib->ifvm_p = p;
    518 	nmib->ifvm_tag = vid;
    519 	ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
    520 	ifv->ifv_if.if_flags = p->if_flags &
    521 	    (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
    522 
    523 	/*
    524 	 * Inherit the if_type from the parent.  This allows us
    525 	 * to participate in bridges of that type.
    526 	 */
    527 	ifv->ifv_if.if_type = p->if_type;
    528 
    529 	PSLIST_ENTRY_INIT(ifv, ifv_hash);
    530 	idx = vlan_tag_hash(vid, ifv_hash.mask);
    531 
    532 	mutex_enter(&ifv_hash.lock);
    533 	PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
    534 	mutex_exit(&ifv_hash.lock);
    535 
    536 	vlan_linkmib_update(ifv, nmib);
    537 	nmib = NULL;
    538 	nmib_psref = NULL;
    539 	omib_cleanup = true;
    540 
    541 	ifv->ifv_ifdetach_hook = ether_ifdetachhook_establish(p,
    542 	    vlan_ifdetach, ifp);
    543 
    544 	/*
    545 	 * We inherit the parents link state.
    546 	 */
    547 	ifv->ifv_linkstate_hook = if_linkstate_change_establish(p,
    548 	    vlan_link_state_changed, ifv);
    549 	if_link_state_change(&ifv->ifv_if, p->if_link_state);
    550 
    551 done:
    552 	mutex_exit(&ifv->ifv_lock);
    553 
    554 	if (nmib_psref)
    555 		psref_target_destroy(nmib_psref, ifvm_psref_class);
    556 	if (nmib)
    557 		kmem_free(nmib, sizeof(*nmib));
    558 	if (omib_cleanup)
    559 		kmem_free(omib, sizeof(*omib));
    560 
    561 	return error;
    562 }
    563 
    564 /*
    565  * Unconfigure a VLAN interface.
    566  */
    567 static void
    568 vlan_unconfig(struct ifnet *ifp)
    569 {
    570 	struct ifvlan *ifv = ifp->if_softc;
    571 	struct ifvlan_linkmib *nmib = NULL;
    572 	int error;
    573 
    574 	KASSERT(IFNET_LOCKED(ifp));
    575 
    576 	nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
    577 
    578 	mutex_enter(&ifv->ifv_lock);
    579 	error = vlan_unconfig_locked(ifv, nmib);
    580 	mutex_exit(&ifv->ifv_lock);
    581 
    582 	if (error)
    583 		kmem_free(nmib, sizeof(*nmib));
    584 }
    585 static int
    586 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
    587 {
    588 	struct ifnet *p;
    589 	struct ifnet *ifp = &ifv->ifv_if;
    590 	struct psref_target *nmib_psref = NULL;
    591 	struct ifvlan_linkmib *omib;
    592 	int error = 0;
    593 
    594 	KASSERT(IFNET_LOCKED(ifp));
    595 	KASSERT(mutex_owned(&ifv->ifv_lock));
    596 
    597 	if (ifv->ifv_stopping) {
    598 		error = -1;
    599 		goto done;
    600 	}
    601 
    602 	ifp->if_flags &= ~(IFF_UP | IFF_RUNNING);
    603 
    604 	omib = ifv->ifv_mib;
    605 	p = omib->ifvm_p;
    606 
    607 	if (p == NULL) {
    608 		error = -1;
    609 		goto done;
    610 	}
    611 
    612 	*nmib = *omib;
    613 	nmib_psref = &nmib->ifvm_psref;
    614 	psref_target_init(nmib_psref, ifvm_psref_class);
    615 
    616 	/*
    617 	 * Since the interface is being unconfigured, we need to empty the
    618 	 * list of multicast groups that we may have joined while we were
    619 	 * alive and remove them from the parent's list also.
    620 	 */
    621 	(*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
    622 
    623 	/* Disconnect from parent. */
    624 	switch (p->if_type) {
    625 	case IFT_ETHER:
    626 	    {
    627 		struct ethercom *ec = (void *)p;
    628 		struct vlanid_list *vlanidp;
    629 		uint16_t vid = EVL_VLANOFTAG(nmib->ifvm_tag);
    630 
    631 		ETHER_LOCK(ec);
    632 		SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
    633 			if (vlanidp->vid == vid) {
    634 				SIMPLEQ_REMOVE(&ec->ec_vids, vlanidp,
    635 				    vlanid_list, vid_list);
    636 				break;
    637 			}
    638 		}
    639 		ETHER_UNLOCK(ec);
    640 		if (vlanidp != NULL)
    641 			kmem_free(vlanidp, sizeof(*vlanidp));
    642 
    643 		if (ec->ec_vlan_cb != NULL) {
    644 			/*
    645 			 * Call ec_vlan_cb(). It will setup VLAN HW filter or
    646 			 * HW tagging function.
    647 			 */
    648 			(void)(*ec->ec_vlan_cb)(ec, vid, false);
    649 		}
    650 		if (--ec->ec_nvlans == 0) {
    651 			IFNET_LOCK(p);
    652 			(void)ether_disable_vlan_mtu(p);
    653 			IFNET_UNLOCK(p);
    654 		}
    655 
    656 		/* XXX ether_ifdetach must not be called with IFNET_LOCK */
    657 		ifv->ifv_stopping = true;
    658 		mutex_exit(&ifv->ifv_lock);
    659 		IFNET_UNLOCK(ifp);
    660 		ether_ifdetach(ifp);
    661 		IFNET_LOCK(ifp);
    662 		mutex_enter(&ifv->ifv_lock);
    663 		ifv->ifv_stopping = false;
    664 
    665 		/* if_free_sadl must be called with IFNET_LOCK */
    666 		if_free_sadl(ifp, 1);
    667 
    668 		/* Restore vlan_ioctl overwritten by ether_ifdetach */
    669 		ifp->if_ioctl = vlan_ioctl;
    670 		vlan_reset_linkname(ifp);
    671 		break;
    672 	    }
    673 
    674 	default:
    675 		panic("%s: impossible", __func__);
    676 	}
    677 
    678 	nmib->ifvm_p = NULL;
    679 	ifv->ifv_if.if_mtu = 0;
    680 	ifv->ifv_flags = 0;
    681 
    682 	mutex_enter(&ifv_hash.lock);
    683 	PSLIST_WRITER_REMOVE(ifv, ifv_hash);
    684 	pserialize_perform(vlan_psz);
    685 	mutex_exit(&ifv_hash.lock);
    686 	PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
    687 	if_linkstate_change_disestablish(p,
    688 	    ifv->ifv_linkstate_hook, NULL);
    689 
    690 	vlan_linkmib_update(ifv, nmib);
    691 	if_link_state_change(ifp, LINK_STATE_DOWN);
    692 
    693 	/*XXX ether_ifdetachhook_disestablish must not called with IFNET_LOCK */
    694 	IFNET_UNLOCK(ifp);
    695 	ether_ifdetachhook_disestablish(p, ifv->ifv_ifdetach_hook,
    696 	    &ifv->ifv_lock);
    697 	mutex_exit(&ifv->ifv_lock);
    698 	IFNET_LOCK(ifp);
    699 
    700 	nmib_psref = NULL;
    701 	kmem_free(omib, sizeof(*omib));
    702 
    703 #ifdef INET6
    704 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
    705 	/* To delete v6 link local addresses */
    706 	if (in6_present)
    707 		in6_ifdetach(ifp);
    708 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
    709 #endif
    710 
    711 	if_down_locked(ifp);
    712 	ifp->if_capabilities = 0;
    713 	mutex_enter(&ifv->ifv_lock);
    714 done:
    715 	if (nmib_psref)
    716 		psref_target_destroy(nmib_psref, ifvm_psref_class);
    717 
    718 	return error;
    719 }
    720 
    721 static void
    722 vlan_hash_init(void)
    723 {
    724 
    725 	ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
    726 	    &ifv_hash.mask);
    727 }
    728 
    729 static int
    730 vlan_hash_fini(void)
    731 {
    732 	int i;
    733 
    734 	mutex_enter(&ifv_hash.lock);
    735 
    736 	for (i = 0; i < ifv_hash.mask + 1; i++) {
    737 		if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
    738 		    ifv_hash) != NULL) {
    739 			mutex_exit(&ifv_hash.lock);
    740 			return EBUSY;
    741 		}
    742 	}
    743 
    744 	for (i = 0; i < ifv_hash.mask + 1; i++)
    745 		PSLIST_DESTROY(&ifv_hash.lists[i]);
    746 
    747 	mutex_exit(&ifv_hash.lock);
    748 
    749 	hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
    750 
    751 	ifv_hash.lists = NULL;
    752 	ifv_hash.mask = 0;
    753 
    754 	return 0;
    755 }
    756 
    757 static int
    758 vlan_tag_hash(uint16_t tag, u_long mask)
    759 {
    760 	uint32_t hash;
    761 
    762 	hash = (tag >> 8) ^ tag;
    763 	hash = (hash >> 2) ^ hash;
    764 
    765 	return hash & mask;
    766 }
    767 
    768 static struct ifvlan_linkmib *
    769 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
    770 {
    771 	struct ifvlan_linkmib *mib;
    772 	int s;
    773 
    774 	s = pserialize_read_enter();
    775 	mib = atomic_load_consume(&sc->ifv_mib);
    776 	if (mib == NULL) {
    777 		pserialize_read_exit(s);
    778 		return NULL;
    779 	}
    780 	psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
    781 	pserialize_read_exit(s);
    782 
    783 	return mib;
    784 }
    785 
    786 static void
    787 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
    788 {
    789 	if (mib == NULL)
    790 		return;
    791 	psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
    792 }
    793 
    794 static struct ifvlan_linkmib *
    795 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
    796 {
    797 	int idx;
    798 	int s;
    799 	struct ifvlan *sc;
    800 
    801 	idx = vlan_tag_hash(tag, ifv_hash.mask);
    802 
    803 	s = pserialize_read_enter();
    804 	PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
    805 	    ifv_hash) {
    806 		struct ifvlan_linkmib *mib = atomic_load_consume(&sc->ifv_mib);
    807 		if (mib == NULL)
    808 			continue;
    809 		if (mib->ifvm_tag != tag)
    810 			continue;
    811 		if (mib->ifvm_p != ifp)
    812 			continue;
    813 
    814 		psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
    815 		pserialize_read_exit(s);
    816 		return mib;
    817 	}
    818 	pserialize_read_exit(s);
    819 	return NULL;
    820 }
    821 
    822 static void
    823 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
    824 {
    825 	struct ifvlan_linkmib *omib = ifv->ifv_mib;
    826 
    827 	KASSERT(mutex_owned(&ifv->ifv_lock));
    828 
    829 	atomic_store_release(&ifv->ifv_mib, nmib);
    830 
    831 	pserialize_perform(ifv->ifv_psz);
    832 	psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
    833 }
    834 
    835 /*
    836  * Called when a parent interface is detaching; destroy any VLAN
    837  * configuration for the parent interface.
    838  */
    839 static void
    840 vlan_ifdetach(void *xifp)
    841 {
    842 	struct ifnet *ifp;
    843 
    844 	ifp = (struct ifnet *)xifp;
    845 
    846 	/* IFNET_LOCK must be held before ifv_lock. */
    847 	IFNET_LOCK(ifp);
    848 	vlan_unconfig(ifp);
    849 	IFNET_UNLOCK(ifp);
    850 }
    851 
    852 static int
    853 vlan_set_promisc(struct ifnet *ifp)
    854 {
    855 	struct ifvlan *ifv = ifp->if_softc;
    856 	struct ifvlan_linkmib *mib;
    857 	struct psref psref;
    858 	int error = 0;
    859 	int bound;
    860 
    861 	bound = curlwp_bind();
    862 	mib = vlan_getref_linkmib(ifv, &psref);
    863 	if (mib == NULL) {
    864 		curlwp_bindx(bound);
    865 		return EBUSY;
    866 	}
    867 
    868 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
    869 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
    870 			error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
    871 			if (error == 0)
    872 				ifv->ifv_flags |= IFVF_PROMISC;
    873 		}
    874 	} else {
    875 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
    876 			error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
    877 			if (error == 0)
    878 				ifv->ifv_flags &= ~IFVF_PROMISC;
    879 		}
    880 	}
    881 	vlan_putref_linkmib(mib, &psref);
    882 	curlwp_bindx(bound);
    883 
    884 	return error;
    885 }
    886 
    887 static int
    888 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    889 {
    890 	struct lwp *l = curlwp;
    891 	struct ifvlan *ifv = ifp->if_softc;
    892 	struct ifaddr *ifa = (struct ifaddr *) data;
    893 	struct ifreq *ifr = (struct ifreq *) data;
    894 	struct ifnet *pr;
    895 	struct ifcapreq *ifcr;
    896 	struct vlanreq vlr;
    897 	struct ifvlan_linkmib *mib;
    898 	struct psref psref;
    899 	int error = 0;
    900 	int bound;
    901 
    902 	switch (cmd) {
    903 	case SIOCSIFMTU:
    904 		bound = curlwp_bind();
    905 		mib = vlan_getref_linkmib(ifv, &psref);
    906 		if (mib == NULL) {
    907 			curlwp_bindx(bound);
    908 			error = EBUSY;
    909 			break;
    910 		}
    911 
    912 		if (mib->ifvm_p == NULL) {
    913 			vlan_putref_linkmib(mib, &psref);
    914 			curlwp_bindx(bound);
    915 			error = EINVAL;
    916 		} else if (
    917 		    ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
    918 		    ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
    919 			vlan_putref_linkmib(mib, &psref);
    920 			curlwp_bindx(bound);
    921 			error = EINVAL;
    922 		} else {
    923 			vlan_putref_linkmib(mib, &psref);
    924 			curlwp_bindx(bound);
    925 
    926 			error = ifioctl_common(ifp, cmd, data);
    927 			if (error == ENETRESET)
    928 				error = 0;
    929 		}
    930 
    931 		break;
    932 
    933 	case SIOCSETVLAN:
    934 		if ((error = kauth_authorize_network(l->l_cred,
    935 		    KAUTH_NETWORK_INTERFACE,
    936 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
    937 		    NULL)) != 0)
    938 			break;
    939 		if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
    940 			break;
    941 
    942 		if (vlr.vlr_parent[0] == '\0') {
    943 			bound = curlwp_bind();
    944 			mib = vlan_getref_linkmib(ifv, &psref);
    945 			if (mib == NULL) {
    946 				curlwp_bindx(bound);
    947 				error = EBUSY;
    948 				break;
    949 			}
    950 
    951 			if (mib->ifvm_p != NULL &&
    952 			    (ifp->if_flags & IFF_PROMISC) != 0)
    953 				error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
    954 
    955 			vlan_putref_linkmib(mib, &psref);
    956 			curlwp_bindx(bound);
    957 
    958 			vlan_unconfig(ifp);
    959 			break;
    960 		}
    961 		if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
    962 			error = EINVAL;		 /* check for valid tag */
    963 			break;
    964 		}
    965 		if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
    966 			error = ENOENT;
    967 			break;
    968 		}
    969 
    970 		error = vlan_config(ifv, pr, vlr.vlr_tag);
    971 		if (error != 0)
    972 			break;
    973 
    974 		/* Update promiscuous mode, if necessary. */
    975 		vlan_set_promisc(ifp);
    976 
    977 		ifp->if_flags |= IFF_RUNNING;
    978 		break;
    979 
    980 	case SIOCGETVLAN:
    981 		memset(&vlr, 0, sizeof(vlr));
    982 		bound = curlwp_bind();
    983 		mib = vlan_getref_linkmib(ifv, &psref);
    984 		if (mib == NULL) {
    985 			curlwp_bindx(bound);
    986 			error = EBUSY;
    987 			break;
    988 		}
    989 		if (mib->ifvm_p != NULL) {
    990 			snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
    991 			    mib->ifvm_p->if_xname);
    992 			vlr.vlr_tag = mib->ifvm_tag;
    993 		}
    994 		vlan_putref_linkmib(mib, &psref);
    995 		curlwp_bindx(bound);
    996 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
    997 		break;
    998 
    999 	case SIOCSIFFLAGS:
   1000 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1001 			break;
   1002 		/*
   1003 		 * For promiscuous mode, we enable promiscuous mode on
   1004 		 * the parent if we need promiscuous on the VLAN interface.
   1005 		 */
   1006 		bound = curlwp_bind();
   1007 		mib = vlan_getref_linkmib(ifv, &psref);
   1008 		if (mib == NULL) {
   1009 			curlwp_bindx(bound);
   1010 			error = EBUSY;
   1011 			break;
   1012 		}
   1013 
   1014 		if (mib->ifvm_p != NULL)
   1015 			error = vlan_set_promisc(ifp);
   1016 		vlan_putref_linkmib(mib, &psref);
   1017 		curlwp_bindx(bound);
   1018 		break;
   1019 
   1020 	case SIOCADDMULTI:
   1021 		mutex_enter(&ifv->ifv_lock);
   1022 		mib = ifv->ifv_mib;
   1023 		if (mib == NULL) {
   1024 			error = EBUSY;
   1025 			mutex_exit(&ifv->ifv_lock);
   1026 			break;
   1027 		}
   1028 
   1029 		error = (mib->ifvm_p != NULL) ?
   1030 		    (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
   1031 		mib = NULL;
   1032 		mutex_exit(&ifv->ifv_lock);
   1033 		break;
   1034 
   1035 	case SIOCDELMULTI:
   1036 		mutex_enter(&ifv->ifv_lock);
   1037 		mib = ifv->ifv_mib;
   1038 		if (mib == NULL) {
   1039 			error = EBUSY;
   1040 			mutex_exit(&ifv->ifv_lock);
   1041 			break;
   1042 		}
   1043 		error = (mib->ifvm_p != NULL) ?
   1044 		    (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
   1045 		mib = NULL;
   1046 		mutex_exit(&ifv->ifv_lock);
   1047 		break;
   1048 
   1049 	case SIOCSIFCAP:
   1050 		ifcr = data;
   1051 		/* make sure caps are enabled on parent */
   1052 		bound = curlwp_bind();
   1053 		mib = vlan_getref_linkmib(ifv, &psref);
   1054 		if (mib == NULL) {
   1055 			curlwp_bindx(bound);
   1056 			error = EBUSY;
   1057 			break;
   1058 		}
   1059 
   1060 		if (mib->ifvm_p == NULL) {
   1061 			vlan_putref_linkmib(mib, &psref);
   1062 			curlwp_bindx(bound);
   1063 			error = EINVAL;
   1064 			break;
   1065 		}
   1066 		if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
   1067 		    ifcr->ifcr_capenable) {
   1068 			vlan_putref_linkmib(mib, &psref);
   1069 			curlwp_bindx(bound);
   1070 			error = EINVAL;
   1071 			break;
   1072 		}
   1073 
   1074 		vlan_putref_linkmib(mib, &psref);
   1075 		curlwp_bindx(bound);
   1076 
   1077 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
   1078 			error = 0;
   1079 		break;
   1080 	case SIOCINITIFADDR:
   1081 		bound = curlwp_bind();
   1082 		mib = vlan_getref_linkmib(ifv, &psref);
   1083 		if (mib == NULL) {
   1084 			curlwp_bindx(bound);
   1085 			error = EBUSY;
   1086 			break;
   1087 		}
   1088 
   1089 		if (mib->ifvm_p == NULL) {
   1090 			error = EINVAL;
   1091 			vlan_putref_linkmib(mib, &psref);
   1092 			curlwp_bindx(bound);
   1093 			break;
   1094 		}
   1095 		vlan_putref_linkmib(mib, &psref);
   1096 		curlwp_bindx(bound);
   1097 
   1098 		ifp->if_flags |= IFF_UP;
   1099 #ifdef INET
   1100 		if (ifa->ifa_addr->sa_family == AF_INET)
   1101 			arp_ifinit(ifp, ifa);
   1102 #endif
   1103 		break;
   1104 
   1105 	default:
   1106 		error = ether_ioctl(ifp, cmd, data);
   1107 	}
   1108 
   1109 	return error;
   1110 }
   1111 
   1112 static int
   1113 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
   1114 {
   1115 	const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
   1116 	struct vlan_mc_entry *mc;
   1117 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
   1118 	struct ifvlan_linkmib *mib;
   1119 	int error;
   1120 
   1121 	KASSERT(mutex_owned(&ifv->ifv_lock));
   1122 
   1123 	if (sa->sa_len > sizeof(struct sockaddr_storage))
   1124 		return EINVAL;
   1125 
   1126 	error = ether_addmulti(sa, &ifv->ifv_ec);
   1127 	if (error != ENETRESET)
   1128 		return error;
   1129 
   1130 	/*
   1131 	 * This is a new multicast address.  We have to tell parent
   1132 	 * about it.  Also, remember this multicast address so that
   1133 	 * we can delete it on unconfigure.
   1134 	 */
   1135 	mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
   1136 	if (mc == NULL) {
   1137 		error = ENOMEM;
   1138 		goto alloc_failed;
   1139 	}
   1140 
   1141 	/*
   1142 	 * Since ether_addmulti() returned ENETRESET, the following two
   1143 	 * statements shouldn't fail. Here ifv_ec is implicitly protected
   1144 	 * by the ifv_lock lock.
   1145 	 */
   1146 	error = ether_multiaddr(sa, addrlo, addrhi);
   1147 	KASSERT(error == 0);
   1148 
   1149 	ETHER_LOCK(&ifv->ifv_ec);
   1150 	mc->mc_enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
   1151 	ETHER_UNLOCK(&ifv->ifv_ec);
   1152 
   1153 	KASSERT(mc->mc_enm != NULL);
   1154 
   1155 	memcpy(&mc->mc_addr, sa, sa->sa_len);
   1156 	LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
   1157 
   1158 	mib = ifv->ifv_mib;
   1159 
   1160 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
   1161 	error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
   1162 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
   1163 
   1164 	if (error != 0)
   1165 		goto ioctl_failed;
   1166 	return error;
   1167 
   1168 ioctl_failed:
   1169 	LIST_REMOVE(mc, mc_entries);
   1170 	free(mc, M_DEVBUF);
   1171 
   1172 alloc_failed:
   1173 	(void)ether_delmulti(sa, &ifv->ifv_ec);
   1174 	return error;
   1175 }
   1176 
   1177 static int
   1178 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
   1179 {
   1180 	const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
   1181 	struct ether_multi *enm;
   1182 	struct vlan_mc_entry *mc;
   1183 	struct ifvlan_linkmib *mib;
   1184 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
   1185 	int error;
   1186 
   1187 	KASSERT(mutex_owned(&ifv->ifv_lock));
   1188 
   1189 	/*
   1190 	 * Find a key to lookup vlan_mc_entry.  We have to do this
   1191 	 * before calling ether_delmulti for obvious reasons.
   1192 	 */
   1193 	if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
   1194 		return error;
   1195 
   1196 	ETHER_LOCK(&ifv->ifv_ec);
   1197 	enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
   1198 	ETHER_UNLOCK(&ifv->ifv_ec);
   1199 	if (enm == NULL)
   1200 		return EINVAL;
   1201 
   1202 	LIST_FOREACH(mc, &ifv->ifv_mc_listhead, mc_entries) {
   1203 		if (mc->mc_enm == enm)
   1204 			break;
   1205 	}
   1206 
   1207 	/* We woun't delete entries we didn't add */
   1208 	if (mc == NULL)
   1209 		return EINVAL;
   1210 
   1211 	error = ether_delmulti(sa, &ifv->ifv_ec);
   1212 	if (error != ENETRESET)
   1213 		return error;
   1214 
   1215 	/* We no longer use this multicast address.  Tell parent so. */
   1216 	mib = ifv->ifv_mib;
   1217 	error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
   1218 
   1219 	if (error == 0) {
   1220 		/* And forget about this address. */
   1221 		LIST_REMOVE(mc, mc_entries);
   1222 		free(mc, M_DEVBUF);
   1223 	} else {
   1224 		(void)ether_addmulti(sa, &ifv->ifv_ec);
   1225 	}
   1226 
   1227 	return error;
   1228 }
   1229 
   1230 /*
   1231  * Delete any multicast address we have asked to add from parent
   1232  * interface.  Called when the vlan is being unconfigured.
   1233  */
   1234 static void
   1235 vlan_ether_purgemulti(struct ifvlan *ifv)
   1236 {
   1237 	struct vlan_mc_entry *mc;
   1238 	struct ifvlan_linkmib *mib;
   1239 
   1240 	KASSERT(mutex_owned(&ifv->ifv_lock));
   1241 	mib = ifv->ifv_mib;
   1242 	if (mib == NULL) {
   1243 		return;
   1244 	}
   1245 
   1246 	while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
   1247 		(void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
   1248 		    sstocsa(&mc->mc_addr));
   1249 		LIST_REMOVE(mc, mc_entries);
   1250 		free(mc, M_DEVBUF);
   1251 	}
   1252 }
   1253 
   1254 static void
   1255 vlan_start(struct ifnet *ifp)
   1256 {
   1257 	struct ifvlan *ifv = ifp->if_softc;
   1258 	struct ifnet *p;
   1259 	struct ethercom *ec;
   1260 	struct mbuf *m;
   1261 	struct ifvlan_linkmib *mib;
   1262 	struct psref psref;
   1263 	struct ether_header *eh;
   1264 	int error;
   1265 
   1266 	mib = vlan_getref_linkmib(ifv, &psref);
   1267 	if (mib == NULL)
   1268 		return;
   1269 
   1270 	if (__predict_false(mib->ifvm_p == NULL)) {
   1271 		vlan_putref_linkmib(mib, &psref);
   1272 		return;
   1273 	}
   1274 
   1275 	p = mib->ifvm_p;
   1276 	ec = (void *)mib->ifvm_p;
   1277 
   1278 	ifp->if_flags |= IFF_OACTIVE;
   1279 
   1280 	for (;;) {
   1281 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1282 		if (m == NULL)
   1283 			break;
   1284 
   1285 		if (m->m_len < sizeof(*eh)) {
   1286 			m = m_pullup(m, sizeof(*eh));
   1287 			if (m == NULL) {
   1288 				if_statinc(ifp, if_oerrors);
   1289 				continue;
   1290 			}
   1291 		}
   1292 
   1293 		eh = mtod(m, struct ether_header *);
   1294 		if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
   1295 			m_freem(m);
   1296 			if_statinc(ifp, if_noproto);
   1297 			continue;
   1298 		}
   1299 
   1300 #ifdef ALTQ
   1301 		/*
   1302 		 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
   1303 		 * defined.
   1304 		 */
   1305 		KERNEL_LOCK(1, NULL);
   1306 		/*
   1307 		 * If ALTQ is enabled on the parent interface, do
   1308 		 * classification; the queueing discipline might
   1309 		 * not require classification, but might require
   1310 		 * the address family/header pointer in the pktattr.
   1311 		 */
   1312 		if (ALTQ_IS_ENABLED(&p->if_snd)) {
   1313 			switch (p->if_type) {
   1314 			case IFT_ETHER:
   1315 				altq_etherclassify(&p->if_snd, m);
   1316 				break;
   1317 			default:
   1318 				panic("%s: impossible (altq)", __func__);
   1319 			}
   1320 		}
   1321 		KERNEL_UNLOCK_ONE(NULL);
   1322 #endif /* ALTQ */
   1323 
   1324 		bpf_mtap(ifp, m, BPF_D_OUT);
   1325 		/*
   1326 		 * If the parent can insert the tag itself, just mark
   1327 		 * the tag in the mbuf header.
   1328 		 */
   1329 		if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
   1330 			vlan_set_tag(m, mib->ifvm_tag);
   1331 		} else {
   1332 			/*
   1333 			 * insert the tag ourselves
   1334 			 */
   1335 			M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
   1336 			if (m == NULL) {
   1337 				printf("%s: unable to prepend encap header",
   1338 				    p->if_xname);
   1339 				if_statinc(ifp, if_oerrors);
   1340 				continue;
   1341 			}
   1342 
   1343 			switch (p->if_type) {
   1344 			case IFT_ETHER:
   1345 			    {
   1346 				struct ether_vlan_header *evl;
   1347 
   1348 				if (m->m_len < sizeof(struct ether_vlan_header))
   1349 					m = m_pullup(m,
   1350 					    sizeof(struct ether_vlan_header));
   1351 				if (m == NULL) {
   1352 					printf("%s: unable to pullup encap "
   1353 					    "header", p->if_xname);
   1354 					if_statinc(ifp, if_oerrors);
   1355 					continue;
   1356 				}
   1357 
   1358 				/*
   1359 				 * Transform the Ethernet header into an
   1360 				 * Ethernet header with 802.1Q encapsulation.
   1361 				 */
   1362 				memmove(mtod(m, void *),
   1363 				    mtod(m, char *) + mib->ifvm_encaplen,
   1364 				    sizeof(struct ether_header));
   1365 				evl = mtod(m, struct ether_vlan_header *);
   1366 				evl->evl_proto = evl->evl_encap_proto;
   1367 				evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
   1368 				evl->evl_tag = htons(mib->ifvm_tag);
   1369 
   1370 				/*
   1371 				 * To cater for VLAN-aware layer 2 ethernet
   1372 				 * switches which may need to strip the tag
   1373 				 * before forwarding the packet, make sure
   1374 				 * the packet+tag is at least 68 bytes long.
   1375 				 * This is necessary because our parent will
   1376 				 * only pad to 64 bytes (ETHER_MIN_LEN) and
   1377 				 * some switches will not pad by themselves
   1378 				 * after deleting a tag.
   1379 				 */
   1380 				const size_t min_data_len = ETHER_MIN_LEN -
   1381 				    ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
   1382 				if (m->m_pkthdr.len < min_data_len) {
   1383 					m_copyback(m, m->m_pkthdr.len,
   1384 					    min_data_len - m->m_pkthdr.len,
   1385 					    vlan_zero_pad_buff);
   1386 				}
   1387 				break;
   1388 			    }
   1389 
   1390 			default:
   1391 				panic("%s: impossible", __func__);
   1392 			}
   1393 		}
   1394 
   1395 		if ((p->if_flags & IFF_RUNNING) == 0) {
   1396 			m_freem(m);
   1397 			continue;
   1398 		}
   1399 
   1400 		error = if_transmit_lock(p, m);
   1401 		if (error) {
   1402 			/* mbuf is already freed */
   1403 			if_statinc(ifp, if_oerrors);
   1404 			continue;
   1405 		}
   1406 		if_statinc(ifp, if_opackets);
   1407 	}
   1408 
   1409 	ifp->if_flags &= ~IFF_OACTIVE;
   1410 
   1411 	/* Remove reference to mib before release */
   1412 	vlan_putref_linkmib(mib, &psref);
   1413 }
   1414 
   1415 static int
   1416 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
   1417 {
   1418 	struct ifvlan *ifv = ifp->if_softc;
   1419 	struct ifnet *p;
   1420 	struct ethercom *ec;
   1421 	struct ifvlan_linkmib *mib;
   1422 	struct psref psref;
   1423 	struct ether_header *eh;
   1424 	int error;
   1425 	size_t pktlen = m->m_pkthdr.len;
   1426 	bool mcast = (m->m_flags & M_MCAST) != 0;
   1427 
   1428 	if (m->m_len < sizeof(*eh)) {
   1429 		m = m_pullup(m, sizeof(*eh));
   1430 		if (m == NULL) {
   1431 			if_statinc(ifp, if_oerrors);
   1432 			return ENOBUFS;
   1433 		}
   1434 	}
   1435 
   1436 	eh = mtod(m, struct ether_header *);
   1437 	if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
   1438 		m_freem(m);
   1439 		if_statinc(ifp, if_noproto);
   1440 		return EPROTONOSUPPORT;
   1441 	}
   1442 
   1443 	mib = vlan_getref_linkmib(ifv, &psref);
   1444 	if (mib == NULL) {
   1445 		m_freem(m);
   1446 		return ENETDOWN;
   1447 	}
   1448 
   1449 	if (__predict_false(mib->ifvm_p == NULL)) {
   1450 		vlan_putref_linkmib(mib, &psref);
   1451 		m_freem(m);
   1452 		return ENETDOWN;
   1453 	}
   1454 
   1455 	p = mib->ifvm_p;
   1456 	ec = (void *)mib->ifvm_p;
   1457 
   1458 	bpf_mtap(ifp, m, BPF_D_OUT);
   1459 
   1460 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
   1461 		goto out;
   1462 	if (m == NULL)
   1463 		goto out;
   1464 
   1465 	/*
   1466 	 * If the parent can insert the tag itself, just mark
   1467 	 * the tag in the mbuf header.
   1468 	 */
   1469 	if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
   1470 		vlan_set_tag(m, mib->ifvm_tag);
   1471 	} else {
   1472 		/*
   1473 		 * insert the tag ourselves
   1474 		 */
   1475 		M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
   1476 		if (m == NULL) {
   1477 			printf("%s: unable to prepend encap header",
   1478 			    p->if_xname);
   1479 			if_statinc(ifp, if_oerrors);
   1480 			error = ENOBUFS;
   1481 			goto out;
   1482 		}
   1483 
   1484 		switch (p->if_type) {
   1485 		case IFT_ETHER:
   1486 		    {
   1487 			struct ether_vlan_header *evl;
   1488 
   1489 			if (m->m_len < sizeof(struct ether_vlan_header))
   1490 				m = m_pullup(m,
   1491 				    sizeof(struct ether_vlan_header));
   1492 			if (m == NULL) {
   1493 				printf("%s: unable to pullup encap "
   1494 				    "header", p->if_xname);
   1495 				if_statinc(ifp, if_oerrors);
   1496 				error = ENOBUFS;
   1497 				goto out;
   1498 			}
   1499 
   1500 			/*
   1501 			 * Transform the Ethernet header into an
   1502 			 * Ethernet header with 802.1Q encapsulation.
   1503 			 */
   1504 			memmove(mtod(m, void *),
   1505 			    mtod(m, char *) + mib->ifvm_encaplen,
   1506 			    sizeof(struct ether_header));
   1507 			evl = mtod(m, struct ether_vlan_header *);
   1508 			evl->evl_proto = evl->evl_encap_proto;
   1509 			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
   1510 			evl->evl_tag = htons(mib->ifvm_tag);
   1511 
   1512 			/*
   1513 			 * To cater for VLAN-aware layer 2 ethernet
   1514 			 * switches which may need to strip the tag
   1515 			 * before forwarding the packet, make sure
   1516 			 * the packet+tag is at least 68 bytes long.
   1517 			 * This is necessary because our parent will
   1518 			 * only pad to 64 bytes (ETHER_MIN_LEN) and
   1519 			 * some switches will not pad by themselves
   1520 			 * after deleting a tag.
   1521 			 */
   1522 			const size_t min_data_len = ETHER_MIN_LEN -
   1523 			    ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
   1524 			if (m->m_pkthdr.len < min_data_len) {
   1525 				m_copyback(m, m->m_pkthdr.len,
   1526 				    min_data_len - m->m_pkthdr.len,
   1527 				    vlan_zero_pad_buff);
   1528 			}
   1529 			break;
   1530 		    }
   1531 
   1532 		default:
   1533 			panic("%s: impossible", __func__);
   1534 		}
   1535 	}
   1536 
   1537 	if ((p->if_flags & IFF_RUNNING) == 0) {
   1538 		m_freem(m);
   1539 		error = ENETDOWN;
   1540 		goto out;
   1541 	}
   1542 
   1543 	error = if_transmit_lock(p, m);
   1544 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1545 	if (error) {
   1546 		/* mbuf is already freed */
   1547 		if_statinc_ref(nsr, if_oerrors);
   1548 	} else {
   1549 		if_statinc_ref(nsr, if_opackets);
   1550 		if_statadd_ref(nsr, if_obytes, pktlen);
   1551 		if (mcast)
   1552 			if_statinc_ref(nsr, if_omcasts);
   1553 	}
   1554 	IF_STAT_PUTREF(ifp);
   1555 
   1556 out:
   1557 	/* Remove reference to mib before release */
   1558 	vlan_putref_linkmib(mib, &psref);
   1559 	return error;
   1560 }
   1561 
   1562 /*
   1563  * Given an Ethernet frame, find a valid vlan interface corresponding to the
   1564  * given source interface and tag, then run the real packet through the
   1565  * parent's input routine.
   1566  */
   1567 void
   1568 vlan_input(struct ifnet *ifp, struct mbuf *m)
   1569 {
   1570 	struct ifvlan *ifv;
   1571 	uint16_t vid;
   1572 	struct ifvlan_linkmib *mib;
   1573 	struct psref psref;
   1574 	bool have_vtag;
   1575 
   1576 	have_vtag = vlan_has_tag(m);
   1577 	if (have_vtag) {
   1578 		vid = EVL_VLANOFTAG(vlan_get_tag(m));
   1579 		m->m_flags &= ~M_VLANTAG;
   1580 	} else {
   1581 		struct ether_vlan_header *evl;
   1582 
   1583 		if (ifp->if_type != IFT_ETHER) {
   1584 			panic("%s: impossible", __func__);
   1585 		}
   1586 
   1587 		if (m->m_len < sizeof(struct ether_vlan_header) &&
   1588 		    (m = m_pullup(m,
   1589 		     sizeof(struct ether_vlan_header))) == NULL) {
   1590 			printf("%s: no memory for VLAN header, "
   1591 			    "dropping packet.\n", ifp->if_xname);
   1592 			return;
   1593 		}
   1594 
   1595 		if (m_makewritable(&m, 0,
   1596 		    sizeof(struct ether_vlan_header), M_DONTWAIT)) {
   1597 			m_freem(m);
   1598 			if_statinc(ifp, if_ierrors);
   1599 			return;
   1600 		}
   1601 
   1602 		evl = mtod(m, struct ether_vlan_header *);
   1603 		KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
   1604 
   1605 		vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
   1606 
   1607 		/*
   1608 		 * Restore the original ethertype.  We'll remove
   1609 		 * the encapsulation after we've found the vlan
   1610 		 * interface corresponding to the tag.
   1611 		 */
   1612 		evl->evl_encap_proto = evl->evl_proto;
   1613 	}
   1614 
   1615 	mib = vlan_lookup_tag_psref(ifp, vid, &psref);
   1616 	if (mib == NULL) {
   1617 		m_freem(m);
   1618 		if_statinc(ifp, if_noproto);
   1619 		return;
   1620 	}
   1621 	KASSERT(mib->ifvm_encaplen == ETHER_VLAN_ENCAP_LEN);
   1622 
   1623 	ifv = mib->ifvm_ifvlan;
   1624 	if ((ifv->ifv_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
   1625 	    (IFF_UP | IFF_RUNNING)) {
   1626 		m_freem(m);
   1627 		if_statinc(ifp, if_noproto);
   1628 		goto out;
   1629 	}
   1630 
   1631 	/*
   1632 	 * Now, remove the encapsulation header.  The original
   1633 	 * header has already been fixed up above.
   1634 	 */
   1635 	if (!have_vtag) {
   1636 		memmove(mtod(m, char *) + mib->ifvm_encaplen,
   1637 		    mtod(m, void *), sizeof(struct ether_header));
   1638 		m_adj(m, mib->ifvm_encaplen);
   1639 	}
   1640 
   1641 	/*
   1642 	 * Drop promiscuously received packets if we are not in
   1643 	 * promiscuous mode
   1644 	 */
   1645 	if ((m->m_flags & (M_BCAST | M_MCAST)) == 0 &&
   1646 	    (ifp->if_flags & IFF_PROMISC) &&
   1647 	    (ifv->ifv_if.if_flags & IFF_PROMISC) == 0) {
   1648 		struct ether_header *eh;
   1649 
   1650 		eh = mtod(m, struct ether_header *);
   1651 		if (memcmp(CLLADDR(ifv->ifv_if.if_sadl),
   1652 		    eh->ether_dhost, ETHER_ADDR_LEN) != 0) {
   1653 			m_freem(m);
   1654 			if_statinc(&ifv->ifv_if, if_ierrors);
   1655 			goto out;
   1656 		}
   1657 	}
   1658 
   1659 	m_set_rcvif(m, &ifv->ifv_if);
   1660 
   1661 	if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
   1662 		goto out;
   1663 	if (m == NULL)
   1664 		goto out;
   1665 
   1666 	m->m_flags &= ~M_PROMISC;
   1667 	if_input(&ifv->ifv_if, m);
   1668 out:
   1669 	vlan_putref_linkmib(mib, &psref);
   1670 }
   1671 
   1672 /*
   1673  * If the parent link state changed, the vlan link state should change also.
   1674  */
   1675 static void
   1676 vlan_link_state_changed(void *xifv)
   1677 {
   1678 	struct ifvlan *ifv = xifv;
   1679 	struct ifnet *ifp, *p;
   1680 	struct ifvlan_linkmib *mib;
   1681 	struct psref psref;
   1682 
   1683 	mib = vlan_getref_linkmib(ifv, &psref);
   1684 	if (mib == NULL)
   1685 		return;
   1686 
   1687 	if (mib->ifvm_p == NULL) {
   1688 		vlan_putref_linkmib(mib, &psref);
   1689 		return;
   1690 	}
   1691 
   1692 	ifp = &ifv->ifv_if;
   1693 	p = mib->ifvm_p;
   1694 	if_link_state_change(ifp, p->if_link_state);
   1695 
   1696 	vlan_putref_linkmib(mib, &psref);
   1697 }
   1698 
   1699 /*
   1700  * Module infrastructure
   1701  */
   1702 #include "if_module.h"
   1703 
   1704 IF_MODULE(MODULE_CLASS_DRIVER, vlan, NULL)
   1705