if_vlan.c revision 1.29 1 /* $NetBSD: if_vlan.c,v 1.29 2001/01/28 10:41:44 itojun Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright 1998 Massachusetts Institute of Technology
41 *
42 * Permission to use, copy, modify, and distribute this software and
43 * its documentation for any purpose and without fee is hereby
44 * granted, provided that both the above copyright notice and this
45 * permission notice appear in all copies, that both the above
46 * copyright notice and this permission notice appear in all
47 * supporting documentation, and that the name of M.I.T. not be used
48 * in advertising or publicity pertaining to distribution of the
49 * software without specific, written prior permission. M.I.T. makes
50 * no representations about the suitability of this software for any
51 * purpose. It is provided "as is" without express or implied
52 * warranty.
53 *
54 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
55 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
56 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
57 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
58 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
61 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
62 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
68 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
69 */
70
71 /*
72 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
73 * extended some day to also handle IEEE 802.1P priority tagging. This is
74 * sort of sneaky in the implementation, since we need to pretend to be
75 * enough of an Ethernet implementation to make ARP work. The way we do
76 * this is by telling everyone that we are an Ethernet interface, and then
77 * catch the packets that ether_output() left on our output queue when it
78 * calls if_start(), rewrite them for use by the real outgoing interface,
79 * and ask it to send them.
80 *
81 * TODO:
82 *
83 * - Need some way to notify vlan interfaces when the parent
84 * interface changes MTU.
85 */
86
87 #include "opt_inet.h"
88 #include "bpfilter.h"
89
90 #include <sys/param.h>
91 #include <sys/kernel.h>
92 #include <sys/mbuf.h>
93 #include <sys/queue.h>
94 #include <sys/socket.h>
95 #include <sys/sockio.h>
96 #include <sys/systm.h>
97 #include <sys/proc.h>
98
99 #if NBPFILTER > 0
100 #include <net/bpf.h>
101 #endif
102 #include <net/if.h>
103 #include <net/if_dl.h>
104 #include <net/if_types.h>
105 #include <net/if_ether.h>
106 #include <net/if_vlanvar.h>
107
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/if_inarp.h>
111 #endif
112
113 struct vlan_mc_entry {
114 LIST_ENTRY(vlan_mc_entry) mc_entries;
115 /*
116 * A key to identify this entry. The mc_addr below can't be
117 * used since multiple sockaddr may mapped into the same
118 * ether_multi (e.g., AF_UNSPEC).
119 */
120 union {
121 struct ether_multi *mcu_enm;
122 } mc_u;
123 struct sockaddr_storage mc_addr;
124 };
125
126 #define mc_enm mc_u.mcu_enm
127
128 struct ifvlan {
129 union {
130 struct ethercom ifvu_ec;
131 } ifv_u;
132 struct ifnet *ifv_p; /* parent interface of this vlan */
133 struct ifv_linkmib {
134 const struct vlan_multisw *ifvm_msw;
135 int ifvm_encaplen; /* encapsulation length */
136 int ifvm_mtufudge; /* MTU fudged by this much */
137 int ifvm_mintu; /* min transmission unit */
138 u_int16_t ifvm_proto; /* encapsulation ethertype */
139 u_int16_t ifvm_tag; /* tag to apply on packets */
140 } ifv_mib;
141 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
142 LIST_ENTRY(ifvlan) ifv_list;
143 int ifv_flags;
144 };
145
146 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
147
148 #define ifv_ec ifv_u.ifvu_ec
149
150 #define ifv_if ifv_ec.ec_if
151
152 #define ifv_msw ifv_mib.ifvm_msw
153 #define ifv_encaplen ifv_mib.ifvm_encaplen
154 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
155 #define ifv_mintu ifv_mib.ifvm_mintu
156 #define ifv_tag ifv_mib.ifvm_tag
157
158 struct vlan_multisw {
159 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
160 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
161 void (*vmsw_purgemulti)(struct ifvlan *);
162 };
163
164 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
165 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
166 static void vlan_ether_purgemulti(struct ifvlan *);
167
168 const struct vlan_multisw vlan_ether_multisw = {
169 vlan_ether_addmulti,
170 vlan_ether_delmulti,
171 vlan_ether_purgemulti,
172 };
173
174 static int vlan_clone_create(struct if_clone *, int);
175 static void vlan_clone_destroy(struct ifnet *);
176 static int vlan_config(struct ifvlan *, struct ifnet *);
177 static int vlan_ioctl(struct ifnet *, u_long, caddr_t);
178 static void vlan_start(struct ifnet *);
179 static void vlan_unconfig(struct ifnet *);
180
181 void vlanattach(int);
182
183 /* XXX This should be a hash table with the tag as the basis of the key. */
184 static LIST_HEAD(, ifvlan) ifv_list;
185
186 struct if_clone vlan_cloner =
187 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
188
189 void
190 vlanattach(int n)
191 {
192
193 LIST_INIT(&ifv_list);
194 if_clone_attach(&vlan_cloner);
195 }
196
197 static int
198 vlan_clone_create(struct if_clone *ifc, int unit)
199 {
200 struct ifvlan *ifv;
201 struct ifnet *ifp;
202 int s;
203
204 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK);
205 memset(ifv, 0, sizeof(struct ifvlan));
206 ifp = &ifv->ifv_if;
207 LIST_INIT(&ifv->ifv_mc_listhead);
208
209 s = splnet();
210 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
211 splx(s);
212
213 sprintf(ifp->if_xname, "%s%d", ifc->ifc_name, unit);
214 ifp->if_softc = ifv;
215 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
216 ifp->if_start = vlan_start;
217 ifp->if_ioctl = vlan_ioctl;
218
219 if_attach(ifp);
220 if_alloc_sadl(ifp);
221
222 return (0);
223 }
224
225 static void
226 vlan_clone_destroy(struct ifnet *ifp)
227 {
228 struct ifvlan *ifv = ifp->if_softc;
229 int s;
230
231 s = splnet();
232 LIST_REMOVE(ifv, ifv_list);
233 vlan_unconfig(ifp);
234 splx(s);
235
236 if_detach(ifp);
237 free(ifv, M_DEVBUF);
238 }
239
240 /*
241 * Configure a VLAN interface. Must be called at splnet().
242 */
243 static int
244 vlan_config(struct ifvlan *ifv, struct ifnet *p)
245 {
246 struct ifnet *ifp = &ifv->ifv_if;
247 int error;
248
249 if (ifv->ifv_p != NULL)
250 return (EBUSY);
251
252 switch (p->if_type) {
253 case IFT_ETHER:
254 {
255 struct ethercom *ec = (void *) p;
256
257 ifv->ifv_msw = &vlan_ether_multisw;
258 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
259 ifv->ifv_mintu = ETHERMIN;
260
261 /*
262 * If the parent supports the VLAN_MTU capability,
263 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
264 * enable it.
265 */
266 if (ec->ec_nvlans++ == 0 &&
267 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
268 /*
269 * Enable Tx/Rx of VLAN-sized frames.
270 */
271 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
272 if (p->if_flags & IFF_UP) {
273 struct ifreq ifr;
274
275 ifr.ifr_flags = p->if_flags;
276 error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
277 (caddr_t) &ifr);
278 if (error) {
279 if (ec->ec_nvlans-- == 1)
280 ec->ec_capenable &=
281 ~ETHERCAP_VLAN_MTU;
282 return (error);
283 }
284 }
285 ifv->ifv_mtufudge = 0;
286 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
287 /*
288 * Fudge the MTU by the encapsulation size. This
289 * makes us incompatible with strictly compliant
290 * 802.1Q implementations, but allows us to use
291 * the feature with other NetBSD implementations,
292 * which might still be useful.
293 */
294 ifv->ifv_mtufudge = ifv->ifv_encaplen;
295 }
296
297 /*
298 * We inherit the parent's Ethernet address.
299 */
300 ether_ifattach(ifp, LLADDR(p->if_sadl));
301 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
302 break;
303 }
304
305 default:
306 return (EPROTONOSUPPORT);
307 }
308
309 ifv->ifv_p = p;
310 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
311 ifv->ifv_if.if_flags = p->if_flags &
312 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
313
314 /*
315 * Inherit the if_type from the parent. This allows us
316 * to participate in bridges of that type.
317 */
318 ifv->ifv_if.if_type = p->if_type;
319
320 return (0);
321 }
322
323 /*
324 * Unconfigure a VLAN interface. Must be called at splnet().
325 */
326 static void
327 vlan_unconfig(struct ifnet *ifp)
328 {
329 struct ifvlan *ifv = ifp->if_softc;
330
331 if (ifv->ifv_p == NULL)
332 return;
333
334 /*
335 * Since the interface is being unconfigured, we need to empty the
336 * list of multicast groups that we may have joined while we were
337 * alive and remove them from the parent's list also.
338 */
339 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
340
341 /* Disconnect from parent. */
342 switch (ifv->ifv_p->if_type) {
343 case IFT_ETHER:
344 {
345 struct ethercom *ec = (void *) ifv->ifv_p;
346
347 if (ec->ec_nvlans-- == 1) {
348 /*
349 * Disable Tx/Rx of VLAN-sized frames.
350 */
351 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
352 if (ifv->ifv_p->if_flags & IFF_UP) {
353 struct ifreq ifr;
354
355 ifr.ifr_flags = ifv->ifv_p->if_flags;
356 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
357 SIOCSIFFLAGS, (caddr_t) &ifr);
358 }
359 }
360
361 ether_ifdetach(ifp);
362 break;
363 }
364
365 #ifdef DIAGNOSTIC
366 default:
367 panic("vlan_unconfig: impossible");
368 #endif
369 }
370
371 ifv->ifv_p = NULL;
372 ifv->ifv_if.if_mtu = 0;
373 ifv->ifv_flags = 0;
374
375 if_down(ifp);
376 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
377 }
378
379 /*
380 * Called when a parent interface is detaching; destroy any VLAN
381 * configuration for the parent interface.
382 */
383 void
384 vlan_ifdetach(struct ifnet *p)
385 {
386 struct ifvlan *ifv;
387 int s;
388
389 s = splnet();
390
391 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
392 ifv = LIST_NEXT(ifv, ifv_list)) {
393 if (ifv->ifv_p == p)
394 vlan_unconfig(&ifv->ifv_if);
395 }
396
397 splx(s);
398 }
399
400 static int
401 vlan_set_promisc(struct ifnet *ifp)
402 {
403 struct ifvlan *ifv = ifp->if_softc;
404 int error = 0;
405
406 if ((ifp->if_flags & IFF_PROMISC) != 0) {
407 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
408 error = ifpromisc(ifv->ifv_p, 1);
409 if (error == 0)
410 ifv->ifv_flags |= IFVF_PROMISC;
411 }
412 } else {
413 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
414 error = ifpromisc(ifv->ifv_p, 0);
415 if (error == 0)
416 ifv->ifv_flags &= ~IFVF_PROMISC;
417 }
418 }
419
420 return (error);
421 }
422
423 static int
424 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
425 {
426 struct proc *p = curproc; /* XXX */
427 struct ifvlan *ifv = ifp->if_softc;
428 struct ifaddr *ifa = (struct ifaddr *) data;
429 struct ifreq *ifr = (struct ifreq *) data;
430 struct ifnet *pr;
431 struct vlanreq vlr;
432 struct sockaddr *sa;
433 int s, error = 0;
434
435 s = splnet();
436
437 switch (cmd) {
438 case SIOCSIFADDR:
439 if (ifv->ifv_p != NULL) {
440 ifp->if_flags |= IFF_UP;
441
442 switch (ifa->ifa_addr->sa_family) {
443 #ifdef INET
444 case AF_INET:
445 arp_ifinit(ifp, ifa);
446 break;
447 #endif
448 default:
449 break;
450 }
451 } else {
452 error = EINVAL;
453 }
454 break;
455
456 case SIOCGIFADDR:
457 if (ifp->if_sadl == NULL)
458 return (EADDRNOTAVAIL);
459 sa = (struct sockaddr *)&ifr->ifr_data;
460 memcpy(sa->sa_data, LLADDR(ifp->if_sadl), ifp->if_addrlen);
461 break;
462
463 case SIOCSIFMTU:
464 if (ifv->ifv_p != NULL) {
465 if (ifr->ifr_mtu >
466 (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
467 ifr->ifr_mtu <
468 (ifv->ifv_mintu - ifv->ifv_mtufudge))
469 error = EINVAL;
470 else
471 ifp->if_mtu = ifr->ifr_mtu;
472 } else
473 error = EINVAL;
474 break;
475
476 case SIOCSETVLAN:
477 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
478 break;
479 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
480 break;
481 if (vlr.vlr_parent[0] == '\0') {
482 vlan_unconfig(ifp);
483 break;
484 }
485 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
486 error = EINVAL; /* check for valid tag */
487 break;
488 }
489 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
490 error = ENOENT;
491 break;
492 }
493 if ((error = vlan_config(ifv, pr)) != 0)
494 break;
495 ifv->ifv_tag = vlr.vlr_tag;
496 ifp->if_flags |= IFF_RUNNING;
497
498 /* Update promiscuous mode, if necessary. */
499 vlan_set_promisc(ifp);
500 break;
501
502 case SIOCGETVLAN:
503 memset(&vlr, 0, sizeof(vlr));
504 if (ifv->ifv_p != NULL) {
505 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
506 ifv->ifv_p->if_xname);
507 vlr.vlr_tag = ifv->ifv_tag;
508 }
509 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
510 break;
511
512 case SIOCSIFFLAGS:
513 /*
514 * For promiscuous mode, we enable promiscuous mode on
515 * the parent if we need promiscuous on the VLAN interface.
516 */
517 if (ifv->ifv_p != NULL)
518 error = vlan_set_promisc(ifp);
519 break;
520
521 case SIOCADDMULTI:
522 error = (ifv->ifv_p != NULL) ?
523 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
524 break;
525
526 case SIOCDELMULTI:
527 error = (ifv->ifv_p != NULL) ?
528 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
529 break;
530
531 default:
532 error = EINVAL;
533 }
534
535 splx(s);
536
537 return (error);
538 }
539
540 static int
541 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
542 {
543 struct vlan_mc_entry *mc;
544 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
545 int error;
546
547 if (ifr->ifr_addr.sa_len > sizeof(struct sockaddr_storage))
548 return (EINVAL);
549
550 error = ether_addmulti(ifr, &ifv->ifv_ec);
551 if (error != ENETRESET)
552 return (error);
553
554 /*
555 * This is new multicast address. We have to tell parent
556 * about it. Also, remember this multicast address so that
557 * we can delete them on unconfigure.
558 */
559 MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry),
560 M_DEVBUF, M_NOWAIT);
561 if (mc == NULL) {
562 error = ENOMEM;
563 goto alloc_failed;
564 }
565
566 /*
567 * As ether_addmulti() returns ENETRESET, following two
568 * statement shouldn't fail.
569 */
570 (void)ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi);
571 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
572 memcpy(&mc->mc_addr, &ifr->ifr_addr, ifr->ifr_addr.sa_len);
573 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
574
575 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
576 (caddr_t)ifr);
577 if (error != 0)
578 goto ioctl_failed;
579 return (error);
580
581 ioctl_failed:
582 LIST_REMOVE(mc, mc_entries);
583 FREE(mc, M_DEVBUF);
584 alloc_failed:
585 (void)ether_delmulti(ifr, &ifv->ifv_ec);
586 return (error);
587 }
588
589 static int
590 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
591 {
592 struct ether_multi *enm;
593 struct vlan_mc_entry *mc;
594 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
595 int error;
596
597 /*
598 * Find a key to lookup vlan_mc_entry. We have to do this
599 * before calling ether_delmulti for obvious reason.
600 */
601 if ((error = ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi)) != 0)
602 return (error);
603 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
604
605 error = ether_delmulti(ifr, &ifv->ifv_ec);
606 if (error != ENETRESET)
607 return (error);
608
609 /* We no longer use this multicast address. Tell parent so. */
610 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
611 (caddr_t)ifr);
612 if (error == 0) {
613 /* And forget about this address. */
614 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
615 mc = LIST_NEXT(mc, mc_entries)) {
616 if (mc->mc_enm == enm) {
617 LIST_REMOVE(mc, mc_entries);
618 FREE(mc, M_DEVBUF);
619 break;
620 }
621 }
622 KASSERT(mc != NULL);
623 } else
624 (void)ether_addmulti(ifr, &ifv->ifv_ec);
625 return (error);
626 }
627
628 /*
629 * Delete any multicast address we have asked to add form parent
630 * interface. Called when the vlan is being unconfigured.
631 */
632 static void
633 vlan_ether_purgemulti(struct ifvlan *ifv)
634 {
635 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
636 struct vlan_mc_entry *mc;
637 union {
638 struct ifreq ifreq;
639 struct {
640 char ifr_name[IFNAMSIZ];
641 struct sockaddr_storage ifr_ss;
642 } ifreq_storage;
643 } ifreq;
644 struct ifreq *ifr = &ifreq.ifreq;
645
646 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
647 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
648 memcpy(&ifr->ifr_addr, &mc->mc_addr, mc->mc_addr.ss_len);
649 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)ifr);
650 LIST_REMOVE(mc, mc_entries);
651 FREE(mc, M_DEVBUF);
652 }
653 }
654
655 static void
656 vlan_start(struct ifnet *ifp)
657 {
658 struct ifvlan *ifv = ifp->if_softc;
659 struct ifnet *p = ifv->ifv_p;
660 struct ethercom *ec = (void *) ifv->ifv_p;
661 struct mbuf *m;
662
663 ifp->if_flags |= IFF_OACTIVE;
664
665 for (;;) {
666 IF_DEQUEUE(&ifp->if_snd, m);
667 if (m == NULL)
668 break;
669
670 #if NBPFILTER > 0
671 if (ifp->if_bpf)
672 bpf_mtap(ifp->if_bpf, m);
673 #endif
674 /*
675 * If the parent can insert the tag itself, just mark
676 * the tag in the mbuf header.
677 */
678 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
679 struct mbuf *n;
680 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
681 if (n == NULL) {
682 ifp->if_oerrors++;
683 m_freem(m);
684 continue;
685 }
686 *mtod(n, int *) = ifv->ifv_tag;
687 n->m_len = sizeof(int);
688 } else {
689 /*
690 * insert the tag ourselve
691 */
692 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
693 if (m == NULL) {
694 printf("%s: unable to prepend encap header",
695 ifv->ifv_p->if_xname);
696 ifp->if_oerrors++;
697 continue;
698 }
699
700 switch (p->if_type) {
701 case IFT_ETHER:
702 {
703 struct ether_vlan_header *evl;
704
705 if (m->m_len < sizeof(struct ether_vlan_header))
706 m = m_pullup(m,
707 sizeof(struct ether_vlan_header));
708 if (m == NULL) {
709 printf("%s: unable to pullup encap "
710 "header", ifv->ifv_p->if_xname);
711 ifp->if_oerrors++;
712 continue;
713 }
714
715 /*
716 * Transform the Ethernet header into an
717 * Ethernet header with 802.1Q encapsulation.
718 */
719 memmove(mtod(m, caddr_t),
720 mtod(m, caddr_t) + ifv->ifv_encaplen,
721 sizeof(struct ether_header));
722 evl = mtod(m, struct ether_vlan_header *);
723 evl->evl_proto = evl->evl_encap_proto;
724 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
725 evl->evl_tag = htons(ifv->ifv_tag);
726 break;
727 }
728
729 #ifdef DIAGNOSTIC
730 default:
731 panic("vlan_start: impossible");
732 #endif
733 }
734 }
735
736 /*
737 * Send it, precisely as the parent's output routine
738 * would have. We are already running at splimp.
739 */
740 if (IF_QFULL(&p->if_snd)) {
741 IF_DROP(&p->if_snd);
742 /* XXX stats */
743 ifp->if_oerrors++;
744 m_freem(m);
745 continue;
746 }
747
748 IF_ENQUEUE(&p->if_snd, m);
749 ifp->if_opackets++;
750 if ((p->if_flags & IFF_OACTIVE) == 0) {
751 (*p->if_start)(p);
752 }
753 }
754
755 ifp->if_flags &= ~IFF_OACTIVE;
756 }
757
758 /*
759 * Given an Ethernet frame, find a valid vlan interface corresponding to the
760 * given source interface and tag, then run the the real packet through
761 * the parent's input routine.
762 */
763 void
764 vlan_input(struct ifnet *ifp, struct mbuf *m)
765 {
766 struct ifvlan *ifv;
767 u_int tag;
768 struct mbuf *n;
769
770 n = m_aux_find(m, AF_LINK, ETHERTYPE_VLAN);
771 if (n) {
772 /* m contains a normal ethernet frame, the tag is in m_aux */
773 tag = *mtod(n, int *);
774 m_aux_delete(m, n);
775 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
776 ifv = LIST_NEXT(ifv, ifv_list))
777 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
778 break;
779 } else {
780 switch (ifp->if_type) {
781 case IFT_ETHER:
782 {
783 struct ether_vlan_header *evl;
784
785 if (m->m_len < sizeof(struct ether_vlan_header) &&
786 (m = m_pullup(m,
787 sizeof(struct ether_vlan_header))) == NULL) {
788 printf("%s: no memory for VLAN header, "
789 "dropping packet.\n", ifp->if_xname);
790 return;
791 }
792 evl = mtod(m, struct ether_vlan_header *);
793 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
794
795 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
796
797 /*
798 * Restore the original ethertype. We'll remove
799 * the encapsulation after we've found the vlan
800 * interface corresponding to the tag.
801 */
802 evl->evl_encap_proto = evl->evl_proto;
803 break;
804 }
805
806 default:
807 tag = (u_int) -1; /* XXX GCC */
808 #ifdef DIAGNOSTIC
809 panic("vlan_input: impossible");
810 #endif
811 }
812
813 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
814 ifv = LIST_NEXT(ifv, ifv_list))
815 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
816 break;
817
818
819 /*
820 * Now, remove the encapsulation header. The original
821 * header has already been fixed up above.
822 */
823 if (ifv) {
824 memmove(mtod(m, caddr_t) + ifv->ifv_encaplen,
825 mtod(m, caddr_t), sizeof(struct ether_header));
826 m_adj(m, ifv->ifv_encaplen);
827 }
828 }
829
830 if (ifv == NULL ||
831 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
832 (IFF_UP|IFF_RUNNING)) {
833 m_free(m);
834 ifp->if_noproto++;
835 return;
836 }
837 m->m_pkthdr.rcvif = &ifv->ifv_if;
838 ifv->ifv_if.if_ipackets++;
839
840 #if NBPFILTER > 0
841 if (ifv->ifv_if.if_bpf)
842 bpf_mtap(ifv->ifv_if.if_bpf, m);
843 #endif
844
845 /* Pass it back through the parent's input routine. */
846 (*ifp->if_input)(&ifv->ifv_if, m);
847 }
848