if_vlan.c revision 1.30.2.2 1 /* $NetBSD: if_vlan.c,v 1.30.2.2 2001/04/09 01:58:16 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright 1998 Massachusetts Institute of Technology
41 *
42 * Permission to use, copy, modify, and distribute this software and
43 * its documentation for any purpose and without fee is hereby
44 * granted, provided that both the above copyright notice and this
45 * permission notice appear in all copies, that both the above
46 * copyright notice and this permission notice appear in all
47 * supporting documentation, and that the name of M.I.T. not be used
48 * in advertising or publicity pertaining to distribution of the
49 * software without specific, written prior permission. M.I.T. makes
50 * no representations about the suitability of this software for any
51 * purpose. It is provided "as is" without express or implied
52 * warranty.
53 *
54 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
55 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
56 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
57 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
58 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
61 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
62 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
68 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
69 */
70
71 /*
72 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
73 * extended some day to also handle IEEE 802.1P priority tagging. This is
74 * sort of sneaky in the implementation, since we need to pretend to be
75 * enough of an Ethernet implementation to make ARP work. The way we do
76 * this is by telling everyone that we are an Ethernet interface, and then
77 * catch the packets that ether_output() left on our output queue when it
78 * calls if_start(), rewrite them for use by the real outgoing interface,
79 * and ask it to send them.
80 *
81 * TODO:
82 *
83 * - Need some way to notify vlan interfaces when the parent
84 * interface changes MTU.
85 */
86
87 #include "opt_inet.h"
88 #include "bpfilter.h"
89
90 #include <sys/param.h>
91 #include <sys/kernel.h>
92 #include <sys/mbuf.h>
93 #include <sys/queue.h>
94 #include <sys/socket.h>
95 #include <sys/sockio.h>
96 #include <sys/systm.h>
97 #include <sys/lwp.h>
98 #include <sys/proc.h>
99
100 #if NBPFILTER > 0
101 #include <net/bpf.h>
102 #endif
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_types.h>
106 #include <net/if_ether.h>
107 #include <net/if_vlanvar.h>
108
109 #ifdef INET
110 #include <netinet/in.h>
111 #include <netinet/if_inarp.h>
112 #endif
113
114 struct vlan_mc_entry {
115 LIST_ENTRY(vlan_mc_entry) mc_entries;
116 /*
117 * A key to identify this entry. The mc_addr below can't be
118 * used since multiple sockaddr may mapped into the same
119 * ether_multi (e.g., AF_UNSPEC).
120 */
121 union {
122 struct ether_multi *mcu_enm;
123 } mc_u;
124 struct sockaddr_storage mc_addr;
125 };
126
127 #define mc_enm mc_u.mcu_enm
128
129 struct ifvlan {
130 union {
131 struct ethercom ifvu_ec;
132 } ifv_u;
133 struct ifnet *ifv_p; /* parent interface of this vlan */
134 struct ifv_linkmib {
135 const struct vlan_multisw *ifvm_msw;
136 int ifvm_encaplen; /* encapsulation length */
137 int ifvm_mtufudge; /* MTU fudged by this much */
138 int ifvm_mintu; /* min transmission unit */
139 u_int16_t ifvm_proto; /* encapsulation ethertype */
140 u_int16_t ifvm_tag; /* tag to apply on packets */
141 } ifv_mib;
142 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
143 LIST_ENTRY(ifvlan) ifv_list;
144 int ifv_flags;
145 };
146
147 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
148
149 #define ifv_ec ifv_u.ifvu_ec
150
151 #define ifv_if ifv_ec.ec_if
152
153 #define ifv_msw ifv_mib.ifvm_msw
154 #define ifv_encaplen ifv_mib.ifvm_encaplen
155 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
156 #define ifv_mintu ifv_mib.ifvm_mintu
157 #define ifv_tag ifv_mib.ifvm_tag
158
159 struct vlan_multisw {
160 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
161 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
162 void (*vmsw_purgemulti)(struct ifvlan *);
163 };
164
165 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
166 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
167 static void vlan_ether_purgemulti(struct ifvlan *);
168
169 const struct vlan_multisw vlan_ether_multisw = {
170 vlan_ether_addmulti,
171 vlan_ether_delmulti,
172 vlan_ether_purgemulti,
173 };
174
175 static int vlan_clone_create(struct if_clone *, int);
176 static void vlan_clone_destroy(struct ifnet *);
177 static int vlan_config(struct ifvlan *, struct ifnet *);
178 static int vlan_ioctl(struct ifnet *, u_long, caddr_t);
179 static void vlan_start(struct ifnet *);
180 static void vlan_unconfig(struct ifnet *);
181
182 void vlanattach(int);
183
184 /* XXX This should be a hash table with the tag as the basis of the key. */
185 static LIST_HEAD(, ifvlan) ifv_list;
186
187 struct if_clone vlan_cloner =
188 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
189
190 void
191 vlanattach(int n)
192 {
193
194 LIST_INIT(&ifv_list);
195 if_clone_attach(&vlan_cloner);
196 }
197
198 static void
199 vlan_reset_linkname(struct ifnet *ifp)
200 {
201
202 /*
203 * We start out with a "802.1Q VLAN" type and zero-length
204 * addresses. When we attach to a parent interface, we
205 * inherit its type, address length, address, and data link
206 * type.
207 */
208
209 ifp->if_type = IFT_L2VLAN;
210 ifp->if_addrlen = 0;
211 ifp->if_dlt = DLT_NULL;
212 if_alloc_sadl(ifp);
213 }
214
215 static int
216 vlan_clone_create(struct if_clone *ifc, int unit)
217 {
218 struct ifvlan *ifv;
219 struct ifnet *ifp;
220 int s;
221
222 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK);
223 memset(ifv, 0, sizeof(struct ifvlan));
224 ifp = &ifv->ifv_if;
225 LIST_INIT(&ifv->ifv_mc_listhead);
226
227 s = splnet();
228 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
229 splx(s);
230
231 sprintf(ifp->if_xname, "%s%d", ifc->ifc_name, unit);
232 ifp->if_softc = ifv;
233 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
234 ifp->if_start = vlan_start;
235 ifp->if_ioctl = vlan_ioctl;
236 IFQ_SET_READY(&ifp->if_snd);
237
238 if_attach(ifp);
239 vlan_reset_linkname(ifp);
240
241 return (0);
242 }
243
244 static void
245 vlan_clone_destroy(struct ifnet *ifp)
246 {
247 struct ifvlan *ifv = ifp->if_softc;
248 int s;
249
250 s = splnet();
251 LIST_REMOVE(ifv, ifv_list);
252 vlan_unconfig(ifp);
253 splx(s);
254
255 if_detach(ifp);
256 free(ifv, M_DEVBUF);
257 }
258
259 /*
260 * Configure a VLAN interface. Must be called at splnet().
261 */
262 static int
263 vlan_config(struct ifvlan *ifv, struct ifnet *p)
264 {
265 struct ifnet *ifp = &ifv->ifv_if;
266 int error;
267
268 if (ifv->ifv_p != NULL)
269 return (EBUSY);
270
271 switch (p->if_type) {
272 case IFT_ETHER:
273 {
274 struct ethercom *ec = (void *) p;
275
276 ifv->ifv_msw = &vlan_ether_multisw;
277 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
278 ifv->ifv_mintu = ETHERMIN;
279
280 /*
281 * If the parent supports the VLAN_MTU capability,
282 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
283 * enable it.
284 */
285 if (ec->ec_nvlans++ == 0 &&
286 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
287 /*
288 * Enable Tx/Rx of VLAN-sized frames.
289 */
290 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
291 if (p->if_flags & IFF_UP) {
292 struct ifreq ifr;
293
294 ifr.ifr_flags = p->if_flags;
295 error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
296 (caddr_t) &ifr);
297 if (error) {
298 if (ec->ec_nvlans-- == 1)
299 ec->ec_capenable &=
300 ~ETHERCAP_VLAN_MTU;
301 return (error);
302 }
303 }
304 ifv->ifv_mtufudge = 0;
305 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
306 /*
307 * Fudge the MTU by the encapsulation size. This
308 * makes us incompatible with strictly compliant
309 * 802.1Q implementations, but allows us to use
310 * the feature with other NetBSD implementations,
311 * which might still be useful.
312 */
313 ifv->ifv_mtufudge = ifv->ifv_encaplen;
314 }
315
316 /*
317 * We inherit the parent's Ethernet address.
318 */
319 ether_ifattach(ifp, LLADDR(p->if_sadl));
320 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
321 break;
322 }
323
324 default:
325 return (EPROTONOSUPPORT);
326 }
327
328 ifv->ifv_p = p;
329 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
330 ifv->ifv_if.if_flags = p->if_flags &
331 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
332
333 /*
334 * Inherit the if_type from the parent. This allows us
335 * to participate in bridges of that type.
336 */
337 ifv->ifv_if.if_type = p->if_type;
338
339 return (0);
340 }
341
342 /*
343 * Unconfigure a VLAN interface. Must be called at splnet().
344 */
345 static void
346 vlan_unconfig(struct ifnet *ifp)
347 {
348 struct ifvlan *ifv = ifp->if_softc;
349
350 if (ifv->ifv_p == NULL)
351 return;
352
353 /*
354 * Since the interface is being unconfigured, we need to empty the
355 * list of multicast groups that we may have joined while we were
356 * alive and remove them from the parent's list also.
357 */
358 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
359
360 /* Disconnect from parent. */
361 switch (ifv->ifv_p->if_type) {
362 case IFT_ETHER:
363 {
364 struct ethercom *ec = (void *) ifv->ifv_p;
365
366 if (ec->ec_nvlans-- == 1) {
367 /*
368 * Disable Tx/Rx of VLAN-sized frames.
369 */
370 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
371 if (ifv->ifv_p->if_flags & IFF_UP) {
372 struct ifreq ifr;
373
374 ifr.ifr_flags = ifv->ifv_p->if_flags;
375 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
376 SIOCSIFFLAGS, (caddr_t) &ifr);
377 }
378 }
379
380 ether_ifdetach(ifp);
381 vlan_reset_linkname(ifp);
382 break;
383 }
384
385 #ifdef DIAGNOSTIC
386 default:
387 panic("vlan_unconfig: impossible");
388 #endif
389 }
390
391 ifv->ifv_p = NULL;
392 ifv->ifv_if.if_mtu = 0;
393 ifv->ifv_flags = 0;
394
395 if_down(ifp);
396 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
397 }
398
399 /*
400 * Called when a parent interface is detaching; destroy any VLAN
401 * configuration for the parent interface.
402 */
403 void
404 vlan_ifdetach(struct ifnet *p)
405 {
406 struct ifvlan *ifv;
407 int s;
408
409 s = splnet();
410
411 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
412 ifv = LIST_NEXT(ifv, ifv_list)) {
413 if (ifv->ifv_p == p)
414 vlan_unconfig(&ifv->ifv_if);
415 }
416
417 splx(s);
418 }
419
420 static int
421 vlan_set_promisc(struct ifnet *ifp)
422 {
423 struct ifvlan *ifv = ifp->if_softc;
424 int error = 0;
425
426 if ((ifp->if_flags & IFF_PROMISC) != 0) {
427 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
428 error = ifpromisc(ifv->ifv_p, 1);
429 if (error == 0)
430 ifv->ifv_flags |= IFVF_PROMISC;
431 }
432 } else {
433 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
434 error = ifpromisc(ifv->ifv_p, 0);
435 if (error == 0)
436 ifv->ifv_flags &= ~IFVF_PROMISC;
437 }
438 }
439
440 return (error);
441 }
442
443 static int
444 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
445 {
446 struct proc *p = curproc->l_proc; /* XXX */
447 struct ifvlan *ifv = ifp->if_softc;
448 struct ifaddr *ifa = (struct ifaddr *) data;
449 struct ifreq *ifr = (struct ifreq *) data;
450 struct ifnet *pr;
451 struct vlanreq vlr;
452 struct sockaddr *sa;
453 int s, error = 0;
454
455 s = splnet();
456
457 switch (cmd) {
458 case SIOCSIFADDR:
459 if (ifv->ifv_p != NULL) {
460 ifp->if_flags |= IFF_UP;
461
462 switch (ifa->ifa_addr->sa_family) {
463 #ifdef INET
464 case AF_INET:
465 arp_ifinit(ifp, ifa);
466 break;
467 #endif
468 default:
469 break;
470 }
471 } else {
472 error = EINVAL;
473 }
474 break;
475
476 case SIOCGIFADDR:
477 sa = (struct sockaddr *)&ifr->ifr_data;
478 memcpy(sa->sa_data, LLADDR(ifp->if_sadl), ifp->if_addrlen);
479 break;
480
481 case SIOCSIFMTU:
482 if (ifv->ifv_p != NULL) {
483 if (ifr->ifr_mtu >
484 (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
485 ifr->ifr_mtu <
486 (ifv->ifv_mintu - ifv->ifv_mtufudge))
487 error = EINVAL;
488 else
489 ifp->if_mtu = ifr->ifr_mtu;
490 } else
491 error = EINVAL;
492 break;
493
494 case SIOCSETVLAN:
495 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
496 break;
497 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
498 break;
499 if (vlr.vlr_parent[0] == '\0') {
500 vlan_unconfig(ifp);
501 break;
502 }
503 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
504 error = EINVAL; /* check for valid tag */
505 break;
506 }
507 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
508 error = ENOENT;
509 break;
510 }
511 if ((error = vlan_config(ifv, pr)) != 0)
512 break;
513 ifv->ifv_tag = vlr.vlr_tag;
514 ifp->if_flags |= IFF_RUNNING;
515
516 /* Update promiscuous mode, if necessary. */
517 vlan_set_promisc(ifp);
518 break;
519
520 case SIOCGETVLAN:
521 memset(&vlr, 0, sizeof(vlr));
522 if (ifv->ifv_p != NULL) {
523 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
524 ifv->ifv_p->if_xname);
525 vlr.vlr_tag = ifv->ifv_tag;
526 }
527 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
528 break;
529
530 case SIOCSIFFLAGS:
531 /*
532 * For promiscuous mode, we enable promiscuous mode on
533 * the parent if we need promiscuous on the VLAN interface.
534 */
535 if (ifv->ifv_p != NULL)
536 error = vlan_set_promisc(ifp);
537 break;
538
539 case SIOCADDMULTI:
540 error = (ifv->ifv_p != NULL) ?
541 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
542 break;
543
544 case SIOCDELMULTI:
545 error = (ifv->ifv_p != NULL) ?
546 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
547 break;
548
549 default:
550 error = EINVAL;
551 }
552
553 splx(s);
554
555 return (error);
556 }
557
558 static int
559 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
560 {
561 struct vlan_mc_entry *mc;
562 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
563 int error;
564
565 if (ifr->ifr_addr.sa_len > sizeof(struct sockaddr_storage))
566 return (EINVAL);
567
568 error = ether_addmulti(ifr, &ifv->ifv_ec);
569 if (error != ENETRESET)
570 return (error);
571
572 /*
573 * This is new multicast address. We have to tell parent
574 * about it. Also, remember this multicast address so that
575 * we can delete them on unconfigure.
576 */
577 MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry),
578 M_DEVBUF, M_NOWAIT);
579 if (mc == NULL) {
580 error = ENOMEM;
581 goto alloc_failed;
582 }
583
584 /*
585 * As ether_addmulti() returns ENETRESET, following two
586 * statement shouldn't fail.
587 */
588 (void)ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi);
589 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
590 memcpy(&mc->mc_addr, &ifr->ifr_addr, ifr->ifr_addr.sa_len);
591 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
592
593 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
594 (caddr_t)ifr);
595 if (error != 0)
596 goto ioctl_failed;
597 return (error);
598
599 ioctl_failed:
600 LIST_REMOVE(mc, mc_entries);
601 FREE(mc, M_DEVBUF);
602 alloc_failed:
603 (void)ether_delmulti(ifr, &ifv->ifv_ec);
604 return (error);
605 }
606
607 static int
608 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
609 {
610 struct ether_multi *enm;
611 struct vlan_mc_entry *mc;
612 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
613 int error;
614
615 /*
616 * Find a key to lookup vlan_mc_entry. We have to do this
617 * before calling ether_delmulti for obvious reason.
618 */
619 if ((error = ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi)) != 0)
620 return (error);
621 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
622
623 error = ether_delmulti(ifr, &ifv->ifv_ec);
624 if (error != ENETRESET)
625 return (error);
626
627 /* We no longer use this multicast address. Tell parent so. */
628 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
629 (caddr_t)ifr);
630 if (error == 0) {
631 /* And forget about this address. */
632 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
633 mc = LIST_NEXT(mc, mc_entries)) {
634 if (mc->mc_enm == enm) {
635 LIST_REMOVE(mc, mc_entries);
636 FREE(mc, M_DEVBUF);
637 break;
638 }
639 }
640 KASSERT(mc != NULL);
641 } else
642 (void)ether_addmulti(ifr, &ifv->ifv_ec);
643 return (error);
644 }
645
646 /*
647 * Delete any multicast address we have asked to add form parent
648 * interface. Called when the vlan is being unconfigured.
649 */
650 static void
651 vlan_ether_purgemulti(struct ifvlan *ifv)
652 {
653 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
654 struct vlan_mc_entry *mc;
655 union {
656 struct ifreq ifreq;
657 struct {
658 char ifr_name[IFNAMSIZ];
659 struct sockaddr_storage ifr_ss;
660 } ifreq_storage;
661 } ifreq;
662 struct ifreq *ifr = &ifreq.ifreq;
663
664 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
665 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
666 memcpy(&ifr->ifr_addr, &mc->mc_addr, mc->mc_addr.ss_len);
667 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)ifr);
668 LIST_REMOVE(mc, mc_entries);
669 FREE(mc, M_DEVBUF);
670 }
671 }
672
673 static void
674 vlan_start(struct ifnet *ifp)
675 {
676 struct ifvlan *ifv = ifp->if_softc;
677 struct ifnet *p = ifv->ifv_p;
678 struct ethercom *ec = (void *) ifv->ifv_p;
679 struct mbuf *m;
680 int error;
681 ALTQ_DECL(struct altq_pktattr pktattr;)
682
683 ifp->if_flags |= IFF_OACTIVE;
684
685 for (;;) {
686 IFQ_DEQUEUE(&ifp->if_snd, m);
687 if (m == NULL)
688 break;
689
690 #ifdef ALTQ
691 /*
692 * If ALTQ is enabled on the parent interface, do
693 * classification; the queueing discipline might
694 * not require classification, but might require
695 * the address family/header pointer in the pktattr.
696 */
697 if (ALTQ_IS_ENABLED(&p->if_snd)) {
698 switch (p->if_type) {
699 case IFT_ETHER:
700 altq_etherclassify(&p->if_snd, m, &pktattr);
701 break;
702 #ifdef DIAGNOSTIC
703 default:
704 panic("vlan_start: impossible (altq)");
705 #endif
706 }
707 }
708 #endif /* ALTQ */
709
710 #if NBPFILTER > 0
711 if (ifp->if_bpf)
712 bpf_mtap(ifp->if_bpf, m);
713 #endif
714 /*
715 * If the parent can insert the tag itself, just mark
716 * the tag in the mbuf header.
717 */
718 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
719 struct mbuf *n;
720 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
721 if (n == NULL) {
722 ifp->if_oerrors++;
723 m_freem(m);
724 continue;
725 }
726 *mtod(n, int *) = ifv->ifv_tag;
727 n->m_len = sizeof(int);
728 } else {
729 /*
730 * insert the tag ourselve
731 */
732 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
733 if (m == NULL) {
734 printf("%s: unable to prepend encap header",
735 ifv->ifv_p->if_xname);
736 ifp->if_oerrors++;
737 continue;
738 }
739
740 switch (p->if_type) {
741 case IFT_ETHER:
742 {
743 struct ether_vlan_header *evl;
744
745 if (m->m_len < sizeof(struct ether_vlan_header))
746 m = m_pullup(m,
747 sizeof(struct ether_vlan_header));
748 if (m == NULL) {
749 printf("%s: unable to pullup encap "
750 "header", ifv->ifv_p->if_xname);
751 ifp->if_oerrors++;
752 continue;
753 }
754
755 /*
756 * Transform the Ethernet header into an
757 * Ethernet header with 802.1Q encapsulation.
758 */
759 memmove(mtod(m, caddr_t),
760 mtod(m, caddr_t) + ifv->ifv_encaplen,
761 sizeof(struct ether_header));
762 evl = mtod(m, struct ether_vlan_header *);
763 evl->evl_proto = evl->evl_encap_proto;
764 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
765 evl->evl_tag = htons(ifv->ifv_tag);
766 break;
767 }
768
769 #ifdef DIAGNOSTIC
770 default:
771 panic("vlan_start: impossible");
772 #endif
773 }
774 }
775
776 /*
777 * Send it, precisely as the parent's output routine
778 * would have. We are already running at splimp.
779 */
780 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
781 if (error) {
782 /* mbuf is already freed */
783 ifp->if_oerrors++;
784 continue;
785 }
786
787 ifp->if_opackets++;
788 if ((p->if_flags & IFF_OACTIVE) == 0)
789 (*p->if_start)(p);
790 }
791
792 ifp->if_flags &= ~IFF_OACTIVE;
793 }
794
795 /*
796 * Given an Ethernet frame, find a valid vlan interface corresponding to the
797 * given source interface and tag, then run the the real packet through
798 * the parent's input routine.
799 */
800 void
801 vlan_input(struct ifnet *ifp, struct mbuf *m)
802 {
803 struct ifvlan *ifv;
804 u_int tag;
805 struct mbuf *n;
806
807 n = m_aux_find(m, AF_LINK, ETHERTYPE_VLAN);
808 if (n) {
809 /* m contains a normal ethernet frame, the tag is in m_aux */
810 tag = *mtod(n, int *);
811 m_aux_delete(m, n);
812 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
813 ifv = LIST_NEXT(ifv, ifv_list))
814 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
815 break;
816 } else {
817 switch (ifp->if_type) {
818 case IFT_ETHER:
819 {
820 struct ether_vlan_header *evl;
821
822 if (m->m_len < sizeof(struct ether_vlan_header) &&
823 (m = m_pullup(m,
824 sizeof(struct ether_vlan_header))) == NULL) {
825 printf("%s: no memory for VLAN header, "
826 "dropping packet.\n", ifp->if_xname);
827 return;
828 }
829 evl = mtod(m, struct ether_vlan_header *);
830 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
831
832 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
833
834 /*
835 * Restore the original ethertype. We'll remove
836 * the encapsulation after we've found the vlan
837 * interface corresponding to the tag.
838 */
839 evl->evl_encap_proto = evl->evl_proto;
840 break;
841 }
842
843 default:
844 tag = (u_int) -1; /* XXX GCC */
845 #ifdef DIAGNOSTIC
846 panic("vlan_input: impossible");
847 #endif
848 }
849
850 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
851 ifv = LIST_NEXT(ifv, ifv_list))
852 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
853 break;
854
855
856 /*
857 * Now, remove the encapsulation header. The original
858 * header has already been fixed up above.
859 */
860 if (ifv) {
861 memmove(mtod(m, caddr_t) + ifv->ifv_encaplen,
862 mtod(m, caddr_t), sizeof(struct ether_header));
863 m_adj(m, ifv->ifv_encaplen);
864 }
865 }
866
867 if (ifv == NULL ||
868 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
869 (IFF_UP|IFF_RUNNING)) {
870 m_free(m);
871 ifp->if_noproto++;
872 return;
873 }
874 m->m_pkthdr.rcvif = &ifv->ifv_if;
875 ifv->ifv_if.if_ipackets++;
876
877 #if NBPFILTER > 0
878 if (ifv->ifv_if.if_bpf)
879 bpf_mtap(ifv->ifv_if.if_bpf, m);
880 #endif
881
882 /* Pass it back through the parent's input routine. */
883 (*ifp->if_input)(&ifv->ifv_if, m);
884 }
885