if_vlan.c revision 1.32 1 /* $NetBSD: if_vlan.c,v 1.32 2001/06/12 06:16:59 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright 1998 Massachusetts Institute of Technology
41 *
42 * Permission to use, copy, modify, and distribute this software and
43 * its documentation for any purpose and without fee is hereby
44 * granted, provided that both the above copyright notice and this
45 * permission notice appear in all copies, that both the above
46 * copyright notice and this permission notice appear in all
47 * supporting documentation, and that the name of M.I.T. not be used
48 * in advertising or publicity pertaining to distribution of the
49 * software without specific, written prior permission. M.I.T. makes
50 * no representations about the suitability of this software for any
51 * purpose. It is provided "as is" without express or implied
52 * warranty.
53 *
54 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
55 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
56 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
57 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
58 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
61 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
62 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
68 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
69 */
70
71 /*
72 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
73 * extended some day to also handle IEEE 802.1P priority tagging. This is
74 * sort of sneaky in the implementation, since we need to pretend to be
75 * enough of an Ethernet implementation to make ARP work. The way we do
76 * this is by telling everyone that we are an Ethernet interface, and then
77 * catch the packets that ether_output() left on our output queue when it
78 * calls if_start(), rewrite them for use by the real outgoing interface,
79 * and ask it to send them.
80 *
81 * TODO:
82 *
83 * - Need some way to notify vlan interfaces when the parent
84 * interface changes MTU.
85 */
86
87 #include "opt_inet.h"
88 #include "bpfilter.h"
89
90 #include <sys/param.h>
91 #include <sys/kernel.h>
92 #include <sys/mbuf.h>
93 #include <sys/queue.h>
94 #include <sys/socket.h>
95 #include <sys/sockio.h>
96 #include <sys/systm.h>
97 #include <sys/proc.h>
98
99 #if NBPFILTER > 0
100 #include <net/bpf.h>
101 #endif
102 #include <net/if.h>
103 #include <net/if_dl.h>
104 #include <net/if_types.h>
105 #include <net/if_ether.h>
106 #include <net/if_vlanvar.h>
107
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/if_inarp.h>
111 #endif
112
113 struct vlan_mc_entry {
114 LIST_ENTRY(vlan_mc_entry) mc_entries;
115 /*
116 * A key to identify this entry. The mc_addr below can't be
117 * used since multiple sockaddr may mapped into the same
118 * ether_multi (e.g., AF_UNSPEC).
119 */
120 union {
121 struct ether_multi *mcu_enm;
122 } mc_u;
123 struct sockaddr_storage mc_addr;
124 };
125
126 #define mc_enm mc_u.mcu_enm
127
128 struct ifvlan {
129 union {
130 struct ethercom ifvu_ec;
131 } ifv_u;
132 struct ifnet *ifv_p; /* parent interface of this vlan */
133 struct ifv_linkmib {
134 const struct vlan_multisw *ifvm_msw;
135 int ifvm_encaplen; /* encapsulation length */
136 int ifvm_mtufudge; /* MTU fudged by this much */
137 int ifvm_mintu; /* min transmission unit */
138 u_int16_t ifvm_proto; /* encapsulation ethertype */
139 u_int16_t ifvm_tag; /* tag to apply on packets */
140 } ifv_mib;
141 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
142 LIST_ENTRY(ifvlan) ifv_list;
143 int ifv_flags;
144 };
145
146 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
147
148 #define ifv_ec ifv_u.ifvu_ec
149
150 #define ifv_if ifv_ec.ec_if
151
152 #define ifv_msw ifv_mib.ifvm_msw
153 #define ifv_encaplen ifv_mib.ifvm_encaplen
154 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
155 #define ifv_mintu ifv_mib.ifvm_mintu
156 #define ifv_tag ifv_mib.ifvm_tag
157
158 struct vlan_multisw {
159 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
160 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
161 void (*vmsw_purgemulti)(struct ifvlan *);
162 };
163
164 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
165 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
166 static void vlan_ether_purgemulti(struct ifvlan *);
167
168 const struct vlan_multisw vlan_ether_multisw = {
169 vlan_ether_addmulti,
170 vlan_ether_delmulti,
171 vlan_ether_purgemulti,
172 };
173
174 static int vlan_clone_create(struct if_clone *, int);
175 static void vlan_clone_destroy(struct ifnet *);
176 static int vlan_config(struct ifvlan *, struct ifnet *);
177 static int vlan_ioctl(struct ifnet *, u_long, caddr_t);
178 static void vlan_start(struct ifnet *);
179 static void vlan_unconfig(struct ifnet *);
180
181 void vlanattach(int);
182
183 /* XXX This should be a hash table with the tag as the basis of the key. */
184 static LIST_HEAD(, ifvlan) ifv_list;
185
186 struct if_clone vlan_cloner =
187 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
188
189 void
190 vlanattach(int n)
191 {
192
193 LIST_INIT(&ifv_list);
194 if_clone_attach(&vlan_cloner);
195 }
196
197 static void
198 vlan_reset_linkname(struct ifnet *ifp)
199 {
200
201 /*
202 * We start out with a "802.1Q VLAN" type and zero-length
203 * addresses. When we attach to a parent interface, we
204 * inherit its type, address length, address, and data link
205 * type.
206 */
207
208 ifp->if_type = IFT_L2VLAN;
209 ifp->if_addrlen = 0;
210 ifp->if_dlt = DLT_NULL;
211 if_alloc_sadl(ifp);
212 }
213
214 static int
215 vlan_clone_create(struct if_clone *ifc, int unit)
216 {
217 struct ifvlan *ifv;
218 struct ifnet *ifp;
219 int s;
220
221 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK);
222 memset(ifv, 0, sizeof(struct ifvlan));
223 ifp = &ifv->ifv_if;
224 LIST_INIT(&ifv->ifv_mc_listhead);
225
226 s = splnet();
227 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
228 splx(s);
229
230 sprintf(ifp->if_xname, "%s%d", ifc->ifc_name, unit);
231 ifp->if_softc = ifv;
232 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
233 ifp->if_start = vlan_start;
234 ifp->if_ioctl = vlan_ioctl;
235 IFQ_SET_READY(&ifp->if_snd);
236
237 if_attach(ifp);
238 vlan_reset_linkname(ifp);
239
240 return (0);
241 }
242
243 static void
244 vlan_clone_destroy(struct ifnet *ifp)
245 {
246 struct ifvlan *ifv = ifp->if_softc;
247 int s;
248
249 s = splnet();
250 LIST_REMOVE(ifv, ifv_list);
251 vlan_unconfig(ifp);
252 splx(s);
253
254 if_detach(ifp);
255 free(ifv, M_DEVBUF);
256 }
257
258 /*
259 * Configure a VLAN interface. Must be called at splnet().
260 */
261 static int
262 vlan_config(struct ifvlan *ifv, struct ifnet *p)
263 {
264 struct ifnet *ifp = &ifv->ifv_if;
265 int error;
266
267 if (ifv->ifv_p != NULL)
268 return (EBUSY);
269
270 switch (p->if_type) {
271 case IFT_ETHER:
272 {
273 struct ethercom *ec = (void *) p;
274
275 ifv->ifv_msw = &vlan_ether_multisw;
276 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
277 ifv->ifv_mintu = ETHERMIN;
278
279 /*
280 * If the parent supports the VLAN_MTU capability,
281 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
282 * enable it.
283 */
284 if (ec->ec_nvlans++ == 0 &&
285 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
286 /*
287 * Enable Tx/Rx of VLAN-sized frames.
288 */
289 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
290 if (p->if_flags & IFF_UP) {
291 struct ifreq ifr;
292
293 ifr.ifr_flags = p->if_flags;
294 error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
295 (caddr_t) &ifr);
296 if (error) {
297 if (ec->ec_nvlans-- == 1)
298 ec->ec_capenable &=
299 ~ETHERCAP_VLAN_MTU;
300 return (error);
301 }
302 }
303 ifv->ifv_mtufudge = 0;
304 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
305 /*
306 * Fudge the MTU by the encapsulation size. This
307 * makes us incompatible with strictly compliant
308 * 802.1Q implementations, but allows us to use
309 * the feature with other NetBSD implementations,
310 * which might still be useful.
311 */
312 ifv->ifv_mtufudge = ifv->ifv_encaplen;
313 }
314
315 /*
316 * If the parent interface can do hardware-assisted
317 * VLAN encapsulation, then propagate its hardware-
318 * assisted checksumming flags.
319 */
320 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
321 ifp->if_capabilities = p->if_capabilities &
322 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
323 IFCAP_CSUM_UDPv4|IFCAP_CSUM_TCPv6|
324 IFCAP_CSUM_UDPv6);
325
326 /*
327 * We inherit the parent's Ethernet address.
328 */
329 ether_ifattach(ifp, LLADDR(p->if_sadl));
330 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
331 break;
332 }
333
334 default:
335 return (EPROTONOSUPPORT);
336 }
337
338 ifv->ifv_p = p;
339 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
340 ifv->ifv_if.if_flags = p->if_flags &
341 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
342
343 /*
344 * Inherit the if_type from the parent. This allows us
345 * to participate in bridges of that type.
346 */
347 ifv->ifv_if.if_type = p->if_type;
348
349 return (0);
350 }
351
352 /*
353 * Unconfigure a VLAN interface. Must be called at splnet().
354 */
355 static void
356 vlan_unconfig(struct ifnet *ifp)
357 {
358 struct ifvlan *ifv = ifp->if_softc;
359
360 if (ifv->ifv_p == NULL)
361 return;
362
363 /*
364 * Since the interface is being unconfigured, we need to empty the
365 * list of multicast groups that we may have joined while we were
366 * alive and remove them from the parent's list also.
367 */
368 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
369
370 /* Disconnect from parent. */
371 switch (ifv->ifv_p->if_type) {
372 case IFT_ETHER:
373 {
374 struct ethercom *ec = (void *) ifv->ifv_p;
375
376 if (ec->ec_nvlans-- == 1) {
377 /*
378 * Disable Tx/Rx of VLAN-sized frames.
379 */
380 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
381 if (ifv->ifv_p->if_flags & IFF_UP) {
382 struct ifreq ifr;
383
384 ifr.ifr_flags = ifv->ifv_p->if_flags;
385 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
386 SIOCSIFFLAGS, (caddr_t) &ifr);
387 }
388 }
389
390 ether_ifdetach(ifp);
391 vlan_reset_linkname(ifp);
392 break;
393 }
394
395 #ifdef DIAGNOSTIC
396 default:
397 panic("vlan_unconfig: impossible");
398 #endif
399 }
400
401 ifv->ifv_p = NULL;
402 ifv->ifv_if.if_mtu = 0;
403 ifv->ifv_flags = 0;
404
405 if_down(ifp);
406 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
407 ifp->if_capabilities = 0;
408 }
409
410 /*
411 * Called when a parent interface is detaching; destroy any VLAN
412 * configuration for the parent interface.
413 */
414 void
415 vlan_ifdetach(struct ifnet *p)
416 {
417 struct ifvlan *ifv;
418 int s;
419
420 s = splnet();
421
422 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
423 ifv = LIST_NEXT(ifv, ifv_list)) {
424 if (ifv->ifv_p == p)
425 vlan_unconfig(&ifv->ifv_if);
426 }
427
428 splx(s);
429 }
430
431 static int
432 vlan_set_promisc(struct ifnet *ifp)
433 {
434 struct ifvlan *ifv = ifp->if_softc;
435 int error = 0;
436
437 if ((ifp->if_flags & IFF_PROMISC) != 0) {
438 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
439 error = ifpromisc(ifv->ifv_p, 1);
440 if (error == 0)
441 ifv->ifv_flags |= IFVF_PROMISC;
442 }
443 } else {
444 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
445 error = ifpromisc(ifv->ifv_p, 0);
446 if (error == 0)
447 ifv->ifv_flags &= ~IFVF_PROMISC;
448 }
449 }
450
451 return (error);
452 }
453
454 static int
455 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
456 {
457 struct proc *p = curproc; /* XXX */
458 struct ifvlan *ifv = ifp->if_softc;
459 struct ifaddr *ifa = (struct ifaddr *) data;
460 struct ifreq *ifr = (struct ifreq *) data;
461 struct ifnet *pr;
462 struct vlanreq vlr;
463 struct sockaddr *sa;
464 int s, error = 0;
465
466 s = splnet();
467
468 switch (cmd) {
469 case SIOCSIFADDR:
470 if (ifv->ifv_p != NULL) {
471 ifp->if_flags |= IFF_UP;
472
473 switch (ifa->ifa_addr->sa_family) {
474 #ifdef INET
475 case AF_INET:
476 arp_ifinit(ifp, ifa);
477 break;
478 #endif
479 default:
480 break;
481 }
482 } else {
483 error = EINVAL;
484 }
485 break;
486
487 case SIOCGIFADDR:
488 sa = (struct sockaddr *)&ifr->ifr_data;
489 memcpy(sa->sa_data, LLADDR(ifp->if_sadl), ifp->if_addrlen);
490 break;
491
492 case SIOCSIFMTU:
493 if (ifv->ifv_p != NULL) {
494 if (ifr->ifr_mtu >
495 (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
496 ifr->ifr_mtu <
497 (ifv->ifv_mintu - ifv->ifv_mtufudge))
498 error = EINVAL;
499 else
500 ifp->if_mtu = ifr->ifr_mtu;
501 } else
502 error = EINVAL;
503 break;
504
505 case SIOCSETVLAN:
506 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
507 break;
508 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
509 break;
510 if (vlr.vlr_parent[0] == '\0') {
511 vlan_unconfig(ifp);
512 break;
513 }
514 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
515 error = EINVAL; /* check for valid tag */
516 break;
517 }
518 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
519 error = ENOENT;
520 break;
521 }
522 if ((error = vlan_config(ifv, pr)) != 0)
523 break;
524 ifv->ifv_tag = vlr.vlr_tag;
525 ifp->if_flags |= IFF_RUNNING;
526
527 /* Update promiscuous mode, if necessary. */
528 vlan_set_promisc(ifp);
529 break;
530
531 case SIOCGETVLAN:
532 memset(&vlr, 0, sizeof(vlr));
533 if (ifv->ifv_p != NULL) {
534 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
535 ifv->ifv_p->if_xname);
536 vlr.vlr_tag = ifv->ifv_tag;
537 }
538 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
539 break;
540
541 case SIOCSIFFLAGS:
542 /*
543 * For promiscuous mode, we enable promiscuous mode on
544 * the parent if we need promiscuous on the VLAN interface.
545 */
546 if (ifv->ifv_p != NULL)
547 error = vlan_set_promisc(ifp);
548 break;
549
550 case SIOCADDMULTI:
551 error = (ifv->ifv_p != NULL) ?
552 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
553 break;
554
555 case SIOCDELMULTI:
556 error = (ifv->ifv_p != NULL) ?
557 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
558 break;
559
560 default:
561 error = EINVAL;
562 }
563
564 splx(s);
565
566 return (error);
567 }
568
569 static int
570 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
571 {
572 struct vlan_mc_entry *mc;
573 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
574 int error;
575
576 if (ifr->ifr_addr.sa_len > sizeof(struct sockaddr_storage))
577 return (EINVAL);
578
579 error = ether_addmulti(ifr, &ifv->ifv_ec);
580 if (error != ENETRESET)
581 return (error);
582
583 /*
584 * This is new multicast address. We have to tell parent
585 * about it. Also, remember this multicast address so that
586 * we can delete them on unconfigure.
587 */
588 MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry),
589 M_DEVBUF, M_NOWAIT);
590 if (mc == NULL) {
591 error = ENOMEM;
592 goto alloc_failed;
593 }
594
595 /*
596 * As ether_addmulti() returns ENETRESET, following two
597 * statement shouldn't fail.
598 */
599 (void)ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi);
600 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
601 memcpy(&mc->mc_addr, &ifr->ifr_addr, ifr->ifr_addr.sa_len);
602 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
603
604 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
605 (caddr_t)ifr);
606 if (error != 0)
607 goto ioctl_failed;
608 return (error);
609
610 ioctl_failed:
611 LIST_REMOVE(mc, mc_entries);
612 FREE(mc, M_DEVBUF);
613 alloc_failed:
614 (void)ether_delmulti(ifr, &ifv->ifv_ec);
615 return (error);
616 }
617
618 static int
619 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
620 {
621 struct ether_multi *enm;
622 struct vlan_mc_entry *mc;
623 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
624 int error;
625
626 /*
627 * Find a key to lookup vlan_mc_entry. We have to do this
628 * before calling ether_delmulti for obvious reason.
629 */
630 if ((error = ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi)) != 0)
631 return (error);
632 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
633
634 error = ether_delmulti(ifr, &ifv->ifv_ec);
635 if (error != ENETRESET)
636 return (error);
637
638 /* We no longer use this multicast address. Tell parent so. */
639 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
640 (caddr_t)ifr);
641 if (error == 0) {
642 /* And forget about this address. */
643 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
644 mc = LIST_NEXT(mc, mc_entries)) {
645 if (mc->mc_enm == enm) {
646 LIST_REMOVE(mc, mc_entries);
647 FREE(mc, M_DEVBUF);
648 break;
649 }
650 }
651 KASSERT(mc != NULL);
652 } else
653 (void)ether_addmulti(ifr, &ifv->ifv_ec);
654 return (error);
655 }
656
657 /*
658 * Delete any multicast address we have asked to add form parent
659 * interface. Called when the vlan is being unconfigured.
660 */
661 static void
662 vlan_ether_purgemulti(struct ifvlan *ifv)
663 {
664 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
665 struct vlan_mc_entry *mc;
666 union {
667 struct ifreq ifreq;
668 struct {
669 char ifr_name[IFNAMSIZ];
670 struct sockaddr_storage ifr_ss;
671 } ifreq_storage;
672 } ifreq;
673 struct ifreq *ifr = &ifreq.ifreq;
674
675 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
676 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
677 memcpy(&ifr->ifr_addr, &mc->mc_addr, mc->mc_addr.ss_len);
678 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)ifr);
679 LIST_REMOVE(mc, mc_entries);
680 FREE(mc, M_DEVBUF);
681 }
682 }
683
684 static void
685 vlan_start(struct ifnet *ifp)
686 {
687 struct ifvlan *ifv = ifp->if_softc;
688 struct ifnet *p = ifv->ifv_p;
689 struct ethercom *ec = (void *) ifv->ifv_p;
690 struct mbuf *m;
691 int error;
692 ALTQ_DECL(struct altq_pktattr pktattr;)
693
694 ifp->if_flags |= IFF_OACTIVE;
695
696 for (;;) {
697 IFQ_DEQUEUE(&ifp->if_snd, m);
698 if (m == NULL)
699 break;
700
701 #ifdef ALTQ
702 /*
703 * If ALTQ is enabled on the parent interface, do
704 * classification; the queueing discipline might
705 * not require classification, but might require
706 * the address family/header pointer in the pktattr.
707 */
708 if (ALTQ_IS_ENABLED(&p->if_snd)) {
709 switch (p->if_type) {
710 case IFT_ETHER:
711 altq_etherclassify(&p->if_snd, m, &pktattr);
712 break;
713 #ifdef DIAGNOSTIC
714 default:
715 panic("vlan_start: impossible (altq)");
716 #endif
717 }
718 }
719 #endif /* ALTQ */
720
721 #if NBPFILTER > 0
722 if (ifp->if_bpf)
723 bpf_mtap(ifp->if_bpf, m);
724 #endif
725 /*
726 * If the parent can insert the tag itself, just mark
727 * the tag in the mbuf header.
728 */
729 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
730 struct mbuf *n;
731 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
732 if (n == NULL) {
733 ifp->if_oerrors++;
734 m_freem(m);
735 continue;
736 }
737 *mtod(n, int *) = ifv->ifv_tag;
738 n->m_len = sizeof(int);
739 } else {
740 /*
741 * insert the tag ourselve
742 */
743 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
744 if (m == NULL) {
745 printf("%s: unable to prepend encap header",
746 ifv->ifv_p->if_xname);
747 ifp->if_oerrors++;
748 continue;
749 }
750
751 switch (p->if_type) {
752 case IFT_ETHER:
753 {
754 struct ether_vlan_header *evl;
755
756 if (m->m_len < sizeof(struct ether_vlan_header))
757 m = m_pullup(m,
758 sizeof(struct ether_vlan_header));
759 if (m == NULL) {
760 printf("%s: unable to pullup encap "
761 "header", ifv->ifv_p->if_xname);
762 ifp->if_oerrors++;
763 continue;
764 }
765
766 /*
767 * Transform the Ethernet header into an
768 * Ethernet header with 802.1Q encapsulation.
769 */
770 memmove(mtod(m, caddr_t),
771 mtod(m, caddr_t) + ifv->ifv_encaplen,
772 sizeof(struct ether_header));
773 evl = mtod(m, struct ether_vlan_header *);
774 evl->evl_proto = evl->evl_encap_proto;
775 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
776 evl->evl_tag = htons(ifv->ifv_tag);
777 break;
778 }
779
780 #ifdef DIAGNOSTIC
781 default:
782 panic("vlan_start: impossible");
783 #endif
784 }
785 }
786
787 /*
788 * Send it, precisely as the parent's output routine
789 * would have. We are already running at splimp.
790 */
791 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
792 if (error) {
793 /* mbuf is already freed */
794 ifp->if_oerrors++;
795 continue;
796 }
797
798 ifp->if_opackets++;
799 if ((p->if_flags & IFF_OACTIVE) == 0)
800 (*p->if_start)(p);
801 }
802
803 ifp->if_flags &= ~IFF_OACTIVE;
804 }
805
806 /*
807 * Given an Ethernet frame, find a valid vlan interface corresponding to the
808 * given source interface and tag, then run the the real packet through
809 * the parent's input routine.
810 */
811 void
812 vlan_input(struct ifnet *ifp, struct mbuf *m)
813 {
814 struct ifvlan *ifv;
815 u_int tag;
816 struct mbuf *n;
817
818 n = m_aux_find(m, AF_LINK, ETHERTYPE_VLAN);
819 if (n) {
820 /* m contains a normal ethernet frame, the tag is in m_aux */
821 tag = *mtod(n, int *);
822 m_aux_delete(m, n);
823 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
824 ifv = LIST_NEXT(ifv, ifv_list))
825 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
826 break;
827 } else {
828 switch (ifp->if_type) {
829 case IFT_ETHER:
830 {
831 struct ether_vlan_header *evl;
832
833 if (m->m_len < sizeof(struct ether_vlan_header) &&
834 (m = m_pullup(m,
835 sizeof(struct ether_vlan_header))) == NULL) {
836 printf("%s: no memory for VLAN header, "
837 "dropping packet.\n", ifp->if_xname);
838 return;
839 }
840 evl = mtod(m, struct ether_vlan_header *);
841 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
842
843 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
844
845 /*
846 * Restore the original ethertype. We'll remove
847 * the encapsulation after we've found the vlan
848 * interface corresponding to the tag.
849 */
850 evl->evl_encap_proto = evl->evl_proto;
851 break;
852 }
853
854 default:
855 tag = (u_int) -1; /* XXX GCC */
856 #ifdef DIAGNOSTIC
857 panic("vlan_input: impossible");
858 #endif
859 }
860
861 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
862 ifv = LIST_NEXT(ifv, ifv_list))
863 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
864 break;
865
866
867 /*
868 * Now, remove the encapsulation header. The original
869 * header has already been fixed up above.
870 */
871 if (ifv) {
872 memmove(mtod(m, caddr_t) + ifv->ifv_encaplen,
873 mtod(m, caddr_t), sizeof(struct ether_header));
874 m_adj(m, ifv->ifv_encaplen);
875 }
876 }
877
878 if (ifv == NULL ||
879 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
880 (IFF_UP|IFF_RUNNING)) {
881 m_free(m);
882 ifp->if_noproto++;
883 return;
884 }
885 m->m_pkthdr.rcvif = &ifv->ifv_if;
886 ifv->ifv_if.if_ipackets++;
887
888 #if NBPFILTER > 0
889 if (ifv->ifv_if.if_bpf)
890 bpf_mtap(ifv->ifv_if.if_bpf, m);
891 #endif
892
893 /* Pass it back through the parent's input routine. */
894 (*ifp->if_input)(&ifv->ifv_if, m);
895 }
896