if_vlan.c revision 1.46 1 /* $NetBSD: if_vlan.c,v 1.46 2005/05/02 15:34:32 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright 1998 Massachusetts Institute of Technology
41 *
42 * Permission to use, copy, modify, and distribute this software and
43 * its documentation for any purpose and without fee is hereby
44 * granted, provided that both the above copyright notice and this
45 * permission notice appear in all copies, that both the above
46 * copyright notice and this permission notice appear in all
47 * supporting documentation, and that the name of M.I.T. not be used
48 * in advertising or publicity pertaining to distribution of the
49 * software without specific, written prior permission. M.I.T. makes
50 * no representations about the suitability of this software for any
51 * purpose. It is provided "as is" without express or implied
52 * warranty.
53 *
54 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
55 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
56 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
57 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
58 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
61 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
62 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
68 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
69 */
70
71 /*
72 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
73 * extended some day to also handle IEEE 802.1P priority tagging. This is
74 * sort of sneaky in the implementation, since we need to pretend to be
75 * enough of an Ethernet implementation to make ARP work. The way we do
76 * this is by telling everyone that we are an Ethernet interface, and then
77 * catch the packets that ether_output() left on our output queue when it
78 * calls if_start(), rewrite them for use by the real outgoing interface,
79 * and ask it to send them.
80 *
81 * TODO:
82 *
83 * - Need some way to notify vlan interfaces when the parent
84 * interface changes MTU.
85 */
86
87 #include <sys/cdefs.h>
88 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.46 2005/05/02 15:34:32 yamt Exp $");
89
90 #include "opt_inet.h"
91 #include "bpfilter.h"
92
93 #include <sys/param.h>
94 #include <sys/kernel.h>
95 #include <sys/mbuf.h>
96 #include <sys/queue.h>
97 #include <sys/socket.h>
98 #include <sys/sockio.h>
99 #include <sys/systm.h>
100 #include <sys/proc.h>
101
102 #if NBPFILTER > 0
103 #include <net/bpf.h>
104 #endif
105 #include <net/if.h>
106 #include <net/if_dl.h>
107 #include <net/if_types.h>
108 #include <net/if_ether.h>
109 #include <net/if_vlanvar.h>
110
111 #ifdef INET
112 #include <netinet/in.h>
113 #include <netinet/if_inarp.h>
114 #endif
115
116 struct vlan_mc_entry {
117 LIST_ENTRY(vlan_mc_entry) mc_entries;
118 /*
119 * A key to identify this entry. The mc_addr below can't be
120 * used since multiple sockaddr may mapped into the same
121 * ether_multi (e.g., AF_UNSPEC).
122 */
123 union {
124 struct ether_multi *mcu_enm;
125 } mc_u;
126 struct sockaddr_storage mc_addr;
127 };
128
129 #define mc_enm mc_u.mcu_enm
130
131 struct ifvlan {
132 union {
133 struct ethercom ifvu_ec;
134 } ifv_u;
135 struct ifnet *ifv_p; /* parent interface of this vlan */
136 struct ifv_linkmib {
137 const struct vlan_multisw *ifvm_msw;
138 int ifvm_encaplen; /* encapsulation length */
139 int ifvm_mtufudge; /* MTU fudged by this much */
140 int ifvm_mintu; /* min transmission unit */
141 u_int16_t ifvm_proto; /* encapsulation ethertype */
142 u_int16_t ifvm_tag; /* tag to apply on packets */
143 } ifv_mib;
144 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
145 LIST_ENTRY(ifvlan) ifv_list;
146 int ifv_flags;
147 };
148
149 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
150
151 #define ifv_ec ifv_u.ifvu_ec
152
153 #define ifv_if ifv_ec.ec_if
154
155 #define ifv_msw ifv_mib.ifvm_msw
156 #define ifv_encaplen ifv_mib.ifvm_encaplen
157 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
158 #define ifv_mintu ifv_mib.ifvm_mintu
159 #define ifv_tag ifv_mib.ifvm_tag
160
161 struct vlan_multisw {
162 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
163 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
164 void (*vmsw_purgemulti)(struct ifvlan *);
165 };
166
167 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
168 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
169 static void vlan_ether_purgemulti(struct ifvlan *);
170
171 const struct vlan_multisw vlan_ether_multisw = {
172 vlan_ether_addmulti,
173 vlan_ether_delmulti,
174 vlan_ether_purgemulti,
175 };
176
177 static int vlan_clone_create(struct if_clone *, int);
178 static int vlan_clone_destroy(struct ifnet *);
179 static int vlan_config(struct ifvlan *, struct ifnet *);
180 static int vlan_ioctl(struct ifnet *, u_long, caddr_t);
181 static void vlan_start(struct ifnet *);
182 static void vlan_unconfig(struct ifnet *);
183
184 void vlanattach(int);
185
186 /* XXX This should be a hash table with the tag as the basis of the key. */
187 static LIST_HEAD(, ifvlan) ifv_list;
188
189 struct if_clone vlan_cloner =
190 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
191
192 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
193 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
194
195 void
196 vlanattach(int n)
197 {
198
199 LIST_INIT(&ifv_list);
200 if_clone_attach(&vlan_cloner);
201 }
202
203 static void
204 vlan_reset_linkname(struct ifnet *ifp)
205 {
206
207 /*
208 * We start out with a "802.1Q VLAN" type and zero-length
209 * addresses. When we attach to a parent interface, we
210 * inherit its type, address length, address, and data link
211 * type.
212 */
213
214 ifp->if_type = IFT_L2VLAN;
215 ifp->if_addrlen = 0;
216 ifp->if_dlt = DLT_NULL;
217 if_alloc_sadl(ifp);
218 }
219
220 static int
221 vlan_clone_create(struct if_clone *ifc, int unit)
222 {
223 struct ifvlan *ifv;
224 struct ifnet *ifp;
225 int s;
226
227 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK);
228 memset(ifv, 0, sizeof(struct ifvlan));
229 ifp = &ifv->ifv_if;
230 LIST_INIT(&ifv->ifv_mc_listhead);
231
232 s = splnet();
233 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
234 splx(s);
235
236 snprintf(ifp->if_xname, sizeof(ifp->if_xname), "%s%d", ifc->ifc_name,
237 unit);
238 ifp->if_softc = ifv;
239 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
240 ifp->if_start = vlan_start;
241 ifp->if_ioctl = vlan_ioctl;
242 IFQ_SET_READY(&ifp->if_snd);
243
244 if_attach(ifp);
245 vlan_reset_linkname(ifp);
246
247 return (0);
248 }
249
250 static int
251 vlan_clone_destroy(struct ifnet *ifp)
252 {
253 struct ifvlan *ifv = ifp->if_softc;
254 int s;
255
256 s = splnet();
257 LIST_REMOVE(ifv, ifv_list);
258 vlan_unconfig(ifp);
259 splx(s);
260
261 if_detach(ifp);
262 free(ifv, M_DEVBUF);
263
264 return (0);
265 }
266
267 /*
268 * Configure a VLAN interface. Must be called at splnet().
269 */
270 static int
271 vlan_config(struct ifvlan *ifv, struct ifnet *p)
272 {
273 struct ifnet *ifp = &ifv->ifv_if;
274 int error;
275
276 if (ifv->ifv_p != NULL)
277 return (EBUSY);
278
279 switch (p->if_type) {
280 case IFT_ETHER:
281 {
282 struct ethercom *ec = (void *) p;
283
284 ifv->ifv_msw = &vlan_ether_multisw;
285 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
286 ifv->ifv_mintu = ETHERMIN;
287
288 /*
289 * If the parent supports the VLAN_MTU capability,
290 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
291 * enable it.
292 */
293 if (ec->ec_nvlans++ == 0 &&
294 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
295 /*
296 * Enable Tx/Rx of VLAN-sized frames.
297 */
298 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
299 if (p->if_flags & IFF_UP) {
300 struct ifreq ifr;
301
302 ifr.ifr_flags = p->if_flags;
303 error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
304 (caddr_t) &ifr);
305 if (error) {
306 if (ec->ec_nvlans-- == 1)
307 ec->ec_capenable &=
308 ~ETHERCAP_VLAN_MTU;
309 return (error);
310 }
311 }
312 ifv->ifv_mtufudge = 0;
313 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
314 /*
315 * Fudge the MTU by the encapsulation size. This
316 * makes us incompatible with strictly compliant
317 * 802.1Q implementations, but allows us to use
318 * the feature with other NetBSD implementations,
319 * which might still be useful.
320 */
321 ifv->ifv_mtufudge = ifv->ifv_encaplen;
322 }
323
324 /*
325 * If the parent interface can do hardware-assisted
326 * VLAN encapsulation, then propagate its hardware-
327 * assisted checksumming flags.
328 */
329 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
330 ifp->if_capabilities = p->if_capabilities &
331 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
332 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
333 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
334 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
335 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
336
337 /*
338 * We inherit the parent's Ethernet address.
339 */
340 ether_ifattach(ifp, LLADDR(p->if_sadl));
341 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
342 break;
343 }
344
345 default:
346 return (EPROTONOSUPPORT);
347 }
348
349 ifv->ifv_p = p;
350 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
351 ifv->ifv_if.if_flags = p->if_flags &
352 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
353
354 /*
355 * Inherit the if_type from the parent. This allows us
356 * to participate in bridges of that type.
357 */
358 ifv->ifv_if.if_type = p->if_type;
359
360 return (0);
361 }
362
363 /*
364 * Unconfigure a VLAN interface. Must be called at splnet().
365 */
366 static void
367 vlan_unconfig(struct ifnet *ifp)
368 {
369 struct ifvlan *ifv = ifp->if_softc;
370
371 if (ifv->ifv_p == NULL)
372 return;
373
374 /*
375 * Since the interface is being unconfigured, we need to empty the
376 * list of multicast groups that we may have joined while we were
377 * alive and remove them from the parent's list also.
378 */
379 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
380
381 /* Disconnect from parent. */
382 switch (ifv->ifv_p->if_type) {
383 case IFT_ETHER:
384 {
385 struct ethercom *ec = (void *) ifv->ifv_p;
386
387 if (ec->ec_nvlans-- == 1) {
388 /*
389 * Disable Tx/Rx of VLAN-sized frames.
390 */
391 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
392 if (ifv->ifv_p->if_flags & IFF_UP) {
393 struct ifreq ifr;
394
395 ifr.ifr_flags = ifv->ifv_p->if_flags;
396 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
397 SIOCSIFFLAGS, (caddr_t) &ifr);
398 }
399 }
400
401 ether_ifdetach(ifp);
402 vlan_reset_linkname(ifp);
403 break;
404 }
405
406 #ifdef DIAGNOSTIC
407 default:
408 panic("vlan_unconfig: impossible");
409 #endif
410 }
411
412 ifv->ifv_p = NULL;
413 ifv->ifv_if.if_mtu = 0;
414 ifv->ifv_flags = 0;
415
416 if_down(ifp);
417 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
418 ifp->if_capabilities = 0;
419 }
420
421 /*
422 * Called when a parent interface is detaching; destroy any VLAN
423 * configuration for the parent interface.
424 */
425 void
426 vlan_ifdetach(struct ifnet *p)
427 {
428 struct ifvlan *ifv;
429 int s;
430
431 s = splnet();
432
433 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
434 ifv = LIST_NEXT(ifv, ifv_list)) {
435 if (ifv->ifv_p == p)
436 vlan_unconfig(&ifv->ifv_if);
437 }
438
439 splx(s);
440 }
441
442 static int
443 vlan_set_promisc(struct ifnet *ifp)
444 {
445 struct ifvlan *ifv = ifp->if_softc;
446 int error = 0;
447
448 if ((ifp->if_flags & IFF_PROMISC) != 0) {
449 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
450 error = ifpromisc(ifv->ifv_p, 1);
451 if (error == 0)
452 ifv->ifv_flags |= IFVF_PROMISC;
453 }
454 } else {
455 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
456 error = ifpromisc(ifv->ifv_p, 0);
457 if (error == 0)
458 ifv->ifv_flags &= ~IFVF_PROMISC;
459 }
460 }
461
462 return (error);
463 }
464
465 static int
466 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
467 {
468 struct proc *p = curproc; /* XXX */
469 struct ifvlan *ifv = ifp->if_softc;
470 struct ifaddr *ifa = (struct ifaddr *) data;
471 struct ifreq *ifr = (struct ifreq *) data;
472 struct ifnet *pr;
473 struct vlanreq vlr;
474 struct sockaddr *sa;
475 int s, error = 0;
476
477 s = splnet();
478
479 switch (cmd) {
480 case SIOCSIFADDR:
481 if (ifv->ifv_p != NULL) {
482 ifp->if_flags |= IFF_UP;
483
484 switch (ifa->ifa_addr->sa_family) {
485 #ifdef INET
486 case AF_INET:
487 arp_ifinit(ifp, ifa);
488 break;
489 #endif
490 default:
491 break;
492 }
493 } else {
494 error = EINVAL;
495 }
496 break;
497
498 case SIOCGIFADDR:
499 sa = (struct sockaddr *)&ifr->ifr_data;
500 memcpy(sa->sa_data, LLADDR(ifp->if_sadl), ifp->if_addrlen);
501 break;
502
503 case SIOCSIFMTU:
504 if (ifv->ifv_p != NULL) {
505 if (ifr->ifr_mtu >
506 (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
507 ifr->ifr_mtu <
508 (ifv->ifv_mintu - ifv->ifv_mtufudge))
509 error = EINVAL;
510 else
511 ifp->if_mtu = ifr->ifr_mtu;
512 } else
513 error = EINVAL;
514 break;
515
516 case SIOCSETVLAN:
517 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
518 break;
519 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
520 break;
521 if (vlr.vlr_parent[0] == '\0') {
522 vlan_unconfig(ifp);
523 break;
524 }
525 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
526 error = EINVAL; /* check for valid tag */
527 break;
528 }
529 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
530 error = ENOENT;
531 break;
532 }
533 if ((error = vlan_config(ifv, pr)) != 0)
534 break;
535 ifv->ifv_tag = vlr.vlr_tag;
536 ifp->if_flags |= IFF_RUNNING;
537
538 /* Update promiscuous mode, if necessary. */
539 vlan_set_promisc(ifp);
540 break;
541
542 case SIOCGETVLAN:
543 memset(&vlr, 0, sizeof(vlr));
544 if (ifv->ifv_p != NULL) {
545 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
546 ifv->ifv_p->if_xname);
547 vlr.vlr_tag = ifv->ifv_tag;
548 }
549 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
550 break;
551
552 case SIOCSIFFLAGS:
553 /*
554 * For promiscuous mode, we enable promiscuous mode on
555 * the parent if we need promiscuous on the VLAN interface.
556 */
557 if (ifv->ifv_p != NULL)
558 error = vlan_set_promisc(ifp);
559 break;
560
561 case SIOCADDMULTI:
562 error = (ifv->ifv_p != NULL) ?
563 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
564 break;
565
566 case SIOCDELMULTI:
567 error = (ifv->ifv_p != NULL) ?
568 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
569 break;
570
571 default:
572 error = EINVAL;
573 }
574
575 splx(s);
576
577 return (error);
578 }
579
580 static int
581 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
582 {
583 struct vlan_mc_entry *mc;
584 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
585 int error;
586
587 if (ifr->ifr_addr.sa_len > sizeof(struct sockaddr_storage))
588 return (EINVAL);
589
590 error = ether_addmulti(ifr, &ifv->ifv_ec);
591 if (error != ENETRESET)
592 return (error);
593
594 /*
595 * This is new multicast address. We have to tell parent
596 * about it. Also, remember this multicast address so that
597 * we can delete them on unconfigure.
598 */
599 MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry),
600 M_DEVBUF, M_NOWAIT);
601 if (mc == NULL) {
602 error = ENOMEM;
603 goto alloc_failed;
604 }
605
606 /*
607 * As ether_addmulti() returns ENETRESET, following two
608 * statement shouldn't fail.
609 */
610 (void)ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi);
611 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
612 memcpy(&mc->mc_addr, &ifr->ifr_addr, ifr->ifr_addr.sa_len);
613 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
614
615 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
616 (caddr_t)ifr);
617 if (error != 0)
618 goto ioctl_failed;
619 return (error);
620
621 ioctl_failed:
622 LIST_REMOVE(mc, mc_entries);
623 FREE(mc, M_DEVBUF);
624 alloc_failed:
625 (void)ether_delmulti(ifr, &ifv->ifv_ec);
626 return (error);
627 }
628
629 static int
630 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
631 {
632 struct ether_multi *enm;
633 struct vlan_mc_entry *mc;
634 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
635 int error;
636
637 /*
638 * Find a key to lookup vlan_mc_entry. We have to do this
639 * before calling ether_delmulti for obvious reason.
640 */
641 if ((error = ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi)) != 0)
642 return (error);
643 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
644
645 error = ether_delmulti(ifr, &ifv->ifv_ec);
646 if (error != ENETRESET)
647 return (error);
648
649 /* We no longer use this multicast address. Tell parent so. */
650 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
651 (caddr_t)ifr);
652 if (error == 0) {
653 /* And forget about this address. */
654 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
655 mc = LIST_NEXT(mc, mc_entries)) {
656 if (mc->mc_enm == enm) {
657 LIST_REMOVE(mc, mc_entries);
658 FREE(mc, M_DEVBUF);
659 break;
660 }
661 }
662 KASSERT(mc != NULL);
663 } else
664 (void)ether_addmulti(ifr, &ifv->ifv_ec);
665 return (error);
666 }
667
668 /*
669 * Delete any multicast address we have asked to add from parent
670 * interface. Called when the vlan is being unconfigured.
671 */
672 static void
673 vlan_ether_purgemulti(struct ifvlan *ifv)
674 {
675 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
676 struct vlan_mc_entry *mc;
677 union {
678 struct ifreq ifreq;
679 struct {
680 char ifr_name[IFNAMSIZ];
681 struct sockaddr_storage ifr_ss;
682 } ifreq_storage;
683 } ifreq;
684 struct ifreq *ifr = &ifreq.ifreq;
685
686 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
687 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
688 memcpy(&ifr->ifr_addr, &mc->mc_addr, mc->mc_addr.ss_len);
689 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)ifr);
690 LIST_REMOVE(mc, mc_entries);
691 FREE(mc, M_DEVBUF);
692 }
693 }
694
695 static void
696 vlan_start(struct ifnet *ifp)
697 {
698 struct ifvlan *ifv = ifp->if_softc;
699 struct ifnet *p = ifv->ifv_p;
700 struct ethercom *ec = (void *) ifv->ifv_p;
701 struct mbuf *m;
702 int error;
703 ALTQ_DECL(struct altq_pktattr pktattr;)
704
705 ifp->if_flags |= IFF_OACTIVE;
706
707 for (;;) {
708 IFQ_DEQUEUE(&ifp->if_snd, m);
709 if (m == NULL)
710 break;
711
712 #ifdef ALTQ
713 /*
714 * If ALTQ is enabled on the parent interface, do
715 * classification; the queueing discipline might
716 * not require classification, but might require
717 * the address family/header pointer in the pktattr.
718 */
719 if (ALTQ_IS_ENABLED(&p->if_snd)) {
720 switch (p->if_type) {
721 case IFT_ETHER:
722 altq_etherclassify(&p->if_snd, m, &pktattr);
723 break;
724 #ifdef DIAGNOSTIC
725 default:
726 panic("vlan_start: impossible (altq)");
727 #endif
728 }
729 }
730 #endif /* ALTQ */
731
732 #if NBPFILTER > 0
733 if (ifp->if_bpf)
734 bpf_mtap(ifp->if_bpf, m);
735 #endif
736 /*
737 * If the parent can insert the tag itself, just mark
738 * the tag in the mbuf header.
739 */
740 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
741 struct m_tag *mtag;
742
743 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
744 M_NOWAIT);
745 if (mtag == NULL) {
746 ifp->if_oerrors++;
747 m_freem(m);
748 continue;
749 }
750 *(u_int *)(mtag + 1) = ifv->ifv_tag;
751 m_tag_prepend(m, mtag);
752 } else {
753 /*
754 * insert the tag ourselves
755 */
756 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
757 if (m == NULL) {
758 printf("%s: unable to prepend encap header",
759 ifv->ifv_p->if_xname);
760 ifp->if_oerrors++;
761 continue;
762 }
763
764 switch (p->if_type) {
765 case IFT_ETHER:
766 {
767 struct ether_vlan_header *evl;
768
769 if (m->m_len < sizeof(struct ether_vlan_header))
770 m = m_pullup(m,
771 sizeof(struct ether_vlan_header));
772 if (m == NULL) {
773 printf("%s: unable to pullup encap "
774 "header", ifv->ifv_p->if_xname);
775 ifp->if_oerrors++;
776 continue;
777 }
778
779 /*
780 * Transform the Ethernet header into an
781 * Ethernet header with 802.1Q encapsulation.
782 */
783 memmove(mtod(m, caddr_t),
784 mtod(m, caddr_t) + ifv->ifv_encaplen,
785 sizeof(struct ether_header));
786 evl = mtod(m, struct ether_vlan_header *);
787 evl->evl_proto = evl->evl_encap_proto;
788 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
789 evl->evl_tag = htons(ifv->ifv_tag);
790
791 /*
792 * To cater for VLAN-aware layer 2 ethernet
793 * switches which may need to strip the tag
794 * before forwarding the packet, make sure
795 * the packet+tag is at least 68 bytes long.
796 * This is necessary because our parent will
797 * only pad to 64 bytes (ETHER_MIN_LEN) and
798 * some switches will not pad by themselves
799 * after deleting a tag.
800 */
801 if (m->m_pkthdr.len <
802 (ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN)) {
803 m_copyback(m, m->m_pkthdr.len,
804 (ETHER_MIN_LEN +
805 ETHER_VLAN_ENCAP_LEN) -
806 m->m_pkthdr.len,
807 vlan_zero_pad_buff);
808 }
809 break;
810 }
811
812 #ifdef DIAGNOSTIC
813 default:
814 panic("vlan_start: impossible");
815 #endif
816 }
817 }
818
819 /*
820 * Send it, precisely as the parent's output routine
821 * would have. We are already running at splnet.
822 */
823 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
824 if (error) {
825 /* mbuf is already freed */
826 ifp->if_oerrors++;
827 continue;
828 }
829
830 ifp->if_opackets++;
831 if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
832 (*p->if_start)(p);
833 }
834
835 ifp->if_flags &= ~IFF_OACTIVE;
836 }
837
838 /*
839 * Given an Ethernet frame, find a valid vlan interface corresponding to the
840 * given source interface and tag, then run the real packet through the
841 * parent's input routine.
842 */
843 void
844 vlan_input(struct ifnet *ifp, struct mbuf *m)
845 {
846 struct ifvlan *ifv;
847 u_int tag;
848 struct m_tag *mtag;
849
850 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
851 if (mtag != NULL) {
852 /* m contains a normal ethernet frame, the tag is in mtag */
853 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
854 m_tag_delete(m, mtag);
855 } else {
856 switch (ifp->if_type) {
857 case IFT_ETHER:
858 {
859 struct ether_vlan_header *evl;
860
861 if (m->m_len < sizeof(struct ether_vlan_header) &&
862 (m = m_pullup(m,
863 sizeof(struct ether_vlan_header))) == NULL) {
864 printf("%s: no memory for VLAN header, "
865 "dropping packet.\n", ifp->if_xname);
866 return;
867 }
868 evl = mtod(m, struct ether_vlan_header *);
869 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
870
871 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
872
873 /*
874 * Restore the original ethertype. We'll remove
875 * the encapsulation after we've found the vlan
876 * interface corresponding to the tag.
877 */
878 evl->evl_encap_proto = evl->evl_proto;
879 break;
880 }
881
882 default:
883 tag = (u_int) -1; /* XXX GCC */
884 #ifdef DIAGNOSTIC
885 panic("vlan_input: impossible");
886 #endif
887 }
888 }
889
890 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
891 ifv = LIST_NEXT(ifv, ifv_list))
892 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
893 break;
894
895 if (ifv == NULL ||
896 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
897 (IFF_UP|IFF_RUNNING)) {
898 m_freem(m);
899 ifp->if_noproto++;
900 return;
901 }
902
903 /*
904 * Now, remove the encapsulation header. The original
905 * header has already been fixed up above.
906 */
907 if (mtag == NULL) {
908 memmove(mtod(m, caddr_t) + ifv->ifv_encaplen,
909 mtod(m, caddr_t), sizeof(struct ether_header));
910 m_adj(m, ifv->ifv_encaplen);
911 }
912
913 m->m_pkthdr.rcvif = &ifv->ifv_if;
914 ifv->ifv_if.if_ipackets++;
915
916 #if NBPFILTER > 0
917 if (ifv->ifv_if.if_bpf)
918 bpf_mtap(ifv->ifv_if.if_bpf, m);
919 #endif
920
921 /* Pass it back through the parent's input routine. */
922 (*ifp->if_input)(&ifv->ifv_if, m);
923 }
924