if_vlan.c revision 1.50 1 /* $NetBSD: if_vlan.c,v 1.50 2006/10/12 01:32:29 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright 1998 Massachusetts Institute of Technology
41 *
42 * Permission to use, copy, modify, and distribute this software and
43 * its documentation for any purpose and without fee is hereby
44 * granted, provided that both the above copyright notice and this
45 * permission notice appear in all copies, that both the above
46 * copyright notice and this permission notice appear in all
47 * supporting documentation, and that the name of M.I.T. not be used
48 * in advertising or publicity pertaining to distribution of the
49 * software without specific, written prior permission. M.I.T. makes
50 * no representations about the suitability of this software for any
51 * purpose. It is provided "as is" without express or implied
52 * warranty.
53 *
54 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
55 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
56 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
57 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
58 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
61 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
62 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
68 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
69 */
70
71 /*
72 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
73 * extended some day to also handle IEEE 802.1P priority tagging. This is
74 * sort of sneaky in the implementation, since we need to pretend to be
75 * enough of an Ethernet implementation to make ARP work. The way we do
76 * this is by telling everyone that we are an Ethernet interface, and then
77 * catch the packets that ether_output() left on our output queue when it
78 * calls if_start(), rewrite them for use by the real outgoing interface,
79 * and ask it to send them.
80 *
81 * TODO:
82 *
83 * - Need some way to notify vlan interfaces when the parent
84 * interface changes MTU.
85 */
86
87 #include <sys/cdefs.h>
88 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.50 2006/10/12 01:32:29 christos Exp $");
89
90 #include "opt_inet.h"
91 #include "bpfilter.h"
92
93 #include <sys/param.h>
94 #include <sys/kernel.h>
95 #include <sys/mbuf.h>
96 #include <sys/queue.h>
97 #include <sys/socket.h>
98 #include <sys/sockio.h>
99 #include <sys/systm.h>
100 #include <sys/proc.h>
101 #include <sys/kauth.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_types.h>
109 #include <net/if_ether.h>
110 #include <net/if_vlanvar.h>
111
112 #ifdef INET
113 #include <netinet/in.h>
114 #include <netinet/if_inarp.h>
115 #endif
116
117 struct vlan_mc_entry {
118 LIST_ENTRY(vlan_mc_entry) mc_entries;
119 /*
120 * A key to identify this entry. The mc_addr below can't be
121 * used since multiple sockaddr may mapped into the same
122 * ether_multi (e.g., AF_UNSPEC).
123 */
124 union {
125 struct ether_multi *mcu_enm;
126 } mc_u;
127 struct sockaddr_storage mc_addr;
128 };
129
130 #define mc_enm mc_u.mcu_enm
131
132 struct ifvlan {
133 union {
134 struct ethercom ifvu_ec;
135 } ifv_u;
136 struct ifnet *ifv_p; /* parent interface of this vlan */
137 struct ifv_linkmib {
138 const struct vlan_multisw *ifvm_msw;
139 int ifvm_encaplen; /* encapsulation length */
140 int ifvm_mtufudge; /* MTU fudged by this much */
141 int ifvm_mintu; /* min transmission unit */
142 u_int16_t ifvm_proto; /* encapsulation ethertype */
143 u_int16_t ifvm_tag; /* tag to apply on packets */
144 } ifv_mib;
145 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
146 LIST_ENTRY(ifvlan) ifv_list;
147 int ifv_flags;
148 };
149
150 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
151
152 #define ifv_ec ifv_u.ifvu_ec
153
154 #define ifv_if ifv_ec.ec_if
155
156 #define ifv_msw ifv_mib.ifvm_msw
157 #define ifv_encaplen ifv_mib.ifvm_encaplen
158 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
159 #define ifv_mintu ifv_mib.ifvm_mintu
160 #define ifv_tag ifv_mib.ifvm_tag
161
162 struct vlan_multisw {
163 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
164 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
165 void (*vmsw_purgemulti)(struct ifvlan *);
166 };
167
168 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
169 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
170 static void vlan_ether_purgemulti(struct ifvlan *);
171
172 const struct vlan_multisw vlan_ether_multisw = {
173 vlan_ether_addmulti,
174 vlan_ether_delmulti,
175 vlan_ether_purgemulti,
176 };
177
178 static int vlan_clone_create(struct if_clone *, int);
179 static int vlan_clone_destroy(struct ifnet *);
180 static int vlan_config(struct ifvlan *, struct ifnet *);
181 static int vlan_ioctl(struct ifnet *, u_long, caddr_t);
182 static void vlan_start(struct ifnet *);
183 static void vlan_unconfig(struct ifnet *);
184
185 void vlanattach(int);
186
187 /* XXX This should be a hash table with the tag as the basis of the key. */
188 static LIST_HEAD(, ifvlan) ifv_list;
189
190 struct if_clone vlan_cloner =
191 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
192
193 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
194 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
195
196 void
197 vlanattach(int n __unused)
198 {
199
200 LIST_INIT(&ifv_list);
201 if_clone_attach(&vlan_cloner);
202 }
203
204 static void
205 vlan_reset_linkname(struct ifnet *ifp)
206 {
207
208 /*
209 * We start out with a "802.1Q VLAN" type and zero-length
210 * addresses. When we attach to a parent interface, we
211 * inherit its type, address length, address, and data link
212 * type.
213 */
214
215 ifp->if_type = IFT_L2VLAN;
216 ifp->if_addrlen = 0;
217 ifp->if_dlt = DLT_NULL;
218 if_alloc_sadl(ifp);
219 }
220
221 static int
222 vlan_clone_create(struct if_clone *ifc, int unit)
223 {
224 struct ifvlan *ifv;
225 struct ifnet *ifp;
226 int s;
227
228 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK);
229 memset(ifv, 0, sizeof(struct ifvlan));
230 ifp = &ifv->ifv_if;
231 LIST_INIT(&ifv->ifv_mc_listhead);
232
233 s = splnet();
234 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
235 splx(s);
236
237 snprintf(ifp->if_xname, sizeof(ifp->if_xname), "%s%d", ifc->ifc_name,
238 unit);
239 ifp->if_softc = ifv;
240 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
241 ifp->if_start = vlan_start;
242 ifp->if_ioctl = vlan_ioctl;
243 IFQ_SET_READY(&ifp->if_snd);
244
245 if_attach(ifp);
246 vlan_reset_linkname(ifp);
247
248 return (0);
249 }
250
251 static int
252 vlan_clone_destroy(struct ifnet *ifp)
253 {
254 struct ifvlan *ifv = ifp->if_softc;
255 int s;
256
257 s = splnet();
258 LIST_REMOVE(ifv, ifv_list);
259 vlan_unconfig(ifp);
260 splx(s);
261
262 if_detach(ifp);
263 free(ifv, M_DEVBUF);
264
265 return (0);
266 }
267
268 /*
269 * Configure a VLAN interface. Must be called at splnet().
270 */
271 static int
272 vlan_config(struct ifvlan *ifv, struct ifnet *p)
273 {
274 struct ifnet *ifp = &ifv->ifv_if;
275 int error;
276
277 if (ifv->ifv_p != NULL)
278 return (EBUSY);
279
280 switch (p->if_type) {
281 case IFT_ETHER:
282 {
283 struct ethercom *ec = (void *) p;
284
285 ifv->ifv_msw = &vlan_ether_multisw;
286 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
287 ifv->ifv_mintu = ETHERMIN;
288
289 /*
290 * If the parent supports the VLAN_MTU capability,
291 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
292 * enable it.
293 */
294 if (ec->ec_nvlans++ == 0 &&
295 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
296 /*
297 * Enable Tx/Rx of VLAN-sized frames.
298 */
299 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
300 if (p->if_flags & IFF_UP) {
301 struct ifreq ifr;
302
303 ifr.ifr_flags = p->if_flags;
304 error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
305 (caddr_t) &ifr);
306 if (error) {
307 if (ec->ec_nvlans-- == 1)
308 ec->ec_capenable &=
309 ~ETHERCAP_VLAN_MTU;
310 return (error);
311 }
312 }
313 ifv->ifv_mtufudge = 0;
314 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
315 /*
316 * Fudge the MTU by the encapsulation size. This
317 * makes us incompatible with strictly compliant
318 * 802.1Q implementations, but allows us to use
319 * the feature with other NetBSD implementations,
320 * which might still be useful.
321 */
322 ifv->ifv_mtufudge = ifv->ifv_encaplen;
323 }
324
325 /*
326 * If the parent interface can do hardware-assisted
327 * VLAN encapsulation, then propagate its hardware-
328 * assisted checksumming flags.
329 */
330 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
331 ifp->if_capabilities = p->if_capabilities &
332 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
333 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
334 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
335 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
336 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
337
338 /*
339 * We inherit the parent's Ethernet address.
340 */
341 ether_ifattach(ifp, LLADDR(p->if_sadl));
342 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
343 break;
344 }
345
346 default:
347 return (EPROTONOSUPPORT);
348 }
349
350 ifv->ifv_p = p;
351 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
352 ifv->ifv_if.if_flags = p->if_flags &
353 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
354
355 /*
356 * Inherit the if_type from the parent. This allows us
357 * to participate in bridges of that type.
358 */
359 ifv->ifv_if.if_type = p->if_type;
360
361 return (0);
362 }
363
364 /*
365 * Unconfigure a VLAN interface. Must be called at splnet().
366 */
367 static void
368 vlan_unconfig(struct ifnet *ifp)
369 {
370 struct ifvlan *ifv = ifp->if_softc;
371
372 if (ifv->ifv_p == NULL)
373 return;
374
375 /*
376 * Since the interface is being unconfigured, we need to empty the
377 * list of multicast groups that we may have joined while we were
378 * alive and remove them from the parent's list also.
379 */
380 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
381
382 /* Disconnect from parent. */
383 switch (ifv->ifv_p->if_type) {
384 case IFT_ETHER:
385 {
386 struct ethercom *ec = (void *) ifv->ifv_p;
387
388 if (ec->ec_nvlans-- == 1) {
389 /*
390 * Disable Tx/Rx of VLAN-sized frames.
391 */
392 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
393 if (ifv->ifv_p->if_flags & IFF_UP) {
394 struct ifreq ifr;
395
396 ifr.ifr_flags = ifv->ifv_p->if_flags;
397 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
398 SIOCSIFFLAGS, (caddr_t) &ifr);
399 }
400 }
401
402 ether_ifdetach(ifp);
403 vlan_reset_linkname(ifp);
404 break;
405 }
406
407 #ifdef DIAGNOSTIC
408 default:
409 panic("vlan_unconfig: impossible");
410 #endif
411 }
412
413 ifv->ifv_p = NULL;
414 ifv->ifv_if.if_mtu = 0;
415 ifv->ifv_flags = 0;
416
417 if_down(ifp);
418 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
419 ifp->if_capabilities = 0;
420 }
421
422 /*
423 * Called when a parent interface is detaching; destroy any VLAN
424 * configuration for the parent interface.
425 */
426 void
427 vlan_ifdetach(struct ifnet *p)
428 {
429 struct ifvlan *ifv;
430 int s;
431
432 s = splnet();
433
434 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
435 ifv = LIST_NEXT(ifv, ifv_list)) {
436 if (ifv->ifv_p == p)
437 vlan_unconfig(&ifv->ifv_if);
438 }
439
440 splx(s);
441 }
442
443 static int
444 vlan_set_promisc(struct ifnet *ifp)
445 {
446 struct ifvlan *ifv = ifp->if_softc;
447 int error = 0;
448
449 if ((ifp->if_flags & IFF_PROMISC) != 0) {
450 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
451 error = ifpromisc(ifv->ifv_p, 1);
452 if (error == 0)
453 ifv->ifv_flags |= IFVF_PROMISC;
454 }
455 } else {
456 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
457 error = ifpromisc(ifv->ifv_p, 0);
458 if (error == 0)
459 ifv->ifv_flags &= ~IFVF_PROMISC;
460 }
461 }
462
463 return (error);
464 }
465
466 static int
467 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
468 {
469 struct lwp *l = curlwp; /* XXX */
470 struct ifvlan *ifv = ifp->if_softc;
471 struct ifaddr *ifa = (struct ifaddr *) data;
472 struct ifreq *ifr = (struct ifreq *) data;
473 struct ifnet *pr;
474 struct vlanreq vlr;
475 struct sockaddr *sa;
476 int s, error = 0;
477
478 s = splnet();
479
480 switch (cmd) {
481 case SIOCSIFADDR:
482 if (ifv->ifv_p != NULL) {
483 ifp->if_flags |= IFF_UP;
484
485 switch (ifa->ifa_addr->sa_family) {
486 #ifdef INET
487 case AF_INET:
488 arp_ifinit(ifp, ifa);
489 break;
490 #endif
491 default:
492 break;
493 }
494 } else {
495 error = EINVAL;
496 }
497 break;
498
499 case SIOCGIFADDR:
500 sa = (struct sockaddr *)&ifr->ifr_data;
501 memcpy(sa->sa_data, LLADDR(ifp->if_sadl), ifp->if_addrlen);
502 break;
503
504 case SIOCSIFMTU:
505 if (ifv->ifv_p != NULL) {
506 if (ifr->ifr_mtu >
507 (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
508 ifr->ifr_mtu <
509 (ifv->ifv_mintu - ifv->ifv_mtufudge))
510 error = EINVAL;
511 else
512 ifp->if_mtu = ifr->ifr_mtu;
513 } else
514 error = EINVAL;
515 break;
516
517 case SIOCSETVLAN:
518 if ((error = kauth_authorize_generic(l->l_cred,
519 KAUTH_GENERIC_ISSUSER, &l->l_acflag)) != 0)
520 break;
521 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
522 break;
523 if (vlr.vlr_parent[0] == '\0') {
524 vlan_unconfig(ifp);
525 break;
526 }
527 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
528 error = EINVAL; /* check for valid tag */
529 break;
530 }
531 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
532 error = ENOENT;
533 break;
534 }
535 if ((error = vlan_config(ifv, pr)) != 0)
536 break;
537 ifv->ifv_tag = vlr.vlr_tag;
538 ifp->if_flags |= IFF_RUNNING;
539
540 /* Update promiscuous mode, if necessary. */
541 vlan_set_promisc(ifp);
542 break;
543
544 case SIOCGETVLAN:
545 memset(&vlr, 0, sizeof(vlr));
546 if (ifv->ifv_p != NULL) {
547 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
548 ifv->ifv_p->if_xname);
549 vlr.vlr_tag = ifv->ifv_tag;
550 }
551 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
552 break;
553
554 case SIOCSIFFLAGS:
555 /*
556 * For promiscuous mode, we enable promiscuous mode on
557 * the parent if we need promiscuous on the VLAN interface.
558 */
559 if (ifv->ifv_p != NULL)
560 error = vlan_set_promisc(ifp);
561 break;
562
563 case SIOCADDMULTI:
564 error = (ifv->ifv_p != NULL) ?
565 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
566 break;
567
568 case SIOCDELMULTI:
569 error = (ifv->ifv_p != NULL) ?
570 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
571 break;
572
573 default:
574 error = EINVAL;
575 }
576
577 splx(s);
578
579 return (error);
580 }
581
582 static int
583 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
584 {
585 struct vlan_mc_entry *mc;
586 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
587 int error;
588
589 if (ifr->ifr_addr.sa_len > sizeof(struct sockaddr_storage))
590 return (EINVAL);
591
592 error = ether_addmulti(ifr, &ifv->ifv_ec);
593 if (error != ENETRESET)
594 return (error);
595
596 /*
597 * This is new multicast address. We have to tell parent
598 * about it. Also, remember this multicast address so that
599 * we can delete them on unconfigure.
600 */
601 MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry),
602 M_DEVBUF, M_NOWAIT);
603 if (mc == NULL) {
604 error = ENOMEM;
605 goto alloc_failed;
606 }
607
608 /*
609 * As ether_addmulti() returns ENETRESET, following two
610 * statement shouldn't fail.
611 */
612 (void)ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi);
613 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
614 memcpy(&mc->mc_addr, &ifr->ifr_addr, ifr->ifr_addr.sa_len);
615 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
616
617 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
618 (caddr_t)ifr);
619 if (error != 0)
620 goto ioctl_failed;
621 return (error);
622
623 ioctl_failed:
624 LIST_REMOVE(mc, mc_entries);
625 FREE(mc, M_DEVBUF);
626 alloc_failed:
627 (void)ether_delmulti(ifr, &ifv->ifv_ec);
628 return (error);
629 }
630
631 static int
632 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
633 {
634 struct ether_multi *enm;
635 struct vlan_mc_entry *mc;
636 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
637 int error;
638
639 /*
640 * Find a key to lookup vlan_mc_entry. We have to do this
641 * before calling ether_delmulti for obvious reason.
642 */
643 if ((error = ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi)) != 0)
644 return (error);
645 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
646
647 error = ether_delmulti(ifr, &ifv->ifv_ec);
648 if (error != ENETRESET)
649 return (error);
650
651 /* We no longer use this multicast address. Tell parent so. */
652 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
653 (caddr_t)ifr);
654 if (error == 0) {
655 /* And forget about this address. */
656 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
657 mc = LIST_NEXT(mc, mc_entries)) {
658 if (mc->mc_enm == enm) {
659 LIST_REMOVE(mc, mc_entries);
660 FREE(mc, M_DEVBUF);
661 break;
662 }
663 }
664 KASSERT(mc != NULL);
665 } else
666 (void)ether_addmulti(ifr, &ifv->ifv_ec);
667 return (error);
668 }
669
670 /*
671 * Delete any multicast address we have asked to add from parent
672 * interface. Called when the vlan is being unconfigured.
673 */
674 static void
675 vlan_ether_purgemulti(struct ifvlan *ifv)
676 {
677 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
678 struct vlan_mc_entry *mc;
679 union {
680 struct ifreq ifreq;
681 struct {
682 char ifr_name[IFNAMSIZ];
683 struct sockaddr_storage ifr_ss;
684 } ifreq_storage;
685 } ifreq;
686 struct ifreq *ifr = &ifreq.ifreq;
687
688 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
689 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
690 memcpy(&ifr->ifr_addr, &mc->mc_addr, mc->mc_addr.ss_len);
691 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)ifr);
692 LIST_REMOVE(mc, mc_entries);
693 FREE(mc, M_DEVBUF);
694 }
695 }
696
697 static void
698 vlan_start(struct ifnet *ifp)
699 {
700 struct ifvlan *ifv = ifp->if_softc;
701 struct ifnet *p = ifv->ifv_p;
702 struct ethercom *ec = (void *) ifv->ifv_p;
703 struct mbuf *m;
704 int error;
705 ALTQ_DECL(struct altq_pktattr pktattr;)
706
707 ifp->if_flags |= IFF_OACTIVE;
708
709 for (;;) {
710 IFQ_DEQUEUE(&ifp->if_snd, m);
711 if (m == NULL)
712 break;
713
714 #ifdef ALTQ
715 /*
716 * If ALTQ is enabled on the parent interface, do
717 * classification; the queueing discipline might
718 * not require classification, but might require
719 * the address family/header pointer in the pktattr.
720 */
721 if (ALTQ_IS_ENABLED(&p->if_snd)) {
722 switch (p->if_type) {
723 case IFT_ETHER:
724 altq_etherclassify(&p->if_snd, m, &pktattr);
725 break;
726 #ifdef DIAGNOSTIC
727 default:
728 panic("vlan_start: impossible (altq)");
729 #endif
730 }
731 }
732 #endif /* ALTQ */
733
734 #if NBPFILTER > 0
735 if (ifp->if_bpf)
736 bpf_mtap(ifp->if_bpf, m);
737 #endif
738 /*
739 * If the parent can insert the tag itself, just mark
740 * the tag in the mbuf header.
741 */
742 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
743 struct m_tag *mtag;
744
745 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
746 M_NOWAIT);
747 if (mtag == NULL) {
748 ifp->if_oerrors++;
749 m_freem(m);
750 continue;
751 }
752 *(u_int *)(mtag + 1) = ifv->ifv_tag;
753 m_tag_prepend(m, mtag);
754 } else {
755 /*
756 * insert the tag ourselves
757 */
758 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
759 if (m == NULL) {
760 printf("%s: unable to prepend encap header",
761 ifv->ifv_p->if_xname);
762 ifp->if_oerrors++;
763 continue;
764 }
765
766 switch (p->if_type) {
767 case IFT_ETHER:
768 {
769 struct ether_vlan_header *evl;
770
771 if (m->m_len < sizeof(struct ether_vlan_header))
772 m = m_pullup(m,
773 sizeof(struct ether_vlan_header));
774 if (m == NULL) {
775 printf("%s: unable to pullup encap "
776 "header", ifv->ifv_p->if_xname);
777 ifp->if_oerrors++;
778 continue;
779 }
780
781 /*
782 * Transform the Ethernet header into an
783 * Ethernet header with 802.1Q encapsulation.
784 */
785 memmove(mtod(m, caddr_t),
786 mtod(m, caddr_t) + ifv->ifv_encaplen,
787 sizeof(struct ether_header));
788 evl = mtod(m, struct ether_vlan_header *);
789 evl->evl_proto = evl->evl_encap_proto;
790 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
791 evl->evl_tag = htons(ifv->ifv_tag);
792
793 /*
794 * To cater for VLAN-aware layer 2 ethernet
795 * switches which may need to strip the tag
796 * before forwarding the packet, make sure
797 * the packet+tag is at least 68 bytes long.
798 * This is necessary because our parent will
799 * only pad to 64 bytes (ETHER_MIN_LEN) and
800 * some switches will not pad by themselves
801 * after deleting a tag.
802 */
803 if (m->m_pkthdr.len <
804 (ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN)) {
805 m_copyback(m, m->m_pkthdr.len,
806 (ETHER_MIN_LEN +
807 ETHER_VLAN_ENCAP_LEN) -
808 m->m_pkthdr.len,
809 vlan_zero_pad_buff);
810 }
811 break;
812 }
813
814 #ifdef DIAGNOSTIC
815 default:
816 panic("vlan_start: impossible");
817 #endif
818 }
819 }
820
821 /*
822 * Send it, precisely as the parent's output routine
823 * would have. We are already running at splnet.
824 */
825 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
826 if (error) {
827 /* mbuf is already freed */
828 ifp->if_oerrors++;
829 continue;
830 }
831
832 ifp->if_opackets++;
833 if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
834 (*p->if_start)(p);
835 }
836
837 ifp->if_flags &= ~IFF_OACTIVE;
838 }
839
840 /*
841 * Given an Ethernet frame, find a valid vlan interface corresponding to the
842 * given source interface and tag, then run the real packet through the
843 * parent's input routine.
844 */
845 void
846 vlan_input(struct ifnet *ifp, struct mbuf *m)
847 {
848 struct ifvlan *ifv;
849 u_int tag;
850 struct m_tag *mtag;
851
852 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
853 if (mtag != NULL) {
854 /* m contains a normal ethernet frame, the tag is in mtag */
855 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
856 m_tag_delete(m, mtag);
857 } else {
858 switch (ifp->if_type) {
859 case IFT_ETHER:
860 {
861 struct ether_vlan_header *evl;
862
863 if (m->m_len < sizeof(struct ether_vlan_header) &&
864 (m = m_pullup(m,
865 sizeof(struct ether_vlan_header))) == NULL) {
866 printf("%s: no memory for VLAN header, "
867 "dropping packet.\n", ifp->if_xname);
868 return;
869 }
870 evl = mtod(m, struct ether_vlan_header *);
871 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
872
873 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
874
875 /*
876 * Restore the original ethertype. We'll remove
877 * the encapsulation after we've found the vlan
878 * interface corresponding to the tag.
879 */
880 evl->evl_encap_proto = evl->evl_proto;
881 break;
882 }
883
884 default:
885 tag = (u_int) -1; /* XXX GCC */
886 #ifdef DIAGNOSTIC
887 panic("vlan_input: impossible");
888 #endif
889 }
890 }
891
892 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
893 ifv = LIST_NEXT(ifv, ifv_list))
894 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
895 break;
896
897 if (ifv == NULL ||
898 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
899 (IFF_UP|IFF_RUNNING)) {
900 m_freem(m);
901 ifp->if_noproto++;
902 return;
903 }
904
905 /*
906 * Now, remove the encapsulation header. The original
907 * header has already been fixed up above.
908 */
909 if (mtag == NULL) {
910 memmove(mtod(m, caddr_t) + ifv->ifv_encaplen,
911 mtod(m, caddr_t), sizeof(struct ether_header));
912 m_adj(m, ifv->ifv_encaplen);
913 }
914
915 m->m_pkthdr.rcvif = &ifv->ifv_if;
916 ifv->ifv_if.if_ipackets++;
917
918 #if NBPFILTER > 0
919 if (ifv->ifv_if.if_bpf)
920 bpf_mtap(ifv->ifv_if.if_bpf, m);
921 #endif
922
923 /* Pass it back through the parent's input routine. */
924 (*ifp->if_input)(&ifv->ifv_if, m);
925 }
926