if_vlan.c revision 1.53.2.1 1 /* $NetBSD: if_vlan.c,v 1.53.2.1 2007/10/09 13:44:43 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright 1998 Massachusetts Institute of Technology
41 *
42 * Permission to use, copy, modify, and distribute this software and
43 * its documentation for any purpose and without fee is hereby
44 * granted, provided that both the above copyright notice and this
45 * permission notice appear in all copies, that both the above
46 * copyright notice and this permission notice appear in all
47 * supporting documentation, and that the name of M.I.T. not be used
48 * in advertising or publicity pertaining to distribution of the
49 * software without specific, written prior permission. M.I.T. makes
50 * no representations about the suitability of this software for any
51 * purpose. It is provided "as is" without express or implied
52 * warranty.
53 *
54 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
55 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
56 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
57 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
58 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
61 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
62 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
68 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
69 */
70
71 /*
72 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
73 * extended some day to also handle IEEE 802.1P priority tagging. This is
74 * sort of sneaky in the implementation, since we need to pretend to be
75 * enough of an Ethernet implementation to make ARP work. The way we do
76 * this is by telling everyone that we are an Ethernet interface, and then
77 * catch the packets that ether_output() left on our output queue when it
78 * calls if_start(), rewrite them for use by the real outgoing interface,
79 * and ask it to send them.
80 *
81 * TODO:
82 *
83 * - Need some way to notify vlan interfaces when the parent
84 * interface changes MTU.
85 */
86
87 #include <sys/cdefs.h>
88 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.53.2.1 2007/10/09 13:44:43 ad Exp $");
89
90 #include "opt_inet.h"
91 #include "bpfilter.h"
92
93 #include <sys/param.h>
94 #include <sys/kernel.h>
95 #include <sys/mbuf.h>
96 #include <sys/queue.h>
97 #include <sys/socket.h>
98 #include <sys/sockio.h>
99 #include <sys/systm.h>
100 #include <sys/proc.h>
101 #include <sys/kauth.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_types.h>
109 #include <net/if_ether.h>
110 #include <net/if_vlanvar.h>
111
112 #ifdef INET
113 #include <netinet/in.h>
114 #include <netinet/if_inarp.h>
115 #endif
116
117 struct vlan_mc_entry {
118 LIST_ENTRY(vlan_mc_entry) mc_entries;
119 /*
120 * A key to identify this entry. The mc_addr below can't be
121 * used since multiple sockaddr may mapped into the same
122 * ether_multi (e.g., AF_UNSPEC).
123 */
124 union {
125 struct ether_multi *mcu_enm;
126 } mc_u;
127 struct sockaddr_storage mc_addr;
128 };
129
130 #define mc_enm mc_u.mcu_enm
131
132 struct ifvlan {
133 union {
134 struct ethercom ifvu_ec;
135 } ifv_u;
136 struct ifnet *ifv_p; /* parent interface of this vlan */
137 struct ifv_linkmib {
138 const struct vlan_multisw *ifvm_msw;
139 int ifvm_encaplen; /* encapsulation length */
140 int ifvm_mtufudge; /* MTU fudged by this much */
141 int ifvm_mintu; /* min transmission unit */
142 u_int16_t ifvm_proto; /* encapsulation ethertype */
143 u_int16_t ifvm_tag; /* tag to apply on packets */
144 } ifv_mib;
145 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
146 LIST_ENTRY(ifvlan) ifv_list;
147 int ifv_flags;
148 };
149
150 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
151
152 #define ifv_ec ifv_u.ifvu_ec
153
154 #define ifv_if ifv_ec.ec_if
155
156 #define ifv_msw ifv_mib.ifvm_msw
157 #define ifv_encaplen ifv_mib.ifvm_encaplen
158 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
159 #define ifv_mintu ifv_mib.ifvm_mintu
160 #define ifv_tag ifv_mib.ifvm_tag
161
162 struct vlan_multisw {
163 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
164 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
165 void (*vmsw_purgemulti)(struct ifvlan *);
166 };
167
168 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
169 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
170 static void vlan_ether_purgemulti(struct ifvlan *);
171
172 const struct vlan_multisw vlan_ether_multisw = {
173 vlan_ether_addmulti,
174 vlan_ether_delmulti,
175 vlan_ether_purgemulti,
176 };
177
178 static int vlan_clone_create(struct if_clone *, int);
179 static int vlan_clone_destroy(struct ifnet *);
180 static int vlan_config(struct ifvlan *, struct ifnet *);
181 static int vlan_ioctl(struct ifnet *, u_long, void *);
182 static void vlan_start(struct ifnet *);
183 static void vlan_unconfig(struct ifnet *);
184
185 void vlanattach(int);
186
187 /* XXX This should be a hash table with the tag as the basis of the key. */
188 static LIST_HEAD(, ifvlan) ifv_list;
189
190 struct if_clone vlan_cloner =
191 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
192
193 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
194 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
195
196 void
197 vlanattach(int n)
198 {
199
200 LIST_INIT(&ifv_list);
201 if_clone_attach(&vlan_cloner);
202 }
203
204 static void
205 vlan_reset_linkname(struct ifnet *ifp)
206 {
207
208 /*
209 * We start out with a "802.1Q VLAN" type and zero-length
210 * addresses. When we attach to a parent interface, we
211 * inherit its type, address length, address, and data link
212 * type.
213 */
214
215 ifp->if_type = IFT_L2VLAN;
216 ifp->if_addrlen = 0;
217 ifp->if_dlt = DLT_NULL;
218 if_alloc_sadl(ifp);
219 }
220
221 static int
222 vlan_clone_create(struct if_clone *ifc, int unit)
223 {
224 struct ifvlan *ifv;
225 struct ifnet *ifp;
226 int s;
227
228 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK);
229 memset(ifv, 0, sizeof(struct ifvlan));
230 ifp = &ifv->ifv_if;
231 LIST_INIT(&ifv->ifv_mc_listhead);
232
233 s = splnet();
234 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
235 splx(s);
236
237 snprintf(ifp->if_xname, sizeof(ifp->if_xname), "%s%d", ifc->ifc_name,
238 unit);
239 ifp->if_softc = ifv;
240 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
241 ifp->if_start = vlan_start;
242 ifp->if_ioctl = vlan_ioctl;
243 IFQ_SET_READY(&ifp->if_snd);
244
245 if_attach(ifp);
246 vlan_reset_linkname(ifp);
247
248 return (0);
249 }
250
251 static int
252 vlan_clone_destroy(struct ifnet *ifp)
253 {
254 struct ifvlan *ifv = ifp->if_softc;
255 int s;
256
257 s = splnet();
258 LIST_REMOVE(ifv, ifv_list);
259 vlan_unconfig(ifp);
260 splx(s);
261
262 if_detach(ifp);
263 free(ifv, M_DEVBUF);
264
265 return (0);
266 }
267
268 /*
269 * Configure a VLAN interface. Must be called at splnet().
270 */
271 static int
272 vlan_config(struct ifvlan *ifv, struct ifnet *p)
273 {
274 struct ifnet *ifp = &ifv->ifv_if;
275 int error;
276
277 if (ifv->ifv_p != NULL)
278 return (EBUSY);
279
280 switch (p->if_type) {
281 case IFT_ETHER:
282 {
283 struct ethercom *ec = (void *) p;
284
285 ifv->ifv_msw = &vlan_ether_multisw;
286 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
287 ifv->ifv_mintu = ETHERMIN;
288
289 /*
290 * If the parent supports the VLAN_MTU capability,
291 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
292 * enable it.
293 */
294 if (ec->ec_nvlans++ == 0 &&
295 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
296 /*
297 * Enable Tx/Rx of VLAN-sized frames.
298 */
299 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
300 if (p->if_flags & IFF_UP) {
301 struct ifreq ifr;
302
303 ifr.ifr_flags = p->if_flags;
304 error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
305 (void *) &ifr);
306 if (error) {
307 if (ec->ec_nvlans-- == 1)
308 ec->ec_capenable &=
309 ~ETHERCAP_VLAN_MTU;
310 return (error);
311 }
312 }
313 ifv->ifv_mtufudge = 0;
314 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
315 /*
316 * Fudge the MTU by the encapsulation size. This
317 * makes us incompatible with strictly compliant
318 * 802.1Q implementations, but allows us to use
319 * the feature with other NetBSD implementations,
320 * which might still be useful.
321 */
322 ifv->ifv_mtufudge = ifv->ifv_encaplen;
323 }
324
325 /*
326 * If the parent interface can do hardware-assisted
327 * VLAN encapsulation, then propagate its hardware-
328 * assisted checksumming flags.
329 */
330 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
331 ifp->if_capabilities = p->if_capabilities &
332 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
333 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
334 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
335 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
336 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
337
338 /*
339 * We inherit the parent's Ethernet address.
340 */
341 ether_ifattach(ifp, CLLADDR(p->if_sadl));
342 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
343 break;
344 }
345
346 default:
347 return (EPROTONOSUPPORT);
348 }
349
350 ifv->ifv_p = p;
351 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
352 ifv->ifv_if.if_flags = p->if_flags &
353 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
354
355 /*
356 * Inherit the if_type from the parent. This allows us
357 * to participate in bridges of that type.
358 */
359 ifv->ifv_if.if_type = p->if_type;
360
361 return (0);
362 }
363
364 /*
365 * Unconfigure a VLAN interface. Must be called at splnet().
366 */
367 static void
368 vlan_unconfig(struct ifnet *ifp)
369 {
370 struct ifvlan *ifv = ifp->if_softc;
371
372 if (ifv->ifv_p == NULL)
373 return;
374
375 /*
376 * Since the interface is being unconfigured, we need to empty the
377 * list of multicast groups that we may have joined while we were
378 * alive and remove them from the parent's list also.
379 */
380 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
381
382 /* Disconnect from parent. */
383 switch (ifv->ifv_p->if_type) {
384 case IFT_ETHER:
385 {
386 struct ethercom *ec = (void *) ifv->ifv_p;
387
388 if (ec->ec_nvlans-- == 1) {
389 /*
390 * Disable Tx/Rx of VLAN-sized frames.
391 */
392 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
393 if (ifv->ifv_p->if_flags & IFF_UP) {
394 struct ifreq ifr;
395
396 ifr.ifr_flags = ifv->ifv_p->if_flags;
397 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
398 SIOCSIFFLAGS, (void *) &ifr);
399 }
400 }
401
402 ether_ifdetach(ifp);
403 vlan_reset_linkname(ifp);
404 break;
405 }
406
407 #ifdef DIAGNOSTIC
408 default:
409 panic("vlan_unconfig: impossible");
410 #endif
411 }
412
413 ifv->ifv_p = NULL;
414 ifv->ifv_if.if_mtu = 0;
415 ifv->ifv_flags = 0;
416
417 if_down(ifp);
418 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
419 ifp->if_capabilities = 0;
420 }
421
422 /*
423 * Called when a parent interface is detaching; destroy any VLAN
424 * configuration for the parent interface.
425 */
426 void
427 vlan_ifdetach(struct ifnet *p)
428 {
429 struct ifvlan *ifv;
430 int s;
431
432 s = splnet();
433
434 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
435 ifv = LIST_NEXT(ifv, ifv_list)) {
436 if (ifv->ifv_p == p)
437 vlan_unconfig(&ifv->ifv_if);
438 }
439
440 splx(s);
441 }
442
443 static int
444 vlan_set_promisc(struct ifnet *ifp)
445 {
446 struct ifvlan *ifv = ifp->if_softc;
447 int error = 0;
448
449 if ((ifp->if_flags & IFF_PROMISC) != 0) {
450 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
451 error = ifpromisc(ifv->ifv_p, 1);
452 if (error == 0)
453 ifv->ifv_flags |= IFVF_PROMISC;
454 }
455 } else {
456 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
457 error = ifpromisc(ifv->ifv_p, 0);
458 if (error == 0)
459 ifv->ifv_flags &= ~IFVF_PROMISC;
460 }
461 }
462
463 return (error);
464 }
465
466 static int
467 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
468 {
469 struct lwp *l = curlwp; /* XXX */
470 struct ifvlan *ifv = ifp->if_softc;
471 struct ifaddr *ifa = (struct ifaddr *) data;
472 struct ifreq *ifr = (struct ifreq *) data;
473 struct ifnet *pr;
474 struct vlanreq vlr;
475 struct sockaddr *sa;
476 int s, error = 0;
477
478 s = splnet();
479
480 switch (cmd) {
481 case SIOCSIFADDR:
482 if (ifv->ifv_p != NULL) {
483 ifp->if_flags |= IFF_UP;
484
485 switch (ifa->ifa_addr->sa_family) {
486 #ifdef INET
487 case AF_INET:
488 arp_ifinit(ifp, ifa);
489 break;
490 #endif
491 default:
492 break;
493 }
494 } else {
495 error = EINVAL;
496 }
497 break;
498
499 case SIOCGIFADDR:
500 sa = (struct sockaddr *)&ifr->ifr_data;
501 memcpy(sa->sa_data, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
502 break;
503
504 case SIOCSIFMTU:
505 if (ifv->ifv_p != NULL) {
506 if (ifr->ifr_mtu >
507 (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
508 ifr->ifr_mtu <
509 (ifv->ifv_mintu - ifv->ifv_mtufudge))
510 error = EINVAL;
511 else
512 ifp->if_mtu = ifr->ifr_mtu;
513 } else
514 error = EINVAL;
515 break;
516
517 case SIOCSETVLAN:
518 if ((error = kauth_authorize_network(l->l_cred,
519 KAUTH_NETWORK_INTERFACE,
520 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
521 NULL)) != 0)
522 break;
523 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
524 break;
525 if (vlr.vlr_parent[0] == '\0') {
526 vlan_unconfig(ifp);
527 break;
528 }
529 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
530 error = EINVAL; /* check for valid tag */
531 break;
532 }
533 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
534 error = ENOENT;
535 break;
536 }
537 if ((error = vlan_config(ifv, pr)) != 0)
538 break;
539 ifv->ifv_tag = vlr.vlr_tag;
540 ifp->if_flags |= IFF_RUNNING;
541
542 /* Update promiscuous mode, if necessary. */
543 vlan_set_promisc(ifp);
544 break;
545
546 case SIOCGETVLAN:
547 memset(&vlr, 0, sizeof(vlr));
548 if (ifv->ifv_p != NULL) {
549 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
550 ifv->ifv_p->if_xname);
551 vlr.vlr_tag = ifv->ifv_tag;
552 }
553 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
554 break;
555
556 case SIOCSIFFLAGS:
557 /*
558 * For promiscuous mode, we enable promiscuous mode on
559 * the parent if we need promiscuous on the VLAN interface.
560 */
561 if (ifv->ifv_p != NULL)
562 error = vlan_set_promisc(ifp);
563 break;
564
565 case SIOCADDMULTI:
566 error = (ifv->ifv_p != NULL) ?
567 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
568 break;
569
570 case SIOCDELMULTI:
571 error = (ifv->ifv_p != NULL) ?
572 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
573 break;
574
575 default:
576 error = EINVAL;
577 }
578
579 splx(s);
580
581 return (error);
582 }
583
584 static int
585 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
586 {
587 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
588 struct vlan_mc_entry *mc;
589 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
590 int error;
591
592 if (sa->sa_len > sizeof(struct sockaddr_storage))
593 return (EINVAL);
594
595 error = ether_addmulti(sa, &ifv->ifv_ec);
596 if (error != ENETRESET)
597 return (error);
598
599 /*
600 * This is new multicast address. We have to tell parent
601 * about it. Also, remember this multicast address so that
602 * we can delete them on unconfigure.
603 */
604 MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry),
605 M_DEVBUF, M_NOWAIT);
606 if (mc == NULL) {
607 error = ENOMEM;
608 goto alloc_failed;
609 }
610
611 /*
612 * As ether_addmulti() returns ENETRESET, following two
613 * statement shouldn't fail.
614 */
615 (void)ether_multiaddr(sa, addrlo, addrhi);
616 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
617 memcpy(&mc->mc_addr, sa, sa->sa_len);
618 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
619
620 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
621 (void *)ifr);
622 if (error != 0)
623 goto ioctl_failed;
624 return (error);
625
626 ioctl_failed:
627 LIST_REMOVE(mc, mc_entries);
628 FREE(mc, M_DEVBUF);
629 alloc_failed:
630 (void)ether_delmulti(sa, &ifv->ifv_ec);
631 return (error);
632 }
633
634 static int
635 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
636 {
637 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
638 struct ether_multi *enm;
639 struct vlan_mc_entry *mc;
640 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
641 int error;
642
643 /*
644 * Find a key to lookup vlan_mc_entry. We have to do this
645 * before calling ether_delmulti for obvious reason.
646 */
647 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
648 return (error);
649 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
650
651 error = ether_delmulti(sa, &ifv->ifv_ec);
652 if (error != ENETRESET)
653 return (error);
654
655 /* We no longer use this multicast address. Tell parent so. */
656 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
657 (void *)ifr);
658 if (error == 0) {
659 /* And forget about this address. */
660 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
661 mc = LIST_NEXT(mc, mc_entries)) {
662 if (mc->mc_enm == enm) {
663 LIST_REMOVE(mc, mc_entries);
664 FREE(mc, M_DEVBUF);
665 break;
666 }
667 }
668 KASSERT(mc != NULL);
669 } else
670 (void)ether_addmulti(sa, &ifv->ifv_ec);
671 return (error);
672 }
673
674 /*
675 * Delete any multicast address we have asked to add from parent
676 * interface. Called when the vlan is being unconfigured.
677 */
678 static void
679 vlan_ether_purgemulti(struct ifvlan *ifv)
680 {
681 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
682 struct vlan_mc_entry *mc;
683 union {
684 struct ifreq ifreq;
685 struct {
686 char ifr_name[IFNAMSIZ];
687 struct sockaddr_storage ifr_ss;
688 } ifreq_storage;
689 } ifreq;
690 struct ifreq *ifr = &ifreq.ifreq;
691
692 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
693 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
694 ifreq_setaddr(SIOCDELMULTI, ifr,
695 (const struct sockaddr *)&mc->mc_addr);
696 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (void *)ifr);
697 LIST_REMOVE(mc, mc_entries);
698 FREE(mc, M_DEVBUF);
699 }
700 }
701
702 static void
703 vlan_start(struct ifnet *ifp)
704 {
705 struct ifvlan *ifv = ifp->if_softc;
706 struct ifnet *p = ifv->ifv_p;
707 struct ethercom *ec = (void *) ifv->ifv_p;
708 struct mbuf *m;
709 int error;
710 ALTQ_DECL(struct altq_pktattr pktattr;)
711
712 ifp->if_flags |= IFF_OACTIVE;
713
714 for (;;) {
715 IFQ_DEQUEUE(&ifp->if_snd, m);
716 if (m == NULL)
717 break;
718
719 #ifdef ALTQ
720 /*
721 * If ALTQ is enabled on the parent interface, do
722 * classification; the queueing discipline might
723 * not require classification, but might require
724 * the address family/header pointer in the pktattr.
725 */
726 if (ALTQ_IS_ENABLED(&p->if_snd)) {
727 switch (p->if_type) {
728 case IFT_ETHER:
729 altq_etherclassify(&p->if_snd, m, &pktattr);
730 break;
731 #ifdef DIAGNOSTIC
732 default:
733 panic("vlan_start: impossible (altq)");
734 #endif
735 }
736 }
737 #endif /* ALTQ */
738
739 #if NBPFILTER > 0
740 if (ifp->if_bpf)
741 bpf_mtap(ifp->if_bpf, m);
742 #endif
743 /*
744 * If the parent can insert the tag itself, just mark
745 * the tag in the mbuf header.
746 */
747 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
748 struct m_tag *mtag;
749
750 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
751 M_NOWAIT);
752 if (mtag == NULL) {
753 ifp->if_oerrors++;
754 m_freem(m);
755 continue;
756 }
757 *(u_int *)(mtag + 1) = ifv->ifv_tag;
758 m_tag_prepend(m, mtag);
759 } else {
760 /*
761 * insert the tag ourselves
762 */
763 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
764 if (m == NULL) {
765 printf("%s: unable to prepend encap header",
766 ifv->ifv_p->if_xname);
767 ifp->if_oerrors++;
768 continue;
769 }
770
771 switch (p->if_type) {
772 case IFT_ETHER:
773 {
774 struct ether_vlan_header *evl;
775
776 if (m->m_len < sizeof(struct ether_vlan_header))
777 m = m_pullup(m,
778 sizeof(struct ether_vlan_header));
779 if (m == NULL) {
780 printf("%s: unable to pullup encap "
781 "header", ifv->ifv_p->if_xname);
782 ifp->if_oerrors++;
783 continue;
784 }
785
786 /*
787 * Transform the Ethernet header into an
788 * Ethernet header with 802.1Q encapsulation.
789 */
790 memmove(mtod(m, void *),
791 mtod(m, char *) + ifv->ifv_encaplen,
792 sizeof(struct ether_header));
793 evl = mtod(m, struct ether_vlan_header *);
794 evl->evl_proto = evl->evl_encap_proto;
795 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
796 evl->evl_tag = htons(ifv->ifv_tag);
797
798 /*
799 * To cater for VLAN-aware layer 2 ethernet
800 * switches which may need to strip the tag
801 * before forwarding the packet, make sure
802 * the packet+tag is at least 68 bytes long.
803 * This is necessary because our parent will
804 * only pad to 64 bytes (ETHER_MIN_LEN) and
805 * some switches will not pad by themselves
806 * after deleting a tag.
807 */
808 if (m->m_pkthdr.len <
809 (ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN)) {
810 m_copyback(m, m->m_pkthdr.len,
811 (ETHER_MIN_LEN +
812 ETHER_VLAN_ENCAP_LEN) -
813 m->m_pkthdr.len,
814 vlan_zero_pad_buff);
815 }
816 break;
817 }
818
819 #ifdef DIAGNOSTIC
820 default:
821 panic("vlan_start: impossible");
822 #endif
823 }
824 }
825
826 /*
827 * Send it, precisely as the parent's output routine
828 * would have. We are already running at splnet.
829 */
830 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
831 if (error) {
832 /* mbuf is already freed */
833 ifp->if_oerrors++;
834 continue;
835 }
836
837 ifp->if_opackets++;
838 if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
839 (*p->if_start)(p);
840 }
841
842 ifp->if_flags &= ~IFF_OACTIVE;
843 }
844
845 /*
846 * Given an Ethernet frame, find a valid vlan interface corresponding to the
847 * given source interface and tag, then run the real packet through the
848 * parent's input routine.
849 */
850 void
851 vlan_input(struct ifnet *ifp, struct mbuf *m)
852 {
853 struct ifvlan *ifv;
854 u_int tag;
855 struct m_tag *mtag;
856
857 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
858 if (mtag != NULL) {
859 /* m contains a normal ethernet frame, the tag is in mtag */
860 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
861 m_tag_delete(m, mtag);
862 } else {
863 switch (ifp->if_type) {
864 case IFT_ETHER:
865 {
866 struct ether_vlan_header *evl;
867
868 if (m->m_len < sizeof(struct ether_vlan_header) &&
869 (m = m_pullup(m,
870 sizeof(struct ether_vlan_header))) == NULL) {
871 printf("%s: no memory for VLAN header, "
872 "dropping packet.\n", ifp->if_xname);
873 return;
874 }
875 evl = mtod(m, struct ether_vlan_header *);
876 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
877
878 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
879
880 /*
881 * Restore the original ethertype. We'll remove
882 * the encapsulation after we've found the vlan
883 * interface corresponding to the tag.
884 */
885 evl->evl_encap_proto = evl->evl_proto;
886 break;
887 }
888
889 default:
890 tag = (u_int) -1; /* XXX GCC */
891 #ifdef DIAGNOSTIC
892 panic("vlan_input: impossible");
893 #endif
894 }
895 }
896
897 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
898 ifv = LIST_NEXT(ifv, ifv_list))
899 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
900 break;
901
902 if (ifv == NULL ||
903 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
904 (IFF_UP|IFF_RUNNING)) {
905 m_freem(m);
906 ifp->if_noproto++;
907 return;
908 }
909
910 /*
911 * Now, remove the encapsulation header. The original
912 * header has already been fixed up above.
913 */
914 if (mtag == NULL) {
915 memmove(mtod(m, char *) + ifv->ifv_encaplen,
916 mtod(m, void *), sizeof(struct ether_header));
917 m_adj(m, ifv->ifv_encaplen);
918 }
919
920 m->m_pkthdr.rcvif = &ifv->ifv_if;
921 ifv->ifv_if.if_ipackets++;
922
923 #if NBPFILTER > 0
924 if (ifv->ifv_if.if_bpf)
925 bpf_mtap(ifv->ifv_if.if_bpf, m);
926 #endif
927
928 /* Pass it back through the parent's input routine. */
929 (*ifp->if_input)(&ifv->ifv_if, m);
930 }
931