if_vlan.c revision 1.57 1 /* $NetBSD: if_vlan.c,v 1.57 2008/02/20 17:05:53 matt Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright 1998 Massachusetts Institute of Technology
41 *
42 * Permission to use, copy, modify, and distribute this software and
43 * its documentation for any purpose and without fee is hereby
44 * granted, provided that both the above copyright notice and this
45 * permission notice appear in all copies, that both the above
46 * copyright notice and this permission notice appear in all
47 * supporting documentation, and that the name of M.I.T. not be used
48 * in advertising or publicity pertaining to distribution of the
49 * software without specific, written prior permission. M.I.T. makes
50 * no representations about the suitability of this software for any
51 * purpose. It is provided "as is" without express or implied
52 * warranty.
53 *
54 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
55 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
56 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
57 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
58 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
61 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
62 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
68 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
69 */
70
71 /*
72 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
73 * extended some day to also handle IEEE 802.1P priority tagging. This is
74 * sort of sneaky in the implementation, since we need to pretend to be
75 * enough of an Ethernet implementation to make ARP work. The way we do
76 * this is by telling everyone that we are an Ethernet interface, and then
77 * catch the packets that ether_output() left on our output queue when it
78 * calls if_start(), rewrite them for use by the real outgoing interface,
79 * and ask it to send them.
80 *
81 * TODO:
82 *
83 * - Need some way to notify vlan interfaces when the parent
84 * interface changes MTU.
85 */
86
87 #include <sys/cdefs.h>
88 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.57 2008/02/20 17:05:53 matt Exp $");
89
90 #include "opt_inet.h"
91 #include "bpfilter.h"
92
93 #include <sys/param.h>
94 #include <sys/kernel.h>
95 #include <sys/mbuf.h>
96 #include <sys/queue.h>
97 #include <sys/socket.h>
98 #include <sys/sockio.h>
99 #include <sys/systm.h>
100 #include <sys/proc.h>
101 #include <sys/kauth.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_types.h>
109 #include <net/if_ether.h>
110 #include <net/if_vlanvar.h>
111
112 #ifdef INET
113 #include <netinet/in.h>
114 #include <netinet/if_inarp.h>
115 #endif
116
117 struct vlan_mc_entry {
118 LIST_ENTRY(vlan_mc_entry) mc_entries;
119 /*
120 * A key to identify this entry. The mc_addr below can't be
121 * used since multiple sockaddr may mapped into the same
122 * ether_multi (e.g., AF_UNSPEC).
123 */
124 union {
125 struct ether_multi *mcu_enm;
126 } mc_u;
127 struct sockaddr_storage mc_addr;
128 };
129
130 #define mc_enm mc_u.mcu_enm
131
132 struct ifvlan {
133 union {
134 struct ethercom ifvu_ec;
135 } ifv_u;
136 struct ifnet *ifv_p; /* parent interface of this vlan */
137 struct ifv_linkmib {
138 const struct vlan_multisw *ifvm_msw;
139 int ifvm_encaplen; /* encapsulation length */
140 int ifvm_mtufudge; /* MTU fudged by this much */
141 int ifvm_mintu; /* min transmission unit */
142 uint16_t ifvm_proto; /* encapsulation ethertype */
143 uint16_t ifvm_tag; /* tag to apply on packets */
144 } ifv_mib;
145 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
146 LIST_ENTRY(ifvlan) ifv_list;
147 int ifv_flags;
148 };
149
150 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
151
152 #define ifv_ec ifv_u.ifvu_ec
153
154 #define ifv_if ifv_ec.ec_if
155
156 #define ifv_msw ifv_mib.ifvm_msw
157 #define ifv_encaplen ifv_mib.ifvm_encaplen
158 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
159 #define ifv_mintu ifv_mib.ifvm_mintu
160 #define ifv_tag ifv_mib.ifvm_tag
161
162 struct vlan_multisw {
163 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
164 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
165 void (*vmsw_purgemulti)(struct ifvlan *);
166 };
167
168 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
169 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
170 static void vlan_ether_purgemulti(struct ifvlan *);
171
172 const struct vlan_multisw vlan_ether_multisw = {
173 vlan_ether_addmulti,
174 vlan_ether_delmulti,
175 vlan_ether_purgemulti,
176 };
177
178 static int vlan_clone_create(struct if_clone *, int);
179 static int vlan_clone_destroy(struct ifnet *);
180 static int vlan_config(struct ifvlan *, struct ifnet *);
181 static int vlan_ioctl(struct ifnet *, u_long, void *);
182 static void vlan_start(struct ifnet *);
183 static void vlan_unconfig(struct ifnet *);
184
185 void vlanattach(int);
186
187 /* XXX This should be a hash table with the tag as the basis of the key. */
188 static LIST_HEAD(, ifvlan) ifv_list;
189
190 struct if_clone vlan_cloner =
191 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
192
193 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
194 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
195
196 void
197 vlanattach(int n)
198 {
199
200 LIST_INIT(&ifv_list);
201 if_clone_attach(&vlan_cloner);
202 }
203
204 static void
205 vlan_reset_linkname(struct ifnet *ifp)
206 {
207
208 /*
209 * We start out with a "802.1Q VLAN" type and zero-length
210 * addresses. When we attach to a parent interface, we
211 * inherit its type, address length, address, and data link
212 * type.
213 */
214
215 ifp->if_type = IFT_L2VLAN;
216 ifp->if_addrlen = 0;
217 ifp->if_dlt = DLT_NULL;
218 if_alloc_sadl(ifp);
219 }
220
221 static int
222 vlan_clone_create(struct if_clone *ifc, int unit)
223 {
224 struct ifvlan *ifv;
225 struct ifnet *ifp;
226 int s;
227
228 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK);
229 memset(ifv, 0, sizeof(struct ifvlan));
230 ifp = &ifv->ifv_if;
231 LIST_INIT(&ifv->ifv_mc_listhead);
232
233 s = splnet();
234 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
235 splx(s);
236
237 snprintf(ifp->if_xname, sizeof(ifp->if_xname), "%s%d", ifc->ifc_name,
238 unit);
239 ifp->if_softc = ifv;
240 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
241 ifp->if_start = vlan_start;
242 ifp->if_ioctl = vlan_ioctl;
243 IFQ_SET_READY(&ifp->if_snd);
244
245 if_attach(ifp);
246 vlan_reset_linkname(ifp);
247
248 return (0);
249 }
250
251 static int
252 vlan_clone_destroy(struct ifnet *ifp)
253 {
254 struct ifvlan *ifv = ifp->if_softc;
255 int s;
256
257 s = splnet();
258 LIST_REMOVE(ifv, ifv_list);
259 vlan_unconfig(ifp);
260 splx(s);
261
262 if_detach(ifp);
263 free(ifv, M_DEVBUF);
264
265 return (0);
266 }
267
268 /*
269 * Configure a VLAN interface. Must be called at splnet().
270 */
271 static int
272 vlan_config(struct ifvlan *ifv, struct ifnet *p)
273 {
274 struct ifnet *ifp = &ifv->ifv_if;
275 int error;
276
277 if (ifv->ifv_p != NULL)
278 return (EBUSY);
279
280 switch (p->if_type) {
281 case IFT_ETHER:
282 {
283 struct ethercom *ec = (void *) p;
284
285 ifv->ifv_msw = &vlan_ether_multisw;
286 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
287 ifv->ifv_mintu = ETHERMIN;
288
289 /*
290 * If the parent supports the VLAN_MTU capability,
291 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
292 * enable it.
293 */
294 if (ec->ec_nvlans++ == 0 &&
295 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
296 /*
297 * Enable Tx/Rx of VLAN-sized frames.
298 */
299 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
300 if (p->if_flags & IFF_UP) {
301 struct ifreq ifr;
302
303 ifr.ifr_flags = p->if_flags;
304 error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
305 (void *) &ifr);
306 if (error) {
307 if (ec->ec_nvlans-- == 1)
308 ec->ec_capenable &=
309 ~ETHERCAP_VLAN_MTU;
310 return (error);
311 }
312 }
313 ifv->ifv_mtufudge = 0;
314 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
315 /*
316 * Fudge the MTU by the encapsulation size. This
317 * makes us incompatible with strictly compliant
318 * 802.1Q implementations, but allows us to use
319 * the feature with other NetBSD implementations,
320 * which might still be useful.
321 */
322 ifv->ifv_mtufudge = ifv->ifv_encaplen;
323 }
324
325 /*
326 * If the parent interface can do hardware-assisted
327 * VLAN encapsulation, then propagate its hardware-
328 * assisted checksumming flags.
329 */
330 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
331 ifp->if_capabilities = p->if_capabilities &
332 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
333 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
334 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
335 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
336 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
337
338 /*
339 * We inherit the parent's Ethernet address.
340 */
341 ether_ifattach(ifp, CLLADDR(p->if_sadl));
342 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
343 break;
344 }
345
346 default:
347 return (EPROTONOSUPPORT);
348 }
349
350 ifv->ifv_p = p;
351 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
352 ifv->ifv_if.if_flags = p->if_flags &
353 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
354
355 /*
356 * Inherit the if_type from the parent. This allows us
357 * to participate in bridges of that type.
358 */
359 ifv->ifv_if.if_type = p->if_type;
360
361 return (0);
362 }
363
364 /*
365 * Unconfigure a VLAN interface. Must be called at splnet().
366 */
367 static void
368 vlan_unconfig(struct ifnet *ifp)
369 {
370 struct ifvlan *ifv = ifp->if_softc;
371
372 if (ifv->ifv_p == NULL)
373 return;
374
375 /*
376 * Since the interface is being unconfigured, we need to empty the
377 * list of multicast groups that we may have joined while we were
378 * alive and remove them from the parent's list also.
379 */
380 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
381
382 /* Disconnect from parent. */
383 switch (ifv->ifv_p->if_type) {
384 case IFT_ETHER:
385 {
386 struct ethercom *ec = (void *) ifv->ifv_p;
387
388 if (ec->ec_nvlans-- == 1) {
389 /*
390 * Disable Tx/Rx of VLAN-sized frames.
391 */
392 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
393 if (ifv->ifv_p->if_flags & IFF_UP) {
394 struct ifreq ifr;
395
396 ifr.ifr_flags = ifv->ifv_p->if_flags;
397 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
398 SIOCSIFFLAGS, (void *) &ifr);
399 }
400 }
401
402 ether_ifdetach(ifp);
403 vlan_reset_linkname(ifp);
404 break;
405 }
406
407 #ifdef DIAGNOSTIC
408 default:
409 panic("vlan_unconfig: impossible");
410 #endif
411 }
412
413 ifv->ifv_p = NULL;
414 ifv->ifv_if.if_mtu = 0;
415 ifv->ifv_flags = 0;
416
417 if_down(ifp);
418 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
419 ifp->if_capabilities = 0;
420 }
421
422 /*
423 * Called when a parent interface is detaching; destroy any VLAN
424 * configuration for the parent interface.
425 */
426 void
427 vlan_ifdetach(struct ifnet *p)
428 {
429 struct ifvlan *ifv;
430 int s;
431
432 s = splnet();
433
434 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
435 ifv = LIST_NEXT(ifv, ifv_list)) {
436 if (ifv->ifv_p == p)
437 vlan_unconfig(&ifv->ifv_if);
438 }
439
440 splx(s);
441 }
442
443 static int
444 vlan_set_promisc(struct ifnet *ifp)
445 {
446 struct ifvlan *ifv = ifp->if_softc;
447 int error = 0;
448
449 if ((ifp->if_flags & IFF_PROMISC) != 0) {
450 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
451 error = ifpromisc(ifv->ifv_p, 1);
452 if (error == 0)
453 ifv->ifv_flags |= IFVF_PROMISC;
454 }
455 } else {
456 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
457 error = ifpromisc(ifv->ifv_p, 0);
458 if (error == 0)
459 ifv->ifv_flags &= ~IFVF_PROMISC;
460 }
461 }
462
463 return (error);
464 }
465
466 static int
467 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
468 {
469 struct lwp *l = curlwp; /* XXX */
470 struct ifvlan *ifv = ifp->if_softc;
471 struct ifaddr *ifa = (struct ifaddr *) data;
472 struct ifreq *ifr = (struct ifreq *) data;
473 struct ifnet *pr;
474 struct vlanreq vlr;
475 struct sockaddr *sa;
476 int s, error = 0;
477
478 s = splnet();
479
480 switch (cmd) {
481 case SIOCSIFADDR:
482 if (ifv->ifv_p != NULL) {
483 ifp->if_flags |= IFF_UP;
484
485 switch (ifa->ifa_addr->sa_family) {
486 #ifdef INET
487 case AF_INET:
488 arp_ifinit(ifp, ifa);
489 break;
490 #endif
491 default:
492 break;
493 }
494 } else {
495 error = EINVAL;
496 }
497 break;
498
499 case SIOCGIFADDR:
500 sa = (struct sockaddr *)&ifr->ifr_data;
501 memcpy(sa->sa_data, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
502 break;
503
504 case SIOCSIFMTU:
505 if (ifv->ifv_p == NULL)
506 error = EINVAL;
507 else if (
508 ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
509 ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
510 error = EINVAL;
511 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
512 error = 0;
513 break;
514
515 case SIOCSETVLAN:
516 if ((error = kauth_authorize_network(l->l_cred,
517 KAUTH_NETWORK_INTERFACE,
518 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
519 NULL)) != 0)
520 break;
521 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
522 break;
523 if (vlr.vlr_parent[0] == '\0') {
524 vlan_unconfig(ifp);
525 break;
526 }
527 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
528 error = EINVAL; /* check for valid tag */
529 break;
530 }
531 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
532 error = ENOENT;
533 break;
534 }
535 if ((error = vlan_config(ifv, pr)) != 0)
536 break;
537 ifv->ifv_tag = vlr.vlr_tag;
538 ifp->if_flags |= IFF_RUNNING;
539
540 /* Update promiscuous mode, if necessary. */
541 vlan_set_promisc(ifp);
542 break;
543
544 case SIOCGETVLAN:
545 memset(&vlr, 0, sizeof(vlr));
546 if (ifv->ifv_p != NULL) {
547 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
548 ifv->ifv_p->if_xname);
549 vlr.vlr_tag = ifv->ifv_tag;
550 }
551 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
552 break;
553
554 case SIOCSIFFLAGS:
555 /*
556 * For promiscuous mode, we enable promiscuous mode on
557 * the parent if we need promiscuous on the VLAN interface.
558 */
559 if (ifv->ifv_p != NULL)
560 error = vlan_set_promisc(ifp);
561 break;
562
563 case SIOCADDMULTI:
564 error = (ifv->ifv_p != NULL) ?
565 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
566 break;
567
568 case SIOCDELMULTI:
569 error = (ifv->ifv_p != NULL) ?
570 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
571 break;
572
573 default:
574 error = EINVAL;
575 }
576
577 splx(s);
578
579 return (error);
580 }
581
582 static int
583 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
584 {
585 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
586 struct vlan_mc_entry *mc;
587 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
588 int error;
589
590 if (sa->sa_len > sizeof(struct sockaddr_storage))
591 return (EINVAL);
592
593 error = ether_addmulti(sa, &ifv->ifv_ec);
594 if (error != ENETRESET)
595 return (error);
596
597 /*
598 * This is new multicast address. We have to tell parent
599 * about it. Also, remember this multicast address so that
600 * we can delete them on unconfigure.
601 */
602 MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry),
603 M_DEVBUF, M_NOWAIT);
604 if (mc == NULL) {
605 error = ENOMEM;
606 goto alloc_failed;
607 }
608
609 /*
610 * As ether_addmulti() returns ENETRESET, following two
611 * statement shouldn't fail.
612 */
613 (void)ether_multiaddr(sa, addrlo, addrhi);
614 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
615 memcpy(&mc->mc_addr, sa, sa->sa_len);
616 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
617
618 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
619 (void *)ifr);
620 if (error != 0)
621 goto ioctl_failed;
622 return (error);
623
624 ioctl_failed:
625 LIST_REMOVE(mc, mc_entries);
626 FREE(mc, M_DEVBUF);
627 alloc_failed:
628 (void)ether_delmulti(sa, &ifv->ifv_ec);
629 return (error);
630 }
631
632 static int
633 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
634 {
635 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
636 struct ether_multi *enm;
637 struct vlan_mc_entry *mc;
638 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
639 int error;
640
641 /*
642 * Find a key to lookup vlan_mc_entry. We have to do this
643 * before calling ether_delmulti for obvious reason.
644 */
645 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
646 return (error);
647 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
648
649 error = ether_delmulti(sa, &ifv->ifv_ec);
650 if (error != ENETRESET)
651 return (error);
652
653 /* We no longer use this multicast address. Tell parent so. */
654 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
655 (void *)ifr);
656 if (error == 0) {
657 /* And forget about this address. */
658 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
659 mc = LIST_NEXT(mc, mc_entries)) {
660 if (mc->mc_enm == enm) {
661 LIST_REMOVE(mc, mc_entries);
662 FREE(mc, M_DEVBUF);
663 break;
664 }
665 }
666 KASSERT(mc != NULL);
667 } else
668 (void)ether_addmulti(sa, &ifv->ifv_ec);
669 return (error);
670 }
671
672 /*
673 * Delete any multicast address we have asked to add from parent
674 * interface. Called when the vlan is being unconfigured.
675 */
676 static void
677 vlan_ether_purgemulti(struct ifvlan *ifv)
678 {
679 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
680 struct vlan_mc_entry *mc;
681 union {
682 struct ifreq ifreq;
683 struct {
684 char ifr_name[IFNAMSIZ];
685 struct sockaddr_storage ifr_ss;
686 } ifreq_storage;
687 } ifreq;
688 struct ifreq *ifr = &ifreq.ifreq;
689
690 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
691 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
692 ifreq_setaddr(SIOCDELMULTI, ifr,
693 (const struct sockaddr *)&mc->mc_addr);
694 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (void *)ifr);
695 LIST_REMOVE(mc, mc_entries);
696 FREE(mc, M_DEVBUF);
697 }
698 }
699
700 static void
701 vlan_start(struct ifnet *ifp)
702 {
703 struct ifvlan *ifv = ifp->if_softc;
704 struct ifnet *p = ifv->ifv_p;
705 struct ethercom *ec = (void *) ifv->ifv_p;
706 struct mbuf *m;
707 int error;
708 ALTQ_DECL(struct altq_pktattr pktattr;)
709
710 ifp->if_flags |= IFF_OACTIVE;
711
712 for (;;) {
713 IFQ_DEQUEUE(&ifp->if_snd, m);
714 if (m == NULL)
715 break;
716
717 #ifdef ALTQ
718 /*
719 * If ALTQ is enabled on the parent interface, do
720 * classification; the queueing discipline might
721 * not require classification, but might require
722 * the address family/header pointer in the pktattr.
723 */
724 if (ALTQ_IS_ENABLED(&p->if_snd)) {
725 switch (p->if_type) {
726 case IFT_ETHER:
727 altq_etherclassify(&p->if_snd, m, &pktattr);
728 break;
729 #ifdef DIAGNOSTIC
730 default:
731 panic("vlan_start: impossible (altq)");
732 #endif
733 }
734 }
735 #endif /* ALTQ */
736
737 #if NBPFILTER > 0
738 if (ifp->if_bpf)
739 bpf_mtap(ifp->if_bpf, m);
740 #endif
741 /*
742 * If the parent can insert the tag itself, just mark
743 * the tag in the mbuf header.
744 */
745 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
746 struct m_tag *mtag;
747
748 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
749 M_NOWAIT);
750 if (mtag == NULL) {
751 ifp->if_oerrors++;
752 m_freem(m);
753 continue;
754 }
755 *(u_int *)(mtag + 1) = ifv->ifv_tag;
756 m_tag_prepend(m, mtag);
757 } else {
758 /*
759 * insert the tag ourselves
760 */
761 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
762 if (m == NULL) {
763 printf("%s: unable to prepend encap header",
764 ifv->ifv_p->if_xname);
765 ifp->if_oerrors++;
766 continue;
767 }
768
769 switch (p->if_type) {
770 case IFT_ETHER:
771 {
772 struct ether_vlan_header *evl;
773
774 if (m->m_len < sizeof(struct ether_vlan_header))
775 m = m_pullup(m,
776 sizeof(struct ether_vlan_header));
777 if (m == NULL) {
778 printf("%s: unable to pullup encap "
779 "header", ifv->ifv_p->if_xname);
780 ifp->if_oerrors++;
781 continue;
782 }
783
784 /*
785 * Transform the Ethernet header into an
786 * Ethernet header with 802.1Q encapsulation.
787 */
788 memmove(mtod(m, void *),
789 mtod(m, char *) + ifv->ifv_encaplen,
790 sizeof(struct ether_header));
791 evl = mtod(m, struct ether_vlan_header *);
792 evl->evl_proto = evl->evl_encap_proto;
793 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
794 evl->evl_tag = htons(ifv->ifv_tag);
795
796 /*
797 * To cater for VLAN-aware layer 2 ethernet
798 * switches which may need to strip the tag
799 * before forwarding the packet, make sure
800 * the packet+tag is at least 68 bytes long.
801 * This is necessary because our parent will
802 * only pad to 64 bytes (ETHER_MIN_LEN) and
803 * some switches will not pad by themselves
804 * after deleting a tag.
805 */
806 if (m->m_pkthdr.len <
807 (ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN)) {
808 m_copyback(m, m->m_pkthdr.len,
809 (ETHER_MIN_LEN +
810 ETHER_VLAN_ENCAP_LEN) -
811 m->m_pkthdr.len,
812 vlan_zero_pad_buff);
813 }
814 break;
815 }
816
817 #ifdef DIAGNOSTIC
818 default:
819 panic("vlan_start: impossible");
820 #endif
821 }
822 }
823
824 /*
825 * Send it, precisely as the parent's output routine
826 * would have. We are already running at splnet.
827 */
828 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
829 if (error) {
830 /* mbuf is already freed */
831 ifp->if_oerrors++;
832 continue;
833 }
834
835 ifp->if_opackets++;
836 if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
837 (*p->if_start)(p);
838 }
839
840 ifp->if_flags &= ~IFF_OACTIVE;
841 }
842
843 /*
844 * Given an Ethernet frame, find a valid vlan interface corresponding to the
845 * given source interface and tag, then run the real packet through the
846 * parent's input routine.
847 */
848 void
849 vlan_input(struct ifnet *ifp, struct mbuf *m)
850 {
851 struct ifvlan *ifv;
852 u_int tag;
853 struct m_tag *mtag;
854
855 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
856 if (mtag != NULL) {
857 /* m contains a normal ethernet frame, the tag is in mtag */
858 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
859 m_tag_delete(m, mtag);
860 } else {
861 switch (ifp->if_type) {
862 case IFT_ETHER:
863 {
864 struct ether_vlan_header *evl;
865
866 if (m->m_len < sizeof(struct ether_vlan_header) &&
867 (m = m_pullup(m,
868 sizeof(struct ether_vlan_header))) == NULL) {
869 printf("%s: no memory for VLAN header, "
870 "dropping packet.\n", ifp->if_xname);
871 return;
872 }
873 evl = mtod(m, struct ether_vlan_header *);
874 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
875
876 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
877
878 /*
879 * Restore the original ethertype. We'll remove
880 * the encapsulation after we've found the vlan
881 * interface corresponding to the tag.
882 */
883 evl->evl_encap_proto = evl->evl_proto;
884 break;
885 }
886
887 default:
888 tag = (u_int) -1; /* XXX GCC */
889 #ifdef DIAGNOSTIC
890 panic("vlan_input: impossible");
891 #endif
892 }
893 }
894
895 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
896 ifv = LIST_NEXT(ifv, ifv_list))
897 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
898 break;
899
900 if (ifv == NULL ||
901 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
902 (IFF_UP|IFF_RUNNING)) {
903 m_freem(m);
904 ifp->if_noproto++;
905 return;
906 }
907
908 /*
909 * Now, remove the encapsulation header. The original
910 * header has already been fixed up above.
911 */
912 if (mtag == NULL) {
913 memmove(mtod(m, char *) + ifv->ifv_encaplen,
914 mtod(m, void *), sizeof(struct ether_header));
915 m_adj(m, ifv->ifv_encaplen);
916 }
917
918 m->m_pkthdr.rcvif = &ifv->ifv_if;
919 ifv->ifv_if.if_ipackets++;
920
921 #if NBPFILTER > 0
922 if (ifv->ifv_if.if_bpf)
923 bpf_mtap(ifv->ifv_if.if_bpf, m);
924 #endif
925
926 /* Pass it back through the parent's input routine. */
927 (*ifp->if_input)(&ifv->ifv_if, m);
928 }
929