if_vlan.c revision 1.57.10.1 1 /* $NetBSD: if_vlan.c,v 1.57.10.1 2008/05/16 02:25:41 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.57.10.1 2008/05/16 02:25:41 yamt Exp $");
82
83 #include "opt_inet.h"
84 #include "bpfilter.h"
85
86 #include <sys/param.h>
87 #include <sys/kernel.h>
88 #include <sys/mbuf.h>
89 #include <sys/queue.h>
90 #include <sys/socket.h>
91 #include <sys/sockio.h>
92 #include <sys/systm.h>
93 #include <sys/proc.h>
94 #include <sys/kauth.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #endif
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_types.h>
102 #include <net/if_ether.h>
103 #include <net/if_vlanvar.h>
104
105 #ifdef INET
106 #include <netinet/in.h>
107 #include <netinet/if_inarp.h>
108 #endif
109
110 struct vlan_mc_entry {
111 LIST_ENTRY(vlan_mc_entry) mc_entries;
112 /*
113 * A key to identify this entry. The mc_addr below can't be
114 * used since multiple sockaddr may mapped into the same
115 * ether_multi (e.g., AF_UNSPEC).
116 */
117 union {
118 struct ether_multi *mcu_enm;
119 } mc_u;
120 struct sockaddr_storage mc_addr;
121 };
122
123 #define mc_enm mc_u.mcu_enm
124
125 struct ifvlan {
126 union {
127 struct ethercom ifvu_ec;
128 } ifv_u;
129 struct ifnet *ifv_p; /* parent interface of this vlan */
130 struct ifv_linkmib {
131 const struct vlan_multisw *ifvm_msw;
132 int ifvm_encaplen; /* encapsulation length */
133 int ifvm_mtufudge; /* MTU fudged by this much */
134 int ifvm_mintu; /* min transmission unit */
135 uint16_t ifvm_proto; /* encapsulation ethertype */
136 uint16_t ifvm_tag; /* tag to apply on packets */
137 } ifv_mib;
138 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
139 LIST_ENTRY(ifvlan) ifv_list;
140 int ifv_flags;
141 };
142
143 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
144
145 #define ifv_ec ifv_u.ifvu_ec
146
147 #define ifv_if ifv_ec.ec_if
148
149 #define ifv_msw ifv_mib.ifvm_msw
150 #define ifv_encaplen ifv_mib.ifvm_encaplen
151 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
152 #define ifv_mintu ifv_mib.ifvm_mintu
153 #define ifv_tag ifv_mib.ifvm_tag
154
155 struct vlan_multisw {
156 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
157 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
158 void (*vmsw_purgemulti)(struct ifvlan *);
159 };
160
161 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
162 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
163 static void vlan_ether_purgemulti(struct ifvlan *);
164
165 const struct vlan_multisw vlan_ether_multisw = {
166 vlan_ether_addmulti,
167 vlan_ether_delmulti,
168 vlan_ether_purgemulti,
169 };
170
171 static int vlan_clone_create(struct if_clone *, int);
172 static int vlan_clone_destroy(struct ifnet *);
173 static int vlan_config(struct ifvlan *, struct ifnet *);
174 static int vlan_ioctl(struct ifnet *, u_long, void *);
175 static void vlan_start(struct ifnet *);
176 static void vlan_unconfig(struct ifnet *);
177
178 void vlanattach(int);
179
180 /* XXX This should be a hash table with the tag as the basis of the key. */
181 static LIST_HEAD(, ifvlan) ifv_list;
182
183 struct if_clone vlan_cloner =
184 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
185
186 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
187 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
188
189 void
190 vlanattach(int n)
191 {
192
193 LIST_INIT(&ifv_list);
194 if_clone_attach(&vlan_cloner);
195 }
196
197 static void
198 vlan_reset_linkname(struct ifnet *ifp)
199 {
200
201 /*
202 * We start out with a "802.1Q VLAN" type and zero-length
203 * addresses. When we attach to a parent interface, we
204 * inherit its type, address length, address, and data link
205 * type.
206 */
207
208 ifp->if_type = IFT_L2VLAN;
209 ifp->if_addrlen = 0;
210 ifp->if_dlt = DLT_NULL;
211 if_alloc_sadl(ifp);
212 }
213
214 static int
215 vlan_clone_create(struct if_clone *ifc, int unit)
216 {
217 struct ifvlan *ifv;
218 struct ifnet *ifp;
219 int s;
220
221 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK);
222 memset(ifv, 0, sizeof(struct ifvlan));
223 ifp = &ifv->ifv_if;
224 LIST_INIT(&ifv->ifv_mc_listhead);
225
226 s = splnet();
227 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
228 splx(s);
229
230 snprintf(ifp->if_xname, sizeof(ifp->if_xname), "%s%d", ifc->ifc_name,
231 unit);
232 ifp->if_softc = ifv;
233 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
234 ifp->if_start = vlan_start;
235 ifp->if_ioctl = vlan_ioctl;
236 IFQ_SET_READY(&ifp->if_snd);
237
238 if_attach(ifp);
239 vlan_reset_linkname(ifp);
240
241 return (0);
242 }
243
244 static int
245 vlan_clone_destroy(struct ifnet *ifp)
246 {
247 struct ifvlan *ifv = ifp->if_softc;
248 int s;
249
250 s = splnet();
251 LIST_REMOVE(ifv, ifv_list);
252 vlan_unconfig(ifp);
253 splx(s);
254
255 if_detach(ifp);
256 free(ifv, M_DEVBUF);
257
258 return (0);
259 }
260
261 /*
262 * Configure a VLAN interface. Must be called at splnet().
263 */
264 static int
265 vlan_config(struct ifvlan *ifv, struct ifnet *p)
266 {
267 struct ifnet *ifp = &ifv->ifv_if;
268 int error;
269
270 if (ifv->ifv_p != NULL)
271 return (EBUSY);
272
273 switch (p->if_type) {
274 case IFT_ETHER:
275 {
276 struct ethercom *ec = (void *) p;
277
278 ifv->ifv_msw = &vlan_ether_multisw;
279 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
280 ifv->ifv_mintu = ETHERMIN;
281
282 /*
283 * If the parent supports the VLAN_MTU capability,
284 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
285 * enable it.
286 */
287 if (ec->ec_nvlans++ == 0 &&
288 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
289 /*
290 * Enable Tx/Rx of VLAN-sized frames.
291 */
292 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
293 if (p->if_flags & IFF_UP) {
294 struct ifreq ifr;
295
296 ifr.ifr_flags = p->if_flags;
297 error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
298 (void *) &ifr);
299 if (error) {
300 if (ec->ec_nvlans-- == 1)
301 ec->ec_capenable &=
302 ~ETHERCAP_VLAN_MTU;
303 return (error);
304 }
305 }
306 ifv->ifv_mtufudge = 0;
307 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
308 /*
309 * Fudge the MTU by the encapsulation size. This
310 * makes us incompatible with strictly compliant
311 * 802.1Q implementations, but allows us to use
312 * the feature with other NetBSD implementations,
313 * which might still be useful.
314 */
315 ifv->ifv_mtufudge = ifv->ifv_encaplen;
316 }
317
318 /*
319 * If the parent interface can do hardware-assisted
320 * VLAN encapsulation, then propagate its hardware-
321 * assisted checksumming flags.
322 */
323 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
324 ifp->if_capabilities = p->if_capabilities &
325 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
326 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
327 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
328 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
329 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
330
331 /*
332 * We inherit the parent's Ethernet address.
333 */
334 ether_ifattach(ifp, CLLADDR(p->if_sadl));
335 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
336 break;
337 }
338
339 default:
340 return (EPROTONOSUPPORT);
341 }
342
343 ifv->ifv_p = p;
344 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
345 ifv->ifv_if.if_flags = p->if_flags &
346 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
347
348 /*
349 * Inherit the if_type from the parent. This allows us
350 * to participate in bridges of that type.
351 */
352 ifv->ifv_if.if_type = p->if_type;
353
354 return (0);
355 }
356
357 /*
358 * Unconfigure a VLAN interface. Must be called at splnet().
359 */
360 static void
361 vlan_unconfig(struct ifnet *ifp)
362 {
363 struct ifvlan *ifv = ifp->if_softc;
364
365 if (ifv->ifv_p == NULL)
366 return;
367
368 /*
369 * Since the interface is being unconfigured, we need to empty the
370 * list of multicast groups that we may have joined while we were
371 * alive and remove them from the parent's list also.
372 */
373 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
374
375 /* Disconnect from parent. */
376 switch (ifv->ifv_p->if_type) {
377 case IFT_ETHER:
378 {
379 struct ethercom *ec = (void *) ifv->ifv_p;
380
381 if (ec->ec_nvlans-- == 1) {
382 /*
383 * Disable Tx/Rx of VLAN-sized frames.
384 */
385 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
386 if (ifv->ifv_p->if_flags & IFF_UP) {
387 struct ifreq ifr;
388
389 ifr.ifr_flags = ifv->ifv_p->if_flags;
390 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
391 SIOCSIFFLAGS, (void *) &ifr);
392 }
393 }
394
395 ether_ifdetach(ifp);
396 vlan_reset_linkname(ifp);
397 break;
398 }
399
400 #ifdef DIAGNOSTIC
401 default:
402 panic("vlan_unconfig: impossible");
403 #endif
404 }
405
406 ifv->ifv_p = NULL;
407 ifv->ifv_if.if_mtu = 0;
408 ifv->ifv_flags = 0;
409
410 if_down(ifp);
411 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
412 ifp->if_capabilities = 0;
413 }
414
415 /*
416 * Called when a parent interface is detaching; destroy any VLAN
417 * configuration for the parent interface.
418 */
419 void
420 vlan_ifdetach(struct ifnet *p)
421 {
422 struct ifvlan *ifv;
423 int s;
424
425 s = splnet();
426
427 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
428 ifv = LIST_NEXT(ifv, ifv_list)) {
429 if (ifv->ifv_p == p)
430 vlan_unconfig(&ifv->ifv_if);
431 }
432
433 splx(s);
434 }
435
436 static int
437 vlan_set_promisc(struct ifnet *ifp)
438 {
439 struct ifvlan *ifv = ifp->if_softc;
440 int error = 0;
441
442 if ((ifp->if_flags & IFF_PROMISC) != 0) {
443 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
444 error = ifpromisc(ifv->ifv_p, 1);
445 if (error == 0)
446 ifv->ifv_flags |= IFVF_PROMISC;
447 }
448 } else {
449 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
450 error = ifpromisc(ifv->ifv_p, 0);
451 if (error == 0)
452 ifv->ifv_flags &= ~IFVF_PROMISC;
453 }
454 }
455
456 return (error);
457 }
458
459 static int
460 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
461 {
462 struct lwp *l = curlwp; /* XXX */
463 struct ifvlan *ifv = ifp->if_softc;
464 struct ifaddr *ifa = (struct ifaddr *) data;
465 struct ifreq *ifr = (struct ifreq *) data;
466 struct ifnet *pr;
467 struct vlanreq vlr;
468 struct sockaddr *sa;
469 int s, error = 0;
470
471 s = splnet();
472
473 switch (cmd) {
474 case SIOCSIFADDR:
475 if (ifv->ifv_p != NULL) {
476 ifp->if_flags |= IFF_UP;
477
478 switch (ifa->ifa_addr->sa_family) {
479 #ifdef INET
480 case AF_INET:
481 arp_ifinit(ifp, ifa);
482 break;
483 #endif
484 default:
485 break;
486 }
487 } else {
488 error = EINVAL;
489 }
490 break;
491
492 case SIOCGIFADDR:
493 sa = (struct sockaddr *)&ifr->ifr_data;
494 memcpy(sa->sa_data, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
495 break;
496
497 case SIOCSIFMTU:
498 if (ifv->ifv_p == NULL)
499 error = EINVAL;
500 else if (
501 ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
502 ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
503 error = EINVAL;
504 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
505 error = 0;
506 break;
507
508 case SIOCSETVLAN:
509 if ((error = kauth_authorize_network(l->l_cred,
510 KAUTH_NETWORK_INTERFACE,
511 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
512 NULL)) != 0)
513 break;
514 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
515 break;
516 if (vlr.vlr_parent[0] == '\0') {
517 vlan_unconfig(ifp);
518 break;
519 }
520 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
521 error = EINVAL; /* check for valid tag */
522 break;
523 }
524 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
525 error = ENOENT;
526 break;
527 }
528 if ((error = vlan_config(ifv, pr)) != 0)
529 break;
530 ifv->ifv_tag = vlr.vlr_tag;
531 ifp->if_flags |= IFF_RUNNING;
532
533 /* Update promiscuous mode, if necessary. */
534 vlan_set_promisc(ifp);
535 break;
536
537 case SIOCGETVLAN:
538 memset(&vlr, 0, sizeof(vlr));
539 if (ifv->ifv_p != NULL) {
540 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
541 ifv->ifv_p->if_xname);
542 vlr.vlr_tag = ifv->ifv_tag;
543 }
544 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
545 break;
546
547 case SIOCSIFFLAGS:
548 /*
549 * For promiscuous mode, we enable promiscuous mode on
550 * the parent if we need promiscuous on the VLAN interface.
551 */
552 if (ifv->ifv_p != NULL)
553 error = vlan_set_promisc(ifp);
554 break;
555
556 case SIOCADDMULTI:
557 error = (ifv->ifv_p != NULL) ?
558 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
559 break;
560
561 case SIOCDELMULTI:
562 error = (ifv->ifv_p != NULL) ?
563 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
564 break;
565
566 default:
567 error = EINVAL;
568 }
569
570 splx(s);
571
572 return (error);
573 }
574
575 static int
576 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
577 {
578 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
579 struct vlan_mc_entry *mc;
580 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
581 int error;
582
583 if (sa->sa_len > sizeof(struct sockaddr_storage))
584 return (EINVAL);
585
586 error = ether_addmulti(sa, &ifv->ifv_ec);
587 if (error != ENETRESET)
588 return (error);
589
590 /*
591 * This is new multicast address. We have to tell parent
592 * about it. Also, remember this multicast address so that
593 * we can delete them on unconfigure.
594 */
595 MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry),
596 M_DEVBUF, M_NOWAIT);
597 if (mc == NULL) {
598 error = ENOMEM;
599 goto alloc_failed;
600 }
601
602 /*
603 * As ether_addmulti() returns ENETRESET, following two
604 * statement shouldn't fail.
605 */
606 (void)ether_multiaddr(sa, addrlo, addrhi);
607 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
608 memcpy(&mc->mc_addr, sa, sa->sa_len);
609 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
610
611 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
612 (void *)ifr);
613 if (error != 0)
614 goto ioctl_failed;
615 return (error);
616
617 ioctl_failed:
618 LIST_REMOVE(mc, mc_entries);
619 FREE(mc, M_DEVBUF);
620 alloc_failed:
621 (void)ether_delmulti(sa, &ifv->ifv_ec);
622 return (error);
623 }
624
625 static int
626 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
627 {
628 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
629 struct ether_multi *enm;
630 struct vlan_mc_entry *mc;
631 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
632 int error;
633
634 /*
635 * Find a key to lookup vlan_mc_entry. We have to do this
636 * before calling ether_delmulti for obvious reason.
637 */
638 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
639 return (error);
640 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
641
642 error = ether_delmulti(sa, &ifv->ifv_ec);
643 if (error != ENETRESET)
644 return (error);
645
646 /* We no longer use this multicast address. Tell parent so. */
647 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
648 (void *)ifr);
649 if (error == 0) {
650 /* And forget about this address. */
651 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
652 mc = LIST_NEXT(mc, mc_entries)) {
653 if (mc->mc_enm == enm) {
654 LIST_REMOVE(mc, mc_entries);
655 FREE(mc, M_DEVBUF);
656 break;
657 }
658 }
659 KASSERT(mc != NULL);
660 } else
661 (void)ether_addmulti(sa, &ifv->ifv_ec);
662 return (error);
663 }
664
665 /*
666 * Delete any multicast address we have asked to add from parent
667 * interface. Called when the vlan is being unconfigured.
668 */
669 static void
670 vlan_ether_purgemulti(struct ifvlan *ifv)
671 {
672 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
673 struct vlan_mc_entry *mc;
674 union {
675 struct ifreq ifreq;
676 struct {
677 char ifr_name[IFNAMSIZ];
678 struct sockaddr_storage ifr_ss;
679 } ifreq_storage;
680 } ifreq;
681 struct ifreq *ifr = &ifreq.ifreq;
682
683 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
684 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
685 ifreq_setaddr(SIOCDELMULTI, ifr,
686 (const struct sockaddr *)&mc->mc_addr);
687 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (void *)ifr);
688 LIST_REMOVE(mc, mc_entries);
689 FREE(mc, M_DEVBUF);
690 }
691 }
692
693 static void
694 vlan_start(struct ifnet *ifp)
695 {
696 struct ifvlan *ifv = ifp->if_softc;
697 struct ifnet *p = ifv->ifv_p;
698 struct ethercom *ec = (void *) ifv->ifv_p;
699 struct mbuf *m;
700 int error;
701 ALTQ_DECL(struct altq_pktattr pktattr;)
702
703 ifp->if_flags |= IFF_OACTIVE;
704
705 for (;;) {
706 IFQ_DEQUEUE(&ifp->if_snd, m);
707 if (m == NULL)
708 break;
709
710 #ifdef ALTQ
711 /*
712 * If ALTQ is enabled on the parent interface, do
713 * classification; the queueing discipline might
714 * not require classification, but might require
715 * the address family/header pointer in the pktattr.
716 */
717 if (ALTQ_IS_ENABLED(&p->if_snd)) {
718 switch (p->if_type) {
719 case IFT_ETHER:
720 altq_etherclassify(&p->if_snd, m, &pktattr);
721 break;
722 #ifdef DIAGNOSTIC
723 default:
724 panic("vlan_start: impossible (altq)");
725 #endif
726 }
727 }
728 #endif /* ALTQ */
729
730 #if NBPFILTER > 0
731 if (ifp->if_bpf)
732 bpf_mtap(ifp->if_bpf, m);
733 #endif
734 /*
735 * If the parent can insert the tag itself, just mark
736 * the tag in the mbuf header.
737 */
738 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
739 struct m_tag *mtag;
740
741 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
742 M_NOWAIT);
743 if (mtag == NULL) {
744 ifp->if_oerrors++;
745 m_freem(m);
746 continue;
747 }
748 *(u_int *)(mtag + 1) = ifv->ifv_tag;
749 m_tag_prepend(m, mtag);
750 } else {
751 /*
752 * insert the tag ourselves
753 */
754 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
755 if (m == NULL) {
756 printf("%s: unable to prepend encap header",
757 ifv->ifv_p->if_xname);
758 ifp->if_oerrors++;
759 continue;
760 }
761
762 switch (p->if_type) {
763 case IFT_ETHER:
764 {
765 struct ether_vlan_header *evl;
766
767 if (m->m_len < sizeof(struct ether_vlan_header))
768 m = m_pullup(m,
769 sizeof(struct ether_vlan_header));
770 if (m == NULL) {
771 printf("%s: unable to pullup encap "
772 "header", ifv->ifv_p->if_xname);
773 ifp->if_oerrors++;
774 continue;
775 }
776
777 /*
778 * Transform the Ethernet header into an
779 * Ethernet header with 802.1Q encapsulation.
780 */
781 memmove(mtod(m, void *),
782 mtod(m, char *) + ifv->ifv_encaplen,
783 sizeof(struct ether_header));
784 evl = mtod(m, struct ether_vlan_header *);
785 evl->evl_proto = evl->evl_encap_proto;
786 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
787 evl->evl_tag = htons(ifv->ifv_tag);
788
789 /*
790 * To cater for VLAN-aware layer 2 ethernet
791 * switches which may need to strip the tag
792 * before forwarding the packet, make sure
793 * the packet+tag is at least 68 bytes long.
794 * This is necessary because our parent will
795 * only pad to 64 bytes (ETHER_MIN_LEN) and
796 * some switches will not pad by themselves
797 * after deleting a tag.
798 */
799 if (m->m_pkthdr.len <
800 (ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN)) {
801 m_copyback(m, m->m_pkthdr.len,
802 (ETHER_MIN_LEN +
803 ETHER_VLAN_ENCAP_LEN) -
804 m->m_pkthdr.len,
805 vlan_zero_pad_buff);
806 }
807 break;
808 }
809
810 #ifdef DIAGNOSTIC
811 default:
812 panic("vlan_start: impossible");
813 #endif
814 }
815 }
816
817 /*
818 * Send it, precisely as the parent's output routine
819 * would have. We are already running at splnet.
820 */
821 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
822 if (error) {
823 /* mbuf is already freed */
824 ifp->if_oerrors++;
825 continue;
826 }
827
828 ifp->if_opackets++;
829 if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
830 (*p->if_start)(p);
831 }
832
833 ifp->if_flags &= ~IFF_OACTIVE;
834 }
835
836 /*
837 * Given an Ethernet frame, find a valid vlan interface corresponding to the
838 * given source interface and tag, then run the real packet through the
839 * parent's input routine.
840 */
841 void
842 vlan_input(struct ifnet *ifp, struct mbuf *m)
843 {
844 struct ifvlan *ifv;
845 u_int tag;
846 struct m_tag *mtag;
847
848 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
849 if (mtag != NULL) {
850 /* m contains a normal ethernet frame, the tag is in mtag */
851 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
852 m_tag_delete(m, mtag);
853 } else {
854 switch (ifp->if_type) {
855 case IFT_ETHER:
856 {
857 struct ether_vlan_header *evl;
858
859 if (m->m_len < sizeof(struct ether_vlan_header) &&
860 (m = m_pullup(m,
861 sizeof(struct ether_vlan_header))) == NULL) {
862 printf("%s: no memory for VLAN header, "
863 "dropping packet.\n", ifp->if_xname);
864 return;
865 }
866 evl = mtod(m, struct ether_vlan_header *);
867 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
868
869 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
870
871 /*
872 * Restore the original ethertype. We'll remove
873 * the encapsulation after we've found the vlan
874 * interface corresponding to the tag.
875 */
876 evl->evl_encap_proto = evl->evl_proto;
877 break;
878 }
879
880 default:
881 tag = (u_int) -1; /* XXX GCC */
882 #ifdef DIAGNOSTIC
883 panic("vlan_input: impossible");
884 #endif
885 }
886 }
887
888 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
889 ifv = LIST_NEXT(ifv, ifv_list))
890 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
891 break;
892
893 if (ifv == NULL ||
894 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
895 (IFF_UP|IFF_RUNNING)) {
896 m_freem(m);
897 ifp->if_noproto++;
898 return;
899 }
900
901 /*
902 * Now, remove the encapsulation header. The original
903 * header has already been fixed up above.
904 */
905 if (mtag == NULL) {
906 memmove(mtod(m, char *) + ifv->ifv_encaplen,
907 mtod(m, void *), sizeof(struct ether_header));
908 m_adj(m, ifv->ifv_encaplen);
909 }
910
911 m->m_pkthdr.rcvif = &ifv->ifv_if;
912 ifv->ifv_if.if_ipackets++;
913
914 #if NBPFILTER > 0
915 if (ifv->ifv_if.if_bpf)
916 bpf_mtap(ifv->ifv_if.if_bpf, m);
917 #endif
918
919 /* Pass it back through the parent's input routine. */
920 (*ifp->if_input)(&ifv->ifv_if, m);
921 }
922