if_vlan.c revision 1.57.10.4 1 /* $NetBSD: if_vlan.c,v 1.57.10.4 2010/08/11 22:54:55 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.57.10.4 2010/08/11 22:54:55 yamt Exp $");
82
83 #include "opt_inet.h"
84
85 #include <sys/param.h>
86 #include <sys/kernel.h>
87 #include <sys/mbuf.h>
88 #include <sys/queue.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/systm.h>
92 #include <sys/proc.h>
93 #include <sys/kauth.h>
94
95 #include <net/bpf.h>
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/if_ether.h>
100 #include <net/if_vlanvar.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/if_inarp.h>
105 #endif
106
107 struct vlan_mc_entry {
108 LIST_ENTRY(vlan_mc_entry) mc_entries;
109 /*
110 * A key to identify this entry. The mc_addr below can't be
111 * used since multiple sockaddr may mapped into the same
112 * ether_multi (e.g., AF_UNSPEC).
113 */
114 union {
115 struct ether_multi *mcu_enm;
116 } mc_u;
117 struct sockaddr_storage mc_addr;
118 };
119
120 #define mc_enm mc_u.mcu_enm
121
122 struct ifvlan {
123 union {
124 struct ethercom ifvu_ec;
125 } ifv_u;
126 struct ifnet *ifv_p; /* parent interface of this vlan */
127 struct ifv_linkmib {
128 const struct vlan_multisw *ifvm_msw;
129 int ifvm_encaplen; /* encapsulation length */
130 int ifvm_mtufudge; /* MTU fudged by this much */
131 int ifvm_mintu; /* min transmission unit */
132 uint16_t ifvm_proto; /* encapsulation ethertype */
133 uint16_t ifvm_tag; /* tag to apply on packets */
134 } ifv_mib;
135 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
136 LIST_ENTRY(ifvlan) ifv_list;
137 int ifv_flags;
138 };
139
140 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
141
142 #define ifv_ec ifv_u.ifvu_ec
143
144 #define ifv_if ifv_ec.ec_if
145
146 #define ifv_msw ifv_mib.ifvm_msw
147 #define ifv_encaplen ifv_mib.ifvm_encaplen
148 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
149 #define ifv_mintu ifv_mib.ifvm_mintu
150 #define ifv_tag ifv_mib.ifvm_tag
151
152 struct vlan_multisw {
153 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
154 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
155 void (*vmsw_purgemulti)(struct ifvlan *);
156 };
157
158 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
159 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
160 static void vlan_ether_purgemulti(struct ifvlan *);
161
162 const struct vlan_multisw vlan_ether_multisw = {
163 vlan_ether_addmulti,
164 vlan_ether_delmulti,
165 vlan_ether_purgemulti,
166 };
167
168 static int vlan_clone_create(struct if_clone *, int);
169 static int vlan_clone_destroy(struct ifnet *);
170 static int vlan_config(struct ifvlan *, struct ifnet *);
171 static int vlan_ioctl(struct ifnet *, u_long, void *);
172 static void vlan_start(struct ifnet *);
173 static void vlan_unconfig(struct ifnet *);
174
175 void vlanattach(int);
176
177 /* XXX This should be a hash table with the tag as the basis of the key. */
178 static LIST_HEAD(, ifvlan) ifv_list;
179
180 struct if_clone vlan_cloner =
181 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
182
183 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
184 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
185
186 void
187 vlanattach(int n)
188 {
189
190 LIST_INIT(&ifv_list);
191 if_clone_attach(&vlan_cloner);
192 }
193
194 static void
195 vlan_reset_linkname(struct ifnet *ifp)
196 {
197
198 /*
199 * We start out with a "802.1Q VLAN" type and zero-length
200 * addresses. When we attach to a parent interface, we
201 * inherit its type, address length, address, and data link
202 * type.
203 */
204
205 ifp->if_type = IFT_L2VLAN;
206 ifp->if_addrlen = 0;
207 ifp->if_dlt = DLT_NULL;
208 if_alloc_sadl(ifp);
209 }
210
211 static int
212 vlan_clone_create(struct if_clone *ifc, int unit)
213 {
214 struct ifvlan *ifv;
215 struct ifnet *ifp;
216 int s;
217
218 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
219 ifp = &ifv->ifv_if;
220 LIST_INIT(&ifv->ifv_mc_listhead);
221
222 s = splnet();
223 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
224 splx(s);
225
226 if_initname(ifp, ifc->ifc_name, unit);
227 ifp->if_softc = ifv;
228 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
229 ifp->if_start = vlan_start;
230 ifp->if_ioctl = vlan_ioctl;
231 IFQ_SET_READY(&ifp->if_snd);
232
233 if_attach(ifp);
234 vlan_reset_linkname(ifp);
235
236 return (0);
237 }
238
239 static int
240 vlan_clone_destroy(struct ifnet *ifp)
241 {
242 struct ifvlan *ifv = ifp->if_softc;
243 int s;
244
245 s = splnet();
246 LIST_REMOVE(ifv, ifv_list);
247 vlan_unconfig(ifp);
248 splx(s);
249
250 if_detach(ifp);
251 free(ifv, M_DEVBUF);
252
253 return (0);
254 }
255
256 /*
257 * Configure a VLAN interface. Must be called at splnet().
258 */
259 static int
260 vlan_config(struct ifvlan *ifv, struct ifnet *p)
261 {
262 struct ifnet *ifp = &ifv->ifv_if;
263 int error;
264
265 if (ifv->ifv_p != NULL)
266 return (EBUSY);
267
268 switch (p->if_type) {
269 case IFT_ETHER:
270 {
271 struct ethercom *ec = (void *) p;
272
273 ifv->ifv_msw = &vlan_ether_multisw;
274 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
275 ifv->ifv_mintu = ETHERMIN;
276
277 /*
278 * If the parent supports the VLAN_MTU capability,
279 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
280 * enable it.
281 */
282 if (ec->ec_nvlans++ == 0 &&
283 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
284 /*
285 * Enable Tx/Rx of VLAN-sized frames.
286 */
287 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
288 if (p->if_flags & IFF_UP) {
289 struct ifreq ifr;
290
291 ifr.ifr_flags = p->if_flags;
292 error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
293 (void *) &ifr);
294 if (error) {
295 if (ec->ec_nvlans-- == 1)
296 ec->ec_capenable &=
297 ~ETHERCAP_VLAN_MTU;
298 return (error);
299 }
300 }
301 ifv->ifv_mtufudge = 0;
302 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
303 /*
304 * Fudge the MTU by the encapsulation size. This
305 * makes us incompatible with strictly compliant
306 * 802.1Q implementations, but allows us to use
307 * the feature with other NetBSD implementations,
308 * which might still be useful.
309 */
310 ifv->ifv_mtufudge = ifv->ifv_encaplen;
311 }
312
313 /*
314 * If the parent interface can do hardware-assisted
315 * VLAN encapsulation, then propagate its hardware-
316 * assisted checksumming flags and tcp segmentation
317 * offload.
318 */
319 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
320 ifp->if_capabilities = p->if_capabilities &
321 (IFCAP_TSOv4 | IFCAP_TSOv6 |
322 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
323 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
324 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
325 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
326 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
327
328 /*
329 * We inherit the parent's Ethernet address.
330 */
331 ether_ifattach(ifp, CLLADDR(p->if_sadl));
332 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
333 break;
334 }
335
336 default:
337 return (EPROTONOSUPPORT);
338 }
339
340 ifv->ifv_p = p;
341 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
342 ifv->ifv_if.if_flags = p->if_flags &
343 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
344
345 /*
346 * Inherit the if_type from the parent. This allows us
347 * to participate in bridges of that type.
348 */
349 ifv->ifv_if.if_type = p->if_type;
350
351 return (0);
352 }
353
354 /*
355 * Unconfigure a VLAN interface. Must be called at splnet().
356 */
357 static void
358 vlan_unconfig(struct ifnet *ifp)
359 {
360 struct ifvlan *ifv = ifp->if_softc;
361
362 if (ifv->ifv_p == NULL)
363 return;
364
365 /*
366 * Since the interface is being unconfigured, we need to empty the
367 * list of multicast groups that we may have joined while we were
368 * alive and remove them from the parent's list also.
369 */
370 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
371
372 /* Disconnect from parent. */
373 switch (ifv->ifv_p->if_type) {
374 case IFT_ETHER:
375 {
376 struct ethercom *ec = (void *) ifv->ifv_p;
377
378 if (ec->ec_nvlans-- == 1) {
379 /*
380 * Disable Tx/Rx of VLAN-sized frames.
381 */
382 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
383 if (ifv->ifv_p->if_flags & IFF_UP) {
384 struct ifreq ifr;
385
386 ifr.ifr_flags = ifv->ifv_p->if_flags;
387 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
388 SIOCSIFFLAGS, (void *) &ifr);
389 }
390 }
391
392 ether_ifdetach(ifp);
393 vlan_reset_linkname(ifp);
394 break;
395 }
396
397 #ifdef DIAGNOSTIC
398 default:
399 panic("vlan_unconfig: impossible");
400 #endif
401 }
402
403 ifv->ifv_p = NULL;
404 ifv->ifv_if.if_mtu = 0;
405 ifv->ifv_flags = 0;
406
407 if_down(ifp);
408 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
409 ifp->if_capabilities = 0;
410 }
411
412 /*
413 * Called when a parent interface is detaching; destroy any VLAN
414 * configuration for the parent interface.
415 */
416 void
417 vlan_ifdetach(struct ifnet *p)
418 {
419 struct ifvlan *ifv;
420 int s;
421
422 s = splnet();
423
424 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
425 ifv = LIST_NEXT(ifv, ifv_list)) {
426 if (ifv->ifv_p == p)
427 vlan_unconfig(&ifv->ifv_if);
428 }
429
430 splx(s);
431 }
432
433 static int
434 vlan_set_promisc(struct ifnet *ifp)
435 {
436 struct ifvlan *ifv = ifp->if_softc;
437 int error = 0;
438
439 if ((ifp->if_flags & IFF_PROMISC) != 0) {
440 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
441 error = ifpromisc(ifv->ifv_p, 1);
442 if (error == 0)
443 ifv->ifv_flags |= IFVF_PROMISC;
444 }
445 } else {
446 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
447 error = ifpromisc(ifv->ifv_p, 0);
448 if (error == 0)
449 ifv->ifv_flags &= ~IFVF_PROMISC;
450 }
451 }
452
453 return (error);
454 }
455
456 static int
457 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
458 {
459 struct lwp *l = curlwp; /* XXX */
460 struct ifvlan *ifv = ifp->if_softc;
461 struct ifaddr *ifa = (struct ifaddr *) data;
462 struct ifreq *ifr = (struct ifreq *) data;
463 struct ifnet *pr;
464 struct ifcapreq *ifcr;
465 struct vlanreq vlr;
466 int s, error = 0;
467
468 s = splnet();
469
470 switch (cmd) {
471 case SIOCINITIFADDR:
472 if (ifv->ifv_p != NULL) {
473 ifp->if_flags |= IFF_UP;
474
475 switch (ifa->ifa_addr->sa_family) {
476 #ifdef INET
477 case AF_INET:
478 arp_ifinit(ifp, ifa);
479 break;
480 #endif
481 default:
482 break;
483 }
484 } else {
485 error = EINVAL;
486 }
487 break;
488
489 case SIOCSIFMTU:
490 if (ifv->ifv_p == NULL)
491 error = EINVAL;
492 else if (
493 ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
494 ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
495 error = EINVAL;
496 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
497 error = 0;
498 break;
499
500 case SIOCSETVLAN:
501 if ((error = kauth_authorize_network(l->l_cred,
502 KAUTH_NETWORK_INTERFACE,
503 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
504 NULL)) != 0)
505 break;
506 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
507 break;
508 if (vlr.vlr_parent[0] == '\0') {
509 vlan_unconfig(ifp);
510 break;
511 }
512 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
513 error = EINVAL; /* check for valid tag */
514 break;
515 }
516 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
517 error = ENOENT;
518 break;
519 }
520 if ((error = vlan_config(ifv, pr)) != 0)
521 break;
522 ifv->ifv_tag = vlr.vlr_tag;
523 ifp->if_flags |= IFF_RUNNING;
524
525 /* Update promiscuous mode, if necessary. */
526 vlan_set_promisc(ifp);
527 break;
528
529 case SIOCGETVLAN:
530 memset(&vlr, 0, sizeof(vlr));
531 if (ifv->ifv_p != NULL) {
532 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
533 ifv->ifv_p->if_xname);
534 vlr.vlr_tag = ifv->ifv_tag;
535 }
536 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
537 break;
538
539 case SIOCSIFFLAGS:
540 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
541 break;
542 /*
543 * For promiscuous mode, we enable promiscuous mode on
544 * the parent if we need promiscuous on the VLAN interface.
545 */
546 if (ifv->ifv_p != NULL)
547 error = vlan_set_promisc(ifp);
548 break;
549
550 case SIOCADDMULTI:
551 error = (ifv->ifv_p != NULL) ?
552 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
553 break;
554
555 case SIOCDELMULTI:
556 error = (ifv->ifv_p != NULL) ?
557 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
558 break;
559
560 case SIOCSIFCAP:
561 ifcr = data;
562 /* make sure caps are enabled on parent */
563 if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) !=
564 ifcr->ifcr_capenable) {
565 error = EINVAL;
566 break;
567 }
568 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
569 error = 0;
570 break;
571 default:
572 error = ether_ioctl(ifp, cmd, data);
573 }
574
575 splx(s);
576
577 return (error);
578 }
579
580 static int
581 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
582 {
583 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
584 struct vlan_mc_entry *mc;
585 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
586 int error;
587
588 if (sa->sa_len > sizeof(struct sockaddr_storage))
589 return (EINVAL);
590
591 error = ether_addmulti(sa, &ifv->ifv_ec);
592 if (error != ENETRESET)
593 return (error);
594
595 /*
596 * This is new multicast address. We have to tell parent
597 * about it. Also, remember this multicast address so that
598 * we can delete them on unconfigure.
599 */
600 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
601 if (mc == NULL) {
602 error = ENOMEM;
603 goto alloc_failed;
604 }
605
606 /*
607 * As ether_addmulti() returns ENETRESET, following two
608 * statement shouldn't fail.
609 */
610 (void)ether_multiaddr(sa, addrlo, addrhi);
611 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
612 memcpy(&mc->mc_addr, sa, sa->sa_len);
613 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
614
615 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
616 (void *)ifr);
617 if (error != 0)
618 goto ioctl_failed;
619 return (error);
620
621 ioctl_failed:
622 LIST_REMOVE(mc, mc_entries);
623 free(mc, M_DEVBUF);
624 alloc_failed:
625 (void)ether_delmulti(sa, &ifv->ifv_ec);
626 return (error);
627 }
628
629 static int
630 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
631 {
632 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
633 struct ether_multi *enm;
634 struct vlan_mc_entry *mc;
635 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
636 int error;
637
638 /*
639 * Find a key to lookup vlan_mc_entry. We have to do this
640 * before calling ether_delmulti for obvious reason.
641 */
642 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
643 return (error);
644 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
645
646 error = ether_delmulti(sa, &ifv->ifv_ec);
647 if (error != ENETRESET)
648 return (error);
649
650 /* We no longer use this multicast address. Tell parent so. */
651 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
652 (void *)ifr);
653 if (error == 0) {
654 /* And forget about this address. */
655 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
656 mc = LIST_NEXT(mc, mc_entries)) {
657 if (mc->mc_enm == enm) {
658 LIST_REMOVE(mc, mc_entries);
659 free(mc, M_DEVBUF);
660 break;
661 }
662 }
663 KASSERT(mc != NULL);
664 } else
665 (void)ether_addmulti(sa, &ifv->ifv_ec);
666 return (error);
667 }
668
669 /*
670 * Delete any multicast address we have asked to add from parent
671 * interface. Called when the vlan is being unconfigured.
672 */
673 static void
674 vlan_ether_purgemulti(struct ifvlan *ifv)
675 {
676 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
677 struct vlan_mc_entry *mc;
678 union {
679 struct ifreq ifreq;
680 struct {
681 char ifr_name[IFNAMSIZ];
682 struct sockaddr_storage ifr_ss;
683 } ifreq_storage;
684 } ifreq;
685 struct ifreq *ifr = &ifreq.ifreq;
686
687 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
688 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
689 ifreq_setaddr(SIOCDELMULTI, ifr,
690 (const struct sockaddr *)&mc->mc_addr);
691 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (void *)ifr);
692 LIST_REMOVE(mc, mc_entries);
693 free(mc, M_DEVBUF);
694 }
695 }
696
697 static void
698 vlan_start(struct ifnet *ifp)
699 {
700 struct ifvlan *ifv = ifp->if_softc;
701 struct ifnet *p = ifv->ifv_p;
702 struct ethercom *ec = (void *) ifv->ifv_p;
703 struct mbuf *m;
704 int error;
705 ALTQ_DECL(struct altq_pktattr pktattr;)
706
707 ifp->if_flags |= IFF_OACTIVE;
708
709 for (;;) {
710 IFQ_DEQUEUE(&ifp->if_snd, m);
711 if (m == NULL)
712 break;
713
714 #ifdef ALTQ
715 /*
716 * If ALTQ is enabled on the parent interface, do
717 * classification; the queueing discipline might
718 * not require classification, but might require
719 * the address family/header pointer in the pktattr.
720 */
721 if (ALTQ_IS_ENABLED(&p->if_snd)) {
722 switch (p->if_type) {
723 case IFT_ETHER:
724 altq_etherclassify(&p->if_snd, m, &pktattr);
725 break;
726 #ifdef DIAGNOSTIC
727 default:
728 panic("vlan_start: impossible (altq)");
729 #endif
730 }
731 }
732 #endif /* ALTQ */
733
734 bpf_mtap(ifp, m);
735 /*
736 * If the parent can insert the tag itself, just mark
737 * the tag in the mbuf header.
738 */
739 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
740 struct m_tag *mtag;
741
742 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
743 M_NOWAIT);
744 if (mtag == NULL) {
745 ifp->if_oerrors++;
746 m_freem(m);
747 continue;
748 }
749 *(u_int *)(mtag + 1) = ifv->ifv_tag;
750 m_tag_prepend(m, mtag);
751 } else {
752 /*
753 * insert the tag ourselves
754 */
755 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
756 if (m == NULL) {
757 printf("%s: unable to prepend encap header",
758 ifv->ifv_p->if_xname);
759 ifp->if_oerrors++;
760 continue;
761 }
762
763 switch (p->if_type) {
764 case IFT_ETHER:
765 {
766 struct ether_vlan_header *evl;
767
768 if (m->m_len < sizeof(struct ether_vlan_header))
769 m = m_pullup(m,
770 sizeof(struct ether_vlan_header));
771 if (m == NULL) {
772 printf("%s: unable to pullup encap "
773 "header", ifv->ifv_p->if_xname);
774 ifp->if_oerrors++;
775 continue;
776 }
777
778 /*
779 * Transform the Ethernet header into an
780 * Ethernet header with 802.1Q encapsulation.
781 */
782 memmove(mtod(m, void *),
783 mtod(m, char *) + ifv->ifv_encaplen,
784 sizeof(struct ether_header));
785 evl = mtod(m, struct ether_vlan_header *);
786 evl->evl_proto = evl->evl_encap_proto;
787 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
788 evl->evl_tag = htons(ifv->ifv_tag);
789
790 /*
791 * To cater for VLAN-aware layer 2 ethernet
792 * switches which may need to strip the tag
793 * before forwarding the packet, make sure
794 * the packet+tag is at least 68 bytes long.
795 * This is necessary because our parent will
796 * only pad to 64 bytes (ETHER_MIN_LEN) and
797 * some switches will not pad by themselves
798 * after deleting a tag.
799 */
800 if (m->m_pkthdr.len <
801 (ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN)) {
802 m_copyback(m, m->m_pkthdr.len,
803 (ETHER_MIN_LEN +
804 ETHER_VLAN_ENCAP_LEN) -
805 m->m_pkthdr.len,
806 vlan_zero_pad_buff);
807 }
808 break;
809 }
810
811 #ifdef DIAGNOSTIC
812 default:
813 panic("vlan_start: impossible");
814 #endif
815 }
816 }
817
818 /*
819 * Send it, precisely as the parent's output routine
820 * would have. We are already running at splnet.
821 */
822 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
823 if (error) {
824 /* mbuf is already freed */
825 ifp->if_oerrors++;
826 continue;
827 }
828
829 ifp->if_opackets++;
830 if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
831 (*p->if_start)(p);
832 }
833
834 ifp->if_flags &= ~IFF_OACTIVE;
835 }
836
837 /*
838 * Given an Ethernet frame, find a valid vlan interface corresponding to the
839 * given source interface and tag, then run the real packet through the
840 * parent's input routine.
841 */
842 void
843 vlan_input(struct ifnet *ifp, struct mbuf *m)
844 {
845 struct ifvlan *ifv;
846 u_int tag;
847 struct m_tag *mtag;
848
849 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
850 if (mtag != NULL) {
851 /* m contains a normal ethernet frame, the tag is in mtag */
852 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
853 m_tag_delete(m, mtag);
854 } else {
855 switch (ifp->if_type) {
856 case IFT_ETHER:
857 {
858 struct ether_vlan_header *evl;
859
860 if (m->m_len < sizeof(struct ether_vlan_header) &&
861 (m = m_pullup(m,
862 sizeof(struct ether_vlan_header))) == NULL) {
863 printf("%s: no memory for VLAN header, "
864 "dropping packet.\n", ifp->if_xname);
865 return;
866 }
867 evl = mtod(m, struct ether_vlan_header *);
868 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
869
870 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
871
872 /*
873 * Restore the original ethertype. We'll remove
874 * the encapsulation after we've found the vlan
875 * interface corresponding to the tag.
876 */
877 evl->evl_encap_proto = evl->evl_proto;
878 break;
879 }
880
881 default:
882 tag = (u_int) -1; /* XXX GCC */
883 #ifdef DIAGNOSTIC
884 panic("vlan_input: impossible");
885 #endif
886 }
887 }
888
889 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
890 ifv = LIST_NEXT(ifv, ifv_list))
891 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
892 break;
893
894 if (ifv == NULL ||
895 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
896 (IFF_UP|IFF_RUNNING)) {
897 m_freem(m);
898 ifp->if_noproto++;
899 return;
900 }
901
902 /*
903 * Now, remove the encapsulation header. The original
904 * header has already been fixed up above.
905 */
906 if (mtag == NULL) {
907 memmove(mtod(m, char *) + ifv->ifv_encaplen,
908 mtod(m, void *), sizeof(struct ether_header));
909 m_adj(m, ifv->ifv_encaplen);
910 }
911
912 m->m_pkthdr.rcvif = &ifv->ifv_if;
913 ifv->ifv_if.if_ipackets++;
914
915 bpf_mtap(&ifv->ifv_if, m);
916
917 /* Pass it back through the parent's input routine. */
918 (*ifp->if_input)(&ifv->ifv_if, m);
919 }
920