if_vlan.c revision 1.59.2.1 1 /* $NetBSD: if_vlan.c,v 1.59.2.1 2008/10/19 22:17:41 haad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.59.2.1 2008/10/19 22:17:41 haad Exp $");
82
83 #include "opt_inet.h"
84 #include "bpfilter.h"
85
86 #include <sys/param.h>
87 #include <sys/kernel.h>
88 #include <sys/mbuf.h>
89 #include <sys/queue.h>
90 #include <sys/socket.h>
91 #include <sys/sockio.h>
92 #include <sys/systm.h>
93 #include <sys/proc.h>
94 #include <sys/kauth.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #endif
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_types.h>
102 #include <net/if_ether.h>
103 #include <net/if_vlanvar.h>
104
105 #ifdef INET
106 #include <netinet/in.h>
107 #include <netinet/if_inarp.h>
108 #endif
109
110 struct vlan_mc_entry {
111 LIST_ENTRY(vlan_mc_entry) mc_entries;
112 /*
113 * A key to identify this entry. The mc_addr below can't be
114 * used since multiple sockaddr may mapped into the same
115 * ether_multi (e.g., AF_UNSPEC).
116 */
117 union {
118 struct ether_multi *mcu_enm;
119 } mc_u;
120 struct sockaddr_storage mc_addr;
121 };
122
123 #define mc_enm mc_u.mcu_enm
124
125 struct ifvlan {
126 union {
127 struct ethercom ifvu_ec;
128 } ifv_u;
129 struct ifnet *ifv_p; /* parent interface of this vlan */
130 struct ifv_linkmib {
131 const struct vlan_multisw *ifvm_msw;
132 int ifvm_encaplen; /* encapsulation length */
133 int ifvm_mtufudge; /* MTU fudged by this much */
134 int ifvm_mintu; /* min transmission unit */
135 uint16_t ifvm_proto; /* encapsulation ethertype */
136 uint16_t ifvm_tag; /* tag to apply on packets */
137 } ifv_mib;
138 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
139 LIST_ENTRY(ifvlan) ifv_list;
140 int ifv_flags;
141 };
142
143 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
144
145 #define ifv_ec ifv_u.ifvu_ec
146
147 #define ifv_if ifv_ec.ec_if
148
149 #define ifv_msw ifv_mib.ifvm_msw
150 #define ifv_encaplen ifv_mib.ifvm_encaplen
151 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
152 #define ifv_mintu ifv_mib.ifvm_mintu
153 #define ifv_tag ifv_mib.ifvm_tag
154
155 struct vlan_multisw {
156 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
157 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
158 void (*vmsw_purgemulti)(struct ifvlan *);
159 };
160
161 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
162 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
163 static void vlan_ether_purgemulti(struct ifvlan *);
164
165 const struct vlan_multisw vlan_ether_multisw = {
166 vlan_ether_addmulti,
167 vlan_ether_delmulti,
168 vlan_ether_purgemulti,
169 };
170
171 static int vlan_clone_create(struct if_clone *, int);
172 static int vlan_clone_destroy(struct ifnet *);
173 static int vlan_config(struct ifvlan *, struct ifnet *);
174 static int vlan_ioctl(struct ifnet *, u_long, void *);
175 static void vlan_start(struct ifnet *);
176 static void vlan_unconfig(struct ifnet *);
177
178 void vlanattach(int);
179
180 /* XXX This should be a hash table with the tag as the basis of the key. */
181 static LIST_HEAD(, ifvlan) ifv_list;
182
183 struct if_clone vlan_cloner =
184 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
185
186 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
187 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
188
189 void
190 vlanattach(int n)
191 {
192
193 LIST_INIT(&ifv_list);
194 if_clone_attach(&vlan_cloner);
195 }
196
197 static void
198 vlan_reset_linkname(struct ifnet *ifp)
199 {
200
201 /*
202 * We start out with a "802.1Q VLAN" type and zero-length
203 * addresses. When we attach to a parent interface, we
204 * inherit its type, address length, address, and data link
205 * type.
206 */
207
208 ifp->if_type = IFT_L2VLAN;
209 ifp->if_addrlen = 0;
210 ifp->if_dlt = DLT_NULL;
211 if_alloc_sadl(ifp);
212 }
213
214 static int
215 vlan_clone_create(struct if_clone *ifc, int unit)
216 {
217 struct ifvlan *ifv;
218 struct ifnet *ifp;
219 int s;
220
221 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
222 ifp = &ifv->ifv_if;
223 LIST_INIT(&ifv->ifv_mc_listhead);
224
225 s = splnet();
226 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
227 splx(s);
228
229 if_initname(ifp, ifc->ifc_name, unit);
230 ifp->if_softc = ifv;
231 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
232 ifp->if_start = vlan_start;
233 ifp->if_ioctl = vlan_ioctl;
234 IFQ_SET_READY(&ifp->if_snd);
235
236 if_attach(ifp);
237 vlan_reset_linkname(ifp);
238
239 return (0);
240 }
241
242 static int
243 vlan_clone_destroy(struct ifnet *ifp)
244 {
245 struct ifvlan *ifv = ifp->if_softc;
246 int s;
247
248 s = splnet();
249 LIST_REMOVE(ifv, ifv_list);
250 vlan_unconfig(ifp);
251 splx(s);
252
253 if_detach(ifp);
254 free(ifv, M_DEVBUF);
255
256 return (0);
257 }
258
259 /*
260 * Configure a VLAN interface. Must be called at splnet().
261 */
262 static int
263 vlan_config(struct ifvlan *ifv, struct ifnet *p)
264 {
265 struct ifnet *ifp = &ifv->ifv_if;
266 int error;
267
268 if (ifv->ifv_p != NULL)
269 return (EBUSY);
270
271 switch (p->if_type) {
272 case IFT_ETHER:
273 {
274 struct ethercom *ec = (void *) p;
275
276 ifv->ifv_msw = &vlan_ether_multisw;
277 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
278 ifv->ifv_mintu = ETHERMIN;
279
280 /*
281 * If the parent supports the VLAN_MTU capability,
282 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
283 * enable it.
284 */
285 if (ec->ec_nvlans++ == 0 &&
286 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
287 /*
288 * Enable Tx/Rx of VLAN-sized frames.
289 */
290 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
291 if (p->if_flags & IFF_UP) {
292 struct ifreq ifr;
293
294 ifr.ifr_flags = p->if_flags;
295 error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
296 (void *) &ifr);
297 if (error) {
298 if (ec->ec_nvlans-- == 1)
299 ec->ec_capenable &=
300 ~ETHERCAP_VLAN_MTU;
301 return (error);
302 }
303 }
304 ifv->ifv_mtufudge = 0;
305 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
306 /*
307 * Fudge the MTU by the encapsulation size. This
308 * makes us incompatible with strictly compliant
309 * 802.1Q implementations, but allows us to use
310 * the feature with other NetBSD implementations,
311 * which might still be useful.
312 */
313 ifv->ifv_mtufudge = ifv->ifv_encaplen;
314 }
315
316 /*
317 * If the parent interface can do hardware-assisted
318 * VLAN encapsulation, then propagate its hardware-
319 * assisted checksumming flags.
320 */
321 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
322 ifp->if_capabilities = p->if_capabilities &
323 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
324 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
325 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
326 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
327 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
328
329 /*
330 * We inherit the parent's Ethernet address.
331 */
332 ether_ifattach(ifp, CLLADDR(p->if_sadl));
333 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
334 break;
335 }
336
337 default:
338 return (EPROTONOSUPPORT);
339 }
340
341 ifv->ifv_p = p;
342 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
343 ifv->ifv_if.if_flags = p->if_flags &
344 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
345
346 /*
347 * Inherit the if_type from the parent. This allows us
348 * to participate in bridges of that type.
349 */
350 ifv->ifv_if.if_type = p->if_type;
351
352 return (0);
353 }
354
355 /*
356 * Unconfigure a VLAN interface. Must be called at splnet().
357 */
358 static void
359 vlan_unconfig(struct ifnet *ifp)
360 {
361 struct ifvlan *ifv = ifp->if_softc;
362
363 if (ifv->ifv_p == NULL)
364 return;
365
366 /*
367 * Since the interface is being unconfigured, we need to empty the
368 * list of multicast groups that we may have joined while we were
369 * alive and remove them from the parent's list also.
370 */
371 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
372
373 /* Disconnect from parent. */
374 switch (ifv->ifv_p->if_type) {
375 case IFT_ETHER:
376 {
377 struct ethercom *ec = (void *) ifv->ifv_p;
378
379 if (ec->ec_nvlans-- == 1) {
380 /*
381 * Disable Tx/Rx of VLAN-sized frames.
382 */
383 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
384 if (ifv->ifv_p->if_flags & IFF_UP) {
385 struct ifreq ifr;
386
387 ifr.ifr_flags = ifv->ifv_p->if_flags;
388 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
389 SIOCSIFFLAGS, (void *) &ifr);
390 }
391 }
392
393 ether_ifdetach(ifp);
394 vlan_reset_linkname(ifp);
395 break;
396 }
397
398 #ifdef DIAGNOSTIC
399 default:
400 panic("vlan_unconfig: impossible");
401 #endif
402 }
403
404 ifv->ifv_p = NULL;
405 ifv->ifv_if.if_mtu = 0;
406 ifv->ifv_flags = 0;
407
408 if_down(ifp);
409 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
410 ifp->if_capabilities = 0;
411 }
412
413 /*
414 * Called when a parent interface is detaching; destroy any VLAN
415 * configuration for the parent interface.
416 */
417 void
418 vlan_ifdetach(struct ifnet *p)
419 {
420 struct ifvlan *ifv;
421 int s;
422
423 s = splnet();
424
425 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
426 ifv = LIST_NEXT(ifv, ifv_list)) {
427 if (ifv->ifv_p == p)
428 vlan_unconfig(&ifv->ifv_if);
429 }
430
431 splx(s);
432 }
433
434 static int
435 vlan_set_promisc(struct ifnet *ifp)
436 {
437 struct ifvlan *ifv = ifp->if_softc;
438 int error = 0;
439
440 if ((ifp->if_flags & IFF_PROMISC) != 0) {
441 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
442 error = ifpromisc(ifv->ifv_p, 1);
443 if (error == 0)
444 ifv->ifv_flags |= IFVF_PROMISC;
445 }
446 } else {
447 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
448 error = ifpromisc(ifv->ifv_p, 0);
449 if (error == 0)
450 ifv->ifv_flags &= ~IFVF_PROMISC;
451 }
452 }
453
454 return (error);
455 }
456
457 static int
458 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
459 {
460 struct lwp *l = curlwp; /* XXX */
461 struct ifvlan *ifv = ifp->if_softc;
462 struct ifaddr *ifa = (struct ifaddr *) data;
463 struct ifreq *ifr = (struct ifreq *) data;
464 struct ifnet *pr;
465 struct ifcapreq *ifcr;
466 struct vlanreq vlr;
467 struct sockaddr *sa;
468 int s, error = 0;
469
470 s = splnet();
471
472 switch (cmd) {
473 case SIOCSIFADDR:
474 if (ifv->ifv_p != NULL) {
475 ifp->if_flags |= IFF_UP;
476
477 switch (ifa->ifa_addr->sa_family) {
478 #ifdef INET
479 case AF_INET:
480 arp_ifinit(ifp, ifa);
481 break;
482 #endif
483 default:
484 break;
485 }
486 } else {
487 error = EINVAL;
488 }
489 break;
490
491 case SIOCGIFADDR:
492 sa = (struct sockaddr *)&ifr->ifr_data;
493 memcpy(sa->sa_data, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
494 break;
495
496 case SIOCSIFMTU:
497 if (ifv->ifv_p == NULL)
498 error = EINVAL;
499 else if (
500 ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
501 ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
502 error = EINVAL;
503 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
504 error = 0;
505 break;
506
507 case SIOCSETVLAN:
508 if ((error = kauth_authorize_network(l->l_cred,
509 KAUTH_NETWORK_INTERFACE,
510 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
511 NULL)) != 0)
512 break;
513 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
514 break;
515 if (vlr.vlr_parent[0] == '\0') {
516 vlan_unconfig(ifp);
517 break;
518 }
519 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
520 error = EINVAL; /* check for valid tag */
521 break;
522 }
523 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
524 error = ENOENT;
525 break;
526 }
527 if ((error = vlan_config(ifv, pr)) != 0)
528 break;
529 ifv->ifv_tag = vlr.vlr_tag;
530 ifp->if_flags |= IFF_RUNNING;
531
532 /* Update promiscuous mode, if necessary. */
533 vlan_set_promisc(ifp);
534 break;
535
536 case SIOCGETVLAN:
537 memset(&vlr, 0, sizeof(vlr));
538 if (ifv->ifv_p != NULL) {
539 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
540 ifv->ifv_p->if_xname);
541 vlr.vlr_tag = ifv->ifv_tag;
542 }
543 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
544 break;
545
546 case SIOCSIFFLAGS:
547 /*
548 * For promiscuous mode, we enable promiscuous mode on
549 * the parent if we need promiscuous on the VLAN interface.
550 */
551 if (ifv->ifv_p != NULL)
552 error = vlan_set_promisc(ifp);
553 break;
554
555 case SIOCADDMULTI:
556 error = (ifv->ifv_p != NULL) ?
557 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
558 break;
559
560 case SIOCDELMULTI:
561 error = (ifv->ifv_p != NULL) ?
562 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
563 break;
564
565 case SIOCSIFCAP:
566 ifcr = data;
567 /* make sure caps are enabled on parent */
568 if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) !=
569 ifcr->ifcr_capenable) {
570 error = EINVAL;
571 break;
572 }
573 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
574 error = 0;
575 break;
576 default:
577 error = EINVAL;
578 }
579
580 splx(s);
581
582 return (error);
583 }
584
585 static int
586 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
587 {
588 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
589 struct vlan_mc_entry *mc;
590 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
591 int error;
592
593 if (sa->sa_len > sizeof(struct sockaddr_storage))
594 return (EINVAL);
595
596 error = ether_addmulti(sa, &ifv->ifv_ec);
597 if (error != ENETRESET)
598 return (error);
599
600 /*
601 * This is new multicast address. We have to tell parent
602 * about it. Also, remember this multicast address so that
603 * we can delete them on unconfigure.
604 */
605 MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry),
606 M_DEVBUF, M_NOWAIT);
607 if (mc == NULL) {
608 error = ENOMEM;
609 goto alloc_failed;
610 }
611
612 /*
613 * As ether_addmulti() returns ENETRESET, following two
614 * statement shouldn't fail.
615 */
616 (void)ether_multiaddr(sa, addrlo, addrhi);
617 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
618 memcpy(&mc->mc_addr, sa, sa->sa_len);
619 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
620
621 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
622 (void *)ifr);
623 if (error != 0)
624 goto ioctl_failed;
625 return (error);
626
627 ioctl_failed:
628 LIST_REMOVE(mc, mc_entries);
629 FREE(mc, M_DEVBUF);
630 alloc_failed:
631 (void)ether_delmulti(sa, &ifv->ifv_ec);
632 return (error);
633 }
634
635 static int
636 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
637 {
638 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
639 struct ether_multi *enm;
640 struct vlan_mc_entry *mc;
641 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
642 int error;
643
644 /*
645 * Find a key to lookup vlan_mc_entry. We have to do this
646 * before calling ether_delmulti for obvious reason.
647 */
648 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
649 return (error);
650 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
651
652 error = ether_delmulti(sa, &ifv->ifv_ec);
653 if (error != ENETRESET)
654 return (error);
655
656 /* We no longer use this multicast address. Tell parent so. */
657 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
658 (void *)ifr);
659 if (error == 0) {
660 /* And forget about this address. */
661 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
662 mc = LIST_NEXT(mc, mc_entries)) {
663 if (mc->mc_enm == enm) {
664 LIST_REMOVE(mc, mc_entries);
665 FREE(mc, M_DEVBUF);
666 break;
667 }
668 }
669 KASSERT(mc != NULL);
670 } else
671 (void)ether_addmulti(sa, &ifv->ifv_ec);
672 return (error);
673 }
674
675 /*
676 * Delete any multicast address we have asked to add from parent
677 * interface. Called when the vlan is being unconfigured.
678 */
679 static void
680 vlan_ether_purgemulti(struct ifvlan *ifv)
681 {
682 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
683 struct vlan_mc_entry *mc;
684 union {
685 struct ifreq ifreq;
686 struct {
687 char ifr_name[IFNAMSIZ];
688 struct sockaddr_storage ifr_ss;
689 } ifreq_storage;
690 } ifreq;
691 struct ifreq *ifr = &ifreq.ifreq;
692
693 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
694 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
695 ifreq_setaddr(SIOCDELMULTI, ifr,
696 (const struct sockaddr *)&mc->mc_addr);
697 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (void *)ifr);
698 LIST_REMOVE(mc, mc_entries);
699 FREE(mc, M_DEVBUF);
700 }
701 }
702
703 static void
704 vlan_start(struct ifnet *ifp)
705 {
706 struct ifvlan *ifv = ifp->if_softc;
707 struct ifnet *p = ifv->ifv_p;
708 struct ethercom *ec = (void *) ifv->ifv_p;
709 struct mbuf *m;
710 int error;
711 ALTQ_DECL(struct altq_pktattr pktattr;)
712
713 ifp->if_flags |= IFF_OACTIVE;
714
715 for (;;) {
716 IFQ_DEQUEUE(&ifp->if_snd, m);
717 if (m == NULL)
718 break;
719
720 #ifdef ALTQ
721 /*
722 * If ALTQ is enabled on the parent interface, do
723 * classification; the queueing discipline might
724 * not require classification, but might require
725 * the address family/header pointer in the pktattr.
726 */
727 if (ALTQ_IS_ENABLED(&p->if_snd)) {
728 switch (p->if_type) {
729 case IFT_ETHER:
730 altq_etherclassify(&p->if_snd, m, &pktattr);
731 break;
732 #ifdef DIAGNOSTIC
733 default:
734 panic("vlan_start: impossible (altq)");
735 #endif
736 }
737 }
738 #endif /* ALTQ */
739
740 #if NBPFILTER > 0
741 if (ifp->if_bpf)
742 bpf_mtap(ifp->if_bpf, m);
743 #endif
744 /*
745 * If the parent can insert the tag itself, just mark
746 * the tag in the mbuf header.
747 */
748 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
749 struct m_tag *mtag;
750
751 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
752 M_NOWAIT);
753 if (mtag == NULL) {
754 ifp->if_oerrors++;
755 m_freem(m);
756 continue;
757 }
758 *(u_int *)(mtag + 1) = ifv->ifv_tag;
759 m_tag_prepend(m, mtag);
760 } else {
761 /*
762 * insert the tag ourselves
763 */
764 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
765 if (m == NULL) {
766 printf("%s: unable to prepend encap header",
767 ifv->ifv_p->if_xname);
768 ifp->if_oerrors++;
769 continue;
770 }
771
772 switch (p->if_type) {
773 case IFT_ETHER:
774 {
775 struct ether_vlan_header *evl;
776
777 if (m->m_len < sizeof(struct ether_vlan_header))
778 m = m_pullup(m,
779 sizeof(struct ether_vlan_header));
780 if (m == NULL) {
781 printf("%s: unable to pullup encap "
782 "header", ifv->ifv_p->if_xname);
783 ifp->if_oerrors++;
784 continue;
785 }
786
787 /*
788 * Transform the Ethernet header into an
789 * Ethernet header with 802.1Q encapsulation.
790 */
791 memmove(mtod(m, void *),
792 mtod(m, char *) + ifv->ifv_encaplen,
793 sizeof(struct ether_header));
794 evl = mtod(m, struct ether_vlan_header *);
795 evl->evl_proto = evl->evl_encap_proto;
796 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
797 evl->evl_tag = htons(ifv->ifv_tag);
798
799 /*
800 * To cater for VLAN-aware layer 2 ethernet
801 * switches which may need to strip the tag
802 * before forwarding the packet, make sure
803 * the packet+tag is at least 68 bytes long.
804 * This is necessary because our parent will
805 * only pad to 64 bytes (ETHER_MIN_LEN) and
806 * some switches will not pad by themselves
807 * after deleting a tag.
808 */
809 if (m->m_pkthdr.len <
810 (ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN)) {
811 m_copyback(m, m->m_pkthdr.len,
812 (ETHER_MIN_LEN +
813 ETHER_VLAN_ENCAP_LEN) -
814 m->m_pkthdr.len,
815 vlan_zero_pad_buff);
816 }
817 break;
818 }
819
820 #ifdef DIAGNOSTIC
821 default:
822 panic("vlan_start: impossible");
823 #endif
824 }
825 }
826
827 /*
828 * Send it, precisely as the parent's output routine
829 * would have. We are already running at splnet.
830 */
831 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
832 if (error) {
833 /* mbuf is already freed */
834 ifp->if_oerrors++;
835 continue;
836 }
837
838 ifp->if_opackets++;
839 if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
840 (*p->if_start)(p);
841 }
842
843 ifp->if_flags &= ~IFF_OACTIVE;
844 }
845
846 /*
847 * Given an Ethernet frame, find a valid vlan interface corresponding to the
848 * given source interface and tag, then run the real packet through the
849 * parent's input routine.
850 */
851 void
852 vlan_input(struct ifnet *ifp, struct mbuf *m)
853 {
854 struct ifvlan *ifv;
855 u_int tag;
856 struct m_tag *mtag;
857
858 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
859 if (mtag != NULL) {
860 /* m contains a normal ethernet frame, the tag is in mtag */
861 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
862 m_tag_delete(m, mtag);
863 } else {
864 switch (ifp->if_type) {
865 case IFT_ETHER:
866 {
867 struct ether_vlan_header *evl;
868
869 if (m->m_len < sizeof(struct ether_vlan_header) &&
870 (m = m_pullup(m,
871 sizeof(struct ether_vlan_header))) == NULL) {
872 printf("%s: no memory for VLAN header, "
873 "dropping packet.\n", ifp->if_xname);
874 return;
875 }
876 evl = mtod(m, struct ether_vlan_header *);
877 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
878
879 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
880
881 /*
882 * Restore the original ethertype. We'll remove
883 * the encapsulation after we've found the vlan
884 * interface corresponding to the tag.
885 */
886 evl->evl_encap_proto = evl->evl_proto;
887 break;
888 }
889
890 default:
891 tag = (u_int) -1; /* XXX GCC */
892 #ifdef DIAGNOSTIC
893 panic("vlan_input: impossible");
894 #endif
895 }
896 }
897
898 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
899 ifv = LIST_NEXT(ifv, ifv_list))
900 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
901 break;
902
903 if (ifv == NULL ||
904 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
905 (IFF_UP|IFF_RUNNING)) {
906 m_freem(m);
907 ifp->if_noproto++;
908 return;
909 }
910
911 /*
912 * Now, remove the encapsulation header. The original
913 * header has already been fixed up above.
914 */
915 if (mtag == NULL) {
916 memmove(mtod(m, char *) + ifv->ifv_encaplen,
917 mtod(m, void *), sizeof(struct ether_header));
918 m_adj(m, ifv->ifv_encaplen);
919 }
920
921 m->m_pkthdr.rcvif = &ifv->ifv_if;
922 ifv->ifv_if.if_ipackets++;
923
924 #if NBPFILTER > 0
925 if (ifv->ifv_if.if_bpf)
926 bpf_mtap(ifv->ifv_if.if_bpf, m);
927 #endif
928
929 /* Pass it back through the parent's input routine. */
930 (*ifp->if_input)(&ifv->ifv_if, m);
931 }
932