if_vlan.c revision 1.65.2.2 1 /* $NetBSD: if_vlan.c,v 1.65.2.2 2011/04/21 01:42:13 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.65.2.2 2011/04/21 01:42:13 rmind Exp $");
82
83 #include "opt_inet.h"
84
85 #include <sys/param.h>
86 #include <sys/kernel.h>
87 #include <sys/mbuf.h>
88 #include <sys/queue.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/systm.h>
92 #include <sys/proc.h>
93 #include <sys/kauth.h>
94
95 #include <net/bpf.h>
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/if_ether.h>
100 #include <net/if_vlanvar.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/if_inarp.h>
105 #endif
106
107 struct vlan_mc_entry {
108 LIST_ENTRY(vlan_mc_entry) mc_entries;
109 /*
110 * A key to identify this entry. The mc_addr below can't be
111 * used since multiple sockaddr may mapped into the same
112 * ether_multi (e.g., AF_UNSPEC).
113 */
114 union {
115 struct ether_multi *mcu_enm;
116 } mc_u;
117 struct sockaddr_storage mc_addr;
118 };
119
120 #define mc_enm mc_u.mcu_enm
121
122 struct ifvlan {
123 union {
124 struct ethercom ifvu_ec;
125 } ifv_u;
126 struct ifnet *ifv_p; /* parent interface of this vlan */
127 struct ifv_linkmib {
128 const struct vlan_multisw *ifvm_msw;
129 int ifvm_encaplen; /* encapsulation length */
130 int ifvm_mtufudge; /* MTU fudged by this much */
131 int ifvm_mintu; /* min transmission unit */
132 uint16_t ifvm_proto; /* encapsulation ethertype */
133 uint16_t ifvm_tag; /* tag to apply on packets */
134 } ifv_mib;
135 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
136 LIST_ENTRY(ifvlan) ifv_list;
137 int ifv_flags;
138 };
139
140 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
141
142 #define ifv_ec ifv_u.ifvu_ec
143
144 #define ifv_if ifv_ec.ec_if
145
146 #define ifv_msw ifv_mib.ifvm_msw
147 #define ifv_encaplen ifv_mib.ifvm_encaplen
148 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
149 #define ifv_mintu ifv_mib.ifvm_mintu
150 #define ifv_tag ifv_mib.ifvm_tag
151
152 struct vlan_multisw {
153 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
154 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
155 void (*vmsw_purgemulti)(struct ifvlan *);
156 };
157
158 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
159 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
160 static void vlan_ether_purgemulti(struct ifvlan *);
161
162 const struct vlan_multisw vlan_ether_multisw = {
163 vlan_ether_addmulti,
164 vlan_ether_delmulti,
165 vlan_ether_purgemulti,
166 };
167
168 static int vlan_clone_create(struct if_clone *, int);
169 static int vlan_clone_destroy(struct ifnet *);
170 static int vlan_config(struct ifvlan *, struct ifnet *);
171 static int vlan_ioctl(struct ifnet *, u_long, void *);
172 static void vlan_start(struct ifnet *);
173 static void vlan_unconfig(struct ifnet *);
174
175 void vlanattach(int);
176
177 /* XXX This should be a hash table with the tag as the basis of the key. */
178 static LIST_HEAD(, ifvlan) ifv_list;
179
180 struct if_clone vlan_cloner =
181 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
182
183 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
184 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
185
186 void
187 vlanattach(int n)
188 {
189
190 LIST_INIT(&ifv_list);
191 if_clone_attach(&vlan_cloner);
192 }
193
194 static void
195 vlan_reset_linkname(struct ifnet *ifp)
196 {
197
198 /*
199 * We start out with a "802.1Q VLAN" type and zero-length
200 * addresses. When we attach to a parent interface, we
201 * inherit its type, address length, address, and data link
202 * type.
203 */
204
205 ifp->if_type = IFT_L2VLAN;
206 ifp->if_addrlen = 0;
207 ifp->if_dlt = DLT_NULL;
208 if_alloc_sadl(ifp);
209 }
210
211 static int
212 vlan_clone_create(struct if_clone *ifc, int unit)
213 {
214 struct ifvlan *ifv;
215 struct ifnet *ifp;
216 int s;
217
218 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
219 ifp = &ifv->ifv_if;
220 LIST_INIT(&ifv->ifv_mc_listhead);
221
222 s = splnet();
223 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
224 splx(s);
225
226 if_initname(ifp, ifc->ifc_name, unit);
227 ifp->if_softc = ifv;
228 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
229 ifp->if_start = vlan_start;
230 ifp->if_ioctl = vlan_ioctl;
231 IFQ_SET_READY(&ifp->if_snd);
232
233 if_attach(ifp);
234 vlan_reset_linkname(ifp);
235
236 return (0);
237 }
238
239 static int
240 vlan_clone_destroy(struct ifnet *ifp)
241 {
242 struct ifvlan *ifv = ifp->if_softc;
243 int s;
244
245 s = splnet();
246 LIST_REMOVE(ifv, ifv_list);
247 vlan_unconfig(ifp);
248 splx(s);
249
250 if_detach(ifp);
251 free(ifv, M_DEVBUF);
252
253 return (0);
254 }
255
256 /*
257 * Configure a VLAN interface. Must be called at splnet().
258 */
259 static int
260 vlan_config(struct ifvlan *ifv, struct ifnet *p)
261 {
262 struct ifnet *ifp = &ifv->ifv_if;
263 int error;
264
265 if (ifv->ifv_p != NULL)
266 return (EBUSY);
267
268 switch (p->if_type) {
269 case IFT_ETHER:
270 {
271 struct ethercom *ec = (void *) p;
272
273 ifv->ifv_msw = &vlan_ether_multisw;
274 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
275 ifv->ifv_mintu = ETHERMIN;
276
277 /*
278 * If the parent supports the VLAN_MTU capability,
279 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
280 * enable it.
281 */
282 if (ec->ec_nvlans++ == 0 &&
283 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
284 /*
285 * Enable Tx/Rx of VLAN-sized frames.
286 */
287 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
288 if (p->if_flags & IFF_UP) {
289 struct ifreq ifr;
290
291 ifr.ifr_flags = p->if_flags;
292 error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
293 (void *) &ifr);
294 if (error) {
295 if (ec->ec_nvlans-- == 1)
296 ec->ec_capenable &=
297 ~ETHERCAP_VLAN_MTU;
298 return (error);
299 }
300 }
301 ifv->ifv_mtufudge = 0;
302 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
303 /*
304 * Fudge the MTU by the encapsulation size. This
305 * makes us incompatible with strictly compliant
306 * 802.1Q implementations, but allows us to use
307 * the feature with other NetBSD implementations,
308 * which might still be useful.
309 */
310 ifv->ifv_mtufudge = ifv->ifv_encaplen;
311 }
312
313 /*
314 * If the parent interface can do hardware-assisted
315 * VLAN encapsulation, then propagate its hardware-
316 * assisted checksumming flags and tcp segmentation
317 * offload.
318 */
319 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
320 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
321 ifp->if_capabilities = p->if_capabilities &
322 (IFCAP_TSOv4 | IFCAP_TSOv6 |
323 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
324 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
325 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
326 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
327 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
328 }
329 /*
330 * We inherit the parent's Ethernet address.
331 */
332 ether_ifattach(ifp, CLLADDR(p->if_sadl));
333 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
334 break;
335 }
336
337 default:
338 return (EPROTONOSUPPORT);
339 }
340
341 ifv->ifv_p = p;
342 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
343 ifv->ifv_if.if_flags = p->if_flags &
344 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
345
346 /*
347 * Inherit the if_type from the parent. This allows us
348 * to participate in bridges of that type.
349 */
350 ifv->ifv_if.if_type = p->if_type;
351
352 return (0);
353 }
354
355 /*
356 * Unconfigure a VLAN interface. Must be called at splnet().
357 */
358 static void
359 vlan_unconfig(struct ifnet *ifp)
360 {
361 struct ifvlan *ifv = ifp->if_softc;
362
363 if (ifv->ifv_p == NULL)
364 return;
365
366 /*
367 * Since the interface is being unconfigured, we need to empty the
368 * list of multicast groups that we may have joined while we were
369 * alive and remove them from the parent's list also.
370 */
371 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
372
373 /* Disconnect from parent. */
374 switch (ifv->ifv_p->if_type) {
375 case IFT_ETHER:
376 {
377 struct ethercom *ec = (void *) ifv->ifv_p;
378
379 if (ec->ec_nvlans-- == 1) {
380 /*
381 * Disable Tx/Rx of VLAN-sized frames.
382 */
383 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
384 if (ifv->ifv_p->if_flags & IFF_UP) {
385 struct ifreq ifr;
386
387 ifr.ifr_flags = ifv->ifv_p->if_flags;
388 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
389 SIOCSIFFLAGS, (void *) &ifr);
390 }
391 }
392
393 ether_ifdetach(ifp);
394 vlan_reset_linkname(ifp);
395 break;
396 }
397
398 #ifdef DIAGNOSTIC
399 default:
400 panic("vlan_unconfig: impossible");
401 #endif
402 }
403
404 ifv->ifv_p = NULL;
405 ifv->ifv_if.if_mtu = 0;
406 ifv->ifv_flags = 0;
407
408 if_down(ifp);
409 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
410 ifp->if_capabilities = 0;
411 }
412
413 /*
414 * Called when a parent interface is detaching; destroy any VLAN
415 * configuration for the parent interface.
416 */
417 void
418 vlan_ifdetach(struct ifnet *p)
419 {
420 struct ifvlan *ifv;
421 int s;
422
423 s = splnet();
424
425 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
426 ifv = LIST_NEXT(ifv, ifv_list)) {
427 if (ifv->ifv_p == p)
428 vlan_unconfig(&ifv->ifv_if);
429 }
430
431 splx(s);
432 }
433
434 static int
435 vlan_set_promisc(struct ifnet *ifp)
436 {
437 struct ifvlan *ifv = ifp->if_softc;
438 int error = 0;
439
440 if ((ifp->if_flags & IFF_PROMISC) != 0) {
441 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
442 error = ifpromisc(ifv->ifv_p, 1);
443 if (error == 0)
444 ifv->ifv_flags |= IFVF_PROMISC;
445 }
446 } else {
447 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
448 error = ifpromisc(ifv->ifv_p, 0);
449 if (error == 0)
450 ifv->ifv_flags &= ~IFVF_PROMISC;
451 }
452 }
453
454 return (error);
455 }
456
457 static int
458 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
459 {
460 struct lwp *l = curlwp; /* XXX */
461 struct ifvlan *ifv = ifp->if_softc;
462 struct ifaddr *ifa = (struct ifaddr *) data;
463 struct ifreq *ifr = (struct ifreq *) data;
464 struct ifnet *pr;
465 struct ifcapreq *ifcr;
466 struct vlanreq vlr;
467 int s, error = 0;
468
469 s = splnet();
470
471 switch (cmd) {
472 case SIOCINITIFADDR:
473 if (ifv->ifv_p != NULL) {
474 ifp->if_flags |= IFF_UP;
475
476 switch (ifa->ifa_addr->sa_family) {
477 #ifdef INET
478 case AF_INET:
479 arp_ifinit(ifp, ifa);
480 break;
481 #endif
482 default:
483 break;
484 }
485 } else {
486 error = EINVAL;
487 }
488 break;
489
490 case SIOCSIFMTU:
491 if (ifv->ifv_p == NULL)
492 error = EINVAL;
493 else if (
494 ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
495 ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
496 error = EINVAL;
497 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
498 error = 0;
499 break;
500
501 case SIOCSETVLAN:
502 if ((error = kauth_authorize_network(l->l_cred,
503 KAUTH_NETWORK_INTERFACE,
504 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
505 NULL)) != 0)
506 break;
507 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
508 break;
509 if (vlr.vlr_parent[0] == '\0') {
510 vlan_unconfig(ifp);
511 break;
512 }
513 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
514 error = EINVAL; /* check for valid tag */
515 break;
516 }
517 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
518 error = ENOENT;
519 break;
520 }
521 if ((error = vlan_config(ifv, pr)) != 0)
522 break;
523 ifv->ifv_tag = vlr.vlr_tag;
524 ifp->if_flags |= IFF_RUNNING;
525
526 /* Update promiscuous mode, if necessary. */
527 vlan_set_promisc(ifp);
528 break;
529
530 case SIOCGETVLAN:
531 memset(&vlr, 0, sizeof(vlr));
532 if (ifv->ifv_p != NULL) {
533 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
534 ifv->ifv_p->if_xname);
535 vlr.vlr_tag = ifv->ifv_tag;
536 }
537 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
538 break;
539
540 case SIOCSIFFLAGS:
541 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
542 break;
543 /*
544 * For promiscuous mode, we enable promiscuous mode on
545 * the parent if we need promiscuous on the VLAN interface.
546 */
547 if (ifv->ifv_p != NULL)
548 error = vlan_set_promisc(ifp);
549 break;
550
551 case SIOCADDMULTI:
552 error = (ifv->ifv_p != NULL) ?
553 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
554 break;
555
556 case SIOCDELMULTI:
557 error = (ifv->ifv_p != NULL) ?
558 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
559 break;
560
561 case SIOCSIFCAP:
562 ifcr = data;
563 /* make sure caps are enabled on parent */
564 if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) !=
565 ifcr->ifcr_capenable) {
566 error = EINVAL;
567 break;
568 }
569 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
570 error = 0;
571 break;
572 default:
573 error = ether_ioctl(ifp, cmd, data);
574 }
575
576 splx(s);
577
578 return (error);
579 }
580
581 static int
582 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
583 {
584 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
585 struct vlan_mc_entry *mc;
586 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
587 int error;
588
589 if (sa->sa_len > sizeof(struct sockaddr_storage))
590 return (EINVAL);
591
592 error = ether_addmulti(sa, &ifv->ifv_ec);
593 if (error != ENETRESET)
594 return (error);
595
596 /*
597 * This is new multicast address. We have to tell parent
598 * about it. Also, remember this multicast address so that
599 * we can delete them on unconfigure.
600 */
601 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
602 if (mc == NULL) {
603 error = ENOMEM;
604 goto alloc_failed;
605 }
606
607 /*
608 * As ether_addmulti() returns ENETRESET, following two
609 * statement shouldn't fail.
610 */
611 (void)ether_multiaddr(sa, addrlo, addrhi);
612 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
613 memcpy(&mc->mc_addr, sa, sa->sa_len);
614 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
615
616 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
617 (void *)ifr);
618 if (error != 0)
619 goto ioctl_failed;
620 return (error);
621
622 ioctl_failed:
623 LIST_REMOVE(mc, mc_entries);
624 free(mc, M_DEVBUF);
625 alloc_failed:
626 (void)ether_delmulti(sa, &ifv->ifv_ec);
627 return (error);
628 }
629
630 static int
631 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
632 {
633 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
634 struct ether_multi *enm;
635 struct vlan_mc_entry *mc;
636 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
637 int error;
638
639 /*
640 * Find a key to lookup vlan_mc_entry. We have to do this
641 * before calling ether_delmulti for obvious reason.
642 */
643 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
644 return (error);
645 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
646
647 error = ether_delmulti(sa, &ifv->ifv_ec);
648 if (error != ENETRESET)
649 return (error);
650
651 /* We no longer use this multicast address. Tell parent so. */
652 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
653 (void *)ifr);
654 if (error == 0) {
655 /* And forget about this address. */
656 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
657 mc = LIST_NEXT(mc, mc_entries)) {
658 if (mc->mc_enm == enm) {
659 LIST_REMOVE(mc, mc_entries);
660 free(mc, M_DEVBUF);
661 break;
662 }
663 }
664 KASSERT(mc != NULL);
665 } else
666 (void)ether_addmulti(sa, &ifv->ifv_ec);
667 return (error);
668 }
669
670 /*
671 * Delete any multicast address we have asked to add from parent
672 * interface. Called when the vlan is being unconfigured.
673 */
674 static void
675 vlan_ether_purgemulti(struct ifvlan *ifv)
676 {
677 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
678 struct vlan_mc_entry *mc;
679 union {
680 struct ifreq ifreq;
681 struct {
682 char ifr_name[IFNAMSIZ];
683 struct sockaddr_storage ifr_ss;
684 } ifreq_storage;
685 } ifreq;
686 struct ifreq *ifr = &ifreq.ifreq;
687
688 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
689 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
690 ifreq_setaddr(SIOCDELMULTI, ifr,
691 (const struct sockaddr *)&mc->mc_addr);
692 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (void *)ifr);
693 LIST_REMOVE(mc, mc_entries);
694 free(mc, M_DEVBUF);
695 }
696 }
697
698 static void
699 vlan_start(struct ifnet *ifp)
700 {
701 struct ifvlan *ifv = ifp->if_softc;
702 struct ifnet *p = ifv->ifv_p;
703 struct ethercom *ec = (void *) ifv->ifv_p;
704 struct mbuf *m;
705 int error;
706 ALTQ_DECL(struct altq_pktattr pktattr;)
707
708 ifp->if_flags |= IFF_OACTIVE;
709
710 for (;;) {
711 IFQ_DEQUEUE(&ifp->if_snd, m);
712 if (m == NULL)
713 break;
714
715 #ifdef ALTQ
716 /*
717 * If ALTQ is enabled on the parent interface, do
718 * classification; the queueing discipline might
719 * not require classification, but might require
720 * the address family/header pointer in the pktattr.
721 */
722 if (ALTQ_IS_ENABLED(&p->if_snd)) {
723 switch (p->if_type) {
724 case IFT_ETHER:
725 altq_etherclassify(&p->if_snd, m, &pktattr);
726 break;
727 #ifdef DIAGNOSTIC
728 default:
729 panic("vlan_start: impossible (altq)");
730 #endif
731 }
732 }
733 #endif /* ALTQ */
734
735 bpf_mtap(ifp, m);
736 /*
737 * If the parent can insert the tag itself, just mark
738 * the tag in the mbuf header.
739 */
740 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
741 struct m_tag *mtag;
742
743 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
744 M_NOWAIT);
745 if (mtag == NULL) {
746 ifp->if_oerrors++;
747 m_freem(m);
748 continue;
749 }
750 *(u_int *)(mtag + 1) = ifv->ifv_tag;
751 m_tag_prepend(m, mtag);
752 } else {
753 /*
754 * insert the tag ourselves
755 */
756 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
757 if (m == NULL) {
758 printf("%s: unable to prepend encap header",
759 ifv->ifv_p->if_xname);
760 ifp->if_oerrors++;
761 continue;
762 }
763
764 switch (p->if_type) {
765 case IFT_ETHER:
766 {
767 struct ether_vlan_header *evl;
768
769 if (m->m_len < sizeof(struct ether_vlan_header))
770 m = m_pullup(m,
771 sizeof(struct ether_vlan_header));
772 if (m == NULL) {
773 printf("%s: unable to pullup encap "
774 "header", ifv->ifv_p->if_xname);
775 ifp->if_oerrors++;
776 continue;
777 }
778
779 /*
780 * Transform the Ethernet header into an
781 * Ethernet header with 802.1Q encapsulation.
782 */
783 memmove(mtod(m, void *),
784 mtod(m, char *) + ifv->ifv_encaplen,
785 sizeof(struct ether_header));
786 evl = mtod(m, struct ether_vlan_header *);
787 evl->evl_proto = evl->evl_encap_proto;
788 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
789 evl->evl_tag = htons(ifv->ifv_tag);
790
791 /*
792 * To cater for VLAN-aware layer 2 ethernet
793 * switches which may need to strip the tag
794 * before forwarding the packet, make sure
795 * the packet+tag is at least 68 bytes long.
796 * This is necessary because our parent will
797 * only pad to 64 bytes (ETHER_MIN_LEN) and
798 * some switches will not pad by themselves
799 * after deleting a tag.
800 */
801 if (m->m_pkthdr.len <
802 (ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN)) {
803 m_copyback(m, m->m_pkthdr.len,
804 (ETHER_MIN_LEN +
805 ETHER_VLAN_ENCAP_LEN) -
806 m->m_pkthdr.len,
807 vlan_zero_pad_buff);
808 }
809 break;
810 }
811
812 #ifdef DIAGNOSTIC
813 default:
814 panic("vlan_start: impossible");
815 #endif
816 }
817 }
818
819 /*
820 * Send it, precisely as the parent's output routine
821 * would have. We are already running at splnet.
822 */
823 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
824 if (error) {
825 /* mbuf is already freed */
826 ifp->if_oerrors++;
827 continue;
828 }
829
830 ifp->if_opackets++;
831 if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
832 (*p->if_start)(p);
833 }
834
835 ifp->if_flags &= ~IFF_OACTIVE;
836 }
837
838 /*
839 * Given an Ethernet frame, find a valid vlan interface corresponding to the
840 * given source interface and tag, then run the real packet through the
841 * parent's input routine.
842 */
843 void
844 vlan_input(struct ifnet *ifp, struct mbuf *m)
845 {
846 struct ifvlan *ifv;
847 u_int tag;
848 struct m_tag *mtag;
849
850 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
851 if (mtag != NULL) {
852 /* m contains a normal ethernet frame, the tag is in mtag */
853 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
854 m_tag_delete(m, mtag);
855 } else {
856 switch (ifp->if_type) {
857 case IFT_ETHER:
858 {
859 struct ether_vlan_header *evl;
860
861 if (m->m_len < sizeof(struct ether_vlan_header) &&
862 (m = m_pullup(m,
863 sizeof(struct ether_vlan_header))) == NULL) {
864 printf("%s: no memory for VLAN header, "
865 "dropping packet.\n", ifp->if_xname);
866 return;
867 }
868 evl = mtod(m, struct ether_vlan_header *);
869 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
870
871 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
872
873 /*
874 * Restore the original ethertype. We'll remove
875 * the encapsulation after we've found the vlan
876 * interface corresponding to the tag.
877 */
878 evl->evl_encap_proto = evl->evl_proto;
879 break;
880 }
881
882 default:
883 tag = (u_int) -1; /* XXX GCC */
884 #ifdef DIAGNOSTIC
885 panic("vlan_input: impossible");
886 #endif
887 }
888 }
889
890 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
891 ifv = LIST_NEXT(ifv, ifv_list))
892 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
893 break;
894
895 if (ifv == NULL ||
896 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
897 (IFF_UP|IFF_RUNNING)) {
898 m_freem(m);
899 ifp->if_noproto++;
900 return;
901 }
902
903 /*
904 * Now, remove the encapsulation header. The original
905 * header has already been fixed up above.
906 */
907 if (mtag == NULL) {
908 memmove(mtod(m, char *) + ifv->ifv_encaplen,
909 mtod(m, void *), sizeof(struct ether_header));
910 m_adj(m, ifv->ifv_encaplen);
911 }
912
913 m->m_pkthdr.rcvif = &ifv->ifv_if;
914 ifv->ifv_if.if_ipackets++;
915
916 bpf_mtap(&ifv->ifv_if, m);
917
918 /* Pass it back through the parent's input routine. */
919 (*ifp->if_input)(&ifv->ifv_if, m);
920 }
921