Home | History | Annotate | Line # | Download | only in net
if_vlan.c revision 1.69.12.2
      1 /*	$NetBSD: if_vlan.c,v 1.69.12.2 2017/12/03 11:39:02 jdolecek Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright 1998 Massachusetts Institute of Technology
     34  *
     35  * Permission to use, copy, modify, and distribute this software and
     36  * its documentation for any purpose and without fee is hereby
     37  * granted, provided that both the above copyright notice and this
     38  * permission notice appear in all copies, that both the above
     39  * copyright notice and this permission notice appear in all
     40  * supporting documentation, and that the name of M.I.T. not be used
     41  * in advertising or publicity pertaining to distribution of the
     42  * software without specific, written prior permission.  M.I.T. makes
     43  * no representations about the suitability of this software for any
     44  * purpose.  It is provided "as is" without express or implied
     45  * warranty.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
     48  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
     49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
     51  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     53  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
     54  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     55  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     56  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     57  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
     61  * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
     62  */
     63 
     64 /*
     65  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.  Might be
     66  * extended some day to also handle IEEE 802.1P priority tagging.  This is
     67  * sort of sneaky in the implementation, since we need to pretend to be
     68  * enough of an Ethernet implementation to make ARP work.  The way we do
     69  * this is by telling everyone that we are an Ethernet interface, and then
     70  * catch the packets that ether_output() left on our output queue when it
     71  * calls if_start(), rewrite them for use by the real outgoing interface,
     72  * and ask it to send them.
     73  *
     74  * TODO:
     75  *
     76  *	- Need some way to notify vlan interfaces when the parent
     77  *	  interface changes MTU.
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.69.12.2 2017/12/03 11:39:02 jdolecek Exp $");
     82 
     83 #ifdef _KERNEL_OPT
     84 #include "opt_inet.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/kernel.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/queue.h>
     92 #include <sys/socket.h>
     93 #include <sys/sockio.h>
     94 #include <sys/systm.h>
     95 #include <sys/proc.h>
     96 #include <sys/kauth.h>
     97 #include <sys/mutex.h>
     98 #include <sys/kmem.h>
     99 #include <sys/cpu.h>
    100 #include <sys/pserialize.h>
    101 #include <sys/psref.h>
    102 #include <sys/pslist.h>
    103 #include <sys/atomic.h>
    104 #include <sys/device.h>
    105 #include <sys/module.h>
    106 
    107 #include <net/bpf.h>
    108 #include <net/if.h>
    109 #include <net/if_dl.h>
    110 #include <net/if_types.h>
    111 #include <net/if_ether.h>
    112 #include <net/if_vlanvar.h>
    113 
    114 #ifdef INET
    115 #include <netinet/in.h>
    116 #include <netinet/if_inarp.h>
    117 #endif
    118 #ifdef INET6
    119 #include <netinet6/in6_ifattach.h>
    120 #include <netinet6/in6_var.h>
    121 #endif
    122 
    123 #include "ioconf.h"
    124 
    125 struct vlan_mc_entry {
    126 	LIST_ENTRY(vlan_mc_entry)	mc_entries;
    127 	/*
    128 	 * A key to identify this entry.  The mc_addr below can't be
    129 	 * used since multiple sockaddr may mapped into the same
    130 	 * ether_multi (e.g., AF_UNSPEC).
    131 	 */
    132 	union {
    133 		struct ether_multi	*mcu_enm;
    134 	} mc_u;
    135 	struct sockaddr_storage		mc_addr;
    136 };
    137 
    138 #define	mc_enm		mc_u.mcu_enm
    139 
    140 
    141 struct ifvlan_linkmib {
    142 	struct ifvlan *ifvm_ifvlan;
    143 	const struct vlan_multisw *ifvm_msw;
    144 	int	ifvm_encaplen;	/* encapsulation length */
    145 	int	ifvm_mtufudge;	/* MTU fudged by this much */
    146 	int	ifvm_mintu;	/* min transmission unit */
    147 	uint16_t ifvm_proto;	/* encapsulation ethertype */
    148 	uint16_t ifvm_tag;	/* tag to apply on packets */
    149 	struct ifnet *ifvm_p;		/* parent interface of this vlan */
    150 
    151 	struct psref_target ifvm_psref;
    152 };
    153 
    154 struct ifvlan {
    155 	union {
    156 		struct ethercom ifvu_ec;
    157 	} ifv_u;
    158 	struct ifvlan_linkmib *ifv_mib;	/*
    159 					 * reader must use vlan_getref_linkmib()
    160 					 * instead of direct dereference
    161 					 */
    162 	kmutex_t ifv_lock;		/* writer lock for ifv_mib */
    163 
    164 	LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
    165 	LIST_ENTRY(ifvlan) ifv_list;
    166 	struct pslist_entry ifv_hash;
    167 	int ifv_flags;
    168 };
    169 
    170 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
    171 
    172 #define	ifv_ec		ifv_u.ifvu_ec
    173 
    174 #define	ifv_if		ifv_ec.ec_if
    175 
    176 #define	ifv_msw		ifv_mib.ifvm_msw
    177 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
    178 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
    179 #define	ifv_mintu	ifv_mib.ifvm_mintu
    180 #define	ifv_tag		ifv_mib.ifvm_tag
    181 
    182 struct vlan_multisw {
    183 	int	(*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
    184 	int	(*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
    185 	void	(*vmsw_purgemulti)(struct ifvlan *);
    186 };
    187 
    188 static int	vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
    189 static int	vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
    190 static void	vlan_ether_purgemulti(struct ifvlan *);
    191 
    192 const struct vlan_multisw vlan_ether_multisw = {
    193 	vlan_ether_addmulti,
    194 	vlan_ether_delmulti,
    195 	vlan_ether_purgemulti,
    196 };
    197 
    198 static int	vlan_clone_create(struct if_clone *, int);
    199 static int	vlan_clone_destroy(struct ifnet *);
    200 static int	vlan_config(struct ifvlan *, struct ifnet *,
    201     uint16_t);
    202 static int	vlan_ioctl(struct ifnet *, u_long, void *);
    203 static void	vlan_start(struct ifnet *);
    204 static int	vlan_transmit(struct ifnet *, struct mbuf *);
    205 static void	vlan_unconfig(struct ifnet *);
    206 static int	vlan_unconfig_locked(struct ifvlan *,
    207     struct ifvlan_linkmib *);
    208 static void	vlan_hash_init(void);
    209 static int	vlan_hash_fini(void);
    210 static int	vlan_tag_hash(uint16_t, u_long);
    211 static struct ifvlan_linkmib*	vlan_getref_linkmib(struct ifvlan *,
    212     struct psref *);
    213 static void	vlan_putref_linkmib(struct ifvlan_linkmib *,
    214     struct psref *);
    215 static void	vlan_linkmib_update(struct ifvlan *,
    216     struct ifvlan_linkmib *);
    217 static struct ifvlan_linkmib*	vlan_lookup_tag_psref(struct ifnet *,
    218     uint16_t, struct psref *);
    219 
    220 LIST_HEAD(vlan_ifvlist, ifvlan);
    221 static struct {
    222 	kmutex_t lock;
    223 	struct vlan_ifvlist list;
    224 } ifv_list __cacheline_aligned;
    225 
    226 
    227 #if !defined(VLAN_TAG_HASH_SIZE)
    228 #define VLAN_TAG_HASH_SIZE 32
    229 #endif
    230 static struct {
    231 	kmutex_t lock;
    232 	struct pslist_head *lists;
    233 	u_long mask;
    234 } ifv_hash __cacheline_aligned = {
    235 	.lists = NULL,
    236 	.mask = 0,
    237 };
    238 
    239 pserialize_t vlan_psz __read_mostly;
    240 static struct psref_class *ifvm_psref_class __read_mostly;
    241 
    242 struct if_clone vlan_cloner =
    243     IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
    244 
    245 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
    246 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
    247 
    248 static inline int
    249 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
    250 {
    251 	int e;
    252 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
    253 	e = ifpromisc(ifp, pswitch);
    254 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
    255 	return e;
    256 }
    257 
    258 void
    259 vlanattach(int n)
    260 {
    261 
    262 	/*
    263 	 * Nothing to do here, initialization is handled by the
    264 	 * module initialization code in vlaninit() below).
    265 	 */
    266 }
    267 
    268 static void
    269 vlaninit(void)
    270 {
    271 	mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
    272 	LIST_INIT(&ifv_list.list);
    273 
    274 	mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
    275 	vlan_psz = pserialize_create();
    276 	ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
    277 	if_clone_attach(&vlan_cloner);
    278 
    279 	vlan_hash_init();
    280 }
    281 
    282 static int
    283 vlandetach(void)
    284 {
    285 	int error = 0;
    286 
    287 	mutex_enter(&ifv_list.lock);
    288 	if (!LIST_EMPTY(&ifv_list.list)) {
    289 		mutex_exit(&ifv_list.lock);
    290 		return EBUSY;
    291 	}
    292 	mutex_exit(&ifv_list.lock);
    293 
    294 	error = vlan_hash_fini();
    295 	if (error != 0)
    296 		return error;
    297 
    298 	if_clone_detach(&vlan_cloner);
    299 	psref_class_destroy(ifvm_psref_class);
    300 	pserialize_destroy(vlan_psz);
    301 	mutex_destroy(&ifv_hash.lock);
    302 	mutex_destroy(&ifv_list.lock);
    303 
    304 	return 0;
    305 }
    306 
    307 static void
    308 vlan_reset_linkname(struct ifnet *ifp)
    309 {
    310 
    311 	/*
    312 	 * We start out with a "802.1Q VLAN" type and zero-length
    313 	 * addresses.  When we attach to a parent interface, we
    314 	 * inherit its type, address length, address, and data link
    315 	 * type.
    316 	 */
    317 
    318 	ifp->if_type = IFT_L2VLAN;
    319 	ifp->if_addrlen = 0;
    320 	ifp->if_dlt = DLT_NULL;
    321 	if_alloc_sadl(ifp);
    322 }
    323 
    324 static int
    325 vlan_clone_create(struct if_clone *ifc, int unit)
    326 {
    327 	struct ifvlan *ifv;
    328 	struct ifnet *ifp;
    329 	struct ifvlan_linkmib *mib;
    330 	int rv;
    331 
    332 	ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
    333 	mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
    334 	ifp = &ifv->ifv_if;
    335 	LIST_INIT(&ifv->ifv_mc_listhead);
    336 
    337 	mib->ifvm_ifvlan = ifv;
    338 	mib->ifvm_p = NULL;
    339 	psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
    340 
    341 	mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
    342 	ifv->ifv_mib = mib;
    343 
    344 	mutex_enter(&ifv_list.lock);
    345 	LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
    346 	mutex_exit(&ifv_list.lock);
    347 
    348 	if_initname(ifp, ifc->ifc_name, unit);
    349 	ifp->if_softc = ifv;
    350 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    351 	ifp->if_extflags = IFEF_MPSAFE | IFEF_NO_LINK_STATE_CHANGE;
    352 	ifp->if_start = vlan_start;
    353 	ifp->if_transmit = vlan_transmit;
    354 	ifp->if_ioctl = vlan_ioctl;
    355 	IFQ_SET_READY(&ifp->if_snd);
    356 
    357 	rv = if_initialize(ifp);
    358 	if (rv != 0) {
    359 		aprint_error("%s: if_initialize failed(%d)\n", ifp->if_xname,
    360 		    rv);
    361 		goto fail;
    362 	}
    363 
    364 	vlan_reset_linkname(ifp);
    365 	if_register(ifp);
    366 	return 0;
    367 
    368 fail:
    369 	mutex_enter(&ifv_list.lock);
    370 	LIST_REMOVE(ifv, ifv_list);
    371 	mutex_exit(&ifv_list.lock);
    372 
    373 	mutex_destroy(&ifv->ifv_lock);
    374 	psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
    375 	kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
    376 	free(ifv, M_DEVBUF);
    377 
    378 	return rv;
    379 }
    380 
    381 static int
    382 vlan_clone_destroy(struct ifnet *ifp)
    383 {
    384 	struct ifvlan *ifv = ifp->if_softc;
    385 
    386 	mutex_enter(&ifv_list.lock);
    387 	LIST_REMOVE(ifv, ifv_list);
    388 	mutex_exit(&ifv_list.lock);
    389 
    390 	vlan_unconfig(ifp);
    391 	if_detach(ifp);
    392 
    393 	psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
    394 	kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
    395 	mutex_destroy(&ifv->ifv_lock);
    396 	free(ifv, M_DEVBUF);
    397 
    398 	return (0);
    399 }
    400 
    401 /*
    402  * Configure a VLAN interface.
    403  */
    404 static int
    405 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
    406 {
    407 	struct ifnet *ifp = &ifv->ifv_if;
    408 	struct ifvlan_linkmib *nmib = NULL;
    409 	struct ifvlan_linkmib *omib = NULL;
    410 	struct ifvlan_linkmib *checkmib = NULL;
    411 	struct psref_target *nmib_psref = NULL;
    412 	uint16_t vid = EVL_VLANOFTAG(tag);
    413 	int error = 0;
    414 	int idx;
    415 	bool omib_cleanup = false;
    416 	struct psref psref;
    417 
    418 	/* VLAN ID 0 and 4095 are reserved in the spec */
    419 	if ((vid == 0) || (vid == 0xfff))
    420 		return EINVAL;
    421 
    422 	nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
    423 
    424 	mutex_enter(&ifv->ifv_lock);
    425 	omib = ifv->ifv_mib;
    426 
    427 	if (omib->ifvm_p != NULL) {
    428 		error = EBUSY;
    429 		goto done;
    430 	}
    431 
    432 	/* Duplicate check */
    433 	checkmib = vlan_lookup_tag_psref(p, vid, &psref);
    434 	if (checkmib != NULL) {
    435 		vlan_putref_linkmib(checkmib, &psref);
    436 		error = EEXIST;
    437 		goto done;
    438 	}
    439 
    440 	*nmib = *omib;
    441 	nmib_psref = &nmib->ifvm_psref;
    442 
    443 	psref_target_init(nmib_psref, ifvm_psref_class);
    444 
    445 	switch (p->if_type) {
    446 	case IFT_ETHER:
    447 	    {
    448 		struct ethercom *ec = (void *) p;
    449 		nmib->ifvm_msw = &vlan_ether_multisw;
    450 		nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
    451 		nmib->ifvm_mintu = ETHERMIN;
    452 
    453 		if (ec->ec_nvlans++ == 0) {
    454 			if ((error = ether_enable_vlan_mtu(p)) >= 0) {
    455 				if (error) {
    456 					ec->ec_nvlans--;
    457 					goto done;
    458 				}
    459 				nmib->ifvm_mtufudge = 0;
    460 			} else {
    461 				/*
    462 				 * Fudge the MTU by the encapsulation size. This
    463 				 * makes us incompatible with strictly compliant
    464 				 * 802.1Q implementations, but allows us to use
    465 				 * the feature with other NetBSD
    466 				 * implementations, which might still be useful.
    467 				 */
    468 				nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
    469 			}
    470 			error = 0;
    471 		}
    472 
    473 		/*
    474 		 * If the parent interface can do hardware-assisted
    475 		 * VLAN encapsulation, then propagate its hardware-
    476 		 * assisted checksumming flags and tcp segmentation
    477 		 * offload.
    478 		 */
    479 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
    480 		        ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    481 			ifp->if_capabilities = p->if_capabilities &
    482 			    (IFCAP_TSOv4 | IFCAP_TSOv6 |
    483 			     IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
    484 			     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
    485 			     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
    486 			     IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
    487 			     IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
    488                 }
    489 		/*
    490 		 * We inherit the parent's Ethernet address.
    491 		 */
    492 		ether_ifattach(ifp, CLLADDR(p->if_sadl));
    493 		ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
    494 		break;
    495 	    }
    496 
    497 	default:
    498 		error = EPROTONOSUPPORT;
    499 		goto done;
    500 	}
    501 
    502 	nmib->ifvm_p = p;
    503 	nmib->ifvm_tag = vid;
    504 	ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
    505 	ifv->ifv_if.if_flags = p->if_flags &
    506 	    (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
    507 
    508 	/*
    509 	 * Inherit the if_type from the parent.  This allows us
    510 	 * to participate in bridges of that type.
    511 	 */
    512 	ifv->ifv_if.if_type = p->if_type;
    513 
    514 	PSLIST_ENTRY_INIT(ifv, ifv_hash);
    515 	idx = vlan_tag_hash(vid, ifv_hash.mask);
    516 
    517 	mutex_enter(&ifv_hash.lock);
    518 	PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
    519 	mutex_exit(&ifv_hash.lock);
    520 
    521 	vlan_linkmib_update(ifv, nmib);
    522 	nmib = NULL;
    523 	nmib_psref = NULL;
    524 	omib_cleanup = true;
    525 
    526 done:
    527 	mutex_exit(&ifv->ifv_lock);
    528 
    529 	if (nmib_psref)
    530 		psref_target_destroy(nmib_psref, ifvm_psref_class);
    531 
    532 	if (nmib)
    533 		kmem_free(nmib, sizeof(*nmib));
    534 
    535 	if (omib_cleanup)
    536 		kmem_free(omib, sizeof(*omib));
    537 
    538 	return error;
    539 }
    540 
    541 /*
    542  * Unconfigure a VLAN interface.
    543  */
    544 static void
    545 vlan_unconfig(struct ifnet *ifp)
    546 {
    547 	struct ifvlan *ifv = ifp->if_softc;
    548 	struct ifvlan_linkmib *nmib = NULL;
    549 	int error;
    550 
    551 	nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
    552 
    553 	mutex_enter(&ifv->ifv_lock);
    554 	error = vlan_unconfig_locked(ifv, nmib);
    555 	mutex_exit(&ifv->ifv_lock);
    556 
    557 	if (error)
    558 		kmem_free(nmib, sizeof(*nmib));
    559 }
    560 static int
    561 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
    562 {
    563 	struct ifnet *p;
    564 	struct ifnet *ifp = &ifv->ifv_if;
    565 	struct psref_target *nmib_psref = NULL;
    566 	struct ifvlan_linkmib *omib;
    567 	int error = 0;
    568 
    569 	KASSERT(mutex_owned(&ifv->ifv_lock));
    570 
    571 	omib = ifv->ifv_mib;
    572 	p = omib->ifvm_p;
    573 
    574 	if (p == NULL) {
    575 		error = -1;
    576 		goto done;
    577 	}
    578 
    579 	*nmib = *omib;
    580 	nmib_psref = &nmib->ifvm_psref;
    581 	psref_target_init(nmib_psref, ifvm_psref_class);
    582 
    583 	/*
    584  	 * Since the interface is being unconfigured, we need to empty the
    585 	 * list of multicast groups that we may have joined while we were
    586 	 * alive and remove them from the parent's list also.
    587 	 */
    588 	(*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
    589 
    590 	/* Disconnect from parent. */
    591 	switch (p->if_type) {
    592 	case IFT_ETHER:
    593 	    {
    594 		struct ethercom *ec = (void *)p;
    595 		if (--ec->ec_nvlans == 0)
    596 			(void)ether_disable_vlan_mtu(p);
    597 
    598 		ether_ifdetach(ifp);
    599 		/* Restore vlan_ioctl overwritten by ether_ifdetach */
    600 		ifp->if_ioctl = vlan_ioctl;
    601 		vlan_reset_linkname(ifp);
    602 		break;
    603 	    }
    604 
    605 #ifdef DIAGNOSTIC
    606 	default:
    607 		panic("vlan_unconfig: impossible");
    608 #endif
    609 	}
    610 
    611 	nmib->ifvm_p = NULL;
    612 	ifv->ifv_if.if_mtu = 0;
    613 	ifv->ifv_flags = 0;
    614 
    615 	mutex_enter(&ifv_hash.lock);
    616 	PSLIST_WRITER_REMOVE(ifv, ifv_hash);
    617 	pserialize_perform(vlan_psz);
    618 	mutex_exit(&ifv_hash.lock);
    619 	PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
    620 
    621 	vlan_linkmib_update(ifv, nmib);
    622 
    623 	mutex_exit(&ifv->ifv_lock);
    624 
    625 	nmib_psref = NULL;
    626 	kmem_free(omib, sizeof(*omib));
    627 
    628 #ifdef INET6
    629 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
    630 	/* To delete v6 link local addresses */
    631 	if (in6_present)
    632 		in6_ifdetach(ifp);
    633 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
    634 #endif
    635 
    636 	if ((ifp->if_flags & IFF_PROMISC) != 0)
    637 		vlan_safe_ifpromisc(ifp, 0);
    638 	if_down(ifp);
    639 	ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
    640 	ifp->if_capabilities = 0;
    641 	mutex_enter(&ifv->ifv_lock);
    642 done:
    643 
    644 	if (nmib_psref)
    645 		psref_target_destroy(nmib_psref, ifvm_psref_class);
    646 
    647 	return error;
    648 }
    649 
    650 static void
    651 vlan_hash_init(void)
    652 {
    653 
    654 	ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
    655 	    &ifv_hash.mask);
    656 }
    657 
    658 static int
    659 vlan_hash_fini(void)
    660 {
    661 	int i;
    662 
    663 	mutex_enter(&ifv_hash.lock);
    664 
    665 	for (i = 0; i < ifv_hash.mask + 1; i++) {
    666 		if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
    667 		    ifv_hash) != NULL) {
    668 			mutex_exit(&ifv_hash.lock);
    669 			return EBUSY;
    670 		}
    671 	}
    672 
    673 	for (i = 0; i < ifv_hash.mask + 1; i++)
    674 		PSLIST_DESTROY(&ifv_hash.lists[i]);
    675 
    676 	mutex_exit(&ifv_hash.lock);
    677 
    678 	hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
    679 
    680 	ifv_hash.lists = NULL;
    681 	ifv_hash.mask = 0;
    682 
    683 	return 0;
    684 }
    685 
    686 static int
    687 vlan_tag_hash(uint16_t tag, u_long mask)
    688 {
    689 	uint32_t hash;
    690 
    691 	hash = (tag >> 8) ^ tag;
    692 	hash = (hash >> 2) ^ hash;
    693 
    694 	return hash & mask;
    695 }
    696 
    697 static struct ifvlan_linkmib *
    698 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
    699 {
    700 	struct ifvlan_linkmib *mib;
    701 	int s;
    702 
    703 	s = pserialize_read_enter();
    704 	mib = sc->ifv_mib;
    705 	if (mib == NULL) {
    706 		pserialize_read_exit(s);
    707 		return NULL;
    708 	}
    709 	membar_datadep_consumer();
    710 	psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
    711 	pserialize_read_exit(s);
    712 
    713 	return mib;
    714 }
    715 
    716 static void
    717 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
    718 {
    719 	if (mib == NULL)
    720 		return;
    721 	psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
    722 }
    723 
    724 static struct ifvlan_linkmib *
    725 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
    726 {
    727 	int idx;
    728 	int s;
    729 	struct ifvlan *sc;
    730 
    731 	idx = vlan_tag_hash(tag, ifv_hash.mask);
    732 
    733 	s = pserialize_read_enter();
    734 	PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
    735 	    ifv_hash) {
    736 		struct ifvlan_linkmib *mib = sc->ifv_mib;
    737 		if (mib == NULL)
    738 			continue;
    739 		if (mib->ifvm_tag != tag)
    740 			continue;
    741 		if (mib->ifvm_p != ifp)
    742 			continue;
    743 
    744 		psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
    745 		pserialize_read_exit(s);
    746 		return mib;
    747 	}
    748 	pserialize_read_exit(s);
    749 	return NULL;
    750 }
    751 
    752 static void
    753 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
    754 {
    755 	struct ifvlan_linkmib *omib = ifv->ifv_mib;
    756 
    757 	KASSERT(mutex_owned(&ifv->ifv_lock));
    758 
    759 	membar_producer();
    760 	ifv->ifv_mib = nmib;
    761 
    762 	pserialize_perform(vlan_psz);
    763 	psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
    764 }
    765 
    766 /*
    767  * Called when a parent interface is detaching; destroy any VLAN
    768  * configuration for the parent interface.
    769  */
    770 void
    771 vlan_ifdetach(struct ifnet *p)
    772 {
    773 	struct ifvlan *ifv;
    774 	struct ifvlan_linkmib *mib, **nmibs;
    775 	struct psref psref;
    776 	int error;
    777 	int bound;
    778 	int i, cnt = 0;
    779 
    780 	bound = curlwp_bind();
    781 	mutex_enter(&ifv_list.lock);
    782 	LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
    783 		mib = vlan_getref_linkmib(ifv, &psref);
    784 		if (mib == NULL)
    785 			continue;
    786 
    787 		if (mib->ifvm_p == p)
    788 			cnt++;
    789 
    790 		vlan_putref_linkmib(mib, &psref);
    791 	}
    792 	mutex_exit(&ifv_list.lock);
    793 
    794 	/*
    795 	 * The value of "cnt" does not increase while ifv_list.lock
    796 	 * and ifv->ifv_lock are released here, because the parent
    797 	 * interface is detaching.
    798 	 */
    799 	nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
    800 	for (i=0; i < cnt; i++) {
    801 		nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
    802 	}
    803 
    804 	mutex_enter(&ifv_list.lock);
    805 
    806 	i = 0;
    807 	LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
    808 		mutex_enter(&ifv->ifv_lock);
    809 		if (ifv->ifv_mib->ifvm_p == p) {
    810 			KASSERTMSG(i < cnt, "no memory for unconfig, parent=%s",
    811 			    p->if_xname);
    812 			error = vlan_unconfig_locked(ifv, nmibs[i]);
    813 			if (!error) {
    814 				nmibs[i] = NULL;
    815 				i++;
    816 			}
    817 
    818 		}
    819 		mutex_exit(&ifv->ifv_lock);
    820 	}
    821 
    822 	mutex_exit(&ifv_list.lock);
    823 	curlwp_bindx(bound);
    824 
    825 	for (i=0; i < cnt; i++) {
    826 		if (nmibs[i])
    827 			kmem_free(nmibs[i], sizeof(*nmibs[i]));
    828 	}
    829 
    830 	kmem_free(nmibs, sizeof(*nmibs) * cnt);
    831 
    832 	return;
    833 }
    834 
    835 static int
    836 vlan_set_promisc(struct ifnet *ifp)
    837 {
    838 	struct ifvlan *ifv = ifp->if_softc;
    839 	struct ifvlan_linkmib *mib;
    840 	struct psref psref;
    841 	int error = 0;
    842 	int bound;
    843 
    844 	bound = curlwp_bind();
    845 	mib = vlan_getref_linkmib(ifv, &psref);
    846 	if (mib == NULL) {
    847 		curlwp_bindx(bound);
    848 		return EBUSY;
    849 	}
    850 
    851 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
    852 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
    853 			error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
    854 			if (error == 0)
    855 				ifv->ifv_flags |= IFVF_PROMISC;
    856 		}
    857 	} else {
    858 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
    859 			error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
    860 			if (error == 0)
    861 				ifv->ifv_flags &= ~IFVF_PROMISC;
    862 		}
    863 	}
    864 	vlan_putref_linkmib(mib, &psref);
    865 	curlwp_bindx(bound);
    866 
    867 	return (error);
    868 }
    869 
    870 static int
    871 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    872 {
    873 	struct lwp *l = curlwp;	/* XXX */
    874 	struct ifvlan *ifv = ifp->if_softc;
    875 	struct ifaddr *ifa = (struct ifaddr *) data;
    876 	struct ifreq *ifr = (struct ifreq *) data;
    877 	struct ifnet *pr;
    878 	struct ifcapreq *ifcr;
    879 	struct vlanreq vlr;
    880 	struct ifvlan_linkmib *mib;
    881 	struct psref psref;
    882 	int error = 0;
    883 	int bound;
    884 
    885 	switch (cmd) {
    886 	case SIOCSIFMTU:
    887 		bound = curlwp_bind();
    888 		mib = vlan_getref_linkmib(ifv, &psref);
    889 		if (mib == NULL) {
    890 			curlwp_bindx(bound);
    891 			error = EBUSY;
    892 			break;
    893 		}
    894 
    895 		if (mib->ifvm_p == NULL) {
    896 			vlan_putref_linkmib(mib, &psref);
    897 			curlwp_bindx(bound);
    898 			error = EINVAL;
    899 		} else if (
    900 		    ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
    901 		    ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
    902 			vlan_putref_linkmib(mib, &psref);
    903 			curlwp_bindx(bound);
    904 			error = EINVAL;
    905 		} else {
    906 			vlan_putref_linkmib(mib, &psref);
    907 			curlwp_bindx(bound);
    908 
    909 			error = ifioctl_common(ifp, cmd, data);
    910 			if (error == ENETRESET)
    911 					error = 0;
    912 		}
    913 
    914 		break;
    915 
    916 	case SIOCSETVLAN:
    917 		if ((error = kauth_authorize_network(l->l_cred,
    918 		    KAUTH_NETWORK_INTERFACE,
    919 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
    920 		    NULL)) != 0)
    921 			break;
    922 		if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
    923 			break;
    924 
    925 		if (vlr.vlr_parent[0] == '\0') {
    926 			bound = curlwp_bind();
    927 			mib = vlan_getref_linkmib(ifv, &psref);
    928 			if (mib == NULL) {
    929 				curlwp_bindx(bound);
    930 				error = EBUSY;
    931 				break;
    932 			}
    933 
    934 			if (mib->ifvm_p != NULL &&
    935 			    (ifp->if_flags & IFF_PROMISC) != 0)
    936 				error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
    937 
    938 			vlan_putref_linkmib(mib, &psref);
    939 			curlwp_bindx(bound);
    940 
    941 			vlan_unconfig(ifp);
    942 			break;
    943 		}
    944 		if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
    945 			error = EINVAL;		 /* check for valid tag */
    946 			break;
    947 		}
    948 		if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
    949 			error = ENOENT;
    950 			break;
    951 		}
    952 		error = vlan_config(ifv, pr, vlr.vlr_tag);
    953 		if (error != 0) {
    954 			break;
    955 		}
    956 		ifp->if_flags |= IFF_RUNNING;
    957 
    958 		/* Update promiscuous mode, if necessary. */
    959 		vlan_set_promisc(ifp);
    960 		break;
    961 
    962 	case SIOCGETVLAN:
    963 		memset(&vlr, 0, sizeof(vlr));
    964 		bound = curlwp_bind();
    965 		mib = vlan_getref_linkmib(ifv, &psref);
    966 		if (mib == NULL) {
    967 			curlwp_bindx(bound);
    968 			error = EBUSY;
    969 			break;
    970 		}
    971 		if (mib->ifvm_p != NULL) {
    972 			snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
    973 			    mib->ifvm_p->if_xname);
    974 			vlr.vlr_tag = mib->ifvm_tag;
    975 		}
    976 		vlan_putref_linkmib(mib, &psref);
    977 		curlwp_bindx(bound);
    978 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
    979 		break;
    980 
    981 	case SIOCSIFFLAGS:
    982 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
    983 			break;
    984 		/*
    985 		 * For promiscuous mode, we enable promiscuous mode on
    986 		 * the parent if we need promiscuous on the VLAN interface.
    987 		 */
    988 		bound = curlwp_bind();
    989 		mib = vlan_getref_linkmib(ifv, &psref);
    990 		if (mib == NULL) {
    991 			curlwp_bindx(bound);
    992 			error = EBUSY;
    993 			break;
    994 		}
    995 
    996 		if (mib->ifvm_p != NULL)
    997 			error = vlan_set_promisc(ifp);
    998 		vlan_putref_linkmib(mib, &psref);
    999 		curlwp_bindx(bound);
   1000 		break;
   1001 
   1002 	case SIOCADDMULTI:
   1003 		mutex_enter(&ifv->ifv_lock);
   1004 		mib = ifv->ifv_mib;
   1005 		if (mib == NULL) {
   1006 			error = EBUSY;
   1007 			mutex_exit(&ifv->ifv_lock);
   1008 			break;
   1009 		}
   1010 
   1011 		error = (mib->ifvm_p != NULL) ?
   1012 		    (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
   1013 		mib = NULL;
   1014 		mutex_exit(&ifv->ifv_lock);
   1015 		break;
   1016 
   1017 	case SIOCDELMULTI:
   1018 		mutex_enter(&ifv->ifv_lock);
   1019 		mib = ifv->ifv_mib;
   1020 		if (mib == NULL) {
   1021 			error = EBUSY;
   1022 			mutex_exit(&ifv->ifv_lock);
   1023 			break;
   1024 		}
   1025 		error = (mib->ifvm_p != NULL) ?
   1026 		    (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
   1027 		mib = NULL;
   1028 		mutex_exit(&ifv->ifv_lock);
   1029 		break;
   1030 
   1031 	case SIOCSIFCAP:
   1032 		ifcr = data;
   1033 		/* make sure caps are enabled on parent */
   1034 		bound = curlwp_bind();
   1035 		mib = vlan_getref_linkmib(ifv, &psref);
   1036 		if (mib == NULL) {
   1037 			curlwp_bindx(bound);
   1038 			error = EBUSY;
   1039 			break;
   1040 		}
   1041 
   1042 		if (mib->ifvm_p == NULL) {
   1043 			vlan_putref_linkmib(mib, &psref);
   1044 			curlwp_bindx(bound);
   1045 			error = EINVAL;
   1046 			break;
   1047 		}
   1048 		if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
   1049 		    ifcr->ifcr_capenable) {
   1050 			vlan_putref_linkmib(mib, &psref);
   1051 			curlwp_bindx(bound);
   1052 			error = EINVAL;
   1053 			break;
   1054 		}
   1055 
   1056 		vlan_putref_linkmib(mib, &psref);
   1057 		curlwp_bindx(bound);
   1058 
   1059 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
   1060 			error = 0;
   1061 		break;
   1062 	case SIOCINITIFADDR:
   1063 		bound = curlwp_bind();
   1064 		mib = vlan_getref_linkmib(ifv, &psref);
   1065 		if (mib == NULL) {
   1066 			curlwp_bindx(bound);
   1067 			error = EBUSY;
   1068 			break;
   1069 		}
   1070 
   1071 		if (mib->ifvm_p == NULL) {
   1072 			error = EINVAL;
   1073 			vlan_putref_linkmib(mib, &psref);
   1074 			curlwp_bindx(bound);
   1075 			break;
   1076 		}
   1077 		vlan_putref_linkmib(mib, &psref);
   1078 		curlwp_bindx(bound);
   1079 
   1080 		ifp->if_flags |= IFF_UP;
   1081 #ifdef INET
   1082 		if (ifa->ifa_addr->sa_family == AF_INET)
   1083 			arp_ifinit(ifp, ifa);
   1084 #endif
   1085 		break;
   1086 
   1087 	default:
   1088 		error = ether_ioctl(ifp, cmd, data);
   1089 	}
   1090 
   1091 	return (error);
   1092 }
   1093 
   1094 static int
   1095 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
   1096 {
   1097 	const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
   1098 	struct vlan_mc_entry *mc;
   1099 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
   1100 	struct ifvlan_linkmib *mib;
   1101 	int error;
   1102 
   1103 	KASSERT(mutex_owned(&ifv->ifv_lock));
   1104 
   1105 	if (sa->sa_len > sizeof(struct sockaddr_storage))
   1106 		return (EINVAL);
   1107 
   1108 	error = ether_addmulti(sa, &ifv->ifv_ec);
   1109 	if (error != ENETRESET)
   1110 		return (error);
   1111 
   1112 	/*
   1113 	 * This is new multicast address.  We have to tell parent
   1114 	 * about it.  Also, remember this multicast address so that
   1115 	 * we can delete them on unconfigure.
   1116 	 */
   1117 	mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
   1118 	if (mc == NULL) {
   1119 		error = ENOMEM;
   1120 		goto alloc_failed;
   1121 	}
   1122 
   1123 	/*
   1124 	 * As ether_addmulti() returns ENETRESET, following two
   1125 	 * statement shouldn't fail.
   1126 	 */
   1127 	(void)ether_multiaddr(sa, addrlo, addrhi);
   1128 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
   1129 	memcpy(&mc->mc_addr, sa, sa->sa_len);
   1130 	LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
   1131 
   1132 	mib = ifv->ifv_mib;
   1133 
   1134 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
   1135 	error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
   1136 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
   1137 
   1138 	if (error != 0)
   1139 		goto ioctl_failed;
   1140 	return (error);
   1141 
   1142  ioctl_failed:
   1143 	LIST_REMOVE(mc, mc_entries);
   1144 	free(mc, M_DEVBUF);
   1145  alloc_failed:
   1146 	(void)ether_delmulti(sa, &ifv->ifv_ec);
   1147 	return (error);
   1148 }
   1149 
   1150 static int
   1151 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
   1152 {
   1153 	const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
   1154 	struct ether_multi *enm;
   1155 	struct vlan_mc_entry *mc;
   1156 	struct ifvlan_linkmib *mib;
   1157 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
   1158 	int error;
   1159 
   1160 	KASSERT(mutex_owned(&ifv->ifv_lock));
   1161 
   1162 	/*
   1163 	 * Find a key to lookup vlan_mc_entry.  We have to do this
   1164 	 * before calling ether_delmulti for obvious reason.
   1165 	 */
   1166 	if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
   1167 		return (error);
   1168 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
   1169 
   1170 	error = ether_delmulti(sa, &ifv->ifv_ec);
   1171 	if (error != ENETRESET)
   1172 		return (error);
   1173 
   1174 	/* We no longer use this multicast address.  Tell parent so. */
   1175 	mib = ifv->ifv_mib;
   1176 	error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
   1177 
   1178 	if (error == 0) {
   1179 		/* And forget about this address. */
   1180 		for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
   1181 		    mc = LIST_NEXT(mc, mc_entries)) {
   1182 			if (mc->mc_enm == enm) {
   1183 				LIST_REMOVE(mc, mc_entries);
   1184 				free(mc, M_DEVBUF);
   1185 				break;
   1186 			}
   1187 		}
   1188 		KASSERT(mc != NULL);
   1189 	} else
   1190 		(void)ether_addmulti(sa, &ifv->ifv_ec);
   1191 	return (error);
   1192 }
   1193 
   1194 /*
   1195  * Delete any multicast address we have asked to add from parent
   1196  * interface.  Called when the vlan is being unconfigured.
   1197  */
   1198 static void
   1199 vlan_ether_purgemulti(struct ifvlan *ifv)
   1200 {
   1201 	struct vlan_mc_entry *mc;
   1202 	struct ifvlan_linkmib *mib;
   1203 
   1204 	KASSERT(mutex_owned(&ifv->ifv_lock));
   1205 	mib = ifv->ifv_mib;
   1206 	if (mib == NULL) {
   1207 		return;
   1208 	}
   1209 
   1210 	while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
   1211 		(void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
   1212 		    (const struct sockaddr *)&mc->mc_addr);
   1213 		LIST_REMOVE(mc, mc_entries);
   1214 		free(mc, M_DEVBUF);
   1215 	}
   1216 }
   1217 
   1218 static void
   1219 vlan_start(struct ifnet *ifp)
   1220 {
   1221 	struct ifvlan *ifv = ifp->if_softc;
   1222 	struct ifnet *p;
   1223 	struct ethercom *ec;
   1224 	struct mbuf *m;
   1225 	struct ifvlan_linkmib *mib;
   1226 	struct psref psref;
   1227 	int error;
   1228 
   1229 	mib = vlan_getref_linkmib(ifv, &psref);
   1230 	if (mib == NULL)
   1231 		return;
   1232 	p = mib->ifvm_p;
   1233 	ec = (void *)mib->ifvm_p;
   1234 
   1235 	ifp->if_flags |= IFF_OACTIVE;
   1236 
   1237 	for (;;) {
   1238 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1239 		if (m == NULL)
   1240 			break;
   1241 
   1242 #ifdef ALTQ
   1243 		/*
   1244 		 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is defined.
   1245 		 */
   1246 		KERNEL_LOCK(1, NULL);
   1247 		/*
   1248 		 * If ALTQ is enabled on the parent interface, do
   1249 		 * classification; the queueing discipline might
   1250 		 * not require classification, but might require
   1251 		 * the address family/header pointer in the pktattr.
   1252 		 */
   1253 		if (ALTQ_IS_ENABLED(&p->if_snd)) {
   1254 			switch (p->if_type) {
   1255 			case IFT_ETHER:
   1256 				altq_etherclassify(&p->if_snd, m);
   1257 				break;
   1258 #ifdef DIAGNOSTIC
   1259 			default:
   1260 				panic("vlan_start: impossible (altq)");
   1261 #endif
   1262 			}
   1263 		}
   1264 		KERNEL_UNLOCK_ONE(NULL);
   1265 #endif /* ALTQ */
   1266 
   1267 		bpf_mtap(ifp, m);
   1268 		/*
   1269 		 * If the parent can insert the tag itself, just mark
   1270 		 * the tag in the mbuf header.
   1271 		 */
   1272 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
   1273 			vlan_set_tag(m, mib->ifvm_tag);
   1274 		} else {
   1275 			/*
   1276 			 * insert the tag ourselves
   1277 			 */
   1278 			M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
   1279 			if (m == NULL) {
   1280 				printf("%s: unable to prepend encap header",
   1281 				    p->if_xname);
   1282 				ifp->if_oerrors++;
   1283 				continue;
   1284 			}
   1285 
   1286 			switch (p->if_type) {
   1287 			case IFT_ETHER:
   1288 			    {
   1289 				struct ether_vlan_header *evl;
   1290 
   1291 				if (m->m_len < sizeof(struct ether_vlan_header))
   1292 					m = m_pullup(m,
   1293 					    sizeof(struct ether_vlan_header));
   1294 				if (m == NULL) {
   1295 					printf("%s: unable to pullup encap "
   1296 					    "header", p->if_xname);
   1297 					ifp->if_oerrors++;
   1298 					continue;
   1299 				}
   1300 
   1301 				/*
   1302 				 * Transform the Ethernet header into an
   1303 				 * Ethernet header with 802.1Q encapsulation.
   1304 				 */
   1305 				memmove(mtod(m, void *),
   1306 				    mtod(m, char *) + mib->ifvm_encaplen,
   1307 				    sizeof(struct ether_header));
   1308 				evl = mtod(m, struct ether_vlan_header *);
   1309 				evl->evl_proto = evl->evl_encap_proto;
   1310 				evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
   1311 				evl->evl_tag = htons(mib->ifvm_tag);
   1312 
   1313 				/*
   1314 				 * To cater for VLAN-aware layer 2 ethernet
   1315 				 * switches which may need to strip the tag
   1316 				 * before forwarding the packet, make sure
   1317 				 * the packet+tag is at least 68 bytes long.
   1318 				 * This is necessary because our parent will
   1319 				 * only pad to 64 bytes (ETHER_MIN_LEN) and
   1320 				 * some switches will not pad by themselves
   1321 				 * after deleting a tag.
   1322 				 */
   1323 				if (m->m_pkthdr.len <
   1324 				    (ETHER_MIN_LEN - ETHER_CRC_LEN +
   1325 				     ETHER_VLAN_ENCAP_LEN)) {
   1326 					m_copyback(m, m->m_pkthdr.len,
   1327 					    (ETHER_MIN_LEN - ETHER_CRC_LEN +
   1328 					     ETHER_VLAN_ENCAP_LEN) -
   1329 					     m->m_pkthdr.len,
   1330 					    vlan_zero_pad_buff);
   1331 				}
   1332 				break;
   1333 			    }
   1334 
   1335 #ifdef DIAGNOSTIC
   1336 			default:
   1337 				panic("vlan_start: impossible");
   1338 #endif
   1339 			}
   1340 		}
   1341 
   1342 		if ((p->if_flags & IFF_RUNNING) == 0) {
   1343 			m_freem(m);
   1344 			continue;
   1345 		}
   1346 
   1347 		error = if_transmit_lock(p, m);
   1348 		if (error) {
   1349 			/* mbuf is already freed */
   1350 			ifp->if_oerrors++;
   1351 			continue;
   1352 		}
   1353 		ifp->if_opackets++;
   1354 	}
   1355 
   1356 	ifp->if_flags &= ~IFF_OACTIVE;
   1357 
   1358 	/* Remove reference to mib before release */
   1359 	p = NULL;
   1360 	ec = NULL;
   1361 
   1362 	vlan_putref_linkmib(mib, &psref);
   1363 }
   1364 
   1365 static int
   1366 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
   1367 {
   1368 	struct ifvlan *ifv = ifp->if_softc;
   1369 	struct ifnet *p;
   1370 	struct ethercom *ec;
   1371 	struct ifvlan_linkmib *mib;
   1372 	struct psref psref;
   1373 	int error;
   1374 	size_t pktlen = m->m_pkthdr.len;
   1375 	bool mcast = (m->m_flags & M_MCAST) != 0;
   1376 
   1377 	mib = vlan_getref_linkmib(ifv, &psref);
   1378 	if (mib == NULL) {
   1379 		m_freem(m);
   1380 		return ENETDOWN;
   1381 	}
   1382 
   1383 	p = mib->ifvm_p;
   1384 	ec = (void *)mib->ifvm_p;
   1385 
   1386 	bpf_mtap(ifp, m);
   1387 
   1388 	if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT) != 0) {
   1389 		if (m != NULL)
   1390 			m_freem(m);
   1391 		error = 0;
   1392 		goto out;
   1393 	}
   1394 
   1395 	/*
   1396 	 * If the parent can insert the tag itself, just mark
   1397 	 * the tag in the mbuf header.
   1398 	 */
   1399 	if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
   1400 		vlan_set_tag(m, mib->ifvm_tag);
   1401 	} else {
   1402 		/*
   1403 		 * insert the tag ourselves
   1404 		 */
   1405 		M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
   1406 		if (m == NULL) {
   1407 			printf("%s: unable to prepend encap header",
   1408 			    p->if_xname);
   1409 			ifp->if_oerrors++;
   1410 			error = ENOBUFS;
   1411 			goto out;
   1412 		}
   1413 
   1414 		switch (p->if_type) {
   1415 		case IFT_ETHER:
   1416 		    {
   1417 			struct ether_vlan_header *evl;
   1418 
   1419 			if (m->m_len < sizeof(struct ether_vlan_header))
   1420 				m = m_pullup(m,
   1421 				    sizeof(struct ether_vlan_header));
   1422 			if (m == NULL) {
   1423 				printf("%s: unable to pullup encap "
   1424 				    "header", p->if_xname);
   1425 				ifp->if_oerrors++;
   1426 				error = ENOBUFS;
   1427 				goto out;
   1428 			}
   1429 
   1430 			/*
   1431 			 * Transform the Ethernet header into an
   1432 			 * Ethernet header with 802.1Q encapsulation.
   1433 			 */
   1434 			memmove(mtod(m, void *),
   1435 			    mtod(m, char *) + mib->ifvm_encaplen,
   1436 			    sizeof(struct ether_header));
   1437 			evl = mtod(m, struct ether_vlan_header *);
   1438 			evl->evl_proto = evl->evl_encap_proto;
   1439 			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
   1440 			evl->evl_tag = htons(mib->ifvm_tag);
   1441 
   1442 			/*
   1443 			 * To cater for VLAN-aware layer 2 ethernet
   1444 			 * switches which may need to strip the tag
   1445 			 * before forwarding the packet, make sure
   1446 			 * the packet+tag is at least 68 bytes long.
   1447 			 * This is necessary because our parent will
   1448 			 * only pad to 64 bytes (ETHER_MIN_LEN) and
   1449 			 * some switches will not pad by themselves
   1450 			 * after deleting a tag.
   1451 			 */
   1452 			if (m->m_pkthdr.len <
   1453 			    (ETHER_MIN_LEN - ETHER_CRC_LEN +
   1454 			     ETHER_VLAN_ENCAP_LEN)) {
   1455 				m_copyback(m, m->m_pkthdr.len,
   1456 				    (ETHER_MIN_LEN - ETHER_CRC_LEN +
   1457 				     ETHER_VLAN_ENCAP_LEN) -
   1458 				     m->m_pkthdr.len,
   1459 				    vlan_zero_pad_buff);
   1460 			}
   1461 			break;
   1462 		    }
   1463 
   1464 #ifdef DIAGNOSTIC
   1465 		default:
   1466 			panic("vlan_transmit: impossible");
   1467 #endif
   1468 		}
   1469 	}
   1470 
   1471 	if ((p->if_flags & IFF_RUNNING) == 0) {
   1472 		m_freem(m);
   1473 		error = ENETDOWN;
   1474 		goto out;
   1475 	}
   1476 
   1477 	error = if_transmit_lock(p, m);
   1478 	if (error) {
   1479 		/* mbuf is already freed */
   1480 		ifp->if_oerrors++;
   1481 	} else {
   1482 
   1483 		ifp->if_opackets++;
   1484 		ifp->if_obytes += pktlen;
   1485 		if (mcast)
   1486 			ifp->if_omcasts++;
   1487 	}
   1488 
   1489 out:
   1490 	/* Remove reference to mib before release */
   1491 	p = NULL;
   1492 	ec = NULL;
   1493 
   1494 	vlan_putref_linkmib(mib, &psref);
   1495 	return error;
   1496 }
   1497 
   1498 /*
   1499  * Given an Ethernet frame, find a valid vlan interface corresponding to the
   1500  * given source interface and tag, then run the real packet through the
   1501  * parent's input routine.
   1502  */
   1503 void
   1504 vlan_input(struct ifnet *ifp, struct mbuf *m)
   1505 {
   1506 	struct ifvlan *ifv;
   1507 	uint16_t vid;
   1508 	struct ifvlan_linkmib *mib;
   1509 	struct psref psref;
   1510 	bool have_vtag;
   1511 
   1512 	have_vtag = vlan_has_tag(m);
   1513 	if (have_vtag) {
   1514 		vid = EVL_VLANOFTAG(vlan_get_tag(m));
   1515 		m->m_flags &= ~M_VLANTAG;
   1516 	} else {
   1517 		switch (ifp->if_type) {
   1518 		case IFT_ETHER:
   1519 		    {
   1520 			struct ether_vlan_header *evl;
   1521 
   1522 			if (m->m_len < sizeof(struct ether_vlan_header) &&
   1523 			    (m = m_pullup(m,
   1524 			     sizeof(struct ether_vlan_header))) == NULL) {
   1525 				printf("%s: no memory for VLAN header, "
   1526 				    "dropping packet.\n", ifp->if_xname);
   1527 				return;
   1528 			}
   1529 			evl = mtod(m, struct ether_vlan_header *);
   1530 			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
   1531 
   1532 			vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
   1533 
   1534 			/*
   1535 			 * Restore the original ethertype.  We'll remove
   1536 			 * the encapsulation after we've found the vlan
   1537 			 * interface corresponding to the tag.
   1538 			 */
   1539 			evl->evl_encap_proto = evl->evl_proto;
   1540 			break;
   1541 		    }
   1542 
   1543 		default:
   1544 			vid = (uint16_t) -1;	/* XXX GCC */
   1545 #ifdef DIAGNOSTIC
   1546 			panic("vlan_input: impossible");
   1547 #endif
   1548 		}
   1549 	}
   1550 
   1551 	mib = vlan_lookup_tag_psref(ifp, vid, &psref);
   1552 	if (mib == NULL) {
   1553 		m_freem(m);
   1554 		ifp->if_noproto++;
   1555 		return;
   1556 	}
   1557 
   1558 	ifv = mib->ifvm_ifvlan;
   1559 	if ((ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
   1560 	    (IFF_UP|IFF_RUNNING)) {
   1561 		m_freem(m);
   1562 		ifp->if_noproto++;
   1563 		goto out;
   1564 	}
   1565 
   1566 	/*
   1567 	 * Now, remove the encapsulation header.  The original
   1568 	 * header has already been fixed up above.
   1569 	 */
   1570 	if (!have_vtag) {
   1571 		memmove(mtod(m, char *) + mib->ifvm_encaplen,
   1572 		    mtod(m, void *), sizeof(struct ether_header));
   1573 		m_adj(m, mib->ifvm_encaplen);
   1574 	}
   1575 
   1576 	m_set_rcvif(m, &ifv->ifv_if);
   1577 	ifv->ifv_if.if_ipackets++;
   1578 
   1579 	if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) {
   1580 		if (m != NULL)
   1581 			m_freem(m);
   1582 		goto out;
   1583 	}
   1584 
   1585 	m->m_flags &= ~M_PROMISC;
   1586 	if_input(&ifv->ifv_if, m);
   1587 out:
   1588 	vlan_putref_linkmib(mib, &psref);
   1589 }
   1590 
   1591 /*
   1592  * Module infrastructure
   1593  */
   1594 #include "if_module.h"
   1595 
   1596 IF_MODULE(MODULE_CLASS_DRIVER, vlan, "")
   1597