if_vlan.c revision 1.70.2.5 1 /* $NetBSD: if_vlan.c,v 1.70.2.5 2017/09/24 20:05:03 snj Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.70.2.5 2017/09/24 20:05:03 snj Exp $");
82
83 #include "opt_inet.h"
84
85 #include <sys/param.h>
86 #include <sys/kernel.h>
87 #include <sys/mbuf.h>
88 #include <sys/queue.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/systm.h>
92 #include <sys/proc.h>
93 #include <sys/kauth.h>
94 #include <sys/mutex.h>
95
96 #include <net/bpf.h>
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_types.h>
100 #include <net/if_ether.h>
101 #include <net/if_vlanvar.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/if_inarp.h>
106 #endif
107 #ifdef INET6
108 #include <netinet6/in6_ifattach.h>
109 #endif
110
111 struct vlan_mc_entry {
112 LIST_ENTRY(vlan_mc_entry) mc_entries;
113 /*
114 * A key to identify this entry. The mc_addr below can't be
115 * used since multiple sockaddr may mapped into the same
116 * ether_multi (e.g., AF_UNSPEC).
117 */
118 union {
119 struct ether_multi *mcu_enm;
120 } mc_u;
121 struct sockaddr_storage mc_addr;
122 };
123
124 #define mc_enm mc_u.mcu_enm
125
126 struct ifvlan {
127 union {
128 struct ethercom ifvu_ec;
129 } ifv_u;
130 struct ifnet *ifv_p; /* parent interface of this vlan */
131 struct ifv_linkmib {
132 const struct vlan_multisw *ifvm_msw;
133 int ifvm_encaplen; /* encapsulation length */
134 int ifvm_mtufudge; /* MTU fudged by this much */
135 int ifvm_mintu; /* min transmission unit */
136 uint16_t ifvm_proto; /* encapsulation ethertype */
137 uint16_t ifvm_tag; /* tag to apply on packets */
138 } ifv_mib;
139 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
140 LIST_ENTRY(ifvlan) ifv_list;
141 int ifv_flags;
142 };
143
144 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
145
146 #define ifv_ec ifv_u.ifvu_ec
147
148 #define ifv_if ifv_ec.ec_if
149
150 #define ifv_msw ifv_mib.ifvm_msw
151 #define ifv_encaplen ifv_mib.ifvm_encaplen
152 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
153 #define ifv_mintu ifv_mib.ifvm_mintu
154 #define ifv_tag ifv_mib.ifvm_tag
155
156 struct vlan_multisw {
157 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
158 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
159 void (*vmsw_purgemulti)(struct ifvlan *);
160 };
161
162 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
163 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
164 static void vlan_ether_purgemulti(struct ifvlan *);
165
166 const struct vlan_multisw vlan_ether_multisw = {
167 vlan_ether_addmulti,
168 vlan_ether_delmulti,
169 vlan_ether_purgemulti,
170 };
171
172 static int vlan_clone_create(struct if_clone *, int);
173 static int vlan_clone_destroy(struct ifnet *);
174 static int vlan_config(struct ifvlan *, struct ifnet *);
175 static int vlan_ioctl(struct ifnet *, u_long, void *);
176 static void vlan_start(struct ifnet *);
177 static void vlan_unconfig(struct ifnet *);
178
179 void vlanattach(int);
180
181 /* XXX This should be a hash table with the tag as the basis of the key. */
182 static LIST_HEAD(, ifvlan) ifv_list;
183
184 static kmutex_t ifv_mtx __cacheline_aligned;
185
186 struct if_clone vlan_cloner =
187 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
188
189 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
190 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
191
192 void
193 vlanattach(int n)
194 {
195
196 LIST_INIT(&ifv_list);
197 mutex_init(&ifv_mtx, MUTEX_DEFAULT, IPL_NONE);
198 if_clone_attach(&vlan_cloner);
199 }
200
201 static void
202 vlan_reset_linkname(struct ifnet *ifp)
203 {
204
205 /*
206 * We start out with a "802.1Q VLAN" type and zero-length
207 * addresses. When we attach to a parent interface, we
208 * inherit its type, address length, address, and data link
209 * type.
210 */
211
212 ifp->if_type = IFT_L2VLAN;
213 ifp->if_addrlen = 0;
214 ifp->if_dlt = DLT_NULL;
215 if_alloc_sadl(ifp);
216 }
217
218 static int
219 vlan_clone_create(struct if_clone *ifc, int unit)
220 {
221 struct ifvlan *ifv;
222 struct ifnet *ifp;
223 int s;
224
225 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
226 ifp = &ifv->ifv_if;
227 LIST_INIT(&ifv->ifv_mc_listhead);
228
229 s = splnet();
230 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
231 splx(s);
232
233 if_initname(ifp, ifc->ifc_name, unit);
234 ifp->if_softc = ifv;
235 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
236 ifp->if_start = vlan_start;
237 ifp->if_ioctl = vlan_ioctl;
238 IFQ_SET_READY(&ifp->if_snd);
239
240 if_attach(ifp);
241 vlan_reset_linkname(ifp);
242
243 return (0);
244 }
245
246 static int
247 vlan_clone_destroy(struct ifnet *ifp)
248 {
249 struct ifvlan *ifv = ifp->if_softc;
250 int s;
251
252 s = splnet();
253 LIST_REMOVE(ifv, ifv_list);
254 vlan_unconfig(ifp);
255 splx(s);
256
257 if_detach(ifp);
258 free(ifv, M_DEVBUF);
259
260 return (0);
261 }
262
263 /*
264 * Configure a VLAN interface. Must be called at splnet().
265 */
266 static int
267 vlan_config(struct ifvlan *ifv, struct ifnet *p)
268 {
269 struct ifnet *ifp = &ifv->ifv_if;
270 int error;
271
272 if (ifv->ifv_p != NULL)
273 return (EBUSY);
274
275 switch (p->if_type) {
276 case IFT_ETHER:
277 {
278 struct ethercom *ec = (void *) p;
279
280 ifv->ifv_msw = &vlan_ether_multisw;
281 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
282 ifv->ifv_mintu = ETHERMIN;
283
284 if (ec->ec_nvlans++ == 0) {
285 if ((error = ether_enable_vlan_mtu(p)) >= 0) {
286 if (error) {
287 ec->ec_nvlans--;
288 return error;
289 }
290 ifv->ifv_mtufudge = 0;
291 } else {
292 /*
293 * Fudge the MTU by the encapsulation size. This
294 * makes us incompatible with strictly compliant
295 * 802.1Q implementations, but allows us to use
296 * the feature with other NetBSD
297 * implementations, which might still be useful.
298 */
299 ifv->ifv_mtufudge = ifv->ifv_encaplen;
300 }
301 }
302
303 /*
304 * If the parent interface can do hardware-assisted
305 * VLAN encapsulation, then propagate its hardware-
306 * assisted checksumming flags and tcp segmentation
307 * offload.
308 */
309 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
310 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
311 ifp->if_capabilities = p->if_capabilities &
312 (IFCAP_TSOv4 | IFCAP_TSOv6 |
313 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
314 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
315 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
316 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
317 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
318 }
319 /*
320 * We inherit the parent's Ethernet address.
321 */
322 ether_ifattach(ifp, CLLADDR(p->if_sadl));
323 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
324 break;
325 }
326
327 default:
328 return (EPROTONOSUPPORT);
329 }
330
331 ifv->ifv_p = p;
332 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
333 ifv->ifv_if.if_flags = p->if_flags &
334 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
335
336 /*
337 * Inherit the if_type from the parent. This allows us
338 * to participate in bridges of that type.
339 */
340 ifv->ifv_if.if_type = p->if_type;
341
342 return (0);
343 }
344
345 /*
346 * Unconfigure a VLAN interface. Must be called at splnet().
347 */
348 static void
349 vlan_unconfig(struct ifnet *ifp)
350 {
351 struct ifvlan *ifv = ifp->if_softc;
352 struct ifnet *p;
353
354 mutex_enter(&ifv_mtx);
355 p = ifv->ifv_p;
356
357 if (p == NULL) {
358 mutex_exit(&ifv_mtx);
359 return;
360 }
361
362 /*
363 * Since the interface is being unconfigured, we need to empty the
364 * list of multicast groups that we may have joined while we were
365 * alive and remove them from the parent's list also.
366 */
367 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
368
369 /* Disconnect from parent. */
370 switch (p->if_type) {
371 case IFT_ETHER:
372 {
373 struct ethercom *ec = (void *)p;
374 if (--ec->ec_nvlans == 0)
375 (void)ether_disable_vlan_mtu(p);
376
377 ether_ifdetach(ifp);
378 /* Restore vlan_ioctl overwritten by ether_ifdetach */
379 ifp->if_ioctl = vlan_ioctl;
380 vlan_reset_linkname(ifp);
381 break;
382 }
383
384 #ifdef DIAGNOSTIC
385 default:
386 panic("vlan_unconfig: impossible");
387 #endif
388 }
389
390 ifv->ifv_p = NULL;
391 ifv->ifv_if.if_mtu = 0;
392 ifv->ifv_flags = 0;
393
394 #ifdef INET6
395 /* To delete v6 link local addresses */
396 in6_ifdetach(ifp);
397 #endif
398 if ((ifp->if_flags & IFF_PROMISC) != 0)
399 ifpromisc(ifp, 0);
400 if_down(ifp);
401 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
402 ifp->if_capabilities = 0;
403
404 mutex_exit(&ifv_mtx);
405 }
406
407 /*
408 * Called when a parent interface is detaching; destroy any VLAN
409 * configuration for the parent interface.
410 */
411 void
412 vlan_ifdetach(struct ifnet *p)
413 {
414 struct ifvlan *ifv;
415 int s;
416
417 s = splnet();
418
419 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
420 ifv = LIST_NEXT(ifv, ifv_list)) {
421 if (ifv->ifv_p == p)
422 vlan_unconfig(&ifv->ifv_if);
423 }
424
425 splx(s);
426 }
427
428 static int
429 vlan_set_promisc(struct ifnet *ifp)
430 {
431 struct ifvlan *ifv = ifp->if_softc;
432 int error = 0;
433
434 if ((ifp->if_flags & IFF_PROMISC) != 0) {
435 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
436 error = ifpromisc(ifv->ifv_p, 1);
437 if (error == 0)
438 ifv->ifv_flags |= IFVF_PROMISC;
439 }
440 } else {
441 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
442 error = ifpromisc(ifv->ifv_p, 0);
443 if (error == 0)
444 ifv->ifv_flags &= ~IFVF_PROMISC;
445 }
446 }
447
448 return (error);
449 }
450
451 static int
452 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
453 {
454 struct lwp *l = curlwp; /* XXX */
455 struct ifvlan *ifv = ifp->if_softc;
456 struct ifaddr *ifa = (struct ifaddr *) data;
457 struct ifreq *ifr = (struct ifreq *) data;
458 struct ifnet *pr;
459 struct ifcapreq *ifcr;
460 struct vlanreq vlr;
461 int s, error = 0;
462
463 s = splnet();
464
465 switch (cmd) {
466 case SIOCSIFMTU:
467 if (ifv->ifv_p == NULL)
468 error = EINVAL;
469 else if (
470 ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
471 ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
472 error = EINVAL;
473 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
474 error = 0;
475 break;
476
477 case SIOCSETVLAN:
478 if ((error = kauth_authorize_network(l->l_cred,
479 KAUTH_NETWORK_INTERFACE,
480 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
481 NULL)) != 0)
482 break;
483 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
484 break;
485 if (vlr.vlr_parent[0] == '\0') {
486 if (ifv->ifv_p != NULL &&
487 (ifp->if_flags & IFF_PROMISC) != 0)
488 error = ifpromisc(ifv->ifv_p, 0);
489 vlan_unconfig(ifp);
490 break;
491 }
492 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
493 error = EINVAL; /* check for valid tag */
494 break;
495 }
496 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
497 error = ENOENT;
498 break;
499 }
500 if ((error = vlan_config(ifv, pr)) != 0)
501 break;
502 ifv->ifv_tag = vlr.vlr_tag;
503 ifp->if_flags |= IFF_RUNNING;
504
505 /* Update promiscuous mode, if necessary. */
506 vlan_set_promisc(ifp);
507 break;
508
509 case SIOCGETVLAN:
510 memset(&vlr, 0, sizeof(vlr));
511 if (ifv->ifv_p != NULL) {
512 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
513 ifv->ifv_p->if_xname);
514 vlr.vlr_tag = ifv->ifv_tag;
515 }
516 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
517 break;
518
519 case SIOCSIFFLAGS:
520 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
521 break;
522 /*
523 * For promiscuous mode, we enable promiscuous mode on
524 * the parent if we need promiscuous on the VLAN interface.
525 */
526 if (ifv->ifv_p != NULL)
527 error = vlan_set_promisc(ifp);
528 break;
529
530 case SIOCADDMULTI:
531 error = (ifv->ifv_p != NULL) ?
532 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
533 break;
534
535 case SIOCDELMULTI:
536 error = (ifv->ifv_p != NULL) ?
537 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
538 break;
539
540 case SIOCSIFCAP:
541 ifcr = data;
542 /* make sure caps are enabled on parent */
543 if (ifv->ifv_p == NULL) {
544 error = EINVAL;
545 break;
546 }
547 if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) !=
548 ifcr->ifcr_capenable) {
549 error = EINVAL;
550 break;
551 }
552 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
553 error = 0;
554 break;
555 case SIOCINITIFADDR:
556 if (ifv->ifv_p == NULL) {
557 error = EINVAL;
558 break;
559 }
560
561 ifp->if_flags |= IFF_UP;
562 #ifdef INET
563 if (ifa->ifa_addr->sa_family == AF_INET)
564 arp_ifinit(ifp, ifa);
565 #endif
566 break;
567
568 default:
569 error = ether_ioctl(ifp, cmd, data);
570 }
571
572 splx(s);
573
574 return (error);
575 }
576
577 static int
578 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
579 {
580 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
581 struct vlan_mc_entry *mc;
582 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
583 int error;
584
585 if (sa->sa_len > sizeof(struct sockaddr_storage))
586 return (EINVAL);
587
588 error = ether_addmulti(sa, &ifv->ifv_ec);
589 if (error != ENETRESET)
590 return (error);
591
592 /*
593 * This is new multicast address. We have to tell parent
594 * about it. Also, remember this multicast address so that
595 * we can delete them on unconfigure.
596 */
597 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
598 if (mc == NULL) {
599 error = ENOMEM;
600 goto alloc_failed;
601 }
602
603 /*
604 * As ether_addmulti() returns ENETRESET, following two
605 * statement shouldn't fail.
606 */
607 (void)ether_multiaddr(sa, addrlo, addrhi);
608 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
609 memcpy(&mc->mc_addr, sa, sa->sa_len);
610 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
611
612 error = if_mcast_op(ifv->ifv_p, SIOCADDMULTI, sa);
613 if (error != 0)
614 goto ioctl_failed;
615 return (error);
616
617 ioctl_failed:
618 LIST_REMOVE(mc, mc_entries);
619 free(mc, M_DEVBUF);
620 alloc_failed:
621 (void)ether_delmulti(sa, &ifv->ifv_ec);
622 return (error);
623 }
624
625 static int
626 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
627 {
628 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
629 struct ether_multi *enm;
630 struct vlan_mc_entry *mc;
631 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
632 int error;
633
634 /*
635 * Find a key to lookup vlan_mc_entry. We have to do this
636 * before calling ether_delmulti for obvious reason.
637 */
638 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
639 return (error);
640 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
641
642 error = ether_delmulti(sa, &ifv->ifv_ec);
643 if (error != ENETRESET)
644 return (error);
645
646 /* We no longer use this multicast address. Tell parent so. */
647 error = if_mcast_op(ifv->ifv_p, SIOCDELMULTI, sa);
648 if (error == 0) {
649 /* And forget about this address. */
650 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
651 mc = LIST_NEXT(mc, mc_entries)) {
652 if (mc->mc_enm == enm) {
653 LIST_REMOVE(mc, mc_entries);
654 free(mc, M_DEVBUF);
655 break;
656 }
657 }
658 KASSERT(mc != NULL);
659 } else
660 (void)ether_addmulti(sa, &ifv->ifv_ec);
661 return (error);
662 }
663
664 /*
665 * Delete any multicast address we have asked to add from parent
666 * interface. Called when the vlan is being unconfigured.
667 */
668 static void
669 vlan_ether_purgemulti(struct ifvlan *ifv)
670 {
671 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
672 struct vlan_mc_entry *mc;
673
674 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
675 (void)if_mcast_op(ifp, SIOCDELMULTI,
676 (const struct sockaddr *)&mc->mc_addr);
677 LIST_REMOVE(mc, mc_entries);
678 free(mc, M_DEVBUF);
679 }
680 }
681
682 static void
683 vlan_start(struct ifnet *ifp)
684 {
685 struct ifvlan *ifv = ifp->if_softc;
686 struct ifnet *p = ifv->ifv_p;
687 struct ethercom *ec = (void *) ifv->ifv_p;
688 struct mbuf *m;
689 int error;
690 ALTQ_DECL(struct altq_pktattr pktattr;)
691
692 KASSERT(KERNEL_LOCKED_P());
693
694 ifp->if_flags |= IFF_OACTIVE;
695
696 for (;;) {
697 IFQ_DEQUEUE(&ifp->if_snd, m);
698 if (m == NULL)
699 break;
700
701 #ifdef ALTQ
702 /*
703 * If ALTQ is enabled on the parent interface, do
704 * classification; the queueing discipline might
705 * not require classification, but might require
706 * the address family/header pointer in the pktattr.
707 */
708 if (ALTQ_IS_ENABLED(&p->if_snd)) {
709 switch (p->if_type) {
710 case IFT_ETHER:
711 altq_etherclassify(&p->if_snd, m, &pktattr);
712 break;
713 #ifdef DIAGNOSTIC
714 default:
715 panic("vlan_start: impossible (altq)");
716 #endif
717 }
718 }
719 #endif /* ALTQ */
720
721 bpf_mtap(ifp, m);
722 /*
723 * If the parent can insert the tag itself, just mark
724 * the tag in the mbuf header.
725 */
726 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
727 struct m_tag *mtag;
728
729 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
730 M_NOWAIT);
731 if (mtag == NULL) {
732 ifp->if_oerrors++;
733 m_freem(m);
734 continue;
735 }
736 *(u_int *)(mtag + 1) = ifv->ifv_tag;
737 m_tag_prepend(m, mtag);
738 } else {
739 /*
740 * insert the tag ourselves
741 */
742 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
743 if (m == NULL) {
744 printf("%s: unable to prepend encap header",
745 ifv->ifv_p->if_xname);
746 ifp->if_oerrors++;
747 continue;
748 }
749
750 switch (p->if_type) {
751 case IFT_ETHER:
752 {
753 struct ether_vlan_header *evl;
754
755 if (m->m_len < sizeof(struct ether_vlan_header))
756 m = m_pullup(m,
757 sizeof(struct ether_vlan_header));
758 if (m == NULL) {
759 printf("%s: unable to pullup encap "
760 "header", ifv->ifv_p->if_xname);
761 ifp->if_oerrors++;
762 continue;
763 }
764
765 /*
766 * Transform the Ethernet header into an
767 * Ethernet header with 802.1Q encapsulation.
768 */
769 memmove(mtod(m, void *),
770 mtod(m, char *) + ifv->ifv_encaplen,
771 sizeof(struct ether_header));
772 evl = mtod(m, struct ether_vlan_header *);
773 evl->evl_proto = evl->evl_encap_proto;
774 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
775 evl->evl_tag = htons(ifv->ifv_tag);
776
777 /*
778 * To cater for VLAN-aware layer 2 ethernet
779 * switches which may need to strip the tag
780 * before forwarding the packet, make sure
781 * the packet+tag is at least 68 bytes long.
782 * This is necessary because our parent will
783 * only pad to 64 bytes (ETHER_MIN_LEN) and
784 * some switches will not pad by themselves
785 * after deleting a tag.
786 */
787 if (m->m_pkthdr.len <
788 (ETHER_MIN_LEN - ETHER_CRC_LEN +
789 ETHER_VLAN_ENCAP_LEN)) {
790 m_copyback(m, m->m_pkthdr.len,
791 (ETHER_MIN_LEN - ETHER_CRC_LEN +
792 ETHER_VLAN_ENCAP_LEN) -
793 m->m_pkthdr.len,
794 vlan_zero_pad_buff);
795 }
796 break;
797 }
798
799 #ifdef DIAGNOSTIC
800 default:
801 panic("vlan_start: impossible");
802 #endif
803 }
804 }
805
806 /*
807 * Send it, precisely as the parent's output routine
808 * would have. We are already running at splnet.
809 */
810 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
811 if (error) {
812 /* mbuf is already freed */
813 ifp->if_oerrors++;
814 continue;
815 }
816
817 ifp->if_opackets++;
818
819 p->if_obytes += m->m_pkthdr.len;
820 if (m->m_flags & M_MCAST)
821 p->if_omcasts++;
822 if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
823 (*p->if_start)(p);
824 }
825
826 ifp->if_flags &= ~IFF_OACTIVE;
827 }
828
829 /*
830 * Given an Ethernet frame, find a valid vlan interface corresponding to the
831 * given source interface and tag, then run the real packet through the
832 * parent's input routine.
833 */
834 void
835 vlan_input(struct ifnet *ifp, struct mbuf *m)
836 {
837 struct ifvlan *ifv;
838 u_int tag;
839 struct m_tag *mtag;
840
841 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
842 if (mtag != NULL) {
843 /* m contains a normal ethernet frame, the tag is in mtag */
844 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
845 m_tag_delete(m, mtag);
846 } else {
847 switch (ifp->if_type) {
848 case IFT_ETHER:
849 {
850 struct ether_vlan_header *evl;
851
852 if (m->m_len < sizeof(struct ether_vlan_header) &&
853 (m = m_pullup(m,
854 sizeof(struct ether_vlan_header))) == NULL) {
855 printf("%s: no memory for VLAN header, "
856 "dropping packet.\n", ifp->if_xname);
857 return;
858 }
859 evl = mtod(m, struct ether_vlan_header *);
860 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
861
862 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
863
864 /*
865 * Restore the original ethertype. We'll remove
866 * the encapsulation after we've found the vlan
867 * interface corresponding to the tag.
868 */
869 evl->evl_encap_proto = evl->evl_proto;
870 break;
871 }
872
873 default:
874 tag = (u_int) -1; /* XXX GCC */
875 #ifdef DIAGNOSTIC
876 panic("vlan_input: impossible");
877 #endif
878 }
879 }
880
881 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
882 ifv = LIST_NEXT(ifv, ifv_list))
883 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
884 break;
885
886 if (ifv == NULL ||
887 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
888 (IFF_UP|IFF_RUNNING)) {
889 m_freem(m);
890 ifp->if_noproto++;
891 return;
892 }
893
894 /*
895 * Now, remove the encapsulation header. The original
896 * header has already been fixed up above.
897 */
898 if (mtag == NULL) {
899 memmove(mtod(m, char *) + ifv->ifv_encaplen,
900 mtod(m, void *), sizeof(struct ether_header));
901 m_adj(m, ifv->ifv_encaplen);
902 }
903
904 m->m_pkthdr.rcvif = &ifv->ifv_if;
905 ifv->ifv_if.if_ipackets++;
906
907 bpf_mtap(&ifv->ifv_if, m);
908
909 m->m_flags &= ~M_PROMISC;
910 ifv->ifv_if.if_input(&ifv->ifv_if, m);
911 }
912