if_vlan.c revision 1.78.2.10 1 /* $NetBSD: if_vlan.c,v 1.78.2.10 2016/12/05 10:55:27 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.78.2.10 2016/12/05 10:55:27 skrll Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/kernel.h>
90 #include <sys/mbuf.h>
91 #include <sys/queue.h>
92 #include <sys/socket.h>
93 #include <sys/sockio.h>
94 #include <sys/systm.h>
95 #include <sys/proc.h>
96 #include <sys/kauth.h>
97 #include <sys/mutex.h>
98 #include <sys/device.h>
99 #include <sys/module.h>
100
101 #include <net/bpf.h>
102 #include <net/if.h>
103 #include <net/if_dl.h>
104 #include <net/if_types.h>
105 #include <net/if_ether.h>
106 #include <net/if_vlanvar.h>
107
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/if_inarp.h>
111 #endif
112 #ifdef INET6
113 #include <netinet6/in6_ifattach.h>
114 #endif
115
116 #include "ioconf.h"
117
118 struct vlan_mc_entry {
119 LIST_ENTRY(vlan_mc_entry) mc_entries;
120 /*
121 * A key to identify this entry. The mc_addr below can't be
122 * used since multiple sockaddr may mapped into the same
123 * ether_multi (e.g., AF_UNSPEC).
124 */
125 union {
126 struct ether_multi *mcu_enm;
127 } mc_u;
128 struct sockaddr_storage mc_addr;
129 };
130
131 #define mc_enm mc_u.mcu_enm
132
133 struct ifvlan {
134 union {
135 struct ethercom ifvu_ec;
136 } ifv_u;
137 struct ifnet *ifv_p; /* parent interface of this vlan */
138 struct ifv_linkmib {
139 const struct vlan_multisw *ifvm_msw;
140 int ifvm_encaplen; /* encapsulation length */
141 int ifvm_mtufudge; /* MTU fudged by this much */
142 int ifvm_mintu; /* min transmission unit */
143 uint16_t ifvm_proto; /* encapsulation ethertype */
144 uint16_t ifvm_tag; /* tag to apply on packets */
145 } ifv_mib;
146 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
147 LIST_ENTRY(ifvlan) ifv_list;
148 int ifv_flags;
149 };
150
151 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
152
153 #define ifv_ec ifv_u.ifvu_ec
154
155 #define ifv_if ifv_ec.ec_if
156
157 #define ifv_msw ifv_mib.ifvm_msw
158 #define ifv_encaplen ifv_mib.ifvm_encaplen
159 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
160 #define ifv_mintu ifv_mib.ifvm_mintu
161 #define ifv_tag ifv_mib.ifvm_tag
162
163 struct vlan_multisw {
164 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
165 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
166 void (*vmsw_purgemulti)(struct ifvlan *);
167 };
168
169 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
170 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
171 static void vlan_ether_purgemulti(struct ifvlan *);
172
173 const struct vlan_multisw vlan_ether_multisw = {
174 vlan_ether_addmulti,
175 vlan_ether_delmulti,
176 vlan_ether_purgemulti,
177 };
178
179 static int vlan_clone_create(struct if_clone *, int);
180 static int vlan_clone_destroy(struct ifnet *);
181 static int vlan_config(struct ifvlan *, struct ifnet *);
182 static int vlan_ioctl(struct ifnet *, u_long, void *);
183 static void vlan_start(struct ifnet *);
184 static void vlan_unconfig(struct ifnet *);
185
186 /* XXX This should be a hash table with the tag as the basis of the key. */
187 static LIST_HEAD(, ifvlan) ifv_list;
188
189 static kmutex_t ifv_mtx __cacheline_aligned;
190
191 struct if_clone vlan_cloner =
192 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
193
194 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
195 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
196
197 void
198 vlanattach(int n)
199 {
200
201 /*
202 * Nothing to do here, initialization is handled by the
203 * module initialization code in vlaninit() below).
204 */
205 }
206
207 static void
208 vlaninit(void)
209 {
210
211 LIST_INIT(&ifv_list);
212 mutex_init(&ifv_mtx, MUTEX_DEFAULT, IPL_NONE);
213 if_clone_attach(&vlan_cloner);
214 }
215
216 static int
217 vlandetach(void)
218 {
219 int error = 0;
220
221 if (!LIST_EMPTY(&ifv_list))
222 error = EBUSY;
223
224 if (error == 0) {
225 if_clone_detach(&vlan_cloner);
226 mutex_destroy(&ifv_mtx);
227 }
228
229 return error;
230 }
231
232 static void
233 vlan_reset_linkname(struct ifnet *ifp)
234 {
235
236 /*
237 * We start out with a "802.1Q VLAN" type and zero-length
238 * addresses. When we attach to a parent interface, we
239 * inherit its type, address length, address, and data link
240 * type.
241 */
242
243 ifp->if_type = IFT_L2VLAN;
244 ifp->if_addrlen = 0;
245 ifp->if_dlt = DLT_NULL;
246 if_alloc_sadl(ifp);
247 }
248
249 static int
250 vlan_clone_create(struct if_clone *ifc, int unit)
251 {
252 struct ifvlan *ifv;
253 struct ifnet *ifp;
254 int s;
255
256 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
257 ifp = &ifv->ifv_if;
258 LIST_INIT(&ifv->ifv_mc_listhead);
259
260 s = splnet();
261 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
262 splx(s);
263
264 if_initname(ifp, ifc->ifc_name, unit);
265 ifp->if_softc = ifv;
266 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
267 ifp->if_start = vlan_start;
268 ifp->if_ioctl = vlan_ioctl;
269 IFQ_SET_READY(&ifp->if_snd);
270
271 if_initialize(ifp);
272 vlan_reset_linkname(ifp);
273 if_register(ifp);
274
275 return (0);
276 }
277
278 static int
279 vlan_clone_destroy(struct ifnet *ifp)
280 {
281 struct ifvlan *ifv = ifp->if_softc;
282 int s;
283
284 s = splnet();
285 LIST_REMOVE(ifv, ifv_list);
286 vlan_unconfig(ifp);
287 if_detach(ifp);
288 splx(s);
289
290 free(ifv, M_DEVBUF);
291
292 return (0);
293 }
294
295 /*
296 * Configure a VLAN interface. Must be called at splnet().
297 */
298 static int
299 vlan_config(struct ifvlan *ifv, struct ifnet *p)
300 {
301 struct ifnet *ifp = &ifv->ifv_if;
302 int error;
303
304 if (ifv->ifv_p != NULL)
305 return (EBUSY);
306
307 switch (p->if_type) {
308 case IFT_ETHER:
309 {
310 struct ethercom *ec = (void *) p;
311
312 ifv->ifv_msw = &vlan_ether_multisw;
313 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
314 ifv->ifv_mintu = ETHERMIN;
315
316 if (ec->ec_nvlans == 0) {
317 if ((error = ether_enable_vlan_mtu(p)) >= 0) {
318 if (error)
319 return error;
320 ifv->ifv_mtufudge = 0;
321 } else {
322 /*
323 * Fudge the MTU by the encapsulation size. This
324 * makes us incompatible with strictly compliant
325 * 802.1Q implementations, but allows us to use
326 * the feature with other NetBSD
327 * implementations, which might still be useful.
328 */
329 ifv->ifv_mtufudge = ifv->ifv_encaplen;
330 }
331 }
332 ec->ec_nvlans++;
333
334 /*
335 * If the parent interface can do hardware-assisted
336 * VLAN encapsulation, then propagate its hardware-
337 * assisted checksumming flags and tcp segmentation
338 * offload.
339 */
340 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
341 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
342 ifp->if_capabilities = p->if_capabilities &
343 (IFCAP_TSOv4 | IFCAP_TSOv6 |
344 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
345 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
346 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
347 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
348 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
349 }
350 /*
351 * We inherit the parent's Ethernet address.
352 */
353 ether_ifattach(ifp, CLLADDR(p->if_sadl));
354 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
355 break;
356 }
357
358 default:
359 return (EPROTONOSUPPORT);
360 }
361
362 ifv->ifv_p = p;
363 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
364 ifv->ifv_if.if_flags = p->if_flags &
365 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
366
367 /*
368 * Inherit the if_type from the parent. This allows us
369 * to participate in bridges of that type.
370 */
371 ifv->ifv_if.if_type = p->if_type;
372
373 return (0);
374 }
375
376 /*
377 * Unconfigure a VLAN interface. Must be called at splnet().
378 */
379 static void
380 vlan_unconfig(struct ifnet *ifp)
381 {
382 struct ifvlan *ifv = ifp->if_softc;
383 struct ifnet *p;
384
385 mutex_enter(&ifv_mtx);
386 p = ifv->ifv_p;
387
388 if (p == NULL) {
389 mutex_exit(&ifv_mtx);
390 return;
391 }
392
393 /*
394 * Since the interface is being unconfigured, we need to empty the
395 * list of multicast groups that we may have joined while we were
396 * alive and remove them from the parent's list also.
397 */
398 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
399
400 /* Disconnect from parent. */
401 switch (p->if_type) {
402 case IFT_ETHER:
403 {
404 struct ethercom *ec = (void *)p;
405 if (--ec->ec_nvlans == 0)
406 (void)ether_disable_vlan_mtu(p);
407
408 ether_ifdetach(ifp);
409 /* Restore vlan_ioctl overwritten by ether_ifdetach */
410 ifp->if_ioctl = vlan_ioctl;
411 vlan_reset_linkname(ifp);
412 break;
413 }
414
415 #ifdef DIAGNOSTIC
416 default:
417 panic("vlan_unconfig: impossible");
418 #endif
419 }
420
421 ifv->ifv_p = NULL;
422 ifv->ifv_if.if_mtu = 0;
423 ifv->ifv_flags = 0;
424
425 #ifdef INET6
426 /* To delete v6 link local addresses */
427 in6_ifdetach(ifp);
428 #endif
429 if ((ifp->if_flags & IFF_PROMISC) != 0)
430 ifpromisc(ifp, 0);
431 if_down(ifp);
432 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
433 ifp->if_capabilities = 0;
434
435 mutex_exit(&ifv_mtx);
436 }
437
438 /*
439 * Called when a parent interface is detaching; destroy any VLAN
440 * configuration for the parent interface.
441 */
442 void
443 vlan_ifdetach(struct ifnet *p)
444 {
445 struct ifvlan *ifv;
446 int s;
447
448 s = splnet();
449
450 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
451 ifv = LIST_NEXT(ifv, ifv_list)) {
452 if (ifv->ifv_p == p)
453 vlan_unconfig(&ifv->ifv_if);
454 }
455
456 splx(s);
457 }
458
459 static int
460 vlan_set_promisc(struct ifnet *ifp)
461 {
462 struct ifvlan *ifv = ifp->if_softc;
463 int error = 0;
464
465 if ((ifp->if_flags & IFF_PROMISC) != 0) {
466 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
467 error = ifpromisc(ifv->ifv_p, 1);
468 if (error == 0)
469 ifv->ifv_flags |= IFVF_PROMISC;
470 }
471 } else {
472 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
473 error = ifpromisc(ifv->ifv_p, 0);
474 if (error == 0)
475 ifv->ifv_flags &= ~IFVF_PROMISC;
476 }
477 }
478
479 return (error);
480 }
481
482 static int
483 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
484 {
485 struct lwp *l = curlwp; /* XXX */
486 struct ifvlan *ifv = ifp->if_softc;
487 struct ifaddr *ifa = (struct ifaddr *) data;
488 struct ifreq *ifr = (struct ifreq *) data;
489 struct ifnet *pr;
490 struct ifcapreq *ifcr;
491 struct vlanreq vlr;
492 int s, error = 0;
493
494 s = splnet();
495
496 switch (cmd) {
497 case SIOCSIFMTU:
498 if (ifv->ifv_p == NULL)
499 error = EINVAL;
500 else if (
501 ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
502 ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
503 error = EINVAL;
504 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
505 error = 0;
506 break;
507
508 case SIOCSETVLAN:
509 if ((error = kauth_authorize_network(l->l_cred,
510 KAUTH_NETWORK_INTERFACE,
511 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
512 NULL)) != 0)
513 break;
514 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
515 break;
516 if (vlr.vlr_parent[0] == '\0') {
517 if (ifv->ifv_p != NULL &&
518 (ifp->if_flags & IFF_PROMISC) != 0)
519 error = ifpromisc(ifv->ifv_p, 0);
520 vlan_unconfig(ifp);
521 break;
522 }
523 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
524 error = EINVAL; /* check for valid tag */
525 break;
526 }
527 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
528 error = ENOENT;
529 break;
530 }
531 if ((error = vlan_config(ifv, pr)) != 0)
532 break;
533 ifv->ifv_tag = vlr.vlr_tag;
534 ifp->if_flags |= IFF_RUNNING;
535
536 /* Update promiscuous mode, if necessary. */
537 vlan_set_promisc(ifp);
538 break;
539
540 case SIOCGETVLAN:
541 memset(&vlr, 0, sizeof(vlr));
542 if (ifv->ifv_p != NULL) {
543 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
544 ifv->ifv_p->if_xname);
545 vlr.vlr_tag = ifv->ifv_tag;
546 }
547 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
548 break;
549
550 case SIOCSIFFLAGS:
551 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
552 break;
553 /*
554 * For promiscuous mode, we enable promiscuous mode on
555 * the parent if we need promiscuous on the VLAN interface.
556 */
557 if (ifv->ifv_p != NULL)
558 error = vlan_set_promisc(ifp);
559 break;
560
561 case SIOCADDMULTI:
562 error = (ifv->ifv_p != NULL) ?
563 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
564 break;
565
566 case SIOCDELMULTI:
567 error = (ifv->ifv_p != NULL) ?
568 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
569 break;
570
571 case SIOCSIFCAP:
572 ifcr = data;
573 /* make sure caps are enabled on parent */
574 if (ifv->ifv_p == NULL) {
575 error = EINVAL;
576 break;
577 }
578 if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) !=
579 ifcr->ifcr_capenable) {
580 error = EINVAL;
581 break;
582 }
583 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
584 error = 0;
585 break;
586 case SIOCINITIFADDR:
587 if (ifv->ifv_p == NULL) {
588 error = EINVAL;
589 break;
590 }
591
592 ifp->if_flags |= IFF_UP;
593 #ifdef INET
594 if (ifa->ifa_addr->sa_family == AF_INET)
595 arp_ifinit(ifp, ifa);
596 #endif
597 break;
598
599 default:
600 error = ether_ioctl(ifp, cmd, data);
601 }
602
603 splx(s);
604
605 return (error);
606 }
607
608 static int
609 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
610 {
611 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
612 struct vlan_mc_entry *mc;
613 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
614 int error;
615
616 if (sa->sa_len > sizeof(struct sockaddr_storage))
617 return (EINVAL);
618
619 error = ether_addmulti(sa, &ifv->ifv_ec);
620 if (error != ENETRESET)
621 return (error);
622
623 /*
624 * This is new multicast address. We have to tell parent
625 * about it. Also, remember this multicast address so that
626 * we can delete them on unconfigure.
627 */
628 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
629 if (mc == NULL) {
630 error = ENOMEM;
631 goto alloc_failed;
632 }
633
634 /*
635 * As ether_addmulti() returns ENETRESET, following two
636 * statement shouldn't fail.
637 */
638 (void)ether_multiaddr(sa, addrlo, addrhi);
639 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
640 memcpy(&mc->mc_addr, sa, sa->sa_len);
641 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
642
643 error = if_mcast_op(ifv->ifv_p, SIOCADDMULTI, sa);
644 if (error != 0)
645 goto ioctl_failed;
646 return (error);
647
648 ioctl_failed:
649 LIST_REMOVE(mc, mc_entries);
650 free(mc, M_DEVBUF);
651 alloc_failed:
652 (void)ether_delmulti(sa, &ifv->ifv_ec);
653 return (error);
654 }
655
656 static int
657 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
658 {
659 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
660 struct ether_multi *enm;
661 struct vlan_mc_entry *mc;
662 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
663 int error;
664
665 /*
666 * Find a key to lookup vlan_mc_entry. We have to do this
667 * before calling ether_delmulti for obvious reason.
668 */
669 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
670 return (error);
671 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
672
673 error = ether_delmulti(sa, &ifv->ifv_ec);
674 if (error != ENETRESET)
675 return (error);
676
677 /* We no longer use this multicast address. Tell parent so. */
678 error = if_mcast_op(ifv->ifv_p, SIOCDELMULTI, sa);
679 if (error == 0) {
680 /* And forget about this address. */
681 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
682 mc = LIST_NEXT(mc, mc_entries)) {
683 if (mc->mc_enm == enm) {
684 LIST_REMOVE(mc, mc_entries);
685 free(mc, M_DEVBUF);
686 break;
687 }
688 }
689 KASSERT(mc != NULL);
690 } else
691 (void)ether_addmulti(sa, &ifv->ifv_ec);
692 return (error);
693 }
694
695 /*
696 * Delete any multicast address we have asked to add from parent
697 * interface. Called when the vlan is being unconfigured.
698 */
699 static void
700 vlan_ether_purgemulti(struct ifvlan *ifv)
701 {
702 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
703 struct vlan_mc_entry *mc;
704
705 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
706 (void)if_mcast_op(ifp, SIOCDELMULTI,
707 (const struct sockaddr *)&mc->mc_addr);
708 LIST_REMOVE(mc, mc_entries);
709 free(mc, M_DEVBUF);
710 }
711 }
712
713 static void
714 vlan_start(struct ifnet *ifp)
715 {
716 struct ifvlan *ifv = ifp->if_softc;
717 struct ifnet *p = ifv->ifv_p;
718 struct ethercom *ec = (void *) ifv->ifv_p;
719 struct mbuf *m;
720 int error;
721
722 #ifndef NET_MPSAFE
723 KASSERT(KERNEL_LOCKED_P());
724 #endif
725
726 ifp->if_flags |= IFF_OACTIVE;
727
728 for (;;) {
729 IFQ_DEQUEUE(&ifp->if_snd, m);
730 if (m == NULL)
731 break;
732
733 #ifdef ALTQ
734 /*
735 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE if defined.
736 */
737 KERNEL_LOCK(1, NULL);
738 /*
739 * If ALTQ is enabled on the parent interface, do
740 * classification; the queueing discipline might
741 * not require classification, but might require
742 * the address family/header pointer in the pktattr.
743 */
744 if (ALTQ_IS_ENABLED(&p->if_snd)) {
745 switch (p->if_type) {
746 case IFT_ETHER:
747 altq_etherclassify(&p->if_snd, m);
748 break;
749 #ifdef DIAGNOSTIC
750 default:
751 panic("vlan_start: impossible (altq)");
752 #endif
753 }
754 }
755 KERNEL_UNLOCK_ONE(NULL);
756 #endif /* ALTQ */
757
758 bpf_mtap(ifp, m);
759 /*
760 * If the parent can insert the tag itself, just mark
761 * the tag in the mbuf header.
762 */
763 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
764 struct m_tag *mtag;
765
766 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
767 M_NOWAIT);
768 if (mtag == NULL) {
769 ifp->if_oerrors++;
770 m_freem(m);
771 continue;
772 }
773 *(u_int *)(mtag + 1) = ifv->ifv_tag;
774 m_tag_prepend(m, mtag);
775 } else {
776 /*
777 * insert the tag ourselves
778 */
779 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
780 if (m == NULL) {
781 printf("%s: unable to prepend encap header",
782 ifv->ifv_p->if_xname);
783 ifp->if_oerrors++;
784 continue;
785 }
786
787 switch (p->if_type) {
788 case IFT_ETHER:
789 {
790 struct ether_vlan_header *evl;
791
792 if (m->m_len < sizeof(struct ether_vlan_header))
793 m = m_pullup(m,
794 sizeof(struct ether_vlan_header));
795 if (m == NULL) {
796 printf("%s: unable to pullup encap "
797 "header", ifv->ifv_p->if_xname);
798 ifp->if_oerrors++;
799 continue;
800 }
801
802 /*
803 * Transform the Ethernet header into an
804 * Ethernet header with 802.1Q encapsulation.
805 */
806 memmove(mtod(m, void *),
807 mtod(m, char *) + ifv->ifv_encaplen,
808 sizeof(struct ether_header));
809 evl = mtod(m, struct ether_vlan_header *);
810 evl->evl_proto = evl->evl_encap_proto;
811 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
812 evl->evl_tag = htons(ifv->ifv_tag);
813
814 /*
815 * To cater for VLAN-aware layer 2 ethernet
816 * switches which may need to strip the tag
817 * before forwarding the packet, make sure
818 * the packet+tag is at least 68 bytes long.
819 * This is necessary because our parent will
820 * only pad to 64 bytes (ETHER_MIN_LEN) and
821 * some switches will not pad by themselves
822 * after deleting a tag.
823 */
824 if (m->m_pkthdr.len <
825 (ETHER_MIN_LEN - ETHER_CRC_LEN +
826 ETHER_VLAN_ENCAP_LEN)) {
827 m_copyback(m, m->m_pkthdr.len,
828 (ETHER_MIN_LEN - ETHER_CRC_LEN +
829 ETHER_VLAN_ENCAP_LEN) -
830 m->m_pkthdr.len,
831 vlan_zero_pad_buff);
832 }
833 break;
834 }
835
836 #ifdef DIAGNOSTIC
837 default:
838 panic("vlan_start: impossible");
839 #endif
840 }
841 }
842
843 /*
844 * Send it, precisely as the parent's output routine
845 * would have. We are already running at splnet.
846 */
847 if ((p->if_flags & IFF_RUNNING) != 0) {
848 error = if_transmit_lock(p, m);
849 if (error) {
850 /* mbuf is already freed */
851 ifp->if_oerrors++;
852 continue;
853 }
854 }
855
856 ifp->if_opackets++;
857 }
858
859 ifp->if_flags &= ~IFF_OACTIVE;
860 }
861
862 /*
863 * Given an Ethernet frame, find a valid vlan interface corresponding to the
864 * given source interface and tag, then run the real packet through the
865 * parent's input routine.
866 */
867 void
868 vlan_input(struct ifnet *ifp, struct mbuf *m)
869 {
870 struct ifvlan *ifv;
871 u_int tag;
872 struct m_tag *mtag;
873
874 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
875 if (mtag != NULL) {
876 /* m contains a normal ethernet frame, the tag is in mtag */
877 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
878 m_tag_delete(m, mtag);
879 } else {
880 switch (ifp->if_type) {
881 case IFT_ETHER:
882 {
883 struct ether_vlan_header *evl;
884
885 if (m->m_len < sizeof(struct ether_vlan_header) &&
886 (m = m_pullup(m,
887 sizeof(struct ether_vlan_header))) == NULL) {
888 printf("%s: no memory for VLAN header, "
889 "dropping packet.\n", ifp->if_xname);
890 return;
891 }
892 evl = mtod(m, struct ether_vlan_header *);
893 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
894
895 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
896
897 /*
898 * Restore the original ethertype. We'll remove
899 * the encapsulation after we've found the vlan
900 * interface corresponding to the tag.
901 */
902 evl->evl_encap_proto = evl->evl_proto;
903 break;
904 }
905
906 default:
907 tag = (u_int) -1; /* XXX GCC */
908 #ifdef DIAGNOSTIC
909 panic("vlan_input: impossible");
910 #endif
911 }
912 }
913
914 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
915 ifv = LIST_NEXT(ifv, ifv_list))
916 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
917 break;
918
919 if (ifv == NULL ||
920 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
921 (IFF_UP|IFF_RUNNING)) {
922 m_freem(m);
923 ifp->if_noproto++;
924 return;
925 }
926
927 /*
928 * Now, remove the encapsulation header. The original
929 * header has already been fixed up above.
930 */
931 if (mtag == NULL) {
932 memmove(mtod(m, char *) + ifv->ifv_encaplen,
933 mtod(m, void *), sizeof(struct ether_header));
934 m_adj(m, ifv->ifv_encaplen);
935 }
936
937 m_set_rcvif(m, &ifv->ifv_if);
938 ifv->ifv_if.if_ipackets++;
939
940 bpf_mtap(&ifv->ifv_if, m);
941
942 m->m_flags &= ~M_PROMISC;
943 if_input(&ifv->ifv_if, m);
944 }
945
946 /*
947 * Module infrastructure
948 */
949 #include "if_module.h"
950
951 IF_MODULE(MODULE_CLASS_DRIVER, vlan, "")
952