if_vlan.c revision 1.78.2.2 1 /* $NetBSD: if_vlan.c,v 1.78.2.2 2015/06/06 14:40:25 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.78.2.2 2015/06/06 14:40:25 skrll Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/kernel.h>
90 #include <sys/mbuf.h>
91 #include <sys/queue.h>
92 #include <sys/socket.h>
93 #include <sys/sockio.h>
94 #include <sys/systm.h>
95 #include <sys/proc.h>
96 #include <sys/kauth.h>
97 #include <sys/mutex.h>
98
99 #include <net/bpf.h>
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_types.h>
103 #include <net/if_ether.h>
104 #include <net/if_vlanvar.h>
105
106 #ifdef INET
107 #include <netinet/in.h>
108 #include <netinet/if_inarp.h>
109 #endif
110 #ifdef INET6
111 #include <netinet6/in6_ifattach.h>
112 #endif
113
114 struct vlan_mc_entry {
115 LIST_ENTRY(vlan_mc_entry) mc_entries;
116 /*
117 * A key to identify this entry. The mc_addr below can't be
118 * used since multiple sockaddr may mapped into the same
119 * ether_multi (e.g., AF_UNSPEC).
120 */
121 union {
122 struct ether_multi *mcu_enm;
123 } mc_u;
124 struct sockaddr_storage mc_addr;
125 };
126
127 #define mc_enm mc_u.mcu_enm
128
129 struct ifvlan {
130 union {
131 struct ethercom ifvu_ec;
132 } ifv_u;
133 struct ifnet *ifv_p; /* parent interface of this vlan */
134 struct ifv_linkmib {
135 const struct vlan_multisw *ifvm_msw;
136 int ifvm_encaplen; /* encapsulation length */
137 int ifvm_mtufudge; /* MTU fudged by this much */
138 int ifvm_mintu; /* min transmission unit */
139 uint16_t ifvm_proto; /* encapsulation ethertype */
140 uint16_t ifvm_tag; /* tag to apply on packets */
141 } ifv_mib;
142 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
143 LIST_ENTRY(ifvlan) ifv_list;
144 int ifv_flags;
145 };
146
147 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
148
149 #define ifv_ec ifv_u.ifvu_ec
150
151 #define ifv_if ifv_ec.ec_if
152
153 #define ifv_msw ifv_mib.ifvm_msw
154 #define ifv_encaplen ifv_mib.ifvm_encaplen
155 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
156 #define ifv_mintu ifv_mib.ifvm_mintu
157 #define ifv_tag ifv_mib.ifvm_tag
158
159 struct vlan_multisw {
160 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
161 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
162 void (*vmsw_purgemulti)(struct ifvlan *);
163 };
164
165 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
166 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
167 static void vlan_ether_purgemulti(struct ifvlan *);
168
169 const struct vlan_multisw vlan_ether_multisw = {
170 vlan_ether_addmulti,
171 vlan_ether_delmulti,
172 vlan_ether_purgemulti,
173 };
174
175 static int vlan_clone_create(struct if_clone *, int);
176 static int vlan_clone_destroy(struct ifnet *);
177 static int vlan_config(struct ifvlan *, struct ifnet *);
178 static int vlan_ioctl(struct ifnet *, u_long, void *);
179 static void vlan_start(struct ifnet *);
180 static void vlan_unconfig(struct ifnet *);
181
182 void vlanattach(int);
183
184 /* XXX This should be a hash table with the tag as the basis of the key. */
185 static LIST_HEAD(, ifvlan) ifv_list;
186
187 static kmutex_t ifv_mtx __cacheline_aligned;
188
189 struct if_clone vlan_cloner =
190 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
191
192 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
193 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
194
195 void
196 vlanattach(int n)
197 {
198
199 LIST_INIT(&ifv_list);
200 mutex_init(&ifv_mtx, MUTEX_DEFAULT, IPL_NONE);
201 if_clone_attach(&vlan_cloner);
202 }
203
204 static void
205 vlan_reset_linkname(struct ifnet *ifp)
206 {
207
208 /*
209 * We start out with a "802.1Q VLAN" type and zero-length
210 * addresses. When we attach to a parent interface, we
211 * inherit its type, address length, address, and data link
212 * type.
213 */
214
215 ifp->if_type = IFT_L2VLAN;
216 ifp->if_addrlen = 0;
217 ifp->if_dlt = DLT_NULL;
218 if_alloc_sadl(ifp);
219 }
220
221 static int
222 vlan_clone_create(struct if_clone *ifc, int unit)
223 {
224 struct ifvlan *ifv;
225 struct ifnet *ifp;
226 int s;
227
228 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
229 ifp = &ifv->ifv_if;
230 LIST_INIT(&ifv->ifv_mc_listhead);
231
232 s = splnet();
233 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
234 splx(s);
235
236 if_initname(ifp, ifc->ifc_name, unit);
237 ifp->if_softc = ifv;
238 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
239 ifp->if_start = vlan_start;
240 ifp->if_ioctl = vlan_ioctl;
241 IFQ_SET_READY(&ifp->if_snd);
242
243 if_attach(ifp);
244 vlan_reset_linkname(ifp);
245
246 return (0);
247 }
248
249 static int
250 vlan_clone_destroy(struct ifnet *ifp)
251 {
252 struct ifvlan *ifv = ifp->if_softc;
253 int s;
254
255 s = splnet();
256 LIST_REMOVE(ifv, ifv_list);
257 vlan_unconfig(ifp);
258 if_detach(ifp);
259 splx(s);
260
261 free(ifv, M_DEVBUF);
262
263 return (0);
264 }
265
266 /*
267 * Configure a VLAN interface. Must be called at splnet().
268 */
269 static int
270 vlan_config(struct ifvlan *ifv, struct ifnet *p)
271 {
272 struct ifnet *ifp = &ifv->ifv_if;
273 int error;
274
275 if (ifv->ifv_p != NULL)
276 return (EBUSY);
277
278 switch (p->if_type) {
279 case IFT_ETHER:
280 {
281 struct ethercom *ec = (void *) p;
282
283 ifv->ifv_msw = &vlan_ether_multisw;
284 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
285 ifv->ifv_mintu = ETHERMIN;
286
287 /*
288 * If the parent supports the VLAN_MTU capability,
289 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
290 * enable it.
291 */
292 if (ec->ec_nvlans++ == 0 &&
293 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
294 /*
295 * Enable Tx/Rx of VLAN-sized frames.
296 */
297 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
298 if (p->if_flags & IFF_UP) {
299 error = if_flags_set(p, p->if_flags);
300 if (error) {
301 if (ec->ec_nvlans-- == 1)
302 ec->ec_capenable &=
303 ~ETHERCAP_VLAN_MTU;
304 return (error);
305 }
306 }
307 ifv->ifv_mtufudge = 0;
308 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
309 /*
310 * Fudge the MTU by the encapsulation size. This
311 * makes us incompatible with strictly compliant
312 * 802.1Q implementations, but allows us to use
313 * the feature with other NetBSD implementations,
314 * which might still be useful.
315 */
316 ifv->ifv_mtufudge = ifv->ifv_encaplen;
317 }
318
319 /*
320 * If the parent interface can do hardware-assisted
321 * VLAN encapsulation, then propagate its hardware-
322 * assisted checksumming flags and tcp segmentation
323 * offload.
324 */
325 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
326 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
327 ifp->if_capabilities = p->if_capabilities &
328 (IFCAP_TSOv4 | IFCAP_TSOv6 |
329 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
330 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
331 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
332 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
333 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
334 }
335 /*
336 * We inherit the parent's Ethernet address.
337 */
338 ether_ifattach(ifp, CLLADDR(p->if_sadl));
339 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
340 break;
341 }
342
343 default:
344 return (EPROTONOSUPPORT);
345 }
346
347 ifv->ifv_p = p;
348 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
349 ifv->ifv_if.if_flags = p->if_flags &
350 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
351
352 /*
353 * Inherit the if_type from the parent. This allows us
354 * to participate in bridges of that type.
355 */
356 ifv->ifv_if.if_type = p->if_type;
357
358 return (0);
359 }
360
361 /*
362 * Unconfigure a VLAN interface. Must be called at splnet().
363 */
364 static void
365 vlan_unconfig(struct ifnet *ifp)
366 {
367 struct ifvlan *ifv = ifp->if_softc;
368 struct ifnet *p;
369
370 mutex_enter(&ifv_mtx);
371 p = ifv->ifv_p;
372
373 if (p == NULL) {
374 mutex_exit(&ifv_mtx);
375 return;
376 }
377
378 /*
379 * Since the interface is being unconfigured, we need to empty the
380 * list of multicast groups that we may have joined while we were
381 * alive and remove them from the parent's list also.
382 */
383 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
384
385 /* Disconnect from parent. */
386 switch (p->if_type) {
387 case IFT_ETHER:
388 {
389 struct ethercom *ec = (void *) p;
390
391 if (ec->ec_nvlans-- == 1) {
392 /*
393 * Disable Tx/Rx of VLAN-sized frames.
394 */
395 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
396 if (p->if_flags & IFF_UP)
397 (void)if_flags_set(p, p->if_flags);
398 }
399
400 ether_ifdetach(ifp);
401 /* Restore vlan_ioctl overwritten by ether_ifdetach */
402 ifp->if_ioctl = vlan_ioctl;
403 vlan_reset_linkname(ifp);
404 break;
405 }
406
407 #ifdef DIAGNOSTIC
408 default:
409 panic("vlan_unconfig: impossible");
410 #endif
411 }
412
413 ifv->ifv_p = NULL;
414 ifv->ifv_if.if_mtu = 0;
415 ifv->ifv_flags = 0;
416
417 #ifdef INET6
418 /* To delete v6 link local addresses */
419 in6_ifdetach(ifp);
420 #endif
421 if ((ifp->if_flags & IFF_PROMISC) != 0)
422 ifpromisc(ifp, 0);
423 if_down(ifp);
424 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
425 ifp->if_capabilities = 0;
426
427 mutex_exit(&ifv_mtx);
428 }
429
430 /*
431 * Called when a parent interface is detaching; destroy any VLAN
432 * configuration for the parent interface.
433 */
434 void
435 vlan_ifdetach(struct ifnet *p)
436 {
437 struct ifvlan *ifv;
438 int s;
439
440 s = splnet();
441
442 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
443 ifv = LIST_NEXT(ifv, ifv_list)) {
444 if (ifv->ifv_p == p)
445 vlan_unconfig(&ifv->ifv_if);
446 }
447
448 splx(s);
449 }
450
451 static int
452 vlan_set_promisc(struct ifnet *ifp)
453 {
454 struct ifvlan *ifv = ifp->if_softc;
455 int error = 0;
456
457 if ((ifp->if_flags & IFF_PROMISC) != 0) {
458 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
459 error = ifpromisc(ifv->ifv_p, 1);
460 if (error == 0)
461 ifv->ifv_flags |= IFVF_PROMISC;
462 }
463 } else {
464 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
465 error = ifpromisc(ifv->ifv_p, 0);
466 if (error == 0)
467 ifv->ifv_flags &= ~IFVF_PROMISC;
468 }
469 }
470
471 return (error);
472 }
473
474 static int
475 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
476 {
477 struct lwp *l = curlwp; /* XXX */
478 struct ifvlan *ifv = ifp->if_softc;
479 struct ifaddr *ifa = (struct ifaddr *) data;
480 struct ifreq *ifr = (struct ifreq *) data;
481 struct ifnet *pr;
482 struct ifcapreq *ifcr;
483 struct vlanreq vlr;
484 int s, error = 0;
485
486 s = splnet();
487
488 switch (cmd) {
489 case SIOCSIFMTU:
490 if (ifv->ifv_p == NULL)
491 error = EINVAL;
492 else if (
493 ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
494 ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
495 error = EINVAL;
496 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
497 error = 0;
498 break;
499
500 case SIOCSETVLAN:
501 if ((error = kauth_authorize_network(l->l_cred,
502 KAUTH_NETWORK_INTERFACE,
503 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
504 NULL)) != 0)
505 break;
506 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
507 break;
508 if (vlr.vlr_parent[0] == '\0') {
509 if (ifv->ifv_p != NULL &&
510 (ifp->if_flags & IFF_PROMISC) != 0)
511 error = ifpromisc(ifv->ifv_p, 0);
512 vlan_unconfig(ifp);
513 break;
514 }
515 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
516 error = EINVAL; /* check for valid tag */
517 break;
518 }
519 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
520 error = ENOENT;
521 break;
522 }
523 if ((error = vlan_config(ifv, pr)) != 0)
524 break;
525 ifv->ifv_tag = vlr.vlr_tag;
526 ifp->if_flags |= IFF_RUNNING;
527
528 /* Update promiscuous mode, if necessary. */
529 vlan_set_promisc(ifp);
530 break;
531
532 case SIOCGETVLAN:
533 memset(&vlr, 0, sizeof(vlr));
534 if (ifv->ifv_p != NULL) {
535 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
536 ifv->ifv_p->if_xname);
537 vlr.vlr_tag = ifv->ifv_tag;
538 }
539 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
540 break;
541
542 case SIOCSIFFLAGS:
543 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
544 break;
545 /*
546 * For promiscuous mode, we enable promiscuous mode on
547 * the parent if we need promiscuous on the VLAN interface.
548 */
549 if (ifv->ifv_p != NULL)
550 error = vlan_set_promisc(ifp);
551 break;
552
553 case SIOCADDMULTI:
554 error = (ifv->ifv_p != NULL) ?
555 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
556 break;
557
558 case SIOCDELMULTI:
559 error = (ifv->ifv_p != NULL) ?
560 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
561 break;
562
563 case SIOCSIFCAP:
564 ifcr = data;
565 /* make sure caps are enabled on parent */
566 if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) !=
567 ifcr->ifcr_capenable) {
568 error = EINVAL;
569 break;
570 }
571 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
572 error = 0;
573 break;
574 case SIOCINITIFADDR:
575 if (ifv->ifv_p == NULL) {
576 error = EINVAL;
577 break;
578 }
579
580 ifp->if_flags |= IFF_UP;
581 #ifdef INET
582 if (ifa->ifa_addr->sa_family == AF_INET)
583 arp_ifinit(ifp, ifa);
584 #endif
585 break;
586
587 default:
588 error = ether_ioctl(ifp, cmd, data);
589 }
590
591 splx(s);
592
593 return (error);
594 }
595
596 static int
597 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
598 {
599 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
600 struct vlan_mc_entry *mc;
601 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
602 int error;
603
604 if (sa->sa_len > sizeof(struct sockaddr_storage))
605 return (EINVAL);
606
607 error = ether_addmulti(sa, &ifv->ifv_ec);
608 if (error != ENETRESET)
609 return (error);
610
611 /*
612 * This is new multicast address. We have to tell parent
613 * about it. Also, remember this multicast address so that
614 * we can delete them on unconfigure.
615 */
616 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
617 if (mc == NULL) {
618 error = ENOMEM;
619 goto alloc_failed;
620 }
621
622 /*
623 * As ether_addmulti() returns ENETRESET, following two
624 * statement shouldn't fail.
625 */
626 (void)ether_multiaddr(sa, addrlo, addrhi);
627 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
628 memcpy(&mc->mc_addr, sa, sa->sa_len);
629 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
630
631 error = if_mcast_op(ifv->ifv_p, SIOCADDMULTI, sa);
632 if (error != 0)
633 goto ioctl_failed;
634 return (error);
635
636 ioctl_failed:
637 LIST_REMOVE(mc, mc_entries);
638 free(mc, M_DEVBUF);
639 alloc_failed:
640 (void)ether_delmulti(sa, &ifv->ifv_ec);
641 return (error);
642 }
643
644 static int
645 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
646 {
647 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
648 struct ether_multi *enm;
649 struct vlan_mc_entry *mc;
650 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
651 int error;
652
653 /*
654 * Find a key to lookup vlan_mc_entry. We have to do this
655 * before calling ether_delmulti for obvious reason.
656 */
657 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
658 return (error);
659 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
660
661 error = ether_delmulti(sa, &ifv->ifv_ec);
662 if (error != ENETRESET)
663 return (error);
664
665 /* We no longer use this multicast address. Tell parent so. */
666 error = if_mcast_op(ifv->ifv_p, SIOCDELMULTI, sa);
667 if (error == 0) {
668 /* And forget about this address. */
669 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
670 mc = LIST_NEXT(mc, mc_entries)) {
671 if (mc->mc_enm == enm) {
672 LIST_REMOVE(mc, mc_entries);
673 free(mc, M_DEVBUF);
674 break;
675 }
676 }
677 KASSERT(mc != NULL);
678 } else
679 (void)ether_addmulti(sa, &ifv->ifv_ec);
680 return (error);
681 }
682
683 /*
684 * Delete any multicast address we have asked to add from parent
685 * interface. Called when the vlan is being unconfigured.
686 */
687 static void
688 vlan_ether_purgemulti(struct ifvlan *ifv)
689 {
690 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
691 struct vlan_mc_entry *mc;
692
693 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
694 (void)if_mcast_op(ifp, SIOCDELMULTI,
695 (const struct sockaddr *)&mc->mc_addr);
696 LIST_REMOVE(mc, mc_entries);
697 free(mc, M_DEVBUF);
698 }
699 }
700
701 static void
702 vlan_start(struct ifnet *ifp)
703 {
704 struct ifvlan *ifv = ifp->if_softc;
705 struct ifnet *p = ifv->ifv_p;
706 struct ethercom *ec = (void *) ifv->ifv_p;
707 struct mbuf *m;
708 int error;
709 ALTQ_DECL(struct altq_pktattr pktattr;)
710
711 #ifndef NET_MPSAFE
712 KASSERT(KERNEL_LOCKED_P());
713 #endif
714
715 ifp->if_flags |= IFF_OACTIVE;
716
717 for (;;) {
718 IFQ_DEQUEUE(&ifp->if_snd, m);
719 if (m == NULL)
720 break;
721
722 #ifdef ALTQ
723 /*
724 * If ALTQ is enabled on the parent interface, do
725 * classification; the queueing discipline might
726 * not require classification, but might require
727 * the address family/header pointer in the pktattr.
728 */
729 if (ALTQ_IS_ENABLED(&p->if_snd)) {
730 switch (p->if_type) {
731 case IFT_ETHER:
732 altq_etherclassify(&p->if_snd, m, &pktattr);
733 break;
734 #ifdef DIAGNOSTIC
735 default:
736 panic("vlan_start: impossible (altq)");
737 #endif
738 }
739 }
740 #endif /* ALTQ */
741
742 bpf_mtap(ifp, m);
743 /*
744 * If the parent can insert the tag itself, just mark
745 * the tag in the mbuf header.
746 */
747 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
748 struct m_tag *mtag;
749
750 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
751 M_NOWAIT);
752 if (mtag == NULL) {
753 ifp->if_oerrors++;
754 m_freem(m);
755 continue;
756 }
757 *(u_int *)(mtag + 1) = ifv->ifv_tag;
758 m_tag_prepend(m, mtag);
759 } else {
760 /*
761 * insert the tag ourselves
762 */
763 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
764 if (m == NULL) {
765 printf("%s: unable to prepend encap header",
766 ifv->ifv_p->if_xname);
767 ifp->if_oerrors++;
768 continue;
769 }
770
771 switch (p->if_type) {
772 case IFT_ETHER:
773 {
774 struct ether_vlan_header *evl;
775
776 if (m->m_len < sizeof(struct ether_vlan_header))
777 m = m_pullup(m,
778 sizeof(struct ether_vlan_header));
779 if (m == NULL) {
780 printf("%s: unable to pullup encap "
781 "header", ifv->ifv_p->if_xname);
782 ifp->if_oerrors++;
783 continue;
784 }
785
786 /*
787 * Transform the Ethernet header into an
788 * Ethernet header with 802.1Q encapsulation.
789 */
790 memmove(mtod(m, void *),
791 mtod(m, char *) + ifv->ifv_encaplen,
792 sizeof(struct ether_header));
793 evl = mtod(m, struct ether_vlan_header *);
794 evl->evl_proto = evl->evl_encap_proto;
795 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
796 evl->evl_tag = htons(ifv->ifv_tag);
797
798 /*
799 * To cater for VLAN-aware layer 2 ethernet
800 * switches which may need to strip the tag
801 * before forwarding the packet, make sure
802 * the packet+tag is at least 68 bytes long.
803 * This is necessary because our parent will
804 * only pad to 64 bytes (ETHER_MIN_LEN) and
805 * some switches will not pad by themselves
806 * after deleting a tag.
807 */
808 if (m->m_pkthdr.len <
809 (ETHER_MIN_LEN - ETHER_CRC_LEN +
810 ETHER_VLAN_ENCAP_LEN)) {
811 m_copyback(m, m->m_pkthdr.len,
812 (ETHER_MIN_LEN - ETHER_CRC_LEN +
813 ETHER_VLAN_ENCAP_LEN) -
814 m->m_pkthdr.len,
815 vlan_zero_pad_buff);
816 }
817 break;
818 }
819
820 #ifdef DIAGNOSTIC
821 default:
822 panic("vlan_start: impossible");
823 #endif
824 }
825 }
826
827 /*
828 * Send it, precisely as the parent's output routine
829 * would have. We are already running at splnet.
830 */
831 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
832 if (error) {
833 /* mbuf is already freed */
834 ifp->if_oerrors++;
835 continue;
836 }
837
838 ifp->if_opackets++;
839
840 p->if_obytes += m->m_pkthdr.len;
841 if (m->m_flags & M_MCAST)
842 p->if_omcasts++;
843 if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
844 (*p->if_start)(p);
845 }
846
847 ifp->if_flags &= ~IFF_OACTIVE;
848 }
849
850 /*
851 * Given an Ethernet frame, find a valid vlan interface corresponding to the
852 * given source interface and tag, then run the real packet through the
853 * parent's input routine.
854 */
855 void
856 vlan_input(struct ifnet *ifp, struct mbuf *m)
857 {
858 struct ifvlan *ifv;
859 u_int tag;
860 struct m_tag *mtag;
861
862 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
863 if (mtag != NULL) {
864 /* m contains a normal ethernet frame, the tag is in mtag */
865 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
866 m_tag_delete(m, mtag);
867 } else {
868 switch (ifp->if_type) {
869 case IFT_ETHER:
870 {
871 struct ether_vlan_header *evl;
872
873 if (m->m_len < sizeof(struct ether_vlan_header) &&
874 (m = m_pullup(m,
875 sizeof(struct ether_vlan_header))) == NULL) {
876 printf("%s: no memory for VLAN header, "
877 "dropping packet.\n", ifp->if_xname);
878 return;
879 }
880 evl = mtod(m, struct ether_vlan_header *);
881 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
882
883 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
884
885 /*
886 * Restore the original ethertype. We'll remove
887 * the encapsulation after we've found the vlan
888 * interface corresponding to the tag.
889 */
890 evl->evl_encap_proto = evl->evl_proto;
891 break;
892 }
893
894 default:
895 tag = (u_int) -1; /* XXX GCC */
896 #ifdef DIAGNOSTIC
897 panic("vlan_input: impossible");
898 #endif
899 }
900 }
901
902 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
903 ifv = LIST_NEXT(ifv, ifv_list))
904 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
905 break;
906
907 if (ifv == NULL ||
908 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
909 (IFF_UP|IFF_RUNNING)) {
910 m_freem(m);
911 ifp->if_noproto++;
912 return;
913 }
914
915 /*
916 * Now, remove the encapsulation header. The original
917 * header has already been fixed up above.
918 */
919 if (mtag == NULL) {
920 memmove(mtod(m, char *) + ifv->ifv_encaplen,
921 mtod(m, void *), sizeof(struct ether_header));
922 m_adj(m, ifv->ifv_encaplen);
923 }
924
925 m->m_pkthdr.rcvif = &ifv->ifv_if;
926 ifv->ifv_if.if_ipackets++;
927
928 bpf_mtap(&ifv->ifv_if, m);
929
930 m->m_flags &= ~M_PROMISC;
931 ifv->ifv_if.if_input(&ifv->ifv_if, m);
932 }
933