Home | History | Annotate | Line # | Download | only in net
if_vlan.c revision 1.78.2.2
      1 /*	$NetBSD: if_vlan.c,v 1.78.2.2 2015/06/06 14:40:25 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright 1998 Massachusetts Institute of Technology
     34  *
     35  * Permission to use, copy, modify, and distribute this software and
     36  * its documentation for any purpose and without fee is hereby
     37  * granted, provided that both the above copyright notice and this
     38  * permission notice appear in all copies, that both the above
     39  * copyright notice and this permission notice appear in all
     40  * supporting documentation, and that the name of M.I.T. not be used
     41  * in advertising or publicity pertaining to distribution of the
     42  * software without specific, written prior permission.  M.I.T. makes
     43  * no representations about the suitability of this software for any
     44  * purpose.  It is provided "as is" without express or implied
     45  * warranty.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
     48  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
     49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
     51  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     53  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
     54  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     55  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     56  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     57  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
     61  * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
     62  */
     63 
     64 /*
     65  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.  Might be
     66  * extended some day to also handle IEEE 802.1P priority tagging.  This is
     67  * sort of sneaky in the implementation, since we need to pretend to be
     68  * enough of an Ethernet implementation to make ARP work.  The way we do
     69  * this is by telling everyone that we are an Ethernet interface, and then
     70  * catch the packets that ether_output() left on our output queue when it
     71  * calls if_start(), rewrite them for use by the real outgoing interface,
     72  * and ask it to send them.
     73  *
     74  * TODO:
     75  *
     76  *	- Need some way to notify vlan interfaces when the parent
     77  *	  interface changes MTU.
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.78.2.2 2015/06/06 14:40:25 skrll Exp $");
     82 
     83 #ifdef _KERNEL_OPT
     84 #include "opt_inet.h"
     85 #include "opt_net_mpsafe.h"
     86 #endif
     87 
     88 #include <sys/param.h>
     89 #include <sys/kernel.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/queue.h>
     92 #include <sys/socket.h>
     93 #include <sys/sockio.h>
     94 #include <sys/systm.h>
     95 #include <sys/proc.h>
     96 #include <sys/kauth.h>
     97 #include <sys/mutex.h>
     98 
     99 #include <net/bpf.h>
    100 #include <net/if.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_types.h>
    103 #include <net/if_ether.h>
    104 #include <net/if_vlanvar.h>
    105 
    106 #ifdef INET
    107 #include <netinet/in.h>
    108 #include <netinet/if_inarp.h>
    109 #endif
    110 #ifdef INET6
    111 #include <netinet6/in6_ifattach.h>
    112 #endif
    113 
    114 struct vlan_mc_entry {
    115 	LIST_ENTRY(vlan_mc_entry)	mc_entries;
    116 	/*
    117 	 * A key to identify this entry.  The mc_addr below can't be
    118 	 * used since multiple sockaddr may mapped into the same
    119 	 * ether_multi (e.g., AF_UNSPEC).
    120 	 */
    121 	union {
    122 		struct ether_multi	*mcu_enm;
    123 	} mc_u;
    124 	struct sockaddr_storage		mc_addr;
    125 };
    126 
    127 #define	mc_enm		mc_u.mcu_enm
    128 
    129 struct ifvlan {
    130 	union {
    131 		struct ethercom ifvu_ec;
    132 	} ifv_u;
    133 	struct ifnet *ifv_p;	/* parent interface of this vlan */
    134 	struct ifv_linkmib {
    135 		const struct vlan_multisw *ifvm_msw;
    136 		int	ifvm_encaplen;	/* encapsulation length */
    137 		int	ifvm_mtufudge;	/* MTU fudged by this much */
    138 		int	ifvm_mintu;	/* min transmission unit */
    139 		uint16_t ifvm_proto;	/* encapsulation ethertype */
    140 		uint16_t ifvm_tag;	/* tag to apply on packets */
    141 	} ifv_mib;
    142 	LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
    143 	LIST_ENTRY(ifvlan) ifv_list;
    144 	int ifv_flags;
    145 };
    146 
    147 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
    148 
    149 #define	ifv_ec		ifv_u.ifvu_ec
    150 
    151 #define	ifv_if		ifv_ec.ec_if
    152 
    153 #define	ifv_msw		ifv_mib.ifvm_msw
    154 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
    155 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
    156 #define	ifv_mintu	ifv_mib.ifvm_mintu
    157 #define	ifv_tag		ifv_mib.ifvm_tag
    158 
    159 struct vlan_multisw {
    160 	int	(*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
    161 	int	(*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
    162 	void	(*vmsw_purgemulti)(struct ifvlan *);
    163 };
    164 
    165 static int	vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
    166 static int	vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
    167 static void	vlan_ether_purgemulti(struct ifvlan *);
    168 
    169 const struct vlan_multisw vlan_ether_multisw = {
    170 	vlan_ether_addmulti,
    171 	vlan_ether_delmulti,
    172 	vlan_ether_purgemulti,
    173 };
    174 
    175 static int	vlan_clone_create(struct if_clone *, int);
    176 static int	vlan_clone_destroy(struct ifnet *);
    177 static int	vlan_config(struct ifvlan *, struct ifnet *);
    178 static int	vlan_ioctl(struct ifnet *, u_long, void *);
    179 static void	vlan_start(struct ifnet *);
    180 static void	vlan_unconfig(struct ifnet *);
    181 
    182 void		vlanattach(int);
    183 
    184 /* XXX This should be a hash table with the tag as the basis of the key. */
    185 static LIST_HEAD(, ifvlan) ifv_list;
    186 
    187 static kmutex_t ifv_mtx __cacheline_aligned;
    188 
    189 struct if_clone vlan_cloner =
    190     IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
    191 
    192 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
    193 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
    194 
    195 void
    196 vlanattach(int n)
    197 {
    198 
    199 	LIST_INIT(&ifv_list);
    200 	mutex_init(&ifv_mtx, MUTEX_DEFAULT, IPL_NONE);
    201 	if_clone_attach(&vlan_cloner);
    202 }
    203 
    204 static void
    205 vlan_reset_linkname(struct ifnet *ifp)
    206 {
    207 
    208 	/*
    209 	 * We start out with a "802.1Q VLAN" type and zero-length
    210 	 * addresses.  When we attach to a parent interface, we
    211 	 * inherit its type, address length, address, and data link
    212 	 * type.
    213 	 */
    214 
    215 	ifp->if_type = IFT_L2VLAN;
    216 	ifp->if_addrlen = 0;
    217 	ifp->if_dlt = DLT_NULL;
    218 	if_alloc_sadl(ifp);
    219 }
    220 
    221 static int
    222 vlan_clone_create(struct if_clone *ifc, int unit)
    223 {
    224 	struct ifvlan *ifv;
    225 	struct ifnet *ifp;
    226 	int s;
    227 
    228 	ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
    229 	ifp = &ifv->ifv_if;
    230 	LIST_INIT(&ifv->ifv_mc_listhead);
    231 
    232 	s = splnet();
    233 	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
    234 	splx(s);
    235 
    236 	if_initname(ifp, ifc->ifc_name, unit);
    237 	ifp->if_softc = ifv;
    238 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    239 	ifp->if_start = vlan_start;
    240 	ifp->if_ioctl = vlan_ioctl;
    241 	IFQ_SET_READY(&ifp->if_snd);
    242 
    243 	if_attach(ifp);
    244 	vlan_reset_linkname(ifp);
    245 
    246 	return (0);
    247 }
    248 
    249 static int
    250 vlan_clone_destroy(struct ifnet *ifp)
    251 {
    252 	struct ifvlan *ifv = ifp->if_softc;
    253 	int s;
    254 
    255 	s = splnet();
    256 	LIST_REMOVE(ifv, ifv_list);
    257 	vlan_unconfig(ifp);
    258 	if_detach(ifp);
    259 	splx(s);
    260 
    261 	free(ifv, M_DEVBUF);
    262 
    263 	return (0);
    264 }
    265 
    266 /*
    267  * Configure a VLAN interface.  Must be called at splnet().
    268  */
    269 static int
    270 vlan_config(struct ifvlan *ifv, struct ifnet *p)
    271 {
    272 	struct ifnet *ifp = &ifv->ifv_if;
    273 	int error;
    274 
    275 	if (ifv->ifv_p != NULL)
    276 		return (EBUSY);
    277 
    278 	switch (p->if_type) {
    279 	case IFT_ETHER:
    280 	    {
    281 		struct ethercom *ec = (void *) p;
    282 
    283 		ifv->ifv_msw = &vlan_ether_multisw;
    284 		ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
    285 		ifv->ifv_mintu = ETHERMIN;
    286 
    287 		/*
    288 		 * If the parent supports the VLAN_MTU capability,
    289 		 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
    290 		 * enable it.
    291 		 */
    292 		if (ec->ec_nvlans++ == 0 &&
    293 		    (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
    294 			/*
    295 			 * Enable Tx/Rx of VLAN-sized frames.
    296 			 */
    297 			ec->ec_capenable |= ETHERCAP_VLAN_MTU;
    298 			if (p->if_flags & IFF_UP) {
    299 				error = if_flags_set(p, p->if_flags);
    300 				if (error) {
    301 					if (ec->ec_nvlans-- == 1)
    302 						ec->ec_capenable &=
    303 						    ~ETHERCAP_VLAN_MTU;
    304 					return (error);
    305 				}
    306 			}
    307 			ifv->ifv_mtufudge = 0;
    308 		} else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
    309 			/*
    310 			 * Fudge the MTU by the encapsulation size.  This
    311 			 * makes us incompatible with strictly compliant
    312 			 * 802.1Q implementations, but allows us to use
    313 			 * the feature with other NetBSD implementations,
    314 			 * which might still be useful.
    315 			 */
    316 			ifv->ifv_mtufudge = ifv->ifv_encaplen;
    317 		}
    318 
    319 		/*
    320 		 * If the parent interface can do hardware-assisted
    321 		 * VLAN encapsulation, then propagate its hardware-
    322 		 * assisted checksumming flags and tcp segmentation
    323 		 * offload.
    324 		 */
    325 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
    326 		        ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    327 			ifp->if_capabilities = p->if_capabilities &
    328 			    (IFCAP_TSOv4 | IFCAP_TSOv6 |
    329 			     IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
    330 			     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
    331 			     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
    332 			     IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
    333 			     IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
    334                 }
    335 		/*
    336 		 * We inherit the parent's Ethernet address.
    337 		 */
    338 		ether_ifattach(ifp, CLLADDR(p->if_sadl));
    339 		ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
    340 		break;
    341 	    }
    342 
    343 	default:
    344 		return (EPROTONOSUPPORT);
    345 	}
    346 
    347 	ifv->ifv_p = p;
    348 	ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
    349 	ifv->ifv_if.if_flags = p->if_flags &
    350 	    (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
    351 
    352 	/*
    353 	 * Inherit the if_type from the parent.  This allows us
    354 	 * to participate in bridges of that type.
    355 	 */
    356 	ifv->ifv_if.if_type = p->if_type;
    357 
    358 	return (0);
    359 }
    360 
    361 /*
    362  * Unconfigure a VLAN interface.  Must be called at splnet().
    363  */
    364 static void
    365 vlan_unconfig(struct ifnet *ifp)
    366 {
    367 	struct ifvlan *ifv = ifp->if_softc;
    368 	struct ifnet *p;
    369 
    370 	mutex_enter(&ifv_mtx);
    371 	p = ifv->ifv_p;
    372 
    373 	if (p == NULL) {
    374 		mutex_exit(&ifv_mtx);
    375 		return;
    376 	}
    377 
    378 	/*
    379  	 * Since the interface is being unconfigured, we need to empty the
    380 	 * list of multicast groups that we may have joined while we were
    381 	 * alive and remove them from the parent's list also.
    382 	 */
    383 	(*ifv->ifv_msw->vmsw_purgemulti)(ifv);
    384 
    385 	/* Disconnect from parent. */
    386 	switch (p->if_type) {
    387 	case IFT_ETHER:
    388 	    {
    389 		struct ethercom *ec = (void *) p;
    390 
    391 		if (ec->ec_nvlans-- == 1) {
    392 			/*
    393 			 * Disable Tx/Rx of VLAN-sized frames.
    394 			 */
    395 			ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
    396 			if (p->if_flags & IFF_UP)
    397 				(void)if_flags_set(p, p->if_flags);
    398 		}
    399 
    400 		ether_ifdetach(ifp);
    401 		/* Restore vlan_ioctl overwritten by ether_ifdetach */
    402 		ifp->if_ioctl = vlan_ioctl;
    403 		vlan_reset_linkname(ifp);
    404 		break;
    405 	    }
    406 
    407 #ifdef DIAGNOSTIC
    408 	default:
    409 		panic("vlan_unconfig: impossible");
    410 #endif
    411 	}
    412 
    413 	ifv->ifv_p = NULL;
    414 	ifv->ifv_if.if_mtu = 0;
    415 	ifv->ifv_flags = 0;
    416 
    417 #ifdef INET6
    418 	/* To delete v6 link local addresses */
    419 	in6_ifdetach(ifp);
    420 #endif
    421 	if ((ifp->if_flags & IFF_PROMISC) != 0)
    422 		ifpromisc(ifp, 0);
    423 	if_down(ifp);
    424 	ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
    425 	ifp->if_capabilities = 0;
    426 
    427 	mutex_exit(&ifv_mtx);
    428 }
    429 
    430 /*
    431  * Called when a parent interface is detaching; destroy any VLAN
    432  * configuration for the parent interface.
    433  */
    434 void
    435 vlan_ifdetach(struct ifnet *p)
    436 {
    437 	struct ifvlan *ifv;
    438 	int s;
    439 
    440 	s = splnet();
    441 
    442 	for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
    443 	     ifv = LIST_NEXT(ifv, ifv_list)) {
    444 		if (ifv->ifv_p == p)
    445 			vlan_unconfig(&ifv->ifv_if);
    446 	}
    447 
    448 	splx(s);
    449 }
    450 
    451 static int
    452 vlan_set_promisc(struct ifnet *ifp)
    453 {
    454 	struct ifvlan *ifv = ifp->if_softc;
    455 	int error = 0;
    456 
    457 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
    458 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
    459 			error = ifpromisc(ifv->ifv_p, 1);
    460 			if (error == 0)
    461 				ifv->ifv_flags |= IFVF_PROMISC;
    462 		}
    463 	} else {
    464 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
    465 			error = ifpromisc(ifv->ifv_p, 0);
    466 			if (error == 0)
    467 				ifv->ifv_flags &= ~IFVF_PROMISC;
    468 		}
    469 	}
    470 
    471 	return (error);
    472 }
    473 
    474 static int
    475 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    476 {
    477 	struct lwp *l = curlwp;	/* XXX */
    478 	struct ifvlan *ifv = ifp->if_softc;
    479 	struct ifaddr *ifa = (struct ifaddr *) data;
    480 	struct ifreq *ifr = (struct ifreq *) data;
    481 	struct ifnet *pr;
    482 	struct ifcapreq *ifcr;
    483 	struct vlanreq vlr;
    484 	int s, error = 0;
    485 
    486 	s = splnet();
    487 
    488 	switch (cmd) {
    489 	case SIOCSIFMTU:
    490 		if (ifv->ifv_p == NULL)
    491 			error = EINVAL;
    492 		else if (
    493 		    ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
    494 		    ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
    495 			error = EINVAL;
    496 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
    497 			error = 0;
    498 		break;
    499 
    500 	case SIOCSETVLAN:
    501 		if ((error = kauth_authorize_network(l->l_cred,
    502 		    KAUTH_NETWORK_INTERFACE,
    503 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
    504 		    NULL)) != 0)
    505 			break;
    506 		if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
    507 			break;
    508 		if (vlr.vlr_parent[0] == '\0') {
    509 			if (ifv->ifv_p != NULL &&
    510 			    (ifp->if_flags & IFF_PROMISC) != 0)
    511 				error = ifpromisc(ifv->ifv_p, 0);
    512 			vlan_unconfig(ifp);
    513 			break;
    514 		}
    515 		if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
    516 			error = EINVAL;		 /* check for valid tag */
    517 			break;
    518 		}
    519 		if ((pr = ifunit(vlr.vlr_parent)) == 0) {
    520 			error = ENOENT;
    521 			break;
    522 		}
    523 		if ((error = vlan_config(ifv, pr)) != 0)
    524 			break;
    525 		ifv->ifv_tag = vlr.vlr_tag;
    526 		ifp->if_flags |= IFF_RUNNING;
    527 
    528 		/* Update promiscuous mode, if necessary. */
    529 		vlan_set_promisc(ifp);
    530 		break;
    531 
    532 	case SIOCGETVLAN:
    533 		memset(&vlr, 0, sizeof(vlr));
    534 		if (ifv->ifv_p != NULL) {
    535 			snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
    536 			    ifv->ifv_p->if_xname);
    537 			vlr.vlr_tag = ifv->ifv_tag;
    538 		}
    539 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
    540 		break;
    541 
    542 	case SIOCSIFFLAGS:
    543 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
    544 			break;
    545 		/*
    546 		 * For promiscuous mode, we enable promiscuous mode on
    547 		 * the parent if we need promiscuous on the VLAN interface.
    548 		 */
    549 		if (ifv->ifv_p != NULL)
    550 			error = vlan_set_promisc(ifp);
    551 		break;
    552 
    553 	case SIOCADDMULTI:
    554 		error = (ifv->ifv_p != NULL) ?
    555 		    (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
    556 		break;
    557 
    558 	case SIOCDELMULTI:
    559 		error = (ifv->ifv_p != NULL) ?
    560 		    (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
    561 		break;
    562 
    563 	case SIOCSIFCAP:
    564 		ifcr = data;
    565 		/* make sure caps are enabled on parent */
    566 		if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) !=
    567 		    ifcr->ifcr_capenable) {
    568 			error = EINVAL;
    569 			break;
    570 		}
    571 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
    572 			error = 0;
    573 		break;
    574 	case SIOCINITIFADDR:
    575 		if (ifv->ifv_p == NULL) {
    576 			error = EINVAL;
    577 			break;
    578 		}
    579 
    580 		ifp->if_flags |= IFF_UP;
    581 #ifdef INET
    582 		if (ifa->ifa_addr->sa_family == AF_INET)
    583 			arp_ifinit(ifp, ifa);
    584 #endif
    585 		break;
    586 
    587 	default:
    588 		error = ether_ioctl(ifp, cmd, data);
    589 	}
    590 
    591 	splx(s);
    592 
    593 	return (error);
    594 }
    595 
    596 static int
    597 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
    598 {
    599 	const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
    600 	struct vlan_mc_entry *mc;
    601 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
    602 	int error;
    603 
    604 	if (sa->sa_len > sizeof(struct sockaddr_storage))
    605 		return (EINVAL);
    606 
    607 	error = ether_addmulti(sa, &ifv->ifv_ec);
    608 	if (error != ENETRESET)
    609 		return (error);
    610 
    611 	/*
    612 	 * This is new multicast address.  We have to tell parent
    613 	 * about it.  Also, remember this multicast address so that
    614 	 * we can delete them on unconfigure.
    615 	 */
    616 	mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
    617 	if (mc == NULL) {
    618 		error = ENOMEM;
    619 		goto alloc_failed;
    620 	}
    621 
    622 	/*
    623 	 * As ether_addmulti() returns ENETRESET, following two
    624 	 * statement shouldn't fail.
    625 	 */
    626 	(void)ether_multiaddr(sa, addrlo, addrhi);
    627 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
    628 	memcpy(&mc->mc_addr, sa, sa->sa_len);
    629 	LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
    630 
    631 	error = if_mcast_op(ifv->ifv_p, SIOCADDMULTI, sa);
    632 	if (error != 0)
    633 		goto ioctl_failed;
    634 	return (error);
    635 
    636  ioctl_failed:
    637 	LIST_REMOVE(mc, mc_entries);
    638 	free(mc, M_DEVBUF);
    639  alloc_failed:
    640 	(void)ether_delmulti(sa, &ifv->ifv_ec);
    641 	return (error);
    642 }
    643 
    644 static int
    645 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
    646 {
    647 	const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
    648 	struct ether_multi *enm;
    649 	struct vlan_mc_entry *mc;
    650 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
    651 	int error;
    652 
    653 	/*
    654 	 * Find a key to lookup vlan_mc_entry.  We have to do this
    655 	 * before calling ether_delmulti for obvious reason.
    656 	 */
    657 	if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
    658 		return (error);
    659 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
    660 
    661 	error = ether_delmulti(sa, &ifv->ifv_ec);
    662 	if (error != ENETRESET)
    663 		return (error);
    664 
    665 	/* We no longer use this multicast address.  Tell parent so. */
    666 	error = if_mcast_op(ifv->ifv_p, SIOCDELMULTI, sa);
    667 	if (error == 0) {
    668 		/* And forget about this address. */
    669 		for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
    670 		    mc = LIST_NEXT(mc, mc_entries)) {
    671 			if (mc->mc_enm == enm) {
    672 				LIST_REMOVE(mc, mc_entries);
    673 				free(mc, M_DEVBUF);
    674 				break;
    675 			}
    676 		}
    677 		KASSERT(mc != NULL);
    678 	} else
    679 		(void)ether_addmulti(sa, &ifv->ifv_ec);
    680 	return (error);
    681 }
    682 
    683 /*
    684  * Delete any multicast address we have asked to add from parent
    685  * interface.  Called when the vlan is being unconfigured.
    686  */
    687 static void
    688 vlan_ether_purgemulti(struct ifvlan *ifv)
    689 {
    690 	struct ifnet *ifp = ifv->ifv_p;		/* Parent. */
    691 	struct vlan_mc_entry *mc;
    692 
    693 	while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
    694 		(void)if_mcast_op(ifp, SIOCDELMULTI,
    695 		    (const struct sockaddr *)&mc->mc_addr);
    696 		LIST_REMOVE(mc, mc_entries);
    697 		free(mc, M_DEVBUF);
    698 	}
    699 }
    700 
    701 static void
    702 vlan_start(struct ifnet *ifp)
    703 {
    704 	struct ifvlan *ifv = ifp->if_softc;
    705 	struct ifnet *p = ifv->ifv_p;
    706 	struct ethercom *ec = (void *) ifv->ifv_p;
    707 	struct mbuf *m;
    708 	int error;
    709 	ALTQ_DECL(struct altq_pktattr pktattr;)
    710 
    711 #ifndef NET_MPSAFE
    712 	KASSERT(KERNEL_LOCKED_P());
    713 #endif
    714 
    715 	ifp->if_flags |= IFF_OACTIVE;
    716 
    717 	for (;;) {
    718 		IFQ_DEQUEUE(&ifp->if_snd, m);
    719 		if (m == NULL)
    720 			break;
    721 
    722 #ifdef ALTQ
    723 		/*
    724 		 * If ALTQ is enabled on the parent interface, do
    725 		 * classification; the queueing discipline might
    726 		 * not require classification, but might require
    727 		 * the address family/header pointer in the pktattr.
    728 		 */
    729 		if (ALTQ_IS_ENABLED(&p->if_snd)) {
    730 			switch (p->if_type) {
    731 			case IFT_ETHER:
    732 				altq_etherclassify(&p->if_snd, m, &pktattr);
    733 				break;
    734 #ifdef DIAGNOSTIC
    735 			default:
    736 				panic("vlan_start: impossible (altq)");
    737 #endif
    738 			}
    739 		}
    740 #endif /* ALTQ */
    741 
    742 		bpf_mtap(ifp, m);
    743 		/*
    744 		 * If the parent can insert the tag itself, just mark
    745 		 * the tag in the mbuf header.
    746 		 */
    747 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
    748 			struct m_tag *mtag;
    749 
    750 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
    751 			    M_NOWAIT);
    752 			if (mtag == NULL) {
    753 				ifp->if_oerrors++;
    754 				m_freem(m);
    755 				continue;
    756 			}
    757 			*(u_int *)(mtag + 1) = ifv->ifv_tag;
    758 			m_tag_prepend(m, mtag);
    759 		} else {
    760 			/*
    761 			 * insert the tag ourselves
    762 			 */
    763 			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
    764 			if (m == NULL) {
    765 				printf("%s: unable to prepend encap header",
    766 				    ifv->ifv_p->if_xname);
    767 				ifp->if_oerrors++;
    768 				continue;
    769 			}
    770 
    771 			switch (p->if_type) {
    772 			case IFT_ETHER:
    773 			    {
    774 				struct ether_vlan_header *evl;
    775 
    776 				if (m->m_len < sizeof(struct ether_vlan_header))
    777 					m = m_pullup(m,
    778 					    sizeof(struct ether_vlan_header));
    779 				if (m == NULL) {
    780 					printf("%s: unable to pullup encap "
    781 					    "header", ifv->ifv_p->if_xname);
    782 					ifp->if_oerrors++;
    783 					continue;
    784 				}
    785 
    786 				/*
    787 				 * Transform the Ethernet header into an
    788 				 * Ethernet header with 802.1Q encapsulation.
    789 				 */
    790 				memmove(mtod(m, void *),
    791 				    mtod(m, char *) + ifv->ifv_encaplen,
    792 				    sizeof(struct ether_header));
    793 				evl = mtod(m, struct ether_vlan_header *);
    794 				evl->evl_proto = evl->evl_encap_proto;
    795 				evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
    796 				evl->evl_tag = htons(ifv->ifv_tag);
    797 
    798 				/*
    799 				 * To cater for VLAN-aware layer 2 ethernet
    800 				 * switches which may need to strip the tag
    801 				 * before forwarding the packet, make sure
    802 				 * the packet+tag is at least 68 bytes long.
    803 				 * This is necessary because our parent will
    804 				 * only pad to 64 bytes (ETHER_MIN_LEN) and
    805 				 * some switches will not pad by themselves
    806 				 * after deleting a tag.
    807 				 */
    808 				if (m->m_pkthdr.len <
    809 				    (ETHER_MIN_LEN - ETHER_CRC_LEN +
    810 				     ETHER_VLAN_ENCAP_LEN)) {
    811 					m_copyback(m, m->m_pkthdr.len,
    812 					    (ETHER_MIN_LEN - ETHER_CRC_LEN +
    813 					     ETHER_VLAN_ENCAP_LEN) -
    814 					     m->m_pkthdr.len,
    815 					    vlan_zero_pad_buff);
    816 				}
    817 				break;
    818 			    }
    819 
    820 #ifdef DIAGNOSTIC
    821 			default:
    822 				panic("vlan_start: impossible");
    823 #endif
    824 			}
    825 		}
    826 
    827 		/*
    828 		 * Send it, precisely as the parent's output routine
    829 		 * would have.  We are already running at splnet.
    830 		 */
    831 		IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
    832 		if (error) {
    833 			/* mbuf is already freed */
    834 			ifp->if_oerrors++;
    835 			continue;
    836 		}
    837 
    838 		ifp->if_opackets++;
    839 
    840 		p->if_obytes += m->m_pkthdr.len;
    841 		if (m->m_flags & M_MCAST)
    842 			p->if_omcasts++;
    843 		if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
    844 			(*p->if_start)(p);
    845 	}
    846 
    847 	ifp->if_flags &= ~IFF_OACTIVE;
    848 }
    849 
    850 /*
    851  * Given an Ethernet frame, find a valid vlan interface corresponding to the
    852  * given source interface and tag, then run the real packet through the
    853  * parent's input routine.
    854  */
    855 void
    856 vlan_input(struct ifnet *ifp, struct mbuf *m)
    857 {
    858 	struct ifvlan *ifv;
    859 	u_int tag;
    860 	struct m_tag *mtag;
    861 
    862 	mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
    863 	if (mtag != NULL) {
    864 		/* m contains a normal ethernet frame, the tag is in mtag */
    865 		tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
    866 		m_tag_delete(m, mtag);
    867 	} else {
    868 		switch (ifp->if_type) {
    869 		case IFT_ETHER:
    870 		    {
    871 			struct ether_vlan_header *evl;
    872 
    873 			if (m->m_len < sizeof(struct ether_vlan_header) &&
    874 			    (m = m_pullup(m,
    875 			     sizeof(struct ether_vlan_header))) == NULL) {
    876 				printf("%s: no memory for VLAN header, "
    877 				    "dropping packet.\n", ifp->if_xname);
    878 				return;
    879 			}
    880 			evl = mtod(m, struct ether_vlan_header *);
    881 			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
    882 
    883 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
    884 
    885 			/*
    886 			 * Restore the original ethertype.  We'll remove
    887 			 * the encapsulation after we've found the vlan
    888 			 * interface corresponding to the tag.
    889 			 */
    890 			evl->evl_encap_proto = evl->evl_proto;
    891 			break;
    892 		    }
    893 
    894 		default:
    895 			tag = (u_int) -1;	/* XXX GCC */
    896 #ifdef DIAGNOSTIC
    897 			panic("vlan_input: impossible");
    898 #endif
    899 		}
    900 	}
    901 
    902 	for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
    903 	    ifv = LIST_NEXT(ifv, ifv_list))
    904 		if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
    905 			break;
    906 
    907 	if (ifv == NULL ||
    908 	    (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
    909 	     (IFF_UP|IFF_RUNNING)) {
    910 		m_freem(m);
    911 		ifp->if_noproto++;
    912 		return;
    913 	}
    914 
    915 	/*
    916 	 * Now, remove the encapsulation header.  The original
    917 	 * header has already been fixed up above.
    918 	 */
    919 	if (mtag == NULL) {
    920 		memmove(mtod(m, char *) + ifv->ifv_encaplen,
    921 		    mtod(m, void *), sizeof(struct ether_header));
    922 		m_adj(m, ifv->ifv_encaplen);
    923 	}
    924 
    925 	m->m_pkthdr.rcvif = &ifv->ifv_if;
    926 	ifv->ifv_if.if_ipackets++;
    927 
    928 	bpf_mtap(&ifv->ifv_if, m);
    929 
    930 	m->m_flags &= ~M_PROMISC;
    931 	ifv->ifv_if.if_input(&ifv->ifv_if, m);
    932 }
    933