if_vlan.c revision 1.86 1 /* $NetBSD: if_vlan.c,v 1.86 2016/04/20 09:01:04 knakahara Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.86 2016/04/20 09:01:04 knakahara Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/kernel.h>
90 #include <sys/mbuf.h>
91 #include <sys/queue.h>
92 #include <sys/socket.h>
93 #include <sys/sockio.h>
94 #include <sys/systm.h>
95 #include <sys/proc.h>
96 #include <sys/kauth.h>
97 #include <sys/mutex.h>
98
99 #include <net/bpf.h>
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_types.h>
103 #include <net/if_ether.h>
104 #include <net/if_vlanvar.h>
105
106 #ifdef INET
107 #include <netinet/in.h>
108 #include <netinet/if_inarp.h>
109 #endif
110 #ifdef INET6
111 #include <netinet6/in6_ifattach.h>
112 #endif
113
114 #include "ioconf.h"
115
116 struct vlan_mc_entry {
117 LIST_ENTRY(vlan_mc_entry) mc_entries;
118 /*
119 * A key to identify this entry. The mc_addr below can't be
120 * used since multiple sockaddr may mapped into the same
121 * ether_multi (e.g., AF_UNSPEC).
122 */
123 union {
124 struct ether_multi *mcu_enm;
125 } mc_u;
126 struct sockaddr_storage mc_addr;
127 };
128
129 #define mc_enm mc_u.mcu_enm
130
131 struct ifvlan {
132 union {
133 struct ethercom ifvu_ec;
134 } ifv_u;
135 struct ifnet *ifv_p; /* parent interface of this vlan */
136 struct ifv_linkmib {
137 const struct vlan_multisw *ifvm_msw;
138 int ifvm_encaplen; /* encapsulation length */
139 int ifvm_mtufudge; /* MTU fudged by this much */
140 int ifvm_mintu; /* min transmission unit */
141 uint16_t ifvm_proto; /* encapsulation ethertype */
142 uint16_t ifvm_tag; /* tag to apply on packets */
143 } ifv_mib;
144 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
145 LIST_ENTRY(ifvlan) ifv_list;
146 int ifv_flags;
147 };
148
149 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
150
151 #define ifv_ec ifv_u.ifvu_ec
152
153 #define ifv_if ifv_ec.ec_if
154
155 #define ifv_msw ifv_mib.ifvm_msw
156 #define ifv_encaplen ifv_mib.ifvm_encaplen
157 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
158 #define ifv_mintu ifv_mib.ifvm_mintu
159 #define ifv_tag ifv_mib.ifvm_tag
160
161 struct vlan_multisw {
162 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
163 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
164 void (*vmsw_purgemulti)(struct ifvlan *);
165 };
166
167 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
168 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
169 static void vlan_ether_purgemulti(struct ifvlan *);
170
171 const struct vlan_multisw vlan_ether_multisw = {
172 vlan_ether_addmulti,
173 vlan_ether_delmulti,
174 vlan_ether_purgemulti,
175 };
176
177 static int vlan_clone_create(struct if_clone *, int);
178 static int vlan_clone_destroy(struct ifnet *);
179 static int vlan_config(struct ifvlan *, struct ifnet *);
180 static int vlan_ioctl(struct ifnet *, u_long, void *);
181 static void vlan_start(struct ifnet *);
182 static void vlan_unconfig(struct ifnet *);
183
184 /* XXX This should be a hash table with the tag as the basis of the key. */
185 static LIST_HEAD(, ifvlan) ifv_list;
186
187 static kmutex_t ifv_mtx __cacheline_aligned;
188
189 struct if_clone vlan_cloner =
190 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
191
192 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
193 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
194
195 void
196 vlanattach(int n)
197 {
198
199 LIST_INIT(&ifv_list);
200 mutex_init(&ifv_mtx, MUTEX_DEFAULT, IPL_NONE);
201 if_clone_attach(&vlan_cloner);
202 }
203
204 static void
205 vlan_reset_linkname(struct ifnet *ifp)
206 {
207
208 /*
209 * We start out with a "802.1Q VLAN" type and zero-length
210 * addresses. When we attach to a parent interface, we
211 * inherit its type, address length, address, and data link
212 * type.
213 */
214
215 ifp->if_type = IFT_L2VLAN;
216 ifp->if_addrlen = 0;
217 ifp->if_dlt = DLT_NULL;
218 if_alloc_sadl(ifp);
219 }
220
221 static int
222 vlan_clone_create(struct if_clone *ifc, int unit)
223 {
224 struct ifvlan *ifv;
225 struct ifnet *ifp;
226 int s;
227
228 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
229 ifp = &ifv->ifv_if;
230 LIST_INIT(&ifv->ifv_mc_listhead);
231
232 s = splnet();
233 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
234 splx(s);
235
236 if_initname(ifp, ifc->ifc_name, unit);
237 ifp->if_softc = ifv;
238 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
239 ifp->if_start = vlan_start;
240 ifp->if_ioctl = vlan_ioctl;
241 IFQ_SET_READY(&ifp->if_snd);
242
243 if_initialize(ifp);
244 vlan_reset_linkname(ifp);
245 if_register(ifp);
246
247 return (0);
248 }
249
250 static int
251 vlan_clone_destroy(struct ifnet *ifp)
252 {
253 struct ifvlan *ifv = ifp->if_softc;
254 int s;
255
256 s = splnet();
257 LIST_REMOVE(ifv, ifv_list);
258 vlan_unconfig(ifp);
259 if_detach(ifp);
260 splx(s);
261
262 free(ifv, M_DEVBUF);
263
264 return (0);
265 }
266
267 /*
268 * Configure a VLAN interface. Must be called at splnet().
269 */
270 static int
271 vlan_config(struct ifvlan *ifv, struct ifnet *p)
272 {
273 struct ifnet *ifp = &ifv->ifv_if;
274 int error;
275
276 if (ifv->ifv_p != NULL)
277 return (EBUSY);
278
279 switch (p->if_type) {
280 case IFT_ETHER:
281 {
282 struct ethercom *ec = (void *) p;
283
284 ifv->ifv_msw = &vlan_ether_multisw;
285 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
286 ifv->ifv_mintu = ETHERMIN;
287
288 if (ec->ec_nvlans == 0) {
289 if ((error = ether_enable_vlan_mtu(p)) >= 0) {
290 if (error)
291 return error;
292 ifv->ifv_mtufudge = 0;
293 } else {
294 /*
295 * Fudge the MTU by the encapsulation size. This
296 * makes us incompatible with strictly compliant
297 * 802.1Q implementations, but allows us to use
298 * the feature with other NetBSD
299 * implementations, which might still be useful.
300 */
301 ifv->ifv_mtufudge = ifv->ifv_encaplen;
302 }
303 ec->ec_nvlans++;
304 }
305
306 /*
307 * If the parent interface can do hardware-assisted
308 * VLAN encapsulation, then propagate its hardware-
309 * assisted checksumming flags and tcp segmentation
310 * offload.
311 */
312 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
313 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
314 ifp->if_capabilities = p->if_capabilities &
315 (IFCAP_TSOv4 | IFCAP_TSOv6 |
316 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
317 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
318 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
319 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
320 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
321 }
322 /*
323 * We inherit the parent's Ethernet address.
324 */
325 ether_ifattach(ifp, CLLADDR(p->if_sadl));
326 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
327 break;
328 }
329
330 default:
331 return (EPROTONOSUPPORT);
332 }
333
334 ifv->ifv_p = p;
335 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
336 ifv->ifv_if.if_flags = p->if_flags &
337 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
338
339 /*
340 * Inherit the if_type from the parent. This allows us
341 * to participate in bridges of that type.
342 */
343 ifv->ifv_if.if_type = p->if_type;
344
345 return (0);
346 }
347
348 /*
349 * Unconfigure a VLAN interface. Must be called at splnet().
350 */
351 static void
352 vlan_unconfig(struct ifnet *ifp)
353 {
354 struct ifvlan *ifv = ifp->if_softc;
355 struct ifnet *p;
356
357 mutex_enter(&ifv_mtx);
358 p = ifv->ifv_p;
359
360 if (p == NULL) {
361 mutex_exit(&ifv_mtx);
362 return;
363 }
364
365 /*
366 * Since the interface is being unconfigured, we need to empty the
367 * list of multicast groups that we may have joined while we were
368 * alive and remove them from the parent's list also.
369 */
370 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
371
372 /* Disconnect from parent. */
373 switch (p->if_type) {
374 case IFT_ETHER:
375 {
376 struct ethercom *ec = (void *)p;
377 if (--ec->ec_nvlans == 0)
378 (void)ether_disable_vlan_mtu(p);
379
380 ether_ifdetach(ifp);
381 /* Restore vlan_ioctl overwritten by ether_ifdetach */
382 ifp->if_ioctl = vlan_ioctl;
383 vlan_reset_linkname(ifp);
384 break;
385 }
386
387 #ifdef DIAGNOSTIC
388 default:
389 panic("vlan_unconfig: impossible");
390 #endif
391 }
392
393 ifv->ifv_p = NULL;
394 ifv->ifv_if.if_mtu = 0;
395 ifv->ifv_flags = 0;
396
397 #ifdef INET6
398 /* To delete v6 link local addresses */
399 in6_ifdetach(ifp);
400 #endif
401 if ((ifp->if_flags & IFF_PROMISC) != 0)
402 ifpromisc(ifp, 0);
403 if_down(ifp);
404 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
405 ifp->if_capabilities = 0;
406
407 mutex_exit(&ifv_mtx);
408 }
409
410 /*
411 * Called when a parent interface is detaching; destroy any VLAN
412 * configuration for the parent interface.
413 */
414 void
415 vlan_ifdetach(struct ifnet *p)
416 {
417 struct ifvlan *ifv;
418 int s;
419
420 s = splnet();
421
422 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
423 ifv = LIST_NEXT(ifv, ifv_list)) {
424 if (ifv->ifv_p == p)
425 vlan_unconfig(&ifv->ifv_if);
426 }
427
428 splx(s);
429 }
430
431 static int
432 vlan_set_promisc(struct ifnet *ifp)
433 {
434 struct ifvlan *ifv = ifp->if_softc;
435 int error = 0;
436
437 if ((ifp->if_flags & IFF_PROMISC) != 0) {
438 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
439 error = ifpromisc(ifv->ifv_p, 1);
440 if (error == 0)
441 ifv->ifv_flags |= IFVF_PROMISC;
442 }
443 } else {
444 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
445 error = ifpromisc(ifv->ifv_p, 0);
446 if (error == 0)
447 ifv->ifv_flags &= ~IFVF_PROMISC;
448 }
449 }
450
451 return (error);
452 }
453
454 static int
455 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
456 {
457 struct lwp *l = curlwp; /* XXX */
458 struct ifvlan *ifv = ifp->if_softc;
459 struct ifaddr *ifa = (struct ifaddr *) data;
460 struct ifreq *ifr = (struct ifreq *) data;
461 struct ifnet *pr;
462 struct ifcapreq *ifcr;
463 struct vlanreq vlr;
464 int s, error = 0;
465
466 s = splnet();
467
468 switch (cmd) {
469 case SIOCSIFMTU:
470 if (ifv->ifv_p == NULL)
471 error = EINVAL;
472 else if (
473 ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
474 ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
475 error = EINVAL;
476 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
477 error = 0;
478 break;
479
480 case SIOCSETVLAN:
481 if ((error = kauth_authorize_network(l->l_cred,
482 KAUTH_NETWORK_INTERFACE,
483 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
484 NULL)) != 0)
485 break;
486 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
487 break;
488 if (vlr.vlr_parent[0] == '\0') {
489 if (ifv->ifv_p != NULL &&
490 (ifp->if_flags & IFF_PROMISC) != 0)
491 error = ifpromisc(ifv->ifv_p, 0);
492 vlan_unconfig(ifp);
493 break;
494 }
495 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
496 error = EINVAL; /* check for valid tag */
497 break;
498 }
499 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
500 error = ENOENT;
501 break;
502 }
503 if ((error = vlan_config(ifv, pr)) != 0)
504 break;
505 ifv->ifv_tag = vlr.vlr_tag;
506 ifp->if_flags |= IFF_RUNNING;
507
508 /* Update promiscuous mode, if necessary. */
509 vlan_set_promisc(ifp);
510 break;
511
512 case SIOCGETVLAN:
513 memset(&vlr, 0, sizeof(vlr));
514 if (ifv->ifv_p != NULL) {
515 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
516 ifv->ifv_p->if_xname);
517 vlr.vlr_tag = ifv->ifv_tag;
518 }
519 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
520 break;
521
522 case SIOCSIFFLAGS:
523 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
524 break;
525 /*
526 * For promiscuous mode, we enable promiscuous mode on
527 * the parent if we need promiscuous on the VLAN interface.
528 */
529 if (ifv->ifv_p != NULL)
530 error = vlan_set_promisc(ifp);
531 break;
532
533 case SIOCADDMULTI:
534 error = (ifv->ifv_p != NULL) ?
535 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
536 break;
537
538 case SIOCDELMULTI:
539 error = (ifv->ifv_p != NULL) ?
540 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
541 break;
542
543 case SIOCSIFCAP:
544 ifcr = data;
545 /* make sure caps are enabled on parent */
546 if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) !=
547 ifcr->ifcr_capenable) {
548 error = EINVAL;
549 break;
550 }
551 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
552 error = 0;
553 break;
554 case SIOCINITIFADDR:
555 if (ifv->ifv_p == NULL) {
556 error = EINVAL;
557 break;
558 }
559
560 ifp->if_flags |= IFF_UP;
561 #ifdef INET
562 if (ifa->ifa_addr->sa_family == AF_INET)
563 arp_ifinit(ifp, ifa);
564 #endif
565 break;
566
567 default:
568 error = ether_ioctl(ifp, cmd, data);
569 }
570
571 splx(s);
572
573 return (error);
574 }
575
576 static int
577 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
578 {
579 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
580 struct vlan_mc_entry *mc;
581 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
582 int error;
583
584 if (sa->sa_len > sizeof(struct sockaddr_storage))
585 return (EINVAL);
586
587 error = ether_addmulti(sa, &ifv->ifv_ec);
588 if (error != ENETRESET)
589 return (error);
590
591 /*
592 * This is new multicast address. We have to tell parent
593 * about it. Also, remember this multicast address so that
594 * we can delete them on unconfigure.
595 */
596 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
597 if (mc == NULL) {
598 error = ENOMEM;
599 goto alloc_failed;
600 }
601
602 /*
603 * As ether_addmulti() returns ENETRESET, following two
604 * statement shouldn't fail.
605 */
606 (void)ether_multiaddr(sa, addrlo, addrhi);
607 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
608 memcpy(&mc->mc_addr, sa, sa->sa_len);
609 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
610
611 error = if_mcast_op(ifv->ifv_p, SIOCADDMULTI, sa);
612 if (error != 0)
613 goto ioctl_failed;
614 return (error);
615
616 ioctl_failed:
617 LIST_REMOVE(mc, mc_entries);
618 free(mc, M_DEVBUF);
619 alloc_failed:
620 (void)ether_delmulti(sa, &ifv->ifv_ec);
621 return (error);
622 }
623
624 static int
625 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
626 {
627 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
628 struct ether_multi *enm;
629 struct vlan_mc_entry *mc;
630 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
631 int error;
632
633 /*
634 * Find a key to lookup vlan_mc_entry. We have to do this
635 * before calling ether_delmulti for obvious reason.
636 */
637 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
638 return (error);
639 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
640
641 error = ether_delmulti(sa, &ifv->ifv_ec);
642 if (error != ENETRESET)
643 return (error);
644
645 /* We no longer use this multicast address. Tell parent so. */
646 error = if_mcast_op(ifv->ifv_p, SIOCDELMULTI, sa);
647 if (error == 0) {
648 /* And forget about this address. */
649 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
650 mc = LIST_NEXT(mc, mc_entries)) {
651 if (mc->mc_enm == enm) {
652 LIST_REMOVE(mc, mc_entries);
653 free(mc, M_DEVBUF);
654 break;
655 }
656 }
657 KASSERT(mc != NULL);
658 } else
659 (void)ether_addmulti(sa, &ifv->ifv_ec);
660 return (error);
661 }
662
663 /*
664 * Delete any multicast address we have asked to add from parent
665 * interface. Called when the vlan is being unconfigured.
666 */
667 static void
668 vlan_ether_purgemulti(struct ifvlan *ifv)
669 {
670 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
671 struct vlan_mc_entry *mc;
672
673 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
674 (void)if_mcast_op(ifp, SIOCDELMULTI,
675 (const struct sockaddr *)&mc->mc_addr);
676 LIST_REMOVE(mc, mc_entries);
677 free(mc, M_DEVBUF);
678 }
679 }
680
681 static void
682 vlan_start(struct ifnet *ifp)
683 {
684 struct ifvlan *ifv = ifp->if_softc;
685 struct ifnet *p = ifv->ifv_p;
686 struct ethercom *ec = (void *) ifv->ifv_p;
687 struct mbuf *m;
688 int error;
689
690 #ifndef NET_MPSAFE
691 KASSERT(KERNEL_LOCKED_P());
692 #endif
693
694 ifp->if_flags |= IFF_OACTIVE;
695
696 for (;;) {
697 IFQ_DEQUEUE(&ifp->if_snd, m);
698 if (m == NULL)
699 break;
700
701 #ifdef ALTQ
702 /*
703 * If ALTQ is enabled on the parent interface, do
704 * classification; the queueing discipline might
705 * not require classification, but might require
706 * the address family/header pointer in the pktattr.
707 */
708 if (ALTQ_IS_ENABLED(&p->if_snd)) {
709 switch (p->if_type) {
710 case IFT_ETHER:
711 altq_etherclassify(&p->if_snd, m);
712 break;
713 #ifdef DIAGNOSTIC
714 default:
715 panic("vlan_start: impossible (altq)");
716 #endif
717 }
718 }
719 #endif /* ALTQ */
720
721 bpf_mtap(ifp, m);
722 /*
723 * If the parent can insert the tag itself, just mark
724 * the tag in the mbuf header.
725 */
726 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
727 struct m_tag *mtag;
728
729 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
730 M_NOWAIT);
731 if (mtag == NULL) {
732 ifp->if_oerrors++;
733 m_freem(m);
734 continue;
735 }
736 *(u_int *)(mtag + 1) = ifv->ifv_tag;
737 m_tag_prepend(m, mtag);
738 } else {
739 /*
740 * insert the tag ourselves
741 */
742 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
743 if (m == NULL) {
744 printf("%s: unable to prepend encap header",
745 ifv->ifv_p->if_xname);
746 ifp->if_oerrors++;
747 continue;
748 }
749
750 switch (p->if_type) {
751 case IFT_ETHER:
752 {
753 struct ether_vlan_header *evl;
754
755 if (m->m_len < sizeof(struct ether_vlan_header))
756 m = m_pullup(m,
757 sizeof(struct ether_vlan_header));
758 if (m == NULL) {
759 printf("%s: unable to pullup encap "
760 "header", ifv->ifv_p->if_xname);
761 ifp->if_oerrors++;
762 continue;
763 }
764
765 /*
766 * Transform the Ethernet header into an
767 * Ethernet header with 802.1Q encapsulation.
768 */
769 memmove(mtod(m, void *),
770 mtod(m, char *) + ifv->ifv_encaplen,
771 sizeof(struct ether_header));
772 evl = mtod(m, struct ether_vlan_header *);
773 evl->evl_proto = evl->evl_encap_proto;
774 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
775 evl->evl_tag = htons(ifv->ifv_tag);
776
777 /*
778 * To cater for VLAN-aware layer 2 ethernet
779 * switches which may need to strip the tag
780 * before forwarding the packet, make sure
781 * the packet+tag is at least 68 bytes long.
782 * This is necessary because our parent will
783 * only pad to 64 bytes (ETHER_MIN_LEN) and
784 * some switches will not pad by themselves
785 * after deleting a tag.
786 */
787 if (m->m_pkthdr.len <
788 (ETHER_MIN_LEN - ETHER_CRC_LEN +
789 ETHER_VLAN_ENCAP_LEN)) {
790 m_copyback(m, m->m_pkthdr.len,
791 (ETHER_MIN_LEN - ETHER_CRC_LEN +
792 ETHER_VLAN_ENCAP_LEN) -
793 m->m_pkthdr.len,
794 vlan_zero_pad_buff);
795 }
796 break;
797 }
798
799 #ifdef DIAGNOSTIC
800 default:
801 panic("vlan_start: impossible");
802 #endif
803 }
804 }
805
806 /*
807 * Send it, precisely as the parent's output routine
808 * would have. We are already running at splnet.
809 */
810 IFQ_ENQUEUE(&p->if_snd, m, error);
811 if (error) {
812 /* mbuf is already freed */
813 ifp->if_oerrors++;
814 continue;
815 }
816
817 ifp->if_opackets++;
818
819 p->if_obytes += m->m_pkthdr.len;
820 if (m->m_flags & M_MCAST)
821 p->if_omcasts++;
822 if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING)
823 (*p->if_start)(p);
824 }
825
826 ifp->if_flags &= ~IFF_OACTIVE;
827 }
828
829 /*
830 * Given an Ethernet frame, find a valid vlan interface corresponding to the
831 * given source interface and tag, then run the real packet through the
832 * parent's input routine.
833 */
834 void
835 vlan_input(struct ifnet *ifp, struct mbuf *m)
836 {
837 struct ifvlan *ifv;
838 u_int tag;
839 struct m_tag *mtag;
840
841 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
842 if (mtag != NULL) {
843 /* m contains a normal ethernet frame, the tag is in mtag */
844 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
845 m_tag_delete(m, mtag);
846 } else {
847 switch (ifp->if_type) {
848 case IFT_ETHER:
849 {
850 struct ether_vlan_header *evl;
851
852 if (m->m_len < sizeof(struct ether_vlan_header) &&
853 (m = m_pullup(m,
854 sizeof(struct ether_vlan_header))) == NULL) {
855 printf("%s: no memory for VLAN header, "
856 "dropping packet.\n", ifp->if_xname);
857 return;
858 }
859 evl = mtod(m, struct ether_vlan_header *);
860 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
861
862 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
863
864 /*
865 * Restore the original ethertype. We'll remove
866 * the encapsulation after we've found the vlan
867 * interface corresponding to the tag.
868 */
869 evl->evl_encap_proto = evl->evl_proto;
870 break;
871 }
872
873 default:
874 tag = (u_int) -1; /* XXX GCC */
875 #ifdef DIAGNOSTIC
876 panic("vlan_input: impossible");
877 #endif
878 }
879 }
880
881 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
882 ifv = LIST_NEXT(ifv, ifv_list))
883 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
884 break;
885
886 if (ifv == NULL ||
887 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
888 (IFF_UP|IFF_RUNNING)) {
889 m_freem(m);
890 ifp->if_noproto++;
891 return;
892 }
893
894 /*
895 * Now, remove the encapsulation header. The original
896 * header has already been fixed up above.
897 */
898 if (mtag == NULL) {
899 memmove(mtod(m, char *) + ifv->ifv_encaplen,
900 mtod(m, void *), sizeof(struct ether_header));
901 m_adj(m, ifv->ifv_encaplen);
902 }
903
904 m->m_pkthdr.rcvif = &ifv->ifv_if;
905 ifv->ifv_if.if_ipackets++;
906
907 bpf_mtap(&ifv->ifv_if, m);
908
909 m->m_flags &= ~M_PROMISC;
910 if_input(&ifv->ifv_if, m);
911 }
912