Home | History | Annotate | Line # | Download | only in net
if_vlan.c revision 1.90.2.1
      1 /*	$NetBSD: if_vlan.c,v 1.90.2.1 2017/01/07 08:56:50 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright 1998 Massachusetts Institute of Technology
     34  *
     35  * Permission to use, copy, modify, and distribute this software and
     36  * its documentation for any purpose and without fee is hereby
     37  * granted, provided that both the above copyright notice and this
     38  * permission notice appear in all copies, that both the above
     39  * copyright notice and this permission notice appear in all
     40  * supporting documentation, and that the name of M.I.T. not be used
     41  * in advertising or publicity pertaining to distribution of the
     42  * software without specific, written prior permission.  M.I.T. makes
     43  * no representations about the suitability of this software for any
     44  * purpose.  It is provided "as is" without express or implied
     45  * warranty.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
     48  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
     49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
     51  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     53  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
     54  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     55  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     56  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     57  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
     61  * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
     62  */
     63 
     64 /*
     65  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.  Might be
     66  * extended some day to also handle IEEE 802.1P priority tagging.  This is
     67  * sort of sneaky in the implementation, since we need to pretend to be
     68  * enough of an Ethernet implementation to make ARP work.  The way we do
     69  * this is by telling everyone that we are an Ethernet interface, and then
     70  * catch the packets that ether_output() left on our output queue when it
     71  * calls if_start(), rewrite them for use by the real outgoing interface,
     72  * and ask it to send them.
     73  *
     74  * TODO:
     75  *
     76  *	- Need some way to notify vlan interfaces when the parent
     77  *	  interface changes MTU.
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.90.2.1 2017/01/07 08:56:50 pgoyette Exp $");
     82 
     83 #ifdef _KERNEL_OPT
     84 #include "opt_inet.h"
     85 #include "opt_net_mpsafe.h"
     86 #endif
     87 
     88 #include <sys/param.h>
     89 #include <sys/kernel.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/queue.h>
     92 #include <sys/socket.h>
     93 #include <sys/sockio.h>
     94 #include <sys/systm.h>
     95 #include <sys/proc.h>
     96 #include <sys/kauth.h>
     97 #include <sys/mutex.h>
     98 
     99 #include <net/bpf.h>
    100 #include <net/if.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_types.h>
    103 #include <net/if_ether.h>
    104 #include <net/if_vlanvar.h>
    105 
    106 #ifdef INET
    107 #include <netinet/in.h>
    108 #include <netinet/if_inarp.h>
    109 #endif
    110 #ifdef INET6
    111 #include <netinet6/in6_ifattach.h>
    112 #endif
    113 
    114 #include "ioconf.h"
    115 
    116 struct vlan_mc_entry {
    117 	LIST_ENTRY(vlan_mc_entry)	mc_entries;
    118 	/*
    119 	 * A key to identify this entry.  The mc_addr below can't be
    120 	 * used since multiple sockaddr may mapped into the same
    121 	 * ether_multi (e.g., AF_UNSPEC).
    122 	 */
    123 	union {
    124 		struct ether_multi	*mcu_enm;
    125 	} mc_u;
    126 	struct sockaddr_storage		mc_addr;
    127 };
    128 
    129 #define	mc_enm		mc_u.mcu_enm
    130 
    131 struct ifvlan {
    132 	union {
    133 		struct ethercom ifvu_ec;
    134 	} ifv_u;
    135 	struct ifnet *ifv_p;	/* parent interface of this vlan */
    136 	struct ifv_linkmib {
    137 		const struct vlan_multisw *ifvm_msw;
    138 		int	ifvm_encaplen;	/* encapsulation length */
    139 		int	ifvm_mtufudge;	/* MTU fudged by this much */
    140 		int	ifvm_mintu;	/* min transmission unit */
    141 		uint16_t ifvm_proto;	/* encapsulation ethertype */
    142 		uint16_t ifvm_tag;	/* tag to apply on packets */
    143 	} ifv_mib;
    144 	LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
    145 	LIST_ENTRY(ifvlan) ifv_list;
    146 	int ifv_flags;
    147 };
    148 
    149 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
    150 
    151 #define	ifv_ec		ifv_u.ifvu_ec
    152 
    153 #define	ifv_if		ifv_ec.ec_if
    154 
    155 #define	ifv_msw		ifv_mib.ifvm_msw
    156 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
    157 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
    158 #define	ifv_mintu	ifv_mib.ifvm_mintu
    159 #define	ifv_tag		ifv_mib.ifvm_tag
    160 
    161 struct vlan_multisw {
    162 	int	(*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
    163 	int	(*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
    164 	void	(*vmsw_purgemulti)(struct ifvlan *);
    165 };
    166 
    167 static int	vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
    168 static int	vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
    169 static void	vlan_ether_purgemulti(struct ifvlan *);
    170 
    171 const struct vlan_multisw vlan_ether_multisw = {
    172 	vlan_ether_addmulti,
    173 	vlan_ether_delmulti,
    174 	vlan_ether_purgemulti,
    175 };
    176 
    177 static int	vlan_clone_create(struct if_clone *, int);
    178 static int	vlan_clone_destroy(struct ifnet *);
    179 static int	vlan_config(struct ifvlan *, struct ifnet *);
    180 static int	vlan_ioctl(struct ifnet *, u_long, void *);
    181 static void	vlan_start(struct ifnet *);
    182 static void	vlan_unconfig(struct ifnet *);
    183 
    184 /* XXX This should be a hash table with the tag as the basis of the key. */
    185 static LIST_HEAD(, ifvlan) ifv_list;
    186 
    187 static kmutex_t ifv_mtx __cacheline_aligned;
    188 
    189 struct if_clone vlan_cloner =
    190     IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
    191 
    192 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
    193 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
    194 
    195 void
    196 vlanattach(int n)
    197 {
    198 
    199 	LIST_INIT(&ifv_list);
    200 	mutex_init(&ifv_mtx, MUTEX_DEFAULT, IPL_NONE);
    201 	if_clone_attach(&vlan_cloner);
    202 }
    203 
    204 static void
    205 vlan_reset_linkname(struct ifnet *ifp)
    206 {
    207 
    208 	/*
    209 	 * We start out with a "802.1Q VLAN" type and zero-length
    210 	 * addresses.  When we attach to a parent interface, we
    211 	 * inherit its type, address length, address, and data link
    212 	 * type.
    213 	 */
    214 
    215 	ifp->if_type = IFT_L2VLAN;
    216 	ifp->if_addrlen = 0;
    217 	ifp->if_dlt = DLT_NULL;
    218 	if_alloc_sadl(ifp);
    219 }
    220 
    221 static int
    222 vlan_clone_create(struct if_clone *ifc, int unit)
    223 {
    224 	struct ifvlan *ifv;
    225 	struct ifnet *ifp;
    226 	int s;
    227 
    228 	ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
    229 	ifp = &ifv->ifv_if;
    230 	LIST_INIT(&ifv->ifv_mc_listhead);
    231 
    232 	s = splnet();
    233 	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
    234 	splx(s);
    235 
    236 	if_initname(ifp, ifc->ifc_name, unit);
    237 	ifp->if_softc = ifv;
    238 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    239 	ifp->if_start = vlan_start;
    240 	ifp->if_ioctl = vlan_ioctl;
    241 	IFQ_SET_READY(&ifp->if_snd);
    242 
    243 	if_initialize(ifp);
    244 	vlan_reset_linkname(ifp);
    245 	if_register(ifp);
    246 
    247 	return (0);
    248 }
    249 
    250 static int
    251 vlan_clone_destroy(struct ifnet *ifp)
    252 {
    253 	struct ifvlan *ifv = ifp->if_softc;
    254 	int s;
    255 
    256 	s = splnet();
    257 	LIST_REMOVE(ifv, ifv_list);
    258 	vlan_unconfig(ifp);
    259 	if_detach(ifp);
    260 	splx(s);
    261 
    262 	free(ifv, M_DEVBUF);
    263 
    264 	return (0);
    265 }
    266 
    267 /*
    268  * Configure a VLAN interface.  Must be called at splnet().
    269  */
    270 static int
    271 vlan_config(struct ifvlan *ifv, struct ifnet *p)
    272 {
    273 	struct ifnet *ifp = &ifv->ifv_if;
    274 	int error;
    275 
    276 	if (ifv->ifv_p != NULL)
    277 		return (EBUSY);
    278 
    279 	switch (p->if_type) {
    280 	case IFT_ETHER:
    281 	    {
    282 		struct ethercom *ec = (void *) p;
    283 
    284 		ifv->ifv_msw = &vlan_ether_multisw;
    285 		ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
    286 		ifv->ifv_mintu = ETHERMIN;
    287 
    288 		if (ec->ec_nvlans == 0) {
    289 			if ((error = ether_enable_vlan_mtu(p)) >= 0) {
    290 				if (error)
    291 					return error;
    292 				ifv->ifv_mtufudge = 0;
    293 			} else {
    294 				/*
    295 				 * Fudge the MTU by the encapsulation size. This
    296 				 * makes us incompatible with strictly compliant
    297 				 * 802.1Q implementations, but allows us to use
    298 				 * the feature with other NetBSD
    299 				 * implementations, which might still be useful.
    300 				 */
    301 				ifv->ifv_mtufudge = ifv->ifv_encaplen;
    302 			}
    303 		}
    304 		ec->ec_nvlans++;
    305 
    306 		/*
    307 		 * If the parent interface can do hardware-assisted
    308 		 * VLAN encapsulation, then propagate its hardware-
    309 		 * assisted checksumming flags and tcp segmentation
    310 		 * offload.
    311 		 */
    312 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
    313 		        ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    314 			ifp->if_capabilities = p->if_capabilities &
    315 			    (IFCAP_TSOv4 | IFCAP_TSOv6 |
    316 			     IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
    317 			     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
    318 			     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
    319 			     IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
    320 			     IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
    321                 }
    322 		/*
    323 		 * We inherit the parent's Ethernet address.
    324 		 */
    325 		ether_ifattach(ifp, CLLADDR(p->if_sadl));
    326 		ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
    327 		break;
    328 	    }
    329 
    330 	default:
    331 		return (EPROTONOSUPPORT);
    332 	}
    333 
    334 	ifv->ifv_p = p;
    335 	ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
    336 	ifv->ifv_if.if_flags = p->if_flags &
    337 	    (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
    338 
    339 	/*
    340 	 * Inherit the if_type from the parent.  This allows us
    341 	 * to participate in bridges of that type.
    342 	 */
    343 	ifv->ifv_if.if_type = p->if_type;
    344 
    345 	return (0);
    346 }
    347 
    348 /*
    349  * Unconfigure a VLAN interface.  Must be called at splnet().
    350  */
    351 static void
    352 vlan_unconfig(struct ifnet *ifp)
    353 {
    354 	struct ifvlan *ifv = ifp->if_softc;
    355 	struct ifnet *p;
    356 
    357 	mutex_enter(&ifv_mtx);
    358 	p = ifv->ifv_p;
    359 
    360 	if (p == NULL) {
    361 		mutex_exit(&ifv_mtx);
    362 		return;
    363 	}
    364 
    365 	/*
    366  	 * Since the interface is being unconfigured, we need to empty the
    367 	 * list of multicast groups that we may have joined while we were
    368 	 * alive and remove them from the parent's list also.
    369 	 */
    370 	(*ifv->ifv_msw->vmsw_purgemulti)(ifv);
    371 
    372 	/* Disconnect from parent. */
    373 	switch (p->if_type) {
    374 	case IFT_ETHER:
    375 	    {
    376 		struct ethercom *ec = (void *)p;
    377 		if (--ec->ec_nvlans == 0)
    378 			(void)ether_disable_vlan_mtu(p);
    379 
    380 		ether_ifdetach(ifp);
    381 		/* Restore vlan_ioctl overwritten by ether_ifdetach */
    382 		ifp->if_ioctl = vlan_ioctl;
    383 		vlan_reset_linkname(ifp);
    384 		break;
    385 	    }
    386 
    387 #ifdef DIAGNOSTIC
    388 	default:
    389 		panic("vlan_unconfig: impossible");
    390 #endif
    391 	}
    392 
    393 	ifv->ifv_p = NULL;
    394 	ifv->ifv_if.if_mtu = 0;
    395 	ifv->ifv_flags = 0;
    396 
    397 #ifdef INET6
    398 	/* To delete v6 link local addresses */
    399 	in6_ifdetach(ifp);
    400 #endif
    401 	if ((ifp->if_flags & IFF_PROMISC) != 0)
    402 		ifpromisc(ifp, 0);
    403 	if_down(ifp);
    404 	ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
    405 	ifp->if_capabilities = 0;
    406 
    407 	mutex_exit(&ifv_mtx);
    408 }
    409 
    410 /*
    411  * Called when a parent interface is detaching; destroy any VLAN
    412  * configuration for the parent interface.
    413  */
    414 void
    415 vlan_ifdetach(struct ifnet *p)
    416 {
    417 	struct ifvlan *ifv;
    418 	int s;
    419 
    420 	s = splnet();
    421 
    422 	for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
    423 	     ifv = LIST_NEXT(ifv, ifv_list)) {
    424 		if (ifv->ifv_p == p)
    425 			vlan_unconfig(&ifv->ifv_if);
    426 	}
    427 
    428 	splx(s);
    429 }
    430 
    431 static int
    432 vlan_set_promisc(struct ifnet *ifp)
    433 {
    434 	struct ifvlan *ifv = ifp->if_softc;
    435 	int error = 0;
    436 
    437 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
    438 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
    439 			error = ifpromisc(ifv->ifv_p, 1);
    440 			if (error == 0)
    441 				ifv->ifv_flags |= IFVF_PROMISC;
    442 		}
    443 	} else {
    444 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
    445 			error = ifpromisc(ifv->ifv_p, 0);
    446 			if (error == 0)
    447 				ifv->ifv_flags &= ~IFVF_PROMISC;
    448 		}
    449 	}
    450 
    451 	return (error);
    452 }
    453 
    454 static int
    455 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    456 {
    457 	struct lwp *l = curlwp;	/* XXX */
    458 	struct ifvlan *ifv = ifp->if_softc;
    459 	struct ifaddr *ifa = (struct ifaddr *) data;
    460 	struct ifreq *ifr = (struct ifreq *) data;
    461 	struct ifnet *pr;
    462 	struct ifcapreq *ifcr;
    463 	struct vlanreq vlr;
    464 	int s, error = 0;
    465 
    466 	s = splnet();
    467 
    468 	switch (cmd) {
    469 	case SIOCSIFMTU:
    470 		if (ifv->ifv_p == NULL)
    471 			error = EINVAL;
    472 		else if (
    473 		    ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
    474 		    ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
    475 			error = EINVAL;
    476 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
    477 			error = 0;
    478 		break;
    479 
    480 	case SIOCSETVLAN:
    481 		if ((error = kauth_authorize_network(l->l_cred,
    482 		    KAUTH_NETWORK_INTERFACE,
    483 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
    484 		    NULL)) != 0)
    485 			break;
    486 		if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
    487 			break;
    488 		if (vlr.vlr_parent[0] == '\0') {
    489 			if (ifv->ifv_p != NULL &&
    490 			    (ifp->if_flags & IFF_PROMISC) != 0)
    491 				error = ifpromisc(ifv->ifv_p, 0);
    492 			vlan_unconfig(ifp);
    493 			break;
    494 		}
    495 		if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
    496 			error = EINVAL;		 /* check for valid tag */
    497 			break;
    498 		}
    499 		if ((pr = ifunit(vlr.vlr_parent)) == 0) {
    500 			error = ENOENT;
    501 			break;
    502 		}
    503 		if ((error = vlan_config(ifv, pr)) != 0)
    504 			break;
    505 		ifv->ifv_tag = vlr.vlr_tag;
    506 		ifp->if_flags |= IFF_RUNNING;
    507 
    508 		/* Update promiscuous mode, if necessary. */
    509 		vlan_set_promisc(ifp);
    510 		break;
    511 
    512 	case SIOCGETVLAN:
    513 		memset(&vlr, 0, sizeof(vlr));
    514 		if (ifv->ifv_p != NULL) {
    515 			snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
    516 			    ifv->ifv_p->if_xname);
    517 			vlr.vlr_tag = ifv->ifv_tag;
    518 		}
    519 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
    520 		break;
    521 
    522 	case SIOCSIFFLAGS:
    523 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
    524 			break;
    525 		/*
    526 		 * For promiscuous mode, we enable promiscuous mode on
    527 		 * the parent if we need promiscuous on the VLAN interface.
    528 		 */
    529 		if (ifv->ifv_p != NULL)
    530 			error = vlan_set_promisc(ifp);
    531 		break;
    532 
    533 	case SIOCADDMULTI:
    534 		error = (ifv->ifv_p != NULL) ?
    535 		    (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
    536 		break;
    537 
    538 	case SIOCDELMULTI:
    539 		error = (ifv->ifv_p != NULL) ?
    540 		    (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
    541 		break;
    542 
    543 	case SIOCSIFCAP:
    544 		ifcr = data;
    545 		/* make sure caps are enabled on parent */
    546 		if (ifv->ifv_p == NULL) {
    547 			error = EINVAL;
    548 			break;
    549 		}
    550 		if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) !=
    551 		    ifcr->ifcr_capenable) {
    552 			error = EINVAL;
    553 			break;
    554 		}
    555 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
    556 			error = 0;
    557 		break;
    558 	case SIOCINITIFADDR:
    559 		if (ifv->ifv_p == NULL) {
    560 			error = EINVAL;
    561 			break;
    562 		}
    563 
    564 		ifp->if_flags |= IFF_UP;
    565 #ifdef INET
    566 		if (ifa->ifa_addr->sa_family == AF_INET)
    567 			arp_ifinit(ifp, ifa);
    568 #endif
    569 		break;
    570 
    571 	default:
    572 		error = ether_ioctl(ifp, cmd, data);
    573 	}
    574 
    575 	splx(s);
    576 
    577 	return (error);
    578 }
    579 
    580 static int
    581 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
    582 {
    583 	const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
    584 	struct vlan_mc_entry *mc;
    585 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
    586 	int error;
    587 
    588 	if (sa->sa_len > sizeof(struct sockaddr_storage))
    589 		return (EINVAL);
    590 
    591 	error = ether_addmulti(sa, &ifv->ifv_ec);
    592 	if (error != ENETRESET)
    593 		return (error);
    594 
    595 	/*
    596 	 * This is new multicast address.  We have to tell parent
    597 	 * about it.  Also, remember this multicast address so that
    598 	 * we can delete them on unconfigure.
    599 	 */
    600 	mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
    601 	if (mc == NULL) {
    602 		error = ENOMEM;
    603 		goto alloc_failed;
    604 	}
    605 
    606 	/*
    607 	 * As ether_addmulti() returns ENETRESET, following two
    608 	 * statement shouldn't fail.
    609 	 */
    610 	(void)ether_multiaddr(sa, addrlo, addrhi);
    611 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
    612 	memcpy(&mc->mc_addr, sa, sa->sa_len);
    613 	LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
    614 
    615 	error = if_mcast_op(ifv->ifv_p, SIOCADDMULTI, sa);
    616 	if (error != 0)
    617 		goto ioctl_failed;
    618 	return (error);
    619 
    620  ioctl_failed:
    621 	LIST_REMOVE(mc, mc_entries);
    622 	free(mc, M_DEVBUF);
    623  alloc_failed:
    624 	(void)ether_delmulti(sa, &ifv->ifv_ec);
    625 	return (error);
    626 }
    627 
    628 static int
    629 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
    630 {
    631 	const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
    632 	struct ether_multi *enm;
    633 	struct vlan_mc_entry *mc;
    634 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
    635 	int error;
    636 
    637 	/*
    638 	 * Find a key to lookup vlan_mc_entry.  We have to do this
    639 	 * before calling ether_delmulti for obvious reason.
    640 	 */
    641 	if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
    642 		return (error);
    643 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
    644 
    645 	error = ether_delmulti(sa, &ifv->ifv_ec);
    646 	if (error != ENETRESET)
    647 		return (error);
    648 
    649 	/* We no longer use this multicast address.  Tell parent so. */
    650 	error = if_mcast_op(ifv->ifv_p, SIOCDELMULTI, sa);
    651 	if (error == 0) {
    652 		/* And forget about this address. */
    653 		for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
    654 		    mc = LIST_NEXT(mc, mc_entries)) {
    655 			if (mc->mc_enm == enm) {
    656 				LIST_REMOVE(mc, mc_entries);
    657 				free(mc, M_DEVBUF);
    658 				break;
    659 			}
    660 		}
    661 		KASSERT(mc != NULL);
    662 	} else
    663 		(void)ether_addmulti(sa, &ifv->ifv_ec);
    664 	return (error);
    665 }
    666 
    667 /*
    668  * Delete any multicast address we have asked to add from parent
    669  * interface.  Called when the vlan is being unconfigured.
    670  */
    671 static void
    672 vlan_ether_purgemulti(struct ifvlan *ifv)
    673 {
    674 	struct ifnet *ifp = ifv->ifv_p;		/* Parent. */
    675 	struct vlan_mc_entry *mc;
    676 
    677 	while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
    678 		(void)if_mcast_op(ifp, SIOCDELMULTI,
    679 		    (const struct sockaddr *)&mc->mc_addr);
    680 		LIST_REMOVE(mc, mc_entries);
    681 		free(mc, M_DEVBUF);
    682 	}
    683 }
    684 
    685 static void
    686 vlan_start(struct ifnet *ifp)
    687 {
    688 	struct ifvlan *ifv = ifp->if_softc;
    689 	struct ifnet *p = ifv->ifv_p;
    690 	struct ethercom *ec = (void *) ifv->ifv_p;
    691 	struct mbuf *m;
    692 	int error;
    693 
    694 #ifndef NET_MPSAFE
    695 	KASSERT(KERNEL_LOCKED_P());
    696 #endif
    697 
    698 	ifp->if_flags |= IFF_OACTIVE;
    699 
    700 	for (;;) {
    701 		IFQ_DEQUEUE(&ifp->if_snd, m);
    702 		if (m == NULL)
    703 			break;
    704 
    705 #ifdef ALTQ
    706 		/*
    707 		 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE if defined.
    708 		 */
    709 		KERNEL_LOCK(1, NULL);
    710 		/*
    711 		 * If ALTQ is enabled on the parent interface, do
    712 		 * classification; the queueing discipline might
    713 		 * not require classification, but might require
    714 		 * the address family/header pointer in the pktattr.
    715 		 */
    716 		if (ALTQ_IS_ENABLED(&p->if_snd)) {
    717 			switch (p->if_type) {
    718 			case IFT_ETHER:
    719 				altq_etherclassify(&p->if_snd, m);
    720 				break;
    721 #ifdef DIAGNOSTIC
    722 			default:
    723 				panic("vlan_start: impossible (altq)");
    724 #endif
    725 			}
    726 		}
    727 		KERNEL_UNLOCK_ONE(NULL);
    728 #endif /* ALTQ */
    729 
    730 		bpf_mtap(ifp, m);
    731 		/*
    732 		 * If the parent can insert the tag itself, just mark
    733 		 * the tag in the mbuf header.
    734 		 */
    735 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
    736 			struct m_tag *mtag;
    737 
    738 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
    739 			    M_NOWAIT);
    740 			if (mtag == NULL) {
    741 				ifp->if_oerrors++;
    742 				m_freem(m);
    743 				continue;
    744 			}
    745 			*(u_int *)(mtag + 1) = ifv->ifv_tag;
    746 			m_tag_prepend(m, mtag);
    747 		} else {
    748 			/*
    749 			 * insert the tag ourselves
    750 			 */
    751 			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
    752 			if (m == NULL) {
    753 				printf("%s: unable to prepend encap header",
    754 				    ifv->ifv_p->if_xname);
    755 				ifp->if_oerrors++;
    756 				continue;
    757 			}
    758 
    759 			switch (p->if_type) {
    760 			case IFT_ETHER:
    761 			    {
    762 				struct ether_vlan_header *evl;
    763 
    764 				if (m->m_len < sizeof(struct ether_vlan_header))
    765 					m = m_pullup(m,
    766 					    sizeof(struct ether_vlan_header));
    767 				if (m == NULL) {
    768 					printf("%s: unable to pullup encap "
    769 					    "header", ifv->ifv_p->if_xname);
    770 					ifp->if_oerrors++;
    771 					continue;
    772 				}
    773 
    774 				/*
    775 				 * Transform the Ethernet header into an
    776 				 * Ethernet header with 802.1Q encapsulation.
    777 				 */
    778 				memmove(mtod(m, void *),
    779 				    mtod(m, char *) + ifv->ifv_encaplen,
    780 				    sizeof(struct ether_header));
    781 				evl = mtod(m, struct ether_vlan_header *);
    782 				evl->evl_proto = evl->evl_encap_proto;
    783 				evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
    784 				evl->evl_tag = htons(ifv->ifv_tag);
    785 
    786 				/*
    787 				 * To cater for VLAN-aware layer 2 ethernet
    788 				 * switches which may need to strip the tag
    789 				 * before forwarding the packet, make sure
    790 				 * the packet+tag is at least 68 bytes long.
    791 				 * This is necessary because our parent will
    792 				 * only pad to 64 bytes (ETHER_MIN_LEN) and
    793 				 * some switches will not pad by themselves
    794 				 * after deleting a tag.
    795 				 */
    796 				if (m->m_pkthdr.len <
    797 				    (ETHER_MIN_LEN - ETHER_CRC_LEN +
    798 				     ETHER_VLAN_ENCAP_LEN)) {
    799 					m_copyback(m, m->m_pkthdr.len,
    800 					    (ETHER_MIN_LEN - ETHER_CRC_LEN +
    801 					     ETHER_VLAN_ENCAP_LEN) -
    802 					     m->m_pkthdr.len,
    803 					    vlan_zero_pad_buff);
    804 				}
    805 				break;
    806 			    }
    807 
    808 #ifdef DIAGNOSTIC
    809 			default:
    810 				panic("vlan_start: impossible");
    811 #endif
    812 			}
    813 		}
    814 
    815 		/*
    816 		 * Send it, precisely as the parent's output routine
    817 		 * would have.  We are already running at splnet.
    818 		 */
    819 		if ((p->if_flags & IFF_RUNNING) != 0) {
    820 			error = if_transmit_lock(p, m);
    821 			if (error) {
    822 				/* mbuf is already freed */
    823 				ifp->if_oerrors++;
    824 				continue;
    825 			}
    826 		}
    827 
    828 		ifp->if_opackets++;
    829 	}
    830 
    831 	ifp->if_flags &= ~IFF_OACTIVE;
    832 }
    833 
    834 /*
    835  * Given an Ethernet frame, find a valid vlan interface corresponding to the
    836  * given source interface and tag, then run the real packet through the
    837  * parent's input routine.
    838  */
    839 void
    840 vlan_input(struct ifnet *ifp, struct mbuf *m)
    841 {
    842 	struct ifvlan *ifv;
    843 	u_int tag;
    844 	struct m_tag *mtag;
    845 
    846 	mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
    847 	if (mtag != NULL) {
    848 		/* m contains a normal ethernet frame, the tag is in mtag */
    849 		tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
    850 		m_tag_delete(m, mtag);
    851 	} else {
    852 		switch (ifp->if_type) {
    853 		case IFT_ETHER:
    854 		    {
    855 			struct ether_vlan_header *evl;
    856 
    857 			if (m->m_len < sizeof(struct ether_vlan_header) &&
    858 			    (m = m_pullup(m,
    859 			     sizeof(struct ether_vlan_header))) == NULL) {
    860 				printf("%s: no memory for VLAN header, "
    861 				    "dropping packet.\n", ifp->if_xname);
    862 				return;
    863 			}
    864 			evl = mtod(m, struct ether_vlan_header *);
    865 			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
    866 
    867 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
    868 
    869 			/*
    870 			 * Restore the original ethertype.  We'll remove
    871 			 * the encapsulation after we've found the vlan
    872 			 * interface corresponding to the tag.
    873 			 */
    874 			evl->evl_encap_proto = evl->evl_proto;
    875 			break;
    876 		    }
    877 
    878 		default:
    879 			tag = (u_int) -1;	/* XXX GCC */
    880 #ifdef DIAGNOSTIC
    881 			panic("vlan_input: impossible");
    882 #endif
    883 		}
    884 	}
    885 
    886 	for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
    887 	    ifv = LIST_NEXT(ifv, ifv_list))
    888 		if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
    889 			break;
    890 
    891 	if (ifv == NULL ||
    892 	    (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
    893 	     (IFF_UP|IFF_RUNNING)) {
    894 		m_freem(m);
    895 		ifp->if_noproto++;
    896 		return;
    897 	}
    898 
    899 	/*
    900 	 * Now, remove the encapsulation header.  The original
    901 	 * header has already been fixed up above.
    902 	 */
    903 	if (mtag == NULL) {
    904 		memmove(mtod(m, char *) + ifv->ifv_encaplen,
    905 		    mtod(m, void *), sizeof(struct ether_header));
    906 		m_adj(m, ifv->ifv_encaplen);
    907 	}
    908 
    909 	m_set_rcvif(m, &ifv->ifv_if);
    910 	ifv->ifv_if.if_ipackets++;
    911 
    912 	m->m_flags &= ~M_PROMISC;
    913 	if_input(&ifv->ifv_if, m);
    914 }
    915