Home | History | Annotate | Line # | Download | only in net
if_vlan.c revision 1.90.2.2
      1 /*	$NetBSD: if_vlan.c,v 1.90.2.2 2017/03/20 06:57:50 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright 1998 Massachusetts Institute of Technology
     34  *
     35  * Permission to use, copy, modify, and distribute this software and
     36  * its documentation for any purpose and without fee is hereby
     37  * granted, provided that both the above copyright notice and this
     38  * permission notice appear in all copies, that both the above
     39  * copyright notice and this permission notice appear in all
     40  * supporting documentation, and that the name of M.I.T. not be used
     41  * in advertising or publicity pertaining to distribution of the
     42  * software without specific, written prior permission.  M.I.T. makes
     43  * no representations about the suitability of this software for any
     44  * purpose.  It is provided "as is" without express or implied
     45  * warranty.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
     48  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
     49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
     51  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     53  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
     54  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     55  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     56  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     57  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
     61  * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
     62  */
     63 
     64 /*
     65  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.  Might be
     66  * extended some day to also handle IEEE 802.1P priority tagging.  This is
     67  * sort of sneaky in the implementation, since we need to pretend to be
     68  * enough of an Ethernet implementation to make ARP work.  The way we do
     69  * this is by telling everyone that we are an Ethernet interface, and then
     70  * catch the packets that ether_output() left on our output queue when it
     71  * calls if_start(), rewrite them for use by the real outgoing interface,
     72  * and ask it to send them.
     73  *
     74  * TODO:
     75  *
     76  *	- Need some way to notify vlan interfaces when the parent
     77  *	  interface changes MTU.
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.90.2.2 2017/03/20 06:57:50 pgoyette Exp $");
     82 
     83 #ifdef _KERNEL_OPT
     84 #include "opt_inet.h"
     85 #include "opt_net_mpsafe.h"
     86 #endif
     87 
     88 #include <sys/param.h>
     89 #include <sys/kernel.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/queue.h>
     92 #include <sys/socket.h>
     93 #include <sys/sockio.h>
     94 #include <sys/systm.h>
     95 #include <sys/proc.h>
     96 #include <sys/kauth.h>
     97 #include <sys/mutex.h>
     98 
     99 #include <net/bpf.h>
    100 #include <net/if.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_types.h>
    103 #include <net/if_ether.h>
    104 #include <net/if_vlanvar.h>
    105 
    106 #ifdef INET
    107 #include <netinet/in.h>
    108 #include <netinet/if_inarp.h>
    109 #endif
    110 #ifdef INET6
    111 #include <netinet6/in6_ifattach.h>
    112 #endif
    113 
    114 #include "ioconf.h"
    115 
    116 struct vlan_mc_entry {
    117 	LIST_ENTRY(vlan_mc_entry)	mc_entries;
    118 	/*
    119 	 * A key to identify this entry.  The mc_addr below can't be
    120 	 * used since multiple sockaddr may mapped into the same
    121 	 * ether_multi (e.g., AF_UNSPEC).
    122 	 */
    123 	union {
    124 		struct ether_multi	*mcu_enm;
    125 	} mc_u;
    126 	struct sockaddr_storage		mc_addr;
    127 };
    128 
    129 #define	mc_enm		mc_u.mcu_enm
    130 
    131 struct ifvlan {
    132 	union {
    133 		struct ethercom ifvu_ec;
    134 	} ifv_u;
    135 	struct ifnet *ifv_p;	/* parent interface of this vlan */
    136 	struct ifv_linkmib {
    137 		const struct vlan_multisw *ifvm_msw;
    138 		int	ifvm_encaplen;	/* encapsulation length */
    139 		int	ifvm_mtufudge;	/* MTU fudged by this much */
    140 		int	ifvm_mintu;	/* min transmission unit */
    141 		uint16_t ifvm_proto;	/* encapsulation ethertype */
    142 		uint16_t ifvm_tag;	/* tag to apply on packets */
    143 	} ifv_mib;
    144 	LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
    145 	LIST_ENTRY(ifvlan) ifv_list;
    146 	int ifv_flags;
    147 };
    148 
    149 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
    150 
    151 #define	ifv_ec		ifv_u.ifvu_ec
    152 
    153 #define	ifv_if		ifv_ec.ec_if
    154 
    155 #define	ifv_msw		ifv_mib.ifvm_msw
    156 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
    157 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
    158 #define	ifv_mintu	ifv_mib.ifvm_mintu
    159 #define	ifv_tag		ifv_mib.ifvm_tag
    160 
    161 struct vlan_multisw {
    162 	int	(*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
    163 	int	(*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
    164 	void	(*vmsw_purgemulti)(struct ifvlan *);
    165 };
    166 
    167 static int	vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
    168 static int	vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
    169 static void	vlan_ether_purgemulti(struct ifvlan *);
    170 
    171 const struct vlan_multisw vlan_ether_multisw = {
    172 	vlan_ether_addmulti,
    173 	vlan_ether_delmulti,
    174 	vlan_ether_purgemulti,
    175 };
    176 
    177 static int	vlan_clone_create(struct if_clone *, int);
    178 static int	vlan_clone_destroy(struct ifnet *);
    179 static int	vlan_config(struct ifvlan *, struct ifnet *);
    180 static int	vlan_ioctl(struct ifnet *, u_long, void *);
    181 static void	vlan_start(struct ifnet *);
    182 static void	vlan_unconfig(struct ifnet *);
    183 
    184 /* XXX This should be a hash table with the tag as the basis of the key. */
    185 static LIST_HEAD(, ifvlan) ifv_list;
    186 
    187 static kmutex_t ifv_mtx __cacheline_aligned;
    188 
    189 struct if_clone vlan_cloner =
    190     IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
    191 
    192 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
    193 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
    194 
    195 void
    196 vlanattach(int n)
    197 {
    198 
    199 	LIST_INIT(&ifv_list);
    200 	mutex_init(&ifv_mtx, MUTEX_DEFAULT, IPL_NONE);
    201 	if_clone_attach(&vlan_cloner);
    202 }
    203 
    204 static void
    205 vlan_reset_linkname(struct ifnet *ifp)
    206 {
    207 
    208 	/*
    209 	 * We start out with a "802.1Q VLAN" type and zero-length
    210 	 * addresses.  When we attach to a parent interface, we
    211 	 * inherit its type, address length, address, and data link
    212 	 * type.
    213 	 */
    214 
    215 	ifp->if_type = IFT_L2VLAN;
    216 	ifp->if_addrlen = 0;
    217 	ifp->if_dlt = DLT_NULL;
    218 	if_alloc_sadl(ifp);
    219 }
    220 
    221 static int
    222 vlan_clone_create(struct if_clone *ifc, int unit)
    223 {
    224 	struct ifvlan *ifv;
    225 	struct ifnet *ifp;
    226 	int s;
    227 
    228 	ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
    229 	ifp = &ifv->ifv_if;
    230 	LIST_INIT(&ifv->ifv_mc_listhead);
    231 
    232 	s = splnet();
    233 	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
    234 	splx(s);
    235 
    236 	if_initname(ifp, ifc->ifc_name, unit);
    237 	ifp->if_softc = ifv;
    238 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    239 	ifp->if_start = vlan_start;
    240 	ifp->if_ioctl = vlan_ioctl;
    241 	IFQ_SET_READY(&ifp->if_snd);
    242 
    243 	if_initialize(ifp);
    244 	vlan_reset_linkname(ifp);
    245 	if_register(ifp);
    246 
    247 	return (0);
    248 }
    249 
    250 static int
    251 vlan_clone_destroy(struct ifnet *ifp)
    252 {
    253 	struct ifvlan *ifv = ifp->if_softc;
    254 	int s;
    255 
    256 	s = splnet();
    257 	LIST_REMOVE(ifv, ifv_list);
    258 	vlan_unconfig(ifp);
    259 	if_detach(ifp);
    260 	splx(s);
    261 
    262 	free(ifv, M_DEVBUF);
    263 
    264 	return (0);
    265 }
    266 
    267 /*
    268  * Configure a VLAN interface.  Must be called at splnet().
    269  */
    270 static int
    271 vlan_config(struct ifvlan *ifv, struct ifnet *p)
    272 {
    273 	struct ifnet *ifp = &ifv->ifv_if;
    274 	int error;
    275 
    276 	if (ifv->ifv_p != NULL)
    277 		return (EBUSY);
    278 
    279 	switch (p->if_type) {
    280 	case IFT_ETHER:
    281 	    {
    282 		struct ethercom *ec = (void *) p;
    283 
    284 		ifv->ifv_msw = &vlan_ether_multisw;
    285 		ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
    286 		ifv->ifv_mintu = ETHERMIN;
    287 
    288 		if (ec->ec_nvlans++ == 0) {
    289 			if ((error = ether_enable_vlan_mtu(p)) >= 0) {
    290 				if (error) {
    291 					ec->ec_nvlans--;
    292 					return error;
    293 				}
    294 				ifv->ifv_mtufudge = 0;
    295 			} else {
    296 				/*
    297 				 * Fudge the MTU by the encapsulation size. This
    298 				 * makes us incompatible with strictly compliant
    299 				 * 802.1Q implementations, but allows us to use
    300 				 * the feature with other NetBSD
    301 				 * implementations, which might still be useful.
    302 				 */
    303 				ifv->ifv_mtufudge = ifv->ifv_encaplen;
    304 			}
    305 		}
    306 
    307 		/*
    308 		 * If the parent interface can do hardware-assisted
    309 		 * VLAN encapsulation, then propagate its hardware-
    310 		 * assisted checksumming flags and tcp segmentation
    311 		 * offload.
    312 		 */
    313 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
    314 		        ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    315 			ifp->if_capabilities = p->if_capabilities &
    316 			    (IFCAP_TSOv4 | IFCAP_TSOv6 |
    317 			     IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
    318 			     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
    319 			     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
    320 			     IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
    321 			     IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
    322                 }
    323 		/*
    324 		 * We inherit the parent's Ethernet address.
    325 		 */
    326 		ether_ifattach(ifp, CLLADDR(p->if_sadl));
    327 		ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
    328 		break;
    329 	    }
    330 
    331 	default:
    332 		return (EPROTONOSUPPORT);
    333 	}
    334 
    335 	ifv->ifv_p = p;
    336 	ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
    337 	ifv->ifv_if.if_flags = p->if_flags &
    338 	    (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
    339 
    340 	/*
    341 	 * Inherit the if_type from the parent.  This allows us
    342 	 * to participate in bridges of that type.
    343 	 */
    344 	ifv->ifv_if.if_type = p->if_type;
    345 
    346 	return (0);
    347 }
    348 
    349 /*
    350  * Unconfigure a VLAN interface.  Must be called at splnet().
    351  */
    352 static void
    353 vlan_unconfig(struct ifnet *ifp)
    354 {
    355 	struct ifvlan *ifv = ifp->if_softc;
    356 	struct ifnet *p;
    357 
    358 	mutex_enter(&ifv_mtx);
    359 	p = ifv->ifv_p;
    360 
    361 	if (p == NULL) {
    362 		mutex_exit(&ifv_mtx);
    363 		return;
    364 	}
    365 
    366 	/*
    367  	 * Since the interface is being unconfigured, we need to empty the
    368 	 * list of multicast groups that we may have joined while we were
    369 	 * alive and remove them from the parent's list also.
    370 	 */
    371 	(*ifv->ifv_msw->vmsw_purgemulti)(ifv);
    372 
    373 	/* Disconnect from parent. */
    374 	switch (p->if_type) {
    375 	case IFT_ETHER:
    376 	    {
    377 		struct ethercom *ec = (void *)p;
    378 		if (--ec->ec_nvlans == 0)
    379 			(void)ether_disable_vlan_mtu(p);
    380 
    381 		ether_ifdetach(ifp);
    382 		/* Restore vlan_ioctl overwritten by ether_ifdetach */
    383 		ifp->if_ioctl = vlan_ioctl;
    384 		vlan_reset_linkname(ifp);
    385 		break;
    386 	    }
    387 
    388 #ifdef DIAGNOSTIC
    389 	default:
    390 		panic("vlan_unconfig: impossible");
    391 #endif
    392 	}
    393 
    394 	ifv->ifv_p = NULL;
    395 	ifv->ifv_if.if_mtu = 0;
    396 	ifv->ifv_flags = 0;
    397 
    398 #ifdef INET6
    399 	/* To delete v6 link local addresses */
    400 	in6_ifdetach(ifp);
    401 #endif
    402 	if ((ifp->if_flags & IFF_PROMISC) != 0)
    403 		ifpromisc(ifp, 0);
    404 	if_down(ifp);
    405 	ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
    406 	ifp->if_capabilities = 0;
    407 
    408 	mutex_exit(&ifv_mtx);
    409 }
    410 
    411 /*
    412  * Called when a parent interface is detaching; destroy any VLAN
    413  * configuration for the parent interface.
    414  */
    415 void
    416 vlan_ifdetach(struct ifnet *p)
    417 {
    418 	struct ifvlan *ifv;
    419 	int s;
    420 
    421 	s = splnet();
    422 
    423 	for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
    424 	     ifv = LIST_NEXT(ifv, ifv_list)) {
    425 		if (ifv->ifv_p == p)
    426 			vlan_unconfig(&ifv->ifv_if);
    427 	}
    428 
    429 	splx(s);
    430 }
    431 
    432 static int
    433 vlan_set_promisc(struct ifnet *ifp)
    434 {
    435 	struct ifvlan *ifv = ifp->if_softc;
    436 	int error = 0;
    437 
    438 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
    439 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
    440 			error = ifpromisc(ifv->ifv_p, 1);
    441 			if (error == 0)
    442 				ifv->ifv_flags |= IFVF_PROMISC;
    443 		}
    444 	} else {
    445 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
    446 			error = ifpromisc(ifv->ifv_p, 0);
    447 			if (error == 0)
    448 				ifv->ifv_flags &= ~IFVF_PROMISC;
    449 		}
    450 	}
    451 
    452 	return (error);
    453 }
    454 
    455 static int
    456 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    457 {
    458 	struct lwp *l = curlwp;	/* XXX */
    459 	struct ifvlan *ifv = ifp->if_softc;
    460 	struct ifaddr *ifa = (struct ifaddr *) data;
    461 	struct ifreq *ifr = (struct ifreq *) data;
    462 	struct ifnet *pr;
    463 	struct ifcapreq *ifcr;
    464 	struct vlanreq vlr;
    465 	int s, error = 0;
    466 
    467 	s = splnet();
    468 
    469 	switch (cmd) {
    470 	case SIOCSIFMTU:
    471 		if (ifv->ifv_p == NULL)
    472 			error = EINVAL;
    473 		else if (
    474 		    ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
    475 		    ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
    476 			error = EINVAL;
    477 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
    478 			error = 0;
    479 		break;
    480 
    481 	case SIOCSETVLAN:
    482 		if ((error = kauth_authorize_network(l->l_cred,
    483 		    KAUTH_NETWORK_INTERFACE,
    484 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
    485 		    NULL)) != 0)
    486 			break;
    487 		if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
    488 			break;
    489 		if (vlr.vlr_parent[0] == '\0') {
    490 			if (ifv->ifv_p != NULL &&
    491 			    (ifp->if_flags & IFF_PROMISC) != 0)
    492 				error = ifpromisc(ifv->ifv_p, 0);
    493 			vlan_unconfig(ifp);
    494 			break;
    495 		}
    496 		if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
    497 			error = EINVAL;		 /* check for valid tag */
    498 			break;
    499 		}
    500 		if ((pr = ifunit(vlr.vlr_parent)) == 0) {
    501 			error = ENOENT;
    502 			break;
    503 		}
    504 		if ((error = vlan_config(ifv, pr)) != 0)
    505 			break;
    506 		ifv->ifv_tag = vlr.vlr_tag;
    507 		ifp->if_flags |= IFF_RUNNING;
    508 
    509 		/* Update promiscuous mode, if necessary. */
    510 		vlan_set_promisc(ifp);
    511 		break;
    512 
    513 	case SIOCGETVLAN:
    514 		memset(&vlr, 0, sizeof(vlr));
    515 		if (ifv->ifv_p != NULL) {
    516 			snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
    517 			    ifv->ifv_p->if_xname);
    518 			vlr.vlr_tag = ifv->ifv_tag;
    519 		}
    520 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
    521 		break;
    522 
    523 	case SIOCSIFFLAGS:
    524 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
    525 			break;
    526 		/*
    527 		 * For promiscuous mode, we enable promiscuous mode on
    528 		 * the parent if we need promiscuous on the VLAN interface.
    529 		 */
    530 		if (ifv->ifv_p != NULL)
    531 			error = vlan_set_promisc(ifp);
    532 		break;
    533 
    534 	case SIOCADDMULTI:
    535 		error = (ifv->ifv_p != NULL) ?
    536 		    (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
    537 		break;
    538 
    539 	case SIOCDELMULTI:
    540 		error = (ifv->ifv_p != NULL) ?
    541 		    (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
    542 		break;
    543 
    544 	case SIOCSIFCAP:
    545 		ifcr = data;
    546 		/* make sure caps are enabled on parent */
    547 		if (ifv->ifv_p == NULL) {
    548 			error = EINVAL;
    549 			break;
    550 		}
    551 		if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) !=
    552 		    ifcr->ifcr_capenable) {
    553 			error = EINVAL;
    554 			break;
    555 		}
    556 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
    557 			error = 0;
    558 		break;
    559 	case SIOCINITIFADDR:
    560 		if (ifv->ifv_p == NULL) {
    561 			error = EINVAL;
    562 			break;
    563 		}
    564 
    565 		ifp->if_flags |= IFF_UP;
    566 #ifdef INET
    567 		if (ifa->ifa_addr->sa_family == AF_INET)
    568 			arp_ifinit(ifp, ifa);
    569 #endif
    570 		break;
    571 
    572 	default:
    573 		error = ether_ioctl(ifp, cmd, data);
    574 	}
    575 
    576 	splx(s);
    577 
    578 	return (error);
    579 }
    580 
    581 static int
    582 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
    583 {
    584 	const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
    585 	struct vlan_mc_entry *mc;
    586 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
    587 	int error;
    588 
    589 	if (sa->sa_len > sizeof(struct sockaddr_storage))
    590 		return (EINVAL);
    591 
    592 	error = ether_addmulti(sa, &ifv->ifv_ec);
    593 	if (error != ENETRESET)
    594 		return (error);
    595 
    596 	/*
    597 	 * This is new multicast address.  We have to tell parent
    598 	 * about it.  Also, remember this multicast address so that
    599 	 * we can delete them on unconfigure.
    600 	 */
    601 	mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
    602 	if (mc == NULL) {
    603 		error = ENOMEM;
    604 		goto alloc_failed;
    605 	}
    606 
    607 	/*
    608 	 * As ether_addmulti() returns ENETRESET, following two
    609 	 * statement shouldn't fail.
    610 	 */
    611 	(void)ether_multiaddr(sa, addrlo, addrhi);
    612 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
    613 	memcpy(&mc->mc_addr, sa, sa->sa_len);
    614 	LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
    615 
    616 	error = if_mcast_op(ifv->ifv_p, SIOCADDMULTI, sa);
    617 	if (error != 0)
    618 		goto ioctl_failed;
    619 	return (error);
    620 
    621  ioctl_failed:
    622 	LIST_REMOVE(mc, mc_entries);
    623 	free(mc, M_DEVBUF);
    624  alloc_failed:
    625 	(void)ether_delmulti(sa, &ifv->ifv_ec);
    626 	return (error);
    627 }
    628 
    629 static int
    630 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
    631 {
    632 	const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
    633 	struct ether_multi *enm;
    634 	struct vlan_mc_entry *mc;
    635 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
    636 	int error;
    637 
    638 	/*
    639 	 * Find a key to lookup vlan_mc_entry.  We have to do this
    640 	 * before calling ether_delmulti for obvious reason.
    641 	 */
    642 	if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
    643 		return (error);
    644 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
    645 
    646 	error = ether_delmulti(sa, &ifv->ifv_ec);
    647 	if (error != ENETRESET)
    648 		return (error);
    649 
    650 	/* We no longer use this multicast address.  Tell parent so. */
    651 	error = if_mcast_op(ifv->ifv_p, SIOCDELMULTI, sa);
    652 	if (error == 0) {
    653 		/* And forget about this address. */
    654 		for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
    655 		    mc = LIST_NEXT(mc, mc_entries)) {
    656 			if (mc->mc_enm == enm) {
    657 				LIST_REMOVE(mc, mc_entries);
    658 				free(mc, M_DEVBUF);
    659 				break;
    660 			}
    661 		}
    662 		KASSERT(mc != NULL);
    663 	} else
    664 		(void)ether_addmulti(sa, &ifv->ifv_ec);
    665 	return (error);
    666 }
    667 
    668 /*
    669  * Delete any multicast address we have asked to add from parent
    670  * interface.  Called when the vlan is being unconfigured.
    671  */
    672 static void
    673 vlan_ether_purgemulti(struct ifvlan *ifv)
    674 {
    675 	struct ifnet *ifp = ifv->ifv_p;		/* Parent. */
    676 	struct vlan_mc_entry *mc;
    677 
    678 	while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
    679 		(void)if_mcast_op(ifp, SIOCDELMULTI,
    680 		    (const struct sockaddr *)&mc->mc_addr);
    681 		LIST_REMOVE(mc, mc_entries);
    682 		free(mc, M_DEVBUF);
    683 	}
    684 }
    685 
    686 static void
    687 vlan_start(struct ifnet *ifp)
    688 {
    689 	struct ifvlan *ifv = ifp->if_softc;
    690 	struct ifnet *p = ifv->ifv_p;
    691 	struct ethercom *ec = (void *) ifv->ifv_p;
    692 	struct mbuf *m;
    693 	int error;
    694 
    695 #ifndef NET_MPSAFE
    696 	KASSERT(KERNEL_LOCKED_P());
    697 #endif
    698 
    699 	ifp->if_flags |= IFF_OACTIVE;
    700 
    701 	for (;;) {
    702 		IFQ_DEQUEUE(&ifp->if_snd, m);
    703 		if (m == NULL)
    704 			break;
    705 
    706 #ifdef ALTQ
    707 		/*
    708 		 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is defined.
    709 		 */
    710 		KERNEL_LOCK(1, NULL);
    711 		/*
    712 		 * If ALTQ is enabled on the parent interface, do
    713 		 * classification; the queueing discipline might
    714 		 * not require classification, but might require
    715 		 * the address family/header pointer in the pktattr.
    716 		 */
    717 		if (ALTQ_IS_ENABLED(&p->if_snd)) {
    718 			switch (p->if_type) {
    719 			case IFT_ETHER:
    720 				altq_etherclassify(&p->if_snd, m);
    721 				break;
    722 #ifdef DIAGNOSTIC
    723 			default:
    724 				panic("vlan_start: impossible (altq)");
    725 #endif
    726 			}
    727 		}
    728 		KERNEL_UNLOCK_ONE(NULL);
    729 #endif /* ALTQ */
    730 
    731 		bpf_mtap(ifp, m);
    732 		/*
    733 		 * If the parent can insert the tag itself, just mark
    734 		 * the tag in the mbuf header.
    735 		 */
    736 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
    737 			struct m_tag *mtag;
    738 
    739 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
    740 			    M_NOWAIT);
    741 			if (mtag == NULL) {
    742 				ifp->if_oerrors++;
    743 				m_freem(m);
    744 				continue;
    745 			}
    746 			*(u_int *)(mtag + 1) = ifv->ifv_tag;
    747 			m_tag_prepend(m, mtag);
    748 		} else {
    749 			/*
    750 			 * insert the tag ourselves
    751 			 */
    752 			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
    753 			if (m == NULL) {
    754 				printf("%s: unable to prepend encap header",
    755 				    ifv->ifv_p->if_xname);
    756 				ifp->if_oerrors++;
    757 				continue;
    758 			}
    759 
    760 			switch (p->if_type) {
    761 			case IFT_ETHER:
    762 			    {
    763 				struct ether_vlan_header *evl;
    764 
    765 				if (m->m_len < sizeof(struct ether_vlan_header))
    766 					m = m_pullup(m,
    767 					    sizeof(struct ether_vlan_header));
    768 				if (m == NULL) {
    769 					printf("%s: unable to pullup encap "
    770 					    "header", ifv->ifv_p->if_xname);
    771 					ifp->if_oerrors++;
    772 					continue;
    773 				}
    774 
    775 				/*
    776 				 * Transform the Ethernet header into an
    777 				 * Ethernet header with 802.1Q encapsulation.
    778 				 */
    779 				memmove(mtod(m, void *),
    780 				    mtod(m, char *) + ifv->ifv_encaplen,
    781 				    sizeof(struct ether_header));
    782 				evl = mtod(m, struct ether_vlan_header *);
    783 				evl->evl_proto = evl->evl_encap_proto;
    784 				evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
    785 				evl->evl_tag = htons(ifv->ifv_tag);
    786 
    787 				/*
    788 				 * To cater for VLAN-aware layer 2 ethernet
    789 				 * switches which may need to strip the tag
    790 				 * before forwarding the packet, make sure
    791 				 * the packet+tag is at least 68 bytes long.
    792 				 * This is necessary because our parent will
    793 				 * only pad to 64 bytes (ETHER_MIN_LEN) and
    794 				 * some switches will not pad by themselves
    795 				 * after deleting a tag.
    796 				 */
    797 				if (m->m_pkthdr.len <
    798 				    (ETHER_MIN_LEN - ETHER_CRC_LEN +
    799 				     ETHER_VLAN_ENCAP_LEN)) {
    800 					m_copyback(m, m->m_pkthdr.len,
    801 					    (ETHER_MIN_LEN - ETHER_CRC_LEN +
    802 					     ETHER_VLAN_ENCAP_LEN) -
    803 					     m->m_pkthdr.len,
    804 					    vlan_zero_pad_buff);
    805 				}
    806 				break;
    807 			    }
    808 
    809 #ifdef DIAGNOSTIC
    810 			default:
    811 				panic("vlan_start: impossible");
    812 #endif
    813 			}
    814 		}
    815 
    816 		if ((p->if_flags & IFF_RUNNING) == 0) {
    817 			m_freem(m);
    818 			continue;
    819 		}
    820 
    821 		error = if_transmit_lock(p, m);
    822 		if (error) {
    823 			/* mbuf is already freed */
    824 			ifp->if_oerrors++;
    825 			continue;
    826 		}
    827 		ifp->if_opackets++;
    828 	}
    829 
    830 	ifp->if_flags &= ~IFF_OACTIVE;
    831 }
    832 
    833 /*
    834  * Given an Ethernet frame, find a valid vlan interface corresponding to the
    835  * given source interface and tag, then run the real packet through the
    836  * parent's input routine.
    837  */
    838 void
    839 vlan_input(struct ifnet *ifp, struct mbuf *m)
    840 {
    841 	struct ifvlan *ifv;
    842 	u_int tag;
    843 	struct m_tag *mtag;
    844 
    845 	mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
    846 	if (mtag != NULL) {
    847 		/* m contains a normal ethernet frame, the tag is in mtag */
    848 		tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
    849 		m_tag_delete(m, mtag);
    850 	} else {
    851 		switch (ifp->if_type) {
    852 		case IFT_ETHER:
    853 		    {
    854 			struct ether_vlan_header *evl;
    855 
    856 			if (m->m_len < sizeof(struct ether_vlan_header) &&
    857 			    (m = m_pullup(m,
    858 			     sizeof(struct ether_vlan_header))) == NULL) {
    859 				printf("%s: no memory for VLAN header, "
    860 				    "dropping packet.\n", ifp->if_xname);
    861 				return;
    862 			}
    863 			evl = mtod(m, struct ether_vlan_header *);
    864 			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
    865 
    866 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
    867 
    868 			/*
    869 			 * Restore the original ethertype.  We'll remove
    870 			 * the encapsulation after we've found the vlan
    871 			 * interface corresponding to the tag.
    872 			 */
    873 			evl->evl_encap_proto = evl->evl_proto;
    874 			break;
    875 		    }
    876 
    877 		default:
    878 			tag = (u_int) -1;	/* XXX GCC */
    879 #ifdef DIAGNOSTIC
    880 			panic("vlan_input: impossible");
    881 #endif
    882 		}
    883 	}
    884 
    885 	for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
    886 	    ifv = LIST_NEXT(ifv, ifv_list))
    887 		if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
    888 			break;
    889 
    890 	if (ifv == NULL ||
    891 	    (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
    892 	     (IFF_UP|IFF_RUNNING)) {
    893 		m_freem(m);
    894 		ifp->if_noproto++;
    895 		return;
    896 	}
    897 
    898 	/*
    899 	 * Now, remove the encapsulation header.  The original
    900 	 * header has already been fixed up above.
    901 	 */
    902 	if (mtag == NULL) {
    903 		memmove(mtod(m, char *) + ifv->ifv_encaplen,
    904 		    mtod(m, void *), sizeof(struct ether_header));
    905 		m_adj(m, ifv->ifv_encaplen);
    906 	}
    907 
    908 	m_set_rcvif(m, &ifv->ifv_if);
    909 	ifv->ifv_if.if_ipackets++;
    910 
    911 	m->m_flags &= ~M_PROMISC;
    912 	if_input(&ifv->ifv_if, m);
    913 }
    914