if_vlan.c revision 1.90.2.2 1 /* $NetBSD: if_vlan.c,v 1.90.2.2 2017/03/20 06:57:50 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright 1998 Massachusetts Institute of Technology
34 *
35 * Permission to use, copy, modify, and distribute this software and
36 * its documentation for any purpose and without fee is hereby
37 * granted, provided that both the above copyright notice and this
38 * permission notice appear in all copies, that both the above
39 * copyright notice and this permission notice appear in all
40 * supporting documentation, and that the name of M.I.T. not be used
41 * in advertising or publicity pertaining to distribution of the
42 * software without specific, written prior permission. M.I.T. makes
43 * no representations about the suitability of this software for any
44 * purpose. It is provided "as is" without express or implied
45 * warranty.
46 *
47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62 */
63
64 /*
65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
66 * extended some day to also handle IEEE 802.1P priority tagging. This is
67 * sort of sneaky in the implementation, since we need to pretend to be
68 * enough of an Ethernet implementation to make ARP work. The way we do
69 * this is by telling everyone that we are an Ethernet interface, and then
70 * catch the packets that ether_output() left on our output queue when it
71 * calls if_start(), rewrite them for use by the real outgoing interface,
72 * and ask it to send them.
73 *
74 * TODO:
75 *
76 * - Need some way to notify vlan interfaces when the parent
77 * interface changes MTU.
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.90.2.2 2017/03/20 06:57:50 pgoyette Exp $");
82
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/kernel.h>
90 #include <sys/mbuf.h>
91 #include <sys/queue.h>
92 #include <sys/socket.h>
93 #include <sys/sockio.h>
94 #include <sys/systm.h>
95 #include <sys/proc.h>
96 #include <sys/kauth.h>
97 #include <sys/mutex.h>
98
99 #include <net/bpf.h>
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_types.h>
103 #include <net/if_ether.h>
104 #include <net/if_vlanvar.h>
105
106 #ifdef INET
107 #include <netinet/in.h>
108 #include <netinet/if_inarp.h>
109 #endif
110 #ifdef INET6
111 #include <netinet6/in6_ifattach.h>
112 #endif
113
114 #include "ioconf.h"
115
116 struct vlan_mc_entry {
117 LIST_ENTRY(vlan_mc_entry) mc_entries;
118 /*
119 * A key to identify this entry. The mc_addr below can't be
120 * used since multiple sockaddr may mapped into the same
121 * ether_multi (e.g., AF_UNSPEC).
122 */
123 union {
124 struct ether_multi *mcu_enm;
125 } mc_u;
126 struct sockaddr_storage mc_addr;
127 };
128
129 #define mc_enm mc_u.mcu_enm
130
131 struct ifvlan {
132 union {
133 struct ethercom ifvu_ec;
134 } ifv_u;
135 struct ifnet *ifv_p; /* parent interface of this vlan */
136 struct ifv_linkmib {
137 const struct vlan_multisw *ifvm_msw;
138 int ifvm_encaplen; /* encapsulation length */
139 int ifvm_mtufudge; /* MTU fudged by this much */
140 int ifvm_mintu; /* min transmission unit */
141 uint16_t ifvm_proto; /* encapsulation ethertype */
142 uint16_t ifvm_tag; /* tag to apply on packets */
143 } ifv_mib;
144 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
145 LIST_ENTRY(ifvlan) ifv_list;
146 int ifv_flags;
147 };
148
149 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
150
151 #define ifv_ec ifv_u.ifvu_ec
152
153 #define ifv_if ifv_ec.ec_if
154
155 #define ifv_msw ifv_mib.ifvm_msw
156 #define ifv_encaplen ifv_mib.ifvm_encaplen
157 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
158 #define ifv_mintu ifv_mib.ifvm_mintu
159 #define ifv_tag ifv_mib.ifvm_tag
160
161 struct vlan_multisw {
162 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
163 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
164 void (*vmsw_purgemulti)(struct ifvlan *);
165 };
166
167 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
168 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
169 static void vlan_ether_purgemulti(struct ifvlan *);
170
171 const struct vlan_multisw vlan_ether_multisw = {
172 vlan_ether_addmulti,
173 vlan_ether_delmulti,
174 vlan_ether_purgemulti,
175 };
176
177 static int vlan_clone_create(struct if_clone *, int);
178 static int vlan_clone_destroy(struct ifnet *);
179 static int vlan_config(struct ifvlan *, struct ifnet *);
180 static int vlan_ioctl(struct ifnet *, u_long, void *);
181 static void vlan_start(struct ifnet *);
182 static void vlan_unconfig(struct ifnet *);
183
184 /* XXX This should be a hash table with the tag as the basis of the key. */
185 static LIST_HEAD(, ifvlan) ifv_list;
186
187 static kmutex_t ifv_mtx __cacheline_aligned;
188
189 struct if_clone vlan_cloner =
190 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
191
192 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
193 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
194
195 void
196 vlanattach(int n)
197 {
198
199 LIST_INIT(&ifv_list);
200 mutex_init(&ifv_mtx, MUTEX_DEFAULT, IPL_NONE);
201 if_clone_attach(&vlan_cloner);
202 }
203
204 static void
205 vlan_reset_linkname(struct ifnet *ifp)
206 {
207
208 /*
209 * We start out with a "802.1Q VLAN" type and zero-length
210 * addresses. When we attach to a parent interface, we
211 * inherit its type, address length, address, and data link
212 * type.
213 */
214
215 ifp->if_type = IFT_L2VLAN;
216 ifp->if_addrlen = 0;
217 ifp->if_dlt = DLT_NULL;
218 if_alloc_sadl(ifp);
219 }
220
221 static int
222 vlan_clone_create(struct if_clone *ifc, int unit)
223 {
224 struct ifvlan *ifv;
225 struct ifnet *ifp;
226 int s;
227
228 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
229 ifp = &ifv->ifv_if;
230 LIST_INIT(&ifv->ifv_mc_listhead);
231
232 s = splnet();
233 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
234 splx(s);
235
236 if_initname(ifp, ifc->ifc_name, unit);
237 ifp->if_softc = ifv;
238 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
239 ifp->if_start = vlan_start;
240 ifp->if_ioctl = vlan_ioctl;
241 IFQ_SET_READY(&ifp->if_snd);
242
243 if_initialize(ifp);
244 vlan_reset_linkname(ifp);
245 if_register(ifp);
246
247 return (0);
248 }
249
250 static int
251 vlan_clone_destroy(struct ifnet *ifp)
252 {
253 struct ifvlan *ifv = ifp->if_softc;
254 int s;
255
256 s = splnet();
257 LIST_REMOVE(ifv, ifv_list);
258 vlan_unconfig(ifp);
259 if_detach(ifp);
260 splx(s);
261
262 free(ifv, M_DEVBUF);
263
264 return (0);
265 }
266
267 /*
268 * Configure a VLAN interface. Must be called at splnet().
269 */
270 static int
271 vlan_config(struct ifvlan *ifv, struct ifnet *p)
272 {
273 struct ifnet *ifp = &ifv->ifv_if;
274 int error;
275
276 if (ifv->ifv_p != NULL)
277 return (EBUSY);
278
279 switch (p->if_type) {
280 case IFT_ETHER:
281 {
282 struct ethercom *ec = (void *) p;
283
284 ifv->ifv_msw = &vlan_ether_multisw;
285 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
286 ifv->ifv_mintu = ETHERMIN;
287
288 if (ec->ec_nvlans++ == 0) {
289 if ((error = ether_enable_vlan_mtu(p)) >= 0) {
290 if (error) {
291 ec->ec_nvlans--;
292 return error;
293 }
294 ifv->ifv_mtufudge = 0;
295 } else {
296 /*
297 * Fudge the MTU by the encapsulation size. This
298 * makes us incompatible with strictly compliant
299 * 802.1Q implementations, but allows us to use
300 * the feature with other NetBSD
301 * implementations, which might still be useful.
302 */
303 ifv->ifv_mtufudge = ifv->ifv_encaplen;
304 }
305 }
306
307 /*
308 * If the parent interface can do hardware-assisted
309 * VLAN encapsulation, then propagate its hardware-
310 * assisted checksumming flags and tcp segmentation
311 * offload.
312 */
313 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
314 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
315 ifp->if_capabilities = p->if_capabilities &
316 (IFCAP_TSOv4 | IFCAP_TSOv6 |
317 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
318 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
319 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
320 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
321 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
322 }
323 /*
324 * We inherit the parent's Ethernet address.
325 */
326 ether_ifattach(ifp, CLLADDR(p->if_sadl));
327 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
328 break;
329 }
330
331 default:
332 return (EPROTONOSUPPORT);
333 }
334
335 ifv->ifv_p = p;
336 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
337 ifv->ifv_if.if_flags = p->if_flags &
338 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
339
340 /*
341 * Inherit the if_type from the parent. This allows us
342 * to participate in bridges of that type.
343 */
344 ifv->ifv_if.if_type = p->if_type;
345
346 return (0);
347 }
348
349 /*
350 * Unconfigure a VLAN interface. Must be called at splnet().
351 */
352 static void
353 vlan_unconfig(struct ifnet *ifp)
354 {
355 struct ifvlan *ifv = ifp->if_softc;
356 struct ifnet *p;
357
358 mutex_enter(&ifv_mtx);
359 p = ifv->ifv_p;
360
361 if (p == NULL) {
362 mutex_exit(&ifv_mtx);
363 return;
364 }
365
366 /*
367 * Since the interface is being unconfigured, we need to empty the
368 * list of multicast groups that we may have joined while we were
369 * alive and remove them from the parent's list also.
370 */
371 (*ifv->ifv_msw->vmsw_purgemulti)(ifv);
372
373 /* Disconnect from parent. */
374 switch (p->if_type) {
375 case IFT_ETHER:
376 {
377 struct ethercom *ec = (void *)p;
378 if (--ec->ec_nvlans == 0)
379 (void)ether_disable_vlan_mtu(p);
380
381 ether_ifdetach(ifp);
382 /* Restore vlan_ioctl overwritten by ether_ifdetach */
383 ifp->if_ioctl = vlan_ioctl;
384 vlan_reset_linkname(ifp);
385 break;
386 }
387
388 #ifdef DIAGNOSTIC
389 default:
390 panic("vlan_unconfig: impossible");
391 #endif
392 }
393
394 ifv->ifv_p = NULL;
395 ifv->ifv_if.if_mtu = 0;
396 ifv->ifv_flags = 0;
397
398 #ifdef INET6
399 /* To delete v6 link local addresses */
400 in6_ifdetach(ifp);
401 #endif
402 if ((ifp->if_flags & IFF_PROMISC) != 0)
403 ifpromisc(ifp, 0);
404 if_down(ifp);
405 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
406 ifp->if_capabilities = 0;
407
408 mutex_exit(&ifv_mtx);
409 }
410
411 /*
412 * Called when a parent interface is detaching; destroy any VLAN
413 * configuration for the parent interface.
414 */
415 void
416 vlan_ifdetach(struct ifnet *p)
417 {
418 struct ifvlan *ifv;
419 int s;
420
421 s = splnet();
422
423 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
424 ifv = LIST_NEXT(ifv, ifv_list)) {
425 if (ifv->ifv_p == p)
426 vlan_unconfig(&ifv->ifv_if);
427 }
428
429 splx(s);
430 }
431
432 static int
433 vlan_set_promisc(struct ifnet *ifp)
434 {
435 struct ifvlan *ifv = ifp->if_softc;
436 int error = 0;
437
438 if ((ifp->if_flags & IFF_PROMISC) != 0) {
439 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
440 error = ifpromisc(ifv->ifv_p, 1);
441 if (error == 0)
442 ifv->ifv_flags |= IFVF_PROMISC;
443 }
444 } else {
445 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
446 error = ifpromisc(ifv->ifv_p, 0);
447 if (error == 0)
448 ifv->ifv_flags &= ~IFVF_PROMISC;
449 }
450 }
451
452 return (error);
453 }
454
455 static int
456 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
457 {
458 struct lwp *l = curlwp; /* XXX */
459 struct ifvlan *ifv = ifp->if_softc;
460 struct ifaddr *ifa = (struct ifaddr *) data;
461 struct ifreq *ifr = (struct ifreq *) data;
462 struct ifnet *pr;
463 struct ifcapreq *ifcr;
464 struct vlanreq vlr;
465 int s, error = 0;
466
467 s = splnet();
468
469 switch (cmd) {
470 case SIOCSIFMTU:
471 if (ifv->ifv_p == NULL)
472 error = EINVAL;
473 else if (
474 ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
475 ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
476 error = EINVAL;
477 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
478 error = 0;
479 break;
480
481 case SIOCSETVLAN:
482 if ((error = kauth_authorize_network(l->l_cred,
483 KAUTH_NETWORK_INTERFACE,
484 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
485 NULL)) != 0)
486 break;
487 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
488 break;
489 if (vlr.vlr_parent[0] == '\0') {
490 if (ifv->ifv_p != NULL &&
491 (ifp->if_flags & IFF_PROMISC) != 0)
492 error = ifpromisc(ifv->ifv_p, 0);
493 vlan_unconfig(ifp);
494 break;
495 }
496 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
497 error = EINVAL; /* check for valid tag */
498 break;
499 }
500 if ((pr = ifunit(vlr.vlr_parent)) == 0) {
501 error = ENOENT;
502 break;
503 }
504 if ((error = vlan_config(ifv, pr)) != 0)
505 break;
506 ifv->ifv_tag = vlr.vlr_tag;
507 ifp->if_flags |= IFF_RUNNING;
508
509 /* Update promiscuous mode, if necessary. */
510 vlan_set_promisc(ifp);
511 break;
512
513 case SIOCGETVLAN:
514 memset(&vlr, 0, sizeof(vlr));
515 if (ifv->ifv_p != NULL) {
516 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
517 ifv->ifv_p->if_xname);
518 vlr.vlr_tag = ifv->ifv_tag;
519 }
520 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
521 break;
522
523 case SIOCSIFFLAGS:
524 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
525 break;
526 /*
527 * For promiscuous mode, we enable promiscuous mode on
528 * the parent if we need promiscuous on the VLAN interface.
529 */
530 if (ifv->ifv_p != NULL)
531 error = vlan_set_promisc(ifp);
532 break;
533
534 case SIOCADDMULTI:
535 error = (ifv->ifv_p != NULL) ?
536 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
537 break;
538
539 case SIOCDELMULTI:
540 error = (ifv->ifv_p != NULL) ?
541 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
542 break;
543
544 case SIOCSIFCAP:
545 ifcr = data;
546 /* make sure caps are enabled on parent */
547 if (ifv->ifv_p == NULL) {
548 error = EINVAL;
549 break;
550 }
551 if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) !=
552 ifcr->ifcr_capenable) {
553 error = EINVAL;
554 break;
555 }
556 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
557 error = 0;
558 break;
559 case SIOCINITIFADDR:
560 if (ifv->ifv_p == NULL) {
561 error = EINVAL;
562 break;
563 }
564
565 ifp->if_flags |= IFF_UP;
566 #ifdef INET
567 if (ifa->ifa_addr->sa_family == AF_INET)
568 arp_ifinit(ifp, ifa);
569 #endif
570 break;
571
572 default:
573 error = ether_ioctl(ifp, cmd, data);
574 }
575
576 splx(s);
577
578 return (error);
579 }
580
581 static int
582 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
583 {
584 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
585 struct vlan_mc_entry *mc;
586 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
587 int error;
588
589 if (sa->sa_len > sizeof(struct sockaddr_storage))
590 return (EINVAL);
591
592 error = ether_addmulti(sa, &ifv->ifv_ec);
593 if (error != ENETRESET)
594 return (error);
595
596 /*
597 * This is new multicast address. We have to tell parent
598 * about it. Also, remember this multicast address so that
599 * we can delete them on unconfigure.
600 */
601 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
602 if (mc == NULL) {
603 error = ENOMEM;
604 goto alloc_failed;
605 }
606
607 /*
608 * As ether_addmulti() returns ENETRESET, following two
609 * statement shouldn't fail.
610 */
611 (void)ether_multiaddr(sa, addrlo, addrhi);
612 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
613 memcpy(&mc->mc_addr, sa, sa->sa_len);
614 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
615
616 error = if_mcast_op(ifv->ifv_p, SIOCADDMULTI, sa);
617 if (error != 0)
618 goto ioctl_failed;
619 return (error);
620
621 ioctl_failed:
622 LIST_REMOVE(mc, mc_entries);
623 free(mc, M_DEVBUF);
624 alloc_failed:
625 (void)ether_delmulti(sa, &ifv->ifv_ec);
626 return (error);
627 }
628
629 static int
630 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
631 {
632 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
633 struct ether_multi *enm;
634 struct vlan_mc_entry *mc;
635 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
636 int error;
637
638 /*
639 * Find a key to lookup vlan_mc_entry. We have to do this
640 * before calling ether_delmulti for obvious reason.
641 */
642 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
643 return (error);
644 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
645
646 error = ether_delmulti(sa, &ifv->ifv_ec);
647 if (error != ENETRESET)
648 return (error);
649
650 /* We no longer use this multicast address. Tell parent so. */
651 error = if_mcast_op(ifv->ifv_p, SIOCDELMULTI, sa);
652 if (error == 0) {
653 /* And forget about this address. */
654 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
655 mc = LIST_NEXT(mc, mc_entries)) {
656 if (mc->mc_enm == enm) {
657 LIST_REMOVE(mc, mc_entries);
658 free(mc, M_DEVBUF);
659 break;
660 }
661 }
662 KASSERT(mc != NULL);
663 } else
664 (void)ether_addmulti(sa, &ifv->ifv_ec);
665 return (error);
666 }
667
668 /*
669 * Delete any multicast address we have asked to add from parent
670 * interface. Called when the vlan is being unconfigured.
671 */
672 static void
673 vlan_ether_purgemulti(struct ifvlan *ifv)
674 {
675 struct ifnet *ifp = ifv->ifv_p; /* Parent. */
676 struct vlan_mc_entry *mc;
677
678 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
679 (void)if_mcast_op(ifp, SIOCDELMULTI,
680 (const struct sockaddr *)&mc->mc_addr);
681 LIST_REMOVE(mc, mc_entries);
682 free(mc, M_DEVBUF);
683 }
684 }
685
686 static void
687 vlan_start(struct ifnet *ifp)
688 {
689 struct ifvlan *ifv = ifp->if_softc;
690 struct ifnet *p = ifv->ifv_p;
691 struct ethercom *ec = (void *) ifv->ifv_p;
692 struct mbuf *m;
693 int error;
694
695 #ifndef NET_MPSAFE
696 KASSERT(KERNEL_LOCKED_P());
697 #endif
698
699 ifp->if_flags |= IFF_OACTIVE;
700
701 for (;;) {
702 IFQ_DEQUEUE(&ifp->if_snd, m);
703 if (m == NULL)
704 break;
705
706 #ifdef ALTQ
707 /*
708 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is defined.
709 */
710 KERNEL_LOCK(1, NULL);
711 /*
712 * If ALTQ is enabled on the parent interface, do
713 * classification; the queueing discipline might
714 * not require classification, but might require
715 * the address family/header pointer in the pktattr.
716 */
717 if (ALTQ_IS_ENABLED(&p->if_snd)) {
718 switch (p->if_type) {
719 case IFT_ETHER:
720 altq_etherclassify(&p->if_snd, m);
721 break;
722 #ifdef DIAGNOSTIC
723 default:
724 panic("vlan_start: impossible (altq)");
725 #endif
726 }
727 }
728 KERNEL_UNLOCK_ONE(NULL);
729 #endif /* ALTQ */
730
731 bpf_mtap(ifp, m);
732 /*
733 * If the parent can insert the tag itself, just mark
734 * the tag in the mbuf header.
735 */
736 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
737 struct m_tag *mtag;
738
739 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
740 M_NOWAIT);
741 if (mtag == NULL) {
742 ifp->if_oerrors++;
743 m_freem(m);
744 continue;
745 }
746 *(u_int *)(mtag + 1) = ifv->ifv_tag;
747 m_tag_prepend(m, mtag);
748 } else {
749 /*
750 * insert the tag ourselves
751 */
752 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
753 if (m == NULL) {
754 printf("%s: unable to prepend encap header",
755 ifv->ifv_p->if_xname);
756 ifp->if_oerrors++;
757 continue;
758 }
759
760 switch (p->if_type) {
761 case IFT_ETHER:
762 {
763 struct ether_vlan_header *evl;
764
765 if (m->m_len < sizeof(struct ether_vlan_header))
766 m = m_pullup(m,
767 sizeof(struct ether_vlan_header));
768 if (m == NULL) {
769 printf("%s: unable to pullup encap "
770 "header", ifv->ifv_p->if_xname);
771 ifp->if_oerrors++;
772 continue;
773 }
774
775 /*
776 * Transform the Ethernet header into an
777 * Ethernet header with 802.1Q encapsulation.
778 */
779 memmove(mtod(m, void *),
780 mtod(m, char *) + ifv->ifv_encaplen,
781 sizeof(struct ether_header));
782 evl = mtod(m, struct ether_vlan_header *);
783 evl->evl_proto = evl->evl_encap_proto;
784 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
785 evl->evl_tag = htons(ifv->ifv_tag);
786
787 /*
788 * To cater for VLAN-aware layer 2 ethernet
789 * switches which may need to strip the tag
790 * before forwarding the packet, make sure
791 * the packet+tag is at least 68 bytes long.
792 * This is necessary because our parent will
793 * only pad to 64 bytes (ETHER_MIN_LEN) and
794 * some switches will not pad by themselves
795 * after deleting a tag.
796 */
797 if (m->m_pkthdr.len <
798 (ETHER_MIN_LEN - ETHER_CRC_LEN +
799 ETHER_VLAN_ENCAP_LEN)) {
800 m_copyback(m, m->m_pkthdr.len,
801 (ETHER_MIN_LEN - ETHER_CRC_LEN +
802 ETHER_VLAN_ENCAP_LEN) -
803 m->m_pkthdr.len,
804 vlan_zero_pad_buff);
805 }
806 break;
807 }
808
809 #ifdef DIAGNOSTIC
810 default:
811 panic("vlan_start: impossible");
812 #endif
813 }
814 }
815
816 if ((p->if_flags & IFF_RUNNING) == 0) {
817 m_freem(m);
818 continue;
819 }
820
821 error = if_transmit_lock(p, m);
822 if (error) {
823 /* mbuf is already freed */
824 ifp->if_oerrors++;
825 continue;
826 }
827 ifp->if_opackets++;
828 }
829
830 ifp->if_flags &= ~IFF_OACTIVE;
831 }
832
833 /*
834 * Given an Ethernet frame, find a valid vlan interface corresponding to the
835 * given source interface and tag, then run the real packet through the
836 * parent's input routine.
837 */
838 void
839 vlan_input(struct ifnet *ifp, struct mbuf *m)
840 {
841 struct ifvlan *ifv;
842 u_int tag;
843 struct m_tag *mtag;
844
845 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
846 if (mtag != NULL) {
847 /* m contains a normal ethernet frame, the tag is in mtag */
848 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
849 m_tag_delete(m, mtag);
850 } else {
851 switch (ifp->if_type) {
852 case IFT_ETHER:
853 {
854 struct ether_vlan_header *evl;
855
856 if (m->m_len < sizeof(struct ether_vlan_header) &&
857 (m = m_pullup(m,
858 sizeof(struct ether_vlan_header))) == NULL) {
859 printf("%s: no memory for VLAN header, "
860 "dropping packet.\n", ifp->if_xname);
861 return;
862 }
863 evl = mtod(m, struct ether_vlan_header *);
864 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
865
866 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
867
868 /*
869 * Restore the original ethertype. We'll remove
870 * the encapsulation after we've found the vlan
871 * interface corresponding to the tag.
872 */
873 evl->evl_encap_proto = evl->evl_proto;
874 break;
875 }
876
877 default:
878 tag = (u_int) -1; /* XXX GCC */
879 #ifdef DIAGNOSTIC
880 panic("vlan_input: impossible");
881 #endif
882 }
883 }
884
885 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
886 ifv = LIST_NEXT(ifv, ifv_list))
887 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
888 break;
889
890 if (ifv == NULL ||
891 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
892 (IFF_UP|IFF_RUNNING)) {
893 m_freem(m);
894 ifp->if_noproto++;
895 return;
896 }
897
898 /*
899 * Now, remove the encapsulation header. The original
900 * header has already been fixed up above.
901 */
902 if (mtag == NULL) {
903 memmove(mtod(m, char *) + ifv->ifv_encaplen,
904 mtod(m, void *), sizeof(struct ether_header));
905 m_adj(m, ifv->ifv_encaplen);
906 }
907
908 m_set_rcvif(m, &ifv->ifv_if);
909 ifv->ifv_if.if_ipackets++;
910
911 m->m_flags &= ~M_PROMISC;
912 if_input(&ifv->ifv_if, m);
913 }
914