Home | History | Annotate | Line # | Download | only in net
if_vlan.c revision 1.95
      1 /*	$NetBSD: if_vlan.c,v 1.95 2017/01/23 06:47:54 ozaki-r Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright 1998 Massachusetts Institute of Technology
     34  *
     35  * Permission to use, copy, modify, and distribute this software and
     36  * its documentation for any purpose and without fee is hereby
     37  * granted, provided that both the above copyright notice and this
     38  * permission notice appear in all copies, that both the above
     39  * copyright notice and this permission notice appear in all
     40  * supporting documentation, and that the name of M.I.T. not be used
     41  * in advertising or publicity pertaining to distribution of the
     42  * software without specific, written prior permission.  M.I.T. makes
     43  * no representations about the suitability of this software for any
     44  * purpose.  It is provided "as is" without express or implied
     45  * warranty.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
     48  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
     49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
     51  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     53  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
     54  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     55  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     56  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     57  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
     61  * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
     62  */
     63 
     64 /*
     65  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.  Might be
     66  * extended some day to also handle IEEE 802.1P priority tagging.  This is
     67  * sort of sneaky in the implementation, since we need to pretend to be
     68  * enough of an Ethernet implementation to make ARP work.  The way we do
     69  * this is by telling everyone that we are an Ethernet interface, and then
     70  * catch the packets that ether_output() left on our output queue when it
     71  * calls if_start(), rewrite them for use by the real outgoing interface,
     72  * and ask it to send them.
     73  *
     74  * TODO:
     75  *
     76  *	- Need some way to notify vlan interfaces when the parent
     77  *	  interface changes MTU.
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.95 2017/01/23 06:47:54 ozaki-r Exp $");
     82 
     83 #ifdef _KERNEL_OPT
     84 #include "opt_inet.h"
     85 #include "opt_net_mpsafe.h"
     86 #endif
     87 
     88 #include <sys/param.h>
     89 #include <sys/kernel.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/queue.h>
     92 #include <sys/socket.h>
     93 #include <sys/sockio.h>
     94 #include <sys/systm.h>
     95 #include <sys/proc.h>
     96 #include <sys/kauth.h>
     97 #include <sys/mutex.h>
     98 #include <sys/device.h>
     99 #include <sys/module.h>
    100 
    101 #include <net/bpf.h>
    102 #include <net/if.h>
    103 #include <net/if_dl.h>
    104 #include <net/if_types.h>
    105 #include <net/if_ether.h>
    106 #include <net/if_vlanvar.h>
    107 
    108 #ifdef INET
    109 #include <netinet/in.h>
    110 #include <netinet/if_inarp.h>
    111 #endif
    112 #ifdef INET6
    113 #include <netinet6/in6_ifattach.h>
    114 #endif
    115 
    116 #include "ioconf.h"
    117 
    118 struct vlan_mc_entry {
    119 	LIST_ENTRY(vlan_mc_entry)	mc_entries;
    120 	/*
    121 	 * A key to identify this entry.  The mc_addr below can't be
    122 	 * used since multiple sockaddr may mapped into the same
    123 	 * ether_multi (e.g., AF_UNSPEC).
    124 	 */
    125 	union {
    126 		struct ether_multi	*mcu_enm;
    127 	} mc_u;
    128 	struct sockaddr_storage		mc_addr;
    129 };
    130 
    131 #define	mc_enm		mc_u.mcu_enm
    132 
    133 struct ifvlan {
    134 	union {
    135 		struct ethercom ifvu_ec;
    136 	} ifv_u;
    137 	struct ifnet *ifv_p;	/* parent interface of this vlan */
    138 	struct ifv_linkmib {
    139 		const struct vlan_multisw *ifvm_msw;
    140 		int	ifvm_encaplen;	/* encapsulation length */
    141 		int	ifvm_mtufudge;	/* MTU fudged by this much */
    142 		int	ifvm_mintu;	/* min transmission unit */
    143 		uint16_t ifvm_proto;	/* encapsulation ethertype */
    144 		uint16_t ifvm_tag;	/* tag to apply on packets */
    145 	} ifv_mib;
    146 	LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
    147 	LIST_ENTRY(ifvlan) ifv_list;
    148 	int ifv_flags;
    149 };
    150 
    151 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
    152 
    153 #define	ifv_ec		ifv_u.ifvu_ec
    154 
    155 #define	ifv_if		ifv_ec.ec_if
    156 
    157 #define	ifv_msw		ifv_mib.ifvm_msw
    158 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
    159 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
    160 #define	ifv_mintu	ifv_mib.ifvm_mintu
    161 #define	ifv_tag		ifv_mib.ifvm_tag
    162 
    163 struct vlan_multisw {
    164 	int	(*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
    165 	int	(*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
    166 	void	(*vmsw_purgemulti)(struct ifvlan *);
    167 };
    168 
    169 static int	vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
    170 static int	vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
    171 static void	vlan_ether_purgemulti(struct ifvlan *);
    172 
    173 const struct vlan_multisw vlan_ether_multisw = {
    174 	vlan_ether_addmulti,
    175 	vlan_ether_delmulti,
    176 	vlan_ether_purgemulti,
    177 };
    178 
    179 static int	vlan_clone_create(struct if_clone *, int);
    180 static int	vlan_clone_destroy(struct ifnet *);
    181 static int	vlan_config(struct ifvlan *, struct ifnet *);
    182 static int	vlan_ioctl(struct ifnet *, u_long, void *);
    183 static void	vlan_start(struct ifnet *);
    184 static void	vlan_unconfig(struct ifnet *);
    185 
    186 /* XXX This should be a hash table with the tag as the basis of the key. */
    187 static LIST_HEAD(, ifvlan) ifv_list;
    188 
    189 static kmutex_t ifv_mtx __cacheline_aligned;
    190 
    191 struct if_clone vlan_cloner =
    192     IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
    193 
    194 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
    195 static char vlan_zero_pad_buff[ETHER_MIN_LEN];
    196 
    197 void
    198 vlanattach(int n)
    199 {
    200 
    201 	/*
    202 	 * Nothing to do here, initialization is handled by the
    203 	 * module initialization code in vlaninit() below).
    204 	 */
    205 }
    206 
    207 static void
    208 vlaninit(void)
    209 {
    210 
    211 	LIST_INIT(&ifv_list);
    212 	mutex_init(&ifv_mtx, MUTEX_DEFAULT, IPL_NONE);
    213 	if_clone_attach(&vlan_cloner);
    214 }
    215 
    216 static int
    217 vlandetach(void)
    218 {
    219 	int error = 0;
    220 
    221 	if (!LIST_EMPTY(&ifv_list))
    222 		error = EBUSY;
    223 
    224 	if (error == 0) {
    225 		if_clone_detach(&vlan_cloner);
    226 		mutex_destroy(&ifv_mtx);
    227 	}
    228 
    229 	return error;
    230 }
    231 
    232 static void
    233 vlan_reset_linkname(struct ifnet *ifp)
    234 {
    235 
    236 	/*
    237 	 * We start out with a "802.1Q VLAN" type and zero-length
    238 	 * addresses.  When we attach to a parent interface, we
    239 	 * inherit its type, address length, address, and data link
    240 	 * type.
    241 	 */
    242 
    243 	ifp->if_type = IFT_L2VLAN;
    244 	ifp->if_addrlen = 0;
    245 	ifp->if_dlt = DLT_NULL;
    246 	if_alloc_sadl(ifp);
    247 }
    248 
    249 static int
    250 vlan_clone_create(struct if_clone *ifc, int unit)
    251 {
    252 	struct ifvlan *ifv;
    253 	struct ifnet *ifp;
    254 	int s;
    255 
    256 	ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
    257 	ifp = &ifv->ifv_if;
    258 	LIST_INIT(&ifv->ifv_mc_listhead);
    259 
    260 	s = splnet();
    261 	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
    262 	splx(s);
    263 
    264 	if_initname(ifp, ifc->ifc_name, unit);
    265 	ifp->if_softc = ifv;
    266 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    267 	ifp->if_start = vlan_start;
    268 	ifp->if_ioctl = vlan_ioctl;
    269 	IFQ_SET_READY(&ifp->if_snd);
    270 
    271 	if_initialize(ifp);
    272 	vlan_reset_linkname(ifp);
    273 	if_register(ifp);
    274 
    275 	return (0);
    276 }
    277 
    278 static int
    279 vlan_clone_destroy(struct ifnet *ifp)
    280 {
    281 	struct ifvlan *ifv = ifp->if_softc;
    282 	int s;
    283 
    284 	s = splnet();
    285 	LIST_REMOVE(ifv, ifv_list);
    286 	vlan_unconfig(ifp);
    287 	if_detach(ifp);
    288 	splx(s);
    289 
    290 	free(ifv, M_DEVBUF);
    291 
    292 	return (0);
    293 }
    294 
    295 /*
    296  * Configure a VLAN interface.  Must be called at splnet().
    297  */
    298 static int
    299 vlan_config(struct ifvlan *ifv, struct ifnet *p)
    300 {
    301 	struct ifnet *ifp = &ifv->ifv_if;
    302 	int error;
    303 
    304 	if (ifv->ifv_p != NULL)
    305 		return (EBUSY);
    306 
    307 	switch (p->if_type) {
    308 	case IFT_ETHER:
    309 	    {
    310 		struct ethercom *ec = (void *) p;
    311 
    312 		ifv->ifv_msw = &vlan_ether_multisw;
    313 		ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
    314 		ifv->ifv_mintu = ETHERMIN;
    315 
    316 		if (ec->ec_nvlans++ == 0) {
    317 			if ((error = ether_enable_vlan_mtu(p)) >= 0) {
    318 				if (error) {
    319 					ec->ec_nvlans--;
    320 					return error;
    321 				}
    322 				ifv->ifv_mtufudge = 0;
    323 			} else {
    324 				/*
    325 				 * Fudge the MTU by the encapsulation size. This
    326 				 * makes us incompatible with strictly compliant
    327 				 * 802.1Q implementations, but allows us to use
    328 				 * the feature with other NetBSD
    329 				 * implementations, which might still be useful.
    330 				 */
    331 				ifv->ifv_mtufudge = ifv->ifv_encaplen;
    332 			}
    333 		}
    334 
    335 		/*
    336 		 * If the parent interface can do hardware-assisted
    337 		 * VLAN encapsulation, then propagate its hardware-
    338 		 * assisted checksumming flags and tcp segmentation
    339 		 * offload.
    340 		 */
    341 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
    342 		        ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    343 			ifp->if_capabilities = p->if_capabilities &
    344 			    (IFCAP_TSOv4 | IFCAP_TSOv6 |
    345 			     IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
    346 			     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
    347 			     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
    348 			     IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
    349 			     IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
    350                 }
    351 		/*
    352 		 * We inherit the parent's Ethernet address.
    353 		 */
    354 		ether_ifattach(ifp, CLLADDR(p->if_sadl));
    355 		ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
    356 		break;
    357 	    }
    358 
    359 	default:
    360 		return (EPROTONOSUPPORT);
    361 	}
    362 
    363 	ifv->ifv_p = p;
    364 	ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
    365 	ifv->ifv_if.if_flags = p->if_flags &
    366 	    (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
    367 
    368 	/*
    369 	 * Inherit the if_type from the parent.  This allows us
    370 	 * to participate in bridges of that type.
    371 	 */
    372 	ifv->ifv_if.if_type = p->if_type;
    373 
    374 	return (0);
    375 }
    376 
    377 /*
    378  * Unconfigure a VLAN interface.  Must be called at splnet().
    379  */
    380 static void
    381 vlan_unconfig(struct ifnet *ifp)
    382 {
    383 	struct ifvlan *ifv = ifp->if_softc;
    384 	struct ifnet *p;
    385 
    386 	mutex_enter(&ifv_mtx);
    387 	p = ifv->ifv_p;
    388 
    389 	if (p == NULL) {
    390 		mutex_exit(&ifv_mtx);
    391 		return;
    392 	}
    393 
    394 	/*
    395  	 * Since the interface is being unconfigured, we need to empty the
    396 	 * list of multicast groups that we may have joined while we were
    397 	 * alive and remove them from the parent's list also.
    398 	 */
    399 	(*ifv->ifv_msw->vmsw_purgemulti)(ifv);
    400 
    401 	/* Disconnect from parent. */
    402 	switch (p->if_type) {
    403 	case IFT_ETHER:
    404 	    {
    405 		struct ethercom *ec = (void *)p;
    406 		if (--ec->ec_nvlans == 0)
    407 			(void)ether_disable_vlan_mtu(p);
    408 
    409 		ether_ifdetach(ifp);
    410 		/* Restore vlan_ioctl overwritten by ether_ifdetach */
    411 		ifp->if_ioctl = vlan_ioctl;
    412 		vlan_reset_linkname(ifp);
    413 		break;
    414 	    }
    415 
    416 #ifdef DIAGNOSTIC
    417 	default:
    418 		panic("vlan_unconfig: impossible");
    419 #endif
    420 	}
    421 
    422 	ifv->ifv_p = NULL;
    423 	ifv->ifv_if.if_mtu = 0;
    424 	ifv->ifv_flags = 0;
    425 
    426 #ifdef INET6
    427 	/* To delete v6 link local addresses */
    428 	in6_ifdetach(ifp);
    429 #endif
    430 	if ((ifp->if_flags & IFF_PROMISC) != 0)
    431 		ifpromisc(ifp, 0);
    432 	if_down(ifp);
    433 	ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
    434 	ifp->if_capabilities = 0;
    435 
    436 	mutex_exit(&ifv_mtx);
    437 }
    438 
    439 /*
    440  * Called when a parent interface is detaching; destroy any VLAN
    441  * configuration for the parent interface.
    442  */
    443 void
    444 vlan_ifdetach(struct ifnet *p)
    445 {
    446 	struct ifvlan *ifv;
    447 	int s;
    448 
    449 	s = splnet();
    450 
    451 	for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
    452 	     ifv = LIST_NEXT(ifv, ifv_list)) {
    453 		if (ifv->ifv_p == p)
    454 			vlan_unconfig(&ifv->ifv_if);
    455 	}
    456 
    457 	splx(s);
    458 }
    459 
    460 static int
    461 vlan_set_promisc(struct ifnet *ifp)
    462 {
    463 	struct ifvlan *ifv = ifp->if_softc;
    464 	int error = 0;
    465 
    466 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
    467 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
    468 			error = ifpromisc(ifv->ifv_p, 1);
    469 			if (error == 0)
    470 				ifv->ifv_flags |= IFVF_PROMISC;
    471 		}
    472 	} else {
    473 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
    474 			error = ifpromisc(ifv->ifv_p, 0);
    475 			if (error == 0)
    476 				ifv->ifv_flags &= ~IFVF_PROMISC;
    477 		}
    478 	}
    479 
    480 	return (error);
    481 }
    482 
    483 static int
    484 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    485 {
    486 	struct lwp *l = curlwp;	/* XXX */
    487 	struct ifvlan *ifv = ifp->if_softc;
    488 	struct ifaddr *ifa = (struct ifaddr *) data;
    489 	struct ifreq *ifr = (struct ifreq *) data;
    490 	struct ifnet *pr;
    491 	struct ifcapreq *ifcr;
    492 	struct vlanreq vlr;
    493 	int s, error = 0;
    494 
    495 	s = splnet();
    496 
    497 	switch (cmd) {
    498 	case SIOCSIFMTU:
    499 		if (ifv->ifv_p == NULL)
    500 			error = EINVAL;
    501 		else if (
    502 		    ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
    503 		    ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge))
    504 			error = EINVAL;
    505 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
    506 			error = 0;
    507 		break;
    508 
    509 	case SIOCSETVLAN:
    510 		if ((error = kauth_authorize_network(l->l_cred,
    511 		    KAUTH_NETWORK_INTERFACE,
    512 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
    513 		    NULL)) != 0)
    514 			break;
    515 		if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
    516 			break;
    517 		if (vlr.vlr_parent[0] == '\0') {
    518 			if (ifv->ifv_p != NULL &&
    519 			    (ifp->if_flags & IFF_PROMISC) != 0)
    520 				error = ifpromisc(ifv->ifv_p, 0);
    521 			vlan_unconfig(ifp);
    522 			break;
    523 		}
    524 		if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
    525 			error = EINVAL;		 /* check for valid tag */
    526 			break;
    527 		}
    528 		if ((pr = ifunit(vlr.vlr_parent)) == 0) {
    529 			error = ENOENT;
    530 			break;
    531 		}
    532 		if ((error = vlan_config(ifv, pr)) != 0)
    533 			break;
    534 		ifv->ifv_tag = vlr.vlr_tag;
    535 		ifp->if_flags |= IFF_RUNNING;
    536 
    537 		/* Update promiscuous mode, if necessary. */
    538 		vlan_set_promisc(ifp);
    539 		break;
    540 
    541 	case SIOCGETVLAN:
    542 		memset(&vlr, 0, sizeof(vlr));
    543 		if (ifv->ifv_p != NULL) {
    544 			snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
    545 			    ifv->ifv_p->if_xname);
    546 			vlr.vlr_tag = ifv->ifv_tag;
    547 		}
    548 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
    549 		break;
    550 
    551 	case SIOCSIFFLAGS:
    552 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
    553 			break;
    554 		/*
    555 		 * For promiscuous mode, we enable promiscuous mode on
    556 		 * the parent if we need promiscuous on the VLAN interface.
    557 		 */
    558 		if (ifv->ifv_p != NULL)
    559 			error = vlan_set_promisc(ifp);
    560 		break;
    561 
    562 	case SIOCADDMULTI:
    563 		error = (ifv->ifv_p != NULL) ?
    564 		    (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
    565 		break;
    566 
    567 	case SIOCDELMULTI:
    568 		error = (ifv->ifv_p != NULL) ?
    569 		    (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
    570 		break;
    571 
    572 	case SIOCSIFCAP:
    573 		ifcr = data;
    574 		/* make sure caps are enabled on parent */
    575 		if (ifv->ifv_p == NULL) {
    576 			error = EINVAL;
    577 			break;
    578 		}
    579 		if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) !=
    580 		    ifcr->ifcr_capenable) {
    581 			error = EINVAL;
    582 			break;
    583 		}
    584 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
    585 			error = 0;
    586 		break;
    587 	case SIOCINITIFADDR:
    588 		if (ifv->ifv_p == NULL) {
    589 			error = EINVAL;
    590 			break;
    591 		}
    592 
    593 		ifp->if_flags |= IFF_UP;
    594 #ifdef INET
    595 		if (ifa->ifa_addr->sa_family == AF_INET)
    596 			arp_ifinit(ifp, ifa);
    597 #endif
    598 		break;
    599 
    600 	default:
    601 		error = ether_ioctl(ifp, cmd, data);
    602 	}
    603 
    604 	splx(s);
    605 
    606 	return (error);
    607 }
    608 
    609 static int
    610 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
    611 {
    612 	const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
    613 	struct vlan_mc_entry *mc;
    614 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
    615 	int error;
    616 
    617 	if (sa->sa_len > sizeof(struct sockaddr_storage))
    618 		return (EINVAL);
    619 
    620 	error = ether_addmulti(sa, &ifv->ifv_ec);
    621 	if (error != ENETRESET)
    622 		return (error);
    623 
    624 	/*
    625 	 * This is new multicast address.  We have to tell parent
    626 	 * about it.  Also, remember this multicast address so that
    627 	 * we can delete them on unconfigure.
    628 	 */
    629 	mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
    630 	if (mc == NULL) {
    631 		error = ENOMEM;
    632 		goto alloc_failed;
    633 	}
    634 
    635 	/*
    636 	 * As ether_addmulti() returns ENETRESET, following two
    637 	 * statement shouldn't fail.
    638 	 */
    639 	(void)ether_multiaddr(sa, addrlo, addrhi);
    640 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
    641 	memcpy(&mc->mc_addr, sa, sa->sa_len);
    642 	LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
    643 
    644 	error = if_mcast_op(ifv->ifv_p, SIOCADDMULTI, sa);
    645 	if (error != 0)
    646 		goto ioctl_failed;
    647 	return (error);
    648 
    649  ioctl_failed:
    650 	LIST_REMOVE(mc, mc_entries);
    651 	free(mc, M_DEVBUF);
    652  alloc_failed:
    653 	(void)ether_delmulti(sa, &ifv->ifv_ec);
    654 	return (error);
    655 }
    656 
    657 static int
    658 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
    659 {
    660 	const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
    661 	struct ether_multi *enm;
    662 	struct vlan_mc_entry *mc;
    663 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
    664 	int error;
    665 
    666 	/*
    667 	 * Find a key to lookup vlan_mc_entry.  We have to do this
    668 	 * before calling ether_delmulti for obvious reason.
    669 	 */
    670 	if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
    671 		return (error);
    672 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
    673 
    674 	error = ether_delmulti(sa, &ifv->ifv_ec);
    675 	if (error != ENETRESET)
    676 		return (error);
    677 
    678 	/* We no longer use this multicast address.  Tell parent so. */
    679 	error = if_mcast_op(ifv->ifv_p, SIOCDELMULTI, sa);
    680 	if (error == 0) {
    681 		/* And forget about this address. */
    682 		for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
    683 		    mc = LIST_NEXT(mc, mc_entries)) {
    684 			if (mc->mc_enm == enm) {
    685 				LIST_REMOVE(mc, mc_entries);
    686 				free(mc, M_DEVBUF);
    687 				break;
    688 			}
    689 		}
    690 		KASSERT(mc != NULL);
    691 	} else
    692 		(void)ether_addmulti(sa, &ifv->ifv_ec);
    693 	return (error);
    694 }
    695 
    696 /*
    697  * Delete any multicast address we have asked to add from parent
    698  * interface.  Called when the vlan is being unconfigured.
    699  */
    700 static void
    701 vlan_ether_purgemulti(struct ifvlan *ifv)
    702 {
    703 	struct ifnet *ifp = ifv->ifv_p;		/* Parent. */
    704 	struct vlan_mc_entry *mc;
    705 
    706 	while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
    707 		(void)if_mcast_op(ifp, SIOCDELMULTI,
    708 		    (const struct sockaddr *)&mc->mc_addr);
    709 		LIST_REMOVE(mc, mc_entries);
    710 		free(mc, M_DEVBUF);
    711 	}
    712 }
    713 
    714 static void
    715 vlan_start(struct ifnet *ifp)
    716 {
    717 	struct ifvlan *ifv = ifp->if_softc;
    718 	struct ifnet *p = ifv->ifv_p;
    719 	struct ethercom *ec = (void *) ifv->ifv_p;
    720 	struct mbuf *m;
    721 	int error;
    722 
    723 #ifndef NET_MPSAFE
    724 	KASSERT(KERNEL_LOCKED_P());
    725 #endif
    726 
    727 	ifp->if_flags |= IFF_OACTIVE;
    728 
    729 	for (;;) {
    730 		IFQ_DEQUEUE(&ifp->if_snd, m);
    731 		if (m == NULL)
    732 			break;
    733 
    734 #ifdef ALTQ
    735 		/*
    736 		 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is defined.
    737 		 */
    738 		KERNEL_LOCK(1, NULL);
    739 		/*
    740 		 * If ALTQ is enabled on the parent interface, do
    741 		 * classification; the queueing discipline might
    742 		 * not require classification, but might require
    743 		 * the address family/header pointer in the pktattr.
    744 		 */
    745 		if (ALTQ_IS_ENABLED(&p->if_snd)) {
    746 			switch (p->if_type) {
    747 			case IFT_ETHER:
    748 				altq_etherclassify(&p->if_snd, m);
    749 				break;
    750 #ifdef DIAGNOSTIC
    751 			default:
    752 				panic("vlan_start: impossible (altq)");
    753 #endif
    754 			}
    755 		}
    756 		KERNEL_UNLOCK_ONE(NULL);
    757 #endif /* ALTQ */
    758 
    759 		bpf_mtap(ifp, m);
    760 		/*
    761 		 * If the parent can insert the tag itself, just mark
    762 		 * the tag in the mbuf header.
    763 		 */
    764 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
    765 			struct m_tag *mtag;
    766 
    767 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
    768 			    M_NOWAIT);
    769 			if (mtag == NULL) {
    770 				ifp->if_oerrors++;
    771 				m_freem(m);
    772 				continue;
    773 			}
    774 			*(u_int *)(mtag + 1) = ifv->ifv_tag;
    775 			m_tag_prepend(m, mtag);
    776 		} else {
    777 			/*
    778 			 * insert the tag ourselves
    779 			 */
    780 			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
    781 			if (m == NULL) {
    782 				printf("%s: unable to prepend encap header",
    783 				    ifv->ifv_p->if_xname);
    784 				ifp->if_oerrors++;
    785 				continue;
    786 			}
    787 
    788 			switch (p->if_type) {
    789 			case IFT_ETHER:
    790 			    {
    791 				struct ether_vlan_header *evl;
    792 
    793 				if (m->m_len < sizeof(struct ether_vlan_header))
    794 					m = m_pullup(m,
    795 					    sizeof(struct ether_vlan_header));
    796 				if (m == NULL) {
    797 					printf("%s: unable to pullup encap "
    798 					    "header", ifv->ifv_p->if_xname);
    799 					ifp->if_oerrors++;
    800 					continue;
    801 				}
    802 
    803 				/*
    804 				 * Transform the Ethernet header into an
    805 				 * Ethernet header with 802.1Q encapsulation.
    806 				 */
    807 				memmove(mtod(m, void *),
    808 				    mtod(m, char *) + ifv->ifv_encaplen,
    809 				    sizeof(struct ether_header));
    810 				evl = mtod(m, struct ether_vlan_header *);
    811 				evl->evl_proto = evl->evl_encap_proto;
    812 				evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
    813 				evl->evl_tag = htons(ifv->ifv_tag);
    814 
    815 				/*
    816 				 * To cater for VLAN-aware layer 2 ethernet
    817 				 * switches which may need to strip the tag
    818 				 * before forwarding the packet, make sure
    819 				 * the packet+tag is at least 68 bytes long.
    820 				 * This is necessary because our parent will
    821 				 * only pad to 64 bytes (ETHER_MIN_LEN) and
    822 				 * some switches will not pad by themselves
    823 				 * after deleting a tag.
    824 				 */
    825 				if (m->m_pkthdr.len <
    826 				    (ETHER_MIN_LEN - ETHER_CRC_LEN +
    827 				     ETHER_VLAN_ENCAP_LEN)) {
    828 					m_copyback(m, m->m_pkthdr.len,
    829 					    (ETHER_MIN_LEN - ETHER_CRC_LEN +
    830 					     ETHER_VLAN_ENCAP_LEN) -
    831 					     m->m_pkthdr.len,
    832 					    vlan_zero_pad_buff);
    833 				}
    834 				break;
    835 			    }
    836 
    837 #ifdef DIAGNOSTIC
    838 			default:
    839 				panic("vlan_start: impossible");
    840 #endif
    841 			}
    842 		}
    843 
    844 		/*
    845 		 * Send it, precisely as the parent's output routine
    846 		 * would have.  We are already running at splnet.
    847 		 */
    848 		if ((p->if_flags & IFF_RUNNING) != 0) {
    849 			error = if_transmit_lock(p, m);
    850 			if (error) {
    851 				/* mbuf is already freed */
    852 				ifp->if_oerrors++;
    853 				continue;
    854 			}
    855 		}
    856 
    857 		ifp->if_opackets++;
    858 	}
    859 
    860 	ifp->if_flags &= ~IFF_OACTIVE;
    861 }
    862 
    863 /*
    864  * Given an Ethernet frame, find a valid vlan interface corresponding to the
    865  * given source interface and tag, then run the real packet through the
    866  * parent's input routine.
    867  */
    868 void
    869 vlan_input(struct ifnet *ifp, struct mbuf *m)
    870 {
    871 	struct ifvlan *ifv;
    872 	u_int tag;
    873 	struct m_tag *mtag;
    874 
    875 	mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
    876 	if (mtag != NULL) {
    877 		/* m contains a normal ethernet frame, the tag is in mtag */
    878 		tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1));
    879 		m_tag_delete(m, mtag);
    880 	} else {
    881 		switch (ifp->if_type) {
    882 		case IFT_ETHER:
    883 		    {
    884 			struct ether_vlan_header *evl;
    885 
    886 			if (m->m_len < sizeof(struct ether_vlan_header) &&
    887 			    (m = m_pullup(m,
    888 			     sizeof(struct ether_vlan_header))) == NULL) {
    889 				printf("%s: no memory for VLAN header, "
    890 				    "dropping packet.\n", ifp->if_xname);
    891 				return;
    892 			}
    893 			evl = mtod(m, struct ether_vlan_header *);
    894 			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
    895 
    896 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
    897 
    898 			/*
    899 			 * Restore the original ethertype.  We'll remove
    900 			 * the encapsulation after we've found the vlan
    901 			 * interface corresponding to the tag.
    902 			 */
    903 			evl->evl_encap_proto = evl->evl_proto;
    904 			break;
    905 		    }
    906 
    907 		default:
    908 			tag = (u_int) -1;	/* XXX GCC */
    909 #ifdef DIAGNOSTIC
    910 			panic("vlan_input: impossible");
    911 #endif
    912 		}
    913 	}
    914 
    915 	for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
    916 	    ifv = LIST_NEXT(ifv, ifv_list))
    917 		if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
    918 			break;
    919 
    920 	if (ifv == NULL ||
    921 	    (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
    922 	     (IFF_UP|IFF_RUNNING)) {
    923 		m_freem(m);
    924 		ifp->if_noproto++;
    925 		return;
    926 	}
    927 
    928 	/*
    929 	 * Now, remove the encapsulation header.  The original
    930 	 * header has already been fixed up above.
    931 	 */
    932 	if (mtag == NULL) {
    933 		memmove(mtod(m, char *) + ifv->ifv_encaplen,
    934 		    mtod(m, void *), sizeof(struct ether_header));
    935 		m_adj(m, ifv->ifv_encaplen);
    936 	}
    937 
    938 	m_set_rcvif(m, &ifv->ifv_if);
    939 	ifv->ifv_if.if_ipackets++;
    940 
    941 	m->m_flags &= ~M_PROMISC;
    942 	if_input(&ifv->ifv_if, m);
    943 }
    944 
    945 /*
    946  * Module infrastructure
    947  */
    948 #include "if_module.h"
    949 
    950 IF_MODULE(MODULE_CLASS_DRIVER, vlan, "")
    951