if_wg.c revision 1.10 1 /* $NetBSD: if_wg.c,v 1.10 2020/08/20 21:34:13 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This is an implementation of WireGuard, a fast, modern, secure VPN protocol,
34 * for the NetBSD kernel and rump kernels.
35 *
36 * The implementation is based on the paper of WireGuard as of 2018-06-30 [1].
37 * The paper is referred in the source code with label [W]. Also the
38 * specification of the Noise protocol framework as of 2018-07-11 [2] is
39 * referred with label [N].
40 *
41 * [1] https://www.wireguard.com/papers/wireguard.pdf
42 * [2] http://noiseprotocol.org/noise.pdf
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.10 2020/08/20 21:34:13 riastradh Exp $");
47
48 #ifdef _KERNEL_OPT
49 #include "opt_inet.h"
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/socket.h>
57 #include <sys/sockio.h>
58 #include <sys/errno.h>
59 #include <sys/ioctl.h>
60 #include <sys/time.h>
61 #include <sys/timespec.h>
62 #include <sys/socketvar.h>
63 #include <sys/syslog.h>
64 #include <sys/cpu.h>
65 #include <sys/intr.h>
66 #include <sys/kmem.h>
67 #include <sys/device.h>
68 #include <sys/module.h>
69 #include <sys/mutex.h>
70 #include <sys/rwlock.h>
71 #include <sys/pserialize.h>
72 #include <sys/psref.h>
73 #include <sys/kthread.h>
74 #include <sys/cprng.h>
75 #include <sys/atomic.h>
76 #include <sys/sysctl.h>
77 #include <sys/domain.h>
78 #include <sys/pcq.h>
79 #include <sys/queue.h>
80 #include <sys/percpu.h>
81 #include <sys/callout.h>
82
83 #include <net/bpf.h>
84 #include <net/if.h>
85 #include <net/if_types.h>
86 #include <net/route.h>
87
88 #include <netinet/in.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/udp.h>
92 #include <netinet/udp_var.h>
93 #include <netinet/in_var.h>
94 #include <netinet/in_pcb.h>
95
96 #ifdef INET6
97 #include <netinet6/in6_var.h>
98 #include <netinet/ip6.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/in6_pcb.h>
101 #include <netinet6/udp6_var.h>
102 #endif /* INET6 */
103
104 #include <net/if_wg.h>
105
106 #include <prop/proplib.h>
107
108 #include <crypto/blake2/blake2s.h>
109 #include <crypto/sodium/crypto_scalarmult.h>
110 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
111 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
112
113 #include "ioconf.h"
114
115 #ifdef WG_RUMPKERNEL
116 #include "wg_user.h"
117 #endif
118
119 /*
120 * Data structures
121 * - struct wg_softc is an instance of wg interfaces
122 * - It has a list of peers (struct wg_peer)
123 * - It has a kthread that sends/receives WireGuard handshake messages and
124 * runs event handlers
125 * - It has its own two routing tables: one is for IPv4 and the other IPv6
126 * - struct wg_peer is a representative of a peer
127 * - It has a softint that is used to send packets over an wg interface
128 * to a peer
129 * - It has a pair of session instances (struct wg_session)
130 * - It has a pair of endpoint instances (struct wg_sockaddr)
131 * - Normally one endpoint is used and the second one is used only on
132 * a peer migration (a change of peer's IP address)
133 * - It has a list of IP addresses and sub networks called allowedips
134 * (struct wg_allowedip)
135 * - A packets sent over a session is allowed if its destination matches
136 * any IP addresses or sub networks of the list
137 * - struct wg_session represents a session of a secure tunnel with a peer
138 * - Two instances of sessions belong to a peer; a stable session and a
139 * unstable session
140 * - A handshake process of a session always starts with a unstable instace
141 * - Once a session is established, its instance becomes stable and the
142 * other becomes unstable instead
143 * - Data messages are always sent via a stable session
144 *
145 * Locking notes:
146 * - wg interfaces (struct wg_softc, wg) is listed in wg_softcs.list and protected
147 * by wg_softcs.lock
148 * - Each wg has a mutex(9) and a rwlock(9)
149 * - The mutex (wg_lock) protects its peer list (wg_peers)
150 * - A peer on the list of a wg is also protected by pserialize(9) or psref(9)
151 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
152 * - Each peer (struct wg_peer, wgp) has a mutex
153 * - The mutex (wgp_lock) protects wgp_session_unstable and wgp_state
154 * - Each session (struct wg_session, wgs) has a mutex
155 * - The mutex (wgs_lock) protects its state (wgs_state) and its handshake
156 * states
157 * - wgs_state of a unstable session can be changed while it never be changed
158 * on a stable session, so once get a session instace via wgp_session_stable
159 * we can safely access wgs_state without holding wgs_lock
160 * - A session is protected by pserialize or psref like wgp
161 * - On a session swap, we must wait for all readers to release a reference
162 * to a stable session before changing wgs_state and session states
163 */
164
165
166 #define WGLOG(level, fmt, args...) log(level, "%s: " fmt, __func__, ##args)
167
168 /* Debug options */
169 #ifdef WG_DEBUG
170 /* Output debug logs */
171 #ifndef WG_DEBUG_LOG
172 #define WG_DEBUG_LOG
173 #endif
174 /* Output trace logs */
175 #ifndef WG_DEBUG_TRACE
176 #define WG_DEBUG_TRACE
177 #endif
178 /* Output hash values, etc. */
179 #ifndef WG_DEBUG_DUMP
180 #define WG_DEBUG_DUMP
181 #endif
182 /* Make some internal parameters configurable for testing and debugging */
183 #ifndef WG_DEBUG_PARAMS
184 #define WG_DEBUG_PARAMS
185 #endif
186 #endif
187
188 #ifdef WG_DEBUG_TRACE
189 #define WG_TRACE(msg) log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
190 #else
191 #define WG_TRACE(msg) __nothing
192 #endif
193
194 #ifdef WG_DEBUG_LOG
195 #define WG_DLOG(fmt, args...) log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
196 #else
197 #define WG_DLOG(fmt, args...) __nothing
198 #endif
199
200 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
201 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
202 &(wgprc)->wgprc_curpps, 1)) { \
203 log(level, fmt, ##args); \
204 } \
205 } while (0)
206
207 #ifdef WG_DEBUG_PARAMS
208 static bool wg_force_underload = false;
209 #endif
210
211 #ifdef WG_DEBUG_DUMP
212
213 #ifdef WG_RUMPKERNEL
214 static void
215 wg_dump_buf(const char *func, const char *buf, const size_t size)
216 {
217
218 log(LOG_DEBUG, "%s: ", func);
219 for (int i = 0; i < size; i++)
220 log(LOG_DEBUG, "%02x ", (int)(0xff & buf[i]));
221 log(LOG_DEBUG, "\n");
222 }
223 #endif
224
225 static void
226 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
227 const size_t size)
228 {
229
230 log(LOG_DEBUG, "%s: %s: ", func, name);
231 for (int i = 0; i < size; i++)
232 log(LOG_DEBUG, "%02x ", (int)(0xff & hash[i]));
233 log(LOG_DEBUG, "\n");
234 }
235
236 #define WG_DUMP_HASH(name, hash) \
237 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
238 #define WG_DUMP_HASH48(name, hash) \
239 wg_dump_hash(__func__, name, hash, 48)
240 #define WG_DUMP_BUF(buf, size) \
241 wg_dump_buf(__func__, buf, size)
242 #else
243 #define WG_DUMP_HASH(name, hash) __nothing
244 #define WG_DUMP_HASH48(name, hash) __nothing
245 #define WG_DUMP_BUF(buf, size) __nothing
246 #endif /* WG_DEBUG_DUMP */
247
248 #define WG_MTU 1420
249 #define WG_ALLOWEDIPS 16
250
251 #define CURVE25519_KEY_LEN 32
252 #define TAI64N_LEN sizeof(uint32_t) * 3
253 #define POLY1305_AUTHTAG_LEN 16
254 #define HMAC_BLOCK_LEN 64
255
256 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
257 /* [N] 4.3: Hash functions */
258 #define NOISE_DHLEN 32
259 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
260 #define NOISE_HASHLEN 32
261 #define NOISE_BLOCKLEN 64
262 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
263 /* [N] 5.1: "k" */
264 #define NOISE_CIPHER_KEY_LEN 32
265 /*
266 * [N] 9.2: "psk"
267 * "... psk is a 32-byte secret value provided by the application."
268 */
269 #define NOISE_PRESHARED_KEY_LEN 32
270
271 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
272 #define WG_TIMESTAMP_LEN TAI64N_LEN
273
274 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
275
276 #define WG_COOKIE_LEN 16
277 #define WG_MAC_LEN 16
278 #define WG_RANDVAL_LEN 24
279
280 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
281 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
282 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
283 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
284 #define WG_HASH_LEN NOISE_HASHLEN
285 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
286 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
287 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
288 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
289 #define WG_DATA_KEY_LEN 32
290 #define WG_SALT_LEN 24
291
292 /*
293 * The protocol messages
294 */
295 struct wg_msg{
296 uint32_t wgm_type;
297 } __packed;
298
299 /* [W] 5.4.2 First Message: Initiator to Responder */
300 struct wg_msg_init {
301 uint32_t wgmi_type;
302 uint32_t wgmi_sender;
303 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
304 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
305 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
306 uint8_t wgmi_mac1[WG_MAC_LEN];
307 uint8_t wgmi_mac2[WG_MAC_LEN];
308 } __packed;
309
310 /* [W] 5.4.3 Second Message: Responder to Initiator */
311 struct wg_msg_resp {
312 uint32_t wgmr_type;
313 uint32_t wgmr_sender;
314 uint32_t wgmr_receiver;
315 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
316 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
317 uint8_t wgmr_mac1[WG_MAC_LEN];
318 uint8_t wgmr_mac2[WG_MAC_LEN];
319 } __packed;
320
321 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
322 struct wg_msg_data {
323 uint32_t wgmd_type;
324 uint32_t wgmd_receiver;
325 uint64_t wgmd_counter;
326 uint32_t wgmd_packet[0];
327 } __packed;
328
329 /* [W] 5.4.7 Under Load: Cookie Reply Message */
330 struct wg_msg_cookie {
331 uint32_t wgmc_type;
332 uint32_t wgmc_receiver;
333 uint8_t wgmc_salt[WG_SALT_LEN];
334 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
335 } __packed;
336
337 #define WG_MSG_TYPE_INIT 1
338 #define WG_MSG_TYPE_RESP 2
339 #define WG_MSG_TYPE_COOKIE 3
340 #define WG_MSG_TYPE_DATA 4
341 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
342
343 /* Sliding windows */
344
345 #define SLIWIN_BITS 2048u
346 #define SLIWIN_TYPE uint32_t
347 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
348 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
349 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
350
351 struct sliwin {
352 SLIWIN_TYPE B[SLIWIN_WORDS];
353 uint64_t T;
354 };
355
356 static void
357 sliwin_reset(struct sliwin *W)
358 {
359
360 memset(W, 0, sizeof(*W));
361 }
362
363 static int
364 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
365 {
366
367 /*
368 * If it's more than one window older than the highest sequence
369 * number we've seen, reject.
370 */
371 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
372 return EAUTH;
373
374 /*
375 * Otherwise, we need to take the lock to decide, so don't
376 * reject just yet. Caller must serialize a call to
377 * sliwin_update in this case.
378 */
379 return 0;
380 }
381
382 static int
383 sliwin_update(struct sliwin *W, uint64_t S)
384 {
385 unsigned word, bit;
386
387 /*
388 * If it's more than one window older than the highest sequence
389 * number we've seen, reject.
390 */
391 if (S + SLIWIN_NPKT < W->T)
392 return EAUTH;
393
394 /*
395 * If it's higher than the highest sequence number we've seen,
396 * advance the window.
397 */
398 if (S > W->T) {
399 uint64_t i = W->T / SLIWIN_BPW;
400 uint64_t j = S / SLIWIN_BPW;
401 unsigned k;
402
403 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
404 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
405 atomic_store_relaxed(&W->T, S);
406 }
407
408 /* Test and set the bit -- if already set, reject. */
409 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
410 bit = S % SLIWIN_BPW;
411 if (W->B[word] & (1UL << bit))
412 return EAUTH;
413 W->B[word] |= 1UL << bit;
414
415 /* Accept! */
416 return 0;
417 }
418
419 struct wg_worker {
420 kmutex_t wgw_lock;
421 kcondvar_t wgw_cv;
422 bool wgw_todie;
423 struct socket *wgw_so4;
424 struct socket *wgw_so6;
425 int wgw_wakeup_reasons;
426 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 __BIT(0)
427 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6 __BIT(1)
428 #define WG_WAKEUP_REASON_PEER __BIT(2)
429 };
430
431 struct wg_session {
432 struct wg_peer *wgs_peer;
433 struct psref_target
434 wgs_psref;
435 kmutex_t *wgs_lock;
436
437 int wgs_state;
438 #define WGS_STATE_UNKNOWN 0
439 #define WGS_STATE_INIT_ACTIVE 1
440 #define WGS_STATE_INIT_PASSIVE 2
441 #define WGS_STATE_ESTABLISHED 3
442 #define WGS_STATE_DESTROYING 4
443
444 time_t wgs_time_established;
445 time_t wgs_time_last_data_sent;
446 bool wgs_is_initiator;
447
448 uint32_t wgs_sender_index;
449 uint32_t wgs_receiver_index;
450 volatile uint64_t
451 wgs_send_counter;
452
453 struct {
454 kmutex_t lock;
455 struct sliwin window;
456 } *wgs_recvwin;
457
458 uint8_t wgs_handshake_hash[WG_HASH_LEN];
459 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
460 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
461 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
462 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
463 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
464 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
465 };
466
467 struct wg_sockaddr {
468 union {
469 struct sockaddr_storage _ss;
470 struct sockaddr _sa;
471 struct sockaddr_in _sin;
472 struct sockaddr_in6 _sin6;
473 };
474 struct psref_target wgsa_psref;
475 };
476
477 #define wgsatosa(wgsa) (&(wgsa)->_sa)
478 #define wgsatosin(wgsa) (&(wgsa)->_sin)
479 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
480
481 struct wg_peer;
482 struct wg_allowedip {
483 struct radix_node wga_nodes[2];
484 struct wg_sockaddr _wga_sa_addr;
485 struct wg_sockaddr _wga_sa_mask;
486 #define wga_sa_addr _wga_sa_addr._sa
487 #define wga_sa_mask _wga_sa_mask._sa
488
489 int wga_family;
490 uint8_t wga_cidr;
491 union {
492 struct in_addr _ip4;
493 struct in6_addr _ip6;
494 } wga_addr;
495 #define wga_addr4 wga_addr._ip4
496 #define wga_addr6 wga_addr._ip6
497
498 struct wg_peer *wga_peer;
499 };
500
501 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
502
503 struct wg_ppsratecheck {
504 struct timeval wgprc_lasttime;
505 int wgprc_curpps;
506 };
507
508 struct wg_softc;
509 struct wg_peer {
510 struct wg_softc *wgp_sc;
511 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
512 struct pslist_entry wgp_peerlist_entry;
513 pserialize_t wgp_psz;
514 struct psref_target wgp_psref;
515 kmutex_t *wgp_lock;
516
517 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
518 struct wg_sockaddr *wgp_endpoint;
519 #define wgp_ss wgp_endpoint->_ss
520 #define wgp_sa wgp_endpoint->_sa
521 #define wgp_sin wgp_endpoint->_sin
522 #define wgp_sin6 wgp_endpoint->_sin6
523 struct wg_sockaddr *wgp_endpoint0;
524 bool wgp_endpoint_changing;
525 bool wgp_endpoint_available;
526
527 /* The preshared key (optional) */
528 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
529
530 int wgp_state;
531 #define WGP_STATE_INIT 0
532 #define WGP_STATE_ESTABLISHED 1
533 #define WGP_STATE_GIVEUP 2
534 #define WGP_STATE_DESTROYING 3
535
536 void *wgp_si;
537 pcq_t *wgp_q;
538
539 struct wg_session *wgp_session_stable;
540 struct wg_session *wgp_session_unstable;
541
542 /* timestamp in big-endian */
543 wg_timestamp_t wgp_timestamp_latest_init;
544
545 struct timespec wgp_last_handshake_time;
546
547 callout_t wgp_rekey_timer;
548 callout_t wgp_handshake_timeout_timer;
549 callout_t wgp_session_dtor_timer;
550
551 time_t wgp_handshake_start_time;
552
553 int wgp_n_allowedips;;
554 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
555
556 time_t wgp_latest_cookie_time;
557 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
558 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
559 bool wgp_last_sent_mac1_valid;
560 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
561 bool wgp_last_sent_cookie_valid;
562
563 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
564
565 time_t wgp_last_genrandval_time;
566 uint32_t wgp_randval;
567
568 struct wg_ppsratecheck wgp_ppsratecheck;
569
570 volatile unsigned int wgp_tasks;
571 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
572 #define WGP_TASK_ENDPOINT_CHANGED __BIT(1)
573 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(2)
574 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(3)
575 };
576
577 struct wg_ops;
578
579 struct wg_softc {
580 struct ifnet wg_if;
581 LIST_ENTRY(wg_softc) wg_list;
582 kmutex_t *wg_lock;
583 krwlock_t *wg_rwlock;
584
585 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
586 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
587
588 int wg_npeers;
589 struct pslist_head wg_peers;
590 uint16_t wg_listen_port;
591
592 struct wg_worker *wg_worker;
593 lwp_t *wg_worker_lwp;
594
595 struct radix_node_head *wg_rtable_ipv4;
596 struct radix_node_head *wg_rtable_ipv6;
597
598 struct wg_ppsratecheck wg_ppsratecheck;
599
600 struct wg_ops *wg_ops;
601
602 #ifdef WG_RUMPKERNEL
603 struct wg_user *wg_user;
604 #endif
605 };
606
607
608 #define WG_REKEY_AFTER_MESSAGES (ULONG_MAX - (1 << 16) - 1)
609 #define WG_REJECT_AFTER_MESSAGES (ULONG_MAX - (1 << 4) - 1)
610 #define WG_REKEY_AFTER_TIME 120
611 #define WG_REJECT_AFTER_TIME 180
612 #define WG_REKEY_ATTEMPT_TIME 90
613 #define WG_REKEY_TIMEOUT 5
614 #define WG_KEEPALIVE_TIMEOUT 10
615
616 #define WG_COOKIE_TIME 120
617 #define WG_RANDVAL_TIME (2 * 60)
618
619 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
620 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
621 static time_t wg_rekey_after_time = WG_REKEY_AFTER_TIME;
622 static time_t wg_reject_after_time = WG_REJECT_AFTER_TIME;
623 static time_t wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
624 static time_t wg_rekey_timeout = WG_REKEY_TIMEOUT;
625 static time_t wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
626
627 static struct mbuf *
628 wg_get_mbuf(size_t, size_t);
629
630 static void wg_wakeup_worker(struct wg_worker *, int);
631
632 static int wg_send_data_msg(struct wg_peer *, struct wg_session *,
633 struct mbuf *);
634 static int wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
635 const uint32_t, const uint8_t [], const struct sockaddr *);
636 static int wg_send_handshake_msg_resp(struct wg_softc *,
637 struct wg_peer *, const struct wg_msg_init *);
638 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
639
640 static struct wg_peer *
641 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
642 struct psref *);
643 static struct wg_peer *
644 wg_lookup_peer_by_pubkey(struct wg_softc *,
645 const uint8_t [], struct psref *);
646
647 static struct wg_session *
648 wg_lookup_session_by_index(struct wg_softc *,
649 const uint32_t, struct psref *);
650
651 static void wg_update_endpoint_if_necessary(struct wg_peer *,
652 const struct sockaddr *);
653
654 static void wg_schedule_rekey_timer(struct wg_peer *);
655 static void wg_schedule_session_dtor_timer(struct wg_peer *);
656 static void wg_stop_session_dtor_timer(struct wg_peer *);
657
658 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
659 static void wg_calculate_keys(struct wg_session *, const bool);
660
661 static void wg_clear_states(struct wg_session *);
662
663 static void wg_get_peer(struct wg_peer *, struct psref *);
664 static void wg_put_peer(struct wg_peer *, struct psref *);
665
666 static int wg_send_so(struct wg_peer *, struct mbuf *);
667 static int wg_send_udp(struct wg_peer *, struct mbuf *);
668 static int wg_output(struct ifnet *, struct mbuf *,
669 const struct sockaddr *, const struct rtentry *);
670 static void wg_input(struct ifnet *, struct mbuf *, const int);
671 static int wg_ioctl(struct ifnet *, u_long, void *);
672 static int wg_bind_port(struct wg_softc *, const uint16_t);
673 static int wg_init(struct ifnet *);
674 static void wg_stop(struct ifnet *, int);
675
676 static int wg_clone_create(struct if_clone *, int);
677 static int wg_clone_destroy(struct ifnet *);
678
679 struct wg_ops {
680 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
681 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
682 void (*input)(struct ifnet *, struct mbuf *, const int);
683 int (*bind_port)(struct wg_softc *, const uint16_t);
684 };
685
686 struct wg_ops wg_ops_rumpkernel = {
687 .send_hs_msg = wg_send_so,
688 .send_data_msg = wg_send_udp,
689 .input = wg_input,
690 .bind_port = wg_bind_port,
691 };
692
693 #ifdef WG_RUMPKERNEL
694 static bool wg_user_mode(struct wg_softc *);
695 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
696
697 static int wg_send_user(struct wg_peer *, struct mbuf *);
698 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
699 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
700
701 struct wg_ops wg_ops_rumpuser = {
702 .send_hs_msg = wg_send_user,
703 .send_data_msg = wg_send_user,
704 .input = wg_input_user,
705 .bind_port = wg_bind_port_user,
706 };
707 #endif
708
709 #define WG_PEER_READER_FOREACH(wgp, wg) \
710 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
711 wgp_peerlist_entry)
712 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
713 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
714 wgp_peerlist_entry)
715 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
716 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
717 #define WG_PEER_WRITER_REMOVE(wgp) \
718 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
719
720 struct wg_route {
721 struct radix_node wgr_nodes[2];
722 struct wg_peer *wgr_peer;
723 };
724
725 static struct radix_node_head *
726 wg_rnh(struct wg_softc *wg, const int family)
727 {
728
729 switch (family) {
730 case AF_INET:
731 return wg->wg_rtable_ipv4;
732 #ifdef INET6
733 case AF_INET6:
734 return wg->wg_rtable_ipv6;
735 #endif
736 default:
737 return NULL;
738 }
739 }
740
741
742 /*
743 * Global variables
744 */
745 LIST_HEAD(wg_sclist, wg_softc);
746 static struct {
747 struct wg_sclist list;
748 kmutex_t lock;
749 } wg_softcs __cacheline_aligned;
750
751 struct psref_class *wg_psref_class __read_mostly;
752
753 static struct if_clone wg_cloner =
754 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
755
756
757 void wgattach(int);
758 /* ARGSUSED */
759 void
760 wgattach(int count)
761 {
762 /*
763 * Nothing to do here, initialization is handled by the
764 * module initialization code in wginit() below).
765 */
766 }
767
768 static void
769 wginit(void)
770 {
771
772 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
773
774 mutex_init(&wg_softcs.lock, MUTEX_DEFAULT, IPL_NONE);
775 LIST_INIT(&wg_softcs.list);
776 if_clone_attach(&wg_cloner);
777 }
778
779 static int
780 wgdetach(void)
781 {
782 int error = 0;
783
784 mutex_enter(&wg_softcs.lock);
785 if (!LIST_EMPTY(&wg_softcs.list)) {
786 mutex_exit(&wg_softcs.lock);
787 error = EBUSY;
788 }
789
790 if (error == 0) {
791 psref_class_destroy(wg_psref_class);
792
793 if_clone_detach(&wg_cloner);
794 }
795
796 return error;
797 }
798
799 static void
800 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
801 uint8_t hash[WG_HASH_LEN])
802 {
803 /* [W] 5.4: CONSTRUCTION */
804 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
805 /* [W] 5.4: IDENTIFIER */
806 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
807 struct blake2s state;
808
809 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
810 signature, strlen(signature));
811
812 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
813 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
814
815 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
816 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
817 blake2s_update(&state, id, strlen(id));
818 blake2s_final(&state, hash);
819
820 WG_DUMP_HASH("ckey", ckey);
821 WG_DUMP_HASH("hash", hash);
822 }
823
824 static void
825 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
826 const size_t inputsize)
827 {
828 struct blake2s state;
829
830 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
831 blake2s_update(&state, hash, WG_HASH_LEN);
832 blake2s_update(&state, input, inputsize);
833 blake2s_final(&state, hash);
834 }
835
836 static void
837 wg_algo_mac(uint8_t out[], const size_t outsize,
838 const uint8_t key[], const size_t keylen,
839 const uint8_t input1[], const size_t input1len,
840 const uint8_t input2[], const size_t input2len)
841 {
842 struct blake2s state;
843
844 blake2s_init(&state, outsize, key, keylen);
845
846 blake2s_update(&state, input1, input1len);
847 if (input2 != NULL)
848 blake2s_update(&state, input2, input2len);
849 blake2s_final(&state, out);
850 }
851
852 static void
853 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
854 const uint8_t input1[], const size_t input1len,
855 const uint8_t input2[], const size_t input2len)
856 {
857 struct blake2s state;
858 /* [W] 5.4: LABEL-MAC1 */
859 const char *label = "mac1----";
860 uint8_t key[WG_HASH_LEN];
861
862 blake2s_init(&state, sizeof(key), NULL, 0);
863 blake2s_update(&state, label, strlen(label));
864 blake2s_update(&state, input1, input1len);
865 blake2s_final(&state, key);
866
867 blake2s_init(&state, outsize, key, sizeof(key));
868 if (input2 != NULL)
869 blake2s_update(&state, input2, input2len);
870 blake2s_final(&state, out);
871 }
872
873 static void
874 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
875 const uint8_t input1[], const size_t input1len)
876 {
877 struct blake2s state;
878 /* [W] 5.4: LABEL-COOKIE */
879 const char *label = "cookie--";
880
881 blake2s_init(&state, outsize, NULL, 0);
882 blake2s_update(&state, label, strlen(label));
883 blake2s_update(&state, input1, input1len);
884 blake2s_final(&state, out);
885 }
886
887 static void
888 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
889 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
890 {
891
892 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
893
894 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
895 crypto_scalarmult_base(pubkey, privkey);
896 }
897
898 static void
899 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
900 const uint8_t privkey[WG_STATIC_KEY_LEN],
901 const uint8_t pubkey[WG_STATIC_KEY_LEN])
902 {
903
904 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
905
906 int ret = crypto_scalarmult(out, privkey, pubkey);
907 KASSERT(ret == 0);
908 }
909
910 static void
911 wg_algo_hmac(uint8_t out[], const size_t outlen,
912 const uint8_t key[], const size_t keylen,
913 const uint8_t in[], const size_t inlen)
914 {
915 #define IPAD 0x36
916 #define OPAD 0x5c
917 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
918 uint8_t ipad[HMAC_BLOCK_LEN];
919 uint8_t opad[HMAC_BLOCK_LEN];
920 int i;
921 struct blake2s state;
922
923 KASSERT(outlen == WG_HASH_LEN);
924 KASSERT(keylen <= HMAC_BLOCK_LEN);
925
926 memcpy(hmackey, key, keylen);
927
928 for (i = 0; i < sizeof(hmackey); i++) {
929 ipad[i] = hmackey[i] ^ IPAD;
930 opad[i] = hmackey[i] ^ OPAD;
931 }
932
933 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
934 blake2s_update(&state, ipad, sizeof(ipad));
935 blake2s_update(&state, in, inlen);
936 blake2s_final(&state, out);
937
938 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
939 blake2s_update(&state, opad, sizeof(opad));
940 blake2s_update(&state, out, WG_HASH_LEN);
941 blake2s_final(&state, out);
942 #undef IPAD
943 #undef OPAD
944 }
945
946 static void
947 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
948 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
949 const uint8_t input[], const size_t inputlen)
950 {
951 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
952 uint8_t one[1];
953
954 /*
955 * [N] 4.3: "an input_key_material byte sequence with length either zero
956 * bytes, 32 bytes, or DHLEN bytes."
957 */
958 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
959
960 WG_DUMP_HASH("ckey", ckey);
961 if (input != NULL)
962 WG_DUMP_HASH("input", input);
963 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
964 input, inputlen);
965 WG_DUMP_HASH("tmp1", tmp1);
966 one[0] = 1;
967 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
968 one, sizeof(one));
969 WG_DUMP_HASH("out1", out1);
970 if (out2 == NULL)
971 return;
972 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
973 tmp2[WG_KDF_OUTPUT_LEN] = 2;
974 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
975 tmp2, sizeof(tmp2));
976 WG_DUMP_HASH("out2", out2);
977 if (out3 == NULL)
978 return;
979 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
980 tmp2[WG_KDF_OUTPUT_LEN] = 3;
981 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
982 tmp2, sizeof(tmp2));
983 WG_DUMP_HASH("out3", out3);
984 }
985
986 static void
987 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
988 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
989 const uint8_t local_key[WG_STATIC_KEY_LEN],
990 const uint8_t remote_key[WG_STATIC_KEY_LEN])
991 {
992 uint8_t dhout[WG_DH_OUTPUT_LEN];
993
994 wg_algo_dh(dhout, local_key, remote_key);
995 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
996
997 WG_DUMP_HASH("dhout", dhout);
998 WG_DUMP_HASH("ckey", ckey);
999 if (cipher_key != NULL)
1000 WG_DUMP_HASH("cipher_key", cipher_key);
1001 }
1002
1003 static void
1004 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1005 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1006 const uint8_t auth[], size_t authlen)
1007 {
1008 uint8_t nonce[(32 + 64) / 8] = {0};
1009 long long unsigned int outsize;
1010 int error __diagused;
1011
1012 memcpy(&nonce[4], &counter, sizeof(counter));
1013
1014 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1015 plainsize, auth, authlen, NULL, nonce, key);
1016 KASSERT(error == 0);
1017 KASSERT(outsize == expected_outsize);
1018 }
1019
1020 static int
1021 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1022 const uint64_t counter, const uint8_t encrypted[],
1023 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1024 {
1025 uint8_t nonce[(32 + 64) / 8] = {0};
1026 long long unsigned int outsize;
1027 int error;
1028
1029 memcpy(&nonce[4], &counter, sizeof(counter));
1030
1031 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1032 encrypted, encryptedsize, auth, authlen, nonce, key);
1033 if (error == 0)
1034 KASSERT(outsize == expected_outsize);
1035 return error;
1036 }
1037
1038 static void
1039 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1040 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1041 const uint8_t auth[], size_t authlen,
1042 const uint8_t nonce[WG_SALT_LEN])
1043 {
1044 long long unsigned int outsize;
1045 int error __diagused;
1046
1047 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1048 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize, plain,
1049 plainsize, auth, authlen, NULL, nonce, key);
1050 KASSERT(error == 0);
1051 KASSERT(outsize == expected_outsize);
1052 }
1053
1054 static int
1055 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1056 const uint8_t key[], const uint64_t counter,
1057 const uint8_t encrypted[], const size_t encryptedsize,
1058 const uint8_t auth[], size_t authlen,
1059 const uint8_t nonce[WG_SALT_LEN])
1060 {
1061 long long unsigned int outsize;
1062 int error;
1063
1064 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1065 encrypted, encryptedsize, auth, authlen, nonce, key);
1066 if (error == 0)
1067 KASSERT(outsize == expected_outsize);
1068 return error;
1069 }
1070
1071 static void
1072 wg_algo_tai64n(wg_timestamp_t _timestamp)
1073 {
1074 struct timespec ts;
1075 uint32_t *timestamp = (uint32_t *)_timestamp;
1076
1077 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1078 getnanotime(&ts);
1079 /* TAI64 label in external TAI64 format */
1080 timestamp[0] = htonl(0x40000000L + (ts.tv_sec >> 32));
1081 /* second beginning from 1970 TAI */
1082 timestamp[1] = htonl((long)ts.tv_sec);
1083 /* nanosecond in big-endian format */
1084 timestamp[2] = htonl(ts.tv_nsec);
1085 }
1086
1087 static struct wg_session *
1088 wg_get_unstable_session(struct wg_peer *wgp, struct psref *psref)
1089 {
1090 int s;
1091 struct wg_session *wgs;
1092
1093 s = pserialize_read_enter();
1094 wgs = wgp->wgp_session_unstable;
1095 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1096 pserialize_read_exit(s);
1097 return wgs;
1098 }
1099
1100 static struct wg_session *
1101 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1102 {
1103 int s;
1104 struct wg_session *wgs;
1105
1106 s = pserialize_read_enter();
1107 wgs = wgp->wgp_session_stable;
1108 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1109 pserialize_read_exit(s);
1110 return wgs;
1111 }
1112
1113 static void
1114 wg_get_session(struct wg_session *wgs, struct psref *psref)
1115 {
1116
1117 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1118 }
1119
1120 static void
1121 wg_put_session(struct wg_session *wgs, struct psref *psref)
1122 {
1123
1124 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1125 }
1126
1127 static struct wg_session *
1128 wg_lock_unstable_session(struct wg_peer *wgp)
1129 {
1130 struct wg_session *wgs;
1131
1132 mutex_enter(wgp->wgp_lock);
1133 wgs = wgp->wgp_session_unstable;
1134 mutex_enter(wgs->wgs_lock);
1135 mutex_exit(wgp->wgp_lock);
1136 return wgs;
1137 }
1138
1139 #if 0
1140 static void
1141 wg_unlock_session(struct wg_peer *wgp, struct wg_session *wgs)
1142 {
1143
1144 mutex_exit(wgs->wgs_lock);
1145 }
1146 #endif
1147
1148 /*
1149 * Handshake patterns
1150 *
1151 * [W] 5: "These messages use the "IK" pattern from Noise"
1152 * [N] 7.5. Interactive handshake patterns (fundamental)
1153 * "The first character refers to the initiators static key:"
1154 * "I = Static key for initiator Immediately transmitted to responder,
1155 * despite reduced or absent identity hiding"
1156 * "The second character refers to the responders static key:"
1157 * "K = Static key for responder Known to initiator"
1158 * "IK:
1159 * <- s
1160 * ...
1161 * -> e, es, s, ss
1162 * <- e, ee, se"
1163 * [N] 9.4. Pattern modifiers
1164 * "IKpsk2:
1165 * <- s
1166 * ...
1167 * -> e, es, s, ss
1168 * <- e, ee, se, psk"
1169 */
1170 static void
1171 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1172 struct wg_session *wgs, struct wg_msg_init *wgmi)
1173 {
1174 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1175 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1176 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1177 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1178 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1179
1180 wgmi->wgmi_type = WG_MSG_TYPE_INIT;
1181 wgmi->wgmi_sender = cprng_strong32();
1182
1183 /* [W] 5.4.2: First Message: Initiator to Responder */
1184
1185 /* Ci := HASH(CONSTRUCTION) */
1186 /* Hi := HASH(Ci || IDENTIFIER) */
1187 wg_init_key_and_hash(ckey, hash);
1188 /* Hi := HASH(Hi || Sr^pub) */
1189 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1190
1191 WG_DUMP_HASH("hash", hash);
1192
1193 /* [N] 2.2: "e" */
1194 /* Ei^priv, Ei^pub := DH-GENERATE() */
1195 wg_algo_generate_keypair(pubkey, privkey);
1196 /* Ci := KDF1(Ci, Ei^pub) */
1197 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1198 /* msg.ephemeral := Ei^pub */
1199 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1200 /* Hi := HASH(Hi || msg.ephemeral) */
1201 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1202
1203 WG_DUMP_HASH("ckey", ckey);
1204 WG_DUMP_HASH("hash", hash);
1205
1206 /* [N] 2.2: "es" */
1207 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1208 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1209
1210 /* [N] 2.2: "s" */
1211 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1212 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1213 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1214 hash, sizeof(hash));
1215 /* Hi := HASH(Hi || msg.static) */
1216 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1217
1218 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1219
1220 /* [N] 2.2: "ss" */
1221 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1222 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1223
1224 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1225 wg_timestamp_t timestamp;
1226 wg_algo_tai64n(timestamp);
1227 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1228 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1229 /* Hi := HASH(Hi || msg.timestamp) */
1230 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1231
1232 /* [W] 5.4.4 Cookie MACs */
1233 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1234 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1235 (uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1236 /* Need mac1 to decrypt a cookie from a cookie message */
1237 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1238 sizeof(wgp->wgp_last_sent_mac1));
1239 wgp->wgp_last_sent_mac1_valid = true;
1240
1241 if (wgp->wgp_latest_cookie_time == 0 ||
1242 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1243 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1244 else {
1245 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1246 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1247 (uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac2),
1248 NULL, 0);
1249 }
1250
1251 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1252 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1253 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1254 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1255 wgs->wgs_sender_index = wgmi->wgmi_sender;
1256 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_sender_index);
1257 }
1258
1259 static void
1260 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1261 const struct sockaddr *src)
1262 {
1263 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1264 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1265 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1266 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1267 struct wg_peer *wgp;
1268 struct wg_session *wgs;
1269 bool reset_state_on_error = false;
1270 int error, ret;
1271 struct psref psref_peer;
1272 struct psref psref_session;
1273 uint8_t mac1[WG_MAC_LEN];
1274
1275 WG_TRACE("init msg received");
1276
1277 /*
1278 * [W] 5.4.2: First Message: Initiator to Responder
1279 * "When the responder receives this message, it does the same
1280 * operations so that its final state variables are identical,
1281 * replacing the operands of the DH function to produce equivalent
1282 * values."
1283 * Note that the following comments of operations are just copies of
1284 * the initiator's ones.
1285 */
1286
1287 /* Ci := HASH(CONSTRUCTION) */
1288 /* Hi := HASH(Ci || IDENTIFIER) */
1289 wg_init_key_and_hash(ckey, hash);
1290 /* Hi := HASH(Hi || Sr^pub) */
1291 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1292
1293 /* [N] 2.2: "e" */
1294 /* Ci := KDF1(Ci, Ei^pub) */
1295 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1296 sizeof(wgmi->wgmi_ephemeral));
1297 /* Hi := HASH(Hi || msg.ephemeral) */
1298 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1299
1300 WG_DUMP_HASH("ckey", ckey);
1301
1302 /* [N] 2.2: "es" */
1303 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1304 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1305
1306 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1307
1308 /* [N] 2.2: "s" */
1309 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1310 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1311 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1312 if (error != 0) {
1313 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1314 "wg_algo_aead_dec for secret key failed\n");
1315 return;
1316 }
1317 /* Hi := HASH(Hi || msg.static) */
1318 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1319
1320 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1321 if (wgp == NULL) {
1322 WG_DLOG("peer not found\n");
1323 return;
1324 }
1325
1326 wgs = wg_lock_unstable_session(wgp);
1327 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
1328 /*
1329 * We can assume that the peer doesn't have an established
1330 * session, so clear it now.
1331 */
1332 WG_TRACE("Session destroying, but force to clear");
1333 wg_stop_session_dtor_timer(wgp);
1334 wg_clear_states(wgs);
1335 wgs->wgs_state = WGS_STATE_UNKNOWN;
1336 }
1337 if (wgs->wgs_state == WGS_STATE_INIT_ACTIVE) {
1338 WG_TRACE("Sesssion already initializing, ignoring the message");
1339 mutex_exit(wgs->wgs_lock);
1340 goto out_wgp;
1341 }
1342 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
1343 WG_TRACE("Sesssion already initializing, destroying old states");
1344 wg_clear_states(wgs);
1345 }
1346 wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
1347 reset_state_on_error = true;
1348 wg_get_session(wgs, &psref_session);
1349 mutex_exit(wgs->wgs_lock);
1350
1351 wg_algo_mac_mac1(mac1, sizeof(mac1),
1352 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1353 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1354
1355 /*
1356 * [W] 5.3: Denial of Service Mitigation & Cookies
1357 * "the responder, ..., must always reject messages with an invalid
1358 * msg.mac1"
1359 */
1360 if (memcmp(mac1, wgmi->wgmi_mac1, sizeof(mac1)) != 0) {
1361 WG_DLOG("mac1 is invalid\n");
1362 goto out;
1363 }
1364
1365 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1366 WG_TRACE("under load");
1367 /*
1368 * [W] 5.3: Denial of Service Mitigation & Cookies
1369 * "the responder, ..., and when under load may reject messages
1370 * with an invalid msg.mac2. If the responder receives a
1371 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1372 * and is under load, it may respond with a cookie reply
1373 * message"
1374 */
1375 uint8_t zero[WG_MAC_LEN] = {0};
1376 if (memcmp(wgmi->wgmi_mac2, zero, sizeof(zero)) == 0) {
1377 WG_TRACE("sending a cookie message: no cookie included");
1378 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1379 wgmi->wgmi_mac1, src);
1380 goto out;
1381 }
1382 if (!wgp->wgp_last_sent_cookie_valid) {
1383 WG_TRACE("sending a cookie message: no cookie sent ever");
1384 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1385 wgmi->wgmi_mac1, src);
1386 goto out;
1387 }
1388 uint8_t mac2[WG_MAC_LEN];
1389 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1390 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1391 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1392 if (memcmp(mac2, wgmi->wgmi_mac2, sizeof(mac2)) != 0) {
1393 WG_DLOG("mac2 is invalid\n");
1394 goto out;
1395 }
1396 WG_TRACE("under load, but continue to sending");
1397 }
1398
1399 /* [N] 2.2: "ss" */
1400 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1401 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1402
1403 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1404 wg_timestamp_t timestamp;
1405 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1406 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1407 hash, sizeof(hash));
1408 if (error != 0) {
1409 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1410 "wg_algo_aead_dec for timestamp failed\n");
1411 goto out;
1412 }
1413 /* Hi := HASH(Hi || msg.timestamp) */
1414 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1415
1416 /*
1417 * [W] 5.1 "The responder keeps track of the greatest timestamp received per
1418 * peer and discards packets containing timestamps less than or
1419 * equal to it."
1420 */
1421 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1422 sizeof(timestamp));
1423 if (ret <= 0) {
1424 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1425 "invalid init msg: timestamp is old\n");
1426 goto out;
1427 }
1428 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1429
1430 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1431 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1432 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1433 sizeof(wgmi->wgmi_ephemeral));
1434
1435 wg_update_endpoint_if_necessary(wgp, src);
1436
1437 (void)wg_send_handshake_msg_resp(wg, wgp, wgmi);
1438
1439 wg_calculate_keys(wgs, false);
1440 wg_clear_states(wgs);
1441
1442 wg_put_session(wgs, &psref_session);
1443 wg_put_peer(wgp, &psref_peer);
1444 return;
1445
1446 out:
1447 if (reset_state_on_error) {
1448 mutex_enter(wgs->wgs_lock);
1449 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1450 wgs->wgs_state = WGS_STATE_UNKNOWN;
1451 mutex_exit(wgs->wgs_lock);
1452 }
1453 wg_put_session(wgs, &psref_session);
1454 out_wgp:
1455 wg_put_peer(wgp, &psref_peer);
1456 }
1457
1458 static void
1459 wg_schedule_handshake_timeout_timer(struct wg_peer *wgp)
1460 {
1461
1462 mutex_enter(wgp->wgp_lock);
1463 if (__predict_true(wgp->wgp_state != WGP_STATE_DESTROYING)) {
1464 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1465 wg_rekey_timeout * hz);
1466 }
1467 mutex_exit(wgp->wgp_lock);
1468 }
1469
1470 static void
1471 wg_stop_handshake_timeout_timer(struct wg_peer *wgp)
1472 {
1473
1474 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
1475 }
1476
1477 static struct socket *
1478 wg_get_so_by_af(struct wg_worker *wgw, const int af)
1479 {
1480
1481 return (af == AF_INET) ? wgw->wgw_so4 : wgw->wgw_so6;
1482 }
1483
1484 static struct socket *
1485 wg_get_so_by_peer(struct wg_peer *wgp)
1486 {
1487
1488 return wg_get_so_by_af(wgp->wgp_sc->wg_worker, wgp->wgp_sa.sa_family);
1489 }
1490
1491 static struct wg_sockaddr *
1492 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1493 {
1494 struct wg_sockaddr *wgsa;
1495 int s;
1496
1497 s = pserialize_read_enter();
1498 wgsa = wgp->wgp_endpoint;
1499 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1500 pserialize_read_exit(s);
1501
1502 return wgsa;
1503 }
1504
1505 static void
1506 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1507 {
1508
1509 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1510 }
1511
1512 static int
1513 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1514 {
1515 int error;
1516 struct socket *so;
1517 struct psref psref;
1518 struct wg_sockaddr *wgsa;
1519
1520 so = wg_get_so_by_peer(wgp);
1521 wgsa = wg_get_endpoint_sa(wgp, &psref);
1522 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1523 wg_put_sa(wgp, wgsa, &psref);
1524
1525 return error;
1526 }
1527
1528 static int
1529 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1530 {
1531 int error;
1532 struct mbuf *m;
1533 struct wg_msg_init *wgmi;
1534 struct wg_session *wgs;
1535 struct psref psref;
1536
1537 wgs = wg_lock_unstable_session(wgp);
1538 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
1539 WG_TRACE("Session destroying");
1540 mutex_exit(wgs->wgs_lock);
1541 /* XXX should wait? */
1542 return EBUSY;
1543 }
1544 if (wgs->wgs_state == WGS_STATE_INIT_ACTIVE) {
1545 WG_TRACE("Sesssion already initializing, skip starting a new one");
1546 mutex_exit(wgs->wgs_lock);
1547 return EBUSY;
1548 }
1549 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
1550 WG_TRACE("Sesssion already initializing, destroying old states");
1551 wg_clear_states(wgs);
1552 }
1553 wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
1554 wg_get_session(wgs, &psref);
1555 mutex_exit(wgs->wgs_lock);
1556
1557 m = m_gethdr(M_WAIT, MT_DATA);
1558 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1559 wgmi = mtod(m, struct wg_msg_init *);
1560
1561 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1562
1563 error = wg->wg_ops->send_hs_msg(wgp, m);
1564 if (error == 0) {
1565 WG_TRACE("init msg sent");
1566
1567 if (wgp->wgp_handshake_start_time == 0)
1568 wgp->wgp_handshake_start_time = time_uptime;
1569 wg_schedule_handshake_timeout_timer(wgp);
1570 } else {
1571 mutex_enter(wgs->wgs_lock);
1572 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1573 wgs->wgs_state = WGS_STATE_UNKNOWN;
1574 mutex_exit(wgs->wgs_lock);
1575 }
1576 wg_put_session(wgs, &psref);
1577
1578 return error;
1579 }
1580
1581 static void
1582 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1583 struct wg_msg_resp *wgmr, const struct wg_msg_init *wgmi)
1584 {
1585 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1586 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1587 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1588 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1589 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1590 struct wg_session *wgs;
1591 struct psref psref;
1592
1593 wgs = wg_get_unstable_session(wgp, &psref);
1594 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1595 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1596
1597 wgmr->wgmr_type = WG_MSG_TYPE_RESP;
1598 wgmr->wgmr_sender = cprng_strong32();
1599 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1600
1601 /* [W] 5.4.3 Second Message: Responder to Initiator */
1602
1603 /* [N] 2.2: "e" */
1604 /* Er^priv, Er^pub := DH-GENERATE() */
1605 wg_algo_generate_keypair(pubkey, privkey);
1606 /* Cr := KDF1(Cr, Er^pub) */
1607 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1608 /* msg.ephemeral := Er^pub */
1609 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1610 /* Hr := HASH(Hr || msg.ephemeral) */
1611 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1612
1613 WG_DUMP_HASH("ckey", ckey);
1614 WG_DUMP_HASH("hash", hash);
1615
1616 /* [N] 2.2: "ee" */
1617 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1618 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1619
1620 /* [N] 2.2: "se" */
1621 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1622 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1623
1624 /* [N] 9.2: "psk" */
1625 {
1626 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1627 /* Cr, r, k := KDF3(Cr, Q) */
1628 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1629 sizeof(wgp->wgp_psk));
1630 /* Hr := HASH(Hr || r) */
1631 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1632 }
1633
1634 /* msg.empty := AEAD(k, 0, e, Hr) */
1635 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty), cipher_key,
1636 0, NULL, 0, hash, sizeof(hash));
1637 /* Hr := HASH(Hr || msg.empty) */
1638 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1639
1640 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1641
1642 /* [W] 5.4.4: Cookie MACs */
1643 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1644 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1645 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1646 (uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1647 /* Need mac1 to decrypt a cookie from a cookie message */
1648 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1649 sizeof(wgp->wgp_last_sent_mac1));
1650 wgp->wgp_last_sent_mac1_valid = true;
1651
1652 if (wgp->wgp_latest_cookie_time == 0 ||
1653 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1654 /* msg.mac2 := 0^16 */
1655 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1656 else {
1657 /* msg.mac2 := MAC(Lm, msg_b) */
1658 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1659 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1660 (uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac2),
1661 NULL, 0);
1662 }
1663
1664 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1665 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1666 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1667 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1668 wgs->wgs_sender_index = wgmr->wgmr_sender;
1669 wgs->wgs_receiver_index = wgmi->wgmi_sender;
1670 WG_DLOG("sender=%x\n", wgs->wgs_sender_index);
1671 WG_DLOG("receiver=%x\n", wgs->wgs_receiver_index);
1672 wg_put_session(wgs, &psref);
1673 }
1674
1675 static void
1676 wg_swap_sessions(struct wg_peer *wgp)
1677 {
1678
1679 KASSERT(mutex_owned(wgp->wgp_lock));
1680
1681 wgp->wgp_session_unstable = atomic_swap_ptr(&wgp->wgp_session_stable,
1682 wgp->wgp_session_unstable);
1683 KASSERT(wgp->wgp_session_stable->wgs_state == WGS_STATE_ESTABLISHED);
1684 }
1685
1686 static void
1687 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1688 const struct sockaddr *src)
1689 {
1690 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1691 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1692 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1693 struct wg_peer *wgp;
1694 struct wg_session *wgs;
1695 struct psref psref;
1696 int error;
1697 uint8_t mac1[WG_MAC_LEN];
1698 struct wg_session *wgs_prev;
1699
1700 WG_TRACE("resp msg received");
1701 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
1702 if (wgs == NULL) {
1703 WG_TRACE("No session found");
1704 return;
1705 }
1706
1707 wgp = wgs->wgs_peer;
1708
1709 wg_algo_mac_mac1(mac1, sizeof(mac1),
1710 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1711 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1712
1713 /*
1714 * [W] 5.3: Denial of Service Mitigation & Cookies
1715 * "the responder, ..., must always reject messages with an invalid
1716 * msg.mac1"
1717 */
1718 if (memcmp(mac1, wgmr->wgmr_mac1, sizeof(mac1)) != 0) {
1719 WG_DLOG("mac1 is invalid\n");
1720 goto out;
1721 }
1722
1723 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
1724 WG_TRACE("under load");
1725 /*
1726 * [W] 5.3: Denial of Service Mitigation & Cookies
1727 * "the responder, ..., and when under load may reject messages
1728 * with an invalid msg.mac2. If the responder receives a
1729 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1730 * and is under load, it may respond with a cookie reply
1731 * message"
1732 */
1733 uint8_t zero[WG_MAC_LEN] = {0};
1734 if (memcmp(wgmr->wgmr_mac2, zero, sizeof(zero)) == 0) {
1735 WG_TRACE("sending a cookie message: no cookie included");
1736 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1737 wgmr->wgmr_mac1, src);
1738 goto out;
1739 }
1740 if (!wgp->wgp_last_sent_cookie_valid) {
1741 WG_TRACE("sending a cookie message: no cookie sent ever");
1742 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1743 wgmr->wgmr_mac1, src);
1744 goto out;
1745 }
1746 uint8_t mac2[WG_MAC_LEN];
1747 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1748 WG_COOKIE_LEN, (const uint8_t *)wgmr,
1749 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
1750 if (memcmp(mac2, wgmr->wgmr_mac2, sizeof(mac2)) != 0) {
1751 WG_DLOG("mac2 is invalid\n");
1752 goto out;
1753 }
1754 WG_TRACE("under load, but continue to sending");
1755 }
1756
1757 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1758 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1759
1760 /*
1761 * [W] 5.4.3 Second Message: Responder to Initiator
1762 * "When the initiator receives this message, it does the same
1763 * operations so that its final state variables are identical,
1764 * replacing the operands of the DH function to produce equivalent
1765 * values."
1766 * Note that the following comments of operations are just copies of
1767 * the initiator's ones.
1768 */
1769
1770 /* [N] 2.2: "e" */
1771 /* Cr := KDF1(Cr, Er^pub) */
1772 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
1773 sizeof(wgmr->wgmr_ephemeral));
1774 /* Hr := HASH(Hr || msg.ephemeral) */
1775 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
1776
1777 WG_DUMP_HASH("ckey", ckey);
1778 WG_DUMP_HASH("hash", hash);
1779
1780 /* [N] 2.2: "ee" */
1781 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1782 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
1783 wgmr->wgmr_ephemeral);
1784
1785 /* [N] 2.2: "se" */
1786 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1787 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
1788
1789 /* [N] 9.2: "psk" */
1790 {
1791 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1792 /* Cr, r, k := KDF3(Cr, Q) */
1793 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1794 sizeof(wgp->wgp_psk));
1795 /* Hr := HASH(Hr || r) */
1796 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1797 }
1798
1799 {
1800 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
1801 /* msg.empty := AEAD(k, 0, e, Hr) */
1802 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
1803 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
1804 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1805 if (error != 0) {
1806 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1807 "wg_algo_aead_dec for empty message failed\n");
1808 goto out;
1809 }
1810 /* Hr := HASH(Hr || msg.empty) */
1811 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1812 }
1813
1814 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
1815 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
1816 wgs->wgs_receiver_index = wgmr->wgmr_sender;
1817 WG_DLOG("receiver=%x\n", wgs->wgs_receiver_index);
1818
1819 wgs->wgs_state = WGS_STATE_ESTABLISHED;
1820 wgs->wgs_time_established = time_uptime;
1821 wgs->wgs_time_last_data_sent = 0;
1822 wgs->wgs_is_initiator = true;
1823 wg_calculate_keys(wgs, true);
1824 wg_clear_states(wgs);
1825 WG_TRACE("WGS_STATE_ESTABLISHED");
1826
1827 mutex_enter(wgp->wgp_lock);
1828 wg_swap_sessions(wgp);
1829 wgs_prev = wgp->wgp_session_unstable;
1830 mutex_enter(wgs_prev->wgs_lock);
1831
1832 getnanotime(&wgp->wgp_last_handshake_time);
1833 wg_stop_handshake_timeout_timer(wgp);
1834 wgp->wgp_handshake_start_time = 0;
1835 wgp->wgp_last_sent_mac1_valid = false;
1836 wgp->wgp_last_sent_cookie_valid = false;
1837 mutex_exit(wgp->wgp_lock);
1838
1839 wg_schedule_rekey_timer(wgp);
1840
1841 wg_update_endpoint_if_necessary(wgp, src);
1842
1843 /*
1844 * Send something immediately (same as the official implementation)
1845 * XXX if there are pending data packets, we don't need to send
1846 * a keepalive message.
1847 */
1848 wg_send_keepalive_msg(wgp, wgs);
1849
1850 /* Anyway run a softint to flush pending packets */
1851 kpreempt_disable();
1852 softint_schedule(wgp->wgp_si);
1853 kpreempt_enable();
1854 WG_TRACE("softint scheduled");
1855
1856 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
1857 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
1858 /* We can't destroy the old session immediately */
1859 wg_schedule_session_dtor_timer(wgp);
1860 }
1861 mutex_exit(wgs_prev->wgs_lock);
1862
1863 out:
1864 wg_put_session(wgs, &psref);
1865 }
1866
1867 static int
1868 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1869 const struct wg_msg_init *wgmi)
1870 {
1871 int error;
1872 struct mbuf *m;
1873 struct wg_msg_resp *wgmr;
1874
1875 m = m_gethdr(M_WAIT, MT_DATA);
1876 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
1877 wgmr = mtod(m, struct wg_msg_resp *);
1878 wg_fill_msg_resp(wg, wgp, wgmr, wgmi);
1879
1880 error = wg->wg_ops->send_hs_msg(wgp, m);
1881 if (error == 0)
1882 WG_TRACE("resp msg sent");
1883 return error;
1884 }
1885
1886 static struct wg_peer *
1887 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
1888 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
1889 {
1890 struct wg_peer *wgp;
1891
1892 int s = pserialize_read_enter();
1893 /* XXX O(n) */
1894 WG_PEER_READER_FOREACH(wgp, wg) {
1895 if (memcmp(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey)) == 0)
1896 break;
1897 }
1898 if (wgp != NULL)
1899 wg_get_peer(wgp, psref);
1900 pserialize_read_exit(s);
1901
1902 return wgp;
1903 }
1904
1905 static void
1906 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
1907 struct wg_msg_cookie *wgmc, const uint32_t sender,
1908 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
1909 {
1910 uint8_t cookie[WG_COOKIE_LEN];
1911 uint8_t key[WG_HASH_LEN];
1912 uint8_t addr[sizeof(struct in6_addr)];
1913 size_t addrlen;
1914 uint16_t uh_sport; /* be */
1915
1916 wgmc->wgmc_type = WG_MSG_TYPE_COOKIE;
1917 wgmc->wgmc_receiver = sender;
1918 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
1919
1920 /*
1921 * [W] 5.4.7: Under Load: Cookie Reply Message
1922 * "The secret variable, Rm , changes every two minutes to a random value"
1923 */
1924 if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
1925 wgp->wgp_randval = cprng_strong32();
1926 wgp->wgp_last_genrandval_time = time_uptime;
1927 }
1928
1929 switch (src->sa_family) {
1930 case AF_INET: {
1931 const struct sockaddr_in *sin = satocsin(src);
1932 addrlen = sizeof(sin->sin_addr);
1933 memcpy(addr, &sin->sin_addr, addrlen);
1934 uh_sport = sin->sin_port;
1935 break;
1936 }
1937 #ifdef INET6
1938 case AF_INET6: {
1939 const struct sockaddr_in6 *sin6 = satocsin6(src);
1940 addrlen = sizeof(sin6->sin6_addr);
1941 memcpy(addr, &sin6->sin6_addr, addrlen);
1942 uh_sport = sin6->sin6_port;
1943 break;
1944 }
1945 #endif
1946 default:
1947 panic("invalid af=%d", wgp->wgp_sa.sa_family);
1948 }
1949
1950 wg_algo_mac(cookie, sizeof(cookie),
1951 (uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
1952 addr, addrlen, (uint8_t *)&uh_sport, sizeof(uh_sport));
1953 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
1954 sizeof(wg->wg_pubkey));
1955 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
1956 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
1957
1958 /* Need to store to calculate mac2 */
1959 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
1960 wgp->wgp_last_sent_cookie_valid = true;
1961 }
1962
1963 static int
1964 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
1965 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
1966 const struct sockaddr *src)
1967 {
1968 int error;
1969 struct mbuf *m;
1970 struct wg_msg_cookie *wgmc;
1971
1972 m = m_gethdr(M_WAIT, MT_DATA);
1973 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
1974 wgmc = mtod(m, struct wg_msg_cookie *);
1975 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
1976
1977 error = wg->wg_ops->send_hs_msg(wgp, m);
1978 if (error == 0)
1979 WG_TRACE("cookie msg sent");
1980 return error;
1981 }
1982
1983 static bool
1984 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
1985 {
1986 #ifdef WG_DEBUG_PARAMS
1987 if (wg_force_underload)
1988 return true;
1989 #endif
1990
1991 /*
1992 * XXX we don't have a means of a load estimation. The purpose of
1993 * the mechanism is a DoS mitigation, so we consider frequent handshake
1994 * messages as (a kind of) load; if a message of the same type comes
1995 * to a peer within 1 second, we consider we are under load.
1996 */
1997 time_t last = wgp->wgp_last_msg_received_time[msgtype];
1998 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
1999 return (time_uptime - last) == 0;
2000 }
2001
2002 static void
2003 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2004 {
2005
2006 /* [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e) */
2007 if (initiator) {
2008 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2009 wgs->wgs_chaining_key, NULL, 0);
2010 } else {
2011 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2012 wgs->wgs_chaining_key, NULL, 0);
2013 }
2014 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2015 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2016 }
2017
2018 static void
2019 wg_clear_states(struct wg_session *wgs)
2020 {
2021
2022 wgs->wgs_send_counter = 0;
2023 sliwin_reset(&wgs->wgs_recvwin->window);
2024
2025 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2026 wgs_clear(handshake_hash);
2027 wgs_clear(chaining_key);
2028 wgs_clear(ephemeral_key_pub);
2029 wgs_clear(ephemeral_key_priv);
2030 wgs_clear(ephemeral_key_peer);
2031 #undef wgs_clear
2032 }
2033
2034 static struct wg_session *
2035 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2036 struct psref *psref)
2037 {
2038 struct wg_peer *wgp;
2039 struct wg_session *wgs;
2040
2041 int s = pserialize_read_enter();
2042 /* XXX O(n) */
2043 WG_PEER_READER_FOREACH(wgp, wg) {
2044 wgs = wgp->wgp_session_stable;
2045 WG_DLOG("index=%x wgs_sender_index=%x\n",
2046 index, wgs->wgs_sender_index);
2047 if (wgs->wgs_sender_index == index)
2048 break;
2049 wgs = wgp->wgp_session_unstable;
2050 WG_DLOG("index=%x wgs_sender_index=%x\n",
2051 index, wgs->wgs_sender_index);
2052 if (wgs->wgs_sender_index == index)
2053 break;
2054 wgs = NULL;
2055 }
2056 if (wgs != NULL)
2057 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2058 pserialize_read_exit(s);
2059
2060 return wgs;
2061 }
2062
2063 static void
2064 wg_schedule_rekey_timer(struct wg_peer *wgp)
2065 {
2066 int timeout = wg_rekey_after_time;
2067
2068 callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
2069 }
2070
2071 static void
2072 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2073 {
2074 struct mbuf *m;
2075
2076 /*
2077 * [W] 6.5 Passive Keepalive
2078 * "A keepalive message is simply a transport data message with
2079 * a zero-length encapsulated encrypted inner-packet."
2080 */
2081 m = m_gethdr(M_WAIT, MT_DATA);
2082 wg_send_data_msg(wgp, wgs, m);
2083 }
2084
2085 static bool
2086 wg_need_to_send_init_message(struct wg_session *wgs)
2087 {
2088 /*
2089 * [W] 6.2 Transport Message Limits
2090 * "if a peer is the initiator of a current secure session,
2091 * WireGuard will send a handshake initiation message to begin
2092 * a new secure session ... if after receiving a transport data
2093 * message, the current secure session is (REJECT-AFTER-TIME
2094 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2095 * not yet acted upon this event."
2096 */
2097 return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
2098 (time_uptime - wgs->wgs_time_established) >=
2099 (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
2100 }
2101
2102 static void
2103 wg_schedule_peer_task(struct wg_peer *wgp, int task)
2104 {
2105
2106 atomic_or_uint(&wgp->wgp_tasks, task);
2107 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2108 wg_wakeup_worker(wgp->wgp_sc->wg_worker, WG_WAKEUP_REASON_PEER);
2109 }
2110
2111 static void
2112 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2113 {
2114
2115 KASSERT(mutex_owned(wgp->wgp_lock));
2116
2117 WG_TRACE("Changing endpoint");
2118
2119 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2120 wgp->wgp_endpoint0 = atomic_swap_ptr(&wgp->wgp_endpoint,
2121 wgp->wgp_endpoint0);
2122 if (!wgp->wgp_endpoint_available)
2123 wgp->wgp_endpoint_available = true;
2124 wgp->wgp_endpoint_changing = true;
2125 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2126 }
2127
2128 static bool
2129 wg_validate_inner_packet(char *packet, size_t decrypted_len, int *af)
2130 {
2131 uint16_t packet_len;
2132 struct ip *ip;
2133
2134 if (__predict_false(decrypted_len < sizeof(struct ip)))
2135 return false;
2136
2137 ip = (struct ip *)packet;
2138 if (ip->ip_v == 4)
2139 *af = AF_INET;
2140 else if (ip->ip_v == 6)
2141 *af = AF_INET6;
2142 else
2143 return false;
2144
2145 WG_DLOG("af=%d\n", *af);
2146
2147 if (*af == AF_INET) {
2148 packet_len = ntohs(ip->ip_len);
2149 } else {
2150 struct ip6_hdr *ip6;
2151
2152 if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
2153 return false;
2154
2155 ip6 = (struct ip6_hdr *)packet;
2156 packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2157 }
2158
2159 WG_DLOG("packet_len=%u\n", packet_len);
2160 if (packet_len > decrypted_len)
2161 return false;
2162
2163 return true;
2164 }
2165
2166 static bool
2167 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2168 int af, char *packet)
2169 {
2170 struct sockaddr_storage ss;
2171 struct sockaddr *sa;
2172 struct psref psref;
2173 struct wg_peer *wgp;
2174 bool ok;
2175
2176 /*
2177 * II CRYPTOKEY ROUTING
2178 * "it will only accept it if its source IP resolves in the table to the
2179 * public key used in the secure session for decrypting it."
2180 */
2181
2182 if (af == AF_INET) {
2183 struct ip *ip = (struct ip *)packet;
2184 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2185 sockaddr_in_init(sin, &ip->ip_src, 0);
2186 sa = sintosa(sin);
2187 #ifdef INET6
2188 } else {
2189 struct ip6_hdr *ip6 = (struct ip6_hdr *)packet;
2190 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2191 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2192 sa = sin6tosa(sin6);
2193 #endif
2194 }
2195
2196 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2197 ok = (wgp == wgp_expected);
2198 if (wgp != NULL)
2199 wg_put_peer(wgp, &psref);
2200
2201 return ok;
2202 }
2203
2204 static void
2205 wg_session_dtor_timer(void *arg)
2206 {
2207 struct wg_peer *wgp = arg;
2208
2209 WG_TRACE("enter");
2210
2211 mutex_enter(wgp->wgp_lock);
2212 if (__predict_false(wgp->wgp_state == WGP_STATE_DESTROYING)) {
2213 mutex_exit(wgp->wgp_lock);
2214 return;
2215 }
2216 mutex_exit(wgp->wgp_lock);
2217
2218 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2219 }
2220
2221 static void
2222 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2223 {
2224
2225 /* 1 second grace period */
2226 callout_schedule(&wgp->wgp_session_dtor_timer, hz);
2227 }
2228
2229 static void
2230 wg_stop_session_dtor_timer(struct wg_peer *wgp)
2231 {
2232
2233 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
2234 }
2235
2236 static bool
2237 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2238 {
2239 if (sa1->sa_family != sa2->sa_family)
2240 return false;
2241
2242 switch (sa1->sa_family) {
2243 case AF_INET:
2244 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2245 case AF_INET6:
2246 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2247 default:
2248 return true;
2249 }
2250 }
2251
2252 static void
2253 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2254 const struct sockaddr *src)
2255 {
2256
2257 #ifdef WG_DEBUG_LOG
2258 char oldaddr[128], newaddr[128];
2259 sockaddr_format(&wgp->wgp_sa, oldaddr, sizeof(oldaddr));
2260 sockaddr_format(src, newaddr, sizeof(newaddr));
2261 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2262 #endif
2263
2264 /*
2265 * III: "Since the packet has authenticated correctly, the source IP of
2266 * the outer UDP/IP packet is used to update the endpoint for peer..."
2267 */
2268 if (__predict_false(sockaddr_cmp(src, &wgp->wgp_sa) != 0 ||
2269 !sockaddr_port_match(src, &wgp->wgp_sa))) {
2270 mutex_enter(wgp->wgp_lock);
2271 /* XXX We can't change the endpoint twice in a short period */
2272 if (!wgp->wgp_endpoint_changing) {
2273 wg_change_endpoint(wgp, src);
2274 }
2275 mutex_exit(wgp->wgp_lock);
2276 }
2277 }
2278
2279 static void
2280 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2281 const struct sockaddr *src)
2282 {
2283 struct wg_msg_data *wgmd;
2284 char *encrypted_buf = NULL, *decrypted_buf;
2285 size_t encrypted_len, decrypted_len;
2286 struct wg_session *wgs;
2287 struct wg_peer *wgp;
2288 size_t mlen;
2289 struct psref psref;
2290 int error, af;
2291 bool success, free_encrypted_buf = false, ok;
2292 struct mbuf *n;
2293
2294 if (m->m_len < sizeof(struct wg_msg_data)) {
2295 m = m_pullup(m, sizeof(struct wg_msg_data));
2296 if (m == NULL)
2297 return;
2298 }
2299 wgmd = mtod(m, struct wg_msg_data *);
2300
2301 KASSERT(wgmd->wgmd_type == WG_MSG_TYPE_DATA);
2302 WG_TRACE("data");
2303
2304 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2305 if (wgs == NULL) {
2306 WG_TRACE("No session found");
2307 m_freem(m);
2308 return;
2309 }
2310 wgp = wgs->wgs_peer;
2311
2312 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2313 wgmd->wgmd_counter);
2314 if (error) {
2315 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2316 "out-of-window packet: %"PRIu64"\n",
2317 wgmd->wgmd_counter);
2318 goto out;
2319 }
2320
2321 mlen = m_length(m);
2322 encrypted_len = mlen - sizeof(*wgmd);
2323
2324 if (encrypted_len < WG_AUTHTAG_LEN) {
2325 WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
2326 goto out;
2327 }
2328
2329 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2330 if (success) {
2331 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2332 } else {
2333 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2334 if (encrypted_buf == NULL) {
2335 WG_DLOG("failed to allocate encrypted_buf\n");
2336 goto out;
2337 }
2338 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2339 free_encrypted_buf = true;
2340 }
2341 /* m_ensure_contig may change m regardless of its result */
2342 wgmd = mtod(m, struct wg_msg_data *);
2343
2344 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2345 if (decrypted_len > MCLBYTES) {
2346 /* FIXME handle larger data than MCLBYTES */
2347 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2348 goto out;
2349 }
2350
2351 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN); /* To avoid zero length */
2352 if (n == NULL) {
2353 WG_DLOG("wg_get_mbuf failed\n");
2354 goto out;
2355 }
2356 decrypted_buf = mtod(n, char *);
2357
2358 WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
2359 error = wg_algo_aead_dec(decrypted_buf,
2360 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2361 wgs->wgs_tkey_recv, wgmd->wgmd_counter, encrypted_buf,
2362 encrypted_len, NULL, 0);
2363 if (error != 0) {
2364 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2365 "failed to wg_algo_aead_dec\n");
2366 m_freem(n);
2367 goto out;
2368 }
2369 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2370
2371 mutex_enter(&wgs->wgs_recvwin->lock);
2372 error = sliwin_update(&wgs->wgs_recvwin->window,
2373 wgmd->wgmd_counter);
2374 mutex_exit(&wgs->wgs_recvwin->lock);
2375 if (error) {
2376 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2377 "replay or out-of-window packet: %"PRIu64"\n",
2378 wgmd->wgmd_counter);
2379 m_freem(n);
2380 goto out;
2381 }
2382
2383 m_freem(m);
2384 m = NULL;
2385 wgmd = NULL;
2386
2387 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2388 if (!ok) {
2389 /* something wrong... */
2390 m_freem(n);
2391 goto out;
2392 }
2393
2394 wg_update_endpoint_if_necessary(wgp, src);
2395
2396 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2397 if (ok) {
2398 wg->wg_ops->input(&wg->wg_if, n, af);
2399 } else {
2400 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2401 "invalid source address\n");
2402 m_freem(n);
2403 /*
2404 * The inner address is invalid however the session is valid
2405 * so continue the session processing below.
2406 */
2407 }
2408 n = NULL;
2409
2410 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
2411 struct wg_session *wgs_prev;
2412
2413 KASSERT(wgs == wgp->wgp_session_unstable);
2414 wgs->wgs_state = WGS_STATE_ESTABLISHED;
2415 wgs->wgs_time_established = time_uptime;
2416 wgs->wgs_time_last_data_sent = 0;
2417 wgs->wgs_is_initiator = false;
2418 WG_TRACE("WGS_STATE_ESTABLISHED");
2419
2420 mutex_enter(wgp->wgp_lock);
2421 wg_swap_sessions(wgp);
2422 wgs_prev = wgp->wgp_session_unstable;
2423 mutex_enter(wgs_prev->wgs_lock);
2424 getnanotime(&wgp->wgp_last_handshake_time);
2425 wgp->wgp_handshake_start_time = 0;
2426 wgp->wgp_last_sent_mac1_valid = false;
2427 wgp->wgp_last_sent_cookie_valid = false;
2428 mutex_exit(wgp->wgp_lock);
2429
2430 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2431 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
2432 /* We can't destroy the old session immediately */
2433 wg_schedule_session_dtor_timer(wgp);
2434 } else {
2435 wg_clear_states(wgs_prev);
2436 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
2437 }
2438 mutex_exit(wgs_prev->wgs_lock);
2439
2440 /* Anyway run a softint to flush pending packets */
2441 kpreempt_disable();
2442 softint_schedule(wgp->wgp_si);
2443 kpreempt_enable();
2444 } else {
2445 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2446 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2447 }
2448 /*
2449 * [W] 6.5 Passive Keepalive
2450 * "If a peer has received a validly-authenticated transport
2451 * data message (section 5.4.6), but does not have any packets
2452 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2453 * a keepalive message."
2454 */
2455 WG_DLOG("time_uptime=%lu wgs_time_last_data_sent=%lu\n",
2456 time_uptime, wgs->wgs_time_last_data_sent);
2457 if ((time_uptime - wgs->wgs_time_last_data_sent) >=
2458 wg_keepalive_timeout) {
2459 WG_TRACE("Schedule sending keepalive message");
2460 /*
2461 * We can't send a keepalive message here to avoid
2462 * a deadlock; we already hold the solock of a socket
2463 * that is used to send the message.
2464 */
2465 wg_schedule_peer_task(wgp, WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2466 }
2467 }
2468 out:
2469 wg_put_session(wgs, &psref);
2470 if (m != NULL)
2471 m_freem(m);
2472 if (free_encrypted_buf)
2473 kmem_intr_free(encrypted_buf, encrypted_len);
2474 }
2475
2476 static void
2477 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2478 {
2479 struct wg_session *wgs;
2480 struct wg_peer *wgp;
2481 struct psref psref;
2482 int error;
2483 uint8_t key[WG_HASH_LEN];
2484 uint8_t cookie[WG_COOKIE_LEN];
2485
2486 WG_TRACE("cookie msg received");
2487 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2488 if (wgs == NULL) {
2489 WG_TRACE("No session found");
2490 return;
2491 }
2492 wgp = wgs->wgs_peer;
2493
2494 if (!wgp->wgp_last_sent_mac1_valid) {
2495 WG_TRACE("No valid mac1 sent (or expired)");
2496 goto out;
2497 }
2498
2499 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
2500 sizeof(wgp->wgp_pubkey));
2501 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key, 0,
2502 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
2503 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
2504 wgmc->wgmc_salt);
2505 if (error != 0) {
2506 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2507 "wg_algo_aead_dec for cookie failed: error=%d\n", error);
2508 goto out;
2509 }
2510 /*
2511 * [W] 6.6: Interaction with Cookie Reply System
2512 * "it should simply store the decrypted cookie value from the cookie
2513 * reply message, and wait for the expiration of the REKEY-TIMEOUT
2514 * timer for retrying a handshake initiation message."
2515 */
2516 wgp->wgp_latest_cookie_time = time_uptime;
2517 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
2518 out:
2519 wg_put_session(wgs, &psref);
2520 }
2521
2522 static bool
2523 wg_validate_msg_length(struct wg_softc *wg, const struct mbuf *m)
2524 {
2525 struct wg_msg *wgm;
2526 size_t mlen;
2527
2528 mlen = m_length(m);
2529 if (__predict_false(mlen < sizeof(struct wg_msg)))
2530 return false;
2531
2532 wgm = mtod(m, struct wg_msg *);
2533 switch (wgm->wgm_type) {
2534 case WG_MSG_TYPE_INIT:
2535 if (__predict_true(mlen >= sizeof(struct wg_msg_init)))
2536 return true;
2537 break;
2538 case WG_MSG_TYPE_RESP:
2539 if (__predict_true(mlen >= sizeof(struct wg_msg_resp)))
2540 return true;
2541 break;
2542 case WG_MSG_TYPE_COOKIE:
2543 if (__predict_true(mlen >= sizeof(struct wg_msg_cookie)))
2544 return true;
2545 break;
2546 case WG_MSG_TYPE_DATA:
2547 if (__predict_true(mlen >= sizeof(struct wg_msg_data)))
2548 return true;
2549 break;
2550 default:
2551 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
2552 "Unexpected msg type: %u\n", wgm->wgm_type);
2553 return false;
2554 }
2555 WG_DLOG("Invalid msg size: mlen=%lu type=%u\n", mlen, wgm->wgm_type);
2556
2557 return false;
2558 }
2559
2560 static void
2561 wg_handle_packet(struct wg_softc *wg, struct mbuf *m, const struct sockaddr *src)
2562 {
2563 struct wg_msg *wgm;
2564 bool valid;
2565
2566 valid = wg_validate_msg_length(wg, m);
2567 if (!valid) {
2568 m_freem(m);
2569 return;
2570 }
2571
2572 wgm = mtod(m, struct wg_msg *);
2573 switch (wgm->wgm_type) {
2574 case WG_MSG_TYPE_INIT:
2575 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
2576 break;
2577 case WG_MSG_TYPE_RESP:
2578 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
2579 break;
2580 case WG_MSG_TYPE_COOKIE:
2581 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
2582 break;
2583 case WG_MSG_TYPE_DATA:
2584 wg_handle_msg_data(wg, m, src);
2585 break;
2586 default:
2587 /* wg_validate_msg_length should already reject this case */
2588 break;
2589 }
2590 }
2591
2592 static void
2593 wg_receive_packets(struct wg_softc *wg, const int af)
2594 {
2595
2596 while (true) {
2597 int error, flags;
2598 struct socket *so;
2599 struct mbuf *m = NULL;
2600 struct uio dummy_uio;
2601 struct mbuf *paddr = NULL;
2602 struct sockaddr *src;
2603
2604 so = wg_get_so_by_af(wg->wg_worker, af);
2605 flags = MSG_DONTWAIT;
2606 dummy_uio.uio_resid = 1000000000;
2607
2608 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL, &flags);
2609 if (error || m == NULL) {
2610 //if (error == EWOULDBLOCK)
2611 return;
2612 }
2613
2614 KASSERT(paddr != NULL);
2615 src = mtod(paddr, struct sockaddr *);
2616
2617 wg_handle_packet(wg, m, src);
2618 }
2619 }
2620
2621 static void
2622 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
2623 {
2624
2625 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
2626 }
2627
2628 static void
2629 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
2630 {
2631
2632 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
2633 }
2634
2635 static void
2636 wg_process_peer_tasks(struct wg_softc *wg)
2637 {
2638 struct wg_peer *wgp;
2639 int s;
2640
2641 /* XXX should avoid checking all peers */
2642 s = pserialize_read_enter();
2643 WG_PEER_READER_FOREACH(wgp, wg) {
2644 struct psref psref;
2645 unsigned int tasks;
2646
2647 if (wgp->wgp_tasks == 0)
2648 continue;
2649
2650 wg_get_peer(wgp, &psref);
2651 pserialize_read_exit(s);
2652
2653 restart:
2654 tasks = atomic_swap_uint(&wgp->wgp_tasks, 0);
2655 KASSERT(tasks != 0);
2656
2657 WG_DLOG("tasks=%x\n", tasks);
2658
2659 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE)) {
2660 struct psref _psref;
2661 struct wg_session *wgs;
2662
2663 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
2664 if (!wgp->wgp_endpoint_available) {
2665 WGLOG(LOG_DEBUG, "No endpoint available\n");
2666 /* XXX should do something? */
2667 goto skip_init_message;
2668 }
2669 wgs = wg_get_stable_session(wgp, &_psref);
2670 if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
2671 wg_put_session(wgs, &_psref);
2672 wg_send_handshake_msg_init(wg, wgp);
2673 } else {
2674 wg_put_session(wgs, &_psref);
2675 /* rekey */
2676 wgs = wg_get_unstable_session(wgp, &_psref);
2677 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2678 wg_send_handshake_msg_init(wg, wgp);
2679 wg_put_session(wgs, &_psref);
2680 }
2681 }
2682 skip_init_message:
2683 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED)) {
2684 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
2685 mutex_enter(wgp->wgp_lock);
2686 if (wgp->wgp_endpoint_changing) {
2687 pserialize_perform(wgp->wgp_psz);
2688 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
2689 wg_psref_class);
2690 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
2691 wg_psref_class);
2692 wgp->wgp_endpoint_changing = false;
2693 }
2694 mutex_exit(wgp->wgp_lock);
2695 }
2696 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE)) {
2697 struct psref _psref;
2698 struct wg_session *wgs;
2699
2700 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
2701 wgs = wg_get_stable_session(wgp, &_psref);
2702 wg_send_keepalive_msg(wgp, wgs);
2703 wg_put_session(wgs, &_psref);
2704 }
2705 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION)) {
2706 struct wg_session *wgs;
2707
2708 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
2709 mutex_enter(wgp->wgp_lock);
2710 wgs = wgp->wgp_session_unstable;
2711 mutex_enter(wgs->wgs_lock);
2712 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
2713 pserialize_perform(wgp->wgp_psz);
2714 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
2715 psref_target_init(&wgs->wgs_psref, wg_psref_class);
2716 wg_clear_states(wgs);
2717 wgs->wgs_state = WGS_STATE_UNKNOWN;
2718 }
2719 mutex_exit(wgs->wgs_lock);
2720 mutex_exit(wgp->wgp_lock);
2721 }
2722
2723 /* New tasks may be scheduled during processing tasks */
2724 WG_DLOG("wgp_tasks=%d\n", wgp->wgp_tasks);
2725 if (wgp->wgp_tasks != 0)
2726 goto restart;
2727
2728 s = pserialize_read_enter();
2729 wg_put_peer(wgp, &psref);
2730 }
2731 pserialize_read_exit(s);
2732 }
2733
2734 static void
2735 wg_worker(void *arg)
2736 {
2737 struct wg_softc *wg = arg;
2738 struct wg_worker *wgw = wg->wg_worker;
2739 bool todie = false;
2740
2741 KASSERT(wg != NULL);
2742 KASSERT(wgw != NULL);
2743
2744 while (!todie) {
2745 int reasons;
2746 int bound;
2747
2748 mutex_enter(&wgw->wgw_lock);
2749 /* New tasks may come during task handling */
2750 while ((reasons = wgw->wgw_wakeup_reasons) == 0 &&
2751 !(todie = wgw->wgw_todie))
2752 cv_wait(&wgw->wgw_cv, &wgw->wgw_lock);
2753 wgw->wgw_wakeup_reasons = 0;
2754 mutex_exit(&wgw->wgw_lock);
2755
2756 bound = curlwp_bind();
2757 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4))
2758 wg_receive_packets(wg, AF_INET);
2759 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6))
2760 wg_receive_packets(wg, AF_INET6);
2761 if (ISSET(reasons, WG_WAKEUP_REASON_PEER))
2762 wg_process_peer_tasks(wg);
2763 curlwp_bindx(bound);
2764 }
2765 kthread_exit(0);
2766 }
2767
2768 static void
2769 wg_wakeup_worker(struct wg_worker *wgw, const int reason)
2770 {
2771
2772 mutex_enter(&wgw->wgw_lock);
2773 wgw->wgw_wakeup_reasons |= reason;
2774 cv_broadcast(&wgw->wgw_cv);
2775 mutex_exit(&wgw->wgw_lock);
2776 }
2777
2778 static int
2779 wg_bind_port(struct wg_softc *wg, const uint16_t port)
2780 {
2781 int error;
2782 struct wg_worker *wgw = wg->wg_worker;
2783 uint16_t old_port = wg->wg_listen_port;
2784
2785 if (port != 0 && old_port == port)
2786 return 0;
2787
2788 struct sockaddr_in _sin, *sin = &_sin;
2789 sin->sin_len = sizeof(*sin);
2790 sin->sin_family = AF_INET;
2791 sin->sin_addr.s_addr = INADDR_ANY;
2792 sin->sin_port = htons(port);
2793
2794 error = sobind(wgw->wgw_so4, sintosa(sin), curlwp);
2795 if (error != 0)
2796 return error;
2797
2798 #ifdef INET6
2799 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
2800 sin6->sin6_len = sizeof(*sin6);
2801 sin6->sin6_family = AF_INET6;
2802 sin6->sin6_addr = in6addr_any;
2803 sin6->sin6_port = htons(port);
2804
2805 error = sobind(wgw->wgw_so6, sin6tosa(sin6), curlwp);
2806 if (error != 0)
2807 return error;
2808 #endif
2809
2810 wg->wg_listen_port = port;
2811
2812 return 0;
2813 }
2814
2815 static void
2816 wg_so_upcall(struct socket *so, void *arg, int events, int waitflag)
2817 {
2818 struct wg_worker *wgw = arg;
2819 int reason;
2820
2821 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
2822 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 :
2823 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6;
2824 wg_wakeup_worker(wgw, reason);
2825 }
2826
2827 static int
2828 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
2829 struct sockaddr *src, void *arg)
2830 {
2831 struct wg_softc *wg = arg;
2832 struct wg_msg wgm;
2833 struct mbuf *m = *mp;
2834
2835 WG_TRACE("enter");
2836
2837 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
2838 WG_DLOG("type=%d\n", wgm.wgm_type);
2839
2840 switch (wgm.wgm_type) {
2841 case WG_MSG_TYPE_DATA:
2842 m_adj(m, offset);
2843 wg_handle_msg_data(wg, m, src);
2844 *mp = NULL;
2845 return 1;
2846 default:
2847 break;
2848 }
2849
2850 return 0;
2851 }
2852
2853 static int
2854 wg_worker_socreate(struct wg_softc *wg, struct wg_worker *wgw, const int af,
2855 struct socket **sop)
2856 {
2857 int error;
2858 struct socket *so;
2859
2860 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
2861 if (error != 0)
2862 return error;
2863
2864 solock(so);
2865 so->so_upcallarg = wgw;
2866 so->so_upcall = wg_so_upcall;
2867 so->so_rcv.sb_flags |= SB_UPCALL;
2868 if (af == AF_INET)
2869 in_pcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
2870 #if INET6
2871 else
2872 in6_pcb_register_overudp_cb(sotoin6pcb(so), wg_overudp_cb, wg);
2873 #endif
2874 sounlock(so);
2875
2876 *sop = so;
2877
2878 return 0;
2879 }
2880
2881 static int
2882 wg_worker_init(struct wg_softc *wg)
2883 {
2884 int error;
2885 struct wg_worker *wgw;
2886 const char *ifname = wg->wg_if.if_xname;
2887 struct socket *so;
2888
2889 wgw = kmem_zalloc(sizeof(struct wg_worker), KM_SLEEP);
2890
2891 mutex_init(&wgw->wgw_lock, MUTEX_DEFAULT, IPL_NONE);
2892 cv_init(&wgw->wgw_cv, ifname);
2893 wgw->wgw_todie = false;
2894 wgw->wgw_wakeup_reasons = 0;
2895
2896 error = wg_worker_socreate(wg, wgw, AF_INET, &so);
2897 if (error != 0)
2898 goto error;
2899 wgw->wgw_so4 = so;
2900 #ifdef INET6
2901 error = wg_worker_socreate(wg, wgw, AF_INET6, &so);
2902 if (error != 0)
2903 goto error;
2904 wgw->wgw_so6 = so;
2905 #endif
2906
2907 wg->wg_worker = wgw;
2908
2909 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE | KTHREAD_MUSTJOIN,
2910 NULL, wg_worker, wg, &wg->wg_worker_lwp, "%s", ifname);
2911 if (error != 0)
2912 goto error;
2913
2914 return 0;
2915
2916 error:
2917 #ifdef INET6
2918 if (wgw->wgw_so6 != NULL)
2919 soclose(wgw->wgw_so6);
2920 #endif
2921 if (wgw->wgw_so4 != NULL)
2922 soclose(wgw->wgw_so4);
2923 cv_destroy(&wgw->wgw_cv);
2924 mutex_destroy(&wgw->wgw_lock);
2925
2926 return error;
2927 }
2928
2929 static void
2930 wg_worker_destroy(struct wg_softc *wg)
2931 {
2932 struct wg_worker *wgw = wg->wg_worker;
2933
2934 mutex_enter(&wgw->wgw_lock);
2935 wgw->wgw_todie = true;
2936 wgw->wgw_wakeup_reasons = 0;
2937 cv_broadcast(&wgw->wgw_cv);
2938 mutex_exit(&wgw->wgw_lock);
2939
2940 kthread_join(wg->wg_worker_lwp);
2941
2942 #ifdef INET6
2943 soclose(wgw->wgw_so6);
2944 #endif
2945 soclose(wgw->wgw_so4);
2946 cv_destroy(&wgw->wgw_cv);
2947 mutex_destroy(&wgw->wgw_lock);
2948 kmem_free(wg->wg_worker, sizeof(struct wg_worker));
2949 wg->wg_worker = NULL;
2950 }
2951
2952 static bool
2953 wg_session_hit_limits(struct wg_session *wgs)
2954 {
2955
2956 /*
2957 * [W] 6.2: Transport Message Limits
2958 * "After REJECT-AFTER-MESSAGES transport data messages or after the
2959 * current secure session is REJECT-AFTER-TIME seconds old, whichever
2960 * comes first, WireGuard will refuse to send any more transport data
2961 * messages using the current secure session, ..."
2962 */
2963 KASSERT(wgs->wgs_time_established != 0);
2964 if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
2965 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
2966 return true;
2967 } else if (wgs->wgs_send_counter > wg_reject_after_messages) {
2968 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
2969 return true;
2970 }
2971
2972 return false;
2973 }
2974
2975 static void
2976 wg_peer_softint(void *arg)
2977 {
2978 struct wg_peer *wgp = (struct wg_peer *)arg;
2979 struct wg_session *wgs;
2980 struct mbuf *m;
2981 struct psref psref;
2982
2983 wgs = wg_get_stable_session(wgp, &psref);
2984 if (wgs->wgs_state != WGS_STATE_ESTABLISHED) {
2985 /* XXX how to treat? */
2986 WG_TRACE("skipped");
2987 goto out;
2988 }
2989 if (wg_session_hit_limits(wgs)) {
2990 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2991 goto out;
2992 }
2993 WG_TRACE("running");
2994
2995 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
2996 wg_send_data_msg(wgp, wgs, m);
2997 }
2998 out:
2999 wg_put_session(wgs, &psref);
3000 }
3001
3002 static void
3003 wg_rekey_timer(void *arg)
3004 {
3005 struct wg_peer *wgp = arg;
3006
3007 mutex_enter(wgp->wgp_lock);
3008 if (__predict_true(wgp->wgp_state != WGP_STATE_DESTROYING)) {
3009 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3010 }
3011 mutex_exit(wgp->wgp_lock);
3012 }
3013
3014 static void
3015 wg_purge_pending_packets(struct wg_peer *wgp)
3016 {
3017 struct mbuf *m;
3018
3019 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3020 m_freem(m);
3021 }
3022 }
3023
3024 static void
3025 wg_handshake_timeout_timer(void *arg)
3026 {
3027 struct wg_peer *wgp = arg;
3028 struct wg_session *wgs;
3029 struct psref psref;
3030
3031 WG_TRACE("enter");
3032
3033 mutex_enter(wgp->wgp_lock);
3034 if (__predict_false(wgp->wgp_state == WGP_STATE_DESTROYING)) {
3035 mutex_exit(wgp->wgp_lock);
3036 return;
3037 }
3038 mutex_exit(wgp->wgp_lock);
3039
3040 KASSERT(wgp->wgp_handshake_start_time != 0);
3041 wgs = wg_get_unstable_session(wgp, &psref);
3042 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
3043
3044 /* [W] 6.4 Handshake Initiation Retransmission */
3045 if ((time_uptime - wgp->wgp_handshake_start_time) >
3046 wg_rekey_attempt_time) {
3047 /* Give up handshaking */
3048 wgs->wgs_state = WGS_STATE_UNKNOWN;
3049 wg_clear_states(wgs);
3050 wgp->wgp_state = WGP_STATE_GIVEUP;
3051 wgp->wgp_handshake_start_time = 0;
3052 wg_put_session(wgs, &psref);
3053 WG_TRACE("give up");
3054 /*
3055 * If a new data packet comes, handshaking will be retried
3056 * and a new session would be established at that time,
3057 * however we don't want to send pending packets then.
3058 */
3059 wg_purge_pending_packets(wgp);
3060 return;
3061 }
3062
3063 /* No response for an initiation message sent, retry handshaking */
3064 wgs->wgs_state = WGS_STATE_UNKNOWN;
3065 wg_clear_states(wgs);
3066 wg_put_session(wgs, &psref);
3067
3068 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3069 }
3070
3071 static struct wg_peer *
3072 wg_alloc_peer(struct wg_softc *wg)
3073 {
3074 struct wg_peer *wgp;
3075
3076 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3077
3078 wgp->wgp_sc = wg;
3079 wgp->wgp_state = WGP_STATE_INIT;
3080 wgp->wgp_q = pcq_create(1024, KM_SLEEP);
3081 wgp->wgp_si = softint_establish(SOFTINT_NET, wg_peer_softint, wgp);
3082 callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
3083 callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
3084 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3085 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3086 wg_handshake_timeout_timer, wgp);
3087 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3088 callout_setfunc(&wgp->wgp_session_dtor_timer,
3089 wg_session_dtor_timer, wgp);
3090 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3091 wgp->wgp_endpoint_changing = false;
3092 wgp->wgp_endpoint_available = false;
3093 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3094 wgp->wgp_psz = pserialize_create();
3095 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3096
3097 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3098 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3099 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3100 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3101
3102 struct wg_session *wgs;
3103 wgp->wgp_session_stable = kmem_zalloc(sizeof(struct wg_session), KM_SLEEP);
3104 wgp->wgp_session_unstable = kmem_zalloc(sizeof(struct wg_session), KM_SLEEP);
3105 wgs = wgp->wgp_session_stable;
3106 wgs->wgs_peer = wgp;
3107 wgs->wgs_state = WGS_STATE_UNKNOWN;
3108 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3109 wgs->wgs_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3110 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3111 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_NONE);
3112
3113 wgs = wgp->wgp_session_unstable;
3114 wgs->wgs_peer = wgp;
3115 wgs->wgs_state = WGS_STATE_UNKNOWN;
3116 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3117 wgs->wgs_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3118 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3119 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_NONE);
3120
3121 return wgp;
3122 }
3123
3124 static void
3125 wg_destroy_peer(struct wg_peer *wgp)
3126 {
3127 struct wg_session *wgs;
3128 struct wg_softc *wg = wgp->wgp_sc;
3129
3130 rw_enter(wg->wg_rwlock, RW_WRITER);
3131 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3132 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3133 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3134 struct radix_node *rn;
3135
3136 KASSERT(rnh != NULL);
3137 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3138 &wga->wga_sa_mask, rnh);
3139 if (rn == NULL) {
3140 char addrstr[128];
3141 sockaddr_format(&wga->wga_sa_addr, addrstr,
3142 sizeof(addrstr));
3143 WGLOG(LOG_WARNING, "Couldn't delete %s", addrstr);
3144 }
3145 }
3146 rw_exit(wg->wg_rwlock);
3147
3148 softint_disestablish(wgp->wgp_si);
3149 callout_halt(&wgp->wgp_rekey_timer, NULL);
3150 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3151 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3152
3153 wgs = wgp->wgp_session_unstable;
3154 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
3155 mutex_obj_free(wgs->wgs_lock);
3156 mutex_destroy(&wgs->wgs_recvwin->lock);
3157 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3158 kmem_free(wgs, sizeof(*wgs));
3159 wgs = wgp->wgp_session_stable;
3160 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
3161 mutex_obj_free(wgs->wgs_lock);
3162 mutex_destroy(&wgs->wgs_recvwin->lock);
3163 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3164 kmem_free(wgs, sizeof(*wgs));
3165
3166 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3167 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3168 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3169 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3170
3171 pserialize_destroy(wgp->wgp_psz);
3172 pcq_destroy(wgp->wgp_q);
3173 mutex_obj_free(wgp->wgp_lock);
3174
3175 kmem_free(wgp, sizeof(*wgp));
3176 }
3177
3178 static void
3179 wg_destroy_all_peers(struct wg_softc *wg)
3180 {
3181 struct wg_peer *wgp;
3182
3183 restart:
3184 mutex_enter(wg->wg_lock);
3185 WG_PEER_WRITER_FOREACH(wgp, wg) {
3186 WG_PEER_WRITER_REMOVE(wgp);
3187 mutex_enter(wgp->wgp_lock);
3188 wgp->wgp_state = WGP_STATE_DESTROYING;
3189 pserialize_perform(wgp->wgp_psz);
3190 mutex_exit(wgp->wgp_lock);
3191 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3192 break;
3193 }
3194 mutex_exit(wg->wg_lock);
3195
3196 if (wgp == NULL)
3197 return;
3198
3199 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3200
3201 wg_destroy_peer(wgp);
3202
3203 goto restart;
3204 }
3205
3206 static int
3207 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3208 {
3209 struct wg_peer *wgp;
3210
3211 mutex_enter(wg->wg_lock);
3212 WG_PEER_WRITER_FOREACH(wgp, wg) {
3213 if (strcmp(wgp->wgp_name, name) == 0)
3214 break;
3215 }
3216 if (wgp != NULL) {
3217 WG_PEER_WRITER_REMOVE(wgp);
3218 wg->wg_npeers--;
3219 mutex_enter(wgp->wgp_lock);
3220 wgp->wgp_state = WGP_STATE_DESTROYING;
3221 pserialize_perform(wgp->wgp_psz);
3222 mutex_exit(wgp->wgp_lock);
3223 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3224 }
3225 mutex_exit(wg->wg_lock);
3226
3227 if (wgp == NULL)
3228 return ENOENT;
3229
3230 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3231
3232 wg_destroy_peer(wgp);
3233
3234 return 0;
3235 }
3236
3237 static int
3238 wg_if_attach(struct wg_softc *wg)
3239 {
3240 int error;
3241
3242 wg->wg_if.if_addrlen = 0;
3243 wg->wg_if.if_mtu = WG_MTU;
3244 wg->wg_if.if_flags = IFF_POINTOPOINT;
3245 wg->wg_if.if_extflags = IFEF_NO_LINK_STATE_CHANGE;
3246 wg->wg_if.if_extflags |= IFEF_MPSAFE;
3247 wg->wg_if.if_ioctl = wg_ioctl;
3248 wg->wg_if.if_output = wg_output;
3249 wg->wg_if.if_init = wg_init;
3250 wg->wg_if.if_stop = wg_stop;
3251 wg->wg_if.if_type = IFT_WIREGUARD;
3252 wg->wg_if.if_dlt = DLT_NULL;
3253 wg->wg_if.if_softc = wg;
3254 IFQ_SET_READY(&wg->wg_if.if_snd);
3255
3256 error = if_initialize(&wg->wg_if);
3257 if (error != 0)
3258 return error;
3259
3260 if_alloc_sadl(&wg->wg_if);
3261 if_register(&wg->wg_if);
3262
3263 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3264
3265 return 0;
3266 }
3267
3268 static int
3269 wg_clone_create(struct if_clone *ifc, int unit)
3270 {
3271 struct wg_softc *wg;
3272 int error;
3273
3274 wg = kmem_zalloc(sizeof(struct wg_softc), KM_SLEEP);
3275
3276 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3277
3278 error = wg_worker_init(wg);
3279 if (error != 0) {
3280 kmem_free(wg, sizeof(struct wg_softc));
3281 return error;
3282 }
3283
3284 rn_inithead((void **)&wg->wg_rtable_ipv4,
3285 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3286 #ifdef INET6
3287 rn_inithead((void **)&wg->wg_rtable_ipv6,
3288 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3289 #endif
3290
3291 PSLIST_INIT(&wg->wg_peers);
3292 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3293 wg->wg_rwlock = rw_obj_alloc();
3294 wg->wg_ops = &wg_ops_rumpkernel;
3295
3296 error = wg_if_attach(wg);
3297 if (error != 0) {
3298 wg_worker_destroy(wg);
3299 if (wg->wg_rtable_ipv4 != NULL)
3300 free(wg->wg_rtable_ipv4, M_RTABLE);
3301 if (wg->wg_rtable_ipv6 != NULL)
3302 free(wg->wg_rtable_ipv6, M_RTABLE);
3303 PSLIST_DESTROY(&wg->wg_peers);
3304 mutex_obj_free(wg->wg_lock);
3305 kmem_free(wg, sizeof(struct wg_softc));
3306 return error;
3307 }
3308
3309 mutex_enter(&wg_softcs.lock);
3310 LIST_INSERT_HEAD(&wg_softcs.list, wg, wg_list);
3311 mutex_exit(&wg_softcs.lock);
3312
3313 return 0;
3314 }
3315
3316 static int
3317 wg_clone_destroy(struct ifnet *ifp)
3318 {
3319 struct wg_softc *wg = (void *) ifp;
3320
3321 mutex_enter(&wg_softcs.lock);
3322 LIST_REMOVE(wg, wg_list);
3323 mutex_exit(&wg_softcs.lock);
3324
3325 #ifdef WG_RUMPKERNEL
3326 if (wg_user_mode(wg)) {
3327 rumpuser_wg_destroy(wg->wg_user);
3328 wg->wg_user = NULL;
3329 }
3330 #endif
3331
3332 bpf_detach(ifp);
3333 if_detach(ifp);
3334 wg_worker_destroy(wg);
3335 wg_destroy_all_peers(wg);
3336 if (wg->wg_rtable_ipv4 != NULL)
3337 free(wg->wg_rtable_ipv4, M_RTABLE);
3338 if (wg->wg_rtable_ipv6 != NULL)
3339 free(wg->wg_rtable_ipv6, M_RTABLE);
3340
3341 PSLIST_DESTROY(&wg->wg_peers);
3342 mutex_obj_free(wg->wg_lock);
3343 rw_obj_free(wg->wg_rwlock);
3344
3345 kmem_free(wg, sizeof(struct wg_softc));
3346
3347 return 0;
3348 }
3349
3350 static struct wg_peer *
3351 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
3352 struct psref *psref)
3353 {
3354 struct radix_node_head *rnh;
3355 struct radix_node *rn;
3356 struct wg_peer *wgp = NULL;
3357 struct wg_allowedip *wga;
3358
3359 #ifdef WG_DEBUG_LOG
3360 char addrstr[128];
3361 sockaddr_format(sa, addrstr, sizeof(addrstr));
3362 WG_DLOG("sa=%s\n", addrstr);
3363 #endif
3364
3365 rw_enter(wg->wg_rwlock, RW_READER);
3366
3367 rnh = wg_rnh(wg, sa->sa_family);
3368 if (rnh == NULL)
3369 goto out;
3370
3371 rn = rnh->rnh_matchaddr(sa, rnh);
3372 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
3373 goto out;
3374
3375 WG_TRACE("success");
3376
3377 wga = (struct wg_allowedip *)rn;
3378 wgp = wga->wga_peer;
3379 wg_get_peer(wgp, psref);
3380
3381 out:
3382 rw_exit(wg->wg_rwlock);
3383 return wgp;
3384 }
3385
3386 static void
3387 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
3388 struct wg_session *wgs, struct wg_msg_data *wgmd)
3389 {
3390
3391 memset(wgmd, 0, sizeof(*wgmd));
3392 wgmd->wgmd_type = WG_MSG_TYPE_DATA;
3393 wgmd->wgmd_receiver = wgs->wgs_receiver_index;
3394 /* [W] 5.4.6: msg.counter := Nm^send */
3395 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
3396 wgmd->wgmd_counter = atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
3397 WG_DLOG("counter=%"PRIu64"\n", wgmd->wgmd_counter);
3398 }
3399
3400 static int
3401 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
3402 const struct rtentry *rt)
3403 {
3404 struct wg_softc *wg = ifp->if_softc;
3405 int error = 0;
3406 int bound;
3407 struct psref psref;
3408
3409 /* TODO make the nest limit configurable via sysctl */
3410 error = if_tunnel_check_nesting(ifp, m, 1);
3411 if (error != 0) {
3412 m_freem(m);
3413 WGLOG(LOG_ERR, "tunneling loop detected and packet dropped\n");
3414 return error;
3415 }
3416
3417 bound = curlwp_bind();
3418
3419 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
3420
3421 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
3422
3423 m->m_flags &= ~(M_BCAST|M_MCAST);
3424
3425 struct wg_peer *wgp = wg_pick_peer_by_sa(wg, dst, &psref);
3426 if (wgp == NULL) {
3427 WG_TRACE("peer not found");
3428 error = EHOSTUNREACH;
3429 goto error;
3430 }
3431
3432 /* Clear checksum-offload flags. */
3433 m->m_pkthdr.csum_flags = 0;
3434 m->m_pkthdr.csum_data = 0;
3435
3436 if (!pcq_put(wgp->wgp_q, m)) {
3437 error = ENOBUFS;
3438 goto error;
3439 }
3440
3441 struct psref psref_wgs;
3442 struct wg_session *wgs;
3443 wgs = wg_get_stable_session(wgp, &psref_wgs);
3444 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3445 !wg_session_hit_limits(wgs)) {
3446 kpreempt_disable();
3447 softint_schedule(wgp->wgp_si);
3448 kpreempt_enable();
3449 WG_TRACE("softint scheduled");
3450 } else {
3451 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3452 WG_TRACE("softint NOT scheduled");
3453 }
3454 wg_put_session(wgs, &psref_wgs);
3455 wg_put_peer(wgp, &psref);
3456
3457 return 0;
3458
3459 error:
3460 if (wgp != NULL)
3461 wg_put_peer(wgp, &psref);
3462 if (m != NULL)
3463 m_freem(m);
3464 curlwp_bindx(bound);
3465 return error;
3466 }
3467
3468 static int
3469 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
3470 {
3471 struct psref psref;
3472 struct wg_sockaddr *wgsa;
3473 int error;
3474 struct socket *so = wg_get_so_by_peer(wgp);
3475
3476 solock(so);
3477 wgsa = wg_get_endpoint_sa(wgp, &psref);
3478 if (wgsatosa(wgsa)->sa_family == AF_INET) {
3479 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
3480 } else {
3481 #ifdef INET6
3482 error = udp6_output(sotoin6pcb(so), m, wgsatosin6(wgsa),
3483 NULL, curlwp);
3484 #else
3485 error = EPROTONOSUPPORT;
3486 #endif
3487 }
3488 wg_put_sa(wgp, wgsa, &psref);
3489 sounlock(so);
3490
3491 return error;
3492 }
3493
3494 /* Inspired by pppoe_get_mbuf */
3495 static struct mbuf *
3496 wg_get_mbuf(size_t leading_len, size_t len)
3497 {
3498 struct mbuf *m;
3499
3500 m = m_gethdr(M_DONTWAIT, MT_DATA);
3501 if (m == NULL)
3502 return NULL;
3503 if (len + leading_len > MHLEN) {
3504 m_clget(m, M_DONTWAIT);
3505 if ((m->m_flags & M_EXT) == 0) {
3506 m_free(m);
3507 return NULL;
3508 }
3509 }
3510 m->m_data += leading_len;
3511 m->m_pkthdr.len = m->m_len = len;
3512
3513 return m;
3514 }
3515
3516 static int
3517 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
3518 struct mbuf *m)
3519 {
3520 struct wg_softc *wg = wgp->wgp_sc;
3521 int error;
3522 size_t inner_len, padded_len, encrypted_len;
3523 char *padded_buf = NULL;
3524 size_t mlen;
3525 struct wg_msg_data *wgmd;
3526 bool free_padded_buf = false;
3527 struct mbuf *n;
3528 size_t leading_len = max_linkhdr + sizeof(struct ip6_hdr) +
3529 sizeof(struct udphdr);
3530
3531 mlen = m_length(m);
3532 inner_len = mlen;
3533 padded_len = roundup(mlen, 16);
3534 encrypted_len = padded_len + WG_AUTHTAG_LEN;
3535 WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
3536 inner_len, padded_len, encrypted_len);
3537 if (mlen != 0) {
3538 bool success;
3539 success = m_ensure_contig(&m, padded_len);
3540 if (success) {
3541 padded_buf = mtod(m, char *);
3542 } else {
3543 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
3544 if (padded_buf == NULL) {
3545 error = ENOBUFS;
3546 goto end;
3547 }
3548 free_padded_buf = true;
3549 m_copydata(m, 0, mlen, padded_buf);
3550 }
3551 memset(padded_buf + mlen, 0, padded_len - inner_len);
3552 }
3553
3554 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
3555 if (n == NULL) {
3556 error = ENOBUFS;
3557 goto end;
3558 }
3559 wgmd = mtod(n, struct wg_msg_data *);
3560 wg_fill_msg_data(wg, wgp, wgs, wgmd);
3561 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
3562 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
3563 wgs->wgs_tkey_send, wgmd->wgmd_counter, padded_buf, padded_len,
3564 NULL, 0);
3565
3566 error = wg->wg_ops->send_data_msg(wgp, n);
3567 if (error == 0) {
3568 struct ifnet *ifp = &wg->wg_if;
3569 if_statadd(ifp, if_obytes, mlen);
3570 if_statinc(ifp, if_opackets);
3571 if (wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0) {
3572 /*
3573 * [W] 6.2 Transport Message Limits
3574 * "if a peer is the initiator of a current secure
3575 * session, WireGuard will send a handshake initiation
3576 * message to begin a new secure session if, after
3577 * transmitting a transport data message, the current
3578 * secure session is REKEY-AFTER-TIME seconds old,"
3579 */
3580 wg_schedule_rekey_timer(wgp);
3581 }
3582 wgs->wgs_time_last_data_sent = time_uptime;
3583 if (wgs->wgs_send_counter >= wg_rekey_after_messages) {
3584 /*
3585 * [W] 6.2 Transport Message Limits
3586 * "WireGuard will try to create a new session, by
3587 * sending a handshake initiation message (section
3588 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
3589 * transport data messages..."
3590 */
3591 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3592 }
3593 }
3594 end:
3595 m_freem(m);
3596 if (free_padded_buf)
3597 kmem_intr_free(padded_buf, padded_len);
3598 return error;
3599 }
3600
3601 static void
3602 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
3603 {
3604 pktqueue_t *pktq;
3605 size_t pktlen;
3606
3607 KASSERT(af == AF_INET || af == AF_INET6);
3608
3609 WG_TRACE("");
3610
3611 m_set_rcvif(m, ifp);
3612 pktlen = m->m_pkthdr.len;
3613
3614 bpf_mtap_af(ifp, af, m, BPF_D_IN);
3615
3616 switch (af) {
3617 case AF_INET:
3618 pktq = ip_pktq;
3619 break;
3620 #ifdef INET6
3621 case AF_INET6:
3622 pktq = ip6_pktq;
3623 break;
3624 #endif
3625 default:
3626 panic("invalid af=%d", af);
3627 }
3628
3629 const u_int h = curcpu()->ci_index;
3630 if (__predict_true(pktq_enqueue(pktq, m, h))) {
3631 if_statadd(ifp, if_ibytes, pktlen);
3632 if_statinc(ifp, if_ipackets);
3633 } else {
3634 m_freem(m);
3635 }
3636 }
3637
3638 static void
3639 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
3640 const uint8_t privkey[WG_STATIC_KEY_LEN])
3641 {
3642
3643 crypto_scalarmult_base(pubkey, privkey);
3644 }
3645
3646 static int
3647 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
3648 {
3649 struct radix_node_head *rnh;
3650 struct radix_node *rn;
3651 int error = 0;
3652
3653 rw_enter(wg->wg_rwlock, RW_WRITER);
3654 rnh = wg_rnh(wg, wga->wga_family);
3655 KASSERT(rnh != NULL);
3656 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
3657 wga->wga_nodes);
3658 rw_exit(wg->wg_rwlock);
3659
3660 if (rn == NULL)
3661 error = EEXIST;
3662
3663 return error;
3664 }
3665
3666 static int
3667 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
3668 struct wg_peer **wgpp)
3669 {
3670 int error = 0;
3671 prop_object_t prop_obj;
3672 const char *pubkey;
3673 size_t pubkey_len;
3674 const char *name = NULL;
3675
3676 prop_obj = prop_dictionary_get(peer, "name");
3677 if (prop_obj != NULL) {
3678 name = prop_string_value(prop_obj);
3679 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
3680 error = EINVAL;
3681 goto out;
3682 }
3683 }
3684
3685 prop_obj = prop_dictionary_get(peer, "public_key");
3686 if (prop_obj == NULL) {
3687 error = EINVAL;
3688 goto out;
3689 }
3690 pubkey = prop_data_value(prop_obj);
3691 pubkey_len = prop_data_size(prop_obj);
3692 #ifdef WG_DEBUG_DUMP
3693 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n", pubkey, pubkey_len);
3694 for (int _i = 0; _i < pubkey_len; _i++)
3695 log(LOG_DEBUG, "%c", pubkey[_i]);
3696 log(LOG_DEBUG, "\n");
3697 #else
3698 (void)pubkey_len; /* XXX gcc */
3699 #endif
3700
3701 struct wg_peer *wgp = wg_alloc_peer(wg);
3702 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
3703 if (name != NULL)
3704 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
3705
3706 prop_obj = prop_dictionary_get(peer, "preshared_key");
3707 if (prop_obj != NULL) {
3708 const char *psk = prop_data_value(prop_obj);
3709 size_t psk_len = prop_data_size(prop_obj);
3710
3711 if (psk_len != sizeof(wgp->wgp_psk)) {
3712 error = EINVAL;
3713 goto out;
3714 }
3715 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
3716 }
3717
3718 struct sockaddr_storage sockaddr;
3719 const char *addr;
3720 size_t addr_len;
3721
3722 prop_obj = prop_dictionary_get(peer, "endpoint");
3723 if (prop_obj == NULL)
3724 goto skip_endpoint;
3725
3726 addr = prop_data_value(prop_obj);
3727 addr_len = prop_data_size(prop_obj);
3728 memcpy(&sockaddr, addr, addr_len);
3729 switch (sockaddr.ss_family) {
3730 case AF_INET: {
3731 struct sockaddr_in sin;
3732 sockaddr_copy(sintosa(&sin), sizeof(sin),
3733 (struct sockaddr *)&sockaddr);
3734 sockaddr_copy(sintosa(&wgp->wgp_sin),
3735 sizeof(wgp->wgp_sin), (struct sockaddr *)&sockaddr);
3736 char addrstr[128];
3737 sockaddr_format(sintosa(&sin), addrstr, sizeof(addrstr));
3738 WG_DLOG("addr=%s\n", addrstr);
3739 break;
3740 }
3741 #ifdef INET6
3742 case AF_INET6: {
3743 struct sockaddr_in6 sin6;
3744 char addrstr[128];
3745 sockaddr_copy(sintosa(&sin6), sizeof(sin6),
3746 (struct sockaddr *)&sockaddr);
3747 sockaddr_format(sintosa(&sin6), addrstr, sizeof(addrstr));
3748 WG_DLOG("addr=%s\n", addrstr);
3749 sockaddr_copy(sin6tosa(&wgp->wgp_sin6),
3750 sizeof(wgp->wgp_sin6), (struct sockaddr *)&sockaddr);
3751 break;
3752 }
3753 #endif
3754 default:
3755 break;
3756 }
3757 wgp->wgp_endpoint_available = true;
3758
3759 prop_array_t allowedips;
3760 skip_endpoint:
3761 allowedips = prop_dictionary_get(peer, "allowedips");
3762 if (allowedips == NULL)
3763 goto skip;
3764
3765 prop_object_iterator_t _it = prop_array_iterator(allowedips);
3766 prop_dictionary_t prop_allowedip;
3767 int j = 0;
3768 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
3769 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
3770
3771 prop_obj = prop_dictionary_get(prop_allowedip, "family");
3772 if (prop_obj == NULL)
3773 continue;
3774 wga->wga_family = prop_number_unsigned_value(prop_obj);
3775
3776 prop_obj = prop_dictionary_get(prop_allowedip, "ip");
3777 if (prop_obj == NULL)
3778 continue;
3779 addr = prop_data_value(prop_obj);
3780 addr_len = prop_data_size(prop_obj);
3781
3782 prop_obj = prop_dictionary_get(prop_allowedip, "cidr");
3783 if (prop_obj == NULL)
3784 continue;
3785 wga->wga_cidr = prop_number_unsigned_value(prop_obj);
3786
3787 switch (wga->wga_family) {
3788 case AF_INET: {
3789 struct sockaddr_in sin;
3790 char addrstr[128];
3791 struct in_addr mask;
3792 struct sockaddr_in sin_mask;
3793
3794 if (addr_len != sizeof(struct in_addr))
3795 return EINVAL;
3796 memcpy(&wga->wga_addr4, addr, addr_len);
3797
3798 sockaddr_in_init(&sin, (const struct in_addr *)addr,
3799 0);
3800 sockaddr_copy(&wga->wga_sa_addr,
3801 sizeof(sin), sintosa(&sin));
3802
3803 sockaddr_format(sintosa(&sin),
3804 addrstr, sizeof(addrstr));
3805 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
3806
3807 in_len2mask(&mask, wga->wga_cidr);
3808 sockaddr_in_init(&sin_mask, &mask, 0);
3809 sockaddr_copy(&wga->wga_sa_mask,
3810 sizeof(sin_mask), sintosa(&sin_mask));
3811
3812 break;
3813 }
3814 #ifdef INET6
3815 case AF_INET6: {
3816 struct sockaddr_in6 sin6;
3817 char addrstr[128];
3818 struct in6_addr mask;
3819 struct sockaddr_in6 sin6_mask;
3820
3821 if (addr_len != sizeof(struct in6_addr))
3822 return EINVAL;
3823 memcpy(&wga->wga_addr6, addr, addr_len);
3824
3825 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
3826 0, 0, 0);
3827 sockaddr_copy(&wga->wga_sa_addr,
3828 sizeof(sin6), sin6tosa(&sin6));
3829
3830 sockaddr_format(sin6tosa(&sin6),
3831 addrstr, sizeof(addrstr));
3832 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
3833
3834 in6_prefixlen2mask(&mask, wga->wga_cidr);
3835 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
3836 sockaddr_copy(&wga->wga_sa_mask,
3837 sizeof(sin6_mask), sin6tosa(&sin6_mask));
3838
3839 break;
3840 }
3841 #endif
3842 default:
3843 error = EINVAL;
3844 goto out;
3845 }
3846 wga->wga_peer = wgp;
3847
3848 error = wg_rtable_add_route(wg, wga);
3849 if (error != 0)
3850 goto out;
3851
3852 j++;
3853 }
3854 wgp->wgp_n_allowedips = j;
3855 skip:
3856 *wgpp = wgp;
3857 out:
3858 return error;
3859 }
3860
3861 static int
3862 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
3863 {
3864 int error;
3865 char *buf;
3866
3867 WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
3868 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
3869 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
3870 if (error != 0)
3871 return error;
3872 buf[ifd->ifd_len] = '\0';
3873 #ifdef WG_DEBUG_DUMP
3874 for (int i = 0; i < ifd->ifd_len; i++)
3875 log(LOG_DEBUG, "%c", buf[i]);
3876 log(LOG_DEBUG, "\n");
3877 #endif
3878 *_buf = buf;
3879 return 0;
3880 }
3881
3882 static int
3883 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
3884 {
3885 int error;
3886 prop_dictionary_t prop_dict;
3887 prop_object_t prop_obj;
3888 char *buf = NULL;
3889 const char *privkey;
3890 size_t privkey_len;
3891
3892 error = wg_alloc_prop_buf(&buf, ifd);
3893 if (error != 0)
3894 return error;
3895 error = EINVAL;
3896 prop_dict = prop_dictionary_internalize(buf);
3897 if (prop_dict == NULL)
3898 goto out;
3899 prop_obj = prop_dictionary_get(prop_dict, "private_key");
3900 if (prop_obj == NULL)
3901 goto out;
3902
3903 privkey = prop_data_value(prop_obj);
3904 privkey_len = prop_data_size(prop_obj);
3905 #ifdef WG_DEBUG_DUMP
3906 log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n", privkey, privkey_len);
3907 for (int i = 0; i < privkey_len; i++)
3908 log(LOG_DEBUG, "%c", privkey[i]);
3909 log(LOG_DEBUG, "\n");
3910 #endif
3911 if (privkey_len != WG_STATIC_KEY_LEN)
3912 goto out;
3913 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
3914 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
3915 error = 0;
3916
3917 out:
3918 kmem_free(buf, ifd->ifd_len + 1);
3919 return error;
3920 }
3921
3922 static int
3923 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
3924 {
3925 int error;
3926 prop_dictionary_t prop_dict;
3927 prop_object_t prop_obj;
3928 char *buf = NULL;
3929 uint64_t port;
3930
3931 error = wg_alloc_prop_buf(&buf, ifd);
3932 if (error != 0)
3933 return error;
3934 error = EINVAL;
3935 prop_dict = prop_dictionary_internalize(buf);
3936 if (prop_dict == NULL)
3937 goto out;
3938 prop_obj = prop_dictionary_get(prop_dict, "listen_port");
3939 if (prop_obj == NULL)
3940 goto out;
3941
3942 port = prop_number_unsigned_value(prop_obj);
3943 if (port != (uint64_t)(uint16_t)port)
3944 goto out;
3945 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
3946
3947 out:
3948 kmem_free(buf, ifd->ifd_len + 1);
3949 return error;
3950 }
3951
3952 static int
3953 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
3954 {
3955 int error;
3956 prop_dictionary_t prop_dict;
3957 char *buf = NULL;
3958 struct wg_peer *wgp = NULL;
3959
3960 error = wg_alloc_prop_buf(&buf, ifd);
3961 if (error != 0)
3962 return error;
3963 error = EINVAL;
3964 prop_dict = prop_dictionary_internalize(buf);
3965 if (prop_dict == NULL)
3966 goto out;
3967
3968 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
3969 if (error != 0)
3970 goto out;
3971
3972 mutex_enter(wg->wg_lock);
3973 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
3974 wg->wg_npeers++;
3975 mutex_exit(wg->wg_lock);
3976
3977 out:
3978 kmem_free(buf, ifd->ifd_len + 1);
3979 return error;
3980 }
3981
3982 static int
3983 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
3984 {
3985 int error;
3986 prop_dictionary_t prop_dict;
3987 prop_object_t prop_obj;
3988 char *buf = NULL;
3989 const char *name;
3990
3991 error = wg_alloc_prop_buf(&buf, ifd);
3992 if (error != 0)
3993 return error;
3994 error = EINVAL;
3995 prop_dict = prop_dictionary_internalize(buf);
3996 if (prop_dict == NULL)
3997 goto out;
3998
3999 prop_obj = prop_dictionary_get(prop_dict, "name");
4000 if (prop_obj == NULL)
4001 goto out;
4002
4003 name = prop_string_value(prop_obj);
4004 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4005 goto out;
4006
4007 error = wg_destroy_peer_name(wg, name);
4008 out:
4009 kmem_free(buf, ifd->ifd_len + 1);
4010 return error;
4011 }
4012
4013 static int
4014 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4015 {
4016 int error = ENOMEM;
4017 prop_dictionary_t prop_dict;
4018 prop_array_t peers;
4019 char *buf;
4020 struct wg_peer *wgp;
4021 int s, i;
4022
4023 prop_dict = prop_dictionary_create();
4024 if (prop_dict == NULL)
4025 goto error;
4026
4027 {
4028 prop_data_t privkey;
4029 privkey = prop_data_create_copy(wg->wg_privkey, WG_STATIC_KEY_LEN);
4030 prop_dictionary_set(prop_dict, "private_key", privkey);
4031 prop_object_release(privkey);
4032 }
4033
4034 if (wg->wg_listen_port != 0) {
4035 prop_number_t port;
4036 port = prop_number_create_unsigned(wg->wg_listen_port);
4037 if (port == NULL)
4038 goto error;
4039 prop_dictionary_set(prop_dict, "listen_port", port);
4040 prop_object_release(port);
4041 }
4042
4043 if (wg->wg_npeers == 0)
4044 goto skip_peers;
4045
4046 peers = prop_array_create();
4047 s = pserialize_read_enter();
4048 i = 0;
4049 WG_PEER_READER_FOREACH(wgp, wg) {
4050 struct psref psref;
4051 prop_dictionary_t prop_peer;
4052
4053 wg_get_peer(wgp, &psref);
4054 pserialize_read_exit(s);
4055
4056 prop_peer = prop_dictionary_create();
4057
4058 if (strlen(wgp->wgp_name) > 0) {
4059 prop_string_t name;
4060 name = prop_string_create_copy(wgp->wgp_name);
4061 prop_dictionary_set(prop_peer, "name", name);
4062 prop_object_release(name);
4063 }
4064
4065 {
4066 prop_data_t pubkey;
4067 pubkey = prop_data_create_copy(wgp->wgp_pubkey,
4068 sizeof(wgp->wgp_pubkey));
4069 if (pubkey == NULL)
4070 goto next;
4071 prop_dictionary_set(prop_peer, "public_key", pubkey);
4072 prop_object_release(pubkey);
4073 }
4074
4075 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4076 if (memcmp(wgp->wgp_psk, psk_zero, sizeof(wgp->wgp_psk) != 0)) {
4077 prop_data_t psk = prop_data_create_copy(wgp->wgp_psk,
4078 sizeof(wgp->wgp_psk));
4079 if (psk == NULL)
4080 goto next;
4081 prop_dictionary_set(prop_peer, "preshared_key", psk);
4082 prop_object_release(psk);
4083 }
4084
4085 switch (wgp->wgp_sa.sa_family) {
4086 case AF_INET: {
4087 prop_data_t addr;
4088 addr = prop_data_create_copy(&wgp->wgp_sin,
4089 sizeof(wgp->wgp_sin));
4090 if (addr == NULL)
4091 goto next;
4092 prop_dictionary_set(prop_peer, "endpoint", addr);
4093 prop_object_release(addr);
4094 break;
4095 }
4096 case AF_INET6: {
4097 prop_data_t addr;
4098 addr = prop_data_create_copy(&wgp->wgp_sin6,
4099 sizeof(wgp->wgp_sin6));
4100 if (addr == NULL)
4101 goto next;
4102 prop_dictionary_set(prop_peer, "endpoint", addr);
4103 prop_object_release(addr);
4104 break;
4105 }
4106 }
4107
4108 {
4109 prop_number_t sec, nsec;
4110 const struct timespec *t = &wgp->wgp_last_handshake_time;
4111
4112 sec = prop_number_create_unsigned(t->tv_sec);
4113 if (sec == NULL)
4114 goto next;
4115 prop_dictionary_set(prop_peer, "last_handshake_time_sec", sec);
4116 prop_object_release(sec);
4117
4118 nsec = prop_number_create_unsigned(t->tv_nsec);
4119 if (nsec == NULL)
4120 goto next;
4121 prop_dictionary_set(prop_peer, "last_handshake_time_nsec",
4122 nsec);
4123 prop_object_release(nsec);
4124 }
4125
4126 if (wgp->wgp_n_allowedips == 0)
4127 goto skip_allowedips;
4128
4129 prop_array_t allowedips = prop_array_create();
4130 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4131 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4132 prop_dictionary_t prop_allowedip;
4133 prop_number_t family;
4134 prop_number_t cidr;
4135 prop_data_t prop_addr;
4136
4137 prop_allowedip = prop_dictionary_create();
4138 if (prop_allowedip == NULL)
4139 break;
4140
4141 family = prop_number_create_unsigned(wga->wga_family);
4142 if (family == NULL)
4143 goto _next;
4144 prop_dictionary_set(prop_allowedip, "family", family);
4145 prop_object_release(family);
4146
4147 cidr = prop_number_create_unsigned(wga->wga_cidr);
4148 if (cidr == NULL)
4149 goto _next;
4150 prop_dictionary_set(prop_allowedip, "cidr", cidr);
4151 prop_object_release(cidr);
4152
4153 switch (wga->wga_family) {
4154 case AF_INET:
4155 prop_addr = prop_data_create_copy(
4156 &wga->wga_addr4, sizeof(wga->wga_addr4));
4157 if (prop_addr == NULL)
4158 goto _next;
4159 prop_dictionary_set(prop_allowedip, "ip",
4160 prop_addr);
4161 prop_object_release(prop_addr);
4162 break;
4163 #ifdef INET6
4164 case AF_INET6:
4165 prop_addr = prop_data_create_copy(
4166 &wga->wga_addr6, sizeof(wga->wga_addr6));
4167 if (prop_addr == NULL)
4168 goto _next;
4169 prop_dictionary_set(prop_allowedip, "ip",
4170 prop_addr);
4171 prop_object_release(prop_addr);
4172 break;
4173 #endif
4174 default:
4175 break;
4176 }
4177 prop_array_set(allowedips, j, prop_allowedip);
4178 _next:
4179 prop_object_release(prop_allowedip);
4180 }
4181 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4182 prop_object_release(allowedips);
4183
4184 skip_allowedips:
4185
4186 prop_array_set(peers, i, prop_peer);
4187 next:
4188 prop_object_release(prop_peer);
4189 i++;
4190
4191 s = pserialize_read_enter();
4192 wg_put_peer(wgp, &psref);
4193 }
4194 pserialize_read_exit(s);
4195
4196 prop_dictionary_set(prop_dict, "peers", peers);
4197 prop_object_release(peers);
4198 peers = NULL;
4199
4200 skip_peers:
4201 buf = prop_dictionary_externalize(prop_dict);
4202 if (buf == NULL)
4203 goto error;
4204 if (ifd->ifd_len < (strlen(buf) + 1)) {
4205 error = EINVAL;
4206 goto error;
4207 }
4208 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4209
4210 free(buf, 0);
4211 error:
4212 if (peers != NULL)
4213 prop_object_release(peers);
4214 if (prop_dict != NULL)
4215 prop_object_release(prop_dict);
4216
4217 return error;
4218 }
4219
4220 static int
4221 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4222 {
4223 struct wg_softc *wg = ifp->if_softc;
4224 struct ifreq *ifr = data;
4225 struct ifaddr *ifa = data;
4226 struct ifdrv *ifd = data;
4227 int error = 0;
4228
4229 switch (cmd) {
4230 case SIOCINITIFADDR:
4231 if (ifa->ifa_addr->sa_family != AF_LINK &&
4232 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
4233 (IFF_UP | IFF_RUNNING)) {
4234 ifp->if_flags |= IFF_UP;
4235 error = ifp->if_init(ifp);
4236 }
4237 break;
4238
4239 case SIOCADDMULTI:
4240 case SIOCDELMULTI:
4241 switch (ifr->ifr_addr.sa_family) {
4242 case AF_INET: /* IP supports Multicast */
4243 break;
4244 #ifdef INET6
4245 case AF_INET6: /* IP6 supports Multicast */
4246 break;
4247 #endif
4248 default: /* Other protocols doesn't support Multicast */
4249 error = EAFNOSUPPORT;
4250 break;
4251 }
4252 break;
4253
4254 case SIOCSDRVSPEC:
4255 switch (ifd->ifd_cmd) {
4256 case WG_IOCTL_SET_PRIVATE_KEY:
4257 error = wg_ioctl_set_private_key(wg, ifd);
4258 break;
4259 case WG_IOCTL_SET_LISTEN_PORT:
4260 error = wg_ioctl_set_listen_port(wg, ifd);
4261 break;
4262 case WG_IOCTL_ADD_PEER:
4263 error = wg_ioctl_add_peer(wg, ifd);
4264 break;
4265 case WG_IOCTL_DELETE_PEER:
4266 error = wg_ioctl_delete_peer(wg, ifd);
4267 break;
4268 default:
4269 error = EINVAL;
4270 break;
4271 }
4272 break;
4273 case SIOCGDRVSPEC:
4274 error = wg_ioctl_get(wg, ifd);
4275 break;
4276
4277 case SIOCSIFFLAGS:
4278 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
4279 break;
4280 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4281 case IFF_RUNNING:
4282 /*
4283 * If interface is marked down and it is running,
4284 * then stop and disable it.
4285 */
4286 (*ifp->if_stop)(ifp, 1);
4287 break;
4288 case IFF_UP:
4289 /*
4290 * If interface is marked up and it is stopped, then
4291 * start it.
4292 */
4293 error = (*ifp->if_init)(ifp);
4294 break;
4295 default:
4296 break;
4297 }
4298 break;
4299
4300 #ifdef WG_RUMPKERNEL
4301 case SIOCSLINKSTR:
4302 error = wg_ioctl_linkstr(wg, ifd);
4303 if (error == 0)
4304 wg->wg_ops = &wg_ops_rumpuser;
4305 break;
4306 #endif
4307
4308 default:
4309 error = ifioctl_common(ifp, cmd, data);
4310
4311 #ifdef WG_RUMPKERNEL
4312 if (!wg_user_mode(wg))
4313 break;
4314 /* Do the same to the corresponding tun device on the host */
4315 /*
4316 * XXX Actually the command has not been handled yet. It
4317 * will be handled via pr_ioctl form doifioctl later.
4318 */
4319 switch (cmd) {
4320 case SIOCAIFADDR:
4321 case SIOCDIFADDR: {
4322 struct in_aliasreq _ifra = *(struct in_aliasreq *)data;
4323 struct in_aliasreq *ifra = &_ifra;
4324 KASSERT(error == ENOTTY);
4325 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user), IFNAMSIZ);
4326 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
4327 if (error == 0)
4328 error = ENOTTY;
4329 break;
4330 }
4331 #ifdef INET6
4332 case SIOCAIFADDR_IN6:
4333 case SIOCDIFADDR_IN6: {
4334 struct in6_aliasreq _ifra = *(struct in6_aliasreq *)data;
4335 struct in6_aliasreq *ifra = &_ifra;
4336 KASSERT(error == ENOTTY);
4337 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user), IFNAMSIZ);
4338 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
4339 if (error == 0)
4340 error = ENOTTY;
4341 break;
4342 }
4343 #endif
4344 }
4345 #endif /* WG_RUMPKERNEL */
4346 }
4347
4348 return error;
4349 }
4350
4351 static int
4352 wg_init(struct ifnet *ifp)
4353 {
4354
4355 ifp->if_flags |= IFF_RUNNING;
4356
4357 /* TODO flush pending packets. */
4358 return 0;
4359 }
4360
4361 static void
4362 wg_stop(struct ifnet *ifp, int disable)
4363 {
4364
4365 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
4366 ifp->if_flags &= ~IFF_RUNNING;
4367
4368 /* Need to do something? */
4369 }
4370
4371 #ifdef WG_DEBUG_PARAMS
4372 SYSCTL_SETUP(sysctl_net_wireguard_setup, "sysctl net.wireguard setup")
4373 {
4374 const struct sysctlnode *node = NULL;
4375
4376 sysctl_createv(clog, 0, NULL, &node,
4377 CTLFLAG_PERMANENT,
4378 CTLTYPE_NODE, "wireguard",
4379 SYSCTL_DESCR("WireGuard"),
4380 NULL, 0, NULL, 0,
4381 CTL_NET, CTL_CREATE, CTL_EOL);
4382 sysctl_createv(clog, 0, &node, NULL,
4383 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4384 CTLTYPE_LONG, "rekey_after_messages",
4385 SYSCTL_DESCR("session liftime by messages"),
4386 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
4387 sysctl_createv(clog, 0, &node, NULL,
4388 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4389 CTLTYPE_LONG, "rekey_after_time",
4390 SYSCTL_DESCR("session liftime"),
4391 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
4392 sysctl_createv(clog, 0, &node, NULL,
4393 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4394 CTLTYPE_LONG, "rekey_timeout",
4395 SYSCTL_DESCR("session handshake retry time"),
4396 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
4397 sysctl_createv(clog, 0, &node, NULL,
4398 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4399 CTLTYPE_LONG, "rekey_attempt_time",
4400 SYSCTL_DESCR("session handshake timeout"),
4401 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
4402 sysctl_createv(clog, 0, &node, NULL,
4403 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4404 CTLTYPE_LONG, "keepalive_timeout",
4405 SYSCTL_DESCR("keepalive timeout"),
4406 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
4407 sysctl_createv(clog, 0, &node, NULL,
4408 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4409 CTLTYPE_BOOL, "force_underload",
4410 SYSCTL_DESCR("force to detemine under load"),
4411 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
4412 }
4413 #endif
4414
4415 #ifdef WG_RUMPKERNEL
4416 static bool
4417 wg_user_mode(struct wg_softc *wg)
4418 {
4419
4420 return wg->wg_user != NULL;
4421 }
4422
4423 static int
4424 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
4425 {
4426 struct ifnet *ifp = &wg->wg_if;
4427 int error;
4428
4429 if (ifp->if_flags & IFF_UP)
4430 return EBUSY;
4431
4432 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
4433 /* XXX do nothing */
4434 return 0;
4435 } else if (ifd->ifd_cmd != 0) {
4436 return EINVAL;
4437 } else if (wg->wg_user != NULL) {
4438 return EBUSY;
4439 }
4440
4441 /* Assume \0 included */
4442 if (ifd->ifd_len > IFNAMSIZ) {
4443 return E2BIG;
4444 } else if (ifd->ifd_len < 1) {
4445 return EINVAL;
4446 }
4447
4448 char tun_name[IFNAMSIZ];
4449 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
4450 if (error != 0)
4451 return error;
4452
4453 if (strncmp(tun_name, "tun", 3) != 0)
4454 return EINVAL;
4455
4456 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
4457
4458 return error;
4459 }
4460
4461 static int
4462 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
4463 {
4464 int error;
4465 struct psref psref;
4466 struct wg_sockaddr *wgsa;
4467 struct wg_softc *wg = wgp->wgp_sc;
4468 struct iovec iov[1];
4469
4470 wgsa = wg_get_endpoint_sa(wgp, &psref);
4471
4472 iov[0].iov_base = mtod(m, void *);
4473 iov[0].iov_len = m->m_len;
4474
4475 /* Send messages to a peer via an ordinary socket. */
4476 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
4477
4478 wg_put_sa(wgp, wgsa, &psref);
4479
4480 return error;
4481 }
4482
4483 static void
4484 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
4485 {
4486 struct wg_softc *wg = ifp->if_softc;
4487 struct iovec iov[2];
4488 struct sockaddr_storage ss;
4489
4490 KASSERT(af == AF_INET || af == AF_INET6);
4491
4492 WG_TRACE("");
4493
4494 if (af == AF_INET) {
4495 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
4496 struct ip *ip;
4497 ip = mtod(m, struct ip *);
4498 sockaddr_in_init(sin, &ip->ip_dst, 0);
4499 } else {
4500 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
4501 struct ip6_hdr *ip6;
4502 ip6 = mtod(m, struct ip6_hdr *);
4503 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
4504 }
4505
4506 iov[0].iov_base = &ss;
4507 iov[0].iov_len = ss.ss_len;
4508 iov[1].iov_base = mtod(m, void *);
4509 iov[1].iov_len = m->m_len;
4510
4511 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4512
4513 /* Send decrypted packets to users via a tun. */
4514 rumpuser_wg_send_user(wg->wg_user, iov, 2);
4515 }
4516
4517 static int
4518 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
4519 {
4520 int error;
4521 uint16_t old_port = wg->wg_listen_port;
4522
4523 if (port != 0 && old_port == port)
4524 return 0;
4525
4526 error = rumpuser_wg_sock_bind(wg->wg_user, port);
4527 if (error == 0)
4528 wg->wg_listen_port = port;
4529 return error;
4530 }
4531
4532 /*
4533 * Receive user packets.
4534 */
4535 void
4536 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4537 {
4538 struct ifnet *ifp = &wg->wg_if;
4539 struct mbuf *m;
4540 const struct sockaddr *dst;
4541
4542 WG_TRACE("");
4543
4544 dst = iov[0].iov_base;
4545
4546 m = m_gethdr(M_NOWAIT, MT_DATA);
4547 if (m == NULL)
4548 return;
4549 m->m_len = m->m_pkthdr.len = 0;
4550 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4551
4552 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4553 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4554
4555 (void)wg_output(ifp, m, dst, NULL);
4556 }
4557
4558 /*
4559 * Receive packets from a peer.
4560 */
4561 void
4562 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4563 {
4564 struct mbuf *m;
4565 const struct sockaddr *src;
4566
4567 WG_TRACE("");
4568
4569 src = iov[0].iov_base;
4570
4571 m = m_gethdr(M_NOWAIT, MT_DATA);
4572 if (m == NULL)
4573 return;
4574 m->m_len = m->m_pkthdr.len = 0;
4575 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4576
4577 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4578 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4579
4580 wg_handle_packet(wg, m, src);
4581 }
4582 #endif /* WG_RUMPKERNEL */
4583
4584 /*
4585 * Module infrastructure
4586 */
4587 #include "if_module.h"
4588
4589 IF_MODULE(MODULE_CLASS_DRIVER, wg, "")
4590