if_wg.c revision 1.104 1 /* $NetBSD: if_wg.c,v 1.104 2024/07/28 14:47:37 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.104 2024/07/28 14:47:37 riastradh Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_altq_enabled.h"
48 #include "opt_inet.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/atomic.h>
55 #include <sys/callout.h>
56 #include <sys/cprng.h>
57 #include <sys/cpu.h>
58 #include <sys/device.h>
59 #include <sys/domain.h>
60 #include <sys/errno.h>
61 #include <sys/intr.h>
62 #include <sys/ioctl.h>
63 #include <sys/kernel.h>
64 #include <sys/kmem.h>
65 #include <sys/mbuf.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/once.h>
69 #include <sys/percpu.h>
70 #include <sys/pserialize.h>
71 #include <sys/psref.h>
72 #include <sys/queue.h>
73 #include <sys/rwlock.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/systm.h>
80 #include <sys/thmap.h>
81 #include <sys/threadpool.h>
82 #include <sys/time.h>
83 #include <sys/timespec.h>
84 #include <sys/workqueue.h>
85
86 #include <lib/libkern/libkern.h>
87
88 #include <net/bpf.h>
89 #include <net/if.h>
90 #include <net/if_types.h>
91 #include <net/if_wg.h>
92 #include <net/pktqueue.h>
93 #include <net/route.h>
94
95 #include <netinet/in.h>
96 #include <netinet/in_pcb.h>
97 #include <netinet/in_var.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip_var.h>
100 #include <netinet/udp.h>
101 #include <netinet/udp_var.h>
102
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet6/in6_pcb.h>
106 #include <netinet6/in6_var.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/udp6_var.h>
109 #endif /* INET6 */
110
111 #include <prop/proplib.h>
112
113 #include <crypto/blake2/blake2s.h>
114 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
115 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
116 #include <crypto/sodium/crypto_scalarmult.h>
117
118 #include "ioconf.h"
119
120 #ifdef WG_RUMPKERNEL
121 #include "wg_user.h"
122 #endif
123
124 /*
125 * Data structures
126 * - struct wg_softc is an instance of wg interfaces
127 * - It has a list of peers (struct wg_peer)
128 * - It has a threadpool job that sends/receives handshake messages and
129 * runs event handlers
130 * - It has its own two routing tables: one is for IPv4 and the other IPv6
131 * - struct wg_peer is a representative of a peer
132 * - It has a struct work to handle handshakes and timer tasks
133 * - It has a pair of session instances (struct wg_session)
134 * - It has a pair of endpoint instances (struct wg_sockaddr)
135 * - Normally one endpoint is used and the second one is used only on
136 * a peer migration (a change of peer's IP address)
137 * - It has a list of IP addresses and sub networks called allowedips
138 * (struct wg_allowedip)
139 * - A packets sent over a session is allowed if its destination matches
140 * any IP addresses or sub networks of the list
141 * - struct wg_session represents a session of a secure tunnel with a peer
142 * - Two instances of sessions belong to a peer; a stable session and a
143 * unstable session
144 * - A handshake process of a session always starts with a unstable instance
145 * - Once a session is established, its instance becomes stable and the
146 * other becomes unstable instead
147 * - Data messages are always sent via a stable session
148 *
149 * Locking notes:
150 * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
151 * - Changes to the peer list are serialized by wg_lock
152 * - The peer list may be read with pserialize(9) and psref(9)
153 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
154 * => XXX replace by pserialize when routing table is psz-safe
155 * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
156 * only in thread context and serializes:
157 * - the stable and unstable session pointers
158 * - all unstable session state
159 * - Packet processing may be done in softint context:
160 * - The stable session can be read under pserialize(9) or psref(9)
161 * - The stable session is always ESTABLISHED
162 * - On a session swap, we must wait for all readers to release a
163 * reference to a stable session before changing wgs_state and
164 * session states
165 * - Lock order: wg_lock -> wgp_lock
166 */
167
168
169 #define WGLOG(level, fmt, args...) \
170 log(level, "%s: " fmt, __func__, ##args)
171
172 #define WG_DEBUG
173
174 /* Debug options */
175 #ifdef WG_DEBUG
176 /* Output debug logs */
177 #ifndef WG_DEBUG_LOG
178 #define WG_DEBUG_LOG
179 #endif
180 /* Output trace logs */
181 #ifndef WG_DEBUG_TRACE
182 #define WG_DEBUG_TRACE
183 #endif
184 /* Output hash values, etc. */
185 #ifndef WG_DEBUG_DUMP
186 #define WG_DEBUG_DUMP
187 #endif
188 /* debug packets */
189 #ifndef WG_DEBUG_PACKET
190 #define WG_DEBUG_PACKET
191 #endif
192 /* Make some internal parameters configurable for testing and debugging */
193 #ifndef WG_DEBUG_PARAMS
194 #define WG_DEBUG_PARAMS
195 #endif
196 #endif /* WG_DEBUG */
197
198 #ifndef WG_DEBUG
199 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) || \
200 defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS) || \
201 defined(WG_DEBUG_PACKET)
202 # define WG_DEBUG
203 # endif
204 #endif
205
206 #ifdef WG_DEBUG
207 int wg_debug;
208 #define WG_DEBUG_FLAGS_LOG 1
209 #define WG_DEBUG_FLAGS_TRACE 2
210 #define WG_DEBUG_FLAGS_DUMP 4
211 #define WG_DEBUG_FLAGS_PACKET 8
212 #endif
213
214
215 #ifdef WG_DEBUG_TRACE
216 #define WG_TRACE(msg) do { \
217 if (wg_debug & WG_DEBUG_FLAGS_TRACE) \
218 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg)); \
219 } while (0)
220 #else
221 #define WG_TRACE(msg) __nothing
222 #endif
223
224 #ifdef WG_DEBUG_LOG
225 #define WG_DLOG(fmt, args...) do { \
226 if (wg_debug & WG_DEBUG_FLAGS_LOG) \
227 log(LOG_DEBUG, "%s: " fmt, __func__, ##args); \
228 } while (0)
229 #else
230 #define WG_DLOG(fmt, args...) __nothing
231 #endif
232
233 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
234 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
235 &(wgprc)->wgprc_curpps, 1)) { \
236 log(level, fmt, ##args); \
237 } \
238 } while (0)
239
240 #ifdef WG_DEBUG_PARAMS
241 static bool wg_force_underload = false;
242 #endif
243
244 #ifdef WG_DEBUG_DUMP
245
246 static char enomem[10] = "[enomem]";
247
248 #define MAX_HDUMP_LEN 10000 /* large enough */
249
250
251 static char *
252 gethexdump(const void *vp, size_t n)
253 {
254 char *buf;
255 const uint8_t *p = vp;
256 size_t i, alloc;
257
258 alloc = n;
259 if (n > MAX_HDUMP_LEN)
260 alloc = MAX_HDUMP_LEN;
261 buf = kmem_alloc(3 * alloc + 5, KM_NOSLEEP);
262 if (buf == NULL)
263 return enomem;
264 for (i = 0; i < alloc; i++)
265 snprintf(buf + 3 * i, 3 + 1, " %02hhx", p[i]);
266 if (alloc != n)
267 snprintf(buf + 3 * i, 4 + 1, " ...");
268 return buf;
269 }
270
271 static void
272 puthexdump(char *buf, const void *p, size_t n)
273 {
274
275 if (buf == NULL || buf == enomem)
276 return;
277 if (n > MAX_HDUMP_LEN)
278 n = MAX_HDUMP_LEN;
279 kmem_free(buf, 3 * n + 5);
280 }
281
282 #ifdef WG_RUMPKERNEL
283 static void
284 wg_dump_buf(const char *func, const char *buf, const size_t size)
285 {
286 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
287 return;
288
289 char *hex = gethexdump(buf, size);
290
291 log(LOG_DEBUG, "%s: %s\n", func, hex);
292 puthexdump(hex, buf, size);
293 }
294 #endif
295
296 static void
297 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
298 const size_t size)
299 {
300 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
301 return;
302
303 char *hex = gethexdump(hash, size);
304
305 log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex);
306 puthexdump(hex, hash, size);
307 }
308
309 #define WG_DUMP_HASH(name, hash) \
310 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
311 #define WG_DUMP_HASH48(name, hash) \
312 wg_dump_hash(__func__, name, hash, 48)
313 #define WG_DUMP_BUF(buf, size) \
314 wg_dump_buf(__func__, buf, size)
315 #else
316 #define WG_DUMP_HASH(name, hash) __nothing
317 #define WG_DUMP_HASH48(name, hash) __nothing
318 #define WG_DUMP_BUF(buf, size) __nothing
319 #endif /* WG_DEBUG_DUMP */
320
321 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
322 #define WG_MAX_PROPLEN 32766
323
324 #define WG_MTU 1420
325 #define WG_ALLOWEDIPS 16
326
327 #define CURVE25519_KEY_LEN 32
328 #define TAI64N_LEN sizeof(uint32_t) * 3
329 #define POLY1305_AUTHTAG_LEN 16
330 #define HMAC_BLOCK_LEN 64
331
332 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
333 /* [N] 4.3: Hash functions */
334 #define NOISE_DHLEN 32
335 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
336 #define NOISE_HASHLEN 32
337 #define NOISE_BLOCKLEN 64
338 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
339 /* [N] 5.1: "k" */
340 #define NOISE_CIPHER_KEY_LEN 32
341 /*
342 * [N] 9.2: "psk"
343 * "... psk is a 32-byte secret value provided by the application."
344 */
345 #define NOISE_PRESHARED_KEY_LEN 32
346
347 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
348 #define WG_TIMESTAMP_LEN TAI64N_LEN
349
350 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
351
352 #define WG_COOKIE_LEN 16
353 #define WG_MAC_LEN 16
354 #define WG_COOKIESECRET_LEN 32
355
356 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
357 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
358 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
359 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
360 #define WG_HASH_LEN NOISE_HASHLEN
361 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
362 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
363 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
364 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
365 #define WG_DATA_KEY_LEN 32
366 #define WG_SALT_LEN 24
367
368 /*
369 * The protocol messages
370 */
371 struct wg_msg {
372 uint32_t wgm_type;
373 } __packed;
374
375 /* [W] 5.4.2 First Message: Initiator to Responder */
376 struct wg_msg_init {
377 uint32_t wgmi_type;
378 uint32_t wgmi_sender;
379 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
380 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
381 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
382 uint8_t wgmi_mac1[WG_MAC_LEN];
383 uint8_t wgmi_mac2[WG_MAC_LEN];
384 } __packed;
385
386 /* [W] 5.4.3 Second Message: Responder to Initiator */
387 struct wg_msg_resp {
388 uint32_t wgmr_type;
389 uint32_t wgmr_sender;
390 uint32_t wgmr_receiver;
391 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
392 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
393 uint8_t wgmr_mac1[WG_MAC_LEN];
394 uint8_t wgmr_mac2[WG_MAC_LEN];
395 } __packed;
396
397 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
398 struct wg_msg_data {
399 uint32_t wgmd_type;
400 uint32_t wgmd_receiver;
401 uint64_t wgmd_counter;
402 uint32_t wgmd_packet[0];
403 } __packed;
404
405 /* [W] 5.4.7 Under Load: Cookie Reply Message */
406 struct wg_msg_cookie {
407 uint32_t wgmc_type;
408 uint32_t wgmc_receiver;
409 uint8_t wgmc_salt[WG_SALT_LEN];
410 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
411 } __packed;
412
413 #define WG_MSG_TYPE_INIT 1
414 #define WG_MSG_TYPE_RESP 2
415 #define WG_MSG_TYPE_COOKIE 3
416 #define WG_MSG_TYPE_DATA 4
417 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
418
419 /* Sliding windows */
420
421 #define SLIWIN_BITS 2048u
422 #define SLIWIN_TYPE uint32_t
423 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
424 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
425 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
426
427 struct sliwin {
428 SLIWIN_TYPE B[SLIWIN_WORDS];
429 uint64_t T;
430 };
431
432 static void
433 sliwin_reset(struct sliwin *W)
434 {
435
436 memset(W, 0, sizeof(*W));
437 }
438
439 static int
440 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
441 {
442
443 /*
444 * If it's more than one window older than the highest sequence
445 * number we've seen, reject.
446 */
447 #ifdef __HAVE_ATOMIC64_LOADSTORE
448 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
449 return EAUTH;
450 #endif
451
452 /*
453 * Otherwise, we need to take the lock to decide, so don't
454 * reject just yet. Caller must serialize a call to
455 * sliwin_update in this case.
456 */
457 return 0;
458 }
459
460 static int
461 sliwin_update(struct sliwin *W, uint64_t S)
462 {
463 unsigned word, bit;
464
465 /*
466 * If it's more than one window older than the highest sequence
467 * number we've seen, reject.
468 */
469 if (S + SLIWIN_NPKT < W->T)
470 return EAUTH;
471
472 /*
473 * If it's higher than the highest sequence number we've seen,
474 * advance the window.
475 */
476 if (S > W->T) {
477 uint64_t i = W->T / SLIWIN_BPW;
478 uint64_t j = S / SLIWIN_BPW;
479 unsigned k;
480
481 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
482 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
483 #ifdef __HAVE_ATOMIC64_LOADSTORE
484 atomic_store_relaxed(&W->T, S);
485 #else
486 W->T = S;
487 #endif
488 }
489
490 /* Test and set the bit -- if already set, reject. */
491 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
492 bit = S % SLIWIN_BPW;
493 if (W->B[word] & (1UL << bit))
494 return EAUTH;
495 W->B[word] |= 1U << bit;
496
497 /* Accept! */
498 return 0;
499 }
500
501 struct wg_session {
502 struct wg_peer *wgs_peer;
503 struct psref_target
504 wgs_psref;
505
506 int wgs_state;
507 #define WGS_STATE_UNKNOWN 0
508 #define WGS_STATE_INIT_ACTIVE 1
509 #define WGS_STATE_INIT_PASSIVE 2
510 #define WGS_STATE_ESTABLISHED 3
511 #define WGS_STATE_DESTROYING 4
512
513 volatile uint32_t
514 wgs_time_established;
515 volatile uint32_t
516 wgs_time_last_data_sent;
517 bool wgs_is_initiator;
518
519 uint32_t wgs_local_index;
520 uint32_t wgs_remote_index;
521 #ifdef __HAVE_ATOMIC64_LOADSTORE
522 volatile uint64_t
523 wgs_send_counter;
524 #else
525 kmutex_t wgs_send_counter_lock;
526 uint64_t wgs_send_counter;
527 #endif
528
529 struct {
530 kmutex_t lock;
531 struct sliwin window;
532 } *wgs_recvwin;
533
534 uint8_t wgs_handshake_hash[WG_HASH_LEN];
535 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
536 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
537 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
538 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
539 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
540 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
541 };
542
543 struct wg_sockaddr {
544 union {
545 struct sockaddr_storage _ss;
546 struct sockaddr _sa;
547 struct sockaddr_in _sin;
548 struct sockaddr_in6 _sin6;
549 };
550 struct psref_target wgsa_psref;
551 };
552
553 #define wgsatoss(wgsa) (&(wgsa)->_ss)
554 #define wgsatosa(wgsa) (&(wgsa)->_sa)
555 #define wgsatosin(wgsa) (&(wgsa)->_sin)
556 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
557
558 #define wgsa_family(wgsa) (wgsatosa(wgsa)->sa_family)
559
560 struct wg_peer;
561 struct wg_allowedip {
562 struct radix_node wga_nodes[2];
563 struct wg_sockaddr _wga_sa_addr;
564 struct wg_sockaddr _wga_sa_mask;
565 #define wga_sa_addr _wga_sa_addr._sa
566 #define wga_sa_mask _wga_sa_mask._sa
567
568 int wga_family;
569 uint8_t wga_cidr;
570 union {
571 struct in_addr _ip4;
572 struct in6_addr _ip6;
573 } wga_addr;
574 #define wga_addr4 wga_addr._ip4
575 #define wga_addr6 wga_addr._ip6
576
577 struct wg_peer *wga_peer;
578 };
579
580 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
581
582 struct wg_ppsratecheck {
583 struct timeval wgprc_lasttime;
584 int wgprc_curpps;
585 };
586
587 struct wg_softc;
588 struct wg_peer {
589 struct wg_softc *wgp_sc;
590 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
591 struct pslist_entry wgp_peerlist_entry;
592 pserialize_t wgp_psz;
593 struct psref_target wgp_psref;
594 kmutex_t *wgp_lock;
595 kmutex_t *wgp_intr_lock;
596
597 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
598 struct wg_sockaddr *wgp_endpoint;
599 struct wg_sockaddr *wgp_endpoint0;
600 volatile unsigned wgp_endpoint_changing;
601 bool wgp_endpoint_available;
602
603 /* The preshared key (optional) */
604 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
605
606 struct wg_session *wgp_session_stable;
607 struct wg_session *wgp_session_unstable;
608
609 /* first outgoing packet awaiting session initiation */
610 struct mbuf *volatile wgp_pending;
611
612 /* timestamp in big-endian */
613 wg_timestamp_t wgp_timestamp_latest_init;
614
615 struct timespec wgp_last_handshake_time;
616
617 callout_t wgp_handshake_timeout_timer;
618 callout_t wgp_session_dtor_timer;
619
620 time_t wgp_handshake_start_time;
621
622 volatile unsigned wgp_force_rekey;
623
624 int wgp_n_allowedips;
625 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
626
627 time_t wgp_latest_cookie_time;
628 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
629 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
630 bool wgp_last_sent_mac1_valid;
631 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
632 bool wgp_last_sent_cookie_valid;
633
634 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
635
636 time_t wgp_last_cookiesecret_time;
637 uint8_t wgp_cookiesecret[WG_COOKIESECRET_LEN];
638
639 struct wg_ppsratecheck wgp_ppsratecheck;
640
641 struct work wgp_work;
642 unsigned int wgp_tasks;
643 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
644 #define WGP_TASK_RETRY_HANDSHAKE __BIT(1)
645 #define WGP_TASK_ESTABLISH_SESSION __BIT(2)
646 #define WGP_TASK_ENDPOINT_CHANGED __BIT(3)
647 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(4)
648 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(5)
649 };
650
651 struct wg_ops;
652
653 struct wg_softc {
654 struct ifnet wg_if;
655 LIST_ENTRY(wg_softc) wg_list;
656 kmutex_t *wg_lock;
657 kmutex_t *wg_intr_lock;
658 krwlock_t *wg_rwlock;
659
660 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
661 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
662
663 int wg_npeers;
664 struct pslist_head wg_peers;
665 struct thmap *wg_peers_bypubkey;
666 struct thmap *wg_peers_byname;
667 struct thmap *wg_sessions_byindex;
668 uint16_t wg_listen_port;
669
670 struct threadpool *wg_threadpool;
671
672 struct threadpool_job wg_job;
673 int wg_upcalls;
674 #define WG_UPCALL_INET __BIT(0)
675 #define WG_UPCALL_INET6 __BIT(1)
676
677 #ifdef INET
678 struct socket *wg_so4;
679 struct radix_node_head *wg_rtable_ipv4;
680 #endif
681 #ifdef INET6
682 struct socket *wg_so6;
683 struct radix_node_head *wg_rtable_ipv6;
684 #endif
685
686 struct wg_ppsratecheck wg_ppsratecheck;
687
688 struct wg_ops *wg_ops;
689
690 #ifdef WG_RUMPKERNEL
691 struct wg_user *wg_user;
692 #endif
693 };
694
695 /* [W] 6.1 Preliminaries */
696 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
697 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
698 #define WG_REKEY_AFTER_TIME 120
699 #define WG_REJECT_AFTER_TIME 180
700 #define WG_REKEY_ATTEMPT_TIME 90
701 #define WG_REKEY_TIMEOUT 5
702 #define WG_KEEPALIVE_TIMEOUT 10
703
704 #define WG_COOKIE_TIME 120
705 #define WG_COOKIESECRET_TIME (2 * 60)
706
707 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
708 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
709 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
710 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
711 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
712 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
713 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
714
715 static struct mbuf *
716 wg_get_mbuf(size_t, size_t);
717
718 static int wg_send_data_msg(struct wg_peer *, struct wg_session *,
719 struct mbuf *);
720 static int wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
721 const uint32_t, const uint8_t [WG_MAC_LEN],
722 const struct sockaddr *);
723 static int wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
724 struct wg_session *, const struct wg_msg_init *);
725 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
726
727 static struct wg_peer *
728 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
729 struct psref *);
730 static struct wg_peer *
731 wg_lookup_peer_by_pubkey(struct wg_softc *,
732 const uint8_t [WG_STATIC_KEY_LEN], struct psref *);
733
734 static struct wg_session *
735 wg_lookup_session_by_index(struct wg_softc *,
736 const uint32_t, struct psref *);
737
738 static void wg_update_endpoint_if_necessary(struct wg_peer *,
739 const struct sockaddr *);
740
741 static void wg_schedule_session_dtor_timer(struct wg_peer *);
742
743 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
744 static void wg_calculate_keys(struct wg_session *, const bool);
745
746 static void wg_clear_states(struct wg_session *);
747
748 static void wg_get_peer(struct wg_peer *, struct psref *);
749 static void wg_put_peer(struct wg_peer *, struct psref *);
750
751 static int wg_send_so(struct wg_peer *, struct mbuf *);
752 static int wg_send_udp(struct wg_peer *, struct mbuf *);
753 static int wg_output(struct ifnet *, struct mbuf *,
754 const struct sockaddr *, const struct rtentry *);
755 static void wg_input(struct ifnet *, struct mbuf *, const int);
756 static int wg_ioctl(struct ifnet *, u_long, void *);
757 static int wg_bind_port(struct wg_softc *, const uint16_t);
758 static int wg_init(struct ifnet *);
759 #ifdef ALTQ
760 static void wg_start(struct ifnet *);
761 #endif
762 static void wg_stop(struct ifnet *, int);
763
764 static void wg_peer_work(struct work *, void *);
765 static void wg_job(struct threadpool_job *);
766 static void wgintr(void *);
767 static void wg_purge_pending_packets(struct wg_peer *);
768
769 static int wg_clone_create(struct if_clone *, int);
770 static int wg_clone_destroy(struct ifnet *);
771
772 struct wg_ops {
773 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
774 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
775 void (*input)(struct ifnet *, struct mbuf *, const int);
776 int (*bind_port)(struct wg_softc *, const uint16_t);
777 };
778
779 struct wg_ops wg_ops_rumpkernel = {
780 .send_hs_msg = wg_send_so,
781 .send_data_msg = wg_send_udp,
782 .input = wg_input,
783 .bind_port = wg_bind_port,
784 };
785
786 #ifdef WG_RUMPKERNEL
787 static bool wg_user_mode(struct wg_softc *);
788 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
789
790 static int wg_send_user(struct wg_peer *, struct mbuf *);
791 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
792 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
793
794 struct wg_ops wg_ops_rumpuser = {
795 .send_hs_msg = wg_send_user,
796 .send_data_msg = wg_send_user,
797 .input = wg_input_user,
798 .bind_port = wg_bind_port_user,
799 };
800 #endif
801
802 #define WG_PEER_READER_FOREACH(wgp, wg) \
803 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
804 wgp_peerlist_entry)
805 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
806 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
807 wgp_peerlist_entry)
808 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
809 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
810 #define WG_PEER_WRITER_REMOVE(wgp) \
811 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
812
813 struct wg_route {
814 struct radix_node wgr_nodes[2];
815 struct wg_peer *wgr_peer;
816 };
817
818 static struct radix_node_head *
819 wg_rnh(struct wg_softc *wg, const int family)
820 {
821
822 switch (family) {
823 case AF_INET:
824 return wg->wg_rtable_ipv4;
825 #ifdef INET6
826 case AF_INET6:
827 return wg->wg_rtable_ipv6;
828 #endif
829 default:
830 return NULL;
831 }
832 }
833
834
835 /*
836 * Global variables
837 */
838 static volatile unsigned wg_count __cacheline_aligned;
839
840 struct psref_class *wg_psref_class __read_mostly;
841
842 static struct if_clone wg_cloner =
843 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
844
845 static struct pktqueue *wg_pktq __read_mostly;
846 static struct workqueue *wg_wq __read_mostly;
847
848 void wgattach(int);
849 /* ARGSUSED */
850 void
851 wgattach(int count)
852 {
853 /*
854 * Nothing to do here, initialization is handled by the
855 * module initialization code in wginit() below).
856 */
857 }
858
859 static void
860 wginit(void)
861 {
862
863 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
864
865 if_clone_attach(&wg_cloner);
866 }
867
868 /*
869 * XXX Kludge: This should just happen in wginit, but workqueue_create
870 * cannot be run until after CPUs have been detected, and wginit runs
871 * before configure.
872 */
873 static int
874 wginitqueues(void)
875 {
876 int error __diagused;
877
878 wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
879 KASSERT(wg_pktq != NULL);
880
881 error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
882 PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
883 KASSERT(error == 0);
884
885 return 0;
886 }
887
888 static void
889 wg_guarantee_initialized(void)
890 {
891 static ONCE_DECL(init);
892 int error __diagused;
893
894 error = RUN_ONCE(&init, wginitqueues);
895 KASSERT(error == 0);
896 }
897
898 static int
899 wg_count_inc(void)
900 {
901 unsigned o, n;
902
903 do {
904 o = atomic_load_relaxed(&wg_count);
905 if (o == UINT_MAX)
906 return ENFILE;
907 n = o + 1;
908 } while (atomic_cas_uint(&wg_count, o, n) != o);
909
910 return 0;
911 }
912
913 static void
914 wg_count_dec(void)
915 {
916 unsigned c __diagused;
917
918 c = atomic_dec_uint_nv(&wg_count);
919 KASSERT(c != UINT_MAX);
920 }
921
922 static int
923 wgdetach(void)
924 {
925
926 /* Prevent new interface creation. */
927 if_clone_detach(&wg_cloner);
928
929 /* Check whether there are any existing interfaces. */
930 if (atomic_load_relaxed(&wg_count)) {
931 /* Back out -- reattach the cloner. */
932 if_clone_attach(&wg_cloner);
933 return EBUSY;
934 }
935
936 /* No interfaces left. Nuke it. */
937 if (wg_wq)
938 workqueue_destroy(wg_wq);
939 if (wg_pktq)
940 pktq_destroy(wg_pktq);
941 psref_class_destroy(wg_psref_class);
942
943 return 0;
944 }
945
946 static void
947 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
948 uint8_t hash[WG_HASH_LEN])
949 {
950 /* [W] 5.4: CONSTRUCTION */
951 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
952 /* [W] 5.4: IDENTIFIER */
953 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
954 struct blake2s state;
955
956 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
957 signature, strlen(signature));
958
959 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
960 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
961
962 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
963 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
964 blake2s_update(&state, id, strlen(id));
965 blake2s_final(&state, hash);
966
967 WG_DUMP_HASH("ckey", ckey);
968 WG_DUMP_HASH("hash", hash);
969 }
970
971 static void
972 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
973 const size_t inputsize)
974 {
975 struct blake2s state;
976
977 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
978 blake2s_update(&state, hash, WG_HASH_LEN);
979 blake2s_update(&state, input, inputsize);
980 blake2s_final(&state, hash);
981 }
982
983 static void
984 wg_algo_mac(uint8_t out[], const size_t outsize,
985 const uint8_t key[], const size_t keylen,
986 const uint8_t input1[], const size_t input1len,
987 const uint8_t input2[], const size_t input2len)
988 {
989 struct blake2s state;
990
991 blake2s_init(&state, outsize, key, keylen);
992
993 blake2s_update(&state, input1, input1len);
994 if (input2 != NULL)
995 blake2s_update(&state, input2, input2len);
996 blake2s_final(&state, out);
997 }
998
999 static void
1000 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
1001 const uint8_t input1[], const size_t input1len,
1002 const uint8_t input2[], const size_t input2len)
1003 {
1004 struct blake2s state;
1005 /* [W] 5.4: LABEL-MAC1 */
1006 const char *label = "mac1----";
1007 uint8_t key[WG_HASH_LEN];
1008
1009 blake2s_init(&state, sizeof(key), NULL, 0);
1010 blake2s_update(&state, label, strlen(label));
1011 blake2s_update(&state, input1, input1len);
1012 blake2s_final(&state, key);
1013
1014 blake2s_init(&state, outsize, key, sizeof(key));
1015 if (input2 != NULL)
1016 blake2s_update(&state, input2, input2len);
1017 blake2s_final(&state, out);
1018 }
1019
1020 static void
1021 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
1022 const uint8_t input1[], const size_t input1len)
1023 {
1024 struct blake2s state;
1025 /* [W] 5.4: LABEL-COOKIE */
1026 const char *label = "cookie--";
1027
1028 blake2s_init(&state, outsize, NULL, 0);
1029 blake2s_update(&state, label, strlen(label));
1030 blake2s_update(&state, input1, input1len);
1031 blake2s_final(&state, out);
1032 }
1033
1034 static void
1035 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
1036 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
1037 {
1038
1039 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1040
1041 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
1042 crypto_scalarmult_base(pubkey, privkey);
1043 }
1044
1045 static void
1046 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
1047 const uint8_t privkey[WG_STATIC_KEY_LEN],
1048 const uint8_t pubkey[WG_STATIC_KEY_LEN])
1049 {
1050
1051 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1052
1053 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
1054 KASSERT(ret == 0);
1055 }
1056
1057 static void
1058 wg_algo_hmac(uint8_t out[], const size_t outlen,
1059 const uint8_t key[], const size_t keylen,
1060 const uint8_t in[], const size_t inlen)
1061 {
1062 #define IPAD 0x36
1063 #define OPAD 0x5c
1064 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
1065 uint8_t ipad[HMAC_BLOCK_LEN];
1066 uint8_t opad[HMAC_BLOCK_LEN];
1067 size_t i;
1068 struct blake2s state;
1069
1070 KASSERT(outlen == WG_HASH_LEN);
1071 KASSERT(keylen <= HMAC_BLOCK_LEN);
1072
1073 memcpy(hmackey, key, keylen);
1074
1075 for (i = 0; i < sizeof(hmackey); i++) {
1076 ipad[i] = hmackey[i] ^ IPAD;
1077 opad[i] = hmackey[i] ^ OPAD;
1078 }
1079
1080 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1081 blake2s_update(&state, ipad, sizeof(ipad));
1082 blake2s_update(&state, in, inlen);
1083 blake2s_final(&state, out);
1084
1085 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1086 blake2s_update(&state, opad, sizeof(opad));
1087 blake2s_update(&state, out, WG_HASH_LEN);
1088 blake2s_final(&state, out);
1089 #undef IPAD
1090 #undef OPAD
1091 }
1092
1093 static void
1094 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
1095 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
1096 const uint8_t input[], const size_t inputlen)
1097 {
1098 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
1099 uint8_t one[1];
1100
1101 /*
1102 * [N] 4.3: "an input_key_material byte sequence with length
1103 * either zero bytes, 32 bytes, or DHLEN bytes."
1104 */
1105 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
1106
1107 WG_DUMP_HASH("ckey", ckey);
1108 if (input != NULL)
1109 WG_DUMP_HASH("input", input);
1110 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
1111 input, inputlen);
1112 WG_DUMP_HASH("tmp1", tmp1);
1113 one[0] = 1;
1114 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1115 one, sizeof(one));
1116 WG_DUMP_HASH("out1", out1);
1117 if (out2 == NULL)
1118 return;
1119 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
1120 tmp2[WG_KDF_OUTPUT_LEN] = 2;
1121 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1122 tmp2, sizeof(tmp2));
1123 WG_DUMP_HASH("out2", out2);
1124 if (out3 == NULL)
1125 return;
1126 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
1127 tmp2[WG_KDF_OUTPUT_LEN] = 3;
1128 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1129 tmp2, sizeof(tmp2));
1130 WG_DUMP_HASH("out3", out3);
1131 }
1132
1133 static void __noinline
1134 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
1135 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1136 const uint8_t local_key[WG_STATIC_KEY_LEN],
1137 const uint8_t remote_key[WG_STATIC_KEY_LEN])
1138 {
1139 uint8_t dhout[WG_DH_OUTPUT_LEN];
1140
1141 wg_algo_dh(dhout, local_key, remote_key);
1142 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1143
1144 WG_DUMP_HASH("dhout", dhout);
1145 WG_DUMP_HASH("ckey", ckey);
1146 if (cipher_key != NULL)
1147 WG_DUMP_HASH("cipher_key", cipher_key);
1148 }
1149
1150 static void
1151 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1152 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1153 const uint8_t auth[], size_t authlen)
1154 {
1155 uint8_t nonce[(32 + 64) / 8] = {0};
1156 long long unsigned int outsize;
1157 int error __diagused;
1158
1159 le64enc(&nonce[4], counter);
1160
1161 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1162 plainsize, auth, authlen, NULL, nonce, key);
1163 KASSERT(error == 0);
1164 KASSERT(outsize == expected_outsize);
1165 }
1166
1167 static int
1168 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1169 const uint64_t counter, const uint8_t encrypted[],
1170 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1171 {
1172 uint8_t nonce[(32 + 64) / 8] = {0};
1173 long long unsigned int outsize;
1174 int error;
1175
1176 le64enc(&nonce[4], counter);
1177
1178 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1179 encrypted, encryptedsize, auth, authlen, nonce, key);
1180 if (error == 0)
1181 KASSERT(outsize == expected_outsize);
1182 return error;
1183 }
1184
1185 static void
1186 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1187 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1188 const uint8_t auth[], size_t authlen,
1189 const uint8_t nonce[WG_SALT_LEN])
1190 {
1191 long long unsigned int outsize;
1192 int error __diagused;
1193
1194 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1195 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1196 plain, plainsize, auth, authlen, NULL, nonce, key);
1197 KASSERT(error == 0);
1198 KASSERT(outsize == expected_outsize);
1199 }
1200
1201 static int
1202 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1203 const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
1204 const uint8_t auth[], size_t authlen,
1205 const uint8_t nonce[WG_SALT_LEN])
1206 {
1207 long long unsigned int outsize;
1208 int error;
1209
1210 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1211 encrypted, encryptedsize, auth, authlen, nonce, key);
1212 if (error == 0)
1213 KASSERT(outsize == expected_outsize);
1214 return error;
1215 }
1216
1217 static void
1218 wg_algo_tai64n(wg_timestamp_t timestamp)
1219 {
1220 struct timespec ts;
1221
1222 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1223 getnanotime(&ts);
1224 /* TAI64 label in external TAI64 format */
1225 be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
1226 /* second beginning from 1970 TAI */
1227 be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
1228 /* nanosecond in big-endian format */
1229 be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
1230 }
1231
1232 /*
1233 * wg_get_stable_session(wgp, psref)
1234 *
1235 * Get a passive reference to the current stable session, or
1236 * return NULL if there is no current stable session.
1237 *
1238 * The pointer is always there but the session is not necessarily
1239 * ESTABLISHED; if it is not ESTABLISHED, return NULL. However,
1240 * the session may transition from ESTABLISHED to DESTROYING while
1241 * holding the passive reference.
1242 */
1243 static struct wg_session *
1244 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1245 {
1246 int s;
1247 struct wg_session *wgs;
1248
1249 s = pserialize_read_enter();
1250 wgs = atomic_load_consume(&wgp->wgp_session_stable);
1251 if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
1252 wgs = NULL;
1253 else
1254 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1255 pserialize_read_exit(s);
1256
1257 return wgs;
1258 }
1259
1260 static void
1261 wg_put_session(struct wg_session *wgs, struct psref *psref)
1262 {
1263
1264 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1265 }
1266
1267 static void
1268 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1269 {
1270 struct wg_peer *wgp = wgs->wgs_peer;
1271 struct wg_session *wgs0 __diagused;
1272 void *garbage;
1273
1274 KASSERT(mutex_owned(wgp->wgp_lock));
1275 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1276
1277 /* Remove the session from the table. */
1278 wgs0 = thmap_del(wg->wg_sessions_byindex,
1279 &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1280 KASSERT(wgs0 == wgs);
1281 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1282
1283 /* Wait for passive references to drain. */
1284 pserialize_perform(wgp->wgp_psz);
1285 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1286
1287 /*
1288 * Free memory, zero state, and transition to UNKNOWN. We have
1289 * exclusive access to the session now, so there is no need for
1290 * an atomic store.
1291 */
1292 thmap_gc(wg->wg_sessions_byindex, garbage);
1293 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_UNKNOWN\n",
1294 wgs->wgs_local_index, wgs->wgs_remote_index);
1295 wgs->wgs_local_index = 0;
1296 wgs->wgs_remote_index = 0;
1297 wg_clear_states(wgs);
1298 wgs->wgs_state = WGS_STATE_UNKNOWN;
1299 }
1300
1301 /*
1302 * wg_get_session_index(wg, wgs)
1303 *
1304 * Choose a session index for wgs->wgs_local_index, and store it
1305 * in wg's table of sessions by index.
1306 *
1307 * wgs must be the unstable session of its peer, and must be
1308 * transitioning out of the UNKNOWN state.
1309 */
1310 static void
1311 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1312 {
1313 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1314 struct wg_session *wgs0;
1315 uint32_t index;
1316
1317 KASSERT(mutex_owned(wgp->wgp_lock));
1318 KASSERT(wgs == wgp->wgp_session_unstable);
1319 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1320 wgs->wgs_state);
1321
1322 do {
1323 /* Pick a uniform random index. */
1324 index = cprng_strong32();
1325
1326 /* Try to take it. */
1327 wgs->wgs_local_index = index;
1328 wgs0 = thmap_put(wg->wg_sessions_byindex,
1329 &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1330
1331 /* If someone else beat us, start over. */
1332 } while (__predict_false(wgs0 != wgs));
1333 }
1334
1335 /*
1336 * wg_put_session_index(wg, wgs)
1337 *
1338 * Remove wgs from the table of sessions by index, wait for any
1339 * passive references to drain, and transition the session to the
1340 * UNKNOWN state.
1341 *
1342 * wgs must be the unstable session of its peer, and must not be
1343 * UNKNOWN or ESTABLISHED.
1344 */
1345 static void
1346 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1347 {
1348 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1349
1350 KASSERT(mutex_owned(wgp->wgp_lock));
1351 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1352 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1353
1354 wg_destroy_session(wg, wgs);
1355 psref_target_init(&wgs->wgs_psref, wg_psref_class);
1356 }
1357
1358 /*
1359 * Handshake patterns
1360 *
1361 * [W] 5: "These messages use the "IK" pattern from Noise"
1362 * [N] 7.5. Interactive handshake patterns (fundamental)
1363 * "The first character refers to the initiators static key:"
1364 * "I = Static key for initiator Immediately transmitted to responder,
1365 * despite reduced or absent identity hiding"
1366 * "The second character refers to the responders static key:"
1367 * "K = Static key for responder Known to initiator"
1368 * "IK:
1369 * <- s
1370 * ...
1371 * -> e, es, s, ss
1372 * <- e, ee, se"
1373 * [N] 9.4. Pattern modifiers
1374 * "IKpsk2:
1375 * <- s
1376 * ...
1377 * -> e, es, s, ss
1378 * <- e, ee, se, psk"
1379 */
1380 static void
1381 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1382 struct wg_session *wgs, struct wg_msg_init *wgmi)
1383 {
1384 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1385 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1386 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1387 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1388 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1389
1390 KASSERT(mutex_owned(wgp->wgp_lock));
1391 KASSERT(wgs == wgp->wgp_session_unstable);
1392 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
1393 wgs->wgs_state);
1394
1395 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1396 wgmi->wgmi_sender = wgs->wgs_local_index;
1397
1398 /* [W] 5.4.2: First Message: Initiator to Responder */
1399
1400 /* Ci := HASH(CONSTRUCTION) */
1401 /* Hi := HASH(Ci || IDENTIFIER) */
1402 wg_init_key_and_hash(ckey, hash);
1403 /* Hi := HASH(Hi || Sr^pub) */
1404 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1405
1406 WG_DUMP_HASH("hash", hash);
1407
1408 /* [N] 2.2: "e" */
1409 /* Ei^priv, Ei^pub := DH-GENERATE() */
1410 wg_algo_generate_keypair(pubkey, privkey);
1411 /* Ci := KDF1(Ci, Ei^pub) */
1412 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1413 /* msg.ephemeral := Ei^pub */
1414 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1415 /* Hi := HASH(Hi || msg.ephemeral) */
1416 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1417
1418 WG_DUMP_HASH("ckey", ckey);
1419 WG_DUMP_HASH("hash", hash);
1420
1421 /* [N] 2.2: "es" */
1422 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1423 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1424
1425 /* [N] 2.2: "s" */
1426 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1427 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1428 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1429 hash, sizeof(hash));
1430 /* Hi := HASH(Hi || msg.static) */
1431 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1432
1433 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1434
1435 /* [N] 2.2: "ss" */
1436 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1437 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1438
1439 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1440 wg_timestamp_t timestamp;
1441 wg_algo_tai64n(timestamp);
1442 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1443 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1444 /* Hi := HASH(Hi || msg.timestamp) */
1445 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1446
1447 /* [W] 5.4.4 Cookie MACs */
1448 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1449 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1450 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1451 /* Need mac1 to decrypt a cookie from a cookie message */
1452 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1453 sizeof(wgp->wgp_last_sent_mac1));
1454 wgp->wgp_last_sent_mac1_valid = true;
1455
1456 if (wgp->wgp_latest_cookie_time == 0 ||
1457 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1458 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1459 else {
1460 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1461 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1462 (const uint8_t *)wgmi,
1463 offsetof(struct wg_msg_init, wgmi_mac2),
1464 NULL, 0);
1465 }
1466
1467 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1468 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1469 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1470 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1471 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1472 }
1473
1474 static void __noinline
1475 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1476 const struct sockaddr *src)
1477 {
1478 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1479 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1480 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1481 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1482 struct wg_peer *wgp;
1483 struct wg_session *wgs;
1484 int error, ret;
1485 struct psref psref_peer;
1486 uint8_t mac1[WG_MAC_LEN];
1487
1488 WG_TRACE("init msg received");
1489
1490 wg_algo_mac_mac1(mac1, sizeof(mac1),
1491 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1492 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1493
1494 /*
1495 * [W] 5.3: Denial of Service Mitigation & Cookies
1496 * "the responder, ..., must always reject messages with an invalid
1497 * msg.mac1"
1498 */
1499 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1500 WG_DLOG("mac1 is invalid\n");
1501 return;
1502 }
1503
1504 /*
1505 * [W] 5.4.2: First Message: Initiator to Responder
1506 * "When the responder receives this message, it does the same
1507 * operations so that its final state variables are identical,
1508 * replacing the operands of the DH function to produce equivalent
1509 * values."
1510 * Note that the following comments of operations are just copies of
1511 * the initiator's ones.
1512 */
1513
1514 /* Ci := HASH(CONSTRUCTION) */
1515 /* Hi := HASH(Ci || IDENTIFIER) */
1516 wg_init_key_and_hash(ckey, hash);
1517 /* Hi := HASH(Hi || Sr^pub) */
1518 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1519
1520 /* [N] 2.2: "e" */
1521 /* Ci := KDF1(Ci, Ei^pub) */
1522 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1523 sizeof(wgmi->wgmi_ephemeral));
1524 /* Hi := HASH(Hi || msg.ephemeral) */
1525 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1526
1527 WG_DUMP_HASH("ckey", ckey);
1528
1529 /* [N] 2.2: "es" */
1530 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1531 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1532
1533 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1534
1535 /* [N] 2.2: "s" */
1536 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1537 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1538 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1539 if (error != 0) {
1540 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1541 "%s: wg_algo_aead_dec for secret key failed\n",
1542 if_name(&wg->wg_if));
1543 return;
1544 }
1545 /* Hi := HASH(Hi || msg.static) */
1546 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1547
1548 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1549 if (wgp == NULL) {
1550 WG_DLOG("peer not found\n");
1551 return;
1552 }
1553
1554 /*
1555 * Lock the peer to serialize access to cookie state.
1556 *
1557 * XXX Can we safely avoid holding the lock across DH? Take it
1558 * just to verify mac2 and then unlock/DH/lock?
1559 */
1560 mutex_enter(wgp->wgp_lock);
1561
1562 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1563 WG_TRACE("under load");
1564 /*
1565 * [W] 5.3: Denial of Service Mitigation & Cookies
1566 * "the responder, ..., and when under load may reject messages
1567 * with an invalid msg.mac2. If the responder receives a
1568 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1569 * and is under load, it may respond with a cookie reply
1570 * message"
1571 */
1572 uint8_t zero[WG_MAC_LEN] = {0};
1573 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1574 WG_TRACE("sending a cookie message: no cookie included");
1575 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1576 wgmi->wgmi_mac1, src);
1577 goto out;
1578 }
1579 if (!wgp->wgp_last_sent_cookie_valid) {
1580 WG_TRACE("sending a cookie message: no cookie sent ever");
1581 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1582 wgmi->wgmi_mac1, src);
1583 goto out;
1584 }
1585 uint8_t mac2[WG_MAC_LEN];
1586 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1587 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1588 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1589 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1590 WG_DLOG("mac2 is invalid\n");
1591 goto out;
1592 }
1593 WG_TRACE("under load, but continue to sending");
1594 }
1595
1596 /* [N] 2.2: "ss" */
1597 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1598 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1599
1600 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1601 wg_timestamp_t timestamp;
1602 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1603 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1604 hash, sizeof(hash));
1605 if (error != 0) {
1606 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1607 "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
1608 if_name(&wg->wg_if), wgp->wgp_name);
1609 goto out;
1610 }
1611 /* Hi := HASH(Hi || msg.timestamp) */
1612 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1613
1614 /*
1615 * [W] 5.1 "The responder keeps track of the greatest timestamp
1616 * received per peer and discards packets containing
1617 * timestamps less than or equal to it."
1618 */
1619 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1620 sizeof(timestamp));
1621 if (ret <= 0) {
1622 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1623 "%s: peer %s: invalid init msg: timestamp is old\n",
1624 if_name(&wg->wg_if), wgp->wgp_name);
1625 goto out;
1626 }
1627 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1628
1629 /*
1630 * Message is good -- we're committing to handle it now, unless
1631 * we were already initiating a session.
1632 */
1633 wgs = wgp->wgp_session_unstable;
1634 switch (wgs->wgs_state) {
1635 case WGS_STATE_UNKNOWN: /* new session initiated by peer */
1636 break;
1637 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, drop */
1638 /* XXX Who wins if both sides send INIT? */
1639 WG_TRACE("Session already initializing, ignoring the message");
1640 goto out;
1641 case WGS_STATE_INIT_PASSIVE: /* peer is retrying, start over */
1642 WG_TRACE("Session already initializing, destroying old states");
1643 /*
1644 * XXX Avoid this -- just resend our response -- if the
1645 * INIT message is identical to the previous one.
1646 */
1647 wg_put_session_index(wg, wgs);
1648 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1649 wgs->wgs_state);
1650 break;
1651 case WGS_STATE_ESTABLISHED: /* can't happen */
1652 panic("unstable session can't be established");
1653 case WGS_STATE_DESTROYING: /* rekey initiated by peer */
1654 WG_TRACE("Session destroying, but force to clear");
1655 wg_put_session_index(wg, wgs);
1656 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1657 wgs->wgs_state);
1658 break;
1659 default:
1660 panic("invalid session state: %d", wgs->wgs_state);
1661 }
1662
1663 /*
1664 * Assign a fresh session index.
1665 */
1666 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1667 wgs->wgs_state);
1668 wg_get_session_index(wg, wgs);
1669
1670 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1671 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1672 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1673 sizeof(wgmi->wgmi_ephemeral));
1674
1675 wg_update_endpoint_if_necessary(wgp, src);
1676
1677 /*
1678 * Count the time of the INIT message as the time of
1679 * establishment -- this is used to decide when to erase keys,
1680 * and we want to start counting as soon as we have generated
1681 * keys.
1682 *
1683 * No need for atomic store because the session can't be used
1684 * in the rx or tx paths yet -- not until we transition to
1685 * INTI_PASSIVE.
1686 */
1687 wgs->wgs_time_established = time_uptime32;
1688 wg_schedule_session_dtor_timer(wgp);
1689
1690 /*
1691 * Respond to the initiator with our ephemeral public key.
1692 */
1693 (void)wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1694
1695 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
1696 " calculate keys as responder\n",
1697 wgs->wgs_local_index, wgs->wgs_remote_index);
1698 wg_calculate_keys(wgs, false);
1699 wg_clear_states(wgs);
1700
1701 /*
1702 * Session is ready to receive data now that we have received
1703 * the peer initiator's ephemeral key pair, generated our
1704 * responder's ephemeral key pair, and derived a session key.
1705 *
1706 * Transition from UNKNOWN to INIT_PASSIVE to publish it to the
1707 * data rx path, wg_handle_msg_data, where the
1708 * atomic_load_acquire matching this atomic_store_release
1709 * happens.
1710 *
1711 * (Session is not, however, ready to send data until the peer
1712 * has acknowledged our response by sending its first data
1713 * packet. So don't swap the sessions yet.)
1714 */
1715 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_INIT_PASSIVE\n",
1716 wgs->wgs_local_index, wgs->wgs_remote_index);
1717 atomic_store_release(&wgs->wgs_state, WGS_STATE_INIT_PASSIVE);
1718 WG_TRACE("WGS_STATE_INIT_PASSIVE");
1719
1720 out:
1721 mutex_exit(wgp->wgp_lock);
1722 wg_put_peer(wgp, &psref_peer);
1723 }
1724
1725 static struct socket *
1726 wg_get_so_by_af(struct wg_softc *wg, const int af)
1727 {
1728
1729 switch (af) {
1730 #ifdef INET
1731 case AF_INET:
1732 return wg->wg_so4;
1733 #endif
1734 #ifdef INET6
1735 case AF_INET6:
1736 return wg->wg_so6;
1737 #endif
1738 default:
1739 panic("wg: no such af: %d", af);
1740 }
1741 }
1742
1743 static struct socket *
1744 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1745 {
1746
1747 return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
1748 }
1749
1750 static struct wg_sockaddr *
1751 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1752 {
1753 struct wg_sockaddr *wgsa;
1754 int s;
1755
1756 s = pserialize_read_enter();
1757 wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1758 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1759 pserialize_read_exit(s);
1760
1761 return wgsa;
1762 }
1763
1764 static void
1765 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1766 {
1767
1768 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1769 }
1770
1771 static int
1772 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1773 {
1774 int error;
1775 struct socket *so;
1776 struct psref psref;
1777 struct wg_sockaddr *wgsa;
1778
1779 wgsa = wg_get_endpoint_sa(wgp, &psref);
1780 so = wg_get_so_by_peer(wgp, wgsa);
1781 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1782 wg_put_sa(wgp, wgsa, &psref);
1783
1784 return error;
1785 }
1786
1787 static int
1788 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1789 {
1790 int error;
1791 struct mbuf *m;
1792 struct wg_msg_init *wgmi;
1793 struct wg_session *wgs;
1794
1795 KASSERT(mutex_owned(wgp->wgp_lock));
1796
1797 wgs = wgp->wgp_session_unstable;
1798 /* XXX pull dispatch out into wg_task_send_init_message */
1799 switch (wgs->wgs_state) {
1800 case WGS_STATE_UNKNOWN: /* new session initiated by us */
1801 break;
1802 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, stop */
1803 WG_TRACE("Session already initializing, skip starting new one");
1804 return EBUSY;
1805 case WGS_STATE_INIT_PASSIVE: /* peer was trying -- XXX what now? */
1806 WG_TRACE("Session already initializing, waiting for peer");
1807 return EBUSY;
1808 case WGS_STATE_ESTABLISHED: /* can't happen */
1809 panic("unstable session can't be established");
1810 case WGS_STATE_DESTROYING: /* rekey initiated by us too early */
1811 WG_TRACE("Session destroying");
1812 wg_put_session_index(wg, wgs);
1813 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1814 wgs->wgs_state);
1815 break;
1816 }
1817
1818 /*
1819 * Assign a fresh session index.
1820 */
1821 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1822 wgs->wgs_state);
1823 wg_get_session_index(wg, wgs);
1824
1825 /*
1826 * We have initiated a session. Transition to INIT_ACTIVE.
1827 * This doesn't publish it for use in the data rx path,
1828 * wg_handle_msg_data, or in the data tx path, wg_output -- we
1829 * have to wait for the peer to respond with their ephemeral
1830 * public key before we can derive a session key for tx/rx.
1831 * Hence only atomic_store_relaxed.
1832 */
1833 WG_DLOG("session[L=%"PRIx32" R=(unknown)] -> WGS_STATE_INIT_ACTIVE\n",
1834 wgs->wgs_local_index);
1835 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_INIT_ACTIVE);
1836
1837 m = m_gethdr(M_WAIT, MT_DATA);
1838 if (sizeof(*wgmi) > MHLEN) {
1839 m_clget(m, M_WAIT);
1840 CTASSERT(sizeof(*wgmi) <= MCLBYTES);
1841 }
1842 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1843 wgmi = mtod(m, struct wg_msg_init *);
1844 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1845
1846 error = wg->wg_ops->send_hs_msg(wgp, m);
1847 if (error == 0) {
1848 WG_TRACE("init msg sent");
1849
1850 if (wgp->wgp_handshake_start_time == 0)
1851 wgp->wgp_handshake_start_time = time_uptime;
1852 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1853 MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
1854 } else {
1855 wg_put_session_index(wg, wgs);
1856 /* Initiation failed; toss packet waiting for it if any. */
1857 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
1858 m_freem(m);
1859 }
1860
1861 return error;
1862 }
1863
1864 static void
1865 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1866 struct wg_session *wgs, struct wg_msg_resp *wgmr,
1867 const struct wg_msg_init *wgmi)
1868 {
1869 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1870 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1871 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1872 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1873 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1874
1875 KASSERT(mutex_owned(wgp->wgp_lock));
1876 KASSERT(wgs == wgp->wgp_session_unstable);
1877 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1878 wgs->wgs_state);
1879
1880 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1881 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1882
1883 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
1884 wgmr->wgmr_sender = wgs->wgs_local_index;
1885 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1886
1887 /* [W] 5.4.3 Second Message: Responder to Initiator */
1888
1889 /* [N] 2.2: "e" */
1890 /* Er^priv, Er^pub := DH-GENERATE() */
1891 wg_algo_generate_keypair(pubkey, privkey);
1892 /* Cr := KDF1(Cr, Er^pub) */
1893 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1894 /* msg.ephemeral := Er^pub */
1895 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1896 /* Hr := HASH(Hr || msg.ephemeral) */
1897 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1898
1899 WG_DUMP_HASH("ckey", ckey);
1900 WG_DUMP_HASH("hash", hash);
1901
1902 /* [N] 2.2: "ee" */
1903 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1904 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1905
1906 /* [N] 2.2: "se" */
1907 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1908 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1909
1910 /* [N] 9.2: "psk" */
1911 {
1912 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1913 /* Cr, r, k := KDF3(Cr, Q) */
1914 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1915 sizeof(wgp->wgp_psk));
1916 /* Hr := HASH(Hr || r) */
1917 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1918 }
1919
1920 /* msg.empty := AEAD(k, 0, e, Hr) */
1921 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1922 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1923 /* Hr := HASH(Hr || msg.empty) */
1924 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1925
1926 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1927
1928 /* [W] 5.4.4: Cookie MACs */
1929 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1930 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1931 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1932 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1933 /* Need mac1 to decrypt a cookie from a cookie message */
1934 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1935 sizeof(wgp->wgp_last_sent_mac1));
1936 wgp->wgp_last_sent_mac1_valid = true;
1937
1938 if (wgp->wgp_latest_cookie_time == 0 ||
1939 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1940 /* msg.mac2 := 0^16 */
1941 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1942 else {
1943 /* msg.mac2 := MAC(Lm, msg_b) */
1944 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1945 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1946 (const uint8_t *)wgmr,
1947 offsetof(struct wg_msg_resp, wgmr_mac2),
1948 NULL, 0);
1949 }
1950
1951 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1952 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1953 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1954 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1955 wgs->wgs_remote_index = wgmi->wgmi_sender;
1956 WG_DLOG("sender=%x\n", wgs->wgs_local_index);
1957 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1958 }
1959
1960 static void
1961 wg_swap_sessions(struct wg_peer *wgp)
1962 {
1963 struct wg_session *wgs, *wgs_prev;
1964
1965 KASSERT(mutex_owned(wgp->wgp_lock));
1966
1967 wgs = wgp->wgp_session_unstable;
1968 KASSERTMSG(wgs->wgs_state == WGS_STATE_ESTABLISHED, "state=%d",
1969 wgs->wgs_state);
1970
1971 wgs_prev = wgp->wgp_session_stable;
1972 KASSERTMSG((wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
1973 wgs_prev->wgs_state == WGS_STATE_UNKNOWN),
1974 "state=%d", wgs_prev->wgs_state);
1975 atomic_store_release(&wgp->wgp_session_stable, wgs);
1976 wgp->wgp_session_unstable = wgs_prev;
1977 }
1978
1979 static void __noinline
1980 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1981 const struct sockaddr *src)
1982 {
1983 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1984 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1985 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1986 struct wg_peer *wgp;
1987 struct wg_session *wgs;
1988 struct psref psref;
1989 int error;
1990 uint8_t mac1[WG_MAC_LEN];
1991 struct wg_session *wgs_prev;
1992 struct mbuf *m;
1993
1994 wg_algo_mac_mac1(mac1, sizeof(mac1),
1995 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1996 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1997
1998 /*
1999 * [W] 5.3: Denial of Service Mitigation & Cookies
2000 * "the responder, ..., must always reject messages with an invalid
2001 * msg.mac1"
2002 */
2003 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
2004 WG_DLOG("mac1 is invalid\n");
2005 return;
2006 }
2007
2008 WG_TRACE("resp msg received");
2009 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
2010 if (wgs == NULL) {
2011 WG_TRACE("No session found");
2012 return;
2013 }
2014
2015 wgp = wgs->wgs_peer;
2016
2017 mutex_enter(wgp->wgp_lock);
2018
2019 /* If we weren't waiting for a handshake response, drop it. */
2020 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
2021 WG_TRACE("peer sent spurious handshake response, ignoring");
2022 goto out;
2023 }
2024
2025 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
2026 WG_TRACE("under load");
2027 /*
2028 * [W] 5.3: Denial of Service Mitigation & Cookies
2029 * "the responder, ..., and when under load may reject messages
2030 * with an invalid msg.mac2. If the responder receives a
2031 * message with a valid msg.mac1 yet with an invalid msg.mac2,
2032 * and is under load, it may respond with a cookie reply
2033 * message"
2034 */
2035 uint8_t zero[WG_MAC_LEN] = {0};
2036 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
2037 WG_TRACE("sending a cookie message: no cookie included");
2038 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2039 wgmr->wgmr_mac1, src);
2040 goto out;
2041 }
2042 if (!wgp->wgp_last_sent_cookie_valid) {
2043 WG_TRACE("sending a cookie message: no cookie sent ever");
2044 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2045 wgmr->wgmr_mac1, src);
2046 goto out;
2047 }
2048 uint8_t mac2[WG_MAC_LEN];
2049 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
2050 WG_COOKIE_LEN, (const uint8_t *)wgmr,
2051 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
2052 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
2053 WG_DLOG("mac2 is invalid\n");
2054 goto out;
2055 }
2056 WG_TRACE("under load, but continue to sending");
2057 }
2058
2059 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
2060 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
2061
2062 /*
2063 * [W] 5.4.3 Second Message: Responder to Initiator
2064 * "When the initiator receives this message, it does the same
2065 * operations so that its final state variables are identical,
2066 * replacing the operands of the DH function to produce equivalent
2067 * values."
2068 * Note that the following comments of operations are just copies of
2069 * the initiator's ones.
2070 */
2071
2072 /* [N] 2.2: "e" */
2073 /* Cr := KDF1(Cr, Er^pub) */
2074 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
2075 sizeof(wgmr->wgmr_ephemeral));
2076 /* Hr := HASH(Hr || msg.ephemeral) */
2077 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
2078
2079 WG_DUMP_HASH("ckey", ckey);
2080 WG_DUMP_HASH("hash", hash);
2081
2082 /* [N] 2.2: "ee" */
2083 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
2084 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
2085 wgmr->wgmr_ephemeral);
2086
2087 /* [N] 2.2: "se" */
2088 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
2089 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
2090
2091 /* [N] 9.2: "psk" */
2092 {
2093 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
2094 /* Cr, r, k := KDF3(Cr, Q) */
2095 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
2096 sizeof(wgp->wgp_psk));
2097 /* Hr := HASH(Hr || r) */
2098 wg_algo_hash(hash, kdfout, sizeof(kdfout));
2099 }
2100
2101 {
2102 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
2103 /* msg.empty := AEAD(k, 0, e, Hr) */
2104 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
2105 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
2106 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
2107 if (error != 0) {
2108 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2109 "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
2110 if_name(&wg->wg_if), wgp->wgp_name);
2111 goto out;
2112 }
2113 /* Hr := HASH(Hr || msg.empty) */
2114 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
2115 }
2116
2117 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
2118 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
2119 wgs->wgs_remote_index = wgmr->wgmr_sender;
2120 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
2121
2122 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
2123 wgs->wgs_state);
2124 wgs->wgs_time_established = time_uptime32;
2125 wg_schedule_session_dtor_timer(wgp);
2126 wgs->wgs_time_last_data_sent = 0;
2127 wgs->wgs_is_initiator = true;
2128 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
2129 " calculate keys as initiator\n",
2130 wgs->wgs_local_index, wgs->wgs_remote_index);
2131 wg_calculate_keys(wgs, true);
2132 wg_clear_states(wgs);
2133
2134 /*
2135 * Session is ready to receive data now that we have received
2136 * the responder's response.
2137 *
2138 * Transition from INIT_ACTIVE to ESTABLISHED to publish it to
2139 * the data rx path, wg_handle_msg_data.
2140 */
2141 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32" -> WGS_STATE_ESTABLISHED\n",
2142 wgs->wgs_local_index, wgs->wgs_remote_index);
2143 atomic_store_release(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
2144 WG_TRACE("WGS_STATE_ESTABLISHED");
2145
2146 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
2147
2148 /*
2149 * Session is ready to send data now that we have received the
2150 * responder's response.
2151 *
2152 * Swap the sessions to publish the new one as the stable
2153 * session for the data tx path, wg_output.
2154 */
2155 wg_swap_sessions(wgp);
2156 KASSERT(wgs == wgp->wgp_session_stable);
2157 wgs_prev = wgp->wgp_session_unstable;
2158 getnanotime(&wgp->wgp_last_handshake_time);
2159 wgp->wgp_handshake_start_time = 0;
2160 wgp->wgp_last_sent_mac1_valid = false;
2161 wgp->wgp_last_sent_cookie_valid = false;
2162
2163 wg_update_endpoint_if_necessary(wgp, src);
2164
2165 /*
2166 * If we had a data packet queued up, send it; otherwise send a
2167 * keepalive message -- either way we have to send something
2168 * immediately or else the responder will never answer.
2169 */
2170 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
2171 kpreempt_disable();
2172 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
2173 M_SETCTX(m, wgp);
2174 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
2175 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
2176 if_name(&wg->wg_if));
2177 m_freem(m);
2178 }
2179 kpreempt_enable();
2180 } else {
2181 wg_send_keepalive_msg(wgp, wgs);
2182 }
2183
2184 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2185 /*
2186 * Transition ESTABLISHED->DESTROYING. The session
2187 * will remain usable for the data rx path to process
2188 * packets still in flight to us, but we won't use it
2189 * for data tx.
2190 */
2191 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
2192 " -> WGS_STATE_DESTROYING\n",
2193 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
2194 atomic_store_relaxed(&wgs_prev->wgs_state,
2195 WGS_STATE_DESTROYING);
2196 } else {
2197 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2198 "state=%d", wgs_prev->wgs_state);
2199 }
2200
2201 out:
2202 mutex_exit(wgp->wgp_lock);
2203 wg_put_session(wgs, &psref);
2204 }
2205
2206 static int
2207 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
2208 struct wg_session *wgs, const struct wg_msg_init *wgmi)
2209 {
2210 int error;
2211 struct mbuf *m;
2212 struct wg_msg_resp *wgmr;
2213
2214 KASSERT(mutex_owned(wgp->wgp_lock));
2215 KASSERT(wgs == wgp->wgp_session_unstable);
2216 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
2217 wgs->wgs_state);
2218
2219 m = m_gethdr(M_WAIT, MT_DATA);
2220 if (sizeof(*wgmr) > MHLEN) {
2221 m_clget(m, M_WAIT);
2222 CTASSERT(sizeof(*wgmr) <= MCLBYTES);
2223 }
2224 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
2225 wgmr = mtod(m, struct wg_msg_resp *);
2226 wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
2227
2228 error = wg->wg_ops->send_hs_msg(wgp, m);
2229 if (error == 0)
2230 WG_TRACE("resp msg sent");
2231 return error;
2232 }
2233
2234 static struct wg_peer *
2235 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
2236 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
2237 {
2238 struct wg_peer *wgp;
2239
2240 int s = pserialize_read_enter();
2241 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
2242 if (wgp != NULL)
2243 wg_get_peer(wgp, psref);
2244 pserialize_read_exit(s);
2245
2246 return wgp;
2247 }
2248
2249 static void
2250 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
2251 struct wg_msg_cookie *wgmc, const uint32_t sender,
2252 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
2253 {
2254 uint8_t cookie[WG_COOKIE_LEN];
2255 uint8_t key[WG_HASH_LEN];
2256 uint8_t addr[sizeof(struct in6_addr)];
2257 size_t addrlen;
2258 uint16_t uh_sport; /* be */
2259
2260 KASSERT(mutex_owned(wgp->wgp_lock));
2261
2262 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
2263 wgmc->wgmc_receiver = sender;
2264 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
2265
2266 /*
2267 * [W] 5.4.7: Under Load: Cookie Reply Message
2268 * "The secret variable, Rm, changes every two minutes to a
2269 * random value"
2270 */
2271 if ((time_uptime - wgp->wgp_last_cookiesecret_time) >
2272 WG_COOKIESECRET_TIME) {
2273 cprng_strong(kern_cprng, wgp->wgp_cookiesecret,
2274 sizeof(wgp->wgp_cookiesecret), 0);
2275 wgp->wgp_last_cookiesecret_time = time_uptime;
2276 }
2277
2278 switch (src->sa_family) {
2279 case AF_INET: {
2280 const struct sockaddr_in *sin = satocsin(src);
2281 addrlen = sizeof(sin->sin_addr);
2282 memcpy(addr, &sin->sin_addr, addrlen);
2283 uh_sport = sin->sin_port;
2284 break;
2285 }
2286 #ifdef INET6
2287 case AF_INET6: {
2288 const struct sockaddr_in6 *sin6 = satocsin6(src);
2289 addrlen = sizeof(sin6->sin6_addr);
2290 memcpy(addr, &sin6->sin6_addr, addrlen);
2291 uh_sport = sin6->sin6_port;
2292 break;
2293 }
2294 #endif
2295 default:
2296 panic("invalid af=%d", src->sa_family);
2297 }
2298
2299 wg_algo_mac(cookie, sizeof(cookie),
2300 wgp->wgp_cookiesecret, sizeof(wgp->wgp_cookiesecret),
2301 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2302 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2303 sizeof(wg->wg_pubkey));
2304 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2305 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2306
2307 /* Need to store to calculate mac2 */
2308 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2309 wgp->wgp_last_sent_cookie_valid = true;
2310 }
2311
2312 static int
2313 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2314 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
2315 const struct sockaddr *src)
2316 {
2317 int error;
2318 struct mbuf *m;
2319 struct wg_msg_cookie *wgmc;
2320
2321 KASSERT(mutex_owned(wgp->wgp_lock));
2322
2323 m = m_gethdr(M_WAIT, MT_DATA);
2324 if (sizeof(*wgmc) > MHLEN) {
2325 m_clget(m, M_WAIT);
2326 CTASSERT(sizeof(*wgmc) <= MCLBYTES);
2327 }
2328 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2329 wgmc = mtod(m, struct wg_msg_cookie *);
2330 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2331
2332 error = wg->wg_ops->send_hs_msg(wgp, m);
2333 if (error == 0)
2334 WG_TRACE("cookie msg sent");
2335 return error;
2336 }
2337
2338 static bool
2339 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2340 {
2341 #ifdef WG_DEBUG_PARAMS
2342 if (wg_force_underload)
2343 return true;
2344 #endif
2345
2346 /*
2347 * XXX we don't have a means of a load estimation. The purpose of
2348 * the mechanism is a DoS mitigation, so we consider frequent handshake
2349 * messages as (a kind of) load; if a message of the same type comes
2350 * to a peer within 1 second, we consider we are under load.
2351 */
2352 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2353 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2354 return (time_uptime - last) == 0;
2355 }
2356
2357 static void
2358 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2359 {
2360
2361 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2362
2363 /*
2364 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2365 */
2366 if (initiator) {
2367 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2368 wgs->wgs_chaining_key, NULL, 0);
2369 } else {
2370 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2371 wgs->wgs_chaining_key, NULL, 0);
2372 }
2373 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2374 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2375 }
2376
2377 static uint64_t
2378 wg_session_get_send_counter(struct wg_session *wgs)
2379 {
2380 #ifdef __HAVE_ATOMIC64_LOADSTORE
2381 return atomic_load_relaxed(&wgs->wgs_send_counter);
2382 #else
2383 uint64_t send_counter;
2384
2385 mutex_enter(&wgs->wgs_send_counter_lock);
2386 send_counter = wgs->wgs_send_counter;
2387 mutex_exit(&wgs->wgs_send_counter_lock);
2388
2389 return send_counter;
2390 #endif
2391 }
2392
2393 static uint64_t
2394 wg_session_inc_send_counter(struct wg_session *wgs)
2395 {
2396 #ifdef __HAVE_ATOMIC64_LOADSTORE
2397 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2398 #else
2399 uint64_t send_counter;
2400
2401 mutex_enter(&wgs->wgs_send_counter_lock);
2402 send_counter = wgs->wgs_send_counter++;
2403 mutex_exit(&wgs->wgs_send_counter_lock);
2404
2405 return send_counter;
2406 #endif
2407 }
2408
2409 static void
2410 wg_clear_states(struct wg_session *wgs)
2411 {
2412
2413 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2414
2415 wgs->wgs_send_counter = 0;
2416 sliwin_reset(&wgs->wgs_recvwin->window);
2417
2418 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2419 wgs_clear(handshake_hash);
2420 wgs_clear(chaining_key);
2421 wgs_clear(ephemeral_key_pub);
2422 wgs_clear(ephemeral_key_priv);
2423 wgs_clear(ephemeral_key_peer);
2424 #undef wgs_clear
2425 }
2426
2427 static struct wg_session *
2428 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2429 struct psref *psref)
2430 {
2431 struct wg_session *wgs;
2432
2433 int s = pserialize_read_enter();
2434 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2435 if (wgs != NULL) {
2436 uint32_t oindex __diagused =
2437 atomic_load_relaxed(&wgs->wgs_local_index);
2438 KASSERTMSG(index == oindex,
2439 "index=%"PRIx32" wgs->wgs_local_index=%"PRIx32,
2440 index, oindex);
2441 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2442 }
2443 pserialize_read_exit(s);
2444
2445 return wgs;
2446 }
2447
2448 static void
2449 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2450 {
2451 struct mbuf *m;
2452
2453 /*
2454 * [W] 6.5 Passive Keepalive
2455 * "A keepalive message is simply a transport data message with
2456 * a zero-length encapsulated encrypted inner-packet."
2457 */
2458 WG_TRACE("");
2459 m = m_gethdr(M_WAIT, MT_DATA);
2460 wg_send_data_msg(wgp, wgs, m);
2461 }
2462
2463 static bool
2464 wg_need_to_send_init_message(struct wg_session *wgs)
2465 {
2466 /*
2467 * [W] 6.2 Transport Message Limits
2468 * "if a peer is the initiator of a current secure session,
2469 * WireGuard will send a handshake initiation message to begin
2470 * a new secure session ... if after receiving a transport data
2471 * message, the current secure session is (REJECT-AFTER-TIME
2472 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2473 * not yet acted upon this event."
2474 */
2475 return wgs->wgs_is_initiator &&
2476 atomic_load_relaxed(&wgs->wgs_time_last_data_sent) == 0 &&
2477 ((time_uptime32 -
2478 atomic_load_relaxed(&wgs->wgs_time_established)) >=
2479 (wg_reject_after_time - wg_keepalive_timeout -
2480 wg_rekey_timeout));
2481 }
2482
2483 static void
2484 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
2485 {
2486
2487 mutex_enter(wgp->wgp_intr_lock);
2488 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2489 if (wgp->wgp_tasks == 0)
2490 /*
2491 * XXX If the current CPU is already loaded -- e.g., if
2492 * there's already a bunch of handshakes queued up --
2493 * consider tossing this over to another CPU to
2494 * distribute the load.
2495 */
2496 workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
2497 wgp->wgp_tasks |= task;
2498 mutex_exit(wgp->wgp_intr_lock);
2499 }
2500
2501 static void
2502 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2503 {
2504 struct wg_sockaddr *wgsa_prev;
2505
2506 WG_TRACE("Changing endpoint");
2507
2508 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2509 wgsa_prev = wgp->wgp_endpoint;
2510 atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2511 wgp->wgp_endpoint0 = wgsa_prev;
2512 atomic_store_release(&wgp->wgp_endpoint_available, true);
2513
2514 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2515 }
2516
2517 static bool
2518 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2519 {
2520 uint16_t packet_len;
2521 const struct ip *ip;
2522
2523 if (__predict_false(decrypted_len < sizeof(*ip))) {
2524 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2525 sizeof(*ip));
2526 return false;
2527 }
2528
2529 ip = (const struct ip *)packet;
2530 if (ip->ip_v == 4)
2531 *af = AF_INET;
2532 else if (ip->ip_v == 6)
2533 *af = AF_INET6;
2534 else {
2535 WG_DLOG("ip_v=%d\n", ip->ip_v);
2536 return false;
2537 }
2538
2539 WG_DLOG("af=%d\n", *af);
2540
2541 switch (*af) {
2542 #ifdef INET
2543 case AF_INET:
2544 packet_len = ntohs(ip->ip_len);
2545 break;
2546 #endif
2547 #ifdef INET6
2548 case AF_INET6: {
2549 const struct ip6_hdr *ip6;
2550
2551 if (__predict_false(decrypted_len < sizeof(*ip6))) {
2552 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2553 sizeof(*ip6));
2554 return false;
2555 }
2556
2557 ip6 = (const struct ip6_hdr *)packet;
2558 packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
2559 break;
2560 }
2561 #endif
2562 default:
2563 return false;
2564 }
2565
2566 if (packet_len > decrypted_len) {
2567 WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
2568 decrypted_len);
2569 return false;
2570 }
2571
2572 return true;
2573 }
2574
2575 static bool
2576 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2577 int af, char *packet)
2578 {
2579 struct sockaddr_storage ss;
2580 struct sockaddr *sa;
2581 struct psref psref;
2582 struct wg_peer *wgp;
2583 bool ok;
2584
2585 /*
2586 * II CRYPTOKEY ROUTING
2587 * "it will only accept it if its source IP resolves in the
2588 * table to the public key used in the secure session for
2589 * decrypting it."
2590 */
2591
2592 if (af == AF_INET) {
2593 const struct ip *ip = (const struct ip *)packet;
2594 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2595 sockaddr_in_init(sin, &ip->ip_src, 0);
2596 sa = sintosa(sin);
2597 #ifdef INET6
2598 } else {
2599 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2600 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2601 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2602 sa = sin6tosa(sin6);
2603 #endif
2604 }
2605
2606 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2607 ok = (wgp == wgp_expected);
2608 if (wgp != NULL)
2609 wg_put_peer(wgp, &psref);
2610
2611 return ok;
2612 }
2613
2614 static void
2615 wg_session_dtor_timer(void *arg)
2616 {
2617 struct wg_peer *wgp = arg;
2618
2619 WG_TRACE("enter");
2620
2621 wg_schedule_session_dtor_timer(wgp);
2622 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2623 }
2624
2625 static void
2626 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2627 {
2628
2629 /*
2630 * If the periodic session destructor is already pending to
2631 * handle the previous session, that's fine -- leave it in
2632 * place; it will be scheduled again.
2633 */
2634 if (callout_pending(&wgp->wgp_session_dtor_timer)) {
2635 WG_DLOG("session dtor already pending\n");
2636 return;
2637 }
2638
2639 WG_DLOG("scheduling session dtor in %u secs\n", wg_reject_after_time);
2640 callout_schedule(&wgp->wgp_session_dtor_timer,
2641 wg_reject_after_time*hz);
2642 }
2643
2644 static bool
2645 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2646 {
2647 if (sa1->sa_family != sa2->sa_family)
2648 return false;
2649
2650 switch (sa1->sa_family) {
2651 #ifdef INET
2652 case AF_INET:
2653 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2654 #endif
2655 #ifdef INET6
2656 case AF_INET6:
2657 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2658 #endif
2659 default:
2660 return false;
2661 }
2662 }
2663
2664 static void
2665 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2666 const struct sockaddr *src)
2667 {
2668 struct wg_sockaddr *wgsa;
2669 struct psref psref;
2670
2671 wgsa = wg_get_endpoint_sa(wgp, &psref);
2672
2673 #ifdef WG_DEBUG_LOG
2674 char oldaddr[128], newaddr[128];
2675 sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2676 sockaddr_format(src, newaddr, sizeof(newaddr));
2677 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2678 #endif
2679
2680 /*
2681 * III: "Since the packet has authenticated correctly, the source IP of
2682 * the outer UDP/IP packet is used to update the endpoint for peer..."
2683 */
2684 if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2685 !sockaddr_port_match(src, wgsatosa(wgsa)))) {
2686 /* XXX We can't change the endpoint twice in a short period */
2687 if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2688 wg_change_endpoint(wgp, src);
2689 }
2690 }
2691
2692 wg_put_sa(wgp, wgsa, &psref);
2693 }
2694
2695 static void __noinline
2696 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2697 const struct sockaddr *src)
2698 {
2699 struct wg_msg_data *wgmd;
2700 char *encrypted_buf = NULL, *decrypted_buf;
2701 size_t encrypted_len, decrypted_len;
2702 struct wg_session *wgs;
2703 struct wg_peer *wgp;
2704 int state;
2705 uint32_t age;
2706 size_t mlen;
2707 struct psref psref;
2708 int error, af;
2709 bool success, free_encrypted_buf = false, ok;
2710 struct mbuf *n;
2711
2712 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2713 wgmd = mtod(m, struct wg_msg_data *);
2714
2715 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2716 WG_TRACE("data");
2717
2718 /* Find the putative session, or drop. */
2719 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2720 if (wgs == NULL) {
2721 WG_TRACE("No session found");
2722 m_freem(m);
2723 return;
2724 }
2725
2726 /*
2727 * We are only ready to handle data when in INIT_PASSIVE,
2728 * ESTABLISHED, or DESTROYING. All transitions out of that
2729 * state dissociate the session index and drain psrefs.
2730 *
2731 * atomic_load_acquire matches atomic_store_release in either
2732 * wg_handle_msg_init or wg_handle_msg_resp. (The transition
2733 * INIT_PASSIVE to ESTABLISHED in wg_task_establish_session
2734 * doesn't make a difference for this rx path.)
2735 */
2736 state = atomic_load_acquire(&wgs->wgs_state);
2737 switch (state) {
2738 case WGS_STATE_UNKNOWN:
2739 case WGS_STATE_INIT_ACTIVE:
2740 WG_TRACE("not yet ready for data");
2741 goto out;
2742 case WGS_STATE_INIT_PASSIVE:
2743 case WGS_STATE_ESTABLISHED:
2744 case WGS_STATE_DESTROYING:
2745 break;
2746 }
2747
2748 /*
2749 * Reject if the session is too old.
2750 */
2751 age = time_uptime32 - atomic_load_relaxed(&wgs->wgs_time_established);
2752 if (__predict_false(age >= wg_reject_after_time)) {
2753 WG_DLOG("session %"PRIx32" too old, %"PRIu32" sec\n",
2754 wgmd->wgmd_receiver, age);
2755 goto out;
2756 }
2757
2758 /*
2759 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2760 * to update the endpoint if authentication succeeds.
2761 */
2762 wgp = wgs->wgs_peer;
2763
2764 /*
2765 * Reject outrageously wrong sequence numbers before doing any
2766 * crypto work or taking any locks.
2767 */
2768 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2769 le64toh(wgmd->wgmd_counter));
2770 if (error) {
2771 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2772 "%s: peer %s: out-of-window packet: %"PRIu64"\n",
2773 if_name(&wg->wg_if), wgp->wgp_name,
2774 le64toh(wgmd->wgmd_counter));
2775 goto out;
2776 }
2777
2778 /* Ensure the payload and authenticator are contiguous. */
2779 mlen = m_length(m);
2780 encrypted_len = mlen - sizeof(*wgmd);
2781 if (encrypted_len < WG_AUTHTAG_LEN) {
2782 WG_DLOG("Short encrypted_len: %zu\n", encrypted_len);
2783 goto out;
2784 }
2785 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2786 if (success) {
2787 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2788 } else {
2789 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2790 if (encrypted_buf == NULL) {
2791 WG_DLOG("failed to allocate encrypted_buf\n");
2792 goto out;
2793 }
2794 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2795 free_encrypted_buf = true;
2796 }
2797 /* m_ensure_contig may change m regardless of its result */
2798 KASSERT(m->m_len >= sizeof(*wgmd));
2799 wgmd = mtod(m, struct wg_msg_data *);
2800
2801 #ifdef WG_DEBUG_PACKET
2802 if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
2803 hexdump(printf, "incoming packet", encrypted_buf,
2804 encrypted_len);
2805 }
2806 #endif
2807 /*
2808 * Get a buffer for the plaintext. Add WG_AUTHTAG_LEN to avoid
2809 * a zero-length buffer (XXX). Drop if plaintext is longer
2810 * than MCLBYTES (XXX).
2811 */
2812 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2813 if (decrypted_len > MCLBYTES) {
2814 /* FIXME handle larger data than MCLBYTES */
2815 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2816 goto out;
2817 }
2818 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2819 if (n == NULL) {
2820 WG_DLOG("wg_get_mbuf failed\n");
2821 goto out;
2822 }
2823 decrypted_buf = mtod(n, char *);
2824
2825 /* Decrypt and verify the packet. */
2826 WG_DLOG("mlen=%zu, encrypted_len=%zu\n", mlen, encrypted_len);
2827 error = wg_algo_aead_dec(decrypted_buf,
2828 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2829 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
2830 encrypted_len, NULL, 0);
2831 if (error != 0) {
2832 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2833 "%s: peer %s: failed to wg_algo_aead_dec\n",
2834 if_name(&wg->wg_if), wgp->wgp_name);
2835 m_freem(n);
2836 goto out;
2837 }
2838 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2839
2840 /* Packet is genuine. Reject it if a replay or just too old. */
2841 mutex_enter(&wgs->wgs_recvwin->lock);
2842 error = sliwin_update(&wgs->wgs_recvwin->window,
2843 le64toh(wgmd->wgmd_counter));
2844 mutex_exit(&wgs->wgs_recvwin->lock);
2845 if (error) {
2846 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2847 "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
2848 if_name(&wg->wg_if), wgp->wgp_name,
2849 le64toh(wgmd->wgmd_counter));
2850 m_freem(n);
2851 goto out;
2852 }
2853
2854 #ifdef WG_DEBUG_PACKET
2855 if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
2856 hexdump(printf, "tkey_recv", wgs->wgs_tkey_recv,
2857 sizeof(wgs->wgs_tkey_recv));
2858 hexdump(printf, "wgmd", wgmd, sizeof(*wgmd));
2859 hexdump(printf, "decrypted_buf", decrypted_buf,
2860 decrypted_len);
2861 }
2862 #endif
2863 /* We're done with m now; free it and chuck the pointers. */
2864 m_freem(m);
2865 m = NULL;
2866 wgmd = NULL;
2867
2868 /*
2869 * The packet is genuine. Update the peer's endpoint if the
2870 * source address changed.
2871 *
2872 * XXX How to prevent DoS by replaying genuine packets from the
2873 * wrong source address?
2874 */
2875 wg_update_endpoint_if_necessary(wgp, src);
2876
2877 /*
2878 * Validate the encapsulated packet header and get the address
2879 * family, or drop.
2880 */
2881 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2882 if (!ok) {
2883 m_freem(n);
2884 goto update_state;
2885 }
2886
2887 /* Submit it into our network stack if routable. */
2888 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2889 if (ok) {
2890 wg->wg_ops->input(&wg->wg_if, n, af);
2891 } else {
2892 char addrstr[INET6_ADDRSTRLEN];
2893 memset(addrstr, 0, sizeof(addrstr));
2894 if (af == AF_INET) {
2895 const struct ip *ip = (const struct ip *)decrypted_buf;
2896 IN_PRINT(addrstr, &ip->ip_src);
2897 #ifdef INET6
2898 } else if (af == AF_INET6) {
2899 const struct ip6_hdr *ip6 =
2900 (const struct ip6_hdr *)decrypted_buf;
2901 IN6_PRINT(addrstr, &ip6->ip6_src);
2902 #endif
2903 }
2904 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2905 "%s: peer %s: invalid source address (%s)\n",
2906 if_name(&wg->wg_if), wgp->wgp_name, addrstr);
2907 m_freem(n);
2908 /*
2909 * The inner address is invalid however the session is valid
2910 * so continue the session processing below.
2911 */
2912 }
2913 n = NULL;
2914
2915 update_state:
2916 /* Update the state machine if necessary. */
2917 if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
2918 /*
2919 * We were waiting for the initiator to send their
2920 * first data transport message, and that has happened.
2921 * Schedule a task to establish this session.
2922 */
2923 wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
2924 } else {
2925 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2926 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2927 }
2928 /*
2929 * [W] 6.5 Passive Keepalive
2930 * "If a peer has received a validly-authenticated transport
2931 * data message (section 5.4.6), but does not have any packets
2932 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2933 * a keepalive message."
2934 */
2935 const uint32_t now = time_uptime32;
2936 const uint32_t time_last_data_sent =
2937 atomic_load_relaxed(&wgs->wgs_time_last_data_sent);
2938 WG_DLOG("time_uptime32=%"PRIu32
2939 " wgs_time_last_data_sent=%"PRIu32"\n",
2940 now, time_last_data_sent);
2941 if ((now - time_last_data_sent) >= wg_keepalive_timeout) {
2942 WG_TRACE("Schedule sending keepalive message");
2943 /*
2944 * We can't send a keepalive message here to avoid
2945 * a deadlock; we already hold the solock of a socket
2946 * that is used to send the message.
2947 */
2948 wg_schedule_peer_task(wgp,
2949 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2950 }
2951 }
2952 out:
2953 wg_put_session(wgs, &psref);
2954 m_freem(m);
2955 if (free_encrypted_buf)
2956 kmem_intr_free(encrypted_buf, encrypted_len);
2957 }
2958
2959 static void __noinline
2960 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2961 {
2962 struct wg_session *wgs;
2963 struct wg_peer *wgp;
2964 struct psref psref;
2965 int error;
2966 uint8_t key[WG_HASH_LEN];
2967 uint8_t cookie[WG_COOKIE_LEN];
2968
2969 WG_TRACE("cookie msg received");
2970
2971 /* Find the putative session. */
2972 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2973 if (wgs == NULL) {
2974 WG_TRACE("No session found");
2975 return;
2976 }
2977
2978 /* Lock the peer so we can update the cookie state. */
2979 wgp = wgs->wgs_peer;
2980 mutex_enter(wgp->wgp_lock);
2981
2982 if (!wgp->wgp_last_sent_mac1_valid) {
2983 WG_TRACE("No valid mac1 sent (or expired)");
2984 goto out;
2985 }
2986
2987 /*
2988 * wgp_last_sent_mac1_valid is only set to true when we are
2989 * transitioning to INIT_ACTIVE or INIT_PASSIVE, and always
2990 * cleared on transition out of them.
2991 */
2992 KASSERTMSG((wgs->wgs_state == WGS_STATE_INIT_ACTIVE ||
2993 wgs->wgs_state == WGS_STATE_INIT_PASSIVE),
2994 "state=%d", wgs->wgs_state);
2995
2996 /* Decrypt the cookie and store it for later handshake retry. */
2997 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
2998 sizeof(wgp->wgp_pubkey));
2999 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
3000 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
3001 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
3002 wgmc->wgmc_salt);
3003 if (error != 0) {
3004 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3005 "%s: peer %s: wg_algo_aead_dec for cookie failed: "
3006 "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
3007 goto out;
3008 }
3009 /*
3010 * [W] 6.6: Interaction with Cookie Reply System
3011 * "it should simply store the decrypted cookie value from the cookie
3012 * reply message, and wait for the expiration of the REKEY-TIMEOUT
3013 * timer for retrying a handshake initiation message."
3014 */
3015 wgp->wgp_latest_cookie_time = time_uptime;
3016 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
3017 out:
3018 mutex_exit(wgp->wgp_lock);
3019 wg_put_session(wgs, &psref);
3020 }
3021
3022 static struct mbuf *
3023 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
3024 {
3025 struct wg_msg wgm;
3026 size_t mbuflen;
3027 size_t msglen;
3028
3029 /*
3030 * Get the mbuf chain length. It is already guaranteed, by
3031 * wg_overudp_cb, to be large enough for a struct wg_msg.
3032 */
3033 mbuflen = m_length(m);
3034 KASSERT(mbuflen >= sizeof(struct wg_msg));
3035
3036 /*
3037 * Copy the message header (32-bit message type) out -- we'll
3038 * worry about contiguity and alignment later.
3039 */
3040 m_copydata(m, 0, sizeof(wgm), &wgm);
3041 switch (le32toh(wgm.wgm_type)) {
3042 case WG_MSG_TYPE_INIT:
3043 msglen = sizeof(struct wg_msg_init);
3044 break;
3045 case WG_MSG_TYPE_RESP:
3046 msglen = sizeof(struct wg_msg_resp);
3047 break;
3048 case WG_MSG_TYPE_COOKIE:
3049 msglen = sizeof(struct wg_msg_cookie);
3050 break;
3051 case WG_MSG_TYPE_DATA:
3052 msglen = sizeof(struct wg_msg_data);
3053 break;
3054 default:
3055 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
3056 "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
3057 le32toh(wgm.wgm_type));
3058 goto error;
3059 }
3060
3061 /* Verify the mbuf chain is long enough for this type of message. */
3062 if (__predict_false(mbuflen < msglen)) {
3063 WG_DLOG("Invalid msg size: mbuflen=%zu type=%u\n", mbuflen,
3064 le32toh(wgm.wgm_type));
3065 goto error;
3066 }
3067
3068 /* Make the message header contiguous if necessary. */
3069 if (__predict_false(m->m_len < msglen)) {
3070 m = m_pullup(m, msglen);
3071 if (m == NULL)
3072 return NULL;
3073 }
3074
3075 return m;
3076
3077 error:
3078 m_freem(m);
3079 return NULL;
3080 }
3081
3082 static void
3083 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
3084 const struct sockaddr *src)
3085 {
3086 struct wg_msg *wgm;
3087
3088 KASSERT(curlwp->l_pflag & LP_BOUND);
3089
3090 m = wg_validate_msg_header(wg, m);
3091 if (__predict_false(m == NULL))
3092 return;
3093
3094 KASSERT(m->m_len >= sizeof(struct wg_msg));
3095 wgm = mtod(m, struct wg_msg *);
3096 switch (le32toh(wgm->wgm_type)) {
3097 case WG_MSG_TYPE_INIT:
3098 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
3099 break;
3100 case WG_MSG_TYPE_RESP:
3101 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
3102 break;
3103 case WG_MSG_TYPE_COOKIE:
3104 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
3105 break;
3106 case WG_MSG_TYPE_DATA:
3107 wg_handle_msg_data(wg, m, src);
3108 /* wg_handle_msg_data frees m for us */
3109 return;
3110 default:
3111 panic("invalid message type: %d", le32toh(wgm->wgm_type));
3112 }
3113
3114 m_freem(m);
3115 }
3116
3117 static void
3118 wg_receive_packets(struct wg_softc *wg, const int af)
3119 {
3120
3121 for (;;) {
3122 int error, flags;
3123 struct socket *so;
3124 struct mbuf *m = NULL;
3125 struct uio dummy_uio;
3126 struct mbuf *paddr = NULL;
3127 struct sockaddr *src;
3128
3129 so = wg_get_so_by_af(wg, af);
3130 flags = MSG_DONTWAIT;
3131 dummy_uio.uio_resid = 1000000000;
3132
3133 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
3134 &flags);
3135 if (error || m == NULL) {
3136 //if (error == EWOULDBLOCK)
3137 return;
3138 }
3139
3140 KASSERT(paddr != NULL);
3141 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
3142 src = mtod(paddr, struct sockaddr *);
3143
3144 wg_handle_packet(wg, m, src);
3145 }
3146 }
3147
3148 static void
3149 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
3150 {
3151
3152 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
3153 }
3154
3155 static void
3156 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
3157 {
3158
3159 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
3160 }
3161
3162 static void
3163 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
3164 {
3165 struct wg_session *wgs;
3166
3167 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
3168
3169 KASSERT(mutex_owned(wgp->wgp_lock));
3170
3171 if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
3172 WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
3173 if_name(&wg->wg_if));
3174 /* XXX should do something? */
3175 return;
3176 }
3177
3178 /*
3179 * If we already have an established session, there's no need
3180 * to initiate a new one -- unless the rekey-after-time or
3181 * rekey-after-messages limits have passed.
3182 */
3183 wgs = wgp->wgp_session_stable;
3184 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3185 !atomic_swap_uint(&wgp->wgp_force_rekey, 0))
3186 return;
3187
3188 /*
3189 * Ensure we're initiating a new session. If the unstable
3190 * session is already INIT_ACTIVE or INIT_PASSIVE, this does
3191 * nothing.
3192 */
3193 wg_send_handshake_msg_init(wg, wgp);
3194 }
3195
3196 static void
3197 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
3198 {
3199 struct wg_session *wgs;
3200
3201 WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
3202
3203 KASSERT(mutex_owned(wgp->wgp_lock));
3204 KASSERT(wgp->wgp_handshake_start_time != 0);
3205
3206 wgs = wgp->wgp_session_unstable;
3207 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
3208 return;
3209
3210 /*
3211 * XXX no real need to assign a new index here, but we do need
3212 * to transition to UNKNOWN temporarily
3213 */
3214 wg_put_session_index(wg, wgs);
3215
3216 /* [W] 6.4 Handshake Initiation Retransmission */
3217 if ((time_uptime - wgp->wgp_handshake_start_time) >
3218 wg_rekey_attempt_time) {
3219 /* Give up handshaking */
3220 wgp->wgp_handshake_start_time = 0;
3221 WG_TRACE("give up");
3222
3223 /*
3224 * If a new data packet comes, handshaking will be retried
3225 * and a new session would be established at that time,
3226 * however we don't want to send pending packets then.
3227 */
3228 wg_purge_pending_packets(wgp);
3229 return;
3230 }
3231
3232 wg_task_send_init_message(wg, wgp);
3233 }
3234
3235 static void
3236 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
3237 {
3238 struct wg_session *wgs, *wgs_prev;
3239 struct mbuf *m;
3240
3241 KASSERT(mutex_owned(wgp->wgp_lock));
3242
3243 wgs = wgp->wgp_session_unstable;
3244 if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
3245 /* XXX Can this happen? */
3246 return;
3247
3248 wgs->wgs_time_last_data_sent = 0;
3249 wgs->wgs_is_initiator = false;
3250
3251 /*
3252 * Session was already ready to receive data. Transition from
3253 * INIT_PASSIVE to ESTABLISHED just so we can swap the
3254 * sessions.
3255 *
3256 * atomic_store_relaxed because this doesn't affect the data rx
3257 * path, wg_handle_msg_data -- changing from INIT_PASSIVE to
3258 * ESTABLISHED makes no difference to the data rx path, and the
3259 * transition to INIT_PASSIVE with store-release already
3260 * published the state needed by the data rx path.
3261 */
3262 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_ESTABLISHED\n",
3263 wgs->wgs_local_index, wgs->wgs_remote_index);
3264 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
3265 WG_TRACE("WGS_STATE_ESTABLISHED");
3266
3267 /*
3268 * Session is ready to send data too now that we have received
3269 * the peer initiator's first data packet.
3270 *
3271 * Swap the sessions to publish the new one as the stable
3272 * session for the data tx path, wg_output.
3273 */
3274 wg_swap_sessions(wgp);
3275 KASSERT(wgs == wgp->wgp_session_stable);
3276 wgs_prev = wgp->wgp_session_unstable;
3277 getnanotime(&wgp->wgp_last_handshake_time);
3278 wgp->wgp_handshake_start_time = 0;
3279 wgp->wgp_last_sent_mac1_valid = false;
3280 wgp->wgp_last_sent_cookie_valid = false;
3281
3282 /* If we had a data packet queued up, send it. */
3283 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
3284 kpreempt_disable();
3285 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
3286 M_SETCTX(m, wgp);
3287 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
3288 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
3289 if_name(&wg->wg_if));
3290 m_freem(m);
3291 }
3292 kpreempt_enable();
3293 }
3294
3295 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
3296 /*
3297 * Transition ESTABLISHED->DESTROYING. The session
3298 * will remain usable for the data rx path to process
3299 * packets still in flight to us, but we won't use it
3300 * for data tx.
3301 */
3302 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
3303 " -> WGS_STATE_DESTROYING\n",
3304 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
3305 atomic_store_relaxed(&wgs_prev->wgs_state,
3306 WGS_STATE_DESTROYING);
3307 } else {
3308 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
3309 "state=%d", wgs_prev->wgs_state);
3310 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
3311 " -> WGS_STATE_UNKNOWN\n",
3312 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
3313 wgs_prev->wgs_local_index = 0; /* paranoia */
3314 wgs_prev->wgs_remote_index = 0; /* paranoia */
3315 wg_clear_states(wgs_prev); /* paranoia */
3316 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
3317 }
3318 }
3319
3320 static void
3321 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
3322 {
3323
3324 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
3325
3326 KASSERT(mutex_owned(wgp->wgp_lock));
3327
3328 if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
3329 pserialize_perform(wgp->wgp_psz);
3330 mutex_exit(wgp->wgp_lock);
3331 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
3332 wg_psref_class);
3333 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
3334 wg_psref_class);
3335 mutex_enter(wgp->wgp_lock);
3336 atomic_store_release(&wgp->wgp_endpoint_changing, 0);
3337 }
3338 }
3339
3340 static void
3341 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
3342 {
3343 struct wg_session *wgs;
3344
3345 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
3346
3347 KASSERT(mutex_owned(wgp->wgp_lock));
3348
3349 wgs = wgp->wgp_session_stable;
3350 if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
3351 return;
3352
3353 wg_send_keepalive_msg(wgp, wgs);
3354 }
3355
3356 static void
3357 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
3358 {
3359 struct wg_session *wgs;
3360 uint32_t age;
3361
3362 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
3363
3364 KASSERT(mutex_owned(wgp->wgp_lock));
3365
3366 /*
3367 * If theres's any previous unstable session, i.e., one that
3368 * was ESTABLISHED and is now DESTROYING, older than
3369 * reject-after-time, destroy it. Upcoming sessions are still
3370 * in INIT_ACTIVE or INIT_PASSIVE -- we don't touch those here.
3371 *
3372 * No atomic for access to wgs_time_established because it is
3373 * only updated under wgp_lock.
3374 */
3375 wgs = wgp->wgp_session_unstable;
3376 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
3377 if (wgs->wgs_state == WGS_STATE_DESTROYING &&
3378 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3379 wg_reject_after_time)) {
3380 WG_DLOG("destroying past session %"PRIu32" sec old\n", age);
3381 wg_put_session_index(wg, wgs);
3382 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3383 wgs->wgs_state);
3384 }
3385
3386 /*
3387 * If theres's any ESTABLISHED stable session older than
3388 * reject-after-time, destroy it. (The stable session can also
3389 * be in UNKNOWN state -- nothing to do in that case)
3390 */
3391 wgs = wgp->wgp_session_stable;
3392 KASSERT(wgs->wgs_state != WGS_STATE_INIT_ACTIVE);
3393 KASSERT(wgs->wgs_state != WGS_STATE_INIT_PASSIVE);
3394 KASSERT(wgs->wgs_state != WGS_STATE_DESTROYING);
3395 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3396 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3397 wg_reject_after_time)) {
3398 WG_DLOG("destroying current session %"PRIu32" sec old\n", age);
3399 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_DESTROYING);
3400 wg_put_session_index(wg, wgs);
3401 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3402 wgs->wgs_state);
3403 }
3404
3405 /*
3406 * If there's no sessions left, no need to have the timer run
3407 * until the next time around -- halt it.
3408 *
3409 * It is only ever scheduled with wgp_lock held or in the
3410 * callout itself, and callout_halt prevents rescheudling
3411 * itself, so this never races with rescheduling.
3412 */
3413 if (wgp->wgp_session_unstable->wgs_state == WGS_STATE_UNKNOWN &&
3414 wgp->wgp_session_stable->wgs_state == WGS_STATE_UNKNOWN)
3415 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3416 }
3417
3418 static void
3419 wg_peer_work(struct work *wk, void *cookie)
3420 {
3421 struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
3422 struct wg_softc *wg = wgp->wgp_sc;
3423 unsigned int tasks;
3424
3425 mutex_enter(wgp->wgp_intr_lock);
3426 while ((tasks = wgp->wgp_tasks) != 0) {
3427 wgp->wgp_tasks = 0;
3428 mutex_exit(wgp->wgp_intr_lock);
3429
3430 mutex_enter(wgp->wgp_lock);
3431 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
3432 wg_task_send_init_message(wg, wgp);
3433 if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
3434 wg_task_retry_handshake(wg, wgp);
3435 if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
3436 wg_task_establish_session(wg, wgp);
3437 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
3438 wg_task_endpoint_changed(wg, wgp);
3439 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
3440 wg_task_send_keepalive_message(wg, wgp);
3441 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
3442 wg_task_destroy_prev_session(wg, wgp);
3443 mutex_exit(wgp->wgp_lock);
3444
3445 mutex_enter(wgp->wgp_intr_lock);
3446 }
3447 mutex_exit(wgp->wgp_intr_lock);
3448 }
3449
3450 static void
3451 wg_job(struct threadpool_job *job)
3452 {
3453 struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
3454 int bound, upcalls;
3455
3456 mutex_enter(wg->wg_intr_lock);
3457 while ((upcalls = wg->wg_upcalls) != 0) {
3458 wg->wg_upcalls = 0;
3459 mutex_exit(wg->wg_intr_lock);
3460 bound = curlwp_bind();
3461 if (ISSET(upcalls, WG_UPCALL_INET))
3462 wg_receive_packets(wg, AF_INET);
3463 if (ISSET(upcalls, WG_UPCALL_INET6))
3464 wg_receive_packets(wg, AF_INET6);
3465 curlwp_bindx(bound);
3466 mutex_enter(wg->wg_intr_lock);
3467 }
3468 threadpool_job_done(job);
3469 mutex_exit(wg->wg_intr_lock);
3470 }
3471
3472 static int
3473 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3474 {
3475 int error;
3476 uint16_t old_port = wg->wg_listen_port;
3477
3478 if (port != 0 && old_port == port)
3479 return 0;
3480
3481 struct sockaddr_in _sin, *sin = &_sin;
3482 sin->sin_len = sizeof(*sin);
3483 sin->sin_family = AF_INET;
3484 sin->sin_addr.s_addr = INADDR_ANY;
3485 sin->sin_port = htons(port);
3486
3487 error = sobind(wg->wg_so4, sintosa(sin), curlwp);
3488 if (error != 0)
3489 return error;
3490
3491 #ifdef INET6
3492 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3493 sin6->sin6_len = sizeof(*sin6);
3494 sin6->sin6_family = AF_INET6;
3495 sin6->sin6_addr = in6addr_any;
3496 sin6->sin6_port = htons(port);
3497
3498 error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
3499 if (error != 0)
3500 return error;
3501 #endif
3502
3503 wg->wg_listen_port = port;
3504
3505 return 0;
3506 }
3507
3508 static void
3509 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
3510 {
3511 struct wg_softc *wg = cookie;
3512 int reason;
3513
3514 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3515 WG_UPCALL_INET :
3516 WG_UPCALL_INET6;
3517
3518 mutex_enter(wg->wg_intr_lock);
3519 wg->wg_upcalls |= reason;
3520 threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
3521 mutex_exit(wg->wg_intr_lock);
3522 }
3523
3524 static int
3525 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3526 struct sockaddr *src, void *arg)
3527 {
3528 struct wg_softc *wg = arg;
3529 struct wg_msg wgm;
3530 struct mbuf *m = *mp;
3531
3532 WG_TRACE("enter");
3533
3534 /* Verify the mbuf chain is long enough to have a wg msg header. */
3535 KASSERT(offset <= m_length(m));
3536 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3537 /* drop on the floor */
3538 m_freem(m);
3539 return -1;
3540 }
3541
3542 /*
3543 * Copy the message header (32-bit message type) out -- we'll
3544 * worry about contiguity and alignment later.
3545 */
3546 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3547 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3548
3549 /*
3550 * Handle DATA packets promptly as they arrive, if they are in
3551 * an active session. Other packets may require expensive
3552 * public-key crypto and are not as sensitive to latency, so
3553 * defer them to the worker thread.
3554 */
3555 switch (le32toh(wgm.wgm_type)) {
3556 case WG_MSG_TYPE_DATA:
3557 /* handle immediately */
3558 m_adj(m, offset);
3559 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3560 m = m_pullup(m, sizeof(struct wg_msg_data));
3561 if (m == NULL)
3562 return -1;
3563 }
3564 wg_handle_msg_data(wg, m, src);
3565 *mp = NULL;
3566 return 1;
3567 case WG_MSG_TYPE_INIT:
3568 case WG_MSG_TYPE_RESP:
3569 case WG_MSG_TYPE_COOKIE:
3570 /* pass through to so_receive in wg_receive_packets */
3571 return 0;
3572 default:
3573 /* drop on the floor */
3574 m_freem(m);
3575 return -1;
3576 }
3577 }
3578
3579 static int
3580 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
3581 {
3582 int error;
3583 struct socket *so;
3584
3585 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3586 if (error != 0)
3587 return error;
3588
3589 solock(so);
3590 so->so_upcallarg = wg;
3591 so->so_upcall = wg_so_upcall;
3592 so->so_rcv.sb_flags |= SB_UPCALL;
3593 inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3594 sounlock(so);
3595
3596 *sop = so;
3597
3598 return 0;
3599 }
3600
3601 static bool
3602 wg_session_hit_limits(struct wg_session *wgs)
3603 {
3604 uint32_t time_established =
3605 atomic_load_relaxed(&wgs->wgs_time_established);
3606
3607 /*
3608 * [W] 6.2: Transport Message Limits
3609 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3610 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3611 * comes first, WireGuard will refuse to send any more transport data
3612 * messages using the current secure session, ..."
3613 */
3614 KASSERT(time_established != 0 || time_uptime > UINT32_MAX);
3615 if ((time_uptime32 - time_established) > wg_reject_after_time) {
3616 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3617 return true;
3618 } else if (wg_session_get_send_counter(wgs) >
3619 wg_reject_after_messages) {
3620 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3621 return true;
3622 }
3623
3624 return false;
3625 }
3626
3627 static void
3628 wgintr(void *cookie)
3629 {
3630 struct wg_peer *wgp;
3631 struct wg_session *wgs;
3632 struct mbuf *m;
3633 struct psref psref;
3634
3635 while ((m = pktq_dequeue(wg_pktq)) != NULL) {
3636 wgp = M_GETCTX(m, struct wg_peer *);
3637 if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3638 WG_TRACE("no stable session");
3639 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3640 goto next0;
3641 }
3642 if (__predict_false(wg_session_hit_limits(wgs))) {
3643 WG_TRACE("stable session hit limits");
3644 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3645 goto next1;
3646 }
3647 wg_send_data_msg(wgp, wgs, m);
3648 m = NULL; /* consumed */
3649 next1: wg_put_session(wgs, &psref);
3650 next0: m_freem(m);
3651 /* XXX Yield to avoid userland starvation? */
3652 }
3653 }
3654
3655 static void
3656 wg_purge_pending_packets(struct wg_peer *wgp)
3657 {
3658 struct mbuf *m;
3659
3660 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
3661 m_freem(m);
3662 pktq_barrier(wg_pktq);
3663 }
3664
3665 static void
3666 wg_handshake_timeout_timer(void *arg)
3667 {
3668 struct wg_peer *wgp = arg;
3669
3670 WG_TRACE("enter");
3671
3672 wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3673 }
3674
3675 static struct wg_peer *
3676 wg_alloc_peer(struct wg_softc *wg)
3677 {
3678 struct wg_peer *wgp;
3679
3680 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3681
3682 wgp->wgp_sc = wg;
3683 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3684 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3685 wg_handshake_timeout_timer, wgp);
3686 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3687 callout_setfunc(&wgp->wgp_session_dtor_timer,
3688 wg_session_dtor_timer, wgp);
3689 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3690 wgp->wgp_endpoint_changing = false;
3691 wgp->wgp_endpoint_available = false;
3692 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3693 wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3694 wgp->wgp_psz = pserialize_create();
3695 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3696
3697 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3698 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3699 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3700 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3701
3702 struct wg_session *wgs;
3703 wgp->wgp_session_stable =
3704 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3705 wgp->wgp_session_unstable =
3706 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3707 wgs = wgp->wgp_session_stable;
3708 wgs->wgs_peer = wgp;
3709 wgs->wgs_state = WGS_STATE_UNKNOWN;
3710 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3711 #ifndef __HAVE_ATOMIC64_LOADSTORE
3712 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3713 #endif
3714 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3715 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3716
3717 wgs = wgp->wgp_session_unstable;
3718 wgs->wgs_peer = wgp;
3719 wgs->wgs_state = WGS_STATE_UNKNOWN;
3720 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3721 #ifndef __HAVE_ATOMIC64_LOADSTORE
3722 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3723 #endif
3724 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3725 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3726
3727 return wgp;
3728 }
3729
3730 static void
3731 wg_destroy_peer(struct wg_peer *wgp)
3732 {
3733 struct wg_session *wgs;
3734 struct wg_softc *wg = wgp->wgp_sc;
3735
3736 /* Prevent new packets from this peer on any source address. */
3737 rw_enter(wg->wg_rwlock, RW_WRITER);
3738 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3739 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3740 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3741 struct radix_node *rn;
3742
3743 KASSERT(rnh != NULL);
3744 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3745 &wga->wga_sa_mask, rnh);
3746 if (rn == NULL) {
3747 char addrstr[128];
3748 sockaddr_format(&wga->wga_sa_addr, addrstr,
3749 sizeof(addrstr));
3750 WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
3751 if_name(&wg->wg_if), addrstr);
3752 }
3753 }
3754 rw_exit(wg->wg_rwlock);
3755
3756 /* Purge pending packets. */
3757 wg_purge_pending_packets(wgp);
3758
3759 /* Halt all packet processing and timeouts. */
3760 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3761 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3762
3763 /* Wait for any queued work to complete. */
3764 workqueue_wait(wg_wq, &wgp->wgp_work);
3765
3766 wgs = wgp->wgp_session_unstable;
3767 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3768 mutex_enter(wgp->wgp_lock);
3769 wg_destroy_session(wg, wgs);
3770 mutex_exit(wgp->wgp_lock);
3771 }
3772 mutex_destroy(&wgs->wgs_recvwin->lock);
3773 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3774 #ifndef __HAVE_ATOMIC64_LOADSTORE
3775 mutex_destroy(&wgs->wgs_send_counter_lock);
3776 #endif
3777 kmem_free(wgs, sizeof(*wgs));
3778
3779 wgs = wgp->wgp_session_stable;
3780 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3781 mutex_enter(wgp->wgp_lock);
3782 wg_destroy_session(wg, wgs);
3783 mutex_exit(wgp->wgp_lock);
3784 }
3785 mutex_destroy(&wgs->wgs_recvwin->lock);
3786 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3787 #ifndef __HAVE_ATOMIC64_LOADSTORE
3788 mutex_destroy(&wgs->wgs_send_counter_lock);
3789 #endif
3790 kmem_free(wgs, sizeof(*wgs));
3791
3792 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3793 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3794 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3795 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3796
3797 pserialize_destroy(wgp->wgp_psz);
3798 mutex_obj_free(wgp->wgp_intr_lock);
3799 mutex_obj_free(wgp->wgp_lock);
3800
3801 kmem_free(wgp, sizeof(*wgp));
3802 }
3803
3804 static void
3805 wg_destroy_all_peers(struct wg_softc *wg)
3806 {
3807 struct wg_peer *wgp, *wgp0 __diagused;
3808 void *garbage_byname, *garbage_bypubkey;
3809
3810 restart:
3811 garbage_byname = garbage_bypubkey = NULL;
3812 mutex_enter(wg->wg_lock);
3813 WG_PEER_WRITER_FOREACH(wgp, wg) {
3814 if (wgp->wgp_name[0]) {
3815 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3816 strlen(wgp->wgp_name));
3817 KASSERT(wgp0 == wgp);
3818 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3819 }
3820 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3821 sizeof(wgp->wgp_pubkey));
3822 KASSERT(wgp0 == wgp);
3823 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3824 WG_PEER_WRITER_REMOVE(wgp);
3825 wg->wg_npeers--;
3826 mutex_enter(wgp->wgp_lock);
3827 pserialize_perform(wgp->wgp_psz);
3828 mutex_exit(wgp->wgp_lock);
3829 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3830 break;
3831 }
3832 mutex_exit(wg->wg_lock);
3833
3834 if (wgp == NULL)
3835 return;
3836
3837 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3838
3839 wg_destroy_peer(wgp);
3840 thmap_gc(wg->wg_peers_byname, garbage_byname);
3841 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3842
3843 goto restart;
3844 }
3845
3846 static int
3847 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3848 {
3849 struct wg_peer *wgp, *wgp0 __diagused;
3850 void *garbage_byname, *garbage_bypubkey;
3851
3852 mutex_enter(wg->wg_lock);
3853 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
3854 if (wgp != NULL) {
3855 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3856 sizeof(wgp->wgp_pubkey));
3857 KASSERT(wgp0 == wgp);
3858 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3859 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3860 WG_PEER_WRITER_REMOVE(wgp);
3861 wg->wg_npeers--;
3862 if (wg->wg_npeers == 0)
3863 if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
3864 mutex_enter(wgp->wgp_lock);
3865 pserialize_perform(wgp->wgp_psz);
3866 mutex_exit(wgp->wgp_lock);
3867 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3868 }
3869 mutex_exit(wg->wg_lock);
3870
3871 if (wgp == NULL)
3872 return ENOENT;
3873
3874 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3875
3876 wg_destroy_peer(wgp);
3877 thmap_gc(wg->wg_peers_byname, garbage_byname);
3878 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3879
3880 return 0;
3881 }
3882
3883 static int
3884 wg_if_attach(struct wg_softc *wg)
3885 {
3886
3887 wg->wg_if.if_addrlen = 0;
3888 wg->wg_if.if_mtu = WG_MTU;
3889 wg->wg_if.if_flags = IFF_MULTICAST;
3890 wg->wg_if.if_extflags = IFEF_MPSAFE;
3891 wg->wg_if.if_ioctl = wg_ioctl;
3892 wg->wg_if.if_output = wg_output;
3893 wg->wg_if.if_init = wg_init;
3894 #ifdef ALTQ
3895 wg->wg_if.if_start = wg_start;
3896 #endif
3897 wg->wg_if.if_stop = wg_stop;
3898 wg->wg_if.if_type = IFT_OTHER;
3899 wg->wg_if.if_dlt = DLT_NULL;
3900 wg->wg_if.if_softc = wg;
3901 #ifdef ALTQ
3902 IFQ_SET_READY(&wg->wg_if.if_snd);
3903 #endif
3904 if_initialize(&wg->wg_if);
3905
3906 wg->wg_if.if_link_state = LINK_STATE_DOWN;
3907 if_alloc_sadl(&wg->wg_if);
3908 if_register(&wg->wg_if);
3909
3910 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3911
3912 return 0;
3913 }
3914
3915 static void
3916 wg_if_detach(struct wg_softc *wg)
3917 {
3918 struct ifnet *ifp = &wg->wg_if;
3919
3920 bpf_detach(ifp);
3921 if_detach(ifp);
3922 }
3923
3924 static int
3925 wg_clone_create(struct if_clone *ifc, int unit)
3926 {
3927 struct wg_softc *wg;
3928 int error;
3929
3930 wg_guarantee_initialized();
3931
3932 error = wg_count_inc();
3933 if (error)
3934 return error;
3935
3936 wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
3937
3938 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3939
3940 PSLIST_INIT(&wg->wg_peers);
3941 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
3942 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
3943 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
3944 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3945 wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3946 wg->wg_rwlock = rw_obj_alloc();
3947 threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
3948 "%s", if_name(&wg->wg_if));
3949 wg->wg_ops = &wg_ops_rumpkernel;
3950
3951 error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
3952 if (error)
3953 goto fail0;
3954
3955 #ifdef INET
3956 error = wg_socreate(wg, AF_INET, &wg->wg_so4);
3957 if (error)
3958 goto fail1;
3959 rn_inithead((void **)&wg->wg_rtable_ipv4,
3960 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3961 #endif
3962 #ifdef INET6
3963 error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
3964 if (error)
3965 goto fail2;
3966 rn_inithead((void **)&wg->wg_rtable_ipv6,
3967 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3968 #endif
3969
3970 error = wg_if_attach(wg);
3971 if (error)
3972 goto fail3;
3973
3974 return 0;
3975
3976 fail4: __unused
3977 wg_if_detach(wg);
3978 fail3: wg_destroy_all_peers(wg);
3979 #ifdef INET6
3980 solock(wg->wg_so6);
3981 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
3982 sounlock(wg->wg_so6);
3983 #endif
3984 #ifdef INET
3985 solock(wg->wg_so4);
3986 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
3987 sounlock(wg->wg_so4);
3988 #endif
3989 mutex_enter(wg->wg_intr_lock);
3990 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
3991 mutex_exit(wg->wg_intr_lock);
3992 #ifdef INET6
3993 if (wg->wg_rtable_ipv6 != NULL)
3994 free(wg->wg_rtable_ipv6, M_RTABLE);
3995 soclose(wg->wg_so6);
3996 fail2:
3997 #endif
3998 #ifdef INET
3999 if (wg->wg_rtable_ipv4 != NULL)
4000 free(wg->wg_rtable_ipv4, M_RTABLE);
4001 soclose(wg->wg_so4);
4002 fail1:
4003 #endif
4004 threadpool_put(wg->wg_threadpool, PRI_NONE);
4005 fail0: threadpool_job_destroy(&wg->wg_job);
4006 rw_obj_free(wg->wg_rwlock);
4007 mutex_obj_free(wg->wg_intr_lock);
4008 mutex_obj_free(wg->wg_lock);
4009 thmap_destroy(wg->wg_sessions_byindex);
4010 thmap_destroy(wg->wg_peers_byname);
4011 thmap_destroy(wg->wg_peers_bypubkey);
4012 PSLIST_DESTROY(&wg->wg_peers);
4013 kmem_free(wg, sizeof(*wg));
4014 wg_count_dec();
4015 return error;
4016 }
4017
4018 static int
4019 wg_clone_destroy(struct ifnet *ifp)
4020 {
4021 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
4022
4023 #ifdef WG_RUMPKERNEL
4024 if (wg_user_mode(wg)) {
4025 rumpuser_wg_destroy(wg->wg_user);
4026 wg->wg_user = NULL;
4027 }
4028 #endif
4029
4030 wg_if_detach(wg);
4031 wg_destroy_all_peers(wg);
4032 #ifdef INET6
4033 solock(wg->wg_so6);
4034 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4035 sounlock(wg->wg_so6);
4036 #endif
4037 #ifdef INET
4038 solock(wg->wg_so4);
4039 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4040 sounlock(wg->wg_so4);
4041 #endif
4042 mutex_enter(wg->wg_intr_lock);
4043 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4044 mutex_exit(wg->wg_intr_lock);
4045 #ifdef INET6
4046 if (wg->wg_rtable_ipv6 != NULL)
4047 free(wg->wg_rtable_ipv6, M_RTABLE);
4048 soclose(wg->wg_so6);
4049 #endif
4050 #ifdef INET
4051 if (wg->wg_rtable_ipv4 != NULL)
4052 free(wg->wg_rtable_ipv4, M_RTABLE);
4053 soclose(wg->wg_so4);
4054 #endif
4055 threadpool_put(wg->wg_threadpool, PRI_NONE);
4056 threadpool_job_destroy(&wg->wg_job);
4057 rw_obj_free(wg->wg_rwlock);
4058 mutex_obj_free(wg->wg_intr_lock);
4059 mutex_obj_free(wg->wg_lock);
4060 thmap_destroy(wg->wg_sessions_byindex);
4061 thmap_destroy(wg->wg_peers_byname);
4062 thmap_destroy(wg->wg_peers_bypubkey);
4063 PSLIST_DESTROY(&wg->wg_peers);
4064 kmem_free(wg, sizeof(*wg));
4065 wg_count_dec();
4066
4067 return 0;
4068 }
4069
4070 static struct wg_peer *
4071 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
4072 struct psref *psref)
4073 {
4074 struct radix_node_head *rnh;
4075 struct radix_node *rn;
4076 struct wg_peer *wgp = NULL;
4077 struct wg_allowedip *wga;
4078
4079 #ifdef WG_DEBUG_LOG
4080 char addrstr[128];
4081 sockaddr_format(sa, addrstr, sizeof(addrstr));
4082 WG_DLOG("sa=%s\n", addrstr);
4083 #endif
4084
4085 rw_enter(wg->wg_rwlock, RW_READER);
4086
4087 rnh = wg_rnh(wg, sa->sa_family);
4088 if (rnh == NULL)
4089 goto out;
4090
4091 rn = rnh->rnh_matchaddr(sa, rnh);
4092 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
4093 goto out;
4094
4095 WG_TRACE("success");
4096
4097 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
4098 wgp = wga->wga_peer;
4099 wg_get_peer(wgp, psref);
4100
4101 out:
4102 rw_exit(wg->wg_rwlock);
4103 return wgp;
4104 }
4105
4106 static void
4107 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
4108 struct wg_session *wgs, struct wg_msg_data *wgmd)
4109 {
4110
4111 memset(wgmd, 0, sizeof(*wgmd));
4112 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
4113 wgmd->wgmd_receiver = wgs->wgs_remote_index;
4114 /* [W] 5.4.6: msg.counter := Nm^send */
4115 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
4116 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
4117 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
4118 }
4119
4120 static int
4121 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
4122 const struct rtentry *rt)
4123 {
4124 struct wg_softc *wg = ifp->if_softc;
4125 struct wg_peer *wgp = NULL;
4126 struct wg_session *wgs = NULL;
4127 struct psref wgp_psref, wgs_psref;
4128 int bound;
4129 int error;
4130
4131 bound = curlwp_bind();
4132
4133 /* TODO make the nest limit configurable via sysctl */
4134 error = if_tunnel_check_nesting(ifp, m, 1);
4135 if (error) {
4136 WGLOG(LOG_ERR,
4137 "%s: tunneling loop detected and packet dropped\n",
4138 if_name(&wg->wg_if));
4139 goto out0;
4140 }
4141
4142 #ifdef ALTQ
4143 bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
4144 & ALTQF_ENABLED;
4145 if (altq)
4146 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
4147 #endif
4148
4149 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
4150
4151 m->m_flags &= ~(M_BCAST|M_MCAST);
4152
4153 wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
4154 if (wgp == NULL) {
4155 WG_TRACE("peer not found");
4156 error = EHOSTUNREACH;
4157 goto out0;
4158 }
4159
4160 /* Clear checksum-offload flags. */
4161 m->m_pkthdr.csum_flags = 0;
4162 m->m_pkthdr.csum_data = 0;
4163
4164 /* Check whether there's an established session. */
4165 wgs = wg_get_stable_session(wgp, &wgs_psref);
4166 if (wgs == NULL) {
4167 /*
4168 * No established session. If we're the first to try
4169 * sending data, schedule a handshake and queue the
4170 * packet for when the handshake is done; otherwise
4171 * just drop the packet and let the ongoing handshake
4172 * attempt continue. We could queue more data packets
4173 * but it's not clear that's worthwhile.
4174 */
4175 if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
4176 m = NULL; /* consume */
4177 WG_TRACE("queued first packet; init handshake");
4178 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4179 } else {
4180 WG_TRACE("first packet already queued, dropping");
4181 }
4182 goto out1;
4183 }
4184
4185 /* There's an established session. Toss it in the queue. */
4186 #ifdef ALTQ
4187 if (altq) {
4188 mutex_enter(ifp->if_snd.ifq_lock);
4189 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
4190 M_SETCTX(m, wgp);
4191 ALTQ_ENQUEUE(&ifp->if_snd, m, error);
4192 m = NULL; /* consume */
4193 }
4194 mutex_exit(ifp->if_snd.ifq_lock);
4195 if (m == NULL) {
4196 wg_start(ifp);
4197 goto out2;
4198 }
4199 }
4200 #endif
4201 kpreempt_disable();
4202 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
4203 M_SETCTX(m, wgp);
4204 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
4205 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
4206 if_name(&wg->wg_if));
4207 error = ENOBUFS;
4208 goto out3;
4209 }
4210 m = NULL; /* consumed */
4211 error = 0;
4212 out3: kpreempt_enable();
4213
4214 #ifdef ALTQ
4215 out2:
4216 #endif
4217 wg_put_session(wgs, &wgs_psref);
4218 out1: wg_put_peer(wgp, &wgp_psref);
4219 out0: m_freem(m);
4220 curlwp_bindx(bound);
4221 return error;
4222 }
4223
4224 static int
4225 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
4226 {
4227 struct psref psref;
4228 struct wg_sockaddr *wgsa;
4229 int error;
4230 struct socket *so;
4231
4232 wgsa = wg_get_endpoint_sa(wgp, &psref);
4233 so = wg_get_so_by_peer(wgp, wgsa);
4234 solock(so);
4235 if (wgsatosa(wgsa)->sa_family == AF_INET) {
4236 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
4237 } else {
4238 #ifdef INET6
4239 error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
4240 NULL, curlwp);
4241 #else
4242 m_freem(m);
4243 error = EPFNOSUPPORT;
4244 #endif
4245 }
4246 sounlock(so);
4247 wg_put_sa(wgp, wgsa, &psref);
4248
4249 return error;
4250 }
4251
4252 /* Inspired by pppoe_get_mbuf */
4253 static struct mbuf *
4254 wg_get_mbuf(size_t leading_len, size_t len)
4255 {
4256 struct mbuf *m;
4257
4258 KASSERT(leading_len <= MCLBYTES);
4259 KASSERT(len <= MCLBYTES - leading_len);
4260
4261 m = m_gethdr(M_DONTWAIT, MT_DATA);
4262 if (m == NULL)
4263 return NULL;
4264 if (len + leading_len > MHLEN) {
4265 m_clget(m, M_DONTWAIT);
4266 if ((m->m_flags & M_EXT) == 0) {
4267 m_free(m);
4268 return NULL;
4269 }
4270 }
4271 m->m_data += leading_len;
4272 m->m_pkthdr.len = m->m_len = len;
4273
4274 return m;
4275 }
4276
4277 static int
4278 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
4279 struct mbuf *m)
4280 {
4281 struct wg_softc *wg = wgp->wgp_sc;
4282 int error;
4283 size_t inner_len, padded_len, encrypted_len;
4284 char *padded_buf = NULL;
4285 size_t mlen;
4286 struct wg_msg_data *wgmd;
4287 bool free_padded_buf = false;
4288 struct mbuf *n;
4289 size_t leading_len = max_hdr + sizeof(struct udphdr);
4290
4291 mlen = m_length(m);
4292 inner_len = mlen;
4293 padded_len = roundup(mlen, 16);
4294 encrypted_len = padded_len + WG_AUTHTAG_LEN;
4295 WG_DLOG("inner=%zu, padded=%zu, encrypted_len=%zu\n",
4296 inner_len, padded_len, encrypted_len);
4297 if (mlen != 0) {
4298 bool success;
4299 success = m_ensure_contig(&m, padded_len);
4300 if (success) {
4301 padded_buf = mtod(m, char *);
4302 } else {
4303 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
4304 if (padded_buf == NULL) {
4305 error = ENOBUFS;
4306 goto end;
4307 }
4308 free_padded_buf = true;
4309 m_copydata(m, 0, mlen, padded_buf);
4310 }
4311 memset(padded_buf + mlen, 0, padded_len - inner_len);
4312 }
4313
4314 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
4315 if (n == NULL) {
4316 error = ENOBUFS;
4317 goto end;
4318 }
4319 KASSERT(n->m_len >= sizeof(*wgmd));
4320 wgmd = mtod(n, struct wg_msg_data *);
4321 wg_fill_msg_data(wg, wgp, wgs, wgmd);
4322 #ifdef WG_DEBUG_PACKET
4323 if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
4324 hexdump(printf, "padded_buf", padded_buf,
4325 padded_len);
4326 }
4327 #endif
4328 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
4329 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
4330 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4331 padded_buf, padded_len,
4332 NULL, 0);
4333 #ifdef WG_DEBUG_PACKET
4334 if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
4335 hexdump(printf, "tkey_send", wgs->wgs_tkey_send,
4336 sizeof(wgs->wgs_tkey_send));
4337 hexdump(printf, "wgmd", wgmd, sizeof(*wgmd));
4338 hexdump(printf, "outgoing packet",
4339 (char *)wgmd + sizeof(*wgmd), encrypted_len);
4340 size_t decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
4341 char *decrypted_buf = kmem_intr_alloc((decrypted_len +
4342 WG_AUTHTAG_LEN/*XXX*/), KM_NOSLEEP);
4343 if (decrypted_buf != NULL) {
4344 error = wg_algo_aead_dec(
4345 1 + decrypted_buf /* force misalignment */,
4346 encrypted_len - WG_AUTHTAG_LEN /* XXX */,
4347 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4348 (char *)wgmd + sizeof(*wgmd), encrypted_len,
4349 NULL, 0);
4350 if (error) {
4351 WG_DLOG("wg_algo_aead_dec failed: %d\n",
4352 error);
4353 }
4354 if (!consttime_memequal(1 + decrypted_buf,
4355 (char *)wgmd + sizeof(*wgmd),
4356 decrypted_len)) {
4357 WG_DLOG("wg_algo_aead_dec returned garbage\n");
4358 }
4359 kmem_intr_free(decrypted_buf, (decrypted_len +
4360 WG_AUTHTAG_LEN/*XXX*/));
4361 }
4362 }
4363 #endif
4364
4365 error = wg->wg_ops->send_data_msg(wgp, n);
4366 if (error == 0) {
4367 struct ifnet *ifp = &wg->wg_if;
4368 if_statadd(ifp, if_obytes, mlen);
4369 if_statinc(ifp, if_opackets);
4370 if (wgs->wgs_is_initiator &&
4371 ((time_uptime32 -
4372 atomic_load_relaxed(&wgs->wgs_time_established)) >=
4373 wg_rekey_after_time)) {
4374 /*
4375 * [W] 6.2 Transport Message Limits
4376 * "if a peer is the initiator of a current secure
4377 * session, WireGuard will send a handshake initiation
4378 * message to begin a new secure session if, after
4379 * transmitting a transport data message, the current
4380 * secure session is REKEY-AFTER-TIME seconds old,"
4381 */
4382 WG_TRACE("rekey after time");
4383 atomic_store_relaxed(&wgp->wgp_force_rekey, 1);
4384 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4385 }
4386 const uint32_t now = time_uptime32;
4387 atomic_store_relaxed(&wgs->wgs_time_last_data_sent,
4388 MAX(now, 1));
4389 if (wg_session_get_send_counter(wgs) >=
4390 wg_rekey_after_messages) {
4391 /*
4392 * [W] 6.2 Transport Message Limits
4393 * "WireGuard will try to create a new session, by
4394 * sending a handshake initiation message (section
4395 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
4396 * transport data messages..."
4397 */
4398 WG_TRACE("rekey after messages");
4399 atomic_store_relaxed(&wgp->wgp_force_rekey, 1);
4400 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4401 }
4402 }
4403 end:
4404 m_freem(m);
4405 if (free_padded_buf)
4406 kmem_intr_free(padded_buf, padded_len);
4407 return error;
4408 }
4409
4410 static void
4411 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
4412 {
4413 pktqueue_t *pktq;
4414 size_t pktlen;
4415
4416 KASSERT(af == AF_INET || af == AF_INET6);
4417
4418 WG_TRACE("");
4419
4420 m_set_rcvif(m, ifp);
4421 pktlen = m->m_pkthdr.len;
4422
4423 bpf_mtap_af(ifp, af, m, BPF_D_IN);
4424
4425 switch (af) {
4426 case AF_INET:
4427 pktq = ip_pktq;
4428 break;
4429 #ifdef INET6
4430 case AF_INET6:
4431 pktq = ip6_pktq;
4432 break;
4433 #endif
4434 default:
4435 panic("invalid af=%d", af);
4436 }
4437
4438 kpreempt_disable();
4439 const u_int h = curcpu()->ci_index;
4440 if (__predict_true(pktq_enqueue(pktq, m, h))) {
4441 if_statadd(ifp, if_ibytes, pktlen);
4442 if_statinc(ifp, if_ipackets);
4443 } else {
4444 m_freem(m);
4445 }
4446 kpreempt_enable();
4447 }
4448
4449 static void
4450 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
4451 const uint8_t privkey[WG_STATIC_KEY_LEN])
4452 {
4453
4454 crypto_scalarmult_base(pubkey, privkey);
4455 }
4456
4457 static int
4458 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
4459 {
4460 struct radix_node_head *rnh;
4461 struct radix_node *rn;
4462 int error = 0;
4463
4464 rw_enter(wg->wg_rwlock, RW_WRITER);
4465 rnh = wg_rnh(wg, wga->wga_family);
4466 KASSERT(rnh != NULL);
4467 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
4468 wga->wga_nodes);
4469 rw_exit(wg->wg_rwlock);
4470
4471 if (rn == NULL)
4472 error = EEXIST;
4473
4474 return error;
4475 }
4476
4477 static int
4478 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
4479 struct wg_peer **wgpp)
4480 {
4481 int error = 0;
4482 const void *pubkey;
4483 size_t pubkey_len;
4484 const void *psk;
4485 size_t psk_len;
4486 const char *name = NULL;
4487
4488 if (prop_dictionary_get_string(peer, "name", &name)) {
4489 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
4490 error = EINVAL;
4491 goto out;
4492 }
4493 }
4494
4495 if (!prop_dictionary_get_data(peer, "public_key",
4496 &pubkey, &pubkey_len)) {
4497 error = EINVAL;
4498 goto out;
4499 }
4500 #ifdef WG_DEBUG_DUMP
4501 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4502 char *hex = gethexdump(pubkey, pubkey_len);
4503 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%zu\n%s\n",
4504 pubkey, pubkey_len, hex);
4505 puthexdump(hex, pubkey, pubkey_len);
4506 }
4507 #endif
4508
4509 struct wg_peer *wgp = wg_alloc_peer(wg);
4510 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4511 if (name != NULL)
4512 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4513
4514 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4515 if (psk_len != sizeof(wgp->wgp_psk)) {
4516 error = EINVAL;
4517 goto out;
4518 }
4519 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4520 }
4521
4522 const void *addr;
4523 size_t addr_len;
4524 struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4525
4526 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4527 goto skip_endpoint;
4528 if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4529 addr_len > sizeof(*wgsatoss(wgsa))) {
4530 error = EINVAL;
4531 goto out;
4532 }
4533 memcpy(wgsatoss(wgsa), addr, addr_len);
4534 switch (wgsa_family(wgsa)) {
4535 case AF_INET:
4536 #ifdef INET6
4537 case AF_INET6:
4538 #endif
4539 break;
4540 default:
4541 error = EPFNOSUPPORT;
4542 goto out;
4543 }
4544 if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4545 error = EINVAL;
4546 goto out;
4547 }
4548 {
4549 char addrstr[128];
4550 sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4551 WG_DLOG("addr=%s\n", addrstr);
4552 }
4553 wgp->wgp_endpoint_available = true;
4554
4555 prop_array_t allowedips;
4556 skip_endpoint:
4557 allowedips = prop_dictionary_get(peer, "allowedips");
4558 if (allowedips == NULL)
4559 goto skip;
4560
4561 prop_object_iterator_t _it = prop_array_iterator(allowedips);
4562 prop_dictionary_t prop_allowedip;
4563 int j = 0;
4564 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4565 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4566
4567 if (!prop_dictionary_get_int(prop_allowedip, "family",
4568 &wga->wga_family))
4569 continue;
4570 if (!prop_dictionary_get_data(prop_allowedip, "ip",
4571 &addr, &addr_len))
4572 continue;
4573 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4574 &wga->wga_cidr))
4575 continue;
4576
4577 switch (wga->wga_family) {
4578 case AF_INET: {
4579 struct sockaddr_in sin;
4580 char addrstr[128];
4581 struct in_addr mask;
4582 struct sockaddr_in sin_mask;
4583
4584 if (addr_len != sizeof(struct in_addr))
4585 return EINVAL;
4586 memcpy(&wga->wga_addr4, addr, addr_len);
4587
4588 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4589 0);
4590 sockaddr_copy(&wga->wga_sa_addr,
4591 sizeof(sin), sintosa(&sin));
4592
4593 sockaddr_format(sintosa(&sin),
4594 addrstr, sizeof(addrstr));
4595 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4596
4597 in_len2mask(&mask, wga->wga_cidr);
4598 sockaddr_in_init(&sin_mask, &mask, 0);
4599 sockaddr_copy(&wga->wga_sa_mask,
4600 sizeof(sin_mask), sintosa(&sin_mask));
4601
4602 break;
4603 }
4604 #ifdef INET6
4605 case AF_INET6: {
4606 struct sockaddr_in6 sin6;
4607 char addrstr[128];
4608 struct in6_addr mask;
4609 struct sockaddr_in6 sin6_mask;
4610
4611 if (addr_len != sizeof(struct in6_addr))
4612 return EINVAL;
4613 memcpy(&wga->wga_addr6, addr, addr_len);
4614
4615 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4616 0, 0, 0);
4617 sockaddr_copy(&wga->wga_sa_addr,
4618 sizeof(sin6), sin6tosa(&sin6));
4619
4620 sockaddr_format(sin6tosa(&sin6),
4621 addrstr, sizeof(addrstr));
4622 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4623
4624 in6_prefixlen2mask(&mask, wga->wga_cidr);
4625 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4626 sockaddr_copy(&wga->wga_sa_mask,
4627 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4628
4629 break;
4630 }
4631 #endif
4632 default:
4633 error = EINVAL;
4634 goto out;
4635 }
4636 wga->wga_peer = wgp;
4637
4638 error = wg_rtable_add_route(wg, wga);
4639 if (error != 0)
4640 goto out;
4641
4642 j++;
4643 }
4644 wgp->wgp_n_allowedips = j;
4645 skip:
4646 *wgpp = wgp;
4647 out:
4648 return error;
4649 }
4650
4651 static int
4652 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4653 {
4654 int error;
4655 char *buf;
4656
4657 WG_DLOG("buf=%p, len=%zu\n", ifd->ifd_data, ifd->ifd_len);
4658 if (ifd->ifd_len >= WG_MAX_PROPLEN)
4659 return E2BIG;
4660 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4661 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4662 if (error != 0)
4663 return error;
4664 buf[ifd->ifd_len] = '\0';
4665 #ifdef WG_DEBUG_DUMP
4666 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4667 log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
4668 (const char *)buf);
4669 }
4670 #endif
4671 *_buf = buf;
4672 return 0;
4673 }
4674
4675 static int
4676 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4677 {
4678 int error;
4679 prop_dictionary_t prop_dict;
4680 char *buf = NULL;
4681 const void *privkey;
4682 size_t privkey_len;
4683
4684 error = wg_alloc_prop_buf(&buf, ifd);
4685 if (error != 0)
4686 return error;
4687 error = EINVAL;
4688 prop_dict = prop_dictionary_internalize(buf);
4689 if (prop_dict == NULL)
4690 goto out;
4691 if (!prop_dictionary_get_data(prop_dict, "private_key",
4692 &privkey, &privkey_len))
4693 goto out;
4694 #ifdef WG_DEBUG_DUMP
4695 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4696 char *hex = gethexdump(privkey, privkey_len);
4697 log(LOG_DEBUG, "privkey=%p, privkey_len=%zu\n%s\n",
4698 privkey, privkey_len, hex);
4699 puthexdump(hex, privkey, privkey_len);
4700 }
4701 #endif
4702 if (privkey_len != WG_STATIC_KEY_LEN)
4703 goto out;
4704 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4705 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4706 error = 0;
4707
4708 out:
4709 kmem_free(buf, ifd->ifd_len + 1);
4710 return error;
4711 }
4712
4713 static int
4714 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4715 {
4716 int error;
4717 prop_dictionary_t prop_dict;
4718 char *buf = NULL;
4719 uint16_t port;
4720
4721 error = wg_alloc_prop_buf(&buf, ifd);
4722 if (error != 0)
4723 return error;
4724 error = EINVAL;
4725 prop_dict = prop_dictionary_internalize(buf);
4726 if (prop_dict == NULL)
4727 goto out;
4728 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4729 goto out;
4730
4731 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4732
4733 out:
4734 kmem_free(buf, ifd->ifd_len + 1);
4735 return error;
4736 }
4737
4738 static int
4739 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4740 {
4741 int error;
4742 prop_dictionary_t prop_dict;
4743 char *buf = NULL;
4744 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4745
4746 error = wg_alloc_prop_buf(&buf, ifd);
4747 if (error != 0)
4748 return error;
4749 error = EINVAL;
4750 prop_dict = prop_dictionary_internalize(buf);
4751 if (prop_dict == NULL)
4752 goto out;
4753
4754 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4755 if (error != 0)
4756 goto out;
4757
4758 mutex_enter(wg->wg_lock);
4759 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4760 sizeof(wgp->wgp_pubkey)) != NULL ||
4761 (wgp->wgp_name[0] &&
4762 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4763 strlen(wgp->wgp_name)) != NULL)) {
4764 mutex_exit(wg->wg_lock);
4765 wg_destroy_peer(wgp);
4766 error = EEXIST;
4767 goto out;
4768 }
4769 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4770 sizeof(wgp->wgp_pubkey), wgp);
4771 KASSERT(wgp0 == wgp);
4772 if (wgp->wgp_name[0]) {
4773 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4774 strlen(wgp->wgp_name), wgp);
4775 KASSERT(wgp0 == wgp);
4776 }
4777 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4778 wg->wg_npeers++;
4779 mutex_exit(wg->wg_lock);
4780
4781 if_link_state_change(&wg->wg_if, LINK_STATE_UP);
4782
4783 out:
4784 kmem_free(buf, ifd->ifd_len + 1);
4785 return error;
4786 }
4787
4788 static int
4789 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4790 {
4791 int error;
4792 prop_dictionary_t prop_dict;
4793 char *buf = NULL;
4794 const char *name;
4795
4796 error = wg_alloc_prop_buf(&buf, ifd);
4797 if (error != 0)
4798 return error;
4799 error = EINVAL;
4800 prop_dict = prop_dictionary_internalize(buf);
4801 if (prop_dict == NULL)
4802 goto out;
4803
4804 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4805 goto out;
4806 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4807 goto out;
4808
4809 error = wg_destroy_peer_name(wg, name);
4810 out:
4811 kmem_free(buf, ifd->ifd_len + 1);
4812 return error;
4813 }
4814
4815 static bool
4816 wg_is_authorized(struct wg_softc *wg, u_long cmd)
4817 {
4818 int au = cmd == SIOCGDRVSPEC ?
4819 KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
4820 KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
4821 return kauth_authorize_network(kauth_cred_get(),
4822 KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
4823 (void *)cmd, NULL) == 0;
4824 }
4825
4826 static int
4827 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4828 {
4829 int error = ENOMEM;
4830 prop_dictionary_t prop_dict;
4831 prop_array_t peers = NULL;
4832 char *buf;
4833 struct wg_peer *wgp;
4834 int s, i;
4835
4836 prop_dict = prop_dictionary_create();
4837 if (prop_dict == NULL)
4838 goto error;
4839
4840 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4841 if (!prop_dictionary_set_data(prop_dict, "private_key",
4842 wg->wg_privkey, WG_STATIC_KEY_LEN))
4843 goto error;
4844 }
4845
4846 if (wg->wg_listen_port != 0) {
4847 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4848 wg->wg_listen_port))
4849 goto error;
4850 }
4851
4852 if (wg->wg_npeers == 0)
4853 goto skip_peers;
4854
4855 peers = prop_array_create();
4856 if (peers == NULL)
4857 goto error;
4858
4859 s = pserialize_read_enter();
4860 i = 0;
4861 WG_PEER_READER_FOREACH(wgp, wg) {
4862 struct wg_sockaddr *wgsa;
4863 struct psref wgp_psref, wgsa_psref;
4864 prop_dictionary_t prop_peer;
4865
4866 wg_get_peer(wgp, &wgp_psref);
4867 pserialize_read_exit(s);
4868
4869 prop_peer = prop_dictionary_create();
4870 if (prop_peer == NULL)
4871 goto next;
4872
4873 if (strlen(wgp->wgp_name) > 0) {
4874 if (!prop_dictionary_set_string(prop_peer, "name",
4875 wgp->wgp_name))
4876 goto next;
4877 }
4878
4879 if (!prop_dictionary_set_data(prop_peer, "public_key",
4880 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4881 goto next;
4882
4883 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4884 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4885 sizeof(wgp->wgp_psk))) {
4886 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4887 if (!prop_dictionary_set_data(prop_peer,
4888 "preshared_key",
4889 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4890 goto next;
4891 }
4892 }
4893
4894 wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
4895 CTASSERT(AF_UNSPEC == 0);
4896 if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
4897 !prop_dictionary_set_data(prop_peer, "endpoint",
4898 wgsatoss(wgsa),
4899 sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
4900 wg_put_sa(wgp, wgsa, &wgsa_psref);
4901 goto next;
4902 }
4903 wg_put_sa(wgp, wgsa, &wgsa_psref);
4904
4905 const struct timespec *t = &wgp->wgp_last_handshake_time;
4906
4907 if (!prop_dictionary_set_uint64(prop_peer,
4908 "last_handshake_time_sec", (uint64_t)t->tv_sec))
4909 goto next;
4910 if (!prop_dictionary_set_uint32(prop_peer,
4911 "last_handshake_time_nsec", (uint32_t)t->tv_nsec))
4912 goto next;
4913
4914 if (wgp->wgp_n_allowedips == 0)
4915 goto skip_allowedips;
4916
4917 prop_array_t allowedips = prop_array_create();
4918 if (allowedips == NULL)
4919 goto next;
4920 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4921 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4922 prop_dictionary_t prop_allowedip;
4923
4924 prop_allowedip = prop_dictionary_create();
4925 if (prop_allowedip == NULL)
4926 break;
4927
4928 if (!prop_dictionary_set_int(prop_allowedip, "family",
4929 wga->wga_family))
4930 goto _next;
4931 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4932 wga->wga_cidr))
4933 goto _next;
4934
4935 switch (wga->wga_family) {
4936 case AF_INET:
4937 if (!prop_dictionary_set_data(prop_allowedip,
4938 "ip", &wga->wga_addr4,
4939 sizeof(wga->wga_addr4)))
4940 goto _next;
4941 break;
4942 #ifdef INET6
4943 case AF_INET6:
4944 if (!prop_dictionary_set_data(prop_allowedip,
4945 "ip", &wga->wga_addr6,
4946 sizeof(wga->wga_addr6)))
4947 goto _next;
4948 break;
4949 #endif
4950 default:
4951 break;
4952 }
4953 prop_array_set(allowedips, j, prop_allowedip);
4954 _next:
4955 prop_object_release(prop_allowedip);
4956 }
4957 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4958 prop_object_release(allowedips);
4959
4960 skip_allowedips:
4961
4962 prop_array_set(peers, i, prop_peer);
4963 next:
4964 if (prop_peer)
4965 prop_object_release(prop_peer);
4966 i++;
4967
4968 s = pserialize_read_enter();
4969 wg_put_peer(wgp, &wgp_psref);
4970 }
4971 pserialize_read_exit(s);
4972
4973 prop_dictionary_set(prop_dict, "peers", peers);
4974 prop_object_release(peers);
4975 peers = NULL;
4976
4977 skip_peers:
4978 buf = prop_dictionary_externalize(prop_dict);
4979 if (buf == NULL)
4980 goto error;
4981 if (ifd->ifd_len < (strlen(buf) + 1)) {
4982 error = EINVAL;
4983 goto error;
4984 }
4985 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4986
4987 free(buf, 0);
4988 error:
4989 if (peers != NULL)
4990 prop_object_release(peers);
4991 if (prop_dict != NULL)
4992 prop_object_release(prop_dict);
4993
4994 return error;
4995 }
4996
4997 static int
4998 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4999 {
5000 struct wg_softc *wg = ifp->if_softc;
5001 struct ifreq *ifr = data;
5002 struct ifaddr *ifa = data;
5003 struct ifdrv *ifd = data;
5004 int error = 0;
5005
5006 switch (cmd) {
5007 case SIOCINITIFADDR:
5008 if (ifa->ifa_addr->sa_family != AF_LINK &&
5009 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
5010 (IFF_UP | IFF_RUNNING)) {
5011 ifp->if_flags |= IFF_UP;
5012 error = if_init(ifp);
5013 }
5014 return error;
5015 case SIOCADDMULTI:
5016 case SIOCDELMULTI:
5017 switch (ifr->ifr_addr.sa_family) {
5018 case AF_INET: /* IP supports Multicast */
5019 break;
5020 #ifdef INET6
5021 case AF_INET6: /* IP6 supports Multicast */
5022 break;
5023 #endif
5024 default: /* Other protocols doesn't support Multicast */
5025 error = EAFNOSUPPORT;
5026 break;
5027 }
5028 return error;
5029 case SIOCSDRVSPEC:
5030 if (!wg_is_authorized(wg, cmd)) {
5031 return EPERM;
5032 }
5033 switch (ifd->ifd_cmd) {
5034 case WG_IOCTL_SET_PRIVATE_KEY:
5035 error = wg_ioctl_set_private_key(wg, ifd);
5036 break;
5037 case WG_IOCTL_SET_LISTEN_PORT:
5038 error = wg_ioctl_set_listen_port(wg, ifd);
5039 break;
5040 case WG_IOCTL_ADD_PEER:
5041 error = wg_ioctl_add_peer(wg, ifd);
5042 break;
5043 case WG_IOCTL_DELETE_PEER:
5044 error = wg_ioctl_delete_peer(wg, ifd);
5045 break;
5046 default:
5047 error = EINVAL;
5048 break;
5049 }
5050 return error;
5051 case SIOCGDRVSPEC:
5052 return wg_ioctl_get(wg, ifd);
5053 case SIOCSIFFLAGS:
5054 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5055 break;
5056 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5057 case IFF_RUNNING:
5058 /*
5059 * If interface is marked down and it is running,
5060 * then stop and disable it.
5061 */
5062 if_stop(ifp, 1);
5063 break;
5064 case IFF_UP:
5065 /*
5066 * If interface is marked up and it is stopped, then
5067 * start it.
5068 */
5069 error = if_init(ifp);
5070 break;
5071 default:
5072 break;
5073 }
5074 return error;
5075 #ifdef WG_RUMPKERNEL
5076 case SIOCSLINKSTR:
5077 error = wg_ioctl_linkstr(wg, ifd);
5078 if (error == 0)
5079 wg->wg_ops = &wg_ops_rumpuser;
5080 return error;
5081 #endif
5082 default:
5083 break;
5084 }
5085
5086 error = ifioctl_common(ifp, cmd, data);
5087
5088 #ifdef WG_RUMPKERNEL
5089 if (!wg_user_mode(wg))
5090 return error;
5091
5092 /* Do the same to the corresponding tun device on the host */
5093 /*
5094 * XXX Actually the command has not been handled yet. It
5095 * will be handled via pr_ioctl form doifioctl later.
5096 */
5097 switch (cmd) {
5098 case SIOCAIFADDR:
5099 case SIOCDIFADDR: {
5100 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
5101 struct in_aliasreq *ifra = &_ifra;
5102 KASSERT(error == ENOTTY);
5103 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5104 IFNAMSIZ);
5105 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
5106 if (error == 0)
5107 error = ENOTTY;
5108 break;
5109 }
5110 #ifdef INET6
5111 case SIOCAIFADDR_IN6:
5112 case SIOCDIFADDR_IN6: {
5113 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
5114 struct in6_aliasreq *ifra = &_ifra;
5115 KASSERT(error == ENOTTY);
5116 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5117 IFNAMSIZ);
5118 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
5119 if (error == 0)
5120 error = ENOTTY;
5121 break;
5122 }
5123 #endif
5124 }
5125 #endif /* WG_RUMPKERNEL */
5126
5127 return error;
5128 }
5129
5130 static int
5131 wg_init(struct ifnet *ifp)
5132 {
5133
5134 ifp->if_flags |= IFF_RUNNING;
5135
5136 /* TODO flush pending packets. */
5137 return 0;
5138 }
5139
5140 #ifdef ALTQ
5141 static void
5142 wg_start(struct ifnet *ifp)
5143 {
5144 struct mbuf *m;
5145
5146 for (;;) {
5147 IFQ_DEQUEUE(&ifp->if_snd, m);
5148 if (m == NULL)
5149 break;
5150
5151 kpreempt_disable();
5152 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
5153 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
5154 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
5155 if_name(ifp));
5156 m_freem(m);
5157 }
5158 kpreempt_enable();
5159 }
5160 }
5161 #endif
5162
5163 static void
5164 wg_stop(struct ifnet *ifp, int disable)
5165 {
5166
5167 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
5168 ifp->if_flags &= ~IFF_RUNNING;
5169
5170 /* Need to do something? */
5171 }
5172
5173 #ifdef WG_DEBUG_PARAMS
5174 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
5175 {
5176 const struct sysctlnode *node = NULL;
5177
5178 sysctl_createv(clog, 0, NULL, &node,
5179 CTLFLAG_PERMANENT,
5180 CTLTYPE_NODE, "wg",
5181 SYSCTL_DESCR("wg(4)"),
5182 NULL, 0, NULL, 0,
5183 CTL_NET, CTL_CREATE, CTL_EOL);
5184 sysctl_createv(clog, 0, &node, NULL,
5185 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5186 CTLTYPE_QUAD, "rekey_after_messages",
5187 SYSCTL_DESCR("session liftime by messages"),
5188 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
5189 sysctl_createv(clog, 0, &node, NULL,
5190 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5191 CTLTYPE_INT, "rekey_after_time",
5192 SYSCTL_DESCR("session liftime"),
5193 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
5194 sysctl_createv(clog, 0, &node, NULL,
5195 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5196 CTLTYPE_INT, "rekey_timeout",
5197 SYSCTL_DESCR("session handshake retry time"),
5198 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
5199 sysctl_createv(clog, 0, &node, NULL,
5200 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5201 CTLTYPE_INT, "rekey_attempt_time",
5202 SYSCTL_DESCR("session handshake timeout"),
5203 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
5204 sysctl_createv(clog, 0, &node, NULL,
5205 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5206 CTLTYPE_INT, "keepalive_timeout",
5207 SYSCTL_DESCR("keepalive timeout"),
5208 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
5209 sysctl_createv(clog, 0, &node, NULL,
5210 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5211 CTLTYPE_BOOL, "force_underload",
5212 SYSCTL_DESCR("force to detemine under load"),
5213 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
5214 sysctl_createv(clog, 0, &node, NULL,
5215 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5216 CTLTYPE_INT, "debug",
5217 SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
5218 NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
5219 }
5220 #endif
5221
5222 #ifdef WG_RUMPKERNEL
5223 static bool
5224 wg_user_mode(struct wg_softc *wg)
5225 {
5226
5227 return wg->wg_user != NULL;
5228 }
5229
5230 static int
5231 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
5232 {
5233 struct ifnet *ifp = &wg->wg_if;
5234 int error;
5235
5236 if (ifp->if_flags & IFF_UP)
5237 return EBUSY;
5238
5239 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
5240 /* XXX do nothing */
5241 return 0;
5242 } else if (ifd->ifd_cmd != 0) {
5243 return EINVAL;
5244 } else if (wg->wg_user != NULL) {
5245 return EBUSY;
5246 }
5247
5248 /* Assume \0 included */
5249 if (ifd->ifd_len > IFNAMSIZ) {
5250 return E2BIG;
5251 } else if (ifd->ifd_len < 1) {
5252 return EINVAL;
5253 }
5254
5255 char tun_name[IFNAMSIZ];
5256 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
5257 if (error != 0)
5258 return error;
5259
5260 if (strncmp(tun_name, "tun", 3) != 0)
5261 return EINVAL;
5262
5263 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
5264
5265 return error;
5266 }
5267
5268 static int
5269 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
5270 {
5271 int error;
5272 struct psref psref;
5273 struct wg_sockaddr *wgsa;
5274 struct wg_softc *wg = wgp->wgp_sc;
5275 struct iovec iov[1];
5276
5277 wgsa = wg_get_endpoint_sa(wgp, &psref);
5278
5279 iov[0].iov_base = mtod(m, void *);
5280 iov[0].iov_len = m->m_len;
5281
5282 /* Send messages to a peer via an ordinary socket. */
5283 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
5284
5285 wg_put_sa(wgp, wgsa, &psref);
5286
5287 m_freem(m);
5288
5289 return error;
5290 }
5291
5292 static void
5293 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
5294 {
5295 struct wg_softc *wg = ifp->if_softc;
5296 struct iovec iov[2];
5297 struct sockaddr_storage ss;
5298
5299 KASSERT(af == AF_INET || af == AF_INET6);
5300
5301 WG_TRACE("");
5302
5303 if (af == AF_INET) {
5304 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
5305 struct ip *ip;
5306
5307 KASSERT(m->m_len >= sizeof(struct ip));
5308 ip = mtod(m, struct ip *);
5309 sockaddr_in_init(sin, &ip->ip_dst, 0);
5310 } else {
5311 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
5312 struct ip6_hdr *ip6;
5313
5314 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
5315 ip6 = mtod(m, struct ip6_hdr *);
5316 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
5317 }
5318
5319 iov[0].iov_base = &ss;
5320 iov[0].iov_len = ss.ss_len;
5321 iov[1].iov_base = mtod(m, void *);
5322 iov[1].iov_len = m->m_len;
5323
5324 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5325
5326 /* Send decrypted packets to users via a tun. */
5327 rumpuser_wg_send_user(wg->wg_user, iov, 2);
5328
5329 m_freem(m);
5330 }
5331
5332 static int
5333 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
5334 {
5335 int error;
5336 uint16_t old_port = wg->wg_listen_port;
5337
5338 if (port != 0 && old_port == port)
5339 return 0;
5340
5341 error = rumpuser_wg_sock_bind(wg->wg_user, port);
5342 if (error == 0)
5343 wg->wg_listen_port = port;
5344 return error;
5345 }
5346
5347 /*
5348 * Receive user packets.
5349 */
5350 void
5351 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5352 {
5353 struct ifnet *ifp = &wg->wg_if;
5354 struct mbuf *m;
5355 const struct sockaddr *dst;
5356
5357 WG_TRACE("");
5358
5359 dst = iov[0].iov_base;
5360
5361 m = m_gethdr(M_DONTWAIT, MT_DATA);
5362 if (m == NULL)
5363 return;
5364 m->m_len = m->m_pkthdr.len = 0;
5365 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5366
5367 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5368 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5369
5370 (void)wg_output(ifp, m, dst, NULL);
5371 }
5372
5373 /*
5374 * Receive packets from a peer.
5375 */
5376 void
5377 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5378 {
5379 struct mbuf *m;
5380 const struct sockaddr *src;
5381 int bound;
5382
5383 WG_TRACE("");
5384
5385 src = iov[0].iov_base;
5386
5387 m = m_gethdr(M_DONTWAIT, MT_DATA);
5388 if (m == NULL)
5389 return;
5390 m->m_len = m->m_pkthdr.len = 0;
5391 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5392
5393 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5394 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5395
5396 bound = curlwp_bind();
5397 wg_handle_packet(wg, m, src);
5398 curlwp_bindx(bound);
5399 }
5400 #endif /* WG_RUMPKERNEL */
5401
5402 /*
5403 * Module infrastructure
5404 */
5405 #include "if_module.h"
5406
5407 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
5408