if_wg.c revision 1.106 1 /* $NetBSD: if_wg.c,v 1.106 2024/07/28 14:48:13 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.106 2024/07/28 14:48:13 riastradh Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_altq_enabled.h"
48 #include "opt_inet.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/atomic.h>
55 #include <sys/callout.h>
56 #include <sys/cprng.h>
57 #include <sys/cpu.h>
58 #include <sys/device.h>
59 #include <sys/domain.h>
60 #include <sys/errno.h>
61 #include <sys/intr.h>
62 #include <sys/ioctl.h>
63 #include <sys/kernel.h>
64 #include <sys/kmem.h>
65 #include <sys/mbuf.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/once.h>
69 #include <sys/percpu.h>
70 #include <sys/pserialize.h>
71 #include <sys/psref.h>
72 #include <sys/queue.h>
73 #include <sys/rwlock.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/systm.h>
80 #include <sys/thmap.h>
81 #include <sys/threadpool.h>
82 #include <sys/time.h>
83 #include <sys/timespec.h>
84 #include <sys/workqueue.h>
85
86 #include <lib/libkern/libkern.h>
87
88 #include <net/bpf.h>
89 #include <net/if.h>
90 #include <net/if_types.h>
91 #include <net/if_wg.h>
92 #include <net/pktqueue.h>
93 #include <net/route.h>
94
95 #include <netinet/in.h>
96 #include <netinet/in_pcb.h>
97 #include <netinet/in_var.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip_var.h>
100 #include <netinet/udp.h>
101 #include <netinet/udp_var.h>
102
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet6/in6_pcb.h>
106 #include <netinet6/in6_var.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/udp6_var.h>
109 #endif /* INET6 */
110
111 #include <prop/proplib.h>
112
113 #include <crypto/blake2/blake2s.h>
114 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
115 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
116 #include <crypto/sodium/crypto_scalarmult.h>
117
118 #include "ioconf.h"
119
120 #ifdef WG_RUMPKERNEL
121 #include "wg_user.h"
122 #endif
123
124 #ifndef time_uptime32
125 #define time_uptime32 ((uint32_t)time_uptime)
126 #endif
127
128 /*
129 * Data structures
130 * - struct wg_softc is an instance of wg interfaces
131 * - It has a list of peers (struct wg_peer)
132 * - It has a threadpool job that sends/receives handshake messages and
133 * runs event handlers
134 * - It has its own two routing tables: one is for IPv4 and the other IPv6
135 * - struct wg_peer is a representative of a peer
136 * - It has a struct work to handle handshakes and timer tasks
137 * - It has a pair of session instances (struct wg_session)
138 * - It has a pair of endpoint instances (struct wg_sockaddr)
139 * - Normally one endpoint is used and the second one is used only on
140 * a peer migration (a change of peer's IP address)
141 * - It has a list of IP addresses and sub networks called allowedips
142 * (struct wg_allowedip)
143 * - A packets sent over a session is allowed if its destination matches
144 * any IP addresses or sub networks of the list
145 * - struct wg_session represents a session of a secure tunnel with a peer
146 * - Two instances of sessions belong to a peer; a stable session and a
147 * unstable session
148 * - A handshake process of a session always starts with a unstable instance
149 * - Once a session is established, its instance becomes stable and the
150 * other becomes unstable instead
151 * - Data messages are always sent via a stable session
152 *
153 * Locking notes:
154 * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
155 * - Changes to the peer list are serialized by wg_lock
156 * - The peer list may be read with pserialize(9) and psref(9)
157 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
158 * => XXX replace by pserialize when routing table is psz-safe
159 * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
160 * only in thread context and serializes:
161 * - the stable and unstable session pointers
162 * - all unstable session state
163 * - Packet processing may be done in softint context:
164 * - The stable session can be read under pserialize(9) or psref(9)
165 * - The stable session is always ESTABLISHED
166 * - On a session swap, we must wait for all readers to release a
167 * reference to a stable session before changing wgs_state and
168 * session states
169 * - Lock order: wg_lock -> wgp_lock
170 */
171
172
173 #define WGLOG(level, fmt, args...) \
174 log(level, "%s: " fmt, __func__, ##args)
175
176 #define WG_DEBUG
177
178 /* Debug options */
179 #ifdef WG_DEBUG
180 /* Output debug logs */
181 #ifndef WG_DEBUG_LOG
182 #define WG_DEBUG_LOG
183 #endif
184 /* Output trace logs */
185 #ifndef WG_DEBUG_TRACE
186 #define WG_DEBUG_TRACE
187 #endif
188 /* Output hash values, etc. */
189 #ifndef WG_DEBUG_DUMP
190 #define WG_DEBUG_DUMP
191 #endif
192 /* debug packets */
193 #ifndef WG_DEBUG_PACKET
194 #define WG_DEBUG_PACKET
195 #endif
196 /* Make some internal parameters configurable for testing and debugging */
197 #ifndef WG_DEBUG_PARAMS
198 #define WG_DEBUG_PARAMS
199 #endif
200 #endif /* WG_DEBUG */
201
202 #ifndef WG_DEBUG
203 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) || \
204 defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS) || \
205 defined(WG_DEBUG_PACKET)
206 # define WG_DEBUG
207 # endif
208 #endif
209
210 #ifdef WG_DEBUG
211 int wg_debug;
212 #define WG_DEBUG_FLAGS_LOG 1
213 #define WG_DEBUG_FLAGS_TRACE 2
214 #define WG_DEBUG_FLAGS_DUMP 4
215 #define WG_DEBUG_FLAGS_PACKET 8
216 #endif
217
218
219 #ifdef WG_DEBUG_TRACE
220 #define WG_TRACE(msg) do { \
221 if (wg_debug & WG_DEBUG_FLAGS_TRACE) \
222 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg)); \
223 } while (0)
224 #else
225 #define WG_TRACE(msg) __nothing
226 #endif
227
228 #ifdef WG_DEBUG_LOG
229 #define WG_DLOG(fmt, args...) do { \
230 if (wg_debug & WG_DEBUG_FLAGS_LOG) \
231 log(LOG_DEBUG, "%s: " fmt, __func__, ##args); \
232 } while (0)
233 #else
234 #define WG_DLOG(fmt, args...) __nothing
235 #endif
236
237 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
238 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
239 &(wgprc)->wgprc_curpps, 1)) { \
240 log(level, fmt, ##args); \
241 } \
242 } while (0)
243
244 #ifdef WG_DEBUG_PARAMS
245 static bool wg_force_underload = false;
246 #endif
247
248 #ifdef WG_DEBUG_DUMP
249
250 static char enomem[10] = "[enomem]";
251
252 #define MAX_HDUMP_LEN 10000 /* large enough */
253
254
255 static char *
256 gethexdump(const void *vp, size_t n)
257 {
258 char *buf;
259 const uint8_t *p = vp;
260 size_t i, alloc;
261
262 alloc = n;
263 if (n > MAX_HDUMP_LEN)
264 alloc = MAX_HDUMP_LEN;
265 buf = kmem_alloc(3 * alloc + 5, KM_NOSLEEP);
266 if (buf == NULL)
267 return enomem;
268 for (i = 0; i < alloc; i++)
269 snprintf(buf + 3 * i, 3 + 1, " %02hhx", p[i]);
270 if (alloc != n)
271 snprintf(buf + 3 * i, 4 + 1, " ...");
272 return buf;
273 }
274
275 static void
276 puthexdump(char *buf, const void *p, size_t n)
277 {
278
279 if (buf == NULL || buf == enomem)
280 return;
281 if (n > MAX_HDUMP_LEN)
282 n = MAX_HDUMP_LEN;
283 kmem_free(buf, 3 * n + 5);
284 }
285
286 #ifdef WG_RUMPKERNEL
287 static void
288 wg_dump_buf(const char *func, const char *buf, const size_t size)
289 {
290 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
291 return;
292
293 char *hex = gethexdump(buf, size);
294
295 log(LOG_DEBUG, "%s: %s\n", func, hex);
296 puthexdump(hex, buf, size);
297 }
298 #endif
299
300 static void
301 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
302 const size_t size)
303 {
304 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
305 return;
306
307 char *hex = gethexdump(hash, size);
308
309 log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex);
310 puthexdump(hex, hash, size);
311 }
312
313 #define WG_DUMP_HASH(name, hash) \
314 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
315 #define WG_DUMP_HASH48(name, hash) \
316 wg_dump_hash(__func__, name, hash, 48)
317 #define WG_DUMP_BUF(buf, size) \
318 wg_dump_buf(__func__, buf, size)
319 #else
320 #define WG_DUMP_HASH(name, hash) __nothing
321 #define WG_DUMP_HASH48(name, hash) __nothing
322 #define WG_DUMP_BUF(buf, size) __nothing
323 #endif /* WG_DEBUG_DUMP */
324
325 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
326 #define WG_MAX_PROPLEN 32766
327
328 #define WG_MTU 1420
329 #define WG_ALLOWEDIPS 16
330
331 #define CURVE25519_KEY_LEN 32
332 #define TAI64N_LEN sizeof(uint32_t) * 3
333 #define POLY1305_AUTHTAG_LEN 16
334 #define HMAC_BLOCK_LEN 64
335
336 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
337 /* [N] 4.3: Hash functions */
338 #define NOISE_DHLEN 32
339 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
340 #define NOISE_HASHLEN 32
341 #define NOISE_BLOCKLEN 64
342 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
343 /* [N] 5.1: "k" */
344 #define NOISE_CIPHER_KEY_LEN 32
345 /*
346 * [N] 9.2: "psk"
347 * "... psk is a 32-byte secret value provided by the application."
348 */
349 #define NOISE_PRESHARED_KEY_LEN 32
350
351 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
352 #define WG_TIMESTAMP_LEN TAI64N_LEN
353
354 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
355
356 #define WG_COOKIE_LEN 16
357 #define WG_MAC_LEN 16
358 #define WG_COOKIESECRET_LEN 32
359
360 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
361 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
362 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
363 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
364 #define WG_HASH_LEN NOISE_HASHLEN
365 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
366 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
367 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
368 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
369 #define WG_DATA_KEY_LEN 32
370 #define WG_SALT_LEN 24
371
372 /*
373 * The protocol messages
374 */
375 struct wg_msg {
376 uint32_t wgm_type;
377 } __packed;
378
379 /* [W] 5.4.2 First Message: Initiator to Responder */
380 struct wg_msg_init {
381 uint32_t wgmi_type;
382 uint32_t wgmi_sender;
383 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
384 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
385 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
386 uint8_t wgmi_mac1[WG_MAC_LEN];
387 uint8_t wgmi_mac2[WG_MAC_LEN];
388 } __packed;
389
390 /* [W] 5.4.3 Second Message: Responder to Initiator */
391 struct wg_msg_resp {
392 uint32_t wgmr_type;
393 uint32_t wgmr_sender;
394 uint32_t wgmr_receiver;
395 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
396 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
397 uint8_t wgmr_mac1[WG_MAC_LEN];
398 uint8_t wgmr_mac2[WG_MAC_LEN];
399 } __packed;
400
401 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
402 struct wg_msg_data {
403 uint32_t wgmd_type;
404 uint32_t wgmd_receiver;
405 uint64_t wgmd_counter;
406 uint32_t wgmd_packet[0];
407 } __packed;
408
409 /* [W] 5.4.7 Under Load: Cookie Reply Message */
410 struct wg_msg_cookie {
411 uint32_t wgmc_type;
412 uint32_t wgmc_receiver;
413 uint8_t wgmc_salt[WG_SALT_LEN];
414 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
415 } __packed;
416
417 #define WG_MSG_TYPE_INIT 1
418 #define WG_MSG_TYPE_RESP 2
419 #define WG_MSG_TYPE_COOKIE 3
420 #define WG_MSG_TYPE_DATA 4
421 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
422
423 /* Sliding windows */
424
425 #define SLIWIN_BITS 2048u
426 #define SLIWIN_TYPE uint32_t
427 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
428 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
429 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
430
431 struct sliwin {
432 SLIWIN_TYPE B[SLIWIN_WORDS];
433 uint64_t T;
434 };
435
436 static void
437 sliwin_reset(struct sliwin *W)
438 {
439
440 memset(W, 0, sizeof(*W));
441 }
442
443 static int
444 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
445 {
446
447 /*
448 * If it's more than one window older than the highest sequence
449 * number we've seen, reject.
450 */
451 #ifdef __HAVE_ATOMIC64_LOADSTORE
452 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
453 return EAUTH;
454 #endif
455
456 /*
457 * Otherwise, we need to take the lock to decide, so don't
458 * reject just yet. Caller must serialize a call to
459 * sliwin_update in this case.
460 */
461 return 0;
462 }
463
464 static int
465 sliwin_update(struct sliwin *W, uint64_t S)
466 {
467 unsigned word, bit;
468
469 /*
470 * If it's more than one window older than the highest sequence
471 * number we've seen, reject.
472 */
473 if (S + SLIWIN_NPKT < W->T)
474 return EAUTH;
475
476 /*
477 * If it's higher than the highest sequence number we've seen,
478 * advance the window.
479 */
480 if (S > W->T) {
481 uint64_t i = W->T / SLIWIN_BPW;
482 uint64_t j = S / SLIWIN_BPW;
483 unsigned k;
484
485 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
486 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
487 #ifdef __HAVE_ATOMIC64_LOADSTORE
488 atomic_store_relaxed(&W->T, S);
489 #else
490 W->T = S;
491 #endif
492 }
493
494 /* Test and set the bit -- if already set, reject. */
495 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
496 bit = S % SLIWIN_BPW;
497 if (W->B[word] & (1UL << bit))
498 return EAUTH;
499 W->B[word] |= 1U << bit;
500
501 /* Accept! */
502 return 0;
503 }
504
505 struct wg_session {
506 struct wg_peer *wgs_peer;
507 struct psref_target
508 wgs_psref;
509
510 int wgs_state;
511 #define WGS_STATE_UNKNOWN 0
512 #define WGS_STATE_INIT_ACTIVE 1
513 #define WGS_STATE_INIT_PASSIVE 2
514 #define WGS_STATE_ESTABLISHED 3
515 #define WGS_STATE_DESTROYING 4
516
517 volatile uint32_t
518 wgs_time_established;
519 volatile uint32_t
520 wgs_time_last_data_sent;
521 bool wgs_is_initiator;
522
523 uint32_t wgs_local_index;
524 uint32_t wgs_remote_index;
525 #ifdef __HAVE_ATOMIC64_LOADSTORE
526 volatile uint64_t
527 wgs_send_counter;
528 #else
529 kmutex_t wgs_send_counter_lock;
530 uint64_t wgs_send_counter;
531 #endif
532
533 struct {
534 kmutex_t lock;
535 struct sliwin window;
536 } *wgs_recvwin;
537
538 uint8_t wgs_handshake_hash[WG_HASH_LEN];
539 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
540 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
541 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
542 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
543 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
544 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
545 };
546
547 struct wg_sockaddr {
548 union {
549 struct sockaddr_storage _ss;
550 struct sockaddr _sa;
551 struct sockaddr_in _sin;
552 struct sockaddr_in6 _sin6;
553 };
554 struct psref_target wgsa_psref;
555 };
556
557 #define wgsatoss(wgsa) (&(wgsa)->_ss)
558 #define wgsatosa(wgsa) (&(wgsa)->_sa)
559 #define wgsatosin(wgsa) (&(wgsa)->_sin)
560 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
561
562 #define wgsa_family(wgsa) (wgsatosa(wgsa)->sa_family)
563
564 struct wg_peer;
565 struct wg_allowedip {
566 struct radix_node wga_nodes[2];
567 struct wg_sockaddr _wga_sa_addr;
568 struct wg_sockaddr _wga_sa_mask;
569 #define wga_sa_addr _wga_sa_addr._sa
570 #define wga_sa_mask _wga_sa_mask._sa
571
572 int wga_family;
573 uint8_t wga_cidr;
574 union {
575 struct in_addr _ip4;
576 struct in6_addr _ip6;
577 } wga_addr;
578 #define wga_addr4 wga_addr._ip4
579 #define wga_addr6 wga_addr._ip6
580
581 struct wg_peer *wga_peer;
582 };
583
584 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
585
586 struct wg_ppsratecheck {
587 struct timeval wgprc_lasttime;
588 int wgprc_curpps;
589 };
590
591 struct wg_softc;
592 struct wg_peer {
593 struct wg_softc *wgp_sc;
594 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
595 struct pslist_entry wgp_peerlist_entry;
596 pserialize_t wgp_psz;
597 struct psref_target wgp_psref;
598 kmutex_t *wgp_lock;
599 kmutex_t *wgp_intr_lock;
600
601 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
602 struct wg_sockaddr *wgp_endpoint;
603 struct wg_sockaddr *wgp_endpoint0;
604 volatile unsigned wgp_endpoint_changing;
605 bool wgp_endpoint_available;
606
607 /* The preshared key (optional) */
608 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
609
610 struct wg_session *wgp_session_stable;
611 struct wg_session *wgp_session_unstable;
612
613 /* first outgoing packet awaiting session initiation */
614 struct mbuf *volatile wgp_pending;
615
616 /* timestamp in big-endian */
617 wg_timestamp_t wgp_timestamp_latest_init;
618
619 struct timespec wgp_last_handshake_time;
620
621 callout_t wgp_handshake_timeout_timer;
622 callout_t wgp_session_dtor_timer;
623
624 time_t wgp_handshake_start_time;
625
626 volatile unsigned wgp_force_rekey;
627
628 int wgp_n_allowedips;
629 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
630
631 time_t wgp_latest_cookie_time;
632 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
633 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
634 bool wgp_last_sent_mac1_valid;
635 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
636 bool wgp_last_sent_cookie_valid;
637
638 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
639
640 time_t wgp_last_cookiesecret_time;
641 uint8_t wgp_cookiesecret[WG_COOKIESECRET_LEN];
642
643 struct wg_ppsratecheck wgp_ppsratecheck;
644
645 struct work wgp_work;
646 unsigned int wgp_tasks;
647 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
648 #define WGP_TASK_RETRY_HANDSHAKE __BIT(1)
649 #define WGP_TASK_ESTABLISH_SESSION __BIT(2)
650 #define WGP_TASK_ENDPOINT_CHANGED __BIT(3)
651 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(4)
652 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(5)
653 };
654
655 struct wg_ops;
656
657 struct wg_softc {
658 struct ifnet wg_if;
659 LIST_ENTRY(wg_softc) wg_list;
660 kmutex_t *wg_lock;
661 kmutex_t *wg_intr_lock;
662 krwlock_t *wg_rwlock;
663
664 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
665 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
666
667 int wg_npeers;
668 struct pslist_head wg_peers;
669 struct thmap *wg_peers_bypubkey;
670 struct thmap *wg_peers_byname;
671 struct thmap *wg_sessions_byindex;
672 uint16_t wg_listen_port;
673
674 struct threadpool *wg_threadpool;
675
676 struct threadpool_job wg_job;
677 int wg_upcalls;
678 #define WG_UPCALL_INET __BIT(0)
679 #define WG_UPCALL_INET6 __BIT(1)
680
681 #ifdef INET
682 struct socket *wg_so4;
683 struct radix_node_head *wg_rtable_ipv4;
684 #endif
685 #ifdef INET6
686 struct socket *wg_so6;
687 struct radix_node_head *wg_rtable_ipv6;
688 #endif
689
690 struct wg_ppsratecheck wg_ppsratecheck;
691
692 struct wg_ops *wg_ops;
693
694 #ifdef WG_RUMPKERNEL
695 struct wg_user *wg_user;
696 #endif
697 };
698
699 /* [W] 6.1 Preliminaries */
700 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
701 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
702 #define WG_REKEY_AFTER_TIME 120
703 #define WG_REJECT_AFTER_TIME 180
704 #define WG_REKEY_ATTEMPT_TIME 90
705 #define WG_REKEY_TIMEOUT 5
706 #define WG_KEEPALIVE_TIMEOUT 10
707
708 #define WG_COOKIE_TIME 120
709 #define WG_COOKIESECRET_TIME (2 * 60)
710
711 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
712 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
713 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
714 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
715 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
716 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
717 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
718
719 static struct mbuf *
720 wg_get_mbuf(size_t, size_t);
721
722 static int wg_send_data_msg(struct wg_peer *, struct wg_session *,
723 struct mbuf *);
724 static int wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
725 const uint32_t, const uint8_t [WG_MAC_LEN],
726 const struct sockaddr *);
727 static int wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
728 struct wg_session *, const struct wg_msg_init *);
729 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
730
731 static struct wg_peer *
732 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
733 struct psref *);
734 static struct wg_peer *
735 wg_lookup_peer_by_pubkey(struct wg_softc *,
736 const uint8_t [WG_STATIC_KEY_LEN], struct psref *);
737
738 static struct wg_session *
739 wg_lookup_session_by_index(struct wg_softc *,
740 const uint32_t, struct psref *);
741
742 static void wg_update_endpoint_if_necessary(struct wg_peer *,
743 const struct sockaddr *);
744
745 static void wg_schedule_session_dtor_timer(struct wg_peer *);
746
747 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
748 static void wg_calculate_keys(struct wg_session *, const bool);
749
750 static void wg_clear_states(struct wg_session *);
751
752 static void wg_get_peer(struct wg_peer *, struct psref *);
753 static void wg_put_peer(struct wg_peer *, struct psref *);
754
755 static int wg_send_so(struct wg_peer *, struct mbuf *);
756 static int wg_send_udp(struct wg_peer *, struct mbuf *);
757 static int wg_output(struct ifnet *, struct mbuf *,
758 const struct sockaddr *, const struct rtentry *);
759 static void wg_input(struct ifnet *, struct mbuf *, const int);
760 static int wg_ioctl(struct ifnet *, u_long, void *);
761 static int wg_bind_port(struct wg_softc *, const uint16_t);
762 static int wg_init(struct ifnet *);
763 #ifdef ALTQ
764 static void wg_start(struct ifnet *);
765 #endif
766 static void wg_stop(struct ifnet *, int);
767
768 static void wg_peer_work(struct work *, void *);
769 static void wg_job(struct threadpool_job *);
770 static void wgintr(void *);
771 static void wg_purge_pending_packets(struct wg_peer *);
772
773 static int wg_clone_create(struct if_clone *, int);
774 static int wg_clone_destroy(struct ifnet *);
775
776 struct wg_ops {
777 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
778 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
779 void (*input)(struct ifnet *, struct mbuf *, const int);
780 int (*bind_port)(struct wg_softc *, const uint16_t);
781 };
782
783 struct wg_ops wg_ops_rumpkernel = {
784 .send_hs_msg = wg_send_so,
785 .send_data_msg = wg_send_udp,
786 .input = wg_input,
787 .bind_port = wg_bind_port,
788 };
789
790 #ifdef WG_RUMPKERNEL
791 static bool wg_user_mode(struct wg_softc *);
792 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
793
794 static int wg_send_user(struct wg_peer *, struct mbuf *);
795 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
796 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
797
798 struct wg_ops wg_ops_rumpuser = {
799 .send_hs_msg = wg_send_user,
800 .send_data_msg = wg_send_user,
801 .input = wg_input_user,
802 .bind_port = wg_bind_port_user,
803 };
804 #endif
805
806 #define WG_PEER_READER_FOREACH(wgp, wg) \
807 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
808 wgp_peerlist_entry)
809 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
810 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
811 wgp_peerlist_entry)
812 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
813 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
814 #define WG_PEER_WRITER_REMOVE(wgp) \
815 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
816
817 struct wg_route {
818 struct radix_node wgr_nodes[2];
819 struct wg_peer *wgr_peer;
820 };
821
822 static struct radix_node_head *
823 wg_rnh(struct wg_softc *wg, const int family)
824 {
825
826 switch (family) {
827 case AF_INET:
828 return wg->wg_rtable_ipv4;
829 #ifdef INET6
830 case AF_INET6:
831 return wg->wg_rtable_ipv6;
832 #endif
833 default:
834 return NULL;
835 }
836 }
837
838
839 /*
840 * Global variables
841 */
842 static volatile unsigned wg_count __cacheline_aligned;
843
844 struct psref_class *wg_psref_class __read_mostly;
845
846 static struct if_clone wg_cloner =
847 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
848
849 static struct pktqueue *wg_pktq __read_mostly;
850 static struct workqueue *wg_wq __read_mostly;
851
852 void wgattach(int);
853 /* ARGSUSED */
854 void
855 wgattach(int count)
856 {
857 /*
858 * Nothing to do here, initialization is handled by the
859 * module initialization code in wginit() below).
860 */
861 }
862
863 static void
864 wginit(void)
865 {
866
867 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
868
869 if_clone_attach(&wg_cloner);
870 }
871
872 /*
873 * XXX Kludge: This should just happen in wginit, but workqueue_create
874 * cannot be run until after CPUs have been detected, and wginit runs
875 * before configure.
876 */
877 static int
878 wginitqueues(void)
879 {
880 int error __diagused;
881
882 wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
883 KASSERT(wg_pktq != NULL);
884
885 error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
886 PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
887 KASSERT(error == 0);
888
889 return 0;
890 }
891
892 static void
893 wg_guarantee_initialized(void)
894 {
895 static ONCE_DECL(init);
896 int error __diagused;
897
898 error = RUN_ONCE(&init, wginitqueues);
899 KASSERT(error == 0);
900 }
901
902 static int
903 wg_count_inc(void)
904 {
905 unsigned o, n;
906
907 do {
908 o = atomic_load_relaxed(&wg_count);
909 if (o == UINT_MAX)
910 return ENFILE;
911 n = o + 1;
912 } while (atomic_cas_uint(&wg_count, o, n) != o);
913
914 return 0;
915 }
916
917 static void
918 wg_count_dec(void)
919 {
920 unsigned c __diagused;
921
922 c = atomic_dec_uint_nv(&wg_count);
923 KASSERT(c != UINT_MAX);
924 }
925
926 static int
927 wgdetach(void)
928 {
929
930 /* Prevent new interface creation. */
931 if_clone_detach(&wg_cloner);
932
933 /* Check whether there are any existing interfaces. */
934 if (atomic_load_relaxed(&wg_count)) {
935 /* Back out -- reattach the cloner. */
936 if_clone_attach(&wg_cloner);
937 return EBUSY;
938 }
939
940 /* No interfaces left. Nuke it. */
941 if (wg_wq)
942 workqueue_destroy(wg_wq);
943 if (wg_pktq)
944 pktq_destroy(wg_pktq);
945 psref_class_destroy(wg_psref_class);
946
947 return 0;
948 }
949
950 static void
951 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
952 uint8_t hash[WG_HASH_LEN])
953 {
954 /* [W] 5.4: CONSTRUCTION */
955 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
956 /* [W] 5.4: IDENTIFIER */
957 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
958 struct blake2s state;
959
960 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
961 signature, strlen(signature));
962
963 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
964 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
965
966 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
967 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
968 blake2s_update(&state, id, strlen(id));
969 blake2s_final(&state, hash);
970
971 WG_DUMP_HASH("ckey", ckey);
972 WG_DUMP_HASH("hash", hash);
973 }
974
975 static void
976 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
977 const size_t inputsize)
978 {
979 struct blake2s state;
980
981 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
982 blake2s_update(&state, hash, WG_HASH_LEN);
983 blake2s_update(&state, input, inputsize);
984 blake2s_final(&state, hash);
985 }
986
987 static void
988 wg_algo_mac(uint8_t out[], const size_t outsize,
989 const uint8_t key[], const size_t keylen,
990 const uint8_t input1[], const size_t input1len,
991 const uint8_t input2[], const size_t input2len)
992 {
993 struct blake2s state;
994
995 blake2s_init(&state, outsize, key, keylen);
996
997 blake2s_update(&state, input1, input1len);
998 if (input2 != NULL)
999 blake2s_update(&state, input2, input2len);
1000 blake2s_final(&state, out);
1001 }
1002
1003 static void
1004 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
1005 const uint8_t input1[], const size_t input1len,
1006 const uint8_t input2[], const size_t input2len)
1007 {
1008 struct blake2s state;
1009 /* [W] 5.4: LABEL-MAC1 */
1010 const char *label = "mac1----";
1011 uint8_t key[WG_HASH_LEN];
1012
1013 blake2s_init(&state, sizeof(key), NULL, 0);
1014 blake2s_update(&state, label, strlen(label));
1015 blake2s_update(&state, input1, input1len);
1016 blake2s_final(&state, key);
1017
1018 blake2s_init(&state, outsize, key, sizeof(key));
1019 if (input2 != NULL)
1020 blake2s_update(&state, input2, input2len);
1021 blake2s_final(&state, out);
1022 }
1023
1024 static void
1025 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
1026 const uint8_t input1[], const size_t input1len)
1027 {
1028 struct blake2s state;
1029 /* [W] 5.4: LABEL-COOKIE */
1030 const char *label = "cookie--";
1031
1032 blake2s_init(&state, outsize, NULL, 0);
1033 blake2s_update(&state, label, strlen(label));
1034 blake2s_update(&state, input1, input1len);
1035 blake2s_final(&state, out);
1036 }
1037
1038 static void
1039 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
1040 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
1041 {
1042
1043 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1044
1045 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
1046 crypto_scalarmult_base(pubkey, privkey);
1047 }
1048
1049 static void
1050 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
1051 const uint8_t privkey[WG_STATIC_KEY_LEN],
1052 const uint8_t pubkey[WG_STATIC_KEY_LEN])
1053 {
1054
1055 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1056
1057 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
1058 KASSERT(ret == 0);
1059 }
1060
1061 static void
1062 wg_algo_hmac(uint8_t out[], const size_t outlen,
1063 const uint8_t key[], const size_t keylen,
1064 const uint8_t in[], const size_t inlen)
1065 {
1066 #define IPAD 0x36
1067 #define OPAD 0x5c
1068 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
1069 uint8_t ipad[HMAC_BLOCK_LEN];
1070 uint8_t opad[HMAC_BLOCK_LEN];
1071 size_t i;
1072 struct blake2s state;
1073
1074 KASSERT(outlen == WG_HASH_LEN);
1075 KASSERT(keylen <= HMAC_BLOCK_LEN);
1076
1077 memcpy(hmackey, key, keylen);
1078
1079 for (i = 0; i < sizeof(hmackey); i++) {
1080 ipad[i] = hmackey[i] ^ IPAD;
1081 opad[i] = hmackey[i] ^ OPAD;
1082 }
1083
1084 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1085 blake2s_update(&state, ipad, sizeof(ipad));
1086 blake2s_update(&state, in, inlen);
1087 blake2s_final(&state, out);
1088
1089 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1090 blake2s_update(&state, opad, sizeof(opad));
1091 blake2s_update(&state, out, WG_HASH_LEN);
1092 blake2s_final(&state, out);
1093 #undef IPAD
1094 #undef OPAD
1095 }
1096
1097 static void
1098 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
1099 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
1100 const uint8_t input[], const size_t inputlen)
1101 {
1102 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
1103 uint8_t one[1];
1104
1105 /*
1106 * [N] 4.3: "an input_key_material byte sequence with length
1107 * either zero bytes, 32 bytes, or DHLEN bytes."
1108 */
1109 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
1110
1111 WG_DUMP_HASH("ckey", ckey);
1112 if (input != NULL)
1113 WG_DUMP_HASH("input", input);
1114 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
1115 input, inputlen);
1116 WG_DUMP_HASH("tmp1", tmp1);
1117 one[0] = 1;
1118 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1119 one, sizeof(one));
1120 WG_DUMP_HASH("out1", out1);
1121 if (out2 == NULL)
1122 return;
1123 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
1124 tmp2[WG_KDF_OUTPUT_LEN] = 2;
1125 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1126 tmp2, sizeof(tmp2));
1127 WG_DUMP_HASH("out2", out2);
1128 if (out3 == NULL)
1129 return;
1130 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
1131 tmp2[WG_KDF_OUTPUT_LEN] = 3;
1132 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1133 tmp2, sizeof(tmp2));
1134 WG_DUMP_HASH("out3", out3);
1135 }
1136
1137 static void __noinline
1138 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
1139 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1140 const uint8_t local_key[WG_STATIC_KEY_LEN],
1141 const uint8_t remote_key[WG_STATIC_KEY_LEN])
1142 {
1143 uint8_t dhout[WG_DH_OUTPUT_LEN];
1144
1145 wg_algo_dh(dhout, local_key, remote_key);
1146 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1147
1148 WG_DUMP_HASH("dhout", dhout);
1149 WG_DUMP_HASH("ckey", ckey);
1150 if (cipher_key != NULL)
1151 WG_DUMP_HASH("cipher_key", cipher_key);
1152 }
1153
1154 static void
1155 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1156 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1157 const uint8_t auth[], size_t authlen)
1158 {
1159 uint8_t nonce[(32 + 64) / 8] = {0};
1160 long long unsigned int outsize;
1161 int error __diagused;
1162
1163 le64enc(&nonce[4], counter);
1164
1165 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1166 plainsize, auth, authlen, NULL, nonce, key);
1167 KASSERT(error == 0);
1168 KASSERT(outsize == expected_outsize);
1169 }
1170
1171 static int
1172 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1173 const uint64_t counter, const uint8_t encrypted[],
1174 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1175 {
1176 uint8_t nonce[(32 + 64) / 8] = {0};
1177 long long unsigned int outsize;
1178 int error;
1179
1180 le64enc(&nonce[4], counter);
1181
1182 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1183 encrypted, encryptedsize, auth, authlen, nonce, key);
1184 if (error == 0)
1185 KASSERT(outsize == expected_outsize);
1186 return error;
1187 }
1188
1189 static void
1190 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1191 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1192 const uint8_t auth[], size_t authlen,
1193 const uint8_t nonce[WG_SALT_LEN])
1194 {
1195 long long unsigned int outsize;
1196 int error __diagused;
1197
1198 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1199 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1200 plain, plainsize, auth, authlen, NULL, nonce, key);
1201 KASSERT(error == 0);
1202 KASSERT(outsize == expected_outsize);
1203 }
1204
1205 static int
1206 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1207 const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
1208 const uint8_t auth[], size_t authlen,
1209 const uint8_t nonce[WG_SALT_LEN])
1210 {
1211 long long unsigned int outsize;
1212 int error;
1213
1214 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1215 encrypted, encryptedsize, auth, authlen, nonce, key);
1216 if (error == 0)
1217 KASSERT(outsize == expected_outsize);
1218 return error;
1219 }
1220
1221 static void
1222 wg_algo_tai64n(wg_timestamp_t timestamp)
1223 {
1224 struct timespec ts;
1225
1226 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1227 getnanotime(&ts);
1228 /* TAI64 label in external TAI64 format */
1229 be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
1230 /* second beginning from 1970 TAI */
1231 be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
1232 /* nanosecond in big-endian format */
1233 be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
1234 }
1235
1236 /*
1237 * wg_get_stable_session(wgp, psref)
1238 *
1239 * Get a passive reference to the current stable session, or
1240 * return NULL if there is no current stable session.
1241 *
1242 * The pointer is always there but the session is not necessarily
1243 * ESTABLISHED; if it is not ESTABLISHED, return NULL. However,
1244 * the session may transition from ESTABLISHED to DESTROYING while
1245 * holding the passive reference.
1246 */
1247 static struct wg_session *
1248 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1249 {
1250 int s;
1251 struct wg_session *wgs;
1252
1253 s = pserialize_read_enter();
1254 wgs = atomic_load_consume(&wgp->wgp_session_stable);
1255 if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
1256 wgs = NULL;
1257 else
1258 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1259 pserialize_read_exit(s);
1260
1261 return wgs;
1262 }
1263
1264 static void
1265 wg_put_session(struct wg_session *wgs, struct psref *psref)
1266 {
1267
1268 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1269 }
1270
1271 static void
1272 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1273 {
1274 struct wg_peer *wgp = wgs->wgs_peer;
1275 struct wg_session *wgs0 __diagused;
1276 void *garbage;
1277
1278 KASSERT(mutex_owned(wgp->wgp_lock));
1279 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1280
1281 /* Remove the session from the table. */
1282 wgs0 = thmap_del(wg->wg_sessions_byindex,
1283 &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1284 KASSERT(wgs0 == wgs);
1285 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1286
1287 /* Wait for passive references to drain. */
1288 pserialize_perform(wgp->wgp_psz);
1289 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1290
1291 /*
1292 * Free memory, zero state, and transition to UNKNOWN. We have
1293 * exclusive access to the session now, so there is no need for
1294 * an atomic store.
1295 */
1296 thmap_gc(wg->wg_sessions_byindex, garbage);
1297 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_UNKNOWN\n",
1298 wgs->wgs_local_index, wgs->wgs_remote_index);
1299 wgs->wgs_local_index = 0;
1300 wgs->wgs_remote_index = 0;
1301 wg_clear_states(wgs);
1302 wgs->wgs_state = WGS_STATE_UNKNOWN;
1303 }
1304
1305 /*
1306 * wg_get_session_index(wg, wgs)
1307 *
1308 * Choose a session index for wgs->wgs_local_index, and store it
1309 * in wg's table of sessions by index.
1310 *
1311 * wgs must be the unstable session of its peer, and must be
1312 * transitioning out of the UNKNOWN state.
1313 */
1314 static void
1315 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1316 {
1317 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1318 struct wg_session *wgs0;
1319 uint32_t index;
1320
1321 KASSERT(mutex_owned(wgp->wgp_lock));
1322 KASSERT(wgs == wgp->wgp_session_unstable);
1323 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1324 wgs->wgs_state);
1325
1326 do {
1327 /* Pick a uniform random index. */
1328 index = cprng_strong32();
1329
1330 /* Try to take it. */
1331 wgs->wgs_local_index = index;
1332 wgs0 = thmap_put(wg->wg_sessions_byindex,
1333 &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1334
1335 /* If someone else beat us, start over. */
1336 } while (__predict_false(wgs0 != wgs));
1337 }
1338
1339 /*
1340 * wg_put_session_index(wg, wgs)
1341 *
1342 * Remove wgs from the table of sessions by index, wait for any
1343 * passive references to drain, and transition the session to the
1344 * UNKNOWN state.
1345 *
1346 * wgs must be the unstable session of its peer, and must not be
1347 * UNKNOWN or ESTABLISHED.
1348 */
1349 static void
1350 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1351 {
1352 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1353
1354 KASSERT(mutex_owned(wgp->wgp_lock));
1355 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1356 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1357
1358 wg_destroy_session(wg, wgs);
1359 psref_target_init(&wgs->wgs_psref, wg_psref_class);
1360 }
1361
1362 /*
1363 * Handshake patterns
1364 *
1365 * [W] 5: "These messages use the "IK" pattern from Noise"
1366 * [N] 7.5. Interactive handshake patterns (fundamental)
1367 * "The first character refers to the initiators static key:"
1368 * "I = Static key for initiator Immediately transmitted to responder,
1369 * despite reduced or absent identity hiding"
1370 * "The second character refers to the responders static key:"
1371 * "K = Static key for responder Known to initiator"
1372 * "IK:
1373 * <- s
1374 * ...
1375 * -> e, es, s, ss
1376 * <- e, ee, se"
1377 * [N] 9.4. Pattern modifiers
1378 * "IKpsk2:
1379 * <- s
1380 * ...
1381 * -> e, es, s, ss
1382 * <- e, ee, se, psk"
1383 */
1384 static void
1385 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1386 struct wg_session *wgs, struct wg_msg_init *wgmi)
1387 {
1388 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1389 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1390 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1391 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1392 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1393
1394 KASSERT(mutex_owned(wgp->wgp_lock));
1395 KASSERT(wgs == wgp->wgp_session_unstable);
1396 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
1397 wgs->wgs_state);
1398
1399 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1400 wgmi->wgmi_sender = wgs->wgs_local_index;
1401
1402 /* [W] 5.4.2: First Message: Initiator to Responder */
1403
1404 /* Ci := HASH(CONSTRUCTION) */
1405 /* Hi := HASH(Ci || IDENTIFIER) */
1406 wg_init_key_and_hash(ckey, hash);
1407 /* Hi := HASH(Hi || Sr^pub) */
1408 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1409
1410 WG_DUMP_HASH("hash", hash);
1411
1412 /* [N] 2.2: "e" */
1413 /* Ei^priv, Ei^pub := DH-GENERATE() */
1414 wg_algo_generate_keypair(pubkey, privkey);
1415 /* Ci := KDF1(Ci, Ei^pub) */
1416 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1417 /* msg.ephemeral := Ei^pub */
1418 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1419 /* Hi := HASH(Hi || msg.ephemeral) */
1420 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1421
1422 WG_DUMP_HASH("ckey", ckey);
1423 WG_DUMP_HASH("hash", hash);
1424
1425 /* [N] 2.2: "es" */
1426 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1427 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1428
1429 /* [N] 2.2: "s" */
1430 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1431 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1432 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1433 hash, sizeof(hash));
1434 /* Hi := HASH(Hi || msg.static) */
1435 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1436
1437 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1438
1439 /* [N] 2.2: "ss" */
1440 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1441 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1442
1443 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1444 wg_timestamp_t timestamp;
1445 wg_algo_tai64n(timestamp);
1446 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1447 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1448 /* Hi := HASH(Hi || msg.timestamp) */
1449 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1450
1451 /* [W] 5.4.4 Cookie MACs */
1452 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1453 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1454 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1455 /* Need mac1 to decrypt a cookie from a cookie message */
1456 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1457 sizeof(wgp->wgp_last_sent_mac1));
1458 wgp->wgp_last_sent_mac1_valid = true;
1459
1460 if (wgp->wgp_latest_cookie_time == 0 ||
1461 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1462 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1463 else {
1464 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1465 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1466 (const uint8_t *)wgmi,
1467 offsetof(struct wg_msg_init, wgmi_mac2),
1468 NULL, 0);
1469 }
1470
1471 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1472 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1473 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1474 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1475 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1476 }
1477
1478 static void __noinline
1479 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1480 const struct sockaddr *src)
1481 {
1482 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1483 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1484 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1485 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1486 struct wg_peer *wgp;
1487 struct wg_session *wgs;
1488 int error, ret;
1489 struct psref psref_peer;
1490 uint8_t mac1[WG_MAC_LEN];
1491
1492 WG_TRACE("init msg received");
1493
1494 wg_algo_mac_mac1(mac1, sizeof(mac1),
1495 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1496 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1497
1498 /*
1499 * [W] 5.3: Denial of Service Mitigation & Cookies
1500 * "the responder, ..., must always reject messages with an invalid
1501 * msg.mac1"
1502 */
1503 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1504 WG_DLOG("mac1 is invalid\n");
1505 return;
1506 }
1507
1508 /*
1509 * [W] 5.4.2: First Message: Initiator to Responder
1510 * "When the responder receives this message, it does the same
1511 * operations so that its final state variables are identical,
1512 * replacing the operands of the DH function to produce equivalent
1513 * values."
1514 * Note that the following comments of operations are just copies of
1515 * the initiator's ones.
1516 */
1517
1518 /* Ci := HASH(CONSTRUCTION) */
1519 /* Hi := HASH(Ci || IDENTIFIER) */
1520 wg_init_key_and_hash(ckey, hash);
1521 /* Hi := HASH(Hi || Sr^pub) */
1522 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1523
1524 /* [N] 2.2: "e" */
1525 /* Ci := KDF1(Ci, Ei^pub) */
1526 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1527 sizeof(wgmi->wgmi_ephemeral));
1528 /* Hi := HASH(Hi || msg.ephemeral) */
1529 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1530
1531 WG_DUMP_HASH("ckey", ckey);
1532
1533 /* [N] 2.2: "es" */
1534 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1535 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1536
1537 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1538
1539 /* [N] 2.2: "s" */
1540 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1541 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1542 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1543 if (error != 0) {
1544 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1545 "%s: wg_algo_aead_dec for secret key failed\n",
1546 if_name(&wg->wg_if));
1547 return;
1548 }
1549 /* Hi := HASH(Hi || msg.static) */
1550 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1551
1552 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1553 if (wgp == NULL) {
1554 WG_DLOG("peer not found\n");
1555 return;
1556 }
1557
1558 /*
1559 * Lock the peer to serialize access to cookie state.
1560 *
1561 * XXX Can we safely avoid holding the lock across DH? Take it
1562 * just to verify mac2 and then unlock/DH/lock?
1563 */
1564 mutex_enter(wgp->wgp_lock);
1565
1566 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1567 WG_TRACE("under load");
1568 /*
1569 * [W] 5.3: Denial of Service Mitigation & Cookies
1570 * "the responder, ..., and when under load may reject messages
1571 * with an invalid msg.mac2. If the responder receives a
1572 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1573 * and is under load, it may respond with a cookie reply
1574 * message"
1575 */
1576 uint8_t zero[WG_MAC_LEN] = {0};
1577 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1578 WG_TRACE("sending a cookie message: no cookie included");
1579 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1580 wgmi->wgmi_mac1, src);
1581 goto out;
1582 }
1583 if (!wgp->wgp_last_sent_cookie_valid) {
1584 WG_TRACE("sending a cookie message: no cookie sent ever");
1585 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1586 wgmi->wgmi_mac1, src);
1587 goto out;
1588 }
1589 uint8_t mac2[WG_MAC_LEN];
1590 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1591 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1592 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1593 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1594 WG_DLOG("mac2 is invalid\n");
1595 goto out;
1596 }
1597 WG_TRACE("under load, but continue to sending");
1598 }
1599
1600 /* [N] 2.2: "ss" */
1601 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1602 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1603
1604 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1605 wg_timestamp_t timestamp;
1606 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1607 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1608 hash, sizeof(hash));
1609 if (error != 0) {
1610 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1611 "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
1612 if_name(&wg->wg_if), wgp->wgp_name);
1613 goto out;
1614 }
1615 /* Hi := HASH(Hi || msg.timestamp) */
1616 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1617
1618 /*
1619 * [W] 5.1 "The responder keeps track of the greatest timestamp
1620 * received per peer and discards packets containing
1621 * timestamps less than or equal to it."
1622 */
1623 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1624 sizeof(timestamp));
1625 if (ret <= 0) {
1626 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1627 "%s: peer %s: invalid init msg: timestamp is old\n",
1628 if_name(&wg->wg_if), wgp->wgp_name);
1629 goto out;
1630 }
1631 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1632
1633 /*
1634 * Message is good -- we're committing to handle it now, unless
1635 * we were already initiating a session.
1636 */
1637 wgs = wgp->wgp_session_unstable;
1638 switch (wgs->wgs_state) {
1639 case WGS_STATE_UNKNOWN: /* new session initiated by peer */
1640 break;
1641 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, drop */
1642 /* XXX Who wins if both sides send INIT? */
1643 WG_TRACE("Session already initializing, ignoring the message");
1644 goto out;
1645 case WGS_STATE_INIT_PASSIVE: /* peer is retrying, start over */
1646 WG_TRACE("Session already initializing, destroying old states");
1647 /*
1648 * XXX Avoid this -- just resend our response -- if the
1649 * INIT message is identical to the previous one.
1650 */
1651 wg_put_session_index(wg, wgs);
1652 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1653 wgs->wgs_state);
1654 break;
1655 case WGS_STATE_ESTABLISHED: /* can't happen */
1656 panic("unstable session can't be established");
1657 case WGS_STATE_DESTROYING: /* rekey initiated by peer */
1658 WG_TRACE("Session destroying, but force to clear");
1659 wg_put_session_index(wg, wgs);
1660 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1661 wgs->wgs_state);
1662 break;
1663 default:
1664 panic("invalid session state: %d", wgs->wgs_state);
1665 }
1666
1667 /*
1668 * Assign a fresh session index.
1669 */
1670 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1671 wgs->wgs_state);
1672 wg_get_session_index(wg, wgs);
1673
1674 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1675 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1676 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1677 sizeof(wgmi->wgmi_ephemeral));
1678
1679 wg_update_endpoint_if_necessary(wgp, src);
1680
1681 /*
1682 * Count the time of the INIT message as the time of
1683 * establishment -- this is used to decide when to erase keys,
1684 * and we want to start counting as soon as we have generated
1685 * keys.
1686 *
1687 * No need for atomic store because the session can't be used
1688 * in the rx or tx paths yet -- not until we transition to
1689 * INTI_PASSIVE.
1690 */
1691 wgs->wgs_time_established = time_uptime32;
1692 wg_schedule_session_dtor_timer(wgp);
1693
1694 /*
1695 * Respond to the initiator with our ephemeral public key.
1696 */
1697 (void)wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1698
1699 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
1700 " calculate keys as responder\n",
1701 wgs->wgs_local_index, wgs->wgs_remote_index);
1702 wg_calculate_keys(wgs, false);
1703 wg_clear_states(wgs);
1704
1705 /*
1706 * Session is ready to receive data now that we have received
1707 * the peer initiator's ephemeral key pair, generated our
1708 * responder's ephemeral key pair, and derived a session key.
1709 *
1710 * Transition from UNKNOWN to INIT_PASSIVE to publish it to the
1711 * data rx path, wg_handle_msg_data, where the
1712 * atomic_load_acquire matching this atomic_store_release
1713 * happens.
1714 *
1715 * (Session is not, however, ready to send data until the peer
1716 * has acknowledged our response by sending its first data
1717 * packet. So don't swap the sessions yet.)
1718 */
1719 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_INIT_PASSIVE\n",
1720 wgs->wgs_local_index, wgs->wgs_remote_index);
1721 atomic_store_release(&wgs->wgs_state, WGS_STATE_INIT_PASSIVE);
1722 WG_TRACE("WGS_STATE_INIT_PASSIVE");
1723
1724 out:
1725 mutex_exit(wgp->wgp_lock);
1726 wg_put_peer(wgp, &psref_peer);
1727 }
1728
1729 static struct socket *
1730 wg_get_so_by_af(struct wg_softc *wg, const int af)
1731 {
1732
1733 switch (af) {
1734 #ifdef INET
1735 case AF_INET:
1736 return wg->wg_so4;
1737 #endif
1738 #ifdef INET6
1739 case AF_INET6:
1740 return wg->wg_so6;
1741 #endif
1742 default:
1743 panic("wg: no such af: %d", af);
1744 }
1745 }
1746
1747 static struct socket *
1748 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1749 {
1750
1751 return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
1752 }
1753
1754 static struct wg_sockaddr *
1755 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1756 {
1757 struct wg_sockaddr *wgsa;
1758 int s;
1759
1760 s = pserialize_read_enter();
1761 wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1762 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1763 pserialize_read_exit(s);
1764
1765 return wgsa;
1766 }
1767
1768 static void
1769 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1770 {
1771
1772 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1773 }
1774
1775 static int
1776 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1777 {
1778 int error;
1779 struct socket *so;
1780 struct psref psref;
1781 struct wg_sockaddr *wgsa;
1782
1783 wgsa = wg_get_endpoint_sa(wgp, &psref);
1784 so = wg_get_so_by_peer(wgp, wgsa);
1785 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1786 wg_put_sa(wgp, wgsa, &psref);
1787
1788 return error;
1789 }
1790
1791 static int
1792 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1793 {
1794 int error;
1795 struct mbuf *m;
1796 struct wg_msg_init *wgmi;
1797 struct wg_session *wgs;
1798
1799 KASSERT(mutex_owned(wgp->wgp_lock));
1800
1801 wgs = wgp->wgp_session_unstable;
1802 /* XXX pull dispatch out into wg_task_send_init_message */
1803 switch (wgs->wgs_state) {
1804 case WGS_STATE_UNKNOWN: /* new session initiated by us */
1805 break;
1806 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, stop */
1807 WG_TRACE("Session already initializing, skip starting new one");
1808 return EBUSY;
1809 case WGS_STATE_INIT_PASSIVE: /* peer was trying -- XXX what now? */
1810 WG_TRACE("Session already initializing, waiting for peer");
1811 return EBUSY;
1812 case WGS_STATE_ESTABLISHED: /* can't happen */
1813 panic("unstable session can't be established");
1814 case WGS_STATE_DESTROYING: /* rekey initiated by us too early */
1815 WG_TRACE("Session destroying");
1816 wg_put_session_index(wg, wgs);
1817 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1818 wgs->wgs_state);
1819 break;
1820 }
1821
1822 /*
1823 * Assign a fresh session index.
1824 */
1825 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1826 wgs->wgs_state);
1827 wg_get_session_index(wg, wgs);
1828
1829 /*
1830 * We have initiated a session. Transition to INIT_ACTIVE.
1831 * This doesn't publish it for use in the data rx path,
1832 * wg_handle_msg_data, or in the data tx path, wg_output -- we
1833 * have to wait for the peer to respond with their ephemeral
1834 * public key before we can derive a session key for tx/rx.
1835 * Hence only atomic_store_relaxed.
1836 */
1837 WG_DLOG("session[L=%"PRIx32" R=(unknown)] -> WGS_STATE_INIT_ACTIVE\n",
1838 wgs->wgs_local_index);
1839 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_INIT_ACTIVE);
1840
1841 m = m_gethdr(M_WAIT, MT_DATA);
1842 if (sizeof(*wgmi) > MHLEN) {
1843 m_clget(m, M_WAIT);
1844 CTASSERT(sizeof(*wgmi) <= MCLBYTES);
1845 }
1846 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1847 wgmi = mtod(m, struct wg_msg_init *);
1848 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1849
1850 error = wg->wg_ops->send_hs_msg(wgp, m);
1851 if (error == 0) {
1852 WG_TRACE("init msg sent");
1853
1854 if (wgp->wgp_handshake_start_time == 0)
1855 wgp->wgp_handshake_start_time = time_uptime;
1856 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1857 MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
1858 } else {
1859 wg_put_session_index(wg, wgs);
1860 /* Initiation failed; toss packet waiting for it if any. */
1861 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
1862 m_freem(m);
1863 }
1864
1865 return error;
1866 }
1867
1868 static void
1869 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1870 struct wg_session *wgs, struct wg_msg_resp *wgmr,
1871 const struct wg_msg_init *wgmi)
1872 {
1873 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1874 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1875 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1876 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1877 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1878
1879 KASSERT(mutex_owned(wgp->wgp_lock));
1880 KASSERT(wgs == wgp->wgp_session_unstable);
1881 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1882 wgs->wgs_state);
1883
1884 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1885 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1886
1887 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
1888 wgmr->wgmr_sender = wgs->wgs_local_index;
1889 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1890
1891 /* [W] 5.4.3 Second Message: Responder to Initiator */
1892
1893 /* [N] 2.2: "e" */
1894 /* Er^priv, Er^pub := DH-GENERATE() */
1895 wg_algo_generate_keypair(pubkey, privkey);
1896 /* Cr := KDF1(Cr, Er^pub) */
1897 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1898 /* msg.ephemeral := Er^pub */
1899 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1900 /* Hr := HASH(Hr || msg.ephemeral) */
1901 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1902
1903 WG_DUMP_HASH("ckey", ckey);
1904 WG_DUMP_HASH("hash", hash);
1905
1906 /* [N] 2.2: "ee" */
1907 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1908 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1909
1910 /* [N] 2.2: "se" */
1911 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1912 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1913
1914 /* [N] 9.2: "psk" */
1915 {
1916 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1917 /* Cr, r, k := KDF3(Cr, Q) */
1918 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1919 sizeof(wgp->wgp_psk));
1920 /* Hr := HASH(Hr || r) */
1921 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1922 }
1923
1924 /* msg.empty := AEAD(k, 0, e, Hr) */
1925 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1926 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1927 /* Hr := HASH(Hr || msg.empty) */
1928 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1929
1930 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1931
1932 /* [W] 5.4.4: Cookie MACs */
1933 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1934 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1935 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1936 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1937 /* Need mac1 to decrypt a cookie from a cookie message */
1938 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1939 sizeof(wgp->wgp_last_sent_mac1));
1940 wgp->wgp_last_sent_mac1_valid = true;
1941
1942 if (wgp->wgp_latest_cookie_time == 0 ||
1943 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1944 /* msg.mac2 := 0^16 */
1945 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1946 else {
1947 /* msg.mac2 := MAC(Lm, msg_b) */
1948 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1949 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1950 (const uint8_t *)wgmr,
1951 offsetof(struct wg_msg_resp, wgmr_mac2),
1952 NULL, 0);
1953 }
1954
1955 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1956 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1957 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1958 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1959 wgs->wgs_remote_index = wgmi->wgmi_sender;
1960 WG_DLOG("sender=%x\n", wgs->wgs_local_index);
1961 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1962 }
1963
1964 static void
1965 wg_swap_sessions(struct wg_peer *wgp)
1966 {
1967 struct wg_session *wgs, *wgs_prev;
1968
1969 KASSERT(mutex_owned(wgp->wgp_lock));
1970
1971 wgs = wgp->wgp_session_unstable;
1972 KASSERTMSG(wgs->wgs_state == WGS_STATE_ESTABLISHED, "state=%d",
1973 wgs->wgs_state);
1974
1975 wgs_prev = wgp->wgp_session_stable;
1976 KASSERTMSG((wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
1977 wgs_prev->wgs_state == WGS_STATE_UNKNOWN),
1978 "state=%d", wgs_prev->wgs_state);
1979 atomic_store_release(&wgp->wgp_session_stable, wgs);
1980 wgp->wgp_session_unstable = wgs_prev;
1981 }
1982
1983 static void __noinline
1984 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1985 const struct sockaddr *src)
1986 {
1987 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1988 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1989 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1990 struct wg_peer *wgp;
1991 struct wg_session *wgs;
1992 struct psref psref;
1993 int error;
1994 uint8_t mac1[WG_MAC_LEN];
1995 struct wg_session *wgs_prev;
1996 struct mbuf *m;
1997
1998 wg_algo_mac_mac1(mac1, sizeof(mac1),
1999 wg->wg_pubkey, sizeof(wg->wg_pubkey),
2000 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
2001
2002 /*
2003 * [W] 5.3: Denial of Service Mitigation & Cookies
2004 * "the responder, ..., must always reject messages with an invalid
2005 * msg.mac1"
2006 */
2007 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
2008 WG_DLOG("mac1 is invalid\n");
2009 return;
2010 }
2011
2012 WG_TRACE("resp msg received");
2013 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
2014 if (wgs == NULL) {
2015 WG_TRACE("No session found");
2016 return;
2017 }
2018
2019 wgp = wgs->wgs_peer;
2020
2021 mutex_enter(wgp->wgp_lock);
2022
2023 /* If we weren't waiting for a handshake response, drop it. */
2024 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
2025 WG_TRACE("peer sent spurious handshake response, ignoring");
2026 goto out;
2027 }
2028
2029 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
2030 WG_TRACE("under load");
2031 /*
2032 * [W] 5.3: Denial of Service Mitigation & Cookies
2033 * "the responder, ..., and when under load may reject messages
2034 * with an invalid msg.mac2. If the responder receives a
2035 * message with a valid msg.mac1 yet with an invalid msg.mac2,
2036 * and is under load, it may respond with a cookie reply
2037 * message"
2038 */
2039 uint8_t zero[WG_MAC_LEN] = {0};
2040 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
2041 WG_TRACE("sending a cookie message: no cookie included");
2042 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2043 wgmr->wgmr_mac1, src);
2044 goto out;
2045 }
2046 if (!wgp->wgp_last_sent_cookie_valid) {
2047 WG_TRACE("sending a cookie message: no cookie sent ever");
2048 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2049 wgmr->wgmr_mac1, src);
2050 goto out;
2051 }
2052 uint8_t mac2[WG_MAC_LEN];
2053 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
2054 WG_COOKIE_LEN, (const uint8_t *)wgmr,
2055 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
2056 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
2057 WG_DLOG("mac2 is invalid\n");
2058 goto out;
2059 }
2060 WG_TRACE("under load, but continue to sending");
2061 }
2062
2063 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
2064 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
2065
2066 /*
2067 * [W] 5.4.3 Second Message: Responder to Initiator
2068 * "When the initiator receives this message, it does the same
2069 * operations so that its final state variables are identical,
2070 * replacing the operands of the DH function to produce equivalent
2071 * values."
2072 * Note that the following comments of operations are just copies of
2073 * the initiator's ones.
2074 */
2075
2076 /* [N] 2.2: "e" */
2077 /* Cr := KDF1(Cr, Er^pub) */
2078 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
2079 sizeof(wgmr->wgmr_ephemeral));
2080 /* Hr := HASH(Hr || msg.ephemeral) */
2081 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
2082
2083 WG_DUMP_HASH("ckey", ckey);
2084 WG_DUMP_HASH("hash", hash);
2085
2086 /* [N] 2.2: "ee" */
2087 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
2088 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
2089 wgmr->wgmr_ephemeral);
2090
2091 /* [N] 2.2: "se" */
2092 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
2093 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
2094
2095 /* [N] 9.2: "psk" */
2096 {
2097 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
2098 /* Cr, r, k := KDF3(Cr, Q) */
2099 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
2100 sizeof(wgp->wgp_psk));
2101 /* Hr := HASH(Hr || r) */
2102 wg_algo_hash(hash, kdfout, sizeof(kdfout));
2103 }
2104
2105 {
2106 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
2107 /* msg.empty := AEAD(k, 0, e, Hr) */
2108 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
2109 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
2110 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
2111 if (error != 0) {
2112 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2113 "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
2114 if_name(&wg->wg_if), wgp->wgp_name);
2115 goto out;
2116 }
2117 /* Hr := HASH(Hr || msg.empty) */
2118 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
2119 }
2120
2121 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
2122 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
2123 wgs->wgs_remote_index = wgmr->wgmr_sender;
2124 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
2125
2126 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
2127 wgs->wgs_state);
2128 wgs->wgs_time_established = time_uptime32;
2129 wg_schedule_session_dtor_timer(wgp);
2130 wgs->wgs_time_last_data_sent = 0;
2131 wgs->wgs_is_initiator = true;
2132 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
2133 " calculate keys as initiator\n",
2134 wgs->wgs_local_index, wgs->wgs_remote_index);
2135 wg_calculate_keys(wgs, true);
2136 wg_clear_states(wgs);
2137
2138 /*
2139 * Session is ready to receive data now that we have received
2140 * the responder's response.
2141 *
2142 * Transition from INIT_ACTIVE to ESTABLISHED to publish it to
2143 * the data rx path, wg_handle_msg_data.
2144 */
2145 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32" -> WGS_STATE_ESTABLISHED\n",
2146 wgs->wgs_local_index, wgs->wgs_remote_index);
2147 atomic_store_release(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
2148 WG_TRACE("WGS_STATE_ESTABLISHED");
2149
2150 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
2151
2152 /*
2153 * Session is ready to send data now that we have received the
2154 * responder's response.
2155 *
2156 * Swap the sessions to publish the new one as the stable
2157 * session for the data tx path, wg_output.
2158 */
2159 wg_swap_sessions(wgp);
2160 KASSERT(wgs == wgp->wgp_session_stable);
2161 wgs_prev = wgp->wgp_session_unstable;
2162 getnanotime(&wgp->wgp_last_handshake_time);
2163 wgp->wgp_handshake_start_time = 0;
2164 wgp->wgp_last_sent_mac1_valid = false;
2165 wgp->wgp_last_sent_cookie_valid = false;
2166
2167 wg_update_endpoint_if_necessary(wgp, src);
2168
2169 /*
2170 * If we had a data packet queued up, send it; otherwise send a
2171 * keepalive message -- either way we have to send something
2172 * immediately or else the responder will never answer.
2173 */
2174 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
2175 kpreempt_disable();
2176 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
2177 M_SETCTX(m, wgp);
2178 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
2179 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
2180 if_name(&wg->wg_if));
2181 m_freem(m);
2182 }
2183 kpreempt_enable();
2184 } else {
2185 wg_send_keepalive_msg(wgp, wgs);
2186 }
2187
2188 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2189 /*
2190 * Transition ESTABLISHED->DESTROYING. The session
2191 * will remain usable for the data rx path to process
2192 * packets still in flight to us, but we won't use it
2193 * for data tx.
2194 */
2195 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
2196 " -> WGS_STATE_DESTROYING\n",
2197 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
2198 atomic_store_relaxed(&wgs_prev->wgs_state,
2199 WGS_STATE_DESTROYING);
2200 } else {
2201 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2202 "state=%d", wgs_prev->wgs_state);
2203 }
2204
2205 out:
2206 mutex_exit(wgp->wgp_lock);
2207 wg_put_session(wgs, &psref);
2208 }
2209
2210 static int
2211 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
2212 struct wg_session *wgs, const struct wg_msg_init *wgmi)
2213 {
2214 int error;
2215 struct mbuf *m;
2216 struct wg_msg_resp *wgmr;
2217
2218 KASSERT(mutex_owned(wgp->wgp_lock));
2219 KASSERT(wgs == wgp->wgp_session_unstable);
2220 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
2221 wgs->wgs_state);
2222
2223 m = m_gethdr(M_WAIT, MT_DATA);
2224 if (sizeof(*wgmr) > MHLEN) {
2225 m_clget(m, M_WAIT);
2226 CTASSERT(sizeof(*wgmr) <= MCLBYTES);
2227 }
2228 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
2229 wgmr = mtod(m, struct wg_msg_resp *);
2230 wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
2231
2232 error = wg->wg_ops->send_hs_msg(wgp, m);
2233 if (error == 0)
2234 WG_TRACE("resp msg sent");
2235 return error;
2236 }
2237
2238 static struct wg_peer *
2239 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
2240 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
2241 {
2242 struct wg_peer *wgp;
2243
2244 int s = pserialize_read_enter();
2245 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
2246 if (wgp != NULL)
2247 wg_get_peer(wgp, psref);
2248 pserialize_read_exit(s);
2249
2250 return wgp;
2251 }
2252
2253 static void
2254 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
2255 struct wg_msg_cookie *wgmc, const uint32_t sender,
2256 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
2257 {
2258 uint8_t cookie[WG_COOKIE_LEN];
2259 uint8_t key[WG_HASH_LEN];
2260 uint8_t addr[sizeof(struct in6_addr)];
2261 size_t addrlen;
2262 uint16_t uh_sport; /* be */
2263
2264 KASSERT(mutex_owned(wgp->wgp_lock));
2265
2266 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
2267 wgmc->wgmc_receiver = sender;
2268 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
2269
2270 /*
2271 * [W] 5.4.7: Under Load: Cookie Reply Message
2272 * "The secret variable, Rm, changes every two minutes to a
2273 * random value"
2274 */
2275 if ((time_uptime - wgp->wgp_last_cookiesecret_time) >
2276 WG_COOKIESECRET_TIME) {
2277 cprng_strong(kern_cprng, wgp->wgp_cookiesecret,
2278 sizeof(wgp->wgp_cookiesecret), 0);
2279 wgp->wgp_last_cookiesecret_time = time_uptime;
2280 }
2281
2282 switch (src->sa_family) {
2283 case AF_INET: {
2284 const struct sockaddr_in *sin = satocsin(src);
2285 addrlen = sizeof(sin->sin_addr);
2286 memcpy(addr, &sin->sin_addr, addrlen);
2287 uh_sport = sin->sin_port;
2288 break;
2289 }
2290 #ifdef INET6
2291 case AF_INET6: {
2292 const struct sockaddr_in6 *sin6 = satocsin6(src);
2293 addrlen = sizeof(sin6->sin6_addr);
2294 memcpy(addr, &sin6->sin6_addr, addrlen);
2295 uh_sport = sin6->sin6_port;
2296 break;
2297 }
2298 #endif
2299 default:
2300 panic("invalid af=%d", src->sa_family);
2301 }
2302
2303 wg_algo_mac(cookie, sizeof(cookie),
2304 wgp->wgp_cookiesecret, sizeof(wgp->wgp_cookiesecret),
2305 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2306 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2307 sizeof(wg->wg_pubkey));
2308 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2309 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2310
2311 /* Need to store to calculate mac2 */
2312 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2313 wgp->wgp_last_sent_cookie_valid = true;
2314 }
2315
2316 static int
2317 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2318 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
2319 const struct sockaddr *src)
2320 {
2321 int error;
2322 struct mbuf *m;
2323 struct wg_msg_cookie *wgmc;
2324
2325 KASSERT(mutex_owned(wgp->wgp_lock));
2326
2327 m = m_gethdr(M_WAIT, MT_DATA);
2328 if (sizeof(*wgmc) > MHLEN) {
2329 m_clget(m, M_WAIT);
2330 CTASSERT(sizeof(*wgmc) <= MCLBYTES);
2331 }
2332 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2333 wgmc = mtod(m, struct wg_msg_cookie *);
2334 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2335
2336 error = wg->wg_ops->send_hs_msg(wgp, m);
2337 if (error == 0)
2338 WG_TRACE("cookie msg sent");
2339 return error;
2340 }
2341
2342 static bool
2343 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2344 {
2345 #ifdef WG_DEBUG_PARAMS
2346 if (wg_force_underload)
2347 return true;
2348 #endif
2349
2350 /*
2351 * XXX we don't have a means of a load estimation. The purpose of
2352 * the mechanism is a DoS mitigation, so we consider frequent handshake
2353 * messages as (a kind of) load; if a message of the same type comes
2354 * to a peer within 1 second, we consider we are under load.
2355 */
2356 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2357 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2358 return (time_uptime - last) == 0;
2359 }
2360
2361 static void
2362 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2363 {
2364
2365 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2366
2367 /*
2368 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2369 */
2370 if (initiator) {
2371 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2372 wgs->wgs_chaining_key, NULL, 0);
2373 } else {
2374 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2375 wgs->wgs_chaining_key, NULL, 0);
2376 }
2377 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2378 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2379 }
2380
2381 static uint64_t
2382 wg_session_get_send_counter(struct wg_session *wgs)
2383 {
2384 #ifdef __HAVE_ATOMIC64_LOADSTORE
2385 return atomic_load_relaxed(&wgs->wgs_send_counter);
2386 #else
2387 uint64_t send_counter;
2388
2389 mutex_enter(&wgs->wgs_send_counter_lock);
2390 send_counter = wgs->wgs_send_counter;
2391 mutex_exit(&wgs->wgs_send_counter_lock);
2392
2393 return send_counter;
2394 #endif
2395 }
2396
2397 static uint64_t
2398 wg_session_inc_send_counter(struct wg_session *wgs)
2399 {
2400 #ifdef __HAVE_ATOMIC64_LOADSTORE
2401 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2402 #else
2403 uint64_t send_counter;
2404
2405 mutex_enter(&wgs->wgs_send_counter_lock);
2406 send_counter = wgs->wgs_send_counter++;
2407 mutex_exit(&wgs->wgs_send_counter_lock);
2408
2409 return send_counter;
2410 #endif
2411 }
2412
2413 static void
2414 wg_clear_states(struct wg_session *wgs)
2415 {
2416
2417 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2418
2419 wgs->wgs_send_counter = 0;
2420 sliwin_reset(&wgs->wgs_recvwin->window);
2421
2422 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2423 wgs_clear(handshake_hash);
2424 wgs_clear(chaining_key);
2425 wgs_clear(ephemeral_key_pub);
2426 wgs_clear(ephemeral_key_priv);
2427 wgs_clear(ephemeral_key_peer);
2428 #undef wgs_clear
2429 }
2430
2431 static struct wg_session *
2432 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2433 struct psref *psref)
2434 {
2435 struct wg_session *wgs;
2436
2437 int s = pserialize_read_enter();
2438 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2439 if (wgs != NULL) {
2440 uint32_t oindex __diagused =
2441 atomic_load_relaxed(&wgs->wgs_local_index);
2442 KASSERTMSG(index == oindex,
2443 "index=%"PRIx32" wgs->wgs_local_index=%"PRIx32,
2444 index, oindex);
2445 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2446 }
2447 pserialize_read_exit(s);
2448
2449 return wgs;
2450 }
2451
2452 static void
2453 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2454 {
2455 struct mbuf *m;
2456
2457 /*
2458 * [W] 6.5 Passive Keepalive
2459 * "A keepalive message is simply a transport data message with
2460 * a zero-length encapsulated encrypted inner-packet."
2461 */
2462 WG_TRACE("");
2463 m = m_gethdr(M_WAIT, MT_DATA);
2464 wg_send_data_msg(wgp, wgs, m);
2465 }
2466
2467 static bool
2468 wg_need_to_send_init_message(struct wg_session *wgs)
2469 {
2470 /*
2471 * [W] 6.2 Transport Message Limits
2472 * "if a peer is the initiator of a current secure session,
2473 * WireGuard will send a handshake initiation message to begin
2474 * a new secure session ... if after receiving a transport data
2475 * message, the current secure session is (REJECT-AFTER-TIME
2476 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2477 * not yet acted upon this event."
2478 */
2479 return wgs->wgs_is_initiator &&
2480 atomic_load_relaxed(&wgs->wgs_time_last_data_sent) == 0 &&
2481 ((time_uptime32 -
2482 atomic_load_relaxed(&wgs->wgs_time_established)) >=
2483 (wg_reject_after_time - wg_keepalive_timeout -
2484 wg_rekey_timeout));
2485 }
2486
2487 static void
2488 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
2489 {
2490
2491 mutex_enter(wgp->wgp_intr_lock);
2492 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2493 if (wgp->wgp_tasks == 0)
2494 /*
2495 * XXX If the current CPU is already loaded -- e.g., if
2496 * there's already a bunch of handshakes queued up --
2497 * consider tossing this over to another CPU to
2498 * distribute the load.
2499 */
2500 workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
2501 wgp->wgp_tasks |= task;
2502 mutex_exit(wgp->wgp_intr_lock);
2503 }
2504
2505 static void
2506 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2507 {
2508 struct wg_sockaddr *wgsa_prev;
2509
2510 WG_TRACE("Changing endpoint");
2511
2512 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2513 wgsa_prev = wgp->wgp_endpoint;
2514 atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2515 wgp->wgp_endpoint0 = wgsa_prev;
2516 atomic_store_release(&wgp->wgp_endpoint_available, true);
2517
2518 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2519 }
2520
2521 static bool
2522 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2523 {
2524 uint16_t packet_len;
2525 const struct ip *ip;
2526
2527 if (__predict_false(decrypted_len < sizeof(*ip))) {
2528 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2529 sizeof(*ip));
2530 return false;
2531 }
2532
2533 ip = (const struct ip *)packet;
2534 if (ip->ip_v == 4)
2535 *af = AF_INET;
2536 else if (ip->ip_v == 6)
2537 *af = AF_INET6;
2538 else {
2539 WG_DLOG("ip_v=%d\n", ip->ip_v);
2540 return false;
2541 }
2542
2543 WG_DLOG("af=%d\n", *af);
2544
2545 switch (*af) {
2546 #ifdef INET
2547 case AF_INET:
2548 packet_len = ntohs(ip->ip_len);
2549 break;
2550 #endif
2551 #ifdef INET6
2552 case AF_INET6: {
2553 const struct ip6_hdr *ip6;
2554
2555 if (__predict_false(decrypted_len < sizeof(*ip6))) {
2556 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2557 sizeof(*ip6));
2558 return false;
2559 }
2560
2561 ip6 = (const struct ip6_hdr *)packet;
2562 packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
2563 break;
2564 }
2565 #endif
2566 default:
2567 return false;
2568 }
2569
2570 if (packet_len > decrypted_len) {
2571 WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
2572 decrypted_len);
2573 return false;
2574 }
2575
2576 return true;
2577 }
2578
2579 static bool
2580 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2581 int af, char *packet)
2582 {
2583 struct sockaddr_storage ss;
2584 struct sockaddr *sa;
2585 struct psref psref;
2586 struct wg_peer *wgp;
2587 bool ok;
2588
2589 /*
2590 * II CRYPTOKEY ROUTING
2591 * "it will only accept it if its source IP resolves in the
2592 * table to the public key used in the secure session for
2593 * decrypting it."
2594 */
2595
2596 if (af == AF_INET) {
2597 const struct ip *ip = (const struct ip *)packet;
2598 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2599 sockaddr_in_init(sin, &ip->ip_src, 0);
2600 sa = sintosa(sin);
2601 #ifdef INET6
2602 } else {
2603 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2604 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2605 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2606 sa = sin6tosa(sin6);
2607 #endif
2608 }
2609
2610 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2611 ok = (wgp == wgp_expected);
2612 if (wgp != NULL)
2613 wg_put_peer(wgp, &psref);
2614
2615 return ok;
2616 }
2617
2618 static void
2619 wg_session_dtor_timer(void *arg)
2620 {
2621 struct wg_peer *wgp = arg;
2622
2623 WG_TRACE("enter");
2624
2625 wg_schedule_session_dtor_timer(wgp);
2626 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2627 }
2628
2629 static void
2630 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2631 {
2632
2633 /*
2634 * If the periodic session destructor is already pending to
2635 * handle the previous session, that's fine -- leave it in
2636 * place; it will be scheduled again.
2637 */
2638 if (callout_pending(&wgp->wgp_session_dtor_timer)) {
2639 WG_DLOG("session dtor already pending\n");
2640 return;
2641 }
2642
2643 WG_DLOG("scheduling session dtor in %u secs\n", wg_reject_after_time);
2644 callout_schedule(&wgp->wgp_session_dtor_timer,
2645 wg_reject_after_time*hz);
2646 }
2647
2648 static bool
2649 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2650 {
2651 if (sa1->sa_family != sa2->sa_family)
2652 return false;
2653
2654 switch (sa1->sa_family) {
2655 #ifdef INET
2656 case AF_INET:
2657 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2658 #endif
2659 #ifdef INET6
2660 case AF_INET6:
2661 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2662 #endif
2663 default:
2664 return false;
2665 }
2666 }
2667
2668 static void
2669 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2670 const struct sockaddr *src)
2671 {
2672 struct wg_sockaddr *wgsa;
2673 struct psref psref;
2674
2675 wgsa = wg_get_endpoint_sa(wgp, &psref);
2676
2677 #ifdef WG_DEBUG_LOG
2678 char oldaddr[128], newaddr[128];
2679 sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2680 sockaddr_format(src, newaddr, sizeof(newaddr));
2681 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2682 #endif
2683
2684 /*
2685 * III: "Since the packet has authenticated correctly, the source IP of
2686 * the outer UDP/IP packet is used to update the endpoint for peer..."
2687 */
2688 if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2689 !sockaddr_port_match(src, wgsatosa(wgsa)))) {
2690 /* XXX We can't change the endpoint twice in a short period */
2691 if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2692 wg_change_endpoint(wgp, src);
2693 }
2694 }
2695
2696 wg_put_sa(wgp, wgsa, &psref);
2697 }
2698
2699 static void __noinline
2700 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2701 const struct sockaddr *src)
2702 {
2703 struct wg_msg_data *wgmd;
2704 char *encrypted_buf = NULL, *decrypted_buf;
2705 size_t encrypted_len, decrypted_len;
2706 struct wg_session *wgs;
2707 struct wg_peer *wgp;
2708 int state;
2709 uint32_t age;
2710 size_t mlen;
2711 struct psref psref;
2712 int error, af;
2713 bool success, free_encrypted_buf = false, ok;
2714 struct mbuf *n;
2715
2716 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2717 wgmd = mtod(m, struct wg_msg_data *);
2718
2719 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2720 WG_TRACE("data");
2721
2722 /* Find the putative session, or drop. */
2723 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2724 if (wgs == NULL) {
2725 WG_TRACE("No session found");
2726 m_freem(m);
2727 return;
2728 }
2729
2730 /*
2731 * We are only ready to handle data when in INIT_PASSIVE,
2732 * ESTABLISHED, or DESTROYING. All transitions out of that
2733 * state dissociate the session index and drain psrefs.
2734 *
2735 * atomic_load_acquire matches atomic_store_release in either
2736 * wg_handle_msg_init or wg_handle_msg_resp. (The transition
2737 * INIT_PASSIVE to ESTABLISHED in wg_task_establish_session
2738 * doesn't make a difference for this rx path.)
2739 */
2740 state = atomic_load_acquire(&wgs->wgs_state);
2741 switch (state) {
2742 case WGS_STATE_UNKNOWN:
2743 case WGS_STATE_INIT_ACTIVE:
2744 WG_TRACE("not yet ready for data");
2745 goto out;
2746 case WGS_STATE_INIT_PASSIVE:
2747 case WGS_STATE_ESTABLISHED:
2748 case WGS_STATE_DESTROYING:
2749 break;
2750 }
2751
2752 /*
2753 * Reject if the session is too old.
2754 */
2755 age = time_uptime32 - atomic_load_relaxed(&wgs->wgs_time_established);
2756 if (__predict_false(age >= wg_reject_after_time)) {
2757 WG_DLOG("session %"PRIx32" too old, %"PRIu32" sec\n",
2758 wgmd->wgmd_receiver, age);
2759 goto out;
2760 }
2761
2762 /*
2763 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2764 * to update the endpoint if authentication succeeds.
2765 */
2766 wgp = wgs->wgs_peer;
2767
2768 /*
2769 * Reject outrageously wrong sequence numbers before doing any
2770 * crypto work or taking any locks.
2771 */
2772 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2773 le64toh(wgmd->wgmd_counter));
2774 if (error) {
2775 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2776 "%s: peer %s: out-of-window packet: %"PRIu64"\n",
2777 if_name(&wg->wg_if), wgp->wgp_name,
2778 le64toh(wgmd->wgmd_counter));
2779 goto out;
2780 }
2781
2782 /* Ensure the payload and authenticator are contiguous. */
2783 mlen = m_length(m);
2784 encrypted_len = mlen - sizeof(*wgmd);
2785 if (encrypted_len < WG_AUTHTAG_LEN) {
2786 WG_DLOG("Short encrypted_len: %zu\n", encrypted_len);
2787 goto out;
2788 }
2789 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2790 if (success) {
2791 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2792 } else {
2793 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2794 if (encrypted_buf == NULL) {
2795 WG_DLOG("failed to allocate encrypted_buf\n");
2796 goto out;
2797 }
2798 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2799 free_encrypted_buf = true;
2800 }
2801 /* m_ensure_contig may change m regardless of its result */
2802 KASSERT(m->m_len >= sizeof(*wgmd));
2803 wgmd = mtod(m, struct wg_msg_data *);
2804
2805 #ifdef WG_DEBUG_PACKET
2806 if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
2807 hexdump(printf, "incoming packet", encrypted_buf,
2808 encrypted_len);
2809 }
2810 #endif
2811 /*
2812 * Get a buffer for the plaintext. Add WG_AUTHTAG_LEN to avoid
2813 * a zero-length buffer (XXX). Drop if plaintext is longer
2814 * than MCLBYTES (XXX).
2815 */
2816 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2817 if (decrypted_len > MCLBYTES) {
2818 /* FIXME handle larger data than MCLBYTES */
2819 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2820 goto out;
2821 }
2822 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2823 if (n == NULL) {
2824 WG_DLOG("wg_get_mbuf failed\n");
2825 goto out;
2826 }
2827 decrypted_buf = mtod(n, char *);
2828
2829 /* Decrypt and verify the packet. */
2830 WG_DLOG("mlen=%zu, encrypted_len=%zu\n", mlen, encrypted_len);
2831 error = wg_algo_aead_dec(decrypted_buf,
2832 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2833 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
2834 encrypted_len, NULL, 0);
2835 if (error != 0) {
2836 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2837 "%s: peer %s: failed to wg_algo_aead_dec\n",
2838 if_name(&wg->wg_if), wgp->wgp_name);
2839 m_freem(n);
2840 goto out;
2841 }
2842 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2843
2844 /* Packet is genuine. Reject it if a replay or just too old. */
2845 mutex_enter(&wgs->wgs_recvwin->lock);
2846 error = sliwin_update(&wgs->wgs_recvwin->window,
2847 le64toh(wgmd->wgmd_counter));
2848 mutex_exit(&wgs->wgs_recvwin->lock);
2849 if (error) {
2850 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2851 "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
2852 if_name(&wg->wg_if), wgp->wgp_name,
2853 le64toh(wgmd->wgmd_counter));
2854 m_freem(n);
2855 goto out;
2856 }
2857
2858 #ifdef WG_DEBUG_PACKET
2859 if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
2860 hexdump(printf, "tkey_recv", wgs->wgs_tkey_recv,
2861 sizeof(wgs->wgs_tkey_recv));
2862 hexdump(printf, "wgmd", wgmd, sizeof(*wgmd));
2863 hexdump(printf, "decrypted_buf", decrypted_buf,
2864 decrypted_len);
2865 }
2866 #endif
2867 /* We're done with m now; free it and chuck the pointers. */
2868 m_freem(m);
2869 m = NULL;
2870 wgmd = NULL;
2871
2872 /*
2873 * The packet is genuine. Update the peer's endpoint if the
2874 * source address changed.
2875 *
2876 * XXX How to prevent DoS by replaying genuine packets from the
2877 * wrong source address?
2878 */
2879 wg_update_endpoint_if_necessary(wgp, src);
2880
2881 /*
2882 * Validate the encapsulated packet header and get the address
2883 * family, or drop.
2884 */
2885 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2886 if (!ok) {
2887 m_freem(n);
2888 goto update_state;
2889 }
2890
2891 /* Submit it into our network stack if routable. */
2892 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2893 if (ok) {
2894 wg->wg_ops->input(&wg->wg_if, n, af);
2895 } else {
2896 char addrstr[INET6_ADDRSTRLEN];
2897 memset(addrstr, 0, sizeof(addrstr));
2898 if (af == AF_INET) {
2899 const struct ip *ip = (const struct ip *)decrypted_buf;
2900 IN_PRINT(addrstr, &ip->ip_src);
2901 #ifdef INET6
2902 } else if (af == AF_INET6) {
2903 const struct ip6_hdr *ip6 =
2904 (const struct ip6_hdr *)decrypted_buf;
2905 IN6_PRINT(addrstr, &ip6->ip6_src);
2906 #endif
2907 }
2908 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2909 "%s: peer %s: invalid source address (%s)\n",
2910 if_name(&wg->wg_if), wgp->wgp_name, addrstr);
2911 m_freem(n);
2912 /*
2913 * The inner address is invalid however the session is valid
2914 * so continue the session processing below.
2915 */
2916 }
2917 n = NULL;
2918
2919 update_state:
2920 /* Update the state machine if necessary. */
2921 if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
2922 /*
2923 * We were waiting for the initiator to send their
2924 * first data transport message, and that has happened.
2925 * Schedule a task to establish this session.
2926 */
2927 wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
2928 } else {
2929 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2930 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2931 }
2932 /*
2933 * [W] 6.5 Passive Keepalive
2934 * "If a peer has received a validly-authenticated transport
2935 * data message (section 5.4.6), but does not have any packets
2936 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2937 * a keepalive message."
2938 */
2939 const uint32_t now = time_uptime32;
2940 const uint32_t time_last_data_sent =
2941 atomic_load_relaxed(&wgs->wgs_time_last_data_sent);
2942 WG_DLOG("time_uptime32=%"PRIu32
2943 " wgs_time_last_data_sent=%"PRIu32"\n",
2944 now, time_last_data_sent);
2945 if ((now - time_last_data_sent) >= wg_keepalive_timeout) {
2946 WG_TRACE("Schedule sending keepalive message");
2947 /*
2948 * We can't send a keepalive message here to avoid
2949 * a deadlock; we already hold the solock of a socket
2950 * that is used to send the message.
2951 */
2952 wg_schedule_peer_task(wgp,
2953 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2954 }
2955 }
2956 out:
2957 wg_put_session(wgs, &psref);
2958 m_freem(m);
2959 if (free_encrypted_buf)
2960 kmem_intr_free(encrypted_buf, encrypted_len);
2961 }
2962
2963 static void __noinline
2964 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2965 {
2966 struct wg_session *wgs;
2967 struct wg_peer *wgp;
2968 struct psref psref;
2969 int error;
2970 uint8_t key[WG_HASH_LEN];
2971 uint8_t cookie[WG_COOKIE_LEN];
2972
2973 WG_TRACE("cookie msg received");
2974
2975 /* Find the putative session. */
2976 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2977 if (wgs == NULL) {
2978 WG_TRACE("No session found");
2979 return;
2980 }
2981
2982 /* Lock the peer so we can update the cookie state. */
2983 wgp = wgs->wgs_peer;
2984 mutex_enter(wgp->wgp_lock);
2985
2986 if (!wgp->wgp_last_sent_mac1_valid) {
2987 WG_TRACE("No valid mac1 sent (or expired)");
2988 goto out;
2989 }
2990
2991 /*
2992 * wgp_last_sent_mac1_valid is only set to true when we are
2993 * transitioning to INIT_ACTIVE or INIT_PASSIVE, and always
2994 * cleared on transition out of them.
2995 */
2996 KASSERTMSG((wgs->wgs_state == WGS_STATE_INIT_ACTIVE ||
2997 wgs->wgs_state == WGS_STATE_INIT_PASSIVE),
2998 "state=%d", wgs->wgs_state);
2999
3000 /* Decrypt the cookie and store it for later handshake retry. */
3001 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
3002 sizeof(wgp->wgp_pubkey));
3003 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
3004 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
3005 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
3006 wgmc->wgmc_salt);
3007 if (error != 0) {
3008 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3009 "%s: peer %s: wg_algo_aead_dec for cookie failed: "
3010 "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
3011 goto out;
3012 }
3013 /*
3014 * [W] 6.6: Interaction with Cookie Reply System
3015 * "it should simply store the decrypted cookie value from the cookie
3016 * reply message, and wait for the expiration of the REKEY-TIMEOUT
3017 * timer for retrying a handshake initiation message."
3018 */
3019 wgp->wgp_latest_cookie_time = time_uptime;
3020 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
3021 out:
3022 mutex_exit(wgp->wgp_lock);
3023 wg_put_session(wgs, &psref);
3024 }
3025
3026 static struct mbuf *
3027 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
3028 {
3029 struct wg_msg wgm;
3030 size_t mbuflen;
3031 size_t msglen;
3032
3033 /*
3034 * Get the mbuf chain length. It is already guaranteed, by
3035 * wg_overudp_cb, to be large enough for a struct wg_msg.
3036 */
3037 mbuflen = m_length(m);
3038 KASSERT(mbuflen >= sizeof(struct wg_msg));
3039
3040 /*
3041 * Copy the message header (32-bit message type) out -- we'll
3042 * worry about contiguity and alignment later.
3043 */
3044 m_copydata(m, 0, sizeof(wgm), &wgm);
3045 switch (le32toh(wgm.wgm_type)) {
3046 case WG_MSG_TYPE_INIT:
3047 msglen = sizeof(struct wg_msg_init);
3048 break;
3049 case WG_MSG_TYPE_RESP:
3050 msglen = sizeof(struct wg_msg_resp);
3051 break;
3052 case WG_MSG_TYPE_COOKIE:
3053 msglen = sizeof(struct wg_msg_cookie);
3054 break;
3055 case WG_MSG_TYPE_DATA:
3056 msglen = sizeof(struct wg_msg_data);
3057 break;
3058 default:
3059 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
3060 "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
3061 le32toh(wgm.wgm_type));
3062 goto error;
3063 }
3064
3065 /* Verify the mbuf chain is long enough for this type of message. */
3066 if (__predict_false(mbuflen < msglen)) {
3067 WG_DLOG("Invalid msg size: mbuflen=%zu type=%u\n", mbuflen,
3068 le32toh(wgm.wgm_type));
3069 goto error;
3070 }
3071
3072 /* Make the message header contiguous if necessary. */
3073 if (__predict_false(m->m_len < msglen)) {
3074 m = m_pullup(m, msglen);
3075 if (m == NULL)
3076 return NULL;
3077 }
3078
3079 return m;
3080
3081 error:
3082 m_freem(m);
3083 return NULL;
3084 }
3085
3086 static void
3087 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
3088 const struct sockaddr *src)
3089 {
3090 struct wg_msg *wgm;
3091
3092 KASSERT(curlwp->l_pflag & LP_BOUND);
3093
3094 m = wg_validate_msg_header(wg, m);
3095 if (__predict_false(m == NULL))
3096 return;
3097
3098 KASSERT(m->m_len >= sizeof(struct wg_msg));
3099 wgm = mtod(m, struct wg_msg *);
3100 switch (le32toh(wgm->wgm_type)) {
3101 case WG_MSG_TYPE_INIT:
3102 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
3103 break;
3104 case WG_MSG_TYPE_RESP:
3105 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
3106 break;
3107 case WG_MSG_TYPE_COOKIE:
3108 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
3109 break;
3110 case WG_MSG_TYPE_DATA:
3111 wg_handle_msg_data(wg, m, src);
3112 /* wg_handle_msg_data frees m for us */
3113 return;
3114 default:
3115 panic("invalid message type: %d", le32toh(wgm->wgm_type));
3116 }
3117
3118 m_freem(m);
3119 }
3120
3121 static void
3122 wg_receive_packets(struct wg_softc *wg, const int af)
3123 {
3124
3125 for (;;) {
3126 int error, flags;
3127 struct socket *so;
3128 struct mbuf *m = NULL;
3129 struct uio dummy_uio;
3130 struct mbuf *paddr = NULL;
3131 struct sockaddr *src;
3132
3133 so = wg_get_so_by_af(wg, af);
3134 flags = MSG_DONTWAIT;
3135 dummy_uio.uio_resid = 1000000000;
3136
3137 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
3138 &flags);
3139 if (error || m == NULL) {
3140 //if (error == EWOULDBLOCK)
3141 return;
3142 }
3143
3144 KASSERT(paddr != NULL);
3145 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
3146 src = mtod(paddr, struct sockaddr *);
3147
3148 wg_handle_packet(wg, m, src);
3149 }
3150 }
3151
3152 static void
3153 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
3154 {
3155
3156 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
3157 }
3158
3159 static void
3160 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
3161 {
3162
3163 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
3164 }
3165
3166 static void
3167 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
3168 {
3169 struct wg_session *wgs;
3170
3171 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
3172
3173 KASSERT(mutex_owned(wgp->wgp_lock));
3174
3175 if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
3176 WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
3177 if_name(&wg->wg_if));
3178 /* XXX should do something? */
3179 return;
3180 }
3181
3182 /*
3183 * If we already have an established session, there's no need
3184 * to initiate a new one -- unless the rekey-after-time or
3185 * rekey-after-messages limits have passed.
3186 */
3187 wgs = wgp->wgp_session_stable;
3188 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3189 !atomic_swap_uint(&wgp->wgp_force_rekey, 0))
3190 return;
3191
3192 /*
3193 * Ensure we're initiating a new session. If the unstable
3194 * session is already INIT_ACTIVE or INIT_PASSIVE, this does
3195 * nothing.
3196 */
3197 wg_send_handshake_msg_init(wg, wgp);
3198 }
3199
3200 static void
3201 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
3202 {
3203 struct wg_session *wgs;
3204
3205 WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
3206
3207 KASSERT(mutex_owned(wgp->wgp_lock));
3208 KASSERT(wgp->wgp_handshake_start_time != 0);
3209
3210 wgs = wgp->wgp_session_unstable;
3211 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
3212 return;
3213
3214 /*
3215 * XXX no real need to assign a new index here, but we do need
3216 * to transition to UNKNOWN temporarily
3217 */
3218 wg_put_session_index(wg, wgs);
3219
3220 /* [W] 6.4 Handshake Initiation Retransmission */
3221 if ((time_uptime - wgp->wgp_handshake_start_time) >
3222 wg_rekey_attempt_time) {
3223 /* Give up handshaking */
3224 wgp->wgp_handshake_start_time = 0;
3225 WG_TRACE("give up");
3226
3227 /*
3228 * If a new data packet comes, handshaking will be retried
3229 * and a new session would be established at that time,
3230 * however we don't want to send pending packets then.
3231 */
3232 wg_purge_pending_packets(wgp);
3233 return;
3234 }
3235
3236 wg_task_send_init_message(wg, wgp);
3237 }
3238
3239 static void
3240 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
3241 {
3242 struct wg_session *wgs, *wgs_prev;
3243 struct mbuf *m;
3244
3245 KASSERT(mutex_owned(wgp->wgp_lock));
3246
3247 wgs = wgp->wgp_session_unstable;
3248 if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
3249 /* XXX Can this happen? */
3250 return;
3251
3252 wgs->wgs_time_last_data_sent = 0;
3253 wgs->wgs_is_initiator = false;
3254
3255 /*
3256 * Session was already ready to receive data. Transition from
3257 * INIT_PASSIVE to ESTABLISHED just so we can swap the
3258 * sessions.
3259 *
3260 * atomic_store_relaxed because this doesn't affect the data rx
3261 * path, wg_handle_msg_data -- changing from INIT_PASSIVE to
3262 * ESTABLISHED makes no difference to the data rx path, and the
3263 * transition to INIT_PASSIVE with store-release already
3264 * published the state needed by the data rx path.
3265 */
3266 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_ESTABLISHED\n",
3267 wgs->wgs_local_index, wgs->wgs_remote_index);
3268 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
3269 WG_TRACE("WGS_STATE_ESTABLISHED");
3270
3271 /*
3272 * Session is ready to send data too now that we have received
3273 * the peer initiator's first data packet.
3274 *
3275 * Swap the sessions to publish the new one as the stable
3276 * session for the data tx path, wg_output.
3277 */
3278 wg_swap_sessions(wgp);
3279 KASSERT(wgs == wgp->wgp_session_stable);
3280 wgs_prev = wgp->wgp_session_unstable;
3281 getnanotime(&wgp->wgp_last_handshake_time);
3282 wgp->wgp_handshake_start_time = 0;
3283 wgp->wgp_last_sent_mac1_valid = false;
3284 wgp->wgp_last_sent_cookie_valid = false;
3285
3286 /* If we had a data packet queued up, send it. */
3287 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
3288 kpreempt_disable();
3289 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
3290 M_SETCTX(m, wgp);
3291 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
3292 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
3293 if_name(&wg->wg_if));
3294 m_freem(m);
3295 }
3296 kpreempt_enable();
3297 }
3298
3299 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
3300 /*
3301 * Transition ESTABLISHED->DESTROYING. The session
3302 * will remain usable for the data rx path to process
3303 * packets still in flight to us, but we won't use it
3304 * for data tx.
3305 */
3306 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
3307 " -> WGS_STATE_DESTROYING\n",
3308 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
3309 atomic_store_relaxed(&wgs_prev->wgs_state,
3310 WGS_STATE_DESTROYING);
3311 } else {
3312 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
3313 "state=%d", wgs_prev->wgs_state);
3314 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
3315 " -> WGS_STATE_UNKNOWN\n",
3316 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
3317 wgs_prev->wgs_local_index = 0; /* paranoia */
3318 wgs_prev->wgs_remote_index = 0; /* paranoia */
3319 wg_clear_states(wgs_prev); /* paranoia */
3320 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
3321 }
3322 }
3323
3324 static void
3325 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
3326 {
3327
3328 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
3329
3330 KASSERT(mutex_owned(wgp->wgp_lock));
3331
3332 if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
3333 pserialize_perform(wgp->wgp_psz);
3334 mutex_exit(wgp->wgp_lock);
3335 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
3336 wg_psref_class);
3337 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
3338 wg_psref_class);
3339 mutex_enter(wgp->wgp_lock);
3340 atomic_store_release(&wgp->wgp_endpoint_changing, 0);
3341 }
3342 }
3343
3344 static void
3345 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
3346 {
3347 struct wg_session *wgs;
3348
3349 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
3350
3351 KASSERT(mutex_owned(wgp->wgp_lock));
3352
3353 wgs = wgp->wgp_session_stable;
3354 if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
3355 return;
3356
3357 wg_send_keepalive_msg(wgp, wgs);
3358 }
3359
3360 static void
3361 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
3362 {
3363 struct wg_session *wgs;
3364 uint32_t age;
3365
3366 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
3367
3368 KASSERT(mutex_owned(wgp->wgp_lock));
3369
3370 /*
3371 * If theres's any previous unstable session, i.e., one that
3372 * was ESTABLISHED and is now DESTROYING, older than
3373 * reject-after-time, destroy it. Upcoming sessions are still
3374 * in INIT_ACTIVE or INIT_PASSIVE -- we don't touch those here.
3375 *
3376 * No atomic for access to wgs_time_established because it is
3377 * only updated under wgp_lock.
3378 */
3379 wgs = wgp->wgp_session_unstable;
3380 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
3381 if (wgs->wgs_state == WGS_STATE_DESTROYING &&
3382 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3383 wg_reject_after_time)) {
3384 WG_DLOG("destroying past session %"PRIu32" sec old\n", age);
3385 wg_put_session_index(wg, wgs);
3386 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3387 wgs->wgs_state);
3388 }
3389
3390 /*
3391 * If theres's any ESTABLISHED stable session older than
3392 * reject-after-time, destroy it. (The stable session can also
3393 * be in UNKNOWN state -- nothing to do in that case)
3394 */
3395 wgs = wgp->wgp_session_stable;
3396 KASSERT(wgs->wgs_state != WGS_STATE_INIT_ACTIVE);
3397 KASSERT(wgs->wgs_state != WGS_STATE_INIT_PASSIVE);
3398 KASSERT(wgs->wgs_state != WGS_STATE_DESTROYING);
3399 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3400 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3401 wg_reject_after_time)) {
3402 WG_DLOG("destroying current session %"PRIu32" sec old\n", age);
3403 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_DESTROYING);
3404 wg_put_session_index(wg, wgs);
3405 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3406 wgs->wgs_state);
3407 }
3408
3409 /*
3410 * If there's no sessions left, no need to have the timer run
3411 * until the next time around -- halt it.
3412 *
3413 * It is only ever scheduled with wgp_lock held or in the
3414 * callout itself, and callout_halt prevents rescheudling
3415 * itself, so this never races with rescheduling.
3416 */
3417 if (wgp->wgp_session_unstable->wgs_state == WGS_STATE_UNKNOWN &&
3418 wgp->wgp_session_stable->wgs_state == WGS_STATE_UNKNOWN)
3419 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3420 }
3421
3422 static void
3423 wg_peer_work(struct work *wk, void *cookie)
3424 {
3425 struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
3426 struct wg_softc *wg = wgp->wgp_sc;
3427 unsigned int tasks;
3428
3429 mutex_enter(wgp->wgp_intr_lock);
3430 while ((tasks = wgp->wgp_tasks) != 0) {
3431 wgp->wgp_tasks = 0;
3432 mutex_exit(wgp->wgp_intr_lock);
3433
3434 mutex_enter(wgp->wgp_lock);
3435 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
3436 wg_task_send_init_message(wg, wgp);
3437 if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
3438 wg_task_retry_handshake(wg, wgp);
3439 if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
3440 wg_task_establish_session(wg, wgp);
3441 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
3442 wg_task_endpoint_changed(wg, wgp);
3443 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
3444 wg_task_send_keepalive_message(wg, wgp);
3445 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
3446 wg_task_destroy_prev_session(wg, wgp);
3447 mutex_exit(wgp->wgp_lock);
3448
3449 mutex_enter(wgp->wgp_intr_lock);
3450 }
3451 mutex_exit(wgp->wgp_intr_lock);
3452 }
3453
3454 static void
3455 wg_job(struct threadpool_job *job)
3456 {
3457 struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
3458 int bound, upcalls;
3459
3460 mutex_enter(wg->wg_intr_lock);
3461 while ((upcalls = wg->wg_upcalls) != 0) {
3462 wg->wg_upcalls = 0;
3463 mutex_exit(wg->wg_intr_lock);
3464 bound = curlwp_bind();
3465 if (ISSET(upcalls, WG_UPCALL_INET))
3466 wg_receive_packets(wg, AF_INET);
3467 if (ISSET(upcalls, WG_UPCALL_INET6))
3468 wg_receive_packets(wg, AF_INET6);
3469 curlwp_bindx(bound);
3470 mutex_enter(wg->wg_intr_lock);
3471 }
3472 threadpool_job_done(job);
3473 mutex_exit(wg->wg_intr_lock);
3474 }
3475
3476 static int
3477 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3478 {
3479 int error;
3480 uint16_t old_port = wg->wg_listen_port;
3481
3482 if (port != 0 && old_port == port)
3483 return 0;
3484
3485 struct sockaddr_in _sin, *sin = &_sin;
3486 sin->sin_len = sizeof(*sin);
3487 sin->sin_family = AF_INET;
3488 sin->sin_addr.s_addr = INADDR_ANY;
3489 sin->sin_port = htons(port);
3490
3491 error = sobind(wg->wg_so4, sintosa(sin), curlwp);
3492 if (error != 0)
3493 return error;
3494
3495 #ifdef INET6
3496 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3497 sin6->sin6_len = sizeof(*sin6);
3498 sin6->sin6_family = AF_INET6;
3499 sin6->sin6_addr = in6addr_any;
3500 sin6->sin6_port = htons(port);
3501
3502 error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
3503 if (error != 0)
3504 return error;
3505 #endif
3506
3507 wg->wg_listen_port = port;
3508
3509 return 0;
3510 }
3511
3512 static void
3513 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
3514 {
3515 struct wg_softc *wg = cookie;
3516 int reason;
3517
3518 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3519 WG_UPCALL_INET :
3520 WG_UPCALL_INET6;
3521
3522 mutex_enter(wg->wg_intr_lock);
3523 wg->wg_upcalls |= reason;
3524 threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
3525 mutex_exit(wg->wg_intr_lock);
3526 }
3527
3528 static int
3529 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3530 struct sockaddr *src, void *arg)
3531 {
3532 struct wg_softc *wg = arg;
3533 struct wg_msg wgm;
3534 struct mbuf *m = *mp;
3535
3536 WG_TRACE("enter");
3537
3538 /* Verify the mbuf chain is long enough to have a wg msg header. */
3539 KASSERT(offset <= m_length(m));
3540 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3541 /* drop on the floor */
3542 m_freem(m);
3543 return -1;
3544 }
3545
3546 /*
3547 * Copy the message header (32-bit message type) out -- we'll
3548 * worry about contiguity and alignment later.
3549 */
3550 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3551 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3552
3553 /*
3554 * Handle DATA packets promptly as they arrive, if they are in
3555 * an active session. Other packets may require expensive
3556 * public-key crypto and are not as sensitive to latency, so
3557 * defer them to the worker thread.
3558 */
3559 switch (le32toh(wgm.wgm_type)) {
3560 case WG_MSG_TYPE_DATA:
3561 /* handle immediately */
3562 m_adj(m, offset);
3563 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3564 m = m_pullup(m, sizeof(struct wg_msg_data));
3565 if (m == NULL)
3566 return -1;
3567 }
3568 wg_handle_msg_data(wg, m, src);
3569 *mp = NULL;
3570 return 1;
3571 case WG_MSG_TYPE_INIT:
3572 case WG_MSG_TYPE_RESP:
3573 case WG_MSG_TYPE_COOKIE:
3574 /* pass through to so_receive in wg_receive_packets */
3575 return 0;
3576 default:
3577 /* drop on the floor */
3578 m_freem(m);
3579 return -1;
3580 }
3581 }
3582
3583 static int
3584 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
3585 {
3586 int error;
3587 struct socket *so;
3588
3589 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3590 if (error != 0)
3591 return error;
3592
3593 solock(so);
3594 so->so_upcallarg = wg;
3595 so->so_upcall = wg_so_upcall;
3596 so->so_rcv.sb_flags |= SB_UPCALL;
3597 inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3598 sounlock(so);
3599
3600 *sop = so;
3601
3602 return 0;
3603 }
3604
3605 static bool
3606 wg_session_hit_limits(struct wg_session *wgs)
3607 {
3608 uint32_t time_established =
3609 atomic_load_relaxed(&wgs->wgs_time_established);
3610
3611 /*
3612 * [W] 6.2: Transport Message Limits
3613 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3614 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3615 * comes first, WireGuard will refuse to send or receive any more
3616 * transport data messages using the current secure session, ..."
3617 */
3618 KASSERT(time_established != 0 || time_uptime > UINT32_MAX);
3619 if ((time_uptime32 - time_established) > wg_reject_after_time) {
3620 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3621 return true;
3622 } else if (wg_session_get_send_counter(wgs) >
3623 wg_reject_after_messages) {
3624 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3625 return true;
3626 }
3627
3628 return false;
3629 }
3630
3631 static void
3632 wgintr(void *cookie)
3633 {
3634 struct wg_peer *wgp;
3635 struct wg_session *wgs;
3636 struct mbuf *m;
3637 struct psref psref;
3638
3639 while ((m = pktq_dequeue(wg_pktq)) != NULL) {
3640 wgp = M_GETCTX(m, struct wg_peer *);
3641 if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3642 WG_TRACE("no stable session");
3643 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3644 goto next0;
3645 }
3646 if (__predict_false(wg_session_hit_limits(wgs))) {
3647 WG_TRACE("stable session hit limits");
3648 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3649 goto next1;
3650 }
3651 wg_send_data_msg(wgp, wgs, m);
3652 m = NULL; /* consumed */
3653 next1: wg_put_session(wgs, &psref);
3654 next0: m_freem(m);
3655 /* XXX Yield to avoid userland starvation? */
3656 }
3657 }
3658
3659 static void
3660 wg_purge_pending_packets(struct wg_peer *wgp)
3661 {
3662 struct mbuf *m;
3663
3664 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
3665 m_freem(m);
3666 pktq_barrier(wg_pktq);
3667 }
3668
3669 static void
3670 wg_handshake_timeout_timer(void *arg)
3671 {
3672 struct wg_peer *wgp = arg;
3673
3674 WG_TRACE("enter");
3675
3676 wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3677 }
3678
3679 static struct wg_peer *
3680 wg_alloc_peer(struct wg_softc *wg)
3681 {
3682 struct wg_peer *wgp;
3683
3684 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3685
3686 wgp->wgp_sc = wg;
3687 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3688 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3689 wg_handshake_timeout_timer, wgp);
3690 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3691 callout_setfunc(&wgp->wgp_session_dtor_timer,
3692 wg_session_dtor_timer, wgp);
3693 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3694 wgp->wgp_endpoint_changing = false;
3695 wgp->wgp_endpoint_available = false;
3696 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3697 wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3698 wgp->wgp_psz = pserialize_create();
3699 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3700
3701 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3702 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3703 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3704 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3705
3706 struct wg_session *wgs;
3707 wgp->wgp_session_stable =
3708 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3709 wgp->wgp_session_unstable =
3710 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3711 wgs = wgp->wgp_session_stable;
3712 wgs->wgs_peer = wgp;
3713 wgs->wgs_state = WGS_STATE_UNKNOWN;
3714 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3715 #ifndef __HAVE_ATOMIC64_LOADSTORE
3716 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3717 #endif
3718 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3719 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3720
3721 wgs = wgp->wgp_session_unstable;
3722 wgs->wgs_peer = wgp;
3723 wgs->wgs_state = WGS_STATE_UNKNOWN;
3724 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3725 #ifndef __HAVE_ATOMIC64_LOADSTORE
3726 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3727 #endif
3728 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3729 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3730
3731 return wgp;
3732 }
3733
3734 static void
3735 wg_destroy_peer(struct wg_peer *wgp)
3736 {
3737 struct wg_session *wgs;
3738 struct wg_softc *wg = wgp->wgp_sc;
3739
3740 /* Prevent new packets from this peer on any source address. */
3741 rw_enter(wg->wg_rwlock, RW_WRITER);
3742 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3743 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3744 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3745 struct radix_node *rn;
3746
3747 KASSERT(rnh != NULL);
3748 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3749 &wga->wga_sa_mask, rnh);
3750 if (rn == NULL) {
3751 char addrstr[128];
3752 sockaddr_format(&wga->wga_sa_addr, addrstr,
3753 sizeof(addrstr));
3754 WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
3755 if_name(&wg->wg_if), addrstr);
3756 }
3757 }
3758 rw_exit(wg->wg_rwlock);
3759
3760 /* Purge pending packets. */
3761 wg_purge_pending_packets(wgp);
3762
3763 /* Halt all packet processing and timeouts. */
3764 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3765 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3766
3767 /* Wait for any queued work to complete. */
3768 workqueue_wait(wg_wq, &wgp->wgp_work);
3769
3770 wgs = wgp->wgp_session_unstable;
3771 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3772 mutex_enter(wgp->wgp_lock);
3773 wg_destroy_session(wg, wgs);
3774 mutex_exit(wgp->wgp_lock);
3775 }
3776 mutex_destroy(&wgs->wgs_recvwin->lock);
3777 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3778 #ifndef __HAVE_ATOMIC64_LOADSTORE
3779 mutex_destroy(&wgs->wgs_send_counter_lock);
3780 #endif
3781 kmem_free(wgs, sizeof(*wgs));
3782
3783 wgs = wgp->wgp_session_stable;
3784 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3785 mutex_enter(wgp->wgp_lock);
3786 wg_destroy_session(wg, wgs);
3787 mutex_exit(wgp->wgp_lock);
3788 }
3789 mutex_destroy(&wgs->wgs_recvwin->lock);
3790 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3791 #ifndef __HAVE_ATOMIC64_LOADSTORE
3792 mutex_destroy(&wgs->wgs_send_counter_lock);
3793 #endif
3794 kmem_free(wgs, sizeof(*wgs));
3795
3796 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3797 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3798 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3799 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3800
3801 pserialize_destroy(wgp->wgp_psz);
3802 mutex_obj_free(wgp->wgp_intr_lock);
3803 mutex_obj_free(wgp->wgp_lock);
3804
3805 kmem_free(wgp, sizeof(*wgp));
3806 }
3807
3808 static void
3809 wg_destroy_all_peers(struct wg_softc *wg)
3810 {
3811 struct wg_peer *wgp, *wgp0 __diagused;
3812 void *garbage_byname, *garbage_bypubkey;
3813
3814 restart:
3815 garbage_byname = garbage_bypubkey = NULL;
3816 mutex_enter(wg->wg_lock);
3817 WG_PEER_WRITER_FOREACH(wgp, wg) {
3818 if (wgp->wgp_name[0]) {
3819 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3820 strlen(wgp->wgp_name));
3821 KASSERT(wgp0 == wgp);
3822 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3823 }
3824 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3825 sizeof(wgp->wgp_pubkey));
3826 KASSERT(wgp0 == wgp);
3827 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3828 WG_PEER_WRITER_REMOVE(wgp);
3829 wg->wg_npeers--;
3830 mutex_enter(wgp->wgp_lock);
3831 pserialize_perform(wgp->wgp_psz);
3832 mutex_exit(wgp->wgp_lock);
3833 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3834 break;
3835 }
3836 mutex_exit(wg->wg_lock);
3837
3838 if (wgp == NULL)
3839 return;
3840
3841 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3842
3843 wg_destroy_peer(wgp);
3844 thmap_gc(wg->wg_peers_byname, garbage_byname);
3845 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3846
3847 goto restart;
3848 }
3849
3850 static int
3851 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3852 {
3853 struct wg_peer *wgp, *wgp0 __diagused;
3854 void *garbage_byname, *garbage_bypubkey;
3855
3856 mutex_enter(wg->wg_lock);
3857 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
3858 if (wgp != NULL) {
3859 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3860 sizeof(wgp->wgp_pubkey));
3861 KASSERT(wgp0 == wgp);
3862 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3863 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3864 WG_PEER_WRITER_REMOVE(wgp);
3865 wg->wg_npeers--;
3866 if (wg->wg_npeers == 0)
3867 if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
3868 mutex_enter(wgp->wgp_lock);
3869 pserialize_perform(wgp->wgp_psz);
3870 mutex_exit(wgp->wgp_lock);
3871 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3872 }
3873 mutex_exit(wg->wg_lock);
3874
3875 if (wgp == NULL)
3876 return ENOENT;
3877
3878 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3879
3880 wg_destroy_peer(wgp);
3881 thmap_gc(wg->wg_peers_byname, garbage_byname);
3882 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3883
3884 return 0;
3885 }
3886
3887 static int
3888 wg_if_attach(struct wg_softc *wg)
3889 {
3890
3891 wg->wg_if.if_addrlen = 0;
3892 wg->wg_if.if_mtu = WG_MTU;
3893 wg->wg_if.if_flags = IFF_MULTICAST;
3894 wg->wg_if.if_extflags = IFEF_MPSAFE;
3895 wg->wg_if.if_ioctl = wg_ioctl;
3896 wg->wg_if.if_output = wg_output;
3897 wg->wg_if.if_init = wg_init;
3898 #ifdef ALTQ
3899 wg->wg_if.if_start = wg_start;
3900 #endif
3901 wg->wg_if.if_stop = wg_stop;
3902 wg->wg_if.if_type = IFT_OTHER;
3903 wg->wg_if.if_dlt = DLT_NULL;
3904 wg->wg_if.if_softc = wg;
3905 #ifdef ALTQ
3906 IFQ_SET_READY(&wg->wg_if.if_snd);
3907 #endif
3908 if_initialize(&wg->wg_if);
3909
3910 wg->wg_if.if_link_state = LINK_STATE_DOWN;
3911 if_alloc_sadl(&wg->wg_if);
3912 if_register(&wg->wg_if);
3913
3914 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3915
3916 return 0;
3917 }
3918
3919 static void
3920 wg_if_detach(struct wg_softc *wg)
3921 {
3922 struct ifnet *ifp = &wg->wg_if;
3923
3924 bpf_detach(ifp);
3925 if_detach(ifp);
3926 }
3927
3928 static int
3929 wg_clone_create(struct if_clone *ifc, int unit)
3930 {
3931 struct wg_softc *wg;
3932 int error;
3933
3934 wg_guarantee_initialized();
3935
3936 error = wg_count_inc();
3937 if (error)
3938 return error;
3939
3940 wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
3941
3942 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3943
3944 PSLIST_INIT(&wg->wg_peers);
3945 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
3946 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
3947 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
3948 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3949 wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3950 wg->wg_rwlock = rw_obj_alloc();
3951 threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
3952 "%s", if_name(&wg->wg_if));
3953 wg->wg_ops = &wg_ops_rumpkernel;
3954
3955 error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
3956 if (error)
3957 goto fail0;
3958
3959 #ifdef INET
3960 error = wg_socreate(wg, AF_INET, &wg->wg_so4);
3961 if (error)
3962 goto fail1;
3963 rn_inithead((void **)&wg->wg_rtable_ipv4,
3964 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3965 #endif
3966 #ifdef INET6
3967 error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
3968 if (error)
3969 goto fail2;
3970 rn_inithead((void **)&wg->wg_rtable_ipv6,
3971 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3972 #endif
3973
3974 error = wg_if_attach(wg);
3975 if (error)
3976 goto fail3;
3977
3978 return 0;
3979
3980 fail4: __unused
3981 wg_if_detach(wg);
3982 fail3: wg_destroy_all_peers(wg);
3983 #ifdef INET6
3984 solock(wg->wg_so6);
3985 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
3986 sounlock(wg->wg_so6);
3987 #endif
3988 #ifdef INET
3989 solock(wg->wg_so4);
3990 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
3991 sounlock(wg->wg_so4);
3992 #endif
3993 mutex_enter(wg->wg_intr_lock);
3994 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
3995 mutex_exit(wg->wg_intr_lock);
3996 #ifdef INET6
3997 if (wg->wg_rtable_ipv6 != NULL)
3998 free(wg->wg_rtable_ipv6, M_RTABLE);
3999 soclose(wg->wg_so6);
4000 fail2:
4001 #endif
4002 #ifdef INET
4003 if (wg->wg_rtable_ipv4 != NULL)
4004 free(wg->wg_rtable_ipv4, M_RTABLE);
4005 soclose(wg->wg_so4);
4006 fail1:
4007 #endif
4008 threadpool_put(wg->wg_threadpool, PRI_NONE);
4009 fail0: threadpool_job_destroy(&wg->wg_job);
4010 rw_obj_free(wg->wg_rwlock);
4011 mutex_obj_free(wg->wg_intr_lock);
4012 mutex_obj_free(wg->wg_lock);
4013 thmap_destroy(wg->wg_sessions_byindex);
4014 thmap_destroy(wg->wg_peers_byname);
4015 thmap_destroy(wg->wg_peers_bypubkey);
4016 PSLIST_DESTROY(&wg->wg_peers);
4017 kmem_free(wg, sizeof(*wg));
4018 wg_count_dec();
4019 return error;
4020 }
4021
4022 static int
4023 wg_clone_destroy(struct ifnet *ifp)
4024 {
4025 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
4026
4027 #ifdef WG_RUMPKERNEL
4028 if (wg_user_mode(wg)) {
4029 rumpuser_wg_destroy(wg->wg_user);
4030 wg->wg_user = NULL;
4031 }
4032 #endif
4033
4034 wg_if_detach(wg);
4035 wg_destroy_all_peers(wg);
4036 #ifdef INET6
4037 solock(wg->wg_so6);
4038 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4039 sounlock(wg->wg_so6);
4040 #endif
4041 #ifdef INET
4042 solock(wg->wg_so4);
4043 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4044 sounlock(wg->wg_so4);
4045 #endif
4046 mutex_enter(wg->wg_intr_lock);
4047 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4048 mutex_exit(wg->wg_intr_lock);
4049 #ifdef INET6
4050 if (wg->wg_rtable_ipv6 != NULL)
4051 free(wg->wg_rtable_ipv6, M_RTABLE);
4052 soclose(wg->wg_so6);
4053 #endif
4054 #ifdef INET
4055 if (wg->wg_rtable_ipv4 != NULL)
4056 free(wg->wg_rtable_ipv4, M_RTABLE);
4057 soclose(wg->wg_so4);
4058 #endif
4059 threadpool_put(wg->wg_threadpool, PRI_NONE);
4060 threadpool_job_destroy(&wg->wg_job);
4061 rw_obj_free(wg->wg_rwlock);
4062 mutex_obj_free(wg->wg_intr_lock);
4063 mutex_obj_free(wg->wg_lock);
4064 thmap_destroy(wg->wg_sessions_byindex);
4065 thmap_destroy(wg->wg_peers_byname);
4066 thmap_destroy(wg->wg_peers_bypubkey);
4067 PSLIST_DESTROY(&wg->wg_peers);
4068 kmem_free(wg, sizeof(*wg));
4069 wg_count_dec();
4070
4071 return 0;
4072 }
4073
4074 static struct wg_peer *
4075 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
4076 struct psref *psref)
4077 {
4078 struct radix_node_head *rnh;
4079 struct radix_node *rn;
4080 struct wg_peer *wgp = NULL;
4081 struct wg_allowedip *wga;
4082
4083 #ifdef WG_DEBUG_LOG
4084 char addrstr[128];
4085 sockaddr_format(sa, addrstr, sizeof(addrstr));
4086 WG_DLOG("sa=%s\n", addrstr);
4087 #endif
4088
4089 rw_enter(wg->wg_rwlock, RW_READER);
4090
4091 rnh = wg_rnh(wg, sa->sa_family);
4092 if (rnh == NULL)
4093 goto out;
4094
4095 rn = rnh->rnh_matchaddr(sa, rnh);
4096 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
4097 goto out;
4098
4099 WG_TRACE("success");
4100
4101 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
4102 wgp = wga->wga_peer;
4103 wg_get_peer(wgp, psref);
4104
4105 out:
4106 rw_exit(wg->wg_rwlock);
4107 return wgp;
4108 }
4109
4110 static void
4111 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
4112 struct wg_session *wgs, struct wg_msg_data *wgmd)
4113 {
4114
4115 memset(wgmd, 0, sizeof(*wgmd));
4116 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
4117 wgmd->wgmd_receiver = wgs->wgs_remote_index;
4118 /* [W] 5.4.6: msg.counter := Nm^send */
4119 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
4120 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
4121 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
4122 }
4123
4124 static int
4125 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
4126 const struct rtentry *rt)
4127 {
4128 struct wg_softc *wg = ifp->if_softc;
4129 struct wg_peer *wgp = NULL;
4130 struct wg_session *wgs = NULL;
4131 struct psref wgp_psref, wgs_psref;
4132 int bound;
4133 int error;
4134
4135 bound = curlwp_bind();
4136
4137 /* TODO make the nest limit configurable via sysctl */
4138 error = if_tunnel_check_nesting(ifp, m, 1);
4139 if (error) {
4140 WGLOG(LOG_ERR,
4141 "%s: tunneling loop detected and packet dropped\n",
4142 if_name(&wg->wg_if));
4143 goto out0;
4144 }
4145
4146 #ifdef ALTQ
4147 bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
4148 & ALTQF_ENABLED;
4149 if (altq)
4150 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
4151 #endif
4152
4153 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
4154
4155 m->m_flags &= ~(M_BCAST|M_MCAST);
4156
4157 wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
4158 if (wgp == NULL) {
4159 WG_TRACE("peer not found");
4160 error = EHOSTUNREACH;
4161 goto out0;
4162 }
4163
4164 /* Clear checksum-offload flags. */
4165 m->m_pkthdr.csum_flags = 0;
4166 m->m_pkthdr.csum_data = 0;
4167
4168 /* Check whether there's an established session. */
4169 wgs = wg_get_stable_session(wgp, &wgs_psref);
4170 if (wgs == NULL) {
4171 /*
4172 * No established session. If we're the first to try
4173 * sending data, schedule a handshake and queue the
4174 * packet for when the handshake is done; otherwise
4175 * just drop the packet and let the ongoing handshake
4176 * attempt continue. We could queue more data packets
4177 * but it's not clear that's worthwhile.
4178 */
4179 if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
4180 m = NULL; /* consume */
4181 WG_TRACE("queued first packet; init handshake");
4182 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4183 } else {
4184 WG_TRACE("first packet already queued, dropping");
4185 }
4186 goto out1;
4187 }
4188
4189 /* There's an established session. Toss it in the queue. */
4190 #ifdef ALTQ
4191 if (altq) {
4192 mutex_enter(ifp->if_snd.ifq_lock);
4193 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
4194 M_SETCTX(m, wgp);
4195 ALTQ_ENQUEUE(&ifp->if_snd, m, error);
4196 m = NULL; /* consume */
4197 }
4198 mutex_exit(ifp->if_snd.ifq_lock);
4199 if (m == NULL) {
4200 wg_start(ifp);
4201 goto out2;
4202 }
4203 }
4204 #endif
4205 kpreempt_disable();
4206 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
4207 M_SETCTX(m, wgp);
4208 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
4209 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
4210 if_name(&wg->wg_if));
4211 error = ENOBUFS;
4212 goto out3;
4213 }
4214 m = NULL; /* consumed */
4215 error = 0;
4216 out3: kpreempt_enable();
4217
4218 #ifdef ALTQ
4219 out2:
4220 #endif
4221 wg_put_session(wgs, &wgs_psref);
4222 out1: wg_put_peer(wgp, &wgp_psref);
4223 out0: m_freem(m);
4224 curlwp_bindx(bound);
4225 return error;
4226 }
4227
4228 static int
4229 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
4230 {
4231 struct psref psref;
4232 struct wg_sockaddr *wgsa;
4233 int error;
4234 struct socket *so;
4235
4236 wgsa = wg_get_endpoint_sa(wgp, &psref);
4237 so = wg_get_so_by_peer(wgp, wgsa);
4238 solock(so);
4239 if (wgsatosa(wgsa)->sa_family == AF_INET) {
4240 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
4241 } else {
4242 #ifdef INET6
4243 error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
4244 NULL, curlwp);
4245 #else
4246 m_freem(m);
4247 error = EPFNOSUPPORT;
4248 #endif
4249 }
4250 sounlock(so);
4251 wg_put_sa(wgp, wgsa, &psref);
4252
4253 return error;
4254 }
4255
4256 /* Inspired by pppoe_get_mbuf */
4257 static struct mbuf *
4258 wg_get_mbuf(size_t leading_len, size_t len)
4259 {
4260 struct mbuf *m;
4261
4262 KASSERT(leading_len <= MCLBYTES);
4263 KASSERT(len <= MCLBYTES - leading_len);
4264
4265 m = m_gethdr(M_DONTWAIT, MT_DATA);
4266 if (m == NULL)
4267 return NULL;
4268 if (len + leading_len > MHLEN) {
4269 m_clget(m, M_DONTWAIT);
4270 if ((m->m_flags & M_EXT) == 0) {
4271 m_free(m);
4272 return NULL;
4273 }
4274 }
4275 m->m_data += leading_len;
4276 m->m_pkthdr.len = m->m_len = len;
4277
4278 return m;
4279 }
4280
4281 static int
4282 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
4283 struct mbuf *m)
4284 {
4285 struct wg_softc *wg = wgp->wgp_sc;
4286 int error;
4287 size_t inner_len, padded_len, encrypted_len;
4288 char *padded_buf = NULL;
4289 size_t mlen;
4290 struct wg_msg_data *wgmd;
4291 bool free_padded_buf = false;
4292 struct mbuf *n;
4293 size_t leading_len = max_hdr + sizeof(struct udphdr);
4294
4295 mlen = m_length(m);
4296 inner_len = mlen;
4297 padded_len = roundup(mlen, 16);
4298 encrypted_len = padded_len + WG_AUTHTAG_LEN;
4299 WG_DLOG("inner=%zu, padded=%zu, encrypted_len=%zu\n",
4300 inner_len, padded_len, encrypted_len);
4301 if (mlen != 0) {
4302 bool success;
4303 success = m_ensure_contig(&m, padded_len);
4304 if (success) {
4305 padded_buf = mtod(m, char *);
4306 } else {
4307 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
4308 if (padded_buf == NULL) {
4309 error = ENOBUFS;
4310 goto end;
4311 }
4312 free_padded_buf = true;
4313 m_copydata(m, 0, mlen, padded_buf);
4314 }
4315 memset(padded_buf + mlen, 0, padded_len - inner_len);
4316 }
4317
4318 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
4319 if (n == NULL) {
4320 error = ENOBUFS;
4321 goto end;
4322 }
4323 KASSERT(n->m_len >= sizeof(*wgmd));
4324 wgmd = mtod(n, struct wg_msg_data *);
4325 wg_fill_msg_data(wg, wgp, wgs, wgmd);
4326 #ifdef WG_DEBUG_PACKET
4327 if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
4328 hexdump(printf, "padded_buf", padded_buf,
4329 padded_len);
4330 }
4331 #endif
4332 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
4333 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
4334 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4335 padded_buf, padded_len,
4336 NULL, 0);
4337 #ifdef WG_DEBUG_PACKET
4338 if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
4339 hexdump(printf, "tkey_send", wgs->wgs_tkey_send,
4340 sizeof(wgs->wgs_tkey_send));
4341 hexdump(printf, "wgmd", wgmd, sizeof(*wgmd));
4342 hexdump(printf, "outgoing packet",
4343 (char *)wgmd + sizeof(*wgmd), encrypted_len);
4344 size_t decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
4345 char *decrypted_buf = kmem_intr_alloc((decrypted_len +
4346 WG_AUTHTAG_LEN/*XXX*/), KM_NOSLEEP);
4347 if (decrypted_buf != NULL) {
4348 error = wg_algo_aead_dec(
4349 1 + decrypted_buf /* force misalignment */,
4350 encrypted_len - WG_AUTHTAG_LEN /* XXX */,
4351 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4352 (char *)wgmd + sizeof(*wgmd), encrypted_len,
4353 NULL, 0);
4354 if (error) {
4355 WG_DLOG("wg_algo_aead_dec failed: %d\n",
4356 error);
4357 }
4358 if (!consttime_memequal(1 + decrypted_buf,
4359 (char *)wgmd + sizeof(*wgmd),
4360 decrypted_len)) {
4361 WG_DLOG("wg_algo_aead_dec returned garbage\n");
4362 }
4363 kmem_intr_free(decrypted_buf, (decrypted_len +
4364 WG_AUTHTAG_LEN/*XXX*/));
4365 }
4366 }
4367 #endif
4368
4369 error = wg->wg_ops->send_data_msg(wgp, n);
4370 if (error == 0) {
4371 struct ifnet *ifp = &wg->wg_if;
4372 if_statadd(ifp, if_obytes, mlen);
4373 if_statinc(ifp, if_opackets);
4374 if (wgs->wgs_is_initiator &&
4375 ((time_uptime32 -
4376 atomic_load_relaxed(&wgs->wgs_time_established)) >=
4377 wg_rekey_after_time)) {
4378 /*
4379 * [W] 6.2 Transport Message Limits
4380 * "if a peer is the initiator of a current secure
4381 * session, WireGuard will send a handshake initiation
4382 * message to begin a new secure session if, after
4383 * transmitting a transport data message, the current
4384 * secure session is REKEY-AFTER-TIME seconds old,"
4385 */
4386 WG_TRACE("rekey after time");
4387 atomic_store_relaxed(&wgp->wgp_force_rekey, 1);
4388 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4389 }
4390 const uint32_t now = time_uptime32;
4391 atomic_store_relaxed(&wgs->wgs_time_last_data_sent,
4392 MAX(now, 1));
4393 if (wg_session_get_send_counter(wgs) >=
4394 wg_rekey_after_messages) {
4395 /*
4396 * [W] 6.2 Transport Message Limits
4397 * "WireGuard will try to create a new session, by
4398 * sending a handshake initiation message (section
4399 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
4400 * transport data messages..."
4401 */
4402 WG_TRACE("rekey after messages");
4403 atomic_store_relaxed(&wgp->wgp_force_rekey, 1);
4404 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4405 }
4406 }
4407 end:
4408 m_freem(m);
4409 if (free_padded_buf)
4410 kmem_intr_free(padded_buf, padded_len);
4411 return error;
4412 }
4413
4414 static void
4415 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
4416 {
4417 pktqueue_t *pktq;
4418 size_t pktlen;
4419
4420 KASSERT(af == AF_INET || af == AF_INET6);
4421
4422 WG_TRACE("");
4423
4424 m_set_rcvif(m, ifp);
4425 pktlen = m->m_pkthdr.len;
4426
4427 bpf_mtap_af(ifp, af, m, BPF_D_IN);
4428
4429 switch (af) {
4430 case AF_INET:
4431 pktq = ip_pktq;
4432 break;
4433 #ifdef INET6
4434 case AF_INET6:
4435 pktq = ip6_pktq;
4436 break;
4437 #endif
4438 default:
4439 panic("invalid af=%d", af);
4440 }
4441
4442 kpreempt_disable();
4443 const u_int h = curcpu()->ci_index;
4444 if (__predict_true(pktq_enqueue(pktq, m, h))) {
4445 if_statadd(ifp, if_ibytes, pktlen);
4446 if_statinc(ifp, if_ipackets);
4447 } else {
4448 m_freem(m);
4449 }
4450 kpreempt_enable();
4451 }
4452
4453 static void
4454 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
4455 const uint8_t privkey[WG_STATIC_KEY_LEN])
4456 {
4457
4458 crypto_scalarmult_base(pubkey, privkey);
4459 }
4460
4461 static int
4462 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
4463 {
4464 struct radix_node_head *rnh;
4465 struct radix_node *rn;
4466 int error = 0;
4467
4468 rw_enter(wg->wg_rwlock, RW_WRITER);
4469 rnh = wg_rnh(wg, wga->wga_family);
4470 KASSERT(rnh != NULL);
4471 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
4472 wga->wga_nodes);
4473 rw_exit(wg->wg_rwlock);
4474
4475 if (rn == NULL)
4476 error = EEXIST;
4477
4478 return error;
4479 }
4480
4481 static int
4482 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
4483 struct wg_peer **wgpp)
4484 {
4485 int error = 0;
4486 const void *pubkey;
4487 size_t pubkey_len;
4488 const void *psk;
4489 size_t psk_len;
4490 const char *name = NULL;
4491
4492 if (prop_dictionary_get_string(peer, "name", &name)) {
4493 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
4494 error = EINVAL;
4495 goto out;
4496 }
4497 }
4498
4499 if (!prop_dictionary_get_data(peer, "public_key",
4500 &pubkey, &pubkey_len)) {
4501 error = EINVAL;
4502 goto out;
4503 }
4504 #ifdef WG_DEBUG_DUMP
4505 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4506 char *hex = gethexdump(pubkey, pubkey_len);
4507 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%zu\n%s\n",
4508 pubkey, pubkey_len, hex);
4509 puthexdump(hex, pubkey, pubkey_len);
4510 }
4511 #endif
4512
4513 struct wg_peer *wgp = wg_alloc_peer(wg);
4514 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4515 if (name != NULL)
4516 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4517
4518 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4519 if (psk_len != sizeof(wgp->wgp_psk)) {
4520 error = EINVAL;
4521 goto out;
4522 }
4523 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4524 }
4525
4526 const void *addr;
4527 size_t addr_len;
4528 struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4529
4530 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4531 goto skip_endpoint;
4532 if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4533 addr_len > sizeof(*wgsatoss(wgsa))) {
4534 error = EINVAL;
4535 goto out;
4536 }
4537 memcpy(wgsatoss(wgsa), addr, addr_len);
4538 switch (wgsa_family(wgsa)) {
4539 case AF_INET:
4540 #ifdef INET6
4541 case AF_INET6:
4542 #endif
4543 break;
4544 default:
4545 error = EPFNOSUPPORT;
4546 goto out;
4547 }
4548 if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4549 error = EINVAL;
4550 goto out;
4551 }
4552 {
4553 char addrstr[128];
4554 sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4555 WG_DLOG("addr=%s\n", addrstr);
4556 }
4557 wgp->wgp_endpoint_available = true;
4558
4559 prop_array_t allowedips;
4560 skip_endpoint:
4561 allowedips = prop_dictionary_get(peer, "allowedips");
4562 if (allowedips == NULL)
4563 goto skip;
4564
4565 prop_object_iterator_t _it = prop_array_iterator(allowedips);
4566 prop_dictionary_t prop_allowedip;
4567 int j = 0;
4568 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4569 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4570
4571 if (!prop_dictionary_get_int(prop_allowedip, "family",
4572 &wga->wga_family))
4573 continue;
4574 if (!prop_dictionary_get_data(prop_allowedip, "ip",
4575 &addr, &addr_len))
4576 continue;
4577 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4578 &wga->wga_cidr))
4579 continue;
4580
4581 switch (wga->wga_family) {
4582 case AF_INET: {
4583 struct sockaddr_in sin;
4584 char addrstr[128];
4585 struct in_addr mask;
4586 struct sockaddr_in sin_mask;
4587
4588 if (addr_len != sizeof(struct in_addr))
4589 return EINVAL;
4590 memcpy(&wga->wga_addr4, addr, addr_len);
4591
4592 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4593 0);
4594 sockaddr_copy(&wga->wga_sa_addr,
4595 sizeof(sin), sintosa(&sin));
4596
4597 sockaddr_format(sintosa(&sin),
4598 addrstr, sizeof(addrstr));
4599 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4600
4601 in_len2mask(&mask, wga->wga_cidr);
4602 sockaddr_in_init(&sin_mask, &mask, 0);
4603 sockaddr_copy(&wga->wga_sa_mask,
4604 sizeof(sin_mask), sintosa(&sin_mask));
4605
4606 break;
4607 }
4608 #ifdef INET6
4609 case AF_INET6: {
4610 struct sockaddr_in6 sin6;
4611 char addrstr[128];
4612 struct in6_addr mask;
4613 struct sockaddr_in6 sin6_mask;
4614
4615 if (addr_len != sizeof(struct in6_addr))
4616 return EINVAL;
4617 memcpy(&wga->wga_addr6, addr, addr_len);
4618
4619 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4620 0, 0, 0);
4621 sockaddr_copy(&wga->wga_sa_addr,
4622 sizeof(sin6), sin6tosa(&sin6));
4623
4624 sockaddr_format(sin6tosa(&sin6),
4625 addrstr, sizeof(addrstr));
4626 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4627
4628 in6_prefixlen2mask(&mask, wga->wga_cidr);
4629 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4630 sockaddr_copy(&wga->wga_sa_mask,
4631 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4632
4633 break;
4634 }
4635 #endif
4636 default:
4637 error = EINVAL;
4638 goto out;
4639 }
4640 wga->wga_peer = wgp;
4641
4642 error = wg_rtable_add_route(wg, wga);
4643 if (error != 0)
4644 goto out;
4645
4646 j++;
4647 }
4648 wgp->wgp_n_allowedips = j;
4649 skip:
4650 *wgpp = wgp;
4651 out:
4652 return error;
4653 }
4654
4655 static int
4656 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4657 {
4658 int error;
4659 char *buf;
4660
4661 WG_DLOG("buf=%p, len=%zu\n", ifd->ifd_data, ifd->ifd_len);
4662 if (ifd->ifd_len >= WG_MAX_PROPLEN)
4663 return E2BIG;
4664 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4665 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4666 if (error != 0)
4667 return error;
4668 buf[ifd->ifd_len] = '\0';
4669 #ifdef WG_DEBUG_DUMP
4670 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4671 log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
4672 (const char *)buf);
4673 }
4674 #endif
4675 *_buf = buf;
4676 return 0;
4677 }
4678
4679 static int
4680 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4681 {
4682 int error;
4683 prop_dictionary_t prop_dict;
4684 char *buf = NULL;
4685 const void *privkey;
4686 size_t privkey_len;
4687
4688 error = wg_alloc_prop_buf(&buf, ifd);
4689 if (error != 0)
4690 return error;
4691 error = EINVAL;
4692 prop_dict = prop_dictionary_internalize(buf);
4693 if (prop_dict == NULL)
4694 goto out;
4695 if (!prop_dictionary_get_data(prop_dict, "private_key",
4696 &privkey, &privkey_len))
4697 goto out;
4698 #ifdef WG_DEBUG_DUMP
4699 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4700 char *hex = gethexdump(privkey, privkey_len);
4701 log(LOG_DEBUG, "privkey=%p, privkey_len=%zu\n%s\n",
4702 privkey, privkey_len, hex);
4703 puthexdump(hex, privkey, privkey_len);
4704 }
4705 #endif
4706 if (privkey_len != WG_STATIC_KEY_LEN)
4707 goto out;
4708 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4709 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4710 error = 0;
4711
4712 out:
4713 kmem_free(buf, ifd->ifd_len + 1);
4714 return error;
4715 }
4716
4717 static int
4718 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4719 {
4720 int error;
4721 prop_dictionary_t prop_dict;
4722 char *buf = NULL;
4723 uint16_t port;
4724
4725 error = wg_alloc_prop_buf(&buf, ifd);
4726 if (error != 0)
4727 return error;
4728 error = EINVAL;
4729 prop_dict = prop_dictionary_internalize(buf);
4730 if (prop_dict == NULL)
4731 goto out;
4732 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4733 goto out;
4734
4735 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4736
4737 out:
4738 kmem_free(buf, ifd->ifd_len + 1);
4739 return error;
4740 }
4741
4742 static int
4743 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4744 {
4745 int error;
4746 prop_dictionary_t prop_dict;
4747 char *buf = NULL;
4748 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4749
4750 error = wg_alloc_prop_buf(&buf, ifd);
4751 if (error != 0)
4752 return error;
4753 error = EINVAL;
4754 prop_dict = prop_dictionary_internalize(buf);
4755 if (prop_dict == NULL)
4756 goto out;
4757
4758 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4759 if (error != 0)
4760 goto out;
4761
4762 mutex_enter(wg->wg_lock);
4763 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4764 sizeof(wgp->wgp_pubkey)) != NULL ||
4765 (wgp->wgp_name[0] &&
4766 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4767 strlen(wgp->wgp_name)) != NULL)) {
4768 mutex_exit(wg->wg_lock);
4769 wg_destroy_peer(wgp);
4770 error = EEXIST;
4771 goto out;
4772 }
4773 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4774 sizeof(wgp->wgp_pubkey), wgp);
4775 KASSERT(wgp0 == wgp);
4776 if (wgp->wgp_name[0]) {
4777 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4778 strlen(wgp->wgp_name), wgp);
4779 KASSERT(wgp0 == wgp);
4780 }
4781 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4782 wg->wg_npeers++;
4783 mutex_exit(wg->wg_lock);
4784
4785 if_link_state_change(&wg->wg_if, LINK_STATE_UP);
4786
4787 out:
4788 kmem_free(buf, ifd->ifd_len + 1);
4789 return error;
4790 }
4791
4792 static int
4793 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4794 {
4795 int error;
4796 prop_dictionary_t prop_dict;
4797 char *buf = NULL;
4798 const char *name;
4799
4800 error = wg_alloc_prop_buf(&buf, ifd);
4801 if (error != 0)
4802 return error;
4803 error = EINVAL;
4804 prop_dict = prop_dictionary_internalize(buf);
4805 if (prop_dict == NULL)
4806 goto out;
4807
4808 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4809 goto out;
4810 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4811 goto out;
4812
4813 error = wg_destroy_peer_name(wg, name);
4814 out:
4815 kmem_free(buf, ifd->ifd_len + 1);
4816 return error;
4817 }
4818
4819 static bool
4820 wg_is_authorized(struct wg_softc *wg, u_long cmd)
4821 {
4822 int au = cmd == SIOCGDRVSPEC ?
4823 KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
4824 KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
4825 return kauth_authorize_network(kauth_cred_get(),
4826 KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
4827 (void *)cmd, NULL) == 0;
4828 }
4829
4830 static int
4831 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4832 {
4833 int error = ENOMEM;
4834 prop_dictionary_t prop_dict;
4835 prop_array_t peers = NULL;
4836 char *buf;
4837 struct wg_peer *wgp;
4838 int s, i;
4839
4840 prop_dict = prop_dictionary_create();
4841 if (prop_dict == NULL)
4842 goto error;
4843
4844 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4845 if (!prop_dictionary_set_data(prop_dict, "private_key",
4846 wg->wg_privkey, WG_STATIC_KEY_LEN))
4847 goto error;
4848 }
4849
4850 if (wg->wg_listen_port != 0) {
4851 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4852 wg->wg_listen_port))
4853 goto error;
4854 }
4855
4856 if (wg->wg_npeers == 0)
4857 goto skip_peers;
4858
4859 peers = prop_array_create();
4860 if (peers == NULL)
4861 goto error;
4862
4863 s = pserialize_read_enter();
4864 i = 0;
4865 WG_PEER_READER_FOREACH(wgp, wg) {
4866 struct wg_sockaddr *wgsa;
4867 struct psref wgp_psref, wgsa_psref;
4868 prop_dictionary_t prop_peer;
4869
4870 wg_get_peer(wgp, &wgp_psref);
4871 pserialize_read_exit(s);
4872
4873 prop_peer = prop_dictionary_create();
4874 if (prop_peer == NULL)
4875 goto next;
4876
4877 if (strlen(wgp->wgp_name) > 0) {
4878 if (!prop_dictionary_set_string(prop_peer, "name",
4879 wgp->wgp_name))
4880 goto next;
4881 }
4882
4883 if (!prop_dictionary_set_data(prop_peer, "public_key",
4884 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4885 goto next;
4886
4887 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4888 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4889 sizeof(wgp->wgp_psk))) {
4890 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4891 if (!prop_dictionary_set_data(prop_peer,
4892 "preshared_key",
4893 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4894 goto next;
4895 }
4896 }
4897
4898 wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
4899 CTASSERT(AF_UNSPEC == 0);
4900 if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
4901 !prop_dictionary_set_data(prop_peer, "endpoint",
4902 wgsatoss(wgsa),
4903 sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
4904 wg_put_sa(wgp, wgsa, &wgsa_psref);
4905 goto next;
4906 }
4907 wg_put_sa(wgp, wgsa, &wgsa_psref);
4908
4909 const struct timespec *t = &wgp->wgp_last_handshake_time;
4910
4911 if (!prop_dictionary_set_uint64(prop_peer,
4912 "last_handshake_time_sec", (uint64_t)t->tv_sec))
4913 goto next;
4914 if (!prop_dictionary_set_uint32(prop_peer,
4915 "last_handshake_time_nsec", (uint32_t)t->tv_nsec))
4916 goto next;
4917
4918 if (wgp->wgp_n_allowedips == 0)
4919 goto skip_allowedips;
4920
4921 prop_array_t allowedips = prop_array_create();
4922 if (allowedips == NULL)
4923 goto next;
4924 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4925 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4926 prop_dictionary_t prop_allowedip;
4927
4928 prop_allowedip = prop_dictionary_create();
4929 if (prop_allowedip == NULL)
4930 break;
4931
4932 if (!prop_dictionary_set_int(prop_allowedip, "family",
4933 wga->wga_family))
4934 goto _next;
4935 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4936 wga->wga_cidr))
4937 goto _next;
4938
4939 switch (wga->wga_family) {
4940 case AF_INET:
4941 if (!prop_dictionary_set_data(prop_allowedip,
4942 "ip", &wga->wga_addr4,
4943 sizeof(wga->wga_addr4)))
4944 goto _next;
4945 break;
4946 #ifdef INET6
4947 case AF_INET6:
4948 if (!prop_dictionary_set_data(prop_allowedip,
4949 "ip", &wga->wga_addr6,
4950 sizeof(wga->wga_addr6)))
4951 goto _next;
4952 break;
4953 #endif
4954 default:
4955 break;
4956 }
4957 prop_array_set(allowedips, j, prop_allowedip);
4958 _next:
4959 prop_object_release(prop_allowedip);
4960 }
4961 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4962 prop_object_release(allowedips);
4963
4964 skip_allowedips:
4965
4966 prop_array_set(peers, i, prop_peer);
4967 next:
4968 if (prop_peer)
4969 prop_object_release(prop_peer);
4970 i++;
4971
4972 s = pserialize_read_enter();
4973 wg_put_peer(wgp, &wgp_psref);
4974 }
4975 pserialize_read_exit(s);
4976
4977 prop_dictionary_set(prop_dict, "peers", peers);
4978 prop_object_release(peers);
4979 peers = NULL;
4980
4981 skip_peers:
4982 buf = prop_dictionary_externalize(prop_dict);
4983 if (buf == NULL)
4984 goto error;
4985 if (ifd->ifd_len < (strlen(buf) + 1)) {
4986 error = EINVAL;
4987 goto error;
4988 }
4989 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4990
4991 free(buf, 0);
4992 error:
4993 if (peers != NULL)
4994 prop_object_release(peers);
4995 if (prop_dict != NULL)
4996 prop_object_release(prop_dict);
4997
4998 return error;
4999 }
5000
5001 static int
5002 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5003 {
5004 struct wg_softc *wg = ifp->if_softc;
5005 struct ifreq *ifr = data;
5006 struct ifaddr *ifa = data;
5007 struct ifdrv *ifd = data;
5008 int error = 0;
5009
5010 switch (cmd) {
5011 case SIOCINITIFADDR:
5012 if (ifa->ifa_addr->sa_family != AF_LINK &&
5013 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
5014 (IFF_UP | IFF_RUNNING)) {
5015 ifp->if_flags |= IFF_UP;
5016 error = if_init(ifp);
5017 }
5018 return error;
5019 case SIOCADDMULTI:
5020 case SIOCDELMULTI:
5021 switch (ifr->ifr_addr.sa_family) {
5022 case AF_INET: /* IP supports Multicast */
5023 break;
5024 #ifdef INET6
5025 case AF_INET6: /* IP6 supports Multicast */
5026 break;
5027 #endif
5028 default: /* Other protocols doesn't support Multicast */
5029 error = EAFNOSUPPORT;
5030 break;
5031 }
5032 return error;
5033 case SIOCSDRVSPEC:
5034 if (!wg_is_authorized(wg, cmd)) {
5035 return EPERM;
5036 }
5037 switch (ifd->ifd_cmd) {
5038 case WG_IOCTL_SET_PRIVATE_KEY:
5039 error = wg_ioctl_set_private_key(wg, ifd);
5040 break;
5041 case WG_IOCTL_SET_LISTEN_PORT:
5042 error = wg_ioctl_set_listen_port(wg, ifd);
5043 break;
5044 case WG_IOCTL_ADD_PEER:
5045 error = wg_ioctl_add_peer(wg, ifd);
5046 break;
5047 case WG_IOCTL_DELETE_PEER:
5048 error = wg_ioctl_delete_peer(wg, ifd);
5049 break;
5050 default:
5051 error = EINVAL;
5052 break;
5053 }
5054 return error;
5055 case SIOCGDRVSPEC:
5056 return wg_ioctl_get(wg, ifd);
5057 case SIOCSIFFLAGS:
5058 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5059 break;
5060 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5061 case IFF_RUNNING:
5062 /*
5063 * If interface is marked down and it is running,
5064 * then stop and disable it.
5065 */
5066 if_stop(ifp, 1);
5067 break;
5068 case IFF_UP:
5069 /*
5070 * If interface is marked up and it is stopped, then
5071 * start it.
5072 */
5073 error = if_init(ifp);
5074 break;
5075 default:
5076 break;
5077 }
5078 return error;
5079 #ifdef WG_RUMPKERNEL
5080 case SIOCSLINKSTR:
5081 error = wg_ioctl_linkstr(wg, ifd);
5082 if (error == 0)
5083 wg->wg_ops = &wg_ops_rumpuser;
5084 return error;
5085 #endif
5086 default:
5087 break;
5088 }
5089
5090 error = ifioctl_common(ifp, cmd, data);
5091
5092 #ifdef WG_RUMPKERNEL
5093 if (!wg_user_mode(wg))
5094 return error;
5095
5096 /* Do the same to the corresponding tun device on the host */
5097 /*
5098 * XXX Actually the command has not been handled yet. It
5099 * will be handled via pr_ioctl form doifioctl later.
5100 */
5101 switch (cmd) {
5102 case SIOCAIFADDR:
5103 case SIOCDIFADDR: {
5104 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
5105 struct in_aliasreq *ifra = &_ifra;
5106 KASSERT(error == ENOTTY);
5107 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5108 IFNAMSIZ);
5109 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
5110 if (error == 0)
5111 error = ENOTTY;
5112 break;
5113 }
5114 #ifdef INET6
5115 case SIOCAIFADDR_IN6:
5116 case SIOCDIFADDR_IN6: {
5117 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
5118 struct in6_aliasreq *ifra = &_ifra;
5119 KASSERT(error == ENOTTY);
5120 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5121 IFNAMSIZ);
5122 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
5123 if (error == 0)
5124 error = ENOTTY;
5125 break;
5126 }
5127 #endif
5128 }
5129 #endif /* WG_RUMPKERNEL */
5130
5131 return error;
5132 }
5133
5134 static int
5135 wg_init(struct ifnet *ifp)
5136 {
5137
5138 ifp->if_flags |= IFF_RUNNING;
5139
5140 /* TODO flush pending packets. */
5141 return 0;
5142 }
5143
5144 #ifdef ALTQ
5145 static void
5146 wg_start(struct ifnet *ifp)
5147 {
5148 struct mbuf *m;
5149
5150 for (;;) {
5151 IFQ_DEQUEUE(&ifp->if_snd, m);
5152 if (m == NULL)
5153 break;
5154
5155 kpreempt_disable();
5156 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
5157 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
5158 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
5159 if_name(ifp));
5160 m_freem(m);
5161 }
5162 kpreempt_enable();
5163 }
5164 }
5165 #endif
5166
5167 static void
5168 wg_stop(struct ifnet *ifp, int disable)
5169 {
5170
5171 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
5172 ifp->if_flags &= ~IFF_RUNNING;
5173
5174 /* Need to do something? */
5175 }
5176
5177 #ifdef WG_DEBUG_PARAMS
5178 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
5179 {
5180 const struct sysctlnode *node = NULL;
5181
5182 sysctl_createv(clog, 0, NULL, &node,
5183 CTLFLAG_PERMANENT,
5184 CTLTYPE_NODE, "wg",
5185 SYSCTL_DESCR("wg(4)"),
5186 NULL, 0, NULL, 0,
5187 CTL_NET, CTL_CREATE, CTL_EOL);
5188 sysctl_createv(clog, 0, &node, NULL,
5189 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5190 CTLTYPE_QUAD, "rekey_after_messages",
5191 SYSCTL_DESCR("session liftime by messages"),
5192 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
5193 sysctl_createv(clog, 0, &node, NULL,
5194 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5195 CTLTYPE_INT, "rekey_after_time",
5196 SYSCTL_DESCR("session liftime"),
5197 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
5198 sysctl_createv(clog, 0, &node, NULL,
5199 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5200 CTLTYPE_INT, "rekey_timeout",
5201 SYSCTL_DESCR("session handshake retry time"),
5202 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
5203 sysctl_createv(clog, 0, &node, NULL,
5204 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5205 CTLTYPE_INT, "rekey_attempt_time",
5206 SYSCTL_DESCR("session handshake timeout"),
5207 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
5208 sysctl_createv(clog, 0, &node, NULL,
5209 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5210 CTLTYPE_INT, "keepalive_timeout",
5211 SYSCTL_DESCR("keepalive timeout"),
5212 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
5213 sysctl_createv(clog, 0, &node, NULL,
5214 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5215 CTLTYPE_BOOL, "force_underload",
5216 SYSCTL_DESCR("force to detemine under load"),
5217 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
5218 sysctl_createv(clog, 0, &node, NULL,
5219 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5220 CTLTYPE_INT, "debug",
5221 SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
5222 NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
5223 }
5224 #endif
5225
5226 #ifdef WG_RUMPKERNEL
5227 static bool
5228 wg_user_mode(struct wg_softc *wg)
5229 {
5230
5231 return wg->wg_user != NULL;
5232 }
5233
5234 static int
5235 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
5236 {
5237 struct ifnet *ifp = &wg->wg_if;
5238 int error;
5239
5240 if (ifp->if_flags & IFF_UP)
5241 return EBUSY;
5242
5243 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
5244 /* XXX do nothing */
5245 return 0;
5246 } else if (ifd->ifd_cmd != 0) {
5247 return EINVAL;
5248 } else if (wg->wg_user != NULL) {
5249 return EBUSY;
5250 }
5251
5252 /* Assume \0 included */
5253 if (ifd->ifd_len > IFNAMSIZ) {
5254 return E2BIG;
5255 } else if (ifd->ifd_len < 1) {
5256 return EINVAL;
5257 }
5258
5259 char tun_name[IFNAMSIZ];
5260 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
5261 if (error != 0)
5262 return error;
5263
5264 if (strncmp(tun_name, "tun", 3) != 0)
5265 return EINVAL;
5266
5267 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
5268
5269 return error;
5270 }
5271
5272 static int
5273 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
5274 {
5275 int error;
5276 struct psref psref;
5277 struct wg_sockaddr *wgsa;
5278 struct wg_softc *wg = wgp->wgp_sc;
5279 struct iovec iov[1];
5280
5281 wgsa = wg_get_endpoint_sa(wgp, &psref);
5282
5283 iov[0].iov_base = mtod(m, void *);
5284 iov[0].iov_len = m->m_len;
5285
5286 /* Send messages to a peer via an ordinary socket. */
5287 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
5288
5289 wg_put_sa(wgp, wgsa, &psref);
5290
5291 m_freem(m);
5292
5293 return error;
5294 }
5295
5296 static void
5297 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
5298 {
5299 struct wg_softc *wg = ifp->if_softc;
5300 struct iovec iov[2];
5301 struct sockaddr_storage ss;
5302
5303 KASSERT(af == AF_INET || af == AF_INET6);
5304
5305 WG_TRACE("");
5306
5307 if (af == AF_INET) {
5308 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
5309 struct ip *ip;
5310
5311 KASSERT(m->m_len >= sizeof(struct ip));
5312 ip = mtod(m, struct ip *);
5313 sockaddr_in_init(sin, &ip->ip_dst, 0);
5314 } else {
5315 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
5316 struct ip6_hdr *ip6;
5317
5318 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
5319 ip6 = mtod(m, struct ip6_hdr *);
5320 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
5321 }
5322
5323 iov[0].iov_base = &ss;
5324 iov[0].iov_len = ss.ss_len;
5325 iov[1].iov_base = mtod(m, void *);
5326 iov[1].iov_len = m->m_len;
5327
5328 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5329
5330 /* Send decrypted packets to users via a tun. */
5331 rumpuser_wg_send_user(wg->wg_user, iov, 2);
5332
5333 m_freem(m);
5334 }
5335
5336 static int
5337 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
5338 {
5339 int error;
5340 uint16_t old_port = wg->wg_listen_port;
5341
5342 if (port != 0 && old_port == port)
5343 return 0;
5344
5345 error = rumpuser_wg_sock_bind(wg->wg_user, port);
5346 if (error == 0)
5347 wg->wg_listen_port = port;
5348 return error;
5349 }
5350
5351 /*
5352 * Receive user packets.
5353 */
5354 void
5355 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5356 {
5357 struct ifnet *ifp = &wg->wg_if;
5358 struct mbuf *m;
5359 const struct sockaddr *dst;
5360
5361 WG_TRACE("");
5362
5363 dst = iov[0].iov_base;
5364
5365 m = m_gethdr(M_DONTWAIT, MT_DATA);
5366 if (m == NULL)
5367 return;
5368 m->m_len = m->m_pkthdr.len = 0;
5369 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5370
5371 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5372 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5373
5374 (void)wg_output(ifp, m, dst, NULL);
5375 }
5376
5377 /*
5378 * Receive packets from a peer.
5379 */
5380 void
5381 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5382 {
5383 struct mbuf *m;
5384 const struct sockaddr *src;
5385 int bound;
5386
5387 WG_TRACE("");
5388
5389 src = iov[0].iov_base;
5390
5391 m = m_gethdr(M_DONTWAIT, MT_DATA);
5392 if (m == NULL)
5393 return;
5394 m->m_len = m->m_pkthdr.len = 0;
5395 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5396
5397 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5398 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5399
5400 bound = curlwp_bind();
5401 wg_handle_packet(wg, m, src);
5402 curlwp_bindx(bound);
5403 }
5404 #endif /* WG_RUMPKERNEL */
5405
5406 /*
5407 * Module infrastructure
5408 */
5409 #include "if_module.h"
5410
5411 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
5412