if_wg.c revision 1.109 1 /* $NetBSD: if_wg.c,v 1.109 2024/07/28 14:49:49 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.109 2024/07/28 14:49:49 riastradh Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_altq_enabled.h"
48 #include "opt_inet.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/atomic.h>
55 #include <sys/callout.h>
56 #include <sys/cprng.h>
57 #include <sys/cpu.h>
58 #include <sys/device.h>
59 #include <sys/domain.h>
60 #include <sys/errno.h>
61 #include <sys/intr.h>
62 #include <sys/ioctl.h>
63 #include <sys/kernel.h>
64 #include <sys/kmem.h>
65 #include <sys/mbuf.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/once.h>
69 #include <sys/percpu.h>
70 #include <sys/pserialize.h>
71 #include <sys/psref.h>
72 #include <sys/queue.h>
73 #include <sys/rwlock.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/systm.h>
80 #include <sys/thmap.h>
81 #include <sys/threadpool.h>
82 #include <sys/time.h>
83 #include <sys/timespec.h>
84 #include <sys/workqueue.h>
85
86 #include <lib/libkern/libkern.h>
87
88 #include <net/bpf.h>
89 #include <net/if.h>
90 #include <net/if_types.h>
91 #include <net/if_wg.h>
92 #include <net/pktqueue.h>
93 #include <net/route.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_pcb.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_var.h>
101 #include <netinet/udp.h>
102 #include <netinet/udp_var.h>
103 #endif /* INET */
104
105 #ifdef INET6
106 #include <netinet/ip6.h>
107 #include <netinet6/in6_pcb.h>
108 #include <netinet6/in6_var.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/udp6_var.h>
111 #endif /* INET6 */
112
113 #include <prop/proplib.h>
114
115 #include <crypto/blake2/blake2s.h>
116 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
117 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
118 #include <crypto/sodium/crypto_scalarmult.h>
119
120 #include "ioconf.h"
121
122 #ifdef WG_RUMPKERNEL
123 #include "wg_user.h"
124 #endif
125
126 #ifndef time_uptime32
127 #define time_uptime32 ((uint32_t)time_uptime)
128 #endif
129
130 /*
131 * Data structures
132 * - struct wg_softc is an instance of wg interfaces
133 * - It has a list of peers (struct wg_peer)
134 * - It has a threadpool job that sends/receives handshake messages and
135 * runs event handlers
136 * - It has its own two routing tables: one is for IPv4 and the other IPv6
137 * - struct wg_peer is a representative of a peer
138 * - It has a struct work to handle handshakes and timer tasks
139 * - It has a pair of session instances (struct wg_session)
140 * - It has a pair of endpoint instances (struct wg_sockaddr)
141 * - Normally one endpoint is used and the second one is used only on
142 * a peer migration (a change of peer's IP address)
143 * - It has a list of IP addresses and sub networks called allowedips
144 * (struct wg_allowedip)
145 * - A packets sent over a session is allowed if its destination matches
146 * any IP addresses or sub networks of the list
147 * - struct wg_session represents a session of a secure tunnel with a peer
148 * - Two instances of sessions belong to a peer; a stable session and a
149 * unstable session
150 * - A handshake process of a session always starts with a unstable instance
151 * - Once a session is established, its instance becomes stable and the
152 * other becomes unstable instead
153 * - Data messages are always sent via a stable session
154 *
155 * Locking notes:
156 * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
157 * - Changes to the peer list are serialized by wg_lock
158 * - The peer list may be read with pserialize(9) and psref(9)
159 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
160 * => XXX replace by pserialize when routing table is psz-safe
161 * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
162 * only in thread context and serializes:
163 * - the stable and unstable session pointers
164 * - all unstable session state
165 * - Packet processing may be done in softint context:
166 * - The stable session can be read under pserialize(9) or psref(9)
167 * - The stable session is always ESTABLISHED
168 * - On a session swap, we must wait for all readers to release a
169 * reference to a stable session before changing wgs_state and
170 * session states
171 * - Lock order: wg_lock -> wgp_lock
172 */
173
174
175 #define WGLOG(level, fmt, args...) \
176 log(level, "%s: " fmt, __func__, ##args)
177
178 #define WG_DEBUG
179
180 /* Debug options */
181 #ifdef WG_DEBUG
182 /* Output debug logs */
183 #ifndef WG_DEBUG_LOG
184 #define WG_DEBUG_LOG
185 #endif
186 /* Output trace logs */
187 #ifndef WG_DEBUG_TRACE
188 #define WG_DEBUG_TRACE
189 #endif
190 /* Output hash values, etc. */
191 #ifndef WG_DEBUG_DUMP
192 #define WG_DEBUG_DUMP
193 #endif
194 /* debug packets */
195 #ifndef WG_DEBUG_PACKET
196 #define WG_DEBUG_PACKET
197 #endif
198 /* Make some internal parameters configurable for testing and debugging */
199 #ifndef WG_DEBUG_PARAMS
200 #define WG_DEBUG_PARAMS
201 #endif
202 #endif /* WG_DEBUG */
203
204 #ifndef WG_DEBUG
205 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) || \
206 defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS) || \
207 defined(WG_DEBUG_PACKET)
208 # define WG_DEBUG
209 # endif
210 #endif
211
212 #ifdef WG_DEBUG
213 int wg_debug;
214 #define WG_DEBUG_FLAGS_LOG 1
215 #define WG_DEBUG_FLAGS_TRACE 2
216 #define WG_DEBUG_FLAGS_DUMP 4
217 #define WG_DEBUG_FLAGS_PACKET 8
218 #endif
219
220
221 #ifdef WG_DEBUG_TRACE
222 #define WG_TRACE(msg) do { \
223 if (wg_debug & WG_DEBUG_FLAGS_TRACE) \
224 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg)); \
225 } while (0)
226 #else
227 #define WG_TRACE(msg) __nothing
228 #endif
229
230 #ifdef WG_DEBUG_LOG
231 #define WG_DLOG(fmt, args...) do { \
232 if (wg_debug & WG_DEBUG_FLAGS_LOG) \
233 log(LOG_DEBUG, "%s: " fmt, __func__, ##args); \
234 } while (0)
235 #else
236 #define WG_DLOG(fmt, args...) __nothing
237 #endif
238
239 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
240 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
241 &(wgprc)->wgprc_curpps, 1)) { \
242 log(level, fmt, ##args); \
243 } \
244 } while (0)
245
246 #ifdef WG_DEBUG_PARAMS
247 static bool wg_force_underload = false;
248 #endif
249
250 #ifdef WG_DEBUG_DUMP
251
252 static char enomem[10] = "[enomem]";
253
254 #define MAX_HDUMP_LEN 10000 /* large enough */
255
256
257 static char *
258 gethexdump(const void *vp, size_t n)
259 {
260 char *buf;
261 const uint8_t *p = vp;
262 size_t i, alloc;
263
264 alloc = n;
265 if (n > MAX_HDUMP_LEN)
266 alloc = MAX_HDUMP_LEN;
267 buf = kmem_alloc(3 * alloc + 5, KM_NOSLEEP);
268 if (buf == NULL)
269 return enomem;
270 for (i = 0; i < alloc; i++)
271 snprintf(buf + 3 * i, 3 + 1, " %02hhx", p[i]);
272 if (alloc != n)
273 snprintf(buf + 3 * i, 4 + 1, " ...");
274 return buf;
275 }
276
277 static void
278 puthexdump(char *buf, const void *p, size_t n)
279 {
280
281 if (buf == NULL || buf == enomem)
282 return;
283 if (n > MAX_HDUMP_LEN)
284 n = MAX_HDUMP_LEN;
285 kmem_free(buf, 3 * n + 5);
286 }
287
288 #ifdef WG_RUMPKERNEL
289 static void
290 wg_dump_buf(const char *func, const char *buf, const size_t size)
291 {
292 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
293 return;
294
295 char *hex = gethexdump(buf, size);
296
297 log(LOG_DEBUG, "%s: %s\n", func, hex);
298 puthexdump(hex, buf, size);
299 }
300 #endif
301
302 static void
303 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
304 const size_t size)
305 {
306 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
307 return;
308
309 char *hex = gethexdump(hash, size);
310
311 log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex);
312 puthexdump(hex, hash, size);
313 }
314
315 #define WG_DUMP_HASH(name, hash) \
316 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
317 #define WG_DUMP_HASH48(name, hash) \
318 wg_dump_hash(__func__, name, hash, 48)
319 #define WG_DUMP_BUF(buf, size) \
320 wg_dump_buf(__func__, buf, size)
321 #else
322 #define WG_DUMP_HASH(name, hash) __nothing
323 #define WG_DUMP_HASH48(name, hash) __nothing
324 #define WG_DUMP_BUF(buf, size) __nothing
325 #endif /* WG_DEBUG_DUMP */
326
327 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
328 #define WG_MAX_PROPLEN 32766
329
330 #define WG_MTU 1420
331 #define WG_ALLOWEDIPS 16
332
333 #define CURVE25519_KEY_LEN 32
334 #define TAI64N_LEN sizeof(uint32_t) * 3
335 #define POLY1305_AUTHTAG_LEN 16
336 #define HMAC_BLOCK_LEN 64
337
338 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
339 /* [N] 4.3: Hash functions */
340 #define NOISE_DHLEN 32
341 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
342 #define NOISE_HASHLEN 32
343 #define NOISE_BLOCKLEN 64
344 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
345 /* [N] 5.1: "k" */
346 #define NOISE_CIPHER_KEY_LEN 32
347 /*
348 * [N] 9.2: "psk"
349 * "... psk is a 32-byte secret value provided by the application."
350 */
351 #define NOISE_PRESHARED_KEY_LEN 32
352
353 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
354 #define WG_TIMESTAMP_LEN TAI64N_LEN
355
356 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
357
358 #define WG_COOKIE_LEN 16
359 #define WG_MAC_LEN 16
360 #define WG_COOKIESECRET_LEN 32
361
362 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
363 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
364 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
365 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
366 #define WG_HASH_LEN NOISE_HASHLEN
367 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
368 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
369 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
370 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
371 #define WG_DATA_KEY_LEN 32
372 #define WG_SALT_LEN 24
373
374 /*
375 * The protocol messages
376 */
377 struct wg_msg {
378 uint32_t wgm_type;
379 } __packed;
380
381 /* [W] 5.4.2 First Message: Initiator to Responder */
382 struct wg_msg_init {
383 uint32_t wgmi_type;
384 uint32_t wgmi_sender;
385 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
386 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
387 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
388 uint8_t wgmi_mac1[WG_MAC_LEN];
389 uint8_t wgmi_mac2[WG_MAC_LEN];
390 } __packed;
391
392 /* [W] 5.4.3 Second Message: Responder to Initiator */
393 struct wg_msg_resp {
394 uint32_t wgmr_type;
395 uint32_t wgmr_sender;
396 uint32_t wgmr_receiver;
397 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
398 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
399 uint8_t wgmr_mac1[WG_MAC_LEN];
400 uint8_t wgmr_mac2[WG_MAC_LEN];
401 } __packed;
402
403 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
404 struct wg_msg_data {
405 uint32_t wgmd_type;
406 uint32_t wgmd_receiver;
407 uint64_t wgmd_counter;
408 uint32_t wgmd_packet[0];
409 } __packed;
410
411 /* [W] 5.4.7 Under Load: Cookie Reply Message */
412 struct wg_msg_cookie {
413 uint32_t wgmc_type;
414 uint32_t wgmc_receiver;
415 uint8_t wgmc_salt[WG_SALT_LEN];
416 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
417 } __packed;
418
419 #define WG_MSG_TYPE_INIT 1
420 #define WG_MSG_TYPE_RESP 2
421 #define WG_MSG_TYPE_COOKIE 3
422 #define WG_MSG_TYPE_DATA 4
423 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
424
425 /* Sliding windows */
426
427 #define SLIWIN_BITS 2048u
428 #define SLIWIN_TYPE uint32_t
429 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
430 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
431 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
432
433 struct sliwin {
434 SLIWIN_TYPE B[SLIWIN_WORDS];
435 uint64_t T;
436 };
437
438 static void
439 sliwin_reset(struct sliwin *W)
440 {
441
442 memset(W, 0, sizeof(*W));
443 }
444
445 static int
446 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
447 {
448
449 /*
450 * If it's more than one window older than the highest sequence
451 * number we've seen, reject.
452 */
453 #ifdef __HAVE_ATOMIC64_LOADSTORE
454 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
455 return EAUTH;
456 #endif
457
458 /*
459 * Otherwise, we need to take the lock to decide, so don't
460 * reject just yet. Caller must serialize a call to
461 * sliwin_update in this case.
462 */
463 return 0;
464 }
465
466 static int
467 sliwin_update(struct sliwin *W, uint64_t S)
468 {
469 unsigned word, bit;
470
471 /*
472 * If it's more than one window older than the highest sequence
473 * number we've seen, reject.
474 */
475 if (S + SLIWIN_NPKT < W->T)
476 return EAUTH;
477
478 /*
479 * If it's higher than the highest sequence number we've seen,
480 * advance the window.
481 */
482 if (S > W->T) {
483 uint64_t i = W->T / SLIWIN_BPW;
484 uint64_t j = S / SLIWIN_BPW;
485 unsigned k;
486
487 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
488 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
489 #ifdef __HAVE_ATOMIC64_LOADSTORE
490 atomic_store_relaxed(&W->T, S);
491 #else
492 W->T = S;
493 #endif
494 }
495
496 /* Test and set the bit -- if already set, reject. */
497 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
498 bit = S % SLIWIN_BPW;
499 if (W->B[word] & (1UL << bit))
500 return EAUTH;
501 W->B[word] |= 1U << bit;
502
503 /* Accept! */
504 return 0;
505 }
506
507 struct wg_session {
508 struct wg_peer *wgs_peer;
509 struct psref_target
510 wgs_psref;
511
512 int wgs_state;
513 #define WGS_STATE_UNKNOWN 0
514 #define WGS_STATE_INIT_ACTIVE 1
515 #define WGS_STATE_INIT_PASSIVE 2
516 #define WGS_STATE_ESTABLISHED 3
517 #define WGS_STATE_DESTROYING 4
518
519 volatile uint32_t
520 wgs_time_established;
521 volatile uint32_t
522 wgs_time_last_data_sent;
523 bool wgs_is_initiator;
524
525 uint32_t wgs_local_index;
526 uint32_t wgs_remote_index;
527 #ifdef __HAVE_ATOMIC64_LOADSTORE
528 volatile uint64_t
529 wgs_send_counter;
530 #else
531 kmutex_t wgs_send_counter_lock;
532 uint64_t wgs_send_counter;
533 #endif
534
535 struct {
536 kmutex_t lock;
537 struct sliwin window;
538 } *wgs_recvwin;
539
540 uint8_t wgs_handshake_hash[WG_HASH_LEN];
541 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
542 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
543 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
544 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
545 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
546 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
547 };
548
549 struct wg_sockaddr {
550 union {
551 struct sockaddr_storage _ss;
552 struct sockaddr _sa;
553 struct sockaddr_in _sin;
554 struct sockaddr_in6 _sin6;
555 };
556 struct psref_target wgsa_psref;
557 };
558
559 #define wgsatoss(wgsa) (&(wgsa)->_ss)
560 #define wgsatosa(wgsa) (&(wgsa)->_sa)
561 #define wgsatosin(wgsa) (&(wgsa)->_sin)
562 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
563
564 #define wgsa_family(wgsa) (wgsatosa(wgsa)->sa_family)
565
566 struct wg_peer;
567 struct wg_allowedip {
568 struct radix_node wga_nodes[2];
569 struct wg_sockaddr _wga_sa_addr;
570 struct wg_sockaddr _wga_sa_mask;
571 #define wga_sa_addr _wga_sa_addr._sa
572 #define wga_sa_mask _wga_sa_mask._sa
573
574 int wga_family;
575 uint8_t wga_cidr;
576 union {
577 struct in_addr _ip4;
578 struct in6_addr _ip6;
579 } wga_addr;
580 #define wga_addr4 wga_addr._ip4
581 #define wga_addr6 wga_addr._ip6
582
583 struct wg_peer *wga_peer;
584 };
585
586 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
587
588 struct wg_ppsratecheck {
589 struct timeval wgprc_lasttime;
590 int wgprc_curpps;
591 };
592
593 struct wg_softc;
594 struct wg_peer {
595 struct wg_softc *wgp_sc;
596 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
597 struct pslist_entry wgp_peerlist_entry;
598 pserialize_t wgp_psz;
599 struct psref_target wgp_psref;
600 kmutex_t *wgp_lock;
601 kmutex_t *wgp_intr_lock;
602
603 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
604 struct wg_sockaddr *wgp_endpoint;
605 struct wg_sockaddr *wgp_endpoint0;
606 volatile unsigned wgp_endpoint_changing;
607 bool wgp_endpoint_available;
608
609 /* The preshared key (optional) */
610 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
611
612 struct wg_session *wgp_session_stable;
613 struct wg_session *wgp_session_unstable;
614
615 /* first outgoing packet awaiting session initiation */
616 struct mbuf *volatile wgp_pending;
617
618 /* timestamp in big-endian */
619 wg_timestamp_t wgp_timestamp_latest_init;
620
621 struct timespec wgp_last_handshake_time;
622
623 callout_t wgp_handshake_timeout_timer;
624 callout_t wgp_session_dtor_timer;
625
626 time_t wgp_handshake_start_time;
627
628 volatile unsigned wgp_force_rekey;
629
630 int wgp_n_allowedips;
631 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
632
633 time_t wgp_latest_cookie_time;
634 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
635 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
636 bool wgp_last_sent_mac1_valid;
637 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
638 bool wgp_last_sent_cookie_valid;
639
640 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
641
642 time_t wgp_last_cookiesecret_time;
643 uint8_t wgp_cookiesecret[WG_COOKIESECRET_LEN];
644
645 struct wg_ppsratecheck wgp_ppsratecheck;
646
647 struct work wgp_work;
648 unsigned int wgp_tasks;
649 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
650 #define WGP_TASK_RETRY_HANDSHAKE __BIT(1)
651 #define WGP_TASK_ESTABLISH_SESSION __BIT(2)
652 #define WGP_TASK_ENDPOINT_CHANGED __BIT(3)
653 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(4)
654 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(5)
655 };
656
657 struct wg_ops;
658
659 struct wg_softc {
660 struct ifnet wg_if;
661 LIST_ENTRY(wg_softc) wg_list;
662 kmutex_t *wg_lock;
663 kmutex_t *wg_intr_lock;
664 krwlock_t *wg_rwlock;
665
666 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
667 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
668
669 int wg_npeers;
670 struct pslist_head wg_peers;
671 struct thmap *wg_peers_bypubkey;
672 struct thmap *wg_peers_byname;
673 struct thmap *wg_sessions_byindex;
674 uint16_t wg_listen_port;
675
676 struct threadpool *wg_threadpool;
677
678 struct threadpool_job wg_job;
679 int wg_upcalls;
680 #define WG_UPCALL_INET __BIT(0)
681 #define WG_UPCALL_INET6 __BIT(1)
682
683 #ifdef INET
684 struct socket *wg_so4;
685 struct radix_node_head *wg_rtable_ipv4;
686 #endif
687 #ifdef INET6
688 struct socket *wg_so6;
689 struct radix_node_head *wg_rtable_ipv6;
690 #endif
691
692 struct wg_ppsratecheck wg_ppsratecheck;
693
694 struct wg_ops *wg_ops;
695
696 #ifdef WG_RUMPKERNEL
697 struct wg_user *wg_user;
698 #endif
699 };
700
701 /* [W] 6.1 Preliminaries */
702 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
703 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
704 #define WG_REKEY_AFTER_TIME 120
705 #define WG_REJECT_AFTER_TIME 180
706 #define WG_REKEY_ATTEMPT_TIME 90
707 #define WG_REKEY_TIMEOUT 5
708 #define WG_KEEPALIVE_TIMEOUT 10
709
710 #define WG_COOKIE_TIME 120
711 #define WG_COOKIESECRET_TIME (2 * 60)
712
713 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
714 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
715 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
716 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
717 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
718 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
719 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
720
721 static struct mbuf *
722 wg_get_mbuf(size_t, size_t);
723
724 static void wg_send_data_msg(struct wg_peer *, struct wg_session *,
725 struct mbuf *);
726 static void wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
727 const uint32_t, const uint8_t [WG_MAC_LEN],
728 const struct sockaddr *);
729 static void wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
730 struct wg_session *, const struct wg_msg_init *);
731 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
732
733 static struct wg_peer *
734 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
735 struct psref *);
736 static struct wg_peer *
737 wg_lookup_peer_by_pubkey(struct wg_softc *,
738 const uint8_t [WG_STATIC_KEY_LEN], struct psref *);
739
740 static struct wg_session *
741 wg_lookup_session_by_index(struct wg_softc *,
742 const uint32_t, struct psref *);
743
744 static void wg_update_endpoint_if_necessary(struct wg_peer *,
745 const struct sockaddr *);
746
747 static void wg_schedule_session_dtor_timer(struct wg_peer *);
748
749 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
750 static void wg_calculate_keys(struct wg_session *, const bool);
751
752 static void wg_clear_states(struct wg_session *);
753
754 static void wg_get_peer(struct wg_peer *, struct psref *);
755 static void wg_put_peer(struct wg_peer *, struct psref *);
756
757 static int wg_send_so(struct wg_peer *, struct mbuf *);
758 static int wg_send_udp(struct wg_peer *, struct mbuf *);
759 static int wg_output(struct ifnet *, struct mbuf *,
760 const struct sockaddr *, const struct rtentry *);
761 static void wg_input(struct ifnet *, struct mbuf *, const int);
762 static int wg_ioctl(struct ifnet *, u_long, void *);
763 static int wg_bind_port(struct wg_softc *, const uint16_t);
764 static int wg_init(struct ifnet *);
765 #ifdef ALTQ
766 static void wg_start(struct ifnet *);
767 #endif
768 static void wg_stop(struct ifnet *, int);
769
770 static void wg_peer_work(struct work *, void *);
771 static void wg_job(struct threadpool_job *);
772 static void wgintr(void *);
773 static void wg_purge_pending_packets(struct wg_peer *);
774
775 static int wg_clone_create(struct if_clone *, int);
776 static int wg_clone_destroy(struct ifnet *);
777
778 struct wg_ops {
779 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
780 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
781 void (*input)(struct ifnet *, struct mbuf *, const int);
782 int (*bind_port)(struct wg_softc *, const uint16_t);
783 };
784
785 struct wg_ops wg_ops_rumpkernel = {
786 .send_hs_msg = wg_send_so,
787 .send_data_msg = wg_send_udp,
788 .input = wg_input,
789 .bind_port = wg_bind_port,
790 };
791
792 #ifdef WG_RUMPKERNEL
793 static bool wg_user_mode(struct wg_softc *);
794 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
795
796 static int wg_send_user(struct wg_peer *, struct mbuf *);
797 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
798 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
799
800 struct wg_ops wg_ops_rumpuser = {
801 .send_hs_msg = wg_send_user,
802 .send_data_msg = wg_send_user,
803 .input = wg_input_user,
804 .bind_port = wg_bind_port_user,
805 };
806 #endif
807
808 #define WG_PEER_READER_FOREACH(wgp, wg) \
809 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
810 wgp_peerlist_entry)
811 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
812 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
813 wgp_peerlist_entry)
814 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
815 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
816 #define WG_PEER_WRITER_REMOVE(wgp) \
817 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
818
819 struct wg_route {
820 struct radix_node wgr_nodes[2];
821 struct wg_peer *wgr_peer;
822 };
823
824 static struct radix_node_head *
825 wg_rnh(struct wg_softc *wg, const int family)
826 {
827
828 switch (family) {
829 #ifdef INET
830 case AF_INET:
831 return wg->wg_rtable_ipv4;
832 #endif
833 #ifdef INET6
834 case AF_INET6:
835 return wg->wg_rtable_ipv6;
836 #endif
837 default:
838 return NULL;
839 }
840 }
841
842
843 /*
844 * Global variables
845 */
846 static volatile unsigned wg_count __cacheline_aligned;
847
848 struct psref_class *wg_psref_class __read_mostly;
849
850 static struct if_clone wg_cloner =
851 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
852
853 static struct pktqueue *wg_pktq __read_mostly;
854 static struct workqueue *wg_wq __read_mostly;
855
856 void wgattach(int);
857 /* ARGSUSED */
858 void
859 wgattach(int count)
860 {
861 /*
862 * Nothing to do here, initialization is handled by the
863 * module initialization code in wginit() below).
864 */
865 }
866
867 static void
868 wginit(void)
869 {
870
871 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
872
873 if_clone_attach(&wg_cloner);
874 }
875
876 /*
877 * XXX Kludge: This should just happen in wginit, but workqueue_create
878 * cannot be run until after CPUs have been detected, and wginit runs
879 * before configure.
880 */
881 static int
882 wginitqueues(void)
883 {
884 int error __diagused;
885
886 wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
887 KASSERT(wg_pktq != NULL);
888
889 error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
890 PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
891 KASSERTMSG(error == 0, "error=%d", error);
892
893 return 0;
894 }
895
896 static void
897 wg_guarantee_initialized(void)
898 {
899 static ONCE_DECL(init);
900 int error __diagused;
901
902 error = RUN_ONCE(&init, wginitqueues);
903 KASSERTMSG(error == 0, "error=%d", error);
904 }
905
906 static int
907 wg_count_inc(void)
908 {
909 unsigned o, n;
910
911 do {
912 o = atomic_load_relaxed(&wg_count);
913 if (o == UINT_MAX)
914 return ENFILE;
915 n = o + 1;
916 } while (atomic_cas_uint(&wg_count, o, n) != o);
917
918 return 0;
919 }
920
921 static void
922 wg_count_dec(void)
923 {
924 unsigned c __diagused;
925
926 c = atomic_dec_uint_nv(&wg_count);
927 KASSERT(c != UINT_MAX);
928 }
929
930 static int
931 wgdetach(void)
932 {
933
934 /* Prevent new interface creation. */
935 if_clone_detach(&wg_cloner);
936
937 /* Check whether there are any existing interfaces. */
938 if (atomic_load_relaxed(&wg_count)) {
939 /* Back out -- reattach the cloner. */
940 if_clone_attach(&wg_cloner);
941 return EBUSY;
942 }
943
944 /* No interfaces left. Nuke it. */
945 if (wg_wq)
946 workqueue_destroy(wg_wq);
947 if (wg_pktq)
948 pktq_destroy(wg_pktq);
949 psref_class_destroy(wg_psref_class);
950
951 return 0;
952 }
953
954 static void
955 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
956 uint8_t hash[WG_HASH_LEN])
957 {
958 /* [W] 5.4: CONSTRUCTION */
959 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
960 /* [W] 5.4: IDENTIFIER */
961 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
962 struct blake2s state;
963
964 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
965 signature, strlen(signature));
966
967 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
968 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
969
970 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
971 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
972 blake2s_update(&state, id, strlen(id));
973 blake2s_final(&state, hash);
974
975 WG_DUMP_HASH("ckey", ckey);
976 WG_DUMP_HASH("hash", hash);
977 }
978
979 static void
980 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
981 const size_t inputsize)
982 {
983 struct blake2s state;
984
985 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
986 blake2s_update(&state, hash, WG_HASH_LEN);
987 blake2s_update(&state, input, inputsize);
988 blake2s_final(&state, hash);
989 }
990
991 static void
992 wg_algo_mac(uint8_t out[], const size_t outsize,
993 const uint8_t key[], const size_t keylen,
994 const uint8_t input1[], const size_t input1len,
995 const uint8_t input2[], const size_t input2len)
996 {
997 struct blake2s state;
998
999 blake2s_init(&state, outsize, key, keylen);
1000
1001 blake2s_update(&state, input1, input1len);
1002 if (input2 != NULL)
1003 blake2s_update(&state, input2, input2len);
1004 blake2s_final(&state, out);
1005 }
1006
1007 static void
1008 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
1009 const uint8_t input1[], const size_t input1len,
1010 const uint8_t input2[], const size_t input2len)
1011 {
1012 struct blake2s state;
1013 /* [W] 5.4: LABEL-MAC1 */
1014 const char *label = "mac1----";
1015 uint8_t key[WG_HASH_LEN];
1016
1017 blake2s_init(&state, sizeof(key), NULL, 0);
1018 blake2s_update(&state, label, strlen(label));
1019 blake2s_update(&state, input1, input1len);
1020 blake2s_final(&state, key);
1021
1022 blake2s_init(&state, outsize, key, sizeof(key));
1023 if (input2 != NULL)
1024 blake2s_update(&state, input2, input2len);
1025 blake2s_final(&state, out);
1026 }
1027
1028 static void
1029 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
1030 const uint8_t input1[], const size_t input1len)
1031 {
1032 struct blake2s state;
1033 /* [W] 5.4: LABEL-COOKIE */
1034 const char *label = "cookie--";
1035
1036 blake2s_init(&state, outsize, NULL, 0);
1037 blake2s_update(&state, label, strlen(label));
1038 blake2s_update(&state, input1, input1len);
1039 blake2s_final(&state, out);
1040 }
1041
1042 static void
1043 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
1044 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
1045 {
1046
1047 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1048
1049 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
1050 crypto_scalarmult_base(pubkey, privkey);
1051 }
1052
1053 static void
1054 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
1055 const uint8_t privkey[WG_STATIC_KEY_LEN],
1056 const uint8_t pubkey[WG_STATIC_KEY_LEN])
1057 {
1058
1059 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1060
1061 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
1062 KASSERT(ret == 0);
1063 }
1064
1065 static void
1066 wg_algo_hmac(uint8_t out[], const size_t outlen,
1067 const uint8_t key[], const size_t keylen,
1068 const uint8_t in[], const size_t inlen)
1069 {
1070 #define IPAD 0x36
1071 #define OPAD 0x5c
1072 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
1073 uint8_t ipad[HMAC_BLOCK_LEN];
1074 uint8_t opad[HMAC_BLOCK_LEN];
1075 size_t i;
1076 struct blake2s state;
1077
1078 KASSERT(outlen == WG_HASH_LEN);
1079 KASSERT(keylen <= HMAC_BLOCK_LEN);
1080
1081 memcpy(hmackey, key, keylen);
1082
1083 for (i = 0; i < sizeof(hmackey); i++) {
1084 ipad[i] = hmackey[i] ^ IPAD;
1085 opad[i] = hmackey[i] ^ OPAD;
1086 }
1087
1088 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1089 blake2s_update(&state, ipad, sizeof(ipad));
1090 blake2s_update(&state, in, inlen);
1091 blake2s_final(&state, out);
1092
1093 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1094 blake2s_update(&state, opad, sizeof(opad));
1095 blake2s_update(&state, out, WG_HASH_LEN);
1096 blake2s_final(&state, out);
1097 #undef IPAD
1098 #undef OPAD
1099 }
1100
1101 static void
1102 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
1103 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
1104 const uint8_t input[], const size_t inputlen)
1105 {
1106 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
1107 uint8_t one[1];
1108
1109 /*
1110 * [N] 4.3: "an input_key_material byte sequence with length
1111 * either zero bytes, 32 bytes, or DHLEN bytes."
1112 */
1113 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
1114
1115 WG_DUMP_HASH("ckey", ckey);
1116 if (input != NULL)
1117 WG_DUMP_HASH("input", input);
1118 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
1119 input, inputlen);
1120 WG_DUMP_HASH("tmp1", tmp1);
1121 one[0] = 1;
1122 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1123 one, sizeof(one));
1124 WG_DUMP_HASH("out1", out1);
1125 if (out2 == NULL)
1126 return;
1127 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
1128 tmp2[WG_KDF_OUTPUT_LEN] = 2;
1129 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1130 tmp2, sizeof(tmp2));
1131 WG_DUMP_HASH("out2", out2);
1132 if (out3 == NULL)
1133 return;
1134 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
1135 tmp2[WG_KDF_OUTPUT_LEN] = 3;
1136 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1137 tmp2, sizeof(tmp2));
1138 WG_DUMP_HASH("out3", out3);
1139 }
1140
1141 static void __noinline
1142 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
1143 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1144 const uint8_t local_key[WG_STATIC_KEY_LEN],
1145 const uint8_t remote_key[WG_STATIC_KEY_LEN])
1146 {
1147 uint8_t dhout[WG_DH_OUTPUT_LEN];
1148
1149 wg_algo_dh(dhout, local_key, remote_key);
1150 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1151
1152 WG_DUMP_HASH("dhout", dhout);
1153 WG_DUMP_HASH("ckey", ckey);
1154 if (cipher_key != NULL)
1155 WG_DUMP_HASH("cipher_key", cipher_key);
1156 }
1157
1158 static void
1159 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1160 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1161 const uint8_t auth[], size_t authlen)
1162 {
1163 uint8_t nonce[(32 + 64) / 8] = {0};
1164 long long unsigned int outsize;
1165 int error __diagused;
1166
1167 le64enc(&nonce[4], counter);
1168
1169 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1170 plainsize, auth, authlen, NULL, nonce, key);
1171 KASSERT(error == 0);
1172 KASSERT(outsize == expected_outsize);
1173 }
1174
1175 static int
1176 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1177 const uint64_t counter, const uint8_t encrypted[],
1178 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1179 {
1180 uint8_t nonce[(32 + 64) / 8] = {0};
1181 long long unsigned int outsize;
1182 int error;
1183
1184 le64enc(&nonce[4], counter);
1185
1186 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1187 encrypted, encryptedsize, auth, authlen, nonce, key);
1188 if (error == 0)
1189 KASSERT(outsize == expected_outsize);
1190 return error;
1191 }
1192
1193 static void
1194 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1195 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1196 const uint8_t auth[], size_t authlen,
1197 const uint8_t nonce[WG_SALT_LEN])
1198 {
1199 long long unsigned int outsize;
1200 int error __diagused;
1201
1202 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1203 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1204 plain, plainsize, auth, authlen, NULL, nonce, key);
1205 KASSERT(error == 0);
1206 KASSERT(outsize == expected_outsize);
1207 }
1208
1209 static int
1210 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1211 const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
1212 const uint8_t auth[], size_t authlen,
1213 const uint8_t nonce[WG_SALT_LEN])
1214 {
1215 long long unsigned int outsize;
1216 int error;
1217
1218 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1219 encrypted, encryptedsize, auth, authlen, nonce, key);
1220 if (error == 0)
1221 KASSERT(outsize == expected_outsize);
1222 return error;
1223 }
1224
1225 static void
1226 wg_algo_tai64n(wg_timestamp_t timestamp)
1227 {
1228 struct timespec ts;
1229
1230 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1231 getnanotime(&ts);
1232 /* TAI64 label in external TAI64 format */
1233 be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
1234 /* second beginning from 1970 TAI */
1235 be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
1236 /* nanosecond in big-endian format */
1237 be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
1238 }
1239
1240 /*
1241 * wg_get_stable_session(wgp, psref)
1242 *
1243 * Get a passive reference to the current stable session, or
1244 * return NULL if there is no current stable session.
1245 *
1246 * The pointer is always there but the session is not necessarily
1247 * ESTABLISHED; if it is not ESTABLISHED, return NULL. However,
1248 * the session may transition from ESTABLISHED to DESTROYING while
1249 * holding the passive reference.
1250 */
1251 static struct wg_session *
1252 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1253 {
1254 int s;
1255 struct wg_session *wgs;
1256
1257 s = pserialize_read_enter();
1258 wgs = atomic_load_consume(&wgp->wgp_session_stable);
1259 if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
1260 wgs = NULL;
1261 else
1262 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1263 pserialize_read_exit(s);
1264
1265 return wgs;
1266 }
1267
1268 static void
1269 wg_put_session(struct wg_session *wgs, struct psref *psref)
1270 {
1271
1272 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1273 }
1274
1275 static void
1276 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1277 {
1278 struct wg_peer *wgp = wgs->wgs_peer;
1279 struct wg_session *wgs0 __diagused;
1280 void *garbage;
1281
1282 KASSERT(mutex_owned(wgp->wgp_lock));
1283 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1284
1285 /* Remove the session from the table. */
1286 wgs0 = thmap_del(wg->wg_sessions_byindex,
1287 &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1288 KASSERT(wgs0 == wgs);
1289 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1290
1291 /* Wait for passive references to drain. */
1292 pserialize_perform(wgp->wgp_psz);
1293 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1294
1295 /*
1296 * Free memory, zero state, and transition to UNKNOWN. We have
1297 * exclusive access to the session now, so there is no need for
1298 * an atomic store.
1299 */
1300 thmap_gc(wg->wg_sessions_byindex, garbage);
1301 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_UNKNOWN\n",
1302 wgs->wgs_local_index, wgs->wgs_remote_index);
1303 wgs->wgs_local_index = 0;
1304 wgs->wgs_remote_index = 0;
1305 wg_clear_states(wgs);
1306 wgs->wgs_state = WGS_STATE_UNKNOWN;
1307 }
1308
1309 /*
1310 * wg_get_session_index(wg, wgs)
1311 *
1312 * Choose a session index for wgs->wgs_local_index, and store it
1313 * in wg's table of sessions by index.
1314 *
1315 * wgs must be the unstable session of its peer, and must be
1316 * transitioning out of the UNKNOWN state.
1317 */
1318 static void
1319 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1320 {
1321 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1322 struct wg_session *wgs0;
1323 uint32_t index;
1324
1325 KASSERT(mutex_owned(wgp->wgp_lock));
1326 KASSERT(wgs == wgp->wgp_session_unstable);
1327 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1328 wgs->wgs_state);
1329
1330 do {
1331 /* Pick a uniform random index. */
1332 index = cprng_strong32();
1333
1334 /* Try to take it. */
1335 wgs->wgs_local_index = index;
1336 wgs0 = thmap_put(wg->wg_sessions_byindex,
1337 &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1338
1339 /* If someone else beat us, start over. */
1340 } while (__predict_false(wgs0 != wgs));
1341 }
1342
1343 /*
1344 * wg_put_session_index(wg, wgs)
1345 *
1346 * Remove wgs from the table of sessions by index, wait for any
1347 * passive references to drain, and transition the session to the
1348 * UNKNOWN state.
1349 *
1350 * wgs must be the unstable session of its peer, and must not be
1351 * UNKNOWN or ESTABLISHED.
1352 */
1353 static void
1354 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1355 {
1356 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1357
1358 KASSERT(mutex_owned(wgp->wgp_lock));
1359 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1360 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1361
1362 wg_destroy_session(wg, wgs);
1363 psref_target_init(&wgs->wgs_psref, wg_psref_class);
1364 }
1365
1366 /*
1367 * Handshake patterns
1368 *
1369 * [W] 5: "These messages use the "IK" pattern from Noise"
1370 * [N] 7.5. Interactive handshake patterns (fundamental)
1371 * "The first character refers to the initiators static key:"
1372 * "I = Static key for initiator Immediately transmitted to responder,
1373 * despite reduced or absent identity hiding"
1374 * "The second character refers to the responders static key:"
1375 * "K = Static key for responder Known to initiator"
1376 * "IK:
1377 * <- s
1378 * ...
1379 * -> e, es, s, ss
1380 * <- e, ee, se"
1381 * [N] 9.4. Pattern modifiers
1382 * "IKpsk2:
1383 * <- s
1384 * ...
1385 * -> e, es, s, ss
1386 * <- e, ee, se, psk"
1387 */
1388 static void
1389 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1390 struct wg_session *wgs, struct wg_msg_init *wgmi)
1391 {
1392 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1393 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1394 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1395 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1396 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1397
1398 KASSERT(mutex_owned(wgp->wgp_lock));
1399 KASSERT(wgs == wgp->wgp_session_unstable);
1400 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
1401 wgs->wgs_state);
1402
1403 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1404 wgmi->wgmi_sender = wgs->wgs_local_index;
1405
1406 /* [W] 5.4.2: First Message: Initiator to Responder */
1407
1408 /* Ci := HASH(CONSTRUCTION) */
1409 /* Hi := HASH(Ci || IDENTIFIER) */
1410 wg_init_key_and_hash(ckey, hash);
1411 /* Hi := HASH(Hi || Sr^pub) */
1412 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1413
1414 WG_DUMP_HASH("hash", hash);
1415
1416 /* [N] 2.2: "e" */
1417 /* Ei^priv, Ei^pub := DH-GENERATE() */
1418 wg_algo_generate_keypair(pubkey, privkey);
1419 /* Ci := KDF1(Ci, Ei^pub) */
1420 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1421 /* msg.ephemeral := Ei^pub */
1422 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1423 /* Hi := HASH(Hi || msg.ephemeral) */
1424 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1425
1426 WG_DUMP_HASH("ckey", ckey);
1427 WG_DUMP_HASH("hash", hash);
1428
1429 /* [N] 2.2: "es" */
1430 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1431 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1432
1433 /* [N] 2.2: "s" */
1434 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1435 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1436 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1437 hash, sizeof(hash));
1438 /* Hi := HASH(Hi || msg.static) */
1439 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1440
1441 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1442
1443 /* [N] 2.2: "ss" */
1444 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1445 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1446
1447 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1448 wg_timestamp_t timestamp;
1449 wg_algo_tai64n(timestamp);
1450 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1451 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1452 /* Hi := HASH(Hi || msg.timestamp) */
1453 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1454
1455 /* [W] 5.4.4 Cookie MACs */
1456 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1457 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1458 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1459 /* Need mac1 to decrypt a cookie from a cookie message */
1460 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1461 sizeof(wgp->wgp_last_sent_mac1));
1462 wgp->wgp_last_sent_mac1_valid = true;
1463
1464 if (wgp->wgp_latest_cookie_time == 0 ||
1465 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1466 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1467 else {
1468 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1469 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1470 (const uint8_t *)wgmi,
1471 offsetof(struct wg_msg_init, wgmi_mac2),
1472 NULL, 0);
1473 }
1474
1475 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1476 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1477 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1478 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1479 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1480 }
1481
1482 static void __noinline
1483 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1484 const struct sockaddr *src)
1485 {
1486 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1487 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1488 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1489 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1490 struct wg_peer *wgp;
1491 struct wg_session *wgs;
1492 int error, ret;
1493 struct psref psref_peer;
1494 uint8_t mac1[WG_MAC_LEN];
1495
1496 WG_TRACE("init msg received");
1497
1498 wg_algo_mac_mac1(mac1, sizeof(mac1),
1499 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1500 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1501
1502 /*
1503 * [W] 5.3: Denial of Service Mitigation & Cookies
1504 * "the responder, ..., must always reject messages with an invalid
1505 * msg.mac1"
1506 */
1507 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1508 WG_DLOG("mac1 is invalid\n");
1509 return;
1510 }
1511
1512 /*
1513 * [W] 5.4.2: First Message: Initiator to Responder
1514 * "When the responder receives this message, it does the same
1515 * operations so that its final state variables are identical,
1516 * replacing the operands of the DH function to produce equivalent
1517 * values."
1518 * Note that the following comments of operations are just copies of
1519 * the initiator's ones.
1520 */
1521
1522 /* Ci := HASH(CONSTRUCTION) */
1523 /* Hi := HASH(Ci || IDENTIFIER) */
1524 wg_init_key_and_hash(ckey, hash);
1525 /* Hi := HASH(Hi || Sr^pub) */
1526 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1527
1528 /* [N] 2.2: "e" */
1529 /* Ci := KDF1(Ci, Ei^pub) */
1530 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1531 sizeof(wgmi->wgmi_ephemeral));
1532 /* Hi := HASH(Hi || msg.ephemeral) */
1533 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1534
1535 WG_DUMP_HASH("ckey", ckey);
1536
1537 /* [N] 2.2: "es" */
1538 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1539 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1540
1541 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1542
1543 /* [N] 2.2: "s" */
1544 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1545 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1546 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1547 if (error != 0) {
1548 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1549 "%s: wg_algo_aead_dec for secret key failed\n",
1550 if_name(&wg->wg_if));
1551 return;
1552 }
1553 /* Hi := HASH(Hi || msg.static) */
1554 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1555
1556 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1557 if (wgp == NULL) {
1558 WG_DLOG("peer not found\n");
1559 return;
1560 }
1561
1562 /*
1563 * Lock the peer to serialize access to cookie state.
1564 *
1565 * XXX Can we safely avoid holding the lock across DH? Take it
1566 * just to verify mac2 and then unlock/DH/lock?
1567 */
1568 mutex_enter(wgp->wgp_lock);
1569
1570 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1571 WG_TRACE("under load");
1572 /*
1573 * [W] 5.3: Denial of Service Mitigation & Cookies
1574 * "the responder, ..., and when under load may reject messages
1575 * with an invalid msg.mac2. If the responder receives a
1576 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1577 * and is under load, it may respond with a cookie reply
1578 * message"
1579 */
1580 uint8_t zero[WG_MAC_LEN] = {0};
1581 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1582 WG_TRACE("sending a cookie message: no cookie included");
1583 wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1584 wgmi->wgmi_mac1, src);
1585 goto out;
1586 }
1587 if (!wgp->wgp_last_sent_cookie_valid) {
1588 WG_TRACE("sending a cookie message: no cookie sent ever");
1589 wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1590 wgmi->wgmi_mac1, src);
1591 goto out;
1592 }
1593 uint8_t mac2[WG_MAC_LEN];
1594 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1595 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1596 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1597 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1598 WG_DLOG("mac2 is invalid\n");
1599 goto out;
1600 }
1601 WG_TRACE("under load, but continue to sending");
1602 }
1603
1604 /* [N] 2.2: "ss" */
1605 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1606 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1607
1608 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1609 wg_timestamp_t timestamp;
1610 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1611 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1612 hash, sizeof(hash));
1613 if (error != 0) {
1614 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1615 "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
1616 if_name(&wg->wg_if), wgp->wgp_name);
1617 goto out;
1618 }
1619 /* Hi := HASH(Hi || msg.timestamp) */
1620 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1621
1622 /*
1623 * [W] 5.1 "The responder keeps track of the greatest timestamp
1624 * received per peer and discards packets containing
1625 * timestamps less than or equal to it."
1626 */
1627 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1628 sizeof(timestamp));
1629 if (ret <= 0) {
1630 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1631 "%s: peer %s: invalid init msg: timestamp is old\n",
1632 if_name(&wg->wg_if), wgp->wgp_name);
1633 goto out;
1634 }
1635 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1636
1637 /*
1638 * Message is good -- we're committing to handle it now, unless
1639 * we were already initiating a session.
1640 */
1641 wgs = wgp->wgp_session_unstable;
1642 switch (wgs->wgs_state) {
1643 case WGS_STATE_UNKNOWN: /* new session initiated by peer */
1644 break;
1645 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, drop */
1646 /* XXX Who wins if both sides send INIT? */
1647 WG_TRACE("Session already initializing, ignoring the message");
1648 goto out;
1649 case WGS_STATE_INIT_PASSIVE: /* peer is retrying, start over */
1650 WG_TRACE("Session already initializing, destroying old states");
1651 /*
1652 * XXX Avoid this -- just resend our response -- if the
1653 * INIT message is identical to the previous one.
1654 */
1655 wg_put_session_index(wg, wgs);
1656 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1657 wgs->wgs_state);
1658 break;
1659 case WGS_STATE_ESTABLISHED: /* can't happen */
1660 panic("unstable session can't be established");
1661 case WGS_STATE_DESTROYING: /* rekey initiated by peer */
1662 WG_TRACE("Session destroying, but force to clear");
1663 wg_put_session_index(wg, wgs);
1664 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1665 wgs->wgs_state);
1666 break;
1667 default:
1668 panic("invalid session state: %d", wgs->wgs_state);
1669 }
1670
1671 /*
1672 * Assign a fresh session index.
1673 */
1674 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1675 wgs->wgs_state);
1676 wg_get_session_index(wg, wgs);
1677
1678 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1679 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1680 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1681 sizeof(wgmi->wgmi_ephemeral));
1682
1683 wg_update_endpoint_if_necessary(wgp, src);
1684
1685 /*
1686 * Count the time of the INIT message as the time of
1687 * establishment -- this is used to decide when to erase keys,
1688 * and we want to start counting as soon as we have generated
1689 * keys.
1690 *
1691 * No need for atomic store because the session can't be used
1692 * in the rx or tx paths yet -- not until we transition to
1693 * INTI_PASSIVE.
1694 */
1695 wgs->wgs_time_established = time_uptime32;
1696 wg_schedule_session_dtor_timer(wgp);
1697
1698 /*
1699 * Respond to the initiator with our ephemeral public key.
1700 */
1701 wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1702
1703 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
1704 " calculate keys as responder\n",
1705 wgs->wgs_local_index, wgs->wgs_remote_index);
1706 wg_calculate_keys(wgs, false);
1707 wg_clear_states(wgs);
1708
1709 /*
1710 * Session is ready to receive data now that we have received
1711 * the peer initiator's ephemeral key pair, generated our
1712 * responder's ephemeral key pair, and derived a session key.
1713 *
1714 * Transition from UNKNOWN to INIT_PASSIVE to publish it to the
1715 * data rx path, wg_handle_msg_data, where the
1716 * atomic_load_acquire matching this atomic_store_release
1717 * happens.
1718 *
1719 * (Session is not, however, ready to send data until the peer
1720 * has acknowledged our response by sending its first data
1721 * packet. So don't swap the sessions yet.)
1722 */
1723 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_INIT_PASSIVE\n",
1724 wgs->wgs_local_index, wgs->wgs_remote_index);
1725 atomic_store_release(&wgs->wgs_state, WGS_STATE_INIT_PASSIVE);
1726 WG_TRACE("WGS_STATE_INIT_PASSIVE");
1727
1728 out:
1729 mutex_exit(wgp->wgp_lock);
1730 wg_put_peer(wgp, &psref_peer);
1731 }
1732
1733 static struct socket *
1734 wg_get_so_by_af(struct wg_softc *wg, const int af)
1735 {
1736
1737 switch (af) {
1738 #ifdef INET
1739 case AF_INET:
1740 return wg->wg_so4;
1741 #endif
1742 #ifdef INET6
1743 case AF_INET6:
1744 return wg->wg_so6;
1745 #endif
1746 default:
1747 panic("wg: no such af: %d", af);
1748 }
1749 }
1750
1751 static struct socket *
1752 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1753 {
1754
1755 return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
1756 }
1757
1758 static struct wg_sockaddr *
1759 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1760 {
1761 struct wg_sockaddr *wgsa;
1762 int s;
1763
1764 s = pserialize_read_enter();
1765 wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1766 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1767 pserialize_read_exit(s);
1768
1769 return wgsa;
1770 }
1771
1772 static void
1773 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1774 {
1775
1776 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1777 }
1778
1779 static int
1780 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1781 {
1782 int error;
1783 struct socket *so;
1784 struct psref psref;
1785 struct wg_sockaddr *wgsa;
1786
1787 wgsa = wg_get_endpoint_sa(wgp, &psref);
1788 so = wg_get_so_by_peer(wgp, wgsa);
1789 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1790 wg_put_sa(wgp, wgsa, &psref);
1791
1792 return error;
1793 }
1794
1795 static void
1796 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1797 {
1798 int error;
1799 struct mbuf *m;
1800 struct wg_msg_init *wgmi;
1801 struct wg_session *wgs;
1802
1803 KASSERT(mutex_owned(wgp->wgp_lock));
1804
1805 wgs = wgp->wgp_session_unstable;
1806 /* XXX pull dispatch out into wg_task_send_init_message */
1807 switch (wgs->wgs_state) {
1808 case WGS_STATE_UNKNOWN: /* new session initiated by us */
1809 break;
1810 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, stop */
1811 WG_TRACE("Session already initializing, skip starting new one");
1812 return;
1813 case WGS_STATE_INIT_PASSIVE: /* peer was trying -- XXX what now? */
1814 WG_TRACE("Session already initializing, waiting for peer");
1815 return;
1816 case WGS_STATE_ESTABLISHED: /* can't happen */
1817 panic("unstable session can't be established");
1818 case WGS_STATE_DESTROYING: /* rekey initiated by us too early */
1819 WG_TRACE("Session destroying");
1820 wg_put_session_index(wg, wgs);
1821 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1822 wgs->wgs_state);
1823 break;
1824 }
1825
1826 /*
1827 * Assign a fresh session index.
1828 */
1829 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1830 wgs->wgs_state);
1831 wg_get_session_index(wg, wgs);
1832
1833 /*
1834 * We have initiated a session. Transition to INIT_ACTIVE.
1835 * This doesn't publish it for use in the data rx path,
1836 * wg_handle_msg_data, or in the data tx path, wg_output -- we
1837 * have to wait for the peer to respond with their ephemeral
1838 * public key before we can derive a session key for tx/rx.
1839 * Hence only atomic_store_relaxed.
1840 */
1841 WG_DLOG("session[L=%"PRIx32" R=(unknown)] -> WGS_STATE_INIT_ACTIVE\n",
1842 wgs->wgs_local_index);
1843 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_INIT_ACTIVE);
1844
1845 m = m_gethdr(M_WAIT, MT_DATA);
1846 if (sizeof(*wgmi) > MHLEN) {
1847 m_clget(m, M_WAIT);
1848 CTASSERT(sizeof(*wgmi) <= MCLBYTES);
1849 }
1850 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1851 wgmi = mtod(m, struct wg_msg_init *);
1852 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1853
1854 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
1855 if (error) {
1856 /*
1857 * Sending out an initiation packet failed; give up on
1858 * this session and toss packet waiting for it if any.
1859 *
1860 * XXX Why don't we just let the periodic handshake
1861 * retry logic work in this case?
1862 */
1863 WG_DLOG("send_hs_msg failed, error=%d\n", error);
1864 wg_put_session_index(wg, wgs);
1865 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
1866 m_freem(m);
1867 return;
1868 }
1869
1870 WG_TRACE("init msg sent");
1871 if (wgp->wgp_handshake_start_time == 0)
1872 wgp->wgp_handshake_start_time = time_uptime;
1873 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1874 MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
1875 }
1876
1877 static void
1878 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1879 struct wg_session *wgs, struct wg_msg_resp *wgmr,
1880 const struct wg_msg_init *wgmi)
1881 {
1882 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1883 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1884 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1885 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1886 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1887
1888 KASSERT(mutex_owned(wgp->wgp_lock));
1889 KASSERT(wgs == wgp->wgp_session_unstable);
1890 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1891 wgs->wgs_state);
1892
1893 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1894 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1895
1896 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
1897 wgmr->wgmr_sender = wgs->wgs_local_index;
1898 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1899
1900 /* [W] 5.4.3 Second Message: Responder to Initiator */
1901
1902 /* [N] 2.2: "e" */
1903 /* Er^priv, Er^pub := DH-GENERATE() */
1904 wg_algo_generate_keypair(pubkey, privkey);
1905 /* Cr := KDF1(Cr, Er^pub) */
1906 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1907 /* msg.ephemeral := Er^pub */
1908 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1909 /* Hr := HASH(Hr || msg.ephemeral) */
1910 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1911
1912 WG_DUMP_HASH("ckey", ckey);
1913 WG_DUMP_HASH("hash", hash);
1914
1915 /* [N] 2.2: "ee" */
1916 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1917 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1918
1919 /* [N] 2.2: "se" */
1920 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1921 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1922
1923 /* [N] 9.2: "psk" */
1924 {
1925 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1926 /* Cr, r, k := KDF3(Cr, Q) */
1927 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1928 sizeof(wgp->wgp_psk));
1929 /* Hr := HASH(Hr || r) */
1930 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1931 }
1932
1933 /* msg.empty := AEAD(k, 0, e, Hr) */
1934 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1935 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1936 /* Hr := HASH(Hr || msg.empty) */
1937 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1938
1939 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1940
1941 /* [W] 5.4.4: Cookie MACs */
1942 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1943 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1944 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1945 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1946 /* Need mac1 to decrypt a cookie from a cookie message */
1947 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1948 sizeof(wgp->wgp_last_sent_mac1));
1949 wgp->wgp_last_sent_mac1_valid = true;
1950
1951 if (wgp->wgp_latest_cookie_time == 0 ||
1952 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1953 /* msg.mac2 := 0^16 */
1954 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1955 else {
1956 /* msg.mac2 := MAC(Lm, msg_b) */
1957 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1958 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1959 (const uint8_t *)wgmr,
1960 offsetof(struct wg_msg_resp, wgmr_mac2),
1961 NULL, 0);
1962 }
1963
1964 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1965 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1966 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1967 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1968 wgs->wgs_remote_index = wgmi->wgmi_sender;
1969 WG_DLOG("sender=%x\n", wgs->wgs_local_index);
1970 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1971 }
1972
1973 static void
1974 wg_swap_sessions(struct wg_peer *wgp)
1975 {
1976 struct wg_session *wgs, *wgs_prev;
1977
1978 KASSERT(mutex_owned(wgp->wgp_lock));
1979
1980 wgs = wgp->wgp_session_unstable;
1981 KASSERTMSG(wgs->wgs_state == WGS_STATE_ESTABLISHED, "state=%d",
1982 wgs->wgs_state);
1983
1984 wgs_prev = wgp->wgp_session_stable;
1985 KASSERTMSG((wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
1986 wgs_prev->wgs_state == WGS_STATE_UNKNOWN),
1987 "state=%d", wgs_prev->wgs_state);
1988 atomic_store_release(&wgp->wgp_session_stable, wgs);
1989 wgp->wgp_session_unstable = wgs_prev;
1990 }
1991
1992 static void __noinline
1993 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1994 const struct sockaddr *src)
1995 {
1996 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1997 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1998 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1999 struct wg_peer *wgp;
2000 struct wg_session *wgs;
2001 struct psref psref;
2002 int error;
2003 uint8_t mac1[WG_MAC_LEN];
2004 struct wg_session *wgs_prev;
2005 struct mbuf *m;
2006
2007 wg_algo_mac_mac1(mac1, sizeof(mac1),
2008 wg->wg_pubkey, sizeof(wg->wg_pubkey),
2009 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
2010
2011 /*
2012 * [W] 5.3: Denial of Service Mitigation & Cookies
2013 * "the responder, ..., must always reject messages with an invalid
2014 * msg.mac1"
2015 */
2016 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
2017 WG_DLOG("mac1 is invalid\n");
2018 return;
2019 }
2020
2021 WG_TRACE("resp msg received");
2022 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
2023 if (wgs == NULL) {
2024 WG_TRACE("No session found");
2025 return;
2026 }
2027
2028 wgp = wgs->wgs_peer;
2029
2030 mutex_enter(wgp->wgp_lock);
2031
2032 /* If we weren't waiting for a handshake response, drop it. */
2033 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
2034 WG_TRACE("peer sent spurious handshake response, ignoring");
2035 goto out;
2036 }
2037
2038 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
2039 WG_TRACE("under load");
2040 /*
2041 * [W] 5.3: Denial of Service Mitigation & Cookies
2042 * "the responder, ..., and when under load may reject messages
2043 * with an invalid msg.mac2. If the responder receives a
2044 * message with a valid msg.mac1 yet with an invalid msg.mac2,
2045 * and is under load, it may respond with a cookie reply
2046 * message"
2047 */
2048 uint8_t zero[WG_MAC_LEN] = {0};
2049 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
2050 WG_TRACE("sending a cookie message: no cookie included");
2051 wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2052 wgmr->wgmr_mac1, src);
2053 goto out;
2054 }
2055 if (!wgp->wgp_last_sent_cookie_valid) {
2056 WG_TRACE("sending a cookie message: no cookie sent ever");
2057 wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2058 wgmr->wgmr_mac1, src);
2059 goto out;
2060 }
2061 uint8_t mac2[WG_MAC_LEN];
2062 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
2063 WG_COOKIE_LEN, (const uint8_t *)wgmr,
2064 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
2065 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
2066 WG_DLOG("mac2 is invalid\n");
2067 goto out;
2068 }
2069 WG_TRACE("under load, but continue to sending");
2070 }
2071
2072 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
2073 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
2074
2075 /*
2076 * [W] 5.4.3 Second Message: Responder to Initiator
2077 * "When the initiator receives this message, it does the same
2078 * operations so that its final state variables are identical,
2079 * replacing the operands of the DH function to produce equivalent
2080 * values."
2081 * Note that the following comments of operations are just copies of
2082 * the initiator's ones.
2083 */
2084
2085 /* [N] 2.2: "e" */
2086 /* Cr := KDF1(Cr, Er^pub) */
2087 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
2088 sizeof(wgmr->wgmr_ephemeral));
2089 /* Hr := HASH(Hr || msg.ephemeral) */
2090 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
2091
2092 WG_DUMP_HASH("ckey", ckey);
2093 WG_DUMP_HASH("hash", hash);
2094
2095 /* [N] 2.2: "ee" */
2096 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
2097 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
2098 wgmr->wgmr_ephemeral);
2099
2100 /* [N] 2.2: "se" */
2101 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
2102 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
2103
2104 /* [N] 9.2: "psk" */
2105 {
2106 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
2107 /* Cr, r, k := KDF3(Cr, Q) */
2108 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
2109 sizeof(wgp->wgp_psk));
2110 /* Hr := HASH(Hr || r) */
2111 wg_algo_hash(hash, kdfout, sizeof(kdfout));
2112 }
2113
2114 {
2115 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
2116 /* msg.empty := AEAD(k, 0, e, Hr) */
2117 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
2118 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
2119 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
2120 if (error != 0) {
2121 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2122 "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
2123 if_name(&wg->wg_if), wgp->wgp_name);
2124 goto out;
2125 }
2126 /* Hr := HASH(Hr || msg.empty) */
2127 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
2128 }
2129
2130 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
2131 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
2132 wgs->wgs_remote_index = wgmr->wgmr_sender;
2133 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
2134
2135 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
2136 wgs->wgs_state);
2137 wgs->wgs_time_established = time_uptime32;
2138 wg_schedule_session_dtor_timer(wgp);
2139 wgs->wgs_time_last_data_sent = 0;
2140 wgs->wgs_is_initiator = true;
2141 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
2142 " calculate keys as initiator\n",
2143 wgs->wgs_local_index, wgs->wgs_remote_index);
2144 wg_calculate_keys(wgs, true);
2145 wg_clear_states(wgs);
2146
2147 /*
2148 * Session is ready to receive data now that we have received
2149 * the responder's response.
2150 *
2151 * Transition from INIT_ACTIVE to ESTABLISHED to publish it to
2152 * the data rx path, wg_handle_msg_data.
2153 */
2154 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32" -> WGS_STATE_ESTABLISHED\n",
2155 wgs->wgs_local_index, wgs->wgs_remote_index);
2156 atomic_store_release(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
2157 WG_TRACE("WGS_STATE_ESTABLISHED");
2158
2159 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
2160
2161 /*
2162 * Session is ready to send data now that we have received the
2163 * responder's response.
2164 *
2165 * Swap the sessions to publish the new one as the stable
2166 * session for the data tx path, wg_output.
2167 */
2168 wg_swap_sessions(wgp);
2169 KASSERT(wgs == wgp->wgp_session_stable);
2170 wgs_prev = wgp->wgp_session_unstable;
2171 getnanotime(&wgp->wgp_last_handshake_time);
2172 wgp->wgp_handshake_start_time = 0;
2173 wgp->wgp_last_sent_mac1_valid = false;
2174 wgp->wgp_last_sent_cookie_valid = false;
2175
2176 wg_update_endpoint_if_necessary(wgp, src);
2177
2178 /*
2179 * If we had a data packet queued up, send it; otherwise send a
2180 * keepalive message -- either way we have to send something
2181 * immediately or else the responder will never answer.
2182 */
2183 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
2184 kpreempt_disable();
2185 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
2186 M_SETCTX(m, wgp);
2187 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
2188 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
2189 if_name(&wg->wg_if));
2190 m_freem(m);
2191 }
2192 kpreempt_enable();
2193 } else {
2194 wg_send_keepalive_msg(wgp, wgs);
2195 }
2196
2197 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2198 /*
2199 * Transition ESTABLISHED->DESTROYING. The session
2200 * will remain usable for the data rx path to process
2201 * packets still in flight to us, but we won't use it
2202 * for data tx.
2203 */
2204 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
2205 " -> WGS_STATE_DESTROYING\n",
2206 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
2207 atomic_store_relaxed(&wgs_prev->wgs_state,
2208 WGS_STATE_DESTROYING);
2209 } else {
2210 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2211 "state=%d", wgs_prev->wgs_state);
2212 }
2213
2214 out:
2215 mutex_exit(wgp->wgp_lock);
2216 wg_put_session(wgs, &psref);
2217 }
2218
2219 static void
2220 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
2221 struct wg_session *wgs, const struct wg_msg_init *wgmi)
2222 {
2223 int error;
2224 struct mbuf *m;
2225 struct wg_msg_resp *wgmr;
2226
2227 KASSERT(mutex_owned(wgp->wgp_lock));
2228 KASSERT(wgs == wgp->wgp_session_unstable);
2229 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
2230 wgs->wgs_state);
2231
2232 m = m_gethdr(M_WAIT, MT_DATA);
2233 if (sizeof(*wgmr) > MHLEN) {
2234 m_clget(m, M_WAIT);
2235 CTASSERT(sizeof(*wgmr) <= MCLBYTES);
2236 }
2237 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
2238 wgmr = mtod(m, struct wg_msg_resp *);
2239 wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
2240
2241 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
2242 if (error) {
2243 WG_DLOG("send_hs_msg failed, error=%d\n", error);
2244 return;
2245 }
2246
2247 WG_TRACE("resp msg sent");
2248 }
2249
2250 static struct wg_peer *
2251 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
2252 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
2253 {
2254 struct wg_peer *wgp;
2255
2256 int s = pserialize_read_enter();
2257 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
2258 if (wgp != NULL)
2259 wg_get_peer(wgp, psref);
2260 pserialize_read_exit(s);
2261
2262 return wgp;
2263 }
2264
2265 static void
2266 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
2267 struct wg_msg_cookie *wgmc, const uint32_t sender,
2268 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
2269 {
2270 uint8_t cookie[WG_COOKIE_LEN];
2271 uint8_t key[WG_HASH_LEN];
2272 uint8_t addr[sizeof(struct in6_addr)];
2273 size_t addrlen;
2274 uint16_t uh_sport; /* be */
2275
2276 KASSERT(mutex_owned(wgp->wgp_lock));
2277
2278 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
2279 wgmc->wgmc_receiver = sender;
2280 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
2281
2282 /*
2283 * [W] 5.4.7: Under Load: Cookie Reply Message
2284 * "The secret variable, Rm, changes every two minutes to a
2285 * random value"
2286 */
2287 if ((time_uptime - wgp->wgp_last_cookiesecret_time) >
2288 WG_COOKIESECRET_TIME) {
2289 cprng_strong(kern_cprng, wgp->wgp_cookiesecret,
2290 sizeof(wgp->wgp_cookiesecret), 0);
2291 wgp->wgp_last_cookiesecret_time = time_uptime;
2292 }
2293
2294 switch (src->sa_family) {
2295 #ifdef INET
2296 case AF_INET: {
2297 const struct sockaddr_in *sin = satocsin(src);
2298 addrlen = sizeof(sin->sin_addr);
2299 memcpy(addr, &sin->sin_addr, addrlen);
2300 uh_sport = sin->sin_port;
2301 break;
2302 }
2303 #endif
2304 #ifdef INET6
2305 case AF_INET6: {
2306 const struct sockaddr_in6 *sin6 = satocsin6(src);
2307 addrlen = sizeof(sin6->sin6_addr);
2308 memcpy(addr, &sin6->sin6_addr, addrlen);
2309 uh_sport = sin6->sin6_port;
2310 break;
2311 }
2312 #endif
2313 default:
2314 panic("invalid af=%d", src->sa_family);
2315 }
2316
2317 wg_algo_mac(cookie, sizeof(cookie),
2318 wgp->wgp_cookiesecret, sizeof(wgp->wgp_cookiesecret),
2319 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2320 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2321 sizeof(wg->wg_pubkey));
2322 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2323 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2324
2325 /* Need to store to calculate mac2 */
2326 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2327 wgp->wgp_last_sent_cookie_valid = true;
2328 }
2329
2330 static void
2331 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2332 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
2333 const struct sockaddr *src)
2334 {
2335 int error;
2336 struct mbuf *m;
2337 struct wg_msg_cookie *wgmc;
2338
2339 KASSERT(mutex_owned(wgp->wgp_lock));
2340
2341 m = m_gethdr(M_WAIT, MT_DATA);
2342 if (sizeof(*wgmc) > MHLEN) {
2343 m_clget(m, M_WAIT);
2344 CTASSERT(sizeof(*wgmc) <= MCLBYTES);
2345 }
2346 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2347 wgmc = mtod(m, struct wg_msg_cookie *);
2348 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2349
2350 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
2351 if (error) {
2352 WG_DLOG("send_hs_msg failed, error=%d\n", error);
2353 return;
2354 }
2355
2356 WG_TRACE("cookie msg sent");
2357 }
2358
2359 static bool
2360 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2361 {
2362 #ifdef WG_DEBUG_PARAMS
2363 if (wg_force_underload)
2364 return true;
2365 #endif
2366
2367 /*
2368 * XXX we don't have a means of a load estimation. The purpose of
2369 * the mechanism is a DoS mitigation, so we consider frequent handshake
2370 * messages as (a kind of) load; if a message of the same type comes
2371 * to a peer within 1 second, we consider we are under load.
2372 */
2373 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2374 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2375 return (time_uptime - last) == 0;
2376 }
2377
2378 static void
2379 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2380 {
2381
2382 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2383
2384 /*
2385 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2386 */
2387 if (initiator) {
2388 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2389 wgs->wgs_chaining_key, NULL, 0);
2390 } else {
2391 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2392 wgs->wgs_chaining_key, NULL, 0);
2393 }
2394 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2395 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2396 }
2397
2398 static uint64_t
2399 wg_session_get_send_counter(struct wg_session *wgs)
2400 {
2401 #ifdef __HAVE_ATOMIC64_LOADSTORE
2402 return atomic_load_relaxed(&wgs->wgs_send_counter);
2403 #else
2404 uint64_t send_counter;
2405
2406 mutex_enter(&wgs->wgs_send_counter_lock);
2407 send_counter = wgs->wgs_send_counter;
2408 mutex_exit(&wgs->wgs_send_counter_lock);
2409
2410 return send_counter;
2411 #endif
2412 }
2413
2414 static uint64_t
2415 wg_session_inc_send_counter(struct wg_session *wgs)
2416 {
2417 #ifdef __HAVE_ATOMIC64_LOADSTORE
2418 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2419 #else
2420 uint64_t send_counter;
2421
2422 mutex_enter(&wgs->wgs_send_counter_lock);
2423 send_counter = wgs->wgs_send_counter++;
2424 mutex_exit(&wgs->wgs_send_counter_lock);
2425
2426 return send_counter;
2427 #endif
2428 }
2429
2430 static void
2431 wg_clear_states(struct wg_session *wgs)
2432 {
2433
2434 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2435
2436 wgs->wgs_send_counter = 0;
2437 sliwin_reset(&wgs->wgs_recvwin->window);
2438
2439 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2440 wgs_clear(handshake_hash);
2441 wgs_clear(chaining_key);
2442 wgs_clear(ephemeral_key_pub);
2443 wgs_clear(ephemeral_key_priv);
2444 wgs_clear(ephemeral_key_peer);
2445 #undef wgs_clear
2446 }
2447
2448 static struct wg_session *
2449 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2450 struct psref *psref)
2451 {
2452 struct wg_session *wgs;
2453
2454 int s = pserialize_read_enter();
2455 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2456 if (wgs != NULL) {
2457 uint32_t oindex __diagused =
2458 atomic_load_relaxed(&wgs->wgs_local_index);
2459 KASSERTMSG(index == oindex,
2460 "index=%"PRIx32" wgs->wgs_local_index=%"PRIx32,
2461 index, oindex);
2462 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2463 }
2464 pserialize_read_exit(s);
2465
2466 return wgs;
2467 }
2468
2469 static void
2470 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2471 {
2472 struct mbuf *m;
2473
2474 /*
2475 * [W] 6.5 Passive Keepalive
2476 * "A keepalive message is simply a transport data message with
2477 * a zero-length encapsulated encrypted inner-packet."
2478 */
2479 WG_TRACE("");
2480 m = m_gethdr(M_WAIT, MT_DATA);
2481 wg_send_data_msg(wgp, wgs, m);
2482 }
2483
2484 static bool
2485 wg_need_to_send_init_message(struct wg_session *wgs)
2486 {
2487 /*
2488 * [W] 6.2 Transport Message Limits
2489 * "if a peer is the initiator of a current secure session,
2490 * WireGuard will send a handshake initiation message to begin
2491 * a new secure session ... if after receiving a transport data
2492 * message, the current secure session is (REJECT-AFTER-TIME
2493 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2494 * not yet acted upon this event."
2495 */
2496 return wgs->wgs_is_initiator &&
2497 atomic_load_relaxed(&wgs->wgs_time_last_data_sent) == 0 &&
2498 ((time_uptime32 -
2499 atomic_load_relaxed(&wgs->wgs_time_established)) >=
2500 (wg_reject_after_time - wg_keepalive_timeout -
2501 wg_rekey_timeout));
2502 }
2503
2504 static void
2505 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
2506 {
2507
2508 mutex_enter(wgp->wgp_intr_lock);
2509 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2510 if (wgp->wgp_tasks == 0)
2511 /*
2512 * XXX If the current CPU is already loaded -- e.g., if
2513 * there's already a bunch of handshakes queued up --
2514 * consider tossing this over to another CPU to
2515 * distribute the load.
2516 */
2517 workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
2518 wgp->wgp_tasks |= task;
2519 mutex_exit(wgp->wgp_intr_lock);
2520 }
2521
2522 static void
2523 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2524 {
2525 struct wg_sockaddr *wgsa_prev;
2526
2527 WG_TRACE("Changing endpoint");
2528
2529 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2530 wgsa_prev = wgp->wgp_endpoint;
2531 atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2532 wgp->wgp_endpoint0 = wgsa_prev;
2533 atomic_store_release(&wgp->wgp_endpoint_available, true);
2534
2535 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2536 }
2537
2538 static bool
2539 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2540 {
2541 uint16_t packet_len;
2542 const struct ip *ip;
2543
2544 if (__predict_false(decrypted_len < sizeof(*ip))) {
2545 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2546 sizeof(*ip));
2547 return false;
2548 }
2549
2550 ip = (const struct ip *)packet;
2551 if (ip->ip_v == 4)
2552 *af = AF_INET;
2553 else if (ip->ip_v == 6)
2554 *af = AF_INET6;
2555 else {
2556 WG_DLOG("ip_v=%d\n", ip->ip_v);
2557 return false;
2558 }
2559
2560 WG_DLOG("af=%d\n", *af);
2561
2562 switch (*af) {
2563 #ifdef INET
2564 case AF_INET:
2565 packet_len = ntohs(ip->ip_len);
2566 break;
2567 #endif
2568 #ifdef INET6
2569 case AF_INET6: {
2570 const struct ip6_hdr *ip6;
2571
2572 if (__predict_false(decrypted_len < sizeof(*ip6))) {
2573 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2574 sizeof(*ip6));
2575 return false;
2576 }
2577
2578 ip6 = (const struct ip6_hdr *)packet;
2579 packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
2580 break;
2581 }
2582 #endif
2583 default:
2584 return false;
2585 }
2586
2587 if (packet_len > decrypted_len) {
2588 WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
2589 decrypted_len);
2590 return false;
2591 }
2592
2593 return true;
2594 }
2595
2596 static bool
2597 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2598 int af, char *packet)
2599 {
2600 struct sockaddr_storage ss;
2601 struct sockaddr *sa;
2602 struct psref psref;
2603 struct wg_peer *wgp;
2604 bool ok;
2605
2606 /*
2607 * II CRYPTOKEY ROUTING
2608 * "it will only accept it if its source IP resolves in the
2609 * table to the public key used in the secure session for
2610 * decrypting it."
2611 */
2612
2613 switch (af) {
2614 #ifdef INET
2615 case AF_INET: {
2616 const struct ip *ip = (const struct ip *)packet;
2617 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2618 sockaddr_in_init(sin, &ip->ip_src, 0);
2619 sa = sintosa(sin);
2620 break;
2621 }
2622 #endif
2623 #ifdef INET6
2624 case AF_INET6: {
2625 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2626 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2627 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2628 sa = sin6tosa(sin6);
2629 break;
2630 }
2631 #endif
2632 default:
2633 __USE(ss);
2634 return false;
2635 }
2636
2637 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2638 ok = (wgp == wgp_expected);
2639 if (wgp != NULL)
2640 wg_put_peer(wgp, &psref);
2641
2642 return ok;
2643 }
2644
2645 static void
2646 wg_session_dtor_timer(void *arg)
2647 {
2648 struct wg_peer *wgp = arg;
2649
2650 WG_TRACE("enter");
2651
2652 wg_schedule_session_dtor_timer(wgp);
2653 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2654 }
2655
2656 static void
2657 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2658 {
2659
2660 /*
2661 * If the periodic session destructor is already pending to
2662 * handle the previous session, that's fine -- leave it in
2663 * place; it will be scheduled again.
2664 */
2665 if (callout_pending(&wgp->wgp_session_dtor_timer)) {
2666 WG_DLOG("session dtor already pending\n");
2667 return;
2668 }
2669
2670 WG_DLOG("scheduling session dtor in %u secs\n", wg_reject_after_time);
2671 callout_schedule(&wgp->wgp_session_dtor_timer,
2672 wg_reject_after_time*hz);
2673 }
2674
2675 static bool
2676 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2677 {
2678 if (sa1->sa_family != sa2->sa_family)
2679 return false;
2680
2681 switch (sa1->sa_family) {
2682 #ifdef INET
2683 case AF_INET:
2684 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2685 #endif
2686 #ifdef INET6
2687 case AF_INET6:
2688 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2689 #endif
2690 default:
2691 return false;
2692 }
2693 }
2694
2695 static void
2696 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2697 const struct sockaddr *src)
2698 {
2699 struct wg_sockaddr *wgsa;
2700 struct psref psref;
2701
2702 wgsa = wg_get_endpoint_sa(wgp, &psref);
2703
2704 #ifdef WG_DEBUG_LOG
2705 char oldaddr[128], newaddr[128];
2706 sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2707 sockaddr_format(src, newaddr, sizeof(newaddr));
2708 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2709 #endif
2710
2711 /*
2712 * III: "Since the packet has authenticated correctly, the source IP of
2713 * the outer UDP/IP packet is used to update the endpoint for peer..."
2714 */
2715 if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2716 !sockaddr_port_match(src, wgsatosa(wgsa)))) {
2717 /* XXX We can't change the endpoint twice in a short period */
2718 if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2719 wg_change_endpoint(wgp, src);
2720 }
2721 }
2722
2723 wg_put_sa(wgp, wgsa, &psref);
2724 }
2725
2726 static void __noinline
2727 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2728 const struct sockaddr *src)
2729 {
2730 struct wg_msg_data *wgmd;
2731 char *encrypted_buf = NULL, *decrypted_buf;
2732 size_t encrypted_len, decrypted_len;
2733 struct wg_session *wgs;
2734 struct wg_peer *wgp;
2735 int state;
2736 uint32_t age;
2737 size_t mlen;
2738 struct psref psref;
2739 int error, af;
2740 bool success, free_encrypted_buf = false, ok;
2741 struct mbuf *n;
2742
2743 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2744 wgmd = mtod(m, struct wg_msg_data *);
2745
2746 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2747 WG_TRACE("data");
2748
2749 /* Find the putative session, or drop. */
2750 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2751 if (wgs == NULL) {
2752 WG_TRACE("No session found");
2753 m_freem(m);
2754 return;
2755 }
2756
2757 /*
2758 * We are only ready to handle data when in INIT_PASSIVE,
2759 * ESTABLISHED, or DESTROYING. All transitions out of that
2760 * state dissociate the session index and drain psrefs.
2761 *
2762 * atomic_load_acquire matches atomic_store_release in either
2763 * wg_handle_msg_init or wg_handle_msg_resp. (The transition
2764 * INIT_PASSIVE to ESTABLISHED in wg_task_establish_session
2765 * doesn't make a difference for this rx path.)
2766 */
2767 state = atomic_load_acquire(&wgs->wgs_state);
2768 switch (state) {
2769 case WGS_STATE_UNKNOWN:
2770 case WGS_STATE_INIT_ACTIVE:
2771 WG_TRACE("not yet ready for data");
2772 goto out;
2773 case WGS_STATE_INIT_PASSIVE:
2774 case WGS_STATE_ESTABLISHED:
2775 case WGS_STATE_DESTROYING:
2776 break;
2777 }
2778
2779 /*
2780 * Reject if the session is too old.
2781 */
2782 age = time_uptime32 - atomic_load_relaxed(&wgs->wgs_time_established);
2783 if (__predict_false(age >= wg_reject_after_time)) {
2784 WG_DLOG("session %"PRIx32" too old, %"PRIu32" sec\n",
2785 wgmd->wgmd_receiver, age);
2786 goto out;
2787 }
2788
2789 /*
2790 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2791 * to update the endpoint if authentication succeeds.
2792 */
2793 wgp = wgs->wgs_peer;
2794
2795 /*
2796 * Reject outrageously wrong sequence numbers before doing any
2797 * crypto work or taking any locks.
2798 */
2799 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2800 le64toh(wgmd->wgmd_counter));
2801 if (error) {
2802 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2803 "%s: peer %s: out-of-window packet: %"PRIu64"\n",
2804 if_name(&wg->wg_if), wgp->wgp_name,
2805 le64toh(wgmd->wgmd_counter));
2806 goto out;
2807 }
2808
2809 /* Ensure the payload and authenticator are contiguous. */
2810 mlen = m_length(m);
2811 encrypted_len = mlen - sizeof(*wgmd);
2812 if (encrypted_len < WG_AUTHTAG_LEN) {
2813 WG_DLOG("Short encrypted_len: %zu\n", encrypted_len);
2814 goto out;
2815 }
2816 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2817 if (success) {
2818 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2819 } else {
2820 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2821 if (encrypted_buf == NULL) {
2822 WG_DLOG("failed to allocate encrypted_buf\n");
2823 goto out;
2824 }
2825 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2826 free_encrypted_buf = true;
2827 }
2828 /* m_ensure_contig may change m regardless of its result */
2829 KASSERT(m->m_len >= sizeof(*wgmd));
2830 wgmd = mtod(m, struct wg_msg_data *);
2831
2832 #ifdef WG_DEBUG_PACKET
2833 if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
2834 hexdump(printf, "incoming packet", encrypted_buf,
2835 encrypted_len);
2836 }
2837 #endif
2838 /*
2839 * Get a buffer for the plaintext. Add WG_AUTHTAG_LEN to avoid
2840 * a zero-length buffer (XXX). Drop if plaintext is longer
2841 * than MCLBYTES (XXX).
2842 */
2843 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2844 if (decrypted_len > MCLBYTES) {
2845 /* FIXME handle larger data than MCLBYTES */
2846 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2847 goto out;
2848 }
2849 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2850 if (n == NULL) {
2851 WG_DLOG("wg_get_mbuf failed\n");
2852 goto out;
2853 }
2854 decrypted_buf = mtod(n, char *);
2855
2856 /* Decrypt and verify the packet. */
2857 WG_DLOG("mlen=%zu, encrypted_len=%zu\n", mlen, encrypted_len);
2858 error = wg_algo_aead_dec(decrypted_buf,
2859 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2860 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
2861 encrypted_len, NULL, 0);
2862 if (error != 0) {
2863 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2864 "%s: peer %s: failed to wg_algo_aead_dec\n",
2865 if_name(&wg->wg_if), wgp->wgp_name);
2866 m_freem(n);
2867 goto out;
2868 }
2869 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2870
2871 /* Packet is genuine. Reject it if a replay or just too old. */
2872 mutex_enter(&wgs->wgs_recvwin->lock);
2873 error = sliwin_update(&wgs->wgs_recvwin->window,
2874 le64toh(wgmd->wgmd_counter));
2875 mutex_exit(&wgs->wgs_recvwin->lock);
2876 if (error) {
2877 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2878 "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
2879 if_name(&wg->wg_if), wgp->wgp_name,
2880 le64toh(wgmd->wgmd_counter));
2881 m_freem(n);
2882 goto out;
2883 }
2884
2885 #ifdef WG_DEBUG_PACKET
2886 if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
2887 hexdump(printf, "tkey_recv", wgs->wgs_tkey_recv,
2888 sizeof(wgs->wgs_tkey_recv));
2889 hexdump(printf, "wgmd", wgmd, sizeof(*wgmd));
2890 hexdump(printf, "decrypted_buf", decrypted_buf,
2891 decrypted_len);
2892 }
2893 #endif
2894 /* We're done with m now; free it and chuck the pointers. */
2895 m_freem(m);
2896 m = NULL;
2897 wgmd = NULL;
2898
2899 /*
2900 * The packet is genuine. Update the peer's endpoint if the
2901 * source address changed.
2902 *
2903 * XXX How to prevent DoS by replaying genuine packets from the
2904 * wrong source address?
2905 */
2906 wg_update_endpoint_if_necessary(wgp, src);
2907
2908 /*
2909 * Validate the encapsulated packet header and get the address
2910 * family, or drop.
2911 */
2912 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2913 if (!ok) {
2914 m_freem(n);
2915 goto update_state;
2916 }
2917
2918 /* Submit it into our network stack if routable. */
2919 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2920 if (ok) {
2921 wg->wg_ops->input(&wg->wg_if, n, af);
2922 } else {
2923 char addrstr[INET6_ADDRSTRLEN];
2924 memset(addrstr, 0, sizeof(addrstr));
2925 switch (af) {
2926 #ifdef INET
2927 case AF_INET: {
2928 const struct ip *ip = (const struct ip *)decrypted_buf;
2929 IN_PRINT(addrstr, &ip->ip_src);
2930 break;
2931 }
2932 #endif
2933 #ifdef INET6
2934 case AF_INET6: {
2935 const struct ip6_hdr *ip6 =
2936 (const struct ip6_hdr *)decrypted_buf;
2937 IN6_PRINT(addrstr, &ip6->ip6_src);
2938 break;
2939 }
2940 #endif
2941 default:
2942 panic("invalid af=%d", af);
2943 }
2944 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2945 "%s: peer %s: invalid source address (%s)\n",
2946 if_name(&wg->wg_if), wgp->wgp_name, addrstr);
2947 m_freem(n);
2948 /*
2949 * The inner address is invalid however the session is valid
2950 * so continue the session processing below.
2951 */
2952 }
2953 n = NULL;
2954
2955 update_state:
2956 /* Update the state machine if necessary. */
2957 if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
2958 /*
2959 * We were waiting for the initiator to send their
2960 * first data transport message, and that has happened.
2961 * Schedule a task to establish this session.
2962 */
2963 wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
2964 } else {
2965 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2966 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2967 }
2968 /*
2969 * [W] 6.5 Passive Keepalive
2970 * "If a peer has received a validly-authenticated transport
2971 * data message (section 5.4.6), but does not have any packets
2972 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2973 * a keepalive message."
2974 */
2975 const uint32_t now = time_uptime32;
2976 const uint32_t time_last_data_sent =
2977 atomic_load_relaxed(&wgs->wgs_time_last_data_sent);
2978 WG_DLOG("time_uptime32=%"PRIu32
2979 " wgs_time_last_data_sent=%"PRIu32"\n",
2980 now, time_last_data_sent);
2981 if ((now - time_last_data_sent) >= wg_keepalive_timeout) {
2982 WG_TRACE("Schedule sending keepalive message");
2983 /*
2984 * We can't send a keepalive message here to avoid
2985 * a deadlock; we already hold the solock of a socket
2986 * that is used to send the message.
2987 */
2988 wg_schedule_peer_task(wgp,
2989 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2990 }
2991 }
2992 out:
2993 wg_put_session(wgs, &psref);
2994 m_freem(m);
2995 if (free_encrypted_buf)
2996 kmem_intr_free(encrypted_buf, encrypted_len);
2997 }
2998
2999 static void __noinline
3000 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
3001 {
3002 struct wg_session *wgs;
3003 struct wg_peer *wgp;
3004 struct psref psref;
3005 int error;
3006 uint8_t key[WG_HASH_LEN];
3007 uint8_t cookie[WG_COOKIE_LEN];
3008
3009 WG_TRACE("cookie msg received");
3010
3011 /* Find the putative session. */
3012 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
3013 if (wgs == NULL) {
3014 WG_TRACE("No session found");
3015 return;
3016 }
3017
3018 /* Lock the peer so we can update the cookie state. */
3019 wgp = wgs->wgs_peer;
3020 mutex_enter(wgp->wgp_lock);
3021
3022 if (!wgp->wgp_last_sent_mac1_valid) {
3023 WG_TRACE("No valid mac1 sent (or expired)");
3024 goto out;
3025 }
3026
3027 /*
3028 * wgp_last_sent_mac1_valid is only set to true when we are
3029 * transitioning to INIT_ACTIVE or INIT_PASSIVE, and always
3030 * cleared on transition out of them.
3031 */
3032 KASSERTMSG((wgs->wgs_state == WGS_STATE_INIT_ACTIVE ||
3033 wgs->wgs_state == WGS_STATE_INIT_PASSIVE),
3034 "state=%d", wgs->wgs_state);
3035
3036 /* Decrypt the cookie and store it for later handshake retry. */
3037 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
3038 sizeof(wgp->wgp_pubkey));
3039 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
3040 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
3041 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
3042 wgmc->wgmc_salt);
3043 if (error != 0) {
3044 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3045 "%s: peer %s: wg_algo_aead_dec for cookie failed: "
3046 "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
3047 goto out;
3048 }
3049 /*
3050 * [W] 6.6: Interaction with Cookie Reply System
3051 * "it should simply store the decrypted cookie value from the cookie
3052 * reply message, and wait for the expiration of the REKEY-TIMEOUT
3053 * timer for retrying a handshake initiation message."
3054 */
3055 wgp->wgp_latest_cookie_time = time_uptime;
3056 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
3057 out:
3058 mutex_exit(wgp->wgp_lock);
3059 wg_put_session(wgs, &psref);
3060 }
3061
3062 static struct mbuf *
3063 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
3064 {
3065 struct wg_msg wgm;
3066 size_t mbuflen;
3067 size_t msglen;
3068
3069 /*
3070 * Get the mbuf chain length. It is already guaranteed, by
3071 * wg_overudp_cb, to be large enough for a struct wg_msg.
3072 */
3073 mbuflen = m_length(m);
3074 KASSERT(mbuflen >= sizeof(struct wg_msg));
3075
3076 /*
3077 * Copy the message header (32-bit message type) out -- we'll
3078 * worry about contiguity and alignment later.
3079 */
3080 m_copydata(m, 0, sizeof(wgm), &wgm);
3081 switch (le32toh(wgm.wgm_type)) {
3082 case WG_MSG_TYPE_INIT:
3083 msglen = sizeof(struct wg_msg_init);
3084 break;
3085 case WG_MSG_TYPE_RESP:
3086 msglen = sizeof(struct wg_msg_resp);
3087 break;
3088 case WG_MSG_TYPE_COOKIE:
3089 msglen = sizeof(struct wg_msg_cookie);
3090 break;
3091 case WG_MSG_TYPE_DATA:
3092 msglen = sizeof(struct wg_msg_data);
3093 break;
3094 default:
3095 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
3096 "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
3097 le32toh(wgm.wgm_type));
3098 goto error;
3099 }
3100
3101 /* Verify the mbuf chain is long enough for this type of message. */
3102 if (__predict_false(mbuflen < msglen)) {
3103 WG_DLOG("Invalid msg size: mbuflen=%zu type=%u\n", mbuflen,
3104 le32toh(wgm.wgm_type));
3105 goto error;
3106 }
3107
3108 /* Make the message header contiguous if necessary. */
3109 if (__predict_false(m->m_len < msglen)) {
3110 m = m_pullup(m, msglen);
3111 if (m == NULL)
3112 return NULL;
3113 }
3114
3115 return m;
3116
3117 error:
3118 m_freem(m);
3119 return NULL;
3120 }
3121
3122 static void
3123 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
3124 const struct sockaddr *src)
3125 {
3126 struct wg_msg *wgm;
3127
3128 KASSERT(curlwp->l_pflag & LP_BOUND);
3129
3130 m = wg_validate_msg_header(wg, m);
3131 if (__predict_false(m == NULL))
3132 return;
3133
3134 KASSERT(m->m_len >= sizeof(struct wg_msg));
3135 wgm = mtod(m, struct wg_msg *);
3136 switch (le32toh(wgm->wgm_type)) {
3137 case WG_MSG_TYPE_INIT:
3138 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
3139 break;
3140 case WG_MSG_TYPE_RESP:
3141 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
3142 break;
3143 case WG_MSG_TYPE_COOKIE:
3144 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
3145 break;
3146 case WG_MSG_TYPE_DATA:
3147 wg_handle_msg_data(wg, m, src);
3148 /* wg_handle_msg_data frees m for us */
3149 return;
3150 default:
3151 panic("invalid message type: %d", le32toh(wgm->wgm_type));
3152 }
3153
3154 m_freem(m);
3155 }
3156
3157 static void
3158 wg_receive_packets(struct wg_softc *wg, const int af)
3159 {
3160
3161 for (;;) {
3162 int error, flags;
3163 struct socket *so;
3164 struct mbuf *m = NULL;
3165 struct uio dummy_uio;
3166 struct mbuf *paddr = NULL;
3167 struct sockaddr *src;
3168
3169 so = wg_get_so_by_af(wg, af);
3170 flags = MSG_DONTWAIT;
3171 dummy_uio.uio_resid = 1000000000;
3172
3173 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
3174 &flags);
3175 if (error || m == NULL) {
3176 //if (error == EWOULDBLOCK)
3177 return;
3178 }
3179
3180 KASSERT(paddr != NULL);
3181 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
3182 src = mtod(paddr, struct sockaddr *);
3183
3184 wg_handle_packet(wg, m, src);
3185 }
3186 }
3187
3188 static void
3189 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
3190 {
3191
3192 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
3193 }
3194
3195 static void
3196 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
3197 {
3198
3199 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
3200 }
3201
3202 static void
3203 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
3204 {
3205 struct wg_session *wgs;
3206
3207 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
3208
3209 KASSERT(mutex_owned(wgp->wgp_lock));
3210
3211 if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
3212 WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
3213 if_name(&wg->wg_if));
3214 /* XXX should do something? */
3215 return;
3216 }
3217
3218 /*
3219 * If we already have an established session, there's no need
3220 * to initiate a new one -- unless the rekey-after-time or
3221 * rekey-after-messages limits have passed.
3222 */
3223 wgs = wgp->wgp_session_stable;
3224 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3225 !atomic_swap_uint(&wgp->wgp_force_rekey, 0))
3226 return;
3227
3228 /*
3229 * Ensure we're initiating a new session. If the unstable
3230 * session is already INIT_ACTIVE or INIT_PASSIVE, this does
3231 * nothing.
3232 */
3233 wg_send_handshake_msg_init(wg, wgp);
3234 }
3235
3236 static void
3237 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
3238 {
3239 struct wg_session *wgs;
3240
3241 WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
3242
3243 KASSERT(mutex_owned(wgp->wgp_lock));
3244 KASSERT(wgp->wgp_handshake_start_time != 0);
3245
3246 wgs = wgp->wgp_session_unstable;
3247 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
3248 return;
3249
3250 /*
3251 * XXX no real need to assign a new index here, but we do need
3252 * to transition to UNKNOWN temporarily
3253 */
3254 wg_put_session_index(wg, wgs);
3255
3256 /* [W] 6.4 Handshake Initiation Retransmission */
3257 if ((time_uptime - wgp->wgp_handshake_start_time) >
3258 wg_rekey_attempt_time) {
3259 /* Give up handshaking */
3260 wgp->wgp_handshake_start_time = 0;
3261 WG_TRACE("give up");
3262
3263 /*
3264 * If a new data packet comes, handshaking will be retried
3265 * and a new session would be established at that time,
3266 * however we don't want to send pending packets then.
3267 */
3268 wg_purge_pending_packets(wgp);
3269 return;
3270 }
3271
3272 wg_task_send_init_message(wg, wgp);
3273 }
3274
3275 static void
3276 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
3277 {
3278 struct wg_session *wgs, *wgs_prev;
3279 struct mbuf *m;
3280
3281 KASSERT(mutex_owned(wgp->wgp_lock));
3282
3283 wgs = wgp->wgp_session_unstable;
3284 if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
3285 /* XXX Can this happen? */
3286 return;
3287
3288 wgs->wgs_time_last_data_sent = 0;
3289 wgs->wgs_is_initiator = false;
3290
3291 /*
3292 * Session was already ready to receive data. Transition from
3293 * INIT_PASSIVE to ESTABLISHED just so we can swap the
3294 * sessions.
3295 *
3296 * atomic_store_relaxed because this doesn't affect the data rx
3297 * path, wg_handle_msg_data -- changing from INIT_PASSIVE to
3298 * ESTABLISHED makes no difference to the data rx path, and the
3299 * transition to INIT_PASSIVE with store-release already
3300 * published the state needed by the data rx path.
3301 */
3302 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_ESTABLISHED\n",
3303 wgs->wgs_local_index, wgs->wgs_remote_index);
3304 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
3305 WG_TRACE("WGS_STATE_ESTABLISHED");
3306
3307 /*
3308 * Session is ready to send data too now that we have received
3309 * the peer initiator's first data packet.
3310 *
3311 * Swap the sessions to publish the new one as the stable
3312 * session for the data tx path, wg_output.
3313 */
3314 wg_swap_sessions(wgp);
3315 KASSERT(wgs == wgp->wgp_session_stable);
3316 wgs_prev = wgp->wgp_session_unstable;
3317 getnanotime(&wgp->wgp_last_handshake_time);
3318 wgp->wgp_handshake_start_time = 0;
3319 wgp->wgp_last_sent_mac1_valid = false;
3320 wgp->wgp_last_sent_cookie_valid = false;
3321
3322 /* If we had a data packet queued up, send it. */
3323 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
3324 kpreempt_disable();
3325 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
3326 M_SETCTX(m, wgp);
3327 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
3328 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
3329 if_name(&wg->wg_if));
3330 m_freem(m);
3331 }
3332 kpreempt_enable();
3333 }
3334
3335 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
3336 /*
3337 * Transition ESTABLISHED->DESTROYING. The session
3338 * will remain usable for the data rx path to process
3339 * packets still in flight to us, but we won't use it
3340 * for data tx.
3341 */
3342 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
3343 " -> WGS_STATE_DESTROYING\n",
3344 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
3345 atomic_store_relaxed(&wgs_prev->wgs_state,
3346 WGS_STATE_DESTROYING);
3347 } else {
3348 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
3349 "state=%d", wgs_prev->wgs_state);
3350 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
3351 " -> WGS_STATE_UNKNOWN\n",
3352 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
3353 wgs_prev->wgs_local_index = 0; /* paranoia */
3354 wgs_prev->wgs_remote_index = 0; /* paranoia */
3355 wg_clear_states(wgs_prev); /* paranoia */
3356 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
3357 }
3358 }
3359
3360 static void
3361 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
3362 {
3363
3364 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
3365
3366 KASSERT(mutex_owned(wgp->wgp_lock));
3367
3368 if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
3369 pserialize_perform(wgp->wgp_psz);
3370 mutex_exit(wgp->wgp_lock);
3371 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
3372 wg_psref_class);
3373 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
3374 wg_psref_class);
3375 mutex_enter(wgp->wgp_lock);
3376 atomic_store_release(&wgp->wgp_endpoint_changing, 0);
3377 }
3378 }
3379
3380 static void
3381 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
3382 {
3383 struct wg_session *wgs;
3384
3385 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
3386
3387 KASSERT(mutex_owned(wgp->wgp_lock));
3388
3389 wgs = wgp->wgp_session_stable;
3390 if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
3391 return;
3392
3393 wg_send_keepalive_msg(wgp, wgs);
3394 }
3395
3396 static void
3397 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
3398 {
3399 struct wg_session *wgs;
3400 uint32_t age;
3401
3402 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
3403
3404 KASSERT(mutex_owned(wgp->wgp_lock));
3405
3406 /*
3407 * If theres's any previous unstable session, i.e., one that
3408 * was ESTABLISHED and is now DESTROYING, older than
3409 * reject-after-time, destroy it. Upcoming sessions are still
3410 * in INIT_ACTIVE or INIT_PASSIVE -- we don't touch those here.
3411 *
3412 * No atomic for access to wgs_time_established because it is
3413 * only updated under wgp_lock.
3414 */
3415 wgs = wgp->wgp_session_unstable;
3416 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
3417 if (wgs->wgs_state == WGS_STATE_DESTROYING &&
3418 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3419 wg_reject_after_time)) {
3420 WG_DLOG("destroying past session %"PRIu32" sec old\n", age);
3421 wg_put_session_index(wg, wgs);
3422 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3423 wgs->wgs_state);
3424 }
3425
3426 /*
3427 * If theres's any ESTABLISHED stable session older than
3428 * reject-after-time, destroy it. (The stable session can also
3429 * be in UNKNOWN state -- nothing to do in that case)
3430 */
3431 wgs = wgp->wgp_session_stable;
3432 KASSERT(wgs->wgs_state != WGS_STATE_INIT_ACTIVE);
3433 KASSERT(wgs->wgs_state != WGS_STATE_INIT_PASSIVE);
3434 KASSERT(wgs->wgs_state != WGS_STATE_DESTROYING);
3435 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3436 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3437 wg_reject_after_time)) {
3438 WG_DLOG("destroying current session %"PRIu32" sec old\n", age);
3439 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_DESTROYING);
3440 wg_put_session_index(wg, wgs);
3441 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3442 wgs->wgs_state);
3443 }
3444
3445 /*
3446 * If there's no sessions left, no need to have the timer run
3447 * until the next time around -- halt it.
3448 *
3449 * It is only ever scheduled with wgp_lock held or in the
3450 * callout itself, and callout_halt prevents rescheudling
3451 * itself, so this never races with rescheduling.
3452 */
3453 if (wgp->wgp_session_unstable->wgs_state == WGS_STATE_UNKNOWN &&
3454 wgp->wgp_session_stable->wgs_state == WGS_STATE_UNKNOWN)
3455 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3456 }
3457
3458 static void
3459 wg_peer_work(struct work *wk, void *cookie)
3460 {
3461 struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
3462 struct wg_softc *wg = wgp->wgp_sc;
3463 unsigned int tasks;
3464
3465 mutex_enter(wgp->wgp_intr_lock);
3466 while ((tasks = wgp->wgp_tasks) != 0) {
3467 wgp->wgp_tasks = 0;
3468 mutex_exit(wgp->wgp_intr_lock);
3469
3470 mutex_enter(wgp->wgp_lock);
3471 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
3472 wg_task_send_init_message(wg, wgp);
3473 if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
3474 wg_task_retry_handshake(wg, wgp);
3475 if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
3476 wg_task_establish_session(wg, wgp);
3477 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
3478 wg_task_endpoint_changed(wg, wgp);
3479 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
3480 wg_task_send_keepalive_message(wg, wgp);
3481 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
3482 wg_task_destroy_prev_session(wg, wgp);
3483 mutex_exit(wgp->wgp_lock);
3484
3485 mutex_enter(wgp->wgp_intr_lock);
3486 }
3487 mutex_exit(wgp->wgp_intr_lock);
3488 }
3489
3490 static void
3491 wg_job(struct threadpool_job *job)
3492 {
3493 struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
3494 int bound, upcalls;
3495
3496 mutex_enter(wg->wg_intr_lock);
3497 while ((upcalls = wg->wg_upcalls) != 0) {
3498 wg->wg_upcalls = 0;
3499 mutex_exit(wg->wg_intr_lock);
3500 bound = curlwp_bind();
3501 if (ISSET(upcalls, WG_UPCALL_INET))
3502 wg_receive_packets(wg, AF_INET);
3503 if (ISSET(upcalls, WG_UPCALL_INET6))
3504 wg_receive_packets(wg, AF_INET6);
3505 curlwp_bindx(bound);
3506 mutex_enter(wg->wg_intr_lock);
3507 }
3508 threadpool_job_done(job);
3509 mutex_exit(wg->wg_intr_lock);
3510 }
3511
3512 static int
3513 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3514 {
3515 int error = 0;
3516 uint16_t old_port = wg->wg_listen_port;
3517
3518 if (port != 0 && old_port == port)
3519 return 0;
3520
3521 #ifdef INET
3522 struct sockaddr_in _sin, *sin = &_sin;
3523 sin->sin_len = sizeof(*sin);
3524 sin->sin_family = AF_INET;
3525 sin->sin_addr.s_addr = INADDR_ANY;
3526 sin->sin_port = htons(port);
3527
3528 error = sobind(wg->wg_so4, sintosa(sin), curlwp);
3529 if (error)
3530 return error;
3531 #endif
3532
3533 #ifdef INET6
3534 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3535 sin6->sin6_len = sizeof(*sin6);
3536 sin6->sin6_family = AF_INET6;
3537 sin6->sin6_addr = in6addr_any;
3538 sin6->sin6_port = htons(port);
3539
3540 error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
3541 if (error)
3542 return error;
3543 #endif
3544
3545 wg->wg_listen_port = port;
3546
3547 return error;
3548 }
3549
3550 static void
3551 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
3552 {
3553 struct wg_softc *wg = cookie;
3554 int reason;
3555
3556 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3557 WG_UPCALL_INET :
3558 WG_UPCALL_INET6;
3559
3560 mutex_enter(wg->wg_intr_lock);
3561 wg->wg_upcalls |= reason;
3562 threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
3563 mutex_exit(wg->wg_intr_lock);
3564 }
3565
3566 static int
3567 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3568 struct sockaddr *src, void *arg)
3569 {
3570 struct wg_softc *wg = arg;
3571 struct wg_msg wgm;
3572 struct mbuf *m = *mp;
3573
3574 WG_TRACE("enter");
3575
3576 /* Verify the mbuf chain is long enough to have a wg msg header. */
3577 KASSERT(offset <= m_length(m));
3578 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3579 /* drop on the floor */
3580 m_freem(m);
3581 return -1;
3582 }
3583
3584 /*
3585 * Copy the message header (32-bit message type) out -- we'll
3586 * worry about contiguity and alignment later.
3587 */
3588 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3589 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3590
3591 /*
3592 * Handle DATA packets promptly as they arrive, if they are in
3593 * an active session. Other packets may require expensive
3594 * public-key crypto and are not as sensitive to latency, so
3595 * defer them to the worker thread.
3596 */
3597 switch (le32toh(wgm.wgm_type)) {
3598 case WG_MSG_TYPE_DATA:
3599 /* handle immediately */
3600 m_adj(m, offset);
3601 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3602 m = m_pullup(m, sizeof(struct wg_msg_data));
3603 if (m == NULL)
3604 return -1;
3605 }
3606 wg_handle_msg_data(wg, m, src);
3607 *mp = NULL;
3608 return 1;
3609 case WG_MSG_TYPE_INIT:
3610 case WG_MSG_TYPE_RESP:
3611 case WG_MSG_TYPE_COOKIE:
3612 /* pass through to so_receive in wg_receive_packets */
3613 return 0;
3614 default:
3615 /* drop on the floor */
3616 m_freem(m);
3617 return -1;
3618 }
3619 }
3620
3621 static int
3622 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
3623 {
3624 int error;
3625 struct socket *so;
3626
3627 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3628 if (error != 0)
3629 return error;
3630
3631 solock(so);
3632 so->so_upcallarg = wg;
3633 so->so_upcall = wg_so_upcall;
3634 so->so_rcv.sb_flags |= SB_UPCALL;
3635 inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3636 sounlock(so);
3637
3638 *sop = so;
3639
3640 return 0;
3641 }
3642
3643 static bool
3644 wg_session_hit_limits(struct wg_session *wgs)
3645 {
3646 uint32_t time_established =
3647 atomic_load_relaxed(&wgs->wgs_time_established);
3648
3649 /*
3650 * [W] 6.2: Transport Message Limits
3651 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3652 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3653 * comes first, WireGuard will refuse to send or receive any more
3654 * transport data messages using the current secure session, ..."
3655 */
3656 KASSERT(time_established != 0 || time_uptime > UINT32_MAX);
3657 if ((time_uptime32 - time_established) > wg_reject_after_time) {
3658 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3659 return true;
3660 } else if (wg_session_get_send_counter(wgs) >
3661 wg_reject_after_messages) {
3662 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3663 return true;
3664 }
3665
3666 return false;
3667 }
3668
3669 static void
3670 wgintr(void *cookie)
3671 {
3672 struct wg_peer *wgp;
3673 struct wg_session *wgs;
3674 struct mbuf *m;
3675 struct psref psref;
3676
3677 while ((m = pktq_dequeue(wg_pktq)) != NULL) {
3678 wgp = M_GETCTX(m, struct wg_peer *);
3679 if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3680 WG_TRACE("no stable session");
3681 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3682 goto next0;
3683 }
3684 if (__predict_false(wg_session_hit_limits(wgs))) {
3685 WG_TRACE("stable session hit limits");
3686 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3687 goto next1;
3688 }
3689 wg_send_data_msg(wgp, wgs, m);
3690 m = NULL; /* consumed */
3691 next1: wg_put_session(wgs, &psref);
3692 next0: m_freem(m);
3693 /* XXX Yield to avoid userland starvation? */
3694 }
3695 }
3696
3697 static void
3698 wg_purge_pending_packets(struct wg_peer *wgp)
3699 {
3700 struct mbuf *m;
3701
3702 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
3703 m_freem(m);
3704 #ifdef ALTQ
3705 wg_start(&wgp->wgp_sc->wg_if);
3706 #endif
3707 pktq_barrier(wg_pktq);
3708 }
3709
3710 static void
3711 wg_handshake_timeout_timer(void *arg)
3712 {
3713 struct wg_peer *wgp = arg;
3714
3715 WG_TRACE("enter");
3716
3717 wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3718 }
3719
3720 static struct wg_peer *
3721 wg_alloc_peer(struct wg_softc *wg)
3722 {
3723 struct wg_peer *wgp;
3724
3725 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3726
3727 wgp->wgp_sc = wg;
3728 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3729 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3730 wg_handshake_timeout_timer, wgp);
3731 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3732 callout_setfunc(&wgp->wgp_session_dtor_timer,
3733 wg_session_dtor_timer, wgp);
3734 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3735 wgp->wgp_endpoint_changing = false;
3736 wgp->wgp_endpoint_available = false;
3737 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3738 wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3739 wgp->wgp_psz = pserialize_create();
3740 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3741
3742 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3743 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3744 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3745 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3746
3747 struct wg_session *wgs;
3748 wgp->wgp_session_stable =
3749 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3750 wgp->wgp_session_unstable =
3751 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3752 wgs = wgp->wgp_session_stable;
3753 wgs->wgs_peer = wgp;
3754 wgs->wgs_state = WGS_STATE_UNKNOWN;
3755 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3756 #ifndef __HAVE_ATOMIC64_LOADSTORE
3757 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3758 #endif
3759 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3760 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3761
3762 wgs = wgp->wgp_session_unstable;
3763 wgs->wgs_peer = wgp;
3764 wgs->wgs_state = WGS_STATE_UNKNOWN;
3765 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3766 #ifndef __HAVE_ATOMIC64_LOADSTORE
3767 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3768 #endif
3769 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3770 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3771
3772 return wgp;
3773 }
3774
3775 static void
3776 wg_destroy_peer(struct wg_peer *wgp)
3777 {
3778 struct wg_session *wgs;
3779 struct wg_softc *wg = wgp->wgp_sc;
3780
3781 /* Prevent new packets from this peer on any source address. */
3782 rw_enter(wg->wg_rwlock, RW_WRITER);
3783 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3784 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3785 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3786 struct radix_node *rn;
3787
3788 KASSERT(rnh != NULL);
3789 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3790 &wga->wga_sa_mask, rnh);
3791 if (rn == NULL) {
3792 char addrstr[128];
3793 sockaddr_format(&wga->wga_sa_addr, addrstr,
3794 sizeof(addrstr));
3795 WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
3796 if_name(&wg->wg_if), addrstr);
3797 }
3798 }
3799 rw_exit(wg->wg_rwlock);
3800
3801 /* Purge pending packets. */
3802 wg_purge_pending_packets(wgp);
3803
3804 /* Halt all packet processing and timeouts. */
3805 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3806 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3807
3808 /* Wait for any queued work to complete. */
3809 workqueue_wait(wg_wq, &wgp->wgp_work);
3810
3811 wgs = wgp->wgp_session_unstable;
3812 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3813 mutex_enter(wgp->wgp_lock);
3814 wg_destroy_session(wg, wgs);
3815 mutex_exit(wgp->wgp_lock);
3816 }
3817 mutex_destroy(&wgs->wgs_recvwin->lock);
3818 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3819 #ifndef __HAVE_ATOMIC64_LOADSTORE
3820 mutex_destroy(&wgs->wgs_send_counter_lock);
3821 #endif
3822 kmem_free(wgs, sizeof(*wgs));
3823
3824 wgs = wgp->wgp_session_stable;
3825 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3826 mutex_enter(wgp->wgp_lock);
3827 wg_destroy_session(wg, wgs);
3828 mutex_exit(wgp->wgp_lock);
3829 }
3830 mutex_destroy(&wgs->wgs_recvwin->lock);
3831 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3832 #ifndef __HAVE_ATOMIC64_LOADSTORE
3833 mutex_destroy(&wgs->wgs_send_counter_lock);
3834 #endif
3835 kmem_free(wgs, sizeof(*wgs));
3836
3837 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3838 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3839 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3840 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3841
3842 pserialize_destroy(wgp->wgp_psz);
3843 mutex_obj_free(wgp->wgp_intr_lock);
3844 mutex_obj_free(wgp->wgp_lock);
3845
3846 kmem_free(wgp, sizeof(*wgp));
3847 }
3848
3849 static void
3850 wg_destroy_all_peers(struct wg_softc *wg)
3851 {
3852 struct wg_peer *wgp, *wgp0 __diagused;
3853 void *garbage_byname, *garbage_bypubkey;
3854
3855 restart:
3856 garbage_byname = garbage_bypubkey = NULL;
3857 mutex_enter(wg->wg_lock);
3858 WG_PEER_WRITER_FOREACH(wgp, wg) {
3859 if (wgp->wgp_name[0]) {
3860 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3861 strlen(wgp->wgp_name));
3862 KASSERT(wgp0 == wgp);
3863 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3864 }
3865 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3866 sizeof(wgp->wgp_pubkey));
3867 KASSERT(wgp0 == wgp);
3868 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3869 WG_PEER_WRITER_REMOVE(wgp);
3870 wg->wg_npeers--;
3871 mutex_enter(wgp->wgp_lock);
3872 pserialize_perform(wgp->wgp_psz);
3873 mutex_exit(wgp->wgp_lock);
3874 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3875 break;
3876 }
3877 mutex_exit(wg->wg_lock);
3878
3879 if (wgp == NULL)
3880 return;
3881
3882 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3883
3884 wg_destroy_peer(wgp);
3885 thmap_gc(wg->wg_peers_byname, garbage_byname);
3886 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3887
3888 goto restart;
3889 }
3890
3891 static int
3892 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3893 {
3894 struct wg_peer *wgp, *wgp0 __diagused;
3895 void *garbage_byname, *garbage_bypubkey;
3896
3897 mutex_enter(wg->wg_lock);
3898 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
3899 if (wgp != NULL) {
3900 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3901 sizeof(wgp->wgp_pubkey));
3902 KASSERT(wgp0 == wgp);
3903 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3904 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3905 WG_PEER_WRITER_REMOVE(wgp);
3906 wg->wg_npeers--;
3907 if (wg->wg_npeers == 0)
3908 if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
3909 mutex_enter(wgp->wgp_lock);
3910 pserialize_perform(wgp->wgp_psz);
3911 mutex_exit(wgp->wgp_lock);
3912 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3913 }
3914 mutex_exit(wg->wg_lock);
3915
3916 if (wgp == NULL)
3917 return ENOENT;
3918
3919 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3920
3921 wg_destroy_peer(wgp);
3922 thmap_gc(wg->wg_peers_byname, garbage_byname);
3923 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3924
3925 return 0;
3926 }
3927
3928 static int
3929 wg_if_attach(struct wg_softc *wg)
3930 {
3931
3932 wg->wg_if.if_addrlen = 0;
3933 wg->wg_if.if_mtu = WG_MTU;
3934 wg->wg_if.if_flags = IFF_MULTICAST;
3935 wg->wg_if.if_extflags = IFEF_MPSAFE;
3936 wg->wg_if.if_ioctl = wg_ioctl;
3937 wg->wg_if.if_output = wg_output;
3938 wg->wg_if.if_init = wg_init;
3939 #ifdef ALTQ
3940 wg->wg_if.if_start = wg_start;
3941 #endif
3942 wg->wg_if.if_stop = wg_stop;
3943 wg->wg_if.if_type = IFT_OTHER;
3944 wg->wg_if.if_dlt = DLT_NULL;
3945 wg->wg_if.if_softc = wg;
3946 #ifdef ALTQ
3947 IFQ_SET_READY(&wg->wg_if.if_snd);
3948 #endif
3949 if_initialize(&wg->wg_if);
3950
3951 wg->wg_if.if_link_state = LINK_STATE_DOWN;
3952 if_alloc_sadl(&wg->wg_if);
3953 if_register(&wg->wg_if);
3954
3955 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3956
3957 return 0;
3958 }
3959
3960 static void
3961 wg_if_detach(struct wg_softc *wg)
3962 {
3963 struct ifnet *ifp = &wg->wg_if;
3964
3965 bpf_detach(ifp);
3966 if_detach(ifp);
3967 }
3968
3969 static int
3970 wg_clone_create(struct if_clone *ifc, int unit)
3971 {
3972 struct wg_softc *wg;
3973 int error;
3974
3975 wg_guarantee_initialized();
3976
3977 error = wg_count_inc();
3978 if (error)
3979 return error;
3980
3981 wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
3982
3983 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3984
3985 PSLIST_INIT(&wg->wg_peers);
3986 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
3987 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
3988 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
3989 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3990 wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3991 wg->wg_rwlock = rw_obj_alloc();
3992 threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
3993 "%s", if_name(&wg->wg_if));
3994 wg->wg_ops = &wg_ops_rumpkernel;
3995
3996 error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
3997 if (error)
3998 goto fail0;
3999
4000 #ifdef INET
4001 error = wg_socreate(wg, AF_INET, &wg->wg_so4);
4002 if (error)
4003 goto fail1;
4004 rn_inithead((void **)&wg->wg_rtable_ipv4,
4005 offsetof(struct sockaddr_in, sin_addr) * NBBY);
4006 #endif
4007 #ifdef INET6
4008 error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
4009 if (error)
4010 goto fail2;
4011 rn_inithead((void **)&wg->wg_rtable_ipv6,
4012 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
4013 #endif
4014
4015 error = wg_if_attach(wg);
4016 if (error)
4017 goto fail3;
4018
4019 return 0;
4020
4021 fail4: __unused
4022 wg_destroy_all_peers(wg);
4023 wg_if_detach(wg);
4024 fail3:
4025 #ifdef INET6
4026 solock(wg->wg_so6);
4027 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4028 sounlock(wg->wg_so6);
4029 #endif
4030 #ifdef INET
4031 solock(wg->wg_so4);
4032 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4033 sounlock(wg->wg_so4);
4034 #endif
4035 mutex_enter(wg->wg_intr_lock);
4036 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4037 mutex_exit(wg->wg_intr_lock);
4038 #ifdef INET6
4039 if (wg->wg_rtable_ipv6 != NULL)
4040 free(wg->wg_rtable_ipv6, M_RTABLE);
4041 soclose(wg->wg_so6);
4042 fail2:
4043 #endif
4044 #ifdef INET
4045 if (wg->wg_rtable_ipv4 != NULL)
4046 free(wg->wg_rtable_ipv4, M_RTABLE);
4047 soclose(wg->wg_so4);
4048 fail1:
4049 #endif
4050 threadpool_put(wg->wg_threadpool, PRI_NONE);
4051 fail0: threadpool_job_destroy(&wg->wg_job);
4052 rw_obj_free(wg->wg_rwlock);
4053 mutex_obj_free(wg->wg_intr_lock);
4054 mutex_obj_free(wg->wg_lock);
4055 thmap_destroy(wg->wg_sessions_byindex);
4056 thmap_destroy(wg->wg_peers_byname);
4057 thmap_destroy(wg->wg_peers_bypubkey);
4058 PSLIST_DESTROY(&wg->wg_peers);
4059 kmem_free(wg, sizeof(*wg));
4060 wg_count_dec();
4061 return error;
4062 }
4063
4064 static int
4065 wg_clone_destroy(struct ifnet *ifp)
4066 {
4067 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
4068
4069 #ifdef WG_RUMPKERNEL
4070 if (wg_user_mode(wg)) {
4071 rumpuser_wg_destroy(wg->wg_user);
4072 wg->wg_user = NULL;
4073 }
4074 #endif
4075
4076 wg_destroy_all_peers(wg);
4077 wg_if_detach(wg);
4078 #ifdef INET6
4079 solock(wg->wg_so6);
4080 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4081 sounlock(wg->wg_so6);
4082 #endif
4083 #ifdef INET
4084 solock(wg->wg_so4);
4085 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4086 sounlock(wg->wg_so4);
4087 #endif
4088 mutex_enter(wg->wg_intr_lock);
4089 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4090 mutex_exit(wg->wg_intr_lock);
4091 #ifdef INET6
4092 if (wg->wg_rtable_ipv6 != NULL)
4093 free(wg->wg_rtable_ipv6, M_RTABLE);
4094 soclose(wg->wg_so6);
4095 #endif
4096 #ifdef INET
4097 if (wg->wg_rtable_ipv4 != NULL)
4098 free(wg->wg_rtable_ipv4, M_RTABLE);
4099 soclose(wg->wg_so4);
4100 #endif
4101 threadpool_put(wg->wg_threadpool, PRI_NONE);
4102 threadpool_job_destroy(&wg->wg_job);
4103 rw_obj_free(wg->wg_rwlock);
4104 mutex_obj_free(wg->wg_intr_lock);
4105 mutex_obj_free(wg->wg_lock);
4106 thmap_destroy(wg->wg_sessions_byindex);
4107 thmap_destroy(wg->wg_peers_byname);
4108 thmap_destroy(wg->wg_peers_bypubkey);
4109 PSLIST_DESTROY(&wg->wg_peers);
4110 kmem_free(wg, sizeof(*wg));
4111 wg_count_dec();
4112
4113 return 0;
4114 }
4115
4116 static struct wg_peer *
4117 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
4118 struct psref *psref)
4119 {
4120 struct radix_node_head *rnh;
4121 struct radix_node *rn;
4122 struct wg_peer *wgp = NULL;
4123 struct wg_allowedip *wga;
4124
4125 #ifdef WG_DEBUG_LOG
4126 char addrstr[128];
4127 sockaddr_format(sa, addrstr, sizeof(addrstr));
4128 WG_DLOG("sa=%s\n", addrstr);
4129 #endif
4130
4131 rw_enter(wg->wg_rwlock, RW_READER);
4132
4133 rnh = wg_rnh(wg, sa->sa_family);
4134 if (rnh == NULL)
4135 goto out;
4136
4137 rn = rnh->rnh_matchaddr(sa, rnh);
4138 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
4139 goto out;
4140
4141 WG_TRACE("success");
4142
4143 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
4144 wgp = wga->wga_peer;
4145 wg_get_peer(wgp, psref);
4146
4147 out:
4148 rw_exit(wg->wg_rwlock);
4149 return wgp;
4150 }
4151
4152 static void
4153 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
4154 struct wg_session *wgs, struct wg_msg_data *wgmd)
4155 {
4156
4157 memset(wgmd, 0, sizeof(*wgmd));
4158 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
4159 wgmd->wgmd_receiver = wgs->wgs_remote_index;
4160 /* [W] 5.4.6: msg.counter := Nm^send */
4161 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
4162 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
4163 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
4164 }
4165
4166 static int
4167 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
4168 const struct rtentry *rt)
4169 {
4170 struct wg_softc *wg = ifp->if_softc;
4171 struct wg_peer *wgp = NULL;
4172 struct wg_session *wgs = NULL;
4173 struct psref wgp_psref, wgs_psref;
4174 int bound;
4175 int error;
4176
4177 bound = curlwp_bind();
4178
4179 /* TODO make the nest limit configurable via sysctl */
4180 error = if_tunnel_check_nesting(ifp, m, 1);
4181 if (error) {
4182 WGLOG(LOG_ERR,
4183 "%s: tunneling loop detected and packet dropped\n",
4184 if_name(&wg->wg_if));
4185 goto out0;
4186 }
4187
4188 #ifdef ALTQ
4189 bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
4190 & ALTQF_ENABLED;
4191 if (altq)
4192 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
4193 #endif
4194
4195 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
4196
4197 m->m_flags &= ~(M_BCAST|M_MCAST);
4198
4199 wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
4200 if (wgp == NULL) {
4201 WG_TRACE("peer not found");
4202 error = EHOSTUNREACH;
4203 goto out0;
4204 }
4205
4206 /* Clear checksum-offload flags. */
4207 m->m_pkthdr.csum_flags = 0;
4208 m->m_pkthdr.csum_data = 0;
4209
4210 /* Check whether there's an established session. */
4211 wgs = wg_get_stable_session(wgp, &wgs_psref);
4212 if (wgs == NULL) {
4213 /*
4214 * No established session. If we're the first to try
4215 * sending data, schedule a handshake and queue the
4216 * packet for when the handshake is done; otherwise
4217 * just drop the packet and let the ongoing handshake
4218 * attempt continue. We could queue more data packets
4219 * but it's not clear that's worthwhile.
4220 */
4221 if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
4222 m = NULL; /* consume */
4223 WG_TRACE("queued first packet; init handshake");
4224 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4225 } else {
4226 WG_TRACE("first packet already queued, dropping");
4227 }
4228 goto out1;
4229 }
4230
4231 /* There's an established session. Toss it in the queue. */
4232 #ifdef ALTQ
4233 if (altq) {
4234 mutex_enter(ifp->if_snd.ifq_lock);
4235 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
4236 M_SETCTX(m, wgp);
4237 ALTQ_ENQUEUE(&ifp->if_snd, m, error);
4238 m = NULL; /* consume */
4239 }
4240 mutex_exit(ifp->if_snd.ifq_lock);
4241 if (m == NULL) {
4242 wg_start(ifp);
4243 goto out2;
4244 }
4245 }
4246 #endif
4247 kpreempt_disable();
4248 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
4249 M_SETCTX(m, wgp);
4250 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
4251 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
4252 if_name(&wg->wg_if));
4253 error = ENOBUFS;
4254 goto out3;
4255 }
4256 m = NULL; /* consumed */
4257 error = 0;
4258 out3: kpreempt_enable();
4259
4260 #ifdef ALTQ
4261 out2:
4262 #endif
4263 wg_put_session(wgs, &wgs_psref);
4264 out1: wg_put_peer(wgp, &wgp_psref);
4265 out0: m_freem(m);
4266 curlwp_bindx(bound);
4267 return error;
4268 }
4269
4270 static int
4271 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
4272 {
4273 struct psref psref;
4274 struct wg_sockaddr *wgsa;
4275 int error;
4276 struct socket *so;
4277
4278 wgsa = wg_get_endpoint_sa(wgp, &psref);
4279 so = wg_get_so_by_peer(wgp, wgsa);
4280 solock(so);
4281 switch (wgsatosa(wgsa)->sa_family) {
4282 #ifdef INET
4283 case AF_INET:
4284 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
4285 break;
4286 #endif
4287 #ifdef INET6
4288 case AF_INET6:
4289 error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
4290 NULL, curlwp);
4291 break;
4292 #endif
4293 default:
4294 m_freem(m);
4295 error = EPFNOSUPPORT;
4296 }
4297 sounlock(so);
4298 wg_put_sa(wgp, wgsa, &psref);
4299
4300 return error;
4301 }
4302
4303 /* Inspired by pppoe_get_mbuf */
4304 static struct mbuf *
4305 wg_get_mbuf(size_t leading_len, size_t len)
4306 {
4307 struct mbuf *m;
4308
4309 KASSERT(leading_len <= MCLBYTES);
4310 KASSERT(len <= MCLBYTES - leading_len);
4311
4312 m = m_gethdr(M_DONTWAIT, MT_DATA);
4313 if (m == NULL)
4314 return NULL;
4315 if (len + leading_len > MHLEN) {
4316 m_clget(m, M_DONTWAIT);
4317 if ((m->m_flags & M_EXT) == 0) {
4318 m_free(m);
4319 return NULL;
4320 }
4321 }
4322 m->m_data += leading_len;
4323 m->m_pkthdr.len = m->m_len = len;
4324
4325 return m;
4326 }
4327
4328 static void
4329 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs, struct mbuf *m)
4330 {
4331 struct wg_softc *wg = wgp->wgp_sc;
4332 int error;
4333 size_t inner_len, padded_len, encrypted_len;
4334 char *padded_buf = NULL;
4335 size_t mlen;
4336 struct wg_msg_data *wgmd;
4337 bool free_padded_buf = false;
4338 struct mbuf *n;
4339 size_t leading_len = max_hdr + sizeof(struct udphdr);
4340
4341 mlen = m_length(m);
4342 inner_len = mlen;
4343 padded_len = roundup(mlen, 16);
4344 encrypted_len = padded_len + WG_AUTHTAG_LEN;
4345 WG_DLOG("inner=%zu, padded=%zu, encrypted_len=%zu\n",
4346 inner_len, padded_len, encrypted_len);
4347 if (mlen != 0) {
4348 bool success;
4349 success = m_ensure_contig(&m, padded_len);
4350 if (success) {
4351 padded_buf = mtod(m, char *);
4352 } else {
4353 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
4354 if (padded_buf == NULL) {
4355 error = ENOBUFS;
4356 goto out;
4357 }
4358 free_padded_buf = true;
4359 m_copydata(m, 0, mlen, padded_buf);
4360 }
4361 memset(padded_buf + mlen, 0, padded_len - inner_len);
4362 }
4363
4364 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
4365 if (n == NULL) {
4366 error = ENOBUFS;
4367 goto out;
4368 }
4369 KASSERT(n->m_len >= sizeof(*wgmd));
4370 wgmd = mtod(n, struct wg_msg_data *);
4371 wg_fill_msg_data(wg, wgp, wgs, wgmd);
4372 #ifdef WG_DEBUG_PACKET
4373 if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
4374 hexdump(printf, "padded_buf", padded_buf,
4375 padded_len);
4376 }
4377 #endif
4378 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
4379 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
4380 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4381 padded_buf, padded_len,
4382 NULL, 0);
4383 #ifdef WG_DEBUG_PACKET
4384 if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
4385 hexdump(printf, "tkey_send", wgs->wgs_tkey_send,
4386 sizeof(wgs->wgs_tkey_send));
4387 hexdump(printf, "wgmd", wgmd, sizeof(*wgmd));
4388 hexdump(printf, "outgoing packet",
4389 (char *)wgmd + sizeof(*wgmd), encrypted_len);
4390 size_t decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
4391 char *decrypted_buf = kmem_intr_alloc((decrypted_len +
4392 WG_AUTHTAG_LEN/*XXX*/), KM_NOSLEEP);
4393 if (decrypted_buf != NULL) {
4394 error = wg_algo_aead_dec(
4395 1 + decrypted_buf /* force misalignment */,
4396 encrypted_len - WG_AUTHTAG_LEN /* XXX */,
4397 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4398 (char *)wgmd + sizeof(*wgmd), encrypted_len,
4399 NULL, 0);
4400 if (error) {
4401 WG_DLOG("wg_algo_aead_dec failed: %d\n",
4402 error);
4403 }
4404 if (!consttime_memequal(1 + decrypted_buf,
4405 (char *)wgmd + sizeof(*wgmd),
4406 decrypted_len)) {
4407 WG_DLOG("wg_algo_aead_dec returned garbage\n");
4408 }
4409 kmem_intr_free(decrypted_buf, (decrypted_len +
4410 WG_AUTHTAG_LEN/*XXX*/));
4411 }
4412 }
4413 #endif
4414
4415 error = wg->wg_ops->send_data_msg(wgp, n); /* consumes n */
4416 if (error) {
4417 WG_DLOG("send_data_msg failed, error=%d\n", error);
4418 goto out;
4419 }
4420
4421 /*
4422 * Packet was sent out -- count it in the interface statistics.
4423 */
4424 if_statadd(&wg->wg_if, if_obytes, mlen);
4425 if_statinc(&wg->wg_if, if_opackets);
4426
4427 /*
4428 * Record when we last sent data, for determining when we need
4429 * to send a passive keepalive.
4430 *
4431 * Other logic assumes that wgs_time_last_data_sent is zero iff
4432 * we have never sent data on this session. Early at boot, if
4433 * wg(4) starts operating within <1sec, or after 136 years of
4434 * uptime, we may observe time_uptime32 = 0. In that case,
4435 * pretend we observed 1 instead. That way, we correctly
4436 * indicate we have sent data on this session; the only logic
4437 * this might adversely affect is the keepalive timeout
4438 * detection, which might spuriously send a keepalive during
4439 * one second every 136 years. All of this is very silly, of
4440 * course, but the cost to guaranteeing wgs_time_last_data_sent
4441 * is nonzero is negligible here.
4442 */
4443 const uint32_t now = time_uptime32;
4444 atomic_store_relaxed(&wgs->wgs_time_last_data_sent, MAX(now, 1));
4445
4446 /*
4447 * Check rekey-after-time.
4448 */
4449 if (wgs->wgs_is_initiator &&
4450 ((time_uptime32 -
4451 atomic_load_relaxed(&wgs->wgs_time_established)) >=
4452 wg_rekey_after_time)) {
4453 /*
4454 * [W] 6.2 Transport Message Limits
4455 * "if a peer is the initiator of a current secure
4456 * session, WireGuard will send a handshake initiation
4457 * message to begin a new secure session if, after
4458 * transmitting a transport data message, the current
4459 * secure session is REKEY-AFTER-TIME seconds old,"
4460 */
4461 WG_TRACE("rekey after time");
4462 atomic_store_relaxed(&wgp->wgp_force_rekey, 1);
4463 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4464 }
4465
4466 /*
4467 * Check rekey-after-messages.
4468 */
4469 if (wg_session_get_send_counter(wgs) >= wg_rekey_after_messages) {
4470 /*
4471 * [W] 6.2 Transport Message Limits
4472 * "WireGuard will try to create a new session, by
4473 * sending a handshake initiation message (section
4474 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
4475 * transport data messages..."
4476 */
4477 WG_TRACE("rekey after messages");
4478 atomic_store_relaxed(&wgp->wgp_force_rekey, 1);
4479 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4480 }
4481
4482 out: m_freem(m);
4483 if (free_padded_buf)
4484 kmem_intr_free(padded_buf, padded_len);
4485 }
4486
4487 static void
4488 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
4489 {
4490 pktqueue_t *pktq;
4491 size_t pktlen;
4492
4493 KASSERT(af == AF_INET || af == AF_INET6);
4494
4495 WG_TRACE("");
4496
4497 m_set_rcvif(m, ifp);
4498 pktlen = m->m_pkthdr.len;
4499
4500 bpf_mtap_af(ifp, af, m, BPF_D_IN);
4501
4502 switch (af) {
4503 #ifdef INET
4504 case AF_INET:
4505 pktq = ip_pktq;
4506 break;
4507 #endif
4508 #ifdef INET6
4509 case AF_INET6:
4510 pktq = ip6_pktq;
4511 break;
4512 #endif
4513 default:
4514 panic("invalid af=%d", af);
4515 }
4516
4517 kpreempt_disable();
4518 const u_int h = curcpu()->ci_index;
4519 if (__predict_true(pktq_enqueue(pktq, m, h))) {
4520 if_statadd(ifp, if_ibytes, pktlen);
4521 if_statinc(ifp, if_ipackets);
4522 } else {
4523 m_freem(m);
4524 }
4525 kpreempt_enable();
4526 }
4527
4528 static void
4529 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
4530 const uint8_t privkey[WG_STATIC_KEY_LEN])
4531 {
4532
4533 crypto_scalarmult_base(pubkey, privkey);
4534 }
4535
4536 static int
4537 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
4538 {
4539 struct radix_node_head *rnh;
4540 struct radix_node *rn;
4541 int error = 0;
4542
4543 rw_enter(wg->wg_rwlock, RW_WRITER);
4544 rnh = wg_rnh(wg, wga->wga_family);
4545 KASSERT(rnh != NULL);
4546 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
4547 wga->wga_nodes);
4548 rw_exit(wg->wg_rwlock);
4549
4550 if (rn == NULL)
4551 error = EEXIST;
4552
4553 return error;
4554 }
4555
4556 static int
4557 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
4558 struct wg_peer **wgpp)
4559 {
4560 int error = 0;
4561 const void *pubkey;
4562 size_t pubkey_len;
4563 const void *psk;
4564 size_t psk_len;
4565 const char *name = NULL;
4566
4567 if (prop_dictionary_get_string(peer, "name", &name)) {
4568 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
4569 error = EINVAL;
4570 goto out;
4571 }
4572 }
4573
4574 if (!prop_dictionary_get_data(peer, "public_key",
4575 &pubkey, &pubkey_len)) {
4576 error = EINVAL;
4577 goto out;
4578 }
4579 #ifdef WG_DEBUG_DUMP
4580 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4581 char *hex = gethexdump(pubkey, pubkey_len);
4582 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%zu\n%s\n",
4583 pubkey, pubkey_len, hex);
4584 puthexdump(hex, pubkey, pubkey_len);
4585 }
4586 #endif
4587
4588 struct wg_peer *wgp = wg_alloc_peer(wg);
4589 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4590 if (name != NULL)
4591 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4592
4593 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4594 if (psk_len != sizeof(wgp->wgp_psk)) {
4595 error = EINVAL;
4596 goto out;
4597 }
4598 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4599 }
4600
4601 const void *addr;
4602 size_t addr_len;
4603 struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4604
4605 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4606 goto skip_endpoint;
4607 if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4608 addr_len > sizeof(*wgsatoss(wgsa))) {
4609 error = EINVAL;
4610 goto out;
4611 }
4612 memcpy(wgsatoss(wgsa), addr, addr_len);
4613 switch (wgsa_family(wgsa)) {
4614 #ifdef INET
4615 case AF_INET:
4616 break;
4617 #endif
4618 #ifdef INET6
4619 case AF_INET6:
4620 break;
4621 #endif
4622 default:
4623 error = EPFNOSUPPORT;
4624 goto out;
4625 }
4626 if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4627 error = EINVAL;
4628 goto out;
4629 }
4630 {
4631 char addrstr[128];
4632 sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4633 WG_DLOG("addr=%s\n", addrstr);
4634 }
4635 wgp->wgp_endpoint_available = true;
4636
4637 prop_array_t allowedips;
4638 skip_endpoint:
4639 allowedips = prop_dictionary_get(peer, "allowedips");
4640 if (allowedips == NULL)
4641 goto skip;
4642
4643 prop_object_iterator_t _it = prop_array_iterator(allowedips);
4644 prop_dictionary_t prop_allowedip;
4645 int j = 0;
4646 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4647 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4648
4649 if (!prop_dictionary_get_int(prop_allowedip, "family",
4650 &wga->wga_family))
4651 continue;
4652 if (!prop_dictionary_get_data(prop_allowedip, "ip",
4653 &addr, &addr_len))
4654 continue;
4655 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4656 &wga->wga_cidr))
4657 continue;
4658
4659 switch (wga->wga_family) {
4660 #ifdef INET
4661 case AF_INET: {
4662 struct sockaddr_in sin;
4663 char addrstr[128];
4664 struct in_addr mask;
4665 struct sockaddr_in sin_mask;
4666
4667 if (addr_len != sizeof(struct in_addr))
4668 return EINVAL;
4669 memcpy(&wga->wga_addr4, addr, addr_len);
4670
4671 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4672 0);
4673 sockaddr_copy(&wga->wga_sa_addr,
4674 sizeof(sin), sintosa(&sin));
4675
4676 sockaddr_format(sintosa(&sin),
4677 addrstr, sizeof(addrstr));
4678 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4679
4680 in_len2mask(&mask, wga->wga_cidr);
4681 sockaddr_in_init(&sin_mask, &mask, 0);
4682 sockaddr_copy(&wga->wga_sa_mask,
4683 sizeof(sin_mask), sintosa(&sin_mask));
4684
4685 break;
4686 }
4687 #endif
4688 #ifdef INET6
4689 case AF_INET6: {
4690 struct sockaddr_in6 sin6;
4691 char addrstr[128];
4692 struct in6_addr mask;
4693 struct sockaddr_in6 sin6_mask;
4694
4695 if (addr_len != sizeof(struct in6_addr))
4696 return EINVAL;
4697 memcpy(&wga->wga_addr6, addr, addr_len);
4698
4699 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4700 0, 0, 0);
4701 sockaddr_copy(&wga->wga_sa_addr,
4702 sizeof(sin6), sin6tosa(&sin6));
4703
4704 sockaddr_format(sin6tosa(&sin6),
4705 addrstr, sizeof(addrstr));
4706 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4707
4708 in6_prefixlen2mask(&mask, wga->wga_cidr);
4709 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4710 sockaddr_copy(&wga->wga_sa_mask,
4711 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4712
4713 break;
4714 }
4715 #endif
4716 default:
4717 error = EINVAL;
4718 goto out;
4719 }
4720 wga->wga_peer = wgp;
4721
4722 error = wg_rtable_add_route(wg, wga);
4723 if (error != 0)
4724 goto out;
4725
4726 j++;
4727 }
4728 wgp->wgp_n_allowedips = j;
4729 skip:
4730 *wgpp = wgp;
4731 out:
4732 return error;
4733 }
4734
4735 static int
4736 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4737 {
4738 int error;
4739 char *buf;
4740
4741 WG_DLOG("buf=%p, len=%zu\n", ifd->ifd_data, ifd->ifd_len);
4742 if (ifd->ifd_len >= WG_MAX_PROPLEN)
4743 return E2BIG;
4744 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4745 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4746 if (error != 0)
4747 return error;
4748 buf[ifd->ifd_len] = '\0';
4749 #ifdef WG_DEBUG_DUMP
4750 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4751 log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
4752 (const char *)buf);
4753 }
4754 #endif
4755 *_buf = buf;
4756 return 0;
4757 }
4758
4759 static int
4760 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4761 {
4762 int error;
4763 prop_dictionary_t prop_dict;
4764 char *buf = NULL;
4765 const void *privkey;
4766 size_t privkey_len;
4767
4768 error = wg_alloc_prop_buf(&buf, ifd);
4769 if (error != 0)
4770 return error;
4771 error = EINVAL;
4772 prop_dict = prop_dictionary_internalize(buf);
4773 if (prop_dict == NULL)
4774 goto out;
4775 if (!prop_dictionary_get_data(prop_dict, "private_key",
4776 &privkey, &privkey_len))
4777 goto out;
4778 #ifdef WG_DEBUG_DUMP
4779 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4780 char *hex = gethexdump(privkey, privkey_len);
4781 log(LOG_DEBUG, "privkey=%p, privkey_len=%zu\n%s\n",
4782 privkey, privkey_len, hex);
4783 puthexdump(hex, privkey, privkey_len);
4784 }
4785 #endif
4786 if (privkey_len != WG_STATIC_KEY_LEN)
4787 goto out;
4788 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4789 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4790 error = 0;
4791
4792 out:
4793 kmem_free(buf, ifd->ifd_len + 1);
4794 return error;
4795 }
4796
4797 static int
4798 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4799 {
4800 int error;
4801 prop_dictionary_t prop_dict;
4802 char *buf = NULL;
4803 uint16_t port;
4804
4805 error = wg_alloc_prop_buf(&buf, ifd);
4806 if (error != 0)
4807 return error;
4808 error = EINVAL;
4809 prop_dict = prop_dictionary_internalize(buf);
4810 if (prop_dict == NULL)
4811 goto out;
4812 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4813 goto out;
4814
4815 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4816
4817 out:
4818 kmem_free(buf, ifd->ifd_len + 1);
4819 return error;
4820 }
4821
4822 static int
4823 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4824 {
4825 int error;
4826 prop_dictionary_t prop_dict;
4827 char *buf = NULL;
4828 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4829
4830 error = wg_alloc_prop_buf(&buf, ifd);
4831 if (error != 0)
4832 return error;
4833 error = EINVAL;
4834 prop_dict = prop_dictionary_internalize(buf);
4835 if (prop_dict == NULL)
4836 goto out;
4837
4838 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4839 if (error != 0)
4840 goto out;
4841
4842 mutex_enter(wg->wg_lock);
4843 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4844 sizeof(wgp->wgp_pubkey)) != NULL ||
4845 (wgp->wgp_name[0] &&
4846 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4847 strlen(wgp->wgp_name)) != NULL)) {
4848 mutex_exit(wg->wg_lock);
4849 wg_destroy_peer(wgp);
4850 error = EEXIST;
4851 goto out;
4852 }
4853 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4854 sizeof(wgp->wgp_pubkey), wgp);
4855 KASSERT(wgp0 == wgp);
4856 if (wgp->wgp_name[0]) {
4857 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4858 strlen(wgp->wgp_name), wgp);
4859 KASSERT(wgp0 == wgp);
4860 }
4861 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4862 wg->wg_npeers++;
4863 mutex_exit(wg->wg_lock);
4864
4865 if_link_state_change(&wg->wg_if, LINK_STATE_UP);
4866
4867 out:
4868 kmem_free(buf, ifd->ifd_len + 1);
4869 return error;
4870 }
4871
4872 static int
4873 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4874 {
4875 int error;
4876 prop_dictionary_t prop_dict;
4877 char *buf = NULL;
4878 const char *name;
4879
4880 error = wg_alloc_prop_buf(&buf, ifd);
4881 if (error != 0)
4882 return error;
4883 error = EINVAL;
4884 prop_dict = prop_dictionary_internalize(buf);
4885 if (prop_dict == NULL)
4886 goto out;
4887
4888 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4889 goto out;
4890 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4891 goto out;
4892
4893 error = wg_destroy_peer_name(wg, name);
4894 out:
4895 kmem_free(buf, ifd->ifd_len + 1);
4896 return error;
4897 }
4898
4899 static bool
4900 wg_is_authorized(struct wg_softc *wg, u_long cmd)
4901 {
4902 int au = cmd == SIOCGDRVSPEC ?
4903 KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
4904 KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
4905 return kauth_authorize_network(kauth_cred_get(),
4906 KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
4907 (void *)cmd, NULL) == 0;
4908 }
4909
4910 static int
4911 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4912 {
4913 int error = ENOMEM;
4914 prop_dictionary_t prop_dict;
4915 prop_array_t peers = NULL;
4916 char *buf;
4917 struct wg_peer *wgp;
4918 int s, i;
4919
4920 prop_dict = prop_dictionary_create();
4921 if (prop_dict == NULL)
4922 goto error;
4923
4924 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4925 if (!prop_dictionary_set_data(prop_dict, "private_key",
4926 wg->wg_privkey, WG_STATIC_KEY_LEN))
4927 goto error;
4928 }
4929
4930 if (wg->wg_listen_port != 0) {
4931 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4932 wg->wg_listen_port))
4933 goto error;
4934 }
4935
4936 if (wg->wg_npeers == 0)
4937 goto skip_peers;
4938
4939 peers = prop_array_create();
4940 if (peers == NULL)
4941 goto error;
4942
4943 s = pserialize_read_enter();
4944 i = 0;
4945 WG_PEER_READER_FOREACH(wgp, wg) {
4946 struct wg_sockaddr *wgsa;
4947 struct psref wgp_psref, wgsa_psref;
4948 prop_dictionary_t prop_peer;
4949
4950 wg_get_peer(wgp, &wgp_psref);
4951 pserialize_read_exit(s);
4952
4953 prop_peer = prop_dictionary_create();
4954 if (prop_peer == NULL)
4955 goto next;
4956
4957 if (strlen(wgp->wgp_name) > 0) {
4958 if (!prop_dictionary_set_string(prop_peer, "name",
4959 wgp->wgp_name))
4960 goto next;
4961 }
4962
4963 if (!prop_dictionary_set_data(prop_peer, "public_key",
4964 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4965 goto next;
4966
4967 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4968 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4969 sizeof(wgp->wgp_psk))) {
4970 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4971 if (!prop_dictionary_set_data(prop_peer,
4972 "preshared_key",
4973 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4974 goto next;
4975 }
4976 }
4977
4978 wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
4979 CTASSERT(AF_UNSPEC == 0);
4980 if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
4981 !prop_dictionary_set_data(prop_peer, "endpoint",
4982 wgsatoss(wgsa),
4983 sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
4984 wg_put_sa(wgp, wgsa, &wgsa_psref);
4985 goto next;
4986 }
4987 wg_put_sa(wgp, wgsa, &wgsa_psref);
4988
4989 const struct timespec *t = &wgp->wgp_last_handshake_time;
4990
4991 if (!prop_dictionary_set_uint64(prop_peer,
4992 "last_handshake_time_sec", (uint64_t)t->tv_sec))
4993 goto next;
4994 if (!prop_dictionary_set_uint32(prop_peer,
4995 "last_handshake_time_nsec", (uint32_t)t->tv_nsec))
4996 goto next;
4997
4998 if (wgp->wgp_n_allowedips == 0)
4999 goto skip_allowedips;
5000
5001 prop_array_t allowedips = prop_array_create();
5002 if (allowedips == NULL)
5003 goto next;
5004 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
5005 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
5006 prop_dictionary_t prop_allowedip;
5007
5008 prop_allowedip = prop_dictionary_create();
5009 if (prop_allowedip == NULL)
5010 break;
5011
5012 if (!prop_dictionary_set_int(prop_allowedip, "family",
5013 wga->wga_family))
5014 goto _next;
5015 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
5016 wga->wga_cidr))
5017 goto _next;
5018
5019 switch (wga->wga_family) {
5020 #ifdef INET
5021 case AF_INET:
5022 if (!prop_dictionary_set_data(prop_allowedip,
5023 "ip", &wga->wga_addr4,
5024 sizeof(wga->wga_addr4)))
5025 goto _next;
5026 break;
5027 #endif
5028 #ifdef INET6
5029 case AF_INET6:
5030 if (!prop_dictionary_set_data(prop_allowedip,
5031 "ip", &wga->wga_addr6,
5032 sizeof(wga->wga_addr6)))
5033 goto _next;
5034 break;
5035 #endif
5036 default:
5037 panic("invalid af=%d", wga->wga_family);
5038 }
5039 prop_array_set(allowedips, j, prop_allowedip);
5040 _next:
5041 prop_object_release(prop_allowedip);
5042 }
5043 prop_dictionary_set(prop_peer, "allowedips", allowedips);
5044 prop_object_release(allowedips);
5045
5046 skip_allowedips:
5047
5048 prop_array_set(peers, i, prop_peer);
5049 next:
5050 if (prop_peer)
5051 prop_object_release(prop_peer);
5052 i++;
5053
5054 s = pserialize_read_enter();
5055 wg_put_peer(wgp, &wgp_psref);
5056 }
5057 pserialize_read_exit(s);
5058
5059 prop_dictionary_set(prop_dict, "peers", peers);
5060 prop_object_release(peers);
5061 peers = NULL;
5062
5063 skip_peers:
5064 buf = prop_dictionary_externalize(prop_dict);
5065 if (buf == NULL)
5066 goto error;
5067 if (ifd->ifd_len < (strlen(buf) + 1)) {
5068 error = EINVAL;
5069 goto error;
5070 }
5071 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
5072
5073 free(buf, 0);
5074 error:
5075 if (peers != NULL)
5076 prop_object_release(peers);
5077 if (prop_dict != NULL)
5078 prop_object_release(prop_dict);
5079
5080 return error;
5081 }
5082
5083 static int
5084 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5085 {
5086 struct wg_softc *wg = ifp->if_softc;
5087 struct ifreq *ifr = data;
5088 struct ifaddr *ifa = data;
5089 struct ifdrv *ifd = data;
5090 int error = 0;
5091
5092 switch (cmd) {
5093 case SIOCINITIFADDR:
5094 if (ifa->ifa_addr->sa_family != AF_LINK &&
5095 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
5096 (IFF_UP | IFF_RUNNING)) {
5097 ifp->if_flags |= IFF_UP;
5098 error = if_init(ifp);
5099 }
5100 return error;
5101 case SIOCADDMULTI:
5102 case SIOCDELMULTI:
5103 switch (ifr->ifr_addr.sa_family) {
5104 #ifdef INET
5105 case AF_INET: /* IP supports Multicast */
5106 break;
5107 #endif
5108 #ifdef INET6
5109 case AF_INET6: /* IP6 supports Multicast */
5110 break;
5111 #endif
5112 default: /* Other protocols doesn't support Multicast */
5113 error = EAFNOSUPPORT;
5114 break;
5115 }
5116 return error;
5117 case SIOCSDRVSPEC:
5118 if (!wg_is_authorized(wg, cmd)) {
5119 return EPERM;
5120 }
5121 switch (ifd->ifd_cmd) {
5122 case WG_IOCTL_SET_PRIVATE_KEY:
5123 error = wg_ioctl_set_private_key(wg, ifd);
5124 break;
5125 case WG_IOCTL_SET_LISTEN_PORT:
5126 error = wg_ioctl_set_listen_port(wg, ifd);
5127 break;
5128 case WG_IOCTL_ADD_PEER:
5129 error = wg_ioctl_add_peer(wg, ifd);
5130 break;
5131 case WG_IOCTL_DELETE_PEER:
5132 error = wg_ioctl_delete_peer(wg, ifd);
5133 break;
5134 default:
5135 error = EINVAL;
5136 break;
5137 }
5138 return error;
5139 case SIOCGDRVSPEC:
5140 return wg_ioctl_get(wg, ifd);
5141 case SIOCSIFFLAGS:
5142 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5143 break;
5144 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5145 case IFF_RUNNING:
5146 /*
5147 * If interface is marked down and it is running,
5148 * then stop and disable it.
5149 */
5150 if_stop(ifp, 1);
5151 break;
5152 case IFF_UP:
5153 /*
5154 * If interface is marked up and it is stopped, then
5155 * start it.
5156 */
5157 error = if_init(ifp);
5158 break;
5159 default:
5160 break;
5161 }
5162 return error;
5163 #ifdef WG_RUMPKERNEL
5164 case SIOCSLINKSTR:
5165 error = wg_ioctl_linkstr(wg, ifd);
5166 if (error)
5167 return error;
5168 wg->wg_ops = &wg_ops_rumpuser;
5169 return 0;
5170 #endif
5171 default:
5172 break;
5173 }
5174
5175 error = ifioctl_common(ifp, cmd, data);
5176
5177 #ifdef WG_RUMPKERNEL
5178 if (!wg_user_mode(wg))
5179 return error;
5180
5181 /* Do the same to the corresponding tun device on the host */
5182 /*
5183 * XXX Actually the command has not been handled yet. It
5184 * will be handled via pr_ioctl form doifioctl later.
5185 */
5186 switch (cmd) {
5187 #ifdef INET
5188 case SIOCAIFADDR:
5189 case SIOCDIFADDR: {
5190 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
5191 struct in_aliasreq *ifra = &_ifra;
5192 KASSERT(error == ENOTTY);
5193 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5194 IFNAMSIZ);
5195 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
5196 if (error == 0)
5197 error = ENOTTY;
5198 break;
5199 }
5200 #endif
5201 #ifdef INET6
5202 case SIOCAIFADDR_IN6:
5203 case SIOCDIFADDR_IN6: {
5204 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
5205 struct in6_aliasreq *ifra = &_ifra;
5206 KASSERT(error == ENOTTY);
5207 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5208 IFNAMSIZ);
5209 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
5210 if (error == 0)
5211 error = ENOTTY;
5212 break;
5213 }
5214 #endif
5215 default:
5216 break;
5217 }
5218 #endif /* WG_RUMPKERNEL */
5219
5220 return error;
5221 }
5222
5223 static int
5224 wg_init(struct ifnet *ifp)
5225 {
5226
5227 ifp->if_flags |= IFF_RUNNING;
5228
5229 /* TODO flush pending packets. */
5230 return 0;
5231 }
5232
5233 #ifdef ALTQ
5234 static void
5235 wg_start(struct ifnet *ifp)
5236 {
5237 struct mbuf *m;
5238
5239 for (;;) {
5240 IFQ_DEQUEUE(&ifp->if_snd, m);
5241 if (m == NULL)
5242 break;
5243
5244 kpreempt_disable();
5245 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
5246 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
5247 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
5248 if_name(ifp));
5249 m_freem(m);
5250 }
5251 kpreempt_enable();
5252 }
5253 }
5254 #endif
5255
5256 static void
5257 wg_stop(struct ifnet *ifp, int disable)
5258 {
5259
5260 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
5261 ifp->if_flags &= ~IFF_RUNNING;
5262
5263 /* Need to do something? */
5264 }
5265
5266 #ifdef WG_DEBUG_PARAMS
5267 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
5268 {
5269 const struct sysctlnode *node = NULL;
5270
5271 sysctl_createv(clog, 0, NULL, &node,
5272 CTLFLAG_PERMANENT,
5273 CTLTYPE_NODE, "wg",
5274 SYSCTL_DESCR("wg(4)"),
5275 NULL, 0, NULL, 0,
5276 CTL_NET, CTL_CREATE, CTL_EOL);
5277 sysctl_createv(clog, 0, &node, NULL,
5278 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5279 CTLTYPE_QUAD, "rekey_after_messages",
5280 SYSCTL_DESCR("session liftime by messages"),
5281 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
5282 sysctl_createv(clog, 0, &node, NULL,
5283 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5284 CTLTYPE_INT, "rekey_after_time",
5285 SYSCTL_DESCR("session liftime"),
5286 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
5287 sysctl_createv(clog, 0, &node, NULL,
5288 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5289 CTLTYPE_INT, "rekey_timeout",
5290 SYSCTL_DESCR("session handshake retry time"),
5291 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
5292 sysctl_createv(clog, 0, &node, NULL,
5293 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5294 CTLTYPE_INT, "rekey_attempt_time",
5295 SYSCTL_DESCR("session handshake timeout"),
5296 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
5297 sysctl_createv(clog, 0, &node, NULL,
5298 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5299 CTLTYPE_INT, "keepalive_timeout",
5300 SYSCTL_DESCR("keepalive timeout"),
5301 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
5302 sysctl_createv(clog, 0, &node, NULL,
5303 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5304 CTLTYPE_BOOL, "force_underload",
5305 SYSCTL_DESCR("force to detemine under load"),
5306 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
5307 sysctl_createv(clog, 0, &node, NULL,
5308 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5309 CTLTYPE_INT, "debug",
5310 SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
5311 NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
5312 }
5313 #endif
5314
5315 #ifdef WG_RUMPKERNEL
5316 static bool
5317 wg_user_mode(struct wg_softc *wg)
5318 {
5319
5320 return wg->wg_user != NULL;
5321 }
5322
5323 static int
5324 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
5325 {
5326 struct ifnet *ifp = &wg->wg_if;
5327 int error;
5328
5329 if (ifp->if_flags & IFF_UP)
5330 return EBUSY;
5331
5332 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
5333 /* XXX do nothing */
5334 return 0;
5335 } else if (ifd->ifd_cmd != 0) {
5336 return EINVAL;
5337 } else if (wg->wg_user != NULL) {
5338 return EBUSY;
5339 }
5340
5341 /* Assume \0 included */
5342 if (ifd->ifd_len > IFNAMSIZ) {
5343 return E2BIG;
5344 } else if (ifd->ifd_len < 1) {
5345 return EINVAL;
5346 }
5347
5348 char tun_name[IFNAMSIZ];
5349 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
5350 if (error != 0)
5351 return error;
5352
5353 if (strncmp(tun_name, "tun", 3) != 0)
5354 return EINVAL;
5355
5356 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
5357
5358 return error;
5359 }
5360
5361 static int
5362 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
5363 {
5364 int error;
5365 struct psref psref;
5366 struct wg_sockaddr *wgsa;
5367 struct wg_softc *wg = wgp->wgp_sc;
5368 struct iovec iov[1];
5369
5370 wgsa = wg_get_endpoint_sa(wgp, &psref);
5371
5372 iov[0].iov_base = mtod(m, void *);
5373 iov[0].iov_len = m->m_len;
5374
5375 /* Send messages to a peer via an ordinary socket. */
5376 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
5377
5378 wg_put_sa(wgp, wgsa, &psref);
5379
5380 m_freem(m);
5381
5382 return error;
5383 }
5384
5385 static void
5386 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
5387 {
5388 struct wg_softc *wg = ifp->if_softc;
5389 struct iovec iov[2];
5390 struct sockaddr_storage ss;
5391
5392 KASSERT(af == AF_INET || af == AF_INET6);
5393
5394 WG_TRACE("");
5395
5396 switch (af) {
5397 #ifdef INET
5398 case AF_INET: {
5399 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
5400 struct ip *ip;
5401
5402 KASSERT(m->m_len >= sizeof(struct ip));
5403 ip = mtod(m, struct ip *);
5404 sockaddr_in_init(sin, &ip->ip_dst, 0);
5405 break;
5406 }
5407 #endif
5408 #ifdef INET6
5409 case AF_INET6: {
5410 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
5411 struct ip6_hdr *ip6;
5412
5413 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
5414 ip6 = mtod(m, struct ip6_hdr *);
5415 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
5416 break;
5417 }
5418 #endif
5419 default:
5420 goto out;
5421 }
5422
5423 iov[0].iov_base = &ss;
5424 iov[0].iov_len = ss.ss_len;
5425 iov[1].iov_base = mtod(m, void *);
5426 iov[1].iov_len = m->m_len;
5427
5428 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5429
5430 /* Send decrypted packets to users via a tun. */
5431 rumpuser_wg_send_user(wg->wg_user, iov, 2);
5432
5433 out: m_freem(m);
5434 }
5435
5436 static int
5437 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
5438 {
5439 int error;
5440 uint16_t old_port = wg->wg_listen_port;
5441
5442 if (port != 0 && old_port == port)
5443 return 0;
5444
5445 error = rumpuser_wg_sock_bind(wg->wg_user, port);
5446 if (error)
5447 return error;
5448
5449 wg->wg_listen_port = port;
5450 return 0;
5451 }
5452
5453 /*
5454 * Receive user packets.
5455 */
5456 void
5457 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5458 {
5459 struct ifnet *ifp = &wg->wg_if;
5460 struct mbuf *m;
5461 const struct sockaddr *dst;
5462 int error;
5463
5464 WG_TRACE("");
5465
5466 dst = iov[0].iov_base;
5467
5468 m = m_gethdr(M_DONTWAIT, MT_DATA);
5469 if (m == NULL)
5470 return;
5471 m->m_len = m->m_pkthdr.len = 0;
5472 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5473
5474 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5475 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5476
5477 error = wg_output(ifp, m, dst, NULL); /* consumes m */
5478 if (error)
5479 WG_DLOG("wg_output failed, error=%d\n", error);
5480 }
5481
5482 /*
5483 * Receive packets from a peer.
5484 */
5485 void
5486 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5487 {
5488 struct mbuf *m;
5489 const struct sockaddr *src;
5490 int bound;
5491
5492 WG_TRACE("");
5493
5494 src = iov[0].iov_base;
5495
5496 m = m_gethdr(M_DONTWAIT, MT_DATA);
5497 if (m == NULL)
5498 return;
5499 m->m_len = m->m_pkthdr.len = 0;
5500 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5501
5502 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5503 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5504
5505 bound = curlwp_bind();
5506 wg_handle_packet(wg, m, src);
5507 curlwp_bindx(bound);
5508 }
5509 #endif /* WG_RUMPKERNEL */
5510
5511 /*
5512 * Module infrastructure
5513 */
5514 #include "if_module.h"
5515
5516 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
5517