if_wg.c revision 1.112 1 /* $NetBSD: if_wg.c,v 1.112 2024/07/28 14:55:30 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.112 2024/07/28 14:55:30 riastradh Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_altq_enabled.h"
48 #include "opt_inet.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/atomic.h>
55 #include <sys/callout.h>
56 #include <sys/cprng.h>
57 #include <sys/cpu.h>
58 #include <sys/device.h>
59 #include <sys/domain.h>
60 #include <sys/errno.h>
61 #include <sys/intr.h>
62 #include <sys/ioctl.h>
63 #include <sys/kernel.h>
64 #include <sys/kmem.h>
65 #include <sys/mbuf.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/once.h>
69 #include <sys/percpu.h>
70 #include <sys/pserialize.h>
71 #include <sys/psref.h>
72 #include <sys/queue.h>
73 #include <sys/rwlock.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/systm.h>
80 #include <sys/thmap.h>
81 #include <sys/threadpool.h>
82 #include <sys/time.h>
83 #include <sys/timespec.h>
84 #include <sys/workqueue.h>
85
86 #include <lib/libkern/libkern.h>
87
88 #include <net/bpf.h>
89 #include <net/if.h>
90 #include <net/if_types.h>
91 #include <net/if_wg.h>
92 #include <net/pktqueue.h>
93 #include <net/route.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_pcb.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_var.h>
101 #include <netinet/udp.h>
102 #include <netinet/udp_var.h>
103 #endif /* INET */
104
105 #ifdef INET6
106 #include <netinet/ip6.h>
107 #include <netinet6/in6_pcb.h>
108 #include <netinet6/in6_var.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/udp6_var.h>
111 #endif /* INET6 */
112
113 #include <prop/proplib.h>
114
115 #include <crypto/blake2/blake2s.h>
116 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
117 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
118 #include <crypto/sodium/crypto_scalarmult.h>
119
120 #include "ioconf.h"
121
122 #ifdef WG_RUMPKERNEL
123 #include "wg_user.h"
124 #endif
125
126 #ifndef time_uptime32
127 #define time_uptime32 ((uint32_t)time_uptime)
128 #endif
129
130 /*
131 * Data structures
132 * - struct wg_softc is an instance of wg interfaces
133 * - It has a list of peers (struct wg_peer)
134 * - It has a threadpool job that sends/receives handshake messages and
135 * runs event handlers
136 * - It has its own two routing tables: one is for IPv4 and the other IPv6
137 * - struct wg_peer is a representative of a peer
138 * - It has a struct work to handle handshakes and timer tasks
139 * - It has a pair of session instances (struct wg_session)
140 * - It has a pair of endpoint instances (struct wg_sockaddr)
141 * - Normally one endpoint is used and the second one is used only on
142 * a peer migration (a change of peer's IP address)
143 * - It has a list of IP addresses and sub networks called allowedips
144 * (struct wg_allowedip)
145 * - A packets sent over a session is allowed if its destination matches
146 * any IP addresses or sub networks of the list
147 * - struct wg_session represents a session of a secure tunnel with a peer
148 * - Two instances of sessions belong to a peer; a stable session and a
149 * unstable session
150 * - A handshake process of a session always starts with a unstable instance
151 * - Once a session is established, its instance becomes stable and the
152 * other becomes unstable instead
153 * - Data messages are always sent via a stable session
154 *
155 * Locking notes:
156 * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
157 * - Changes to the peer list are serialized by wg_lock
158 * - The peer list may be read with pserialize(9) and psref(9)
159 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
160 * => XXX replace by pserialize when routing table is psz-safe
161 * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
162 * only in thread context and serializes:
163 * - the stable and unstable session pointers
164 * - all unstable session state
165 * - Packet processing may be done in softint context:
166 * - The stable session can be read under pserialize(9) or psref(9)
167 * - The stable session is always ESTABLISHED
168 * - On a session swap, we must wait for all readers to release a
169 * reference to a stable session before changing wgs_state and
170 * session states
171 * - Lock order: wg_lock -> wgp_lock
172 */
173
174
175 #define WGLOG(level, fmt, args...) \
176 log(level, "%s: " fmt, __func__, ##args)
177
178 #define WG_DEBUG
179
180 /* Debug options */
181 #ifdef WG_DEBUG
182 /* Output debug logs */
183 #ifndef WG_DEBUG_LOG
184 #define WG_DEBUG_LOG
185 #endif
186 /* Output trace logs */
187 #ifndef WG_DEBUG_TRACE
188 #define WG_DEBUG_TRACE
189 #endif
190 /* Output hash values, etc. */
191 #ifndef WG_DEBUG_DUMP
192 #define WG_DEBUG_DUMP
193 #endif
194 /* Make some internal parameters configurable for testing and debugging */
195 #ifndef WG_DEBUG_PARAMS
196 #define WG_DEBUG_PARAMS
197 #endif
198 #endif /* WG_DEBUG */
199
200 #ifndef WG_DEBUG
201 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) || \
202 defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS)
203 # define WG_DEBUG
204 # endif
205 #endif
206
207 #ifdef WG_DEBUG
208 int wg_debug;
209 #define WG_DEBUG_FLAGS_LOG 1
210 #define WG_DEBUG_FLAGS_TRACE 2
211 #define WG_DEBUG_FLAGS_DUMP 4
212 #endif
213
214 #ifdef WG_DEBUG_TRACE
215 #define WG_TRACE(msg) do { \
216 if (wg_debug & WG_DEBUG_FLAGS_TRACE) \
217 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg)); \
218 } while (0)
219 #else
220 #define WG_TRACE(msg) __nothing
221 #endif
222
223 #ifdef WG_DEBUG_LOG
224 #define WG_DLOG(fmt, args...) do { \
225 if (wg_debug & WG_DEBUG_FLAGS_LOG) \
226 log(LOG_DEBUG, "%s: " fmt, __func__, ##args); \
227 } while (0)
228 #else
229 #define WG_DLOG(fmt, args...) __nothing
230 #endif
231
232 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
233 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
234 &(wgprc)->wgprc_curpps, 1)) { \
235 log(level, fmt, ##args); \
236 } \
237 } while (0)
238
239 #ifdef WG_DEBUG_PARAMS
240 static bool wg_force_underload = false;
241 #endif
242
243 #ifdef WG_DEBUG_DUMP
244
245 static char enomem[10] = "[enomem]";
246
247 #define MAX_HDUMP_LEN 10000 /* large enough */
248
249 /*
250 * gethexdump(p, n)
251 *
252 * Allocate a string returning a hexdump of bytes p[0..n),
253 * truncated to MAX_HDUMP_LEN. Must be freed with puthexdump.
254 *
255 * We use this instead of libkern hexdump() because the result is
256 * logged with log(LOG_DEBUG, ...), which puts a priority tag on
257 * every message, so it can't be done incrementally.
258 */
259 static char *
260 gethexdump(const void *vp, size_t n)
261 {
262 char *buf;
263 const uint8_t *p = vp;
264 size_t i, alloc;
265
266 alloc = n;
267 if (n > MAX_HDUMP_LEN)
268 alloc = MAX_HDUMP_LEN;
269 buf = kmem_alloc(3*alloc + 5, KM_NOSLEEP);
270 if (buf == NULL)
271 return enomem;
272 for (i = 0; i < alloc; i++)
273 snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
274 if (alloc != n)
275 snprintf(buf + 3*i, 4 + 1, " ...");
276 return buf;
277 }
278
279 static void
280 puthexdump(char *buf, const void *p, size_t n)
281 {
282
283 if (buf == NULL || buf == enomem)
284 return;
285 if (n > MAX_HDUMP_LEN)
286 n = MAX_HDUMP_LEN;
287 kmem_free(buf, 3*n + 5);
288 }
289
290 #ifdef WG_RUMPKERNEL
291 static void
292 wg_dump_buf(const char *func, const char *buf, const size_t size)
293 {
294 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
295 return;
296
297 char *hex = gethexdump(buf, size);
298
299 log(LOG_DEBUG, "%s: %s\n", func, hex);
300 puthexdump(hex, buf, size);
301 }
302 #endif
303
304 static void
305 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
306 const size_t size)
307 {
308 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
309 return;
310
311 char *hex = gethexdump(hash, size);
312
313 log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex);
314 puthexdump(hex, hash, size);
315 }
316
317 #define WG_DUMP_HASH(name, hash) \
318 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
319 #define WG_DUMP_HASH48(name, hash) \
320 wg_dump_hash(__func__, name, hash, 48)
321 #define WG_DUMP_BUF(buf, size) \
322 wg_dump_buf(__func__, buf, size)
323 #else
324 #define WG_DUMP_HASH(name, hash) __nothing
325 #define WG_DUMP_HASH48(name, hash) __nothing
326 #define WG_DUMP_BUF(buf, size) __nothing
327 #endif /* WG_DEBUG_DUMP */
328
329 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
330 #define WG_MAX_PROPLEN 32766
331
332 #define WG_MTU 1420
333 #define WG_ALLOWEDIPS 16
334
335 #define CURVE25519_KEY_LEN 32
336 #define TAI64N_LEN (sizeof(uint32_t) * 3)
337 #define POLY1305_AUTHTAG_LEN 16
338 #define HMAC_BLOCK_LEN 64
339
340 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
341 /* [N] 4.3: Hash functions */
342 #define NOISE_DHLEN 32
343 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
344 #define NOISE_HASHLEN 32
345 #define NOISE_BLOCKLEN 64
346 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
347 /* [N] 5.1: "k" */
348 #define NOISE_CIPHER_KEY_LEN 32
349 /*
350 * [N] 9.2: "psk"
351 * "... psk is a 32-byte secret value provided by the application."
352 */
353 #define NOISE_PRESHARED_KEY_LEN 32
354
355 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
356 #define WG_TIMESTAMP_LEN TAI64N_LEN
357
358 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
359
360 #define WG_COOKIE_LEN 16
361 #define WG_MAC_LEN 16
362 #define WG_COOKIESECRET_LEN 32
363
364 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
365 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
366 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
367 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
368 #define WG_HASH_LEN NOISE_HASHLEN
369 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
370 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
371 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
372 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
373 #define WG_DATA_KEY_LEN 32
374 #define WG_SALT_LEN 24
375
376 /*
377 * The protocol messages
378 */
379 struct wg_msg {
380 uint32_t wgm_type;
381 } __packed;
382
383 /* [W] 5.4.2 First Message: Initiator to Responder */
384 struct wg_msg_init {
385 uint32_t wgmi_type;
386 uint32_t wgmi_sender;
387 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
388 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
389 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
390 uint8_t wgmi_mac1[WG_MAC_LEN];
391 uint8_t wgmi_mac2[WG_MAC_LEN];
392 } __packed;
393
394 /* [W] 5.4.3 Second Message: Responder to Initiator */
395 struct wg_msg_resp {
396 uint32_t wgmr_type;
397 uint32_t wgmr_sender;
398 uint32_t wgmr_receiver;
399 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
400 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
401 uint8_t wgmr_mac1[WG_MAC_LEN];
402 uint8_t wgmr_mac2[WG_MAC_LEN];
403 } __packed;
404
405 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
406 struct wg_msg_data {
407 uint32_t wgmd_type;
408 uint32_t wgmd_receiver;
409 uint64_t wgmd_counter;
410 uint32_t wgmd_packet[0];
411 } __packed;
412
413 /* [W] 5.4.7 Under Load: Cookie Reply Message */
414 struct wg_msg_cookie {
415 uint32_t wgmc_type;
416 uint32_t wgmc_receiver;
417 uint8_t wgmc_salt[WG_SALT_LEN];
418 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
419 } __packed;
420
421 #define WG_MSG_TYPE_INIT 1
422 #define WG_MSG_TYPE_RESP 2
423 #define WG_MSG_TYPE_COOKIE 3
424 #define WG_MSG_TYPE_DATA 4
425 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
426
427 /* Sliding windows */
428
429 #define SLIWIN_BITS 2048u
430 #define SLIWIN_TYPE uint32_t
431 #define SLIWIN_BPW (NBBY*sizeof(SLIWIN_TYPE))
432 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
433 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
434
435 struct sliwin {
436 SLIWIN_TYPE B[SLIWIN_WORDS];
437 uint64_t T;
438 };
439
440 static void
441 sliwin_reset(struct sliwin *W)
442 {
443
444 memset(W, 0, sizeof(*W));
445 }
446
447 static int
448 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
449 {
450
451 /*
452 * If it's more than one window older than the highest sequence
453 * number we've seen, reject.
454 */
455 #ifdef __HAVE_ATOMIC64_LOADSTORE
456 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
457 return EAUTH;
458 #endif
459
460 /*
461 * Otherwise, we need to take the lock to decide, so don't
462 * reject just yet. Caller must serialize a call to
463 * sliwin_update in this case.
464 */
465 return 0;
466 }
467
468 static int
469 sliwin_update(struct sliwin *W, uint64_t S)
470 {
471 unsigned word, bit;
472
473 /*
474 * If it's more than one window older than the highest sequence
475 * number we've seen, reject.
476 */
477 if (S + SLIWIN_NPKT < W->T)
478 return EAUTH;
479
480 /*
481 * If it's higher than the highest sequence number we've seen,
482 * advance the window.
483 */
484 if (S > W->T) {
485 uint64_t i = W->T / SLIWIN_BPW;
486 uint64_t j = S / SLIWIN_BPW;
487 unsigned k;
488
489 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
490 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
491 #ifdef __HAVE_ATOMIC64_LOADSTORE
492 atomic_store_relaxed(&W->T, S);
493 #else
494 W->T = S;
495 #endif
496 }
497
498 /* Test and set the bit -- if already set, reject. */
499 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
500 bit = S % SLIWIN_BPW;
501 if (W->B[word] & (1UL << bit))
502 return EAUTH;
503 W->B[word] |= 1U << bit;
504
505 /* Accept! */
506 return 0;
507 }
508
509 struct wg_session {
510 struct wg_peer *wgs_peer;
511 struct psref_target
512 wgs_psref;
513
514 int wgs_state;
515 #define WGS_STATE_UNKNOWN 0
516 #define WGS_STATE_INIT_ACTIVE 1
517 #define WGS_STATE_INIT_PASSIVE 2
518 #define WGS_STATE_ESTABLISHED 3
519 #define WGS_STATE_DESTROYING 4
520
521 volatile uint32_t
522 wgs_time_established;
523 volatile uint32_t
524 wgs_time_last_data_sent;
525 bool wgs_is_initiator;
526
527 uint32_t wgs_local_index;
528 uint32_t wgs_remote_index;
529 #ifdef __HAVE_ATOMIC64_LOADSTORE
530 volatile uint64_t
531 wgs_send_counter;
532 #else
533 kmutex_t wgs_send_counter_lock;
534 uint64_t wgs_send_counter;
535 #endif
536
537 struct {
538 kmutex_t lock;
539 struct sliwin window;
540 } *wgs_recvwin;
541
542 uint8_t wgs_handshake_hash[WG_HASH_LEN];
543 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
544 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
545 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
546 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
547 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
548 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
549 };
550
551 struct wg_sockaddr {
552 union {
553 struct sockaddr_storage _ss;
554 struct sockaddr _sa;
555 struct sockaddr_in _sin;
556 struct sockaddr_in6 _sin6;
557 };
558 struct psref_target wgsa_psref;
559 };
560
561 #define wgsatoss(wgsa) (&(wgsa)->_ss)
562 #define wgsatosa(wgsa) (&(wgsa)->_sa)
563 #define wgsatosin(wgsa) (&(wgsa)->_sin)
564 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
565
566 #define wgsa_family(wgsa) (wgsatosa(wgsa)->sa_family)
567
568 struct wg_peer;
569 struct wg_allowedip {
570 struct radix_node wga_nodes[2];
571 struct wg_sockaddr _wga_sa_addr;
572 struct wg_sockaddr _wga_sa_mask;
573 #define wga_sa_addr _wga_sa_addr._sa
574 #define wga_sa_mask _wga_sa_mask._sa
575
576 int wga_family;
577 uint8_t wga_cidr;
578 union {
579 struct in_addr _ip4;
580 struct in6_addr _ip6;
581 } wga_addr;
582 #define wga_addr4 wga_addr._ip4
583 #define wga_addr6 wga_addr._ip6
584
585 struct wg_peer *wga_peer;
586 };
587
588 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
589
590 struct wg_ppsratecheck {
591 struct timeval wgprc_lasttime;
592 int wgprc_curpps;
593 };
594
595 struct wg_softc;
596 struct wg_peer {
597 struct wg_softc *wgp_sc;
598 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
599 struct pslist_entry wgp_peerlist_entry;
600 pserialize_t wgp_psz;
601 struct psref_target wgp_psref;
602 kmutex_t *wgp_lock;
603 kmutex_t *wgp_intr_lock;
604
605 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
606 struct wg_sockaddr *wgp_endpoint;
607 struct wg_sockaddr *wgp_endpoint0;
608 volatile unsigned wgp_endpoint_changing;
609 bool wgp_endpoint_available;
610
611 /* The preshared key (optional) */
612 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
613
614 struct wg_session *wgp_session_stable;
615 struct wg_session *wgp_session_unstable;
616
617 /* first outgoing packet awaiting session initiation */
618 struct mbuf *volatile wgp_pending;
619
620 /* timestamp in big-endian */
621 wg_timestamp_t wgp_timestamp_latest_init;
622
623 struct timespec wgp_last_handshake_time;
624
625 callout_t wgp_handshake_timeout_timer;
626 callout_t wgp_session_dtor_timer;
627
628 time_t wgp_handshake_start_time;
629
630 volatile unsigned wgp_force_rekey;
631
632 int wgp_n_allowedips;
633 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
634
635 time_t wgp_latest_cookie_time;
636 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
637 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
638 bool wgp_last_sent_mac1_valid;
639 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
640 bool wgp_last_sent_cookie_valid;
641
642 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
643
644 time_t wgp_last_cookiesecret_time;
645 uint8_t wgp_cookiesecret[WG_COOKIESECRET_LEN];
646
647 struct wg_ppsratecheck wgp_ppsratecheck;
648
649 struct work wgp_work;
650 unsigned int wgp_tasks;
651 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
652 #define WGP_TASK_RETRY_HANDSHAKE __BIT(1)
653 #define WGP_TASK_ESTABLISH_SESSION __BIT(2)
654 #define WGP_TASK_ENDPOINT_CHANGED __BIT(3)
655 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(4)
656 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(5)
657 };
658
659 struct wg_ops;
660
661 struct wg_softc {
662 struct ifnet wg_if;
663 LIST_ENTRY(wg_softc) wg_list;
664 kmutex_t *wg_lock;
665 kmutex_t *wg_intr_lock;
666 krwlock_t *wg_rwlock;
667
668 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
669 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
670
671 int wg_npeers;
672 struct pslist_head wg_peers;
673 struct thmap *wg_peers_bypubkey;
674 struct thmap *wg_peers_byname;
675 struct thmap *wg_sessions_byindex;
676 uint16_t wg_listen_port;
677
678 struct threadpool *wg_threadpool;
679
680 struct threadpool_job wg_job;
681 int wg_upcalls;
682 #define WG_UPCALL_INET __BIT(0)
683 #define WG_UPCALL_INET6 __BIT(1)
684
685 #ifdef INET
686 struct socket *wg_so4;
687 struct radix_node_head *wg_rtable_ipv4;
688 #endif
689 #ifdef INET6
690 struct socket *wg_so6;
691 struct radix_node_head *wg_rtable_ipv6;
692 #endif
693
694 struct wg_ppsratecheck wg_ppsratecheck;
695
696 struct wg_ops *wg_ops;
697
698 #ifdef WG_RUMPKERNEL
699 struct wg_user *wg_user;
700 #endif
701 };
702
703 /* [W] 6.1 Preliminaries */
704 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
705 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
706 #define WG_REKEY_AFTER_TIME 120
707 #define WG_REJECT_AFTER_TIME 180
708 #define WG_REKEY_ATTEMPT_TIME 90
709 #define WG_REKEY_TIMEOUT 5
710 #define WG_KEEPALIVE_TIMEOUT 10
711
712 #define WG_COOKIE_TIME 120
713 #define WG_COOKIESECRET_TIME (2 * 60)
714
715 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
716 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
717 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
718 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
719 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
720 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
721 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
722
723 static struct mbuf *
724 wg_get_mbuf(size_t, size_t);
725
726 static void wg_send_data_msg(struct wg_peer *, struct wg_session *,
727 struct mbuf *);
728 static void wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
729 const uint32_t, const uint8_t [WG_MAC_LEN],
730 const struct sockaddr *);
731 static void wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
732 struct wg_session *, const struct wg_msg_init *);
733 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
734
735 static struct wg_peer *
736 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
737 struct psref *);
738 static struct wg_peer *
739 wg_lookup_peer_by_pubkey(struct wg_softc *,
740 const uint8_t [WG_STATIC_KEY_LEN], struct psref *);
741
742 static struct wg_session *
743 wg_lookup_session_by_index(struct wg_softc *,
744 const uint32_t, struct psref *);
745
746 static void wg_update_endpoint_if_necessary(struct wg_peer *,
747 const struct sockaddr *);
748
749 static void wg_schedule_session_dtor_timer(struct wg_peer *);
750
751 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
752 static void wg_calculate_keys(struct wg_session *, const bool);
753
754 static void wg_clear_states(struct wg_session *);
755
756 static void wg_get_peer(struct wg_peer *, struct psref *);
757 static void wg_put_peer(struct wg_peer *, struct psref *);
758
759 static int wg_send_so(struct wg_peer *, struct mbuf *);
760 static int wg_send_udp(struct wg_peer *, struct mbuf *);
761 static int wg_output(struct ifnet *, struct mbuf *,
762 const struct sockaddr *, const struct rtentry *);
763 static void wg_input(struct ifnet *, struct mbuf *, const int);
764 static int wg_ioctl(struct ifnet *, u_long, void *);
765 static int wg_bind_port(struct wg_softc *, const uint16_t);
766 static int wg_init(struct ifnet *);
767 #ifdef ALTQ
768 static void wg_start(struct ifnet *);
769 #endif
770 static void wg_stop(struct ifnet *, int);
771
772 static void wg_peer_work(struct work *, void *);
773 static void wg_job(struct threadpool_job *);
774 static void wgintr(void *);
775 static void wg_purge_pending_packets(struct wg_peer *);
776
777 static int wg_clone_create(struct if_clone *, int);
778 static int wg_clone_destroy(struct ifnet *);
779
780 struct wg_ops {
781 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
782 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
783 void (*input)(struct ifnet *, struct mbuf *, const int);
784 int (*bind_port)(struct wg_softc *, const uint16_t);
785 };
786
787 struct wg_ops wg_ops_rumpkernel = {
788 .send_hs_msg = wg_send_so,
789 .send_data_msg = wg_send_udp,
790 .input = wg_input,
791 .bind_port = wg_bind_port,
792 };
793
794 #ifdef WG_RUMPKERNEL
795 static bool wg_user_mode(struct wg_softc *);
796 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
797
798 static int wg_send_user(struct wg_peer *, struct mbuf *);
799 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
800 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
801
802 struct wg_ops wg_ops_rumpuser = {
803 .send_hs_msg = wg_send_user,
804 .send_data_msg = wg_send_user,
805 .input = wg_input_user,
806 .bind_port = wg_bind_port_user,
807 };
808 #endif
809
810 #define WG_PEER_READER_FOREACH(wgp, wg) \
811 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
812 wgp_peerlist_entry)
813 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
814 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
815 wgp_peerlist_entry)
816 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
817 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
818 #define WG_PEER_WRITER_REMOVE(wgp) \
819 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
820
821 struct wg_route {
822 struct radix_node wgr_nodes[2];
823 struct wg_peer *wgr_peer;
824 };
825
826 static struct radix_node_head *
827 wg_rnh(struct wg_softc *wg, const int family)
828 {
829
830 switch (family) {
831 #ifdef INET
832 case AF_INET:
833 return wg->wg_rtable_ipv4;
834 #endif
835 #ifdef INET6
836 case AF_INET6:
837 return wg->wg_rtable_ipv6;
838 #endif
839 default:
840 return NULL;
841 }
842 }
843
844
845 /*
846 * Global variables
847 */
848 static volatile unsigned wg_count __cacheline_aligned;
849
850 struct psref_class *wg_psref_class __read_mostly;
851
852 static struct if_clone wg_cloner =
853 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
854
855 static struct pktqueue *wg_pktq __read_mostly;
856 static struct workqueue *wg_wq __read_mostly;
857
858 void wgattach(int);
859 /* ARGSUSED */
860 void
861 wgattach(int count)
862 {
863 /*
864 * Nothing to do here, initialization is handled by the
865 * module initialization code in wginit() below).
866 */
867 }
868
869 static void
870 wginit(void)
871 {
872
873 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
874
875 if_clone_attach(&wg_cloner);
876 }
877
878 /*
879 * XXX Kludge: This should just happen in wginit, but workqueue_create
880 * cannot be run until after CPUs have been detected, and wginit runs
881 * before configure.
882 */
883 static int
884 wginitqueues(void)
885 {
886 int error __diagused;
887
888 wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
889 KASSERT(wg_pktq != NULL);
890
891 error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
892 PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
893 KASSERTMSG(error == 0, "error=%d", error);
894
895 return 0;
896 }
897
898 static void
899 wg_guarantee_initialized(void)
900 {
901 static ONCE_DECL(init);
902 int error __diagused;
903
904 error = RUN_ONCE(&init, wginitqueues);
905 KASSERTMSG(error == 0, "error=%d", error);
906 }
907
908 static int
909 wg_count_inc(void)
910 {
911 unsigned o, n;
912
913 do {
914 o = atomic_load_relaxed(&wg_count);
915 if (o == UINT_MAX)
916 return ENFILE;
917 n = o + 1;
918 } while (atomic_cas_uint(&wg_count, o, n) != o);
919
920 return 0;
921 }
922
923 static void
924 wg_count_dec(void)
925 {
926 unsigned c __diagused;
927
928 c = atomic_dec_uint_nv(&wg_count);
929 KASSERT(c != UINT_MAX);
930 }
931
932 static int
933 wgdetach(void)
934 {
935
936 /* Prevent new interface creation. */
937 if_clone_detach(&wg_cloner);
938
939 /* Check whether there are any existing interfaces. */
940 if (atomic_load_relaxed(&wg_count)) {
941 /* Back out -- reattach the cloner. */
942 if_clone_attach(&wg_cloner);
943 return EBUSY;
944 }
945
946 /* No interfaces left. Nuke it. */
947 if (wg_wq)
948 workqueue_destroy(wg_wq);
949 if (wg_pktq)
950 pktq_destroy(wg_pktq);
951 psref_class_destroy(wg_psref_class);
952
953 return 0;
954 }
955
956 static void
957 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
958 uint8_t hash[WG_HASH_LEN])
959 {
960 /* [W] 5.4: CONSTRUCTION */
961 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
962 /* [W] 5.4: IDENTIFIER */
963 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
964 struct blake2s state;
965
966 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
967 signature, strlen(signature));
968
969 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
970 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
971
972 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
973 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
974 blake2s_update(&state, id, strlen(id));
975 blake2s_final(&state, hash);
976
977 WG_DUMP_HASH("ckey", ckey);
978 WG_DUMP_HASH("hash", hash);
979 }
980
981 static void
982 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
983 const size_t inputsize)
984 {
985 struct blake2s state;
986
987 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
988 blake2s_update(&state, hash, WG_HASH_LEN);
989 blake2s_update(&state, input, inputsize);
990 blake2s_final(&state, hash);
991 }
992
993 static void
994 wg_algo_mac(uint8_t out[], const size_t outsize,
995 const uint8_t key[], const size_t keylen,
996 const uint8_t input1[], const size_t input1len,
997 const uint8_t input2[], const size_t input2len)
998 {
999 struct blake2s state;
1000
1001 blake2s_init(&state, outsize, key, keylen);
1002
1003 blake2s_update(&state, input1, input1len);
1004 if (input2 != NULL)
1005 blake2s_update(&state, input2, input2len);
1006 blake2s_final(&state, out);
1007 }
1008
1009 static void
1010 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
1011 const uint8_t input1[], const size_t input1len,
1012 const uint8_t input2[], const size_t input2len)
1013 {
1014 struct blake2s state;
1015 /* [W] 5.4: LABEL-MAC1 */
1016 const char *label = "mac1----";
1017 uint8_t key[WG_HASH_LEN];
1018
1019 blake2s_init(&state, sizeof(key), NULL, 0);
1020 blake2s_update(&state, label, strlen(label));
1021 blake2s_update(&state, input1, input1len);
1022 blake2s_final(&state, key);
1023
1024 blake2s_init(&state, outsize, key, sizeof(key));
1025 if (input2 != NULL)
1026 blake2s_update(&state, input2, input2len);
1027 blake2s_final(&state, out);
1028 }
1029
1030 static void
1031 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
1032 const uint8_t input1[], const size_t input1len)
1033 {
1034 struct blake2s state;
1035 /* [W] 5.4: LABEL-COOKIE */
1036 const char *label = "cookie--";
1037
1038 blake2s_init(&state, outsize, NULL, 0);
1039 blake2s_update(&state, label, strlen(label));
1040 blake2s_update(&state, input1, input1len);
1041 blake2s_final(&state, out);
1042 }
1043
1044 static void
1045 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
1046 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
1047 {
1048
1049 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1050
1051 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
1052 crypto_scalarmult_base(pubkey, privkey);
1053 }
1054
1055 static void
1056 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
1057 const uint8_t privkey[WG_STATIC_KEY_LEN],
1058 const uint8_t pubkey[WG_STATIC_KEY_LEN])
1059 {
1060
1061 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1062
1063 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
1064 KASSERT(ret == 0);
1065 }
1066
1067 static void
1068 wg_algo_hmac(uint8_t out[], const size_t outlen,
1069 const uint8_t key[], const size_t keylen,
1070 const uint8_t in[], const size_t inlen)
1071 {
1072 #define IPAD 0x36
1073 #define OPAD 0x5c
1074 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
1075 uint8_t ipad[HMAC_BLOCK_LEN];
1076 uint8_t opad[HMAC_BLOCK_LEN];
1077 size_t i;
1078 struct blake2s state;
1079
1080 KASSERT(outlen == WG_HASH_LEN);
1081 KASSERT(keylen <= HMAC_BLOCK_LEN);
1082
1083 memcpy(hmackey, key, keylen);
1084
1085 for (i = 0; i < sizeof(hmackey); i++) {
1086 ipad[i] = hmackey[i] ^ IPAD;
1087 opad[i] = hmackey[i] ^ OPAD;
1088 }
1089
1090 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1091 blake2s_update(&state, ipad, sizeof(ipad));
1092 blake2s_update(&state, in, inlen);
1093 blake2s_final(&state, out);
1094
1095 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1096 blake2s_update(&state, opad, sizeof(opad));
1097 blake2s_update(&state, out, WG_HASH_LEN);
1098 blake2s_final(&state, out);
1099 #undef IPAD
1100 #undef OPAD
1101 }
1102
1103 static void
1104 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
1105 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
1106 const uint8_t input[], const size_t inputlen)
1107 {
1108 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
1109 uint8_t one[1];
1110
1111 /*
1112 * [N] 4.3: "an input_key_material byte sequence with length
1113 * either zero bytes, 32 bytes, or DHLEN bytes."
1114 */
1115 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
1116
1117 WG_DUMP_HASH("ckey", ckey);
1118 if (input != NULL)
1119 WG_DUMP_HASH("input", input);
1120 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
1121 input, inputlen);
1122 WG_DUMP_HASH("tmp1", tmp1);
1123 one[0] = 1;
1124 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1125 one, sizeof(one));
1126 WG_DUMP_HASH("out1", out1);
1127 if (out2 == NULL)
1128 return;
1129 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
1130 tmp2[WG_KDF_OUTPUT_LEN] = 2;
1131 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1132 tmp2, sizeof(tmp2));
1133 WG_DUMP_HASH("out2", out2);
1134 if (out3 == NULL)
1135 return;
1136 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
1137 tmp2[WG_KDF_OUTPUT_LEN] = 3;
1138 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1139 tmp2, sizeof(tmp2));
1140 WG_DUMP_HASH("out3", out3);
1141 }
1142
1143 static void __noinline
1144 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
1145 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1146 const uint8_t local_key[WG_STATIC_KEY_LEN],
1147 const uint8_t remote_key[WG_STATIC_KEY_LEN])
1148 {
1149 uint8_t dhout[WG_DH_OUTPUT_LEN];
1150
1151 wg_algo_dh(dhout, local_key, remote_key);
1152 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1153
1154 WG_DUMP_HASH("dhout", dhout);
1155 WG_DUMP_HASH("ckey", ckey);
1156 if (cipher_key != NULL)
1157 WG_DUMP_HASH("cipher_key", cipher_key);
1158 }
1159
1160 static void
1161 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1162 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1163 const uint8_t auth[], size_t authlen)
1164 {
1165 uint8_t nonce[(32 + 64) / 8] = {0};
1166 long long unsigned int outsize;
1167 int error __diagused;
1168
1169 le64enc(&nonce[4], counter);
1170
1171 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1172 plainsize, auth, authlen, NULL, nonce, key);
1173 KASSERT(error == 0);
1174 KASSERT(outsize == expected_outsize);
1175 }
1176
1177 static int
1178 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1179 const uint64_t counter, const uint8_t encrypted[],
1180 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1181 {
1182 uint8_t nonce[(32 + 64) / 8] = {0};
1183 long long unsigned int outsize;
1184 int error;
1185
1186 le64enc(&nonce[4], counter);
1187
1188 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1189 encrypted, encryptedsize, auth, authlen, nonce, key);
1190 if (error == 0)
1191 KASSERT(outsize == expected_outsize);
1192 return error;
1193 }
1194
1195 static void
1196 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1197 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1198 const uint8_t auth[], size_t authlen,
1199 const uint8_t nonce[WG_SALT_LEN])
1200 {
1201 long long unsigned int outsize;
1202 int error __diagused;
1203
1204 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1205 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1206 plain, plainsize, auth, authlen, NULL, nonce, key);
1207 KASSERT(error == 0);
1208 KASSERT(outsize == expected_outsize);
1209 }
1210
1211 static int
1212 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1213 const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
1214 const uint8_t auth[], size_t authlen,
1215 const uint8_t nonce[WG_SALT_LEN])
1216 {
1217 long long unsigned int outsize;
1218 int error;
1219
1220 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1221 encrypted, encryptedsize, auth, authlen, nonce, key);
1222 if (error == 0)
1223 KASSERT(outsize == expected_outsize);
1224 return error;
1225 }
1226
1227 static void
1228 wg_algo_tai64n(wg_timestamp_t timestamp)
1229 {
1230 struct timespec ts;
1231
1232 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1233 getnanotime(&ts);
1234 /* TAI64 label in external TAI64 format */
1235 be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
1236 /* second beginning from 1970 TAI */
1237 be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
1238 /* nanosecond in big-endian format */
1239 be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
1240 }
1241
1242 /*
1243 * wg_get_stable_session(wgp, psref)
1244 *
1245 * Get a passive reference to the current stable session, or
1246 * return NULL if there is no current stable session.
1247 *
1248 * The pointer is always there but the session is not necessarily
1249 * ESTABLISHED; if it is not ESTABLISHED, return NULL. However,
1250 * the session may transition from ESTABLISHED to DESTROYING while
1251 * holding the passive reference.
1252 */
1253 static struct wg_session *
1254 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1255 {
1256 int s;
1257 struct wg_session *wgs;
1258
1259 s = pserialize_read_enter();
1260 wgs = atomic_load_consume(&wgp->wgp_session_stable);
1261 if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
1262 wgs = NULL;
1263 else
1264 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1265 pserialize_read_exit(s);
1266
1267 return wgs;
1268 }
1269
1270 static void
1271 wg_put_session(struct wg_session *wgs, struct psref *psref)
1272 {
1273
1274 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1275 }
1276
1277 static void
1278 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1279 {
1280 struct wg_peer *wgp = wgs->wgs_peer;
1281 struct wg_session *wgs0 __diagused;
1282 void *garbage;
1283
1284 KASSERT(mutex_owned(wgp->wgp_lock));
1285 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1286
1287 /* Remove the session from the table. */
1288 wgs0 = thmap_del(wg->wg_sessions_byindex,
1289 &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1290 KASSERT(wgs0 == wgs);
1291 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1292
1293 /* Wait for passive references to drain. */
1294 pserialize_perform(wgp->wgp_psz);
1295 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1296
1297 /*
1298 * Free memory, zero state, and transition to UNKNOWN. We have
1299 * exclusive access to the session now, so there is no need for
1300 * an atomic store.
1301 */
1302 thmap_gc(wg->wg_sessions_byindex, garbage);
1303 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_UNKNOWN\n",
1304 wgs->wgs_local_index, wgs->wgs_remote_index);
1305 wgs->wgs_local_index = 0;
1306 wgs->wgs_remote_index = 0;
1307 wg_clear_states(wgs);
1308 wgs->wgs_state = WGS_STATE_UNKNOWN;
1309 }
1310
1311 /*
1312 * wg_get_session_index(wg, wgs)
1313 *
1314 * Choose a session index for wgs->wgs_local_index, and store it
1315 * in wg's table of sessions by index.
1316 *
1317 * wgs must be the unstable session of its peer, and must be
1318 * transitioning out of the UNKNOWN state.
1319 */
1320 static void
1321 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1322 {
1323 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1324 struct wg_session *wgs0;
1325 uint32_t index;
1326
1327 KASSERT(mutex_owned(wgp->wgp_lock));
1328 KASSERT(wgs == wgp->wgp_session_unstable);
1329 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1330 wgs->wgs_state);
1331
1332 do {
1333 /* Pick a uniform random index. */
1334 index = cprng_strong32();
1335
1336 /* Try to take it. */
1337 wgs->wgs_local_index = index;
1338 wgs0 = thmap_put(wg->wg_sessions_byindex,
1339 &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1340
1341 /* If someone else beat us, start over. */
1342 } while (__predict_false(wgs0 != wgs));
1343 }
1344
1345 /*
1346 * wg_put_session_index(wg, wgs)
1347 *
1348 * Remove wgs from the table of sessions by index, wait for any
1349 * passive references to drain, and transition the session to the
1350 * UNKNOWN state.
1351 *
1352 * wgs must be the unstable session of its peer, and must not be
1353 * UNKNOWN or ESTABLISHED.
1354 */
1355 static void
1356 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1357 {
1358 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1359
1360 KASSERT(mutex_owned(wgp->wgp_lock));
1361 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1362 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1363
1364 wg_destroy_session(wg, wgs);
1365 psref_target_init(&wgs->wgs_psref, wg_psref_class);
1366 }
1367
1368 /*
1369 * Handshake patterns
1370 *
1371 * [W] 5: "These messages use the "IK" pattern from Noise"
1372 * [N] 7.5. Interactive handshake patterns (fundamental)
1373 * "The first character refers to the initiators static key:"
1374 * "I = Static key for initiator Immediately transmitted to responder,
1375 * despite reduced or absent identity hiding"
1376 * "The second character refers to the responders static key:"
1377 * "K = Static key for responder Known to initiator"
1378 * "IK:
1379 * <- s
1380 * ...
1381 * -> e, es, s, ss
1382 * <- e, ee, se"
1383 * [N] 9.4. Pattern modifiers
1384 * "IKpsk2:
1385 * <- s
1386 * ...
1387 * -> e, es, s, ss
1388 * <- e, ee, se, psk"
1389 */
1390 static void
1391 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1392 struct wg_session *wgs, struct wg_msg_init *wgmi)
1393 {
1394 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1395 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1396 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1397 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1398 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1399
1400 KASSERT(mutex_owned(wgp->wgp_lock));
1401 KASSERT(wgs == wgp->wgp_session_unstable);
1402 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
1403 wgs->wgs_state);
1404
1405 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1406 wgmi->wgmi_sender = wgs->wgs_local_index;
1407
1408 /* [W] 5.4.2: First Message: Initiator to Responder */
1409
1410 /* Ci := HASH(CONSTRUCTION) */
1411 /* Hi := HASH(Ci || IDENTIFIER) */
1412 wg_init_key_and_hash(ckey, hash);
1413 /* Hi := HASH(Hi || Sr^pub) */
1414 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1415
1416 WG_DUMP_HASH("hash", hash);
1417
1418 /* [N] 2.2: "e" */
1419 /* Ei^priv, Ei^pub := DH-GENERATE() */
1420 wg_algo_generate_keypair(pubkey, privkey);
1421 /* Ci := KDF1(Ci, Ei^pub) */
1422 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1423 /* msg.ephemeral := Ei^pub */
1424 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1425 /* Hi := HASH(Hi || msg.ephemeral) */
1426 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1427
1428 WG_DUMP_HASH("ckey", ckey);
1429 WG_DUMP_HASH("hash", hash);
1430
1431 /* [N] 2.2: "es" */
1432 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1433 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1434
1435 /* [N] 2.2: "s" */
1436 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1437 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1438 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1439 hash, sizeof(hash));
1440 /* Hi := HASH(Hi || msg.static) */
1441 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1442
1443 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1444
1445 /* [N] 2.2: "ss" */
1446 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1447 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1448
1449 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1450 wg_timestamp_t timestamp;
1451 wg_algo_tai64n(timestamp);
1452 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1453 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1454 /* Hi := HASH(Hi || msg.timestamp) */
1455 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1456
1457 /* [W] 5.4.4 Cookie MACs */
1458 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1459 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1460 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1461 /* Need mac1 to decrypt a cookie from a cookie message */
1462 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1463 sizeof(wgp->wgp_last_sent_mac1));
1464 wgp->wgp_last_sent_mac1_valid = true;
1465
1466 if (wgp->wgp_latest_cookie_time == 0 ||
1467 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1468 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1469 else {
1470 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1471 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1472 (const uint8_t *)wgmi,
1473 offsetof(struct wg_msg_init, wgmi_mac2),
1474 NULL, 0);
1475 }
1476
1477 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1478 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1479 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1480 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1481 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1482 }
1483
1484 static void __noinline
1485 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1486 const struct sockaddr *src)
1487 {
1488 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1489 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1490 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1491 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1492 struct wg_peer *wgp;
1493 struct wg_session *wgs;
1494 int error, ret;
1495 struct psref psref_peer;
1496 uint8_t mac1[WG_MAC_LEN];
1497
1498 WG_TRACE("init msg received");
1499
1500 wg_algo_mac_mac1(mac1, sizeof(mac1),
1501 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1502 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1503
1504 /*
1505 * [W] 5.3: Denial of Service Mitigation & Cookies
1506 * "the responder, ..., must always reject messages with an invalid
1507 * msg.mac1"
1508 */
1509 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1510 WG_DLOG("mac1 is invalid\n");
1511 return;
1512 }
1513
1514 /*
1515 * [W] 5.4.2: First Message: Initiator to Responder
1516 * "When the responder receives this message, it does the same
1517 * operations so that its final state variables are identical,
1518 * replacing the operands of the DH function to produce equivalent
1519 * values."
1520 * Note that the following comments of operations are just copies of
1521 * the initiator's ones.
1522 */
1523
1524 /* Ci := HASH(CONSTRUCTION) */
1525 /* Hi := HASH(Ci || IDENTIFIER) */
1526 wg_init_key_and_hash(ckey, hash);
1527 /* Hi := HASH(Hi || Sr^pub) */
1528 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1529
1530 /* [N] 2.2: "e" */
1531 /* Ci := KDF1(Ci, Ei^pub) */
1532 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1533 sizeof(wgmi->wgmi_ephemeral));
1534 /* Hi := HASH(Hi || msg.ephemeral) */
1535 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1536
1537 WG_DUMP_HASH("ckey", ckey);
1538
1539 /* [N] 2.2: "es" */
1540 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1541 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1542
1543 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1544
1545 /* [N] 2.2: "s" */
1546 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1547 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1548 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1549 if (error != 0) {
1550 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1551 "%s: wg_algo_aead_dec for secret key failed\n",
1552 if_name(&wg->wg_if));
1553 return;
1554 }
1555 /* Hi := HASH(Hi || msg.static) */
1556 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1557
1558 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1559 if (wgp == NULL) {
1560 WG_DLOG("peer not found\n");
1561 return;
1562 }
1563
1564 /*
1565 * Lock the peer to serialize access to cookie state.
1566 *
1567 * XXX Can we safely avoid holding the lock across DH? Take it
1568 * just to verify mac2 and then unlock/DH/lock?
1569 */
1570 mutex_enter(wgp->wgp_lock);
1571
1572 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1573 WG_TRACE("under load");
1574 /*
1575 * [W] 5.3: Denial of Service Mitigation & Cookies
1576 * "the responder, ..., and when under load may reject messages
1577 * with an invalid msg.mac2. If the responder receives a
1578 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1579 * and is under load, it may respond with a cookie reply
1580 * message"
1581 */
1582 uint8_t zero[WG_MAC_LEN] = {0};
1583 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1584 WG_TRACE("sending a cookie message: no cookie included");
1585 wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1586 wgmi->wgmi_mac1, src);
1587 goto out;
1588 }
1589 if (!wgp->wgp_last_sent_cookie_valid) {
1590 WG_TRACE("sending a cookie message: no cookie sent ever");
1591 wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1592 wgmi->wgmi_mac1, src);
1593 goto out;
1594 }
1595 uint8_t mac2[WG_MAC_LEN];
1596 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1597 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1598 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1599 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1600 WG_DLOG("mac2 is invalid\n");
1601 goto out;
1602 }
1603 WG_TRACE("under load, but continue to sending");
1604 }
1605
1606 /* [N] 2.2: "ss" */
1607 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1608 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1609
1610 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1611 wg_timestamp_t timestamp;
1612 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1613 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1614 hash, sizeof(hash));
1615 if (error != 0) {
1616 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1617 "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
1618 if_name(&wg->wg_if), wgp->wgp_name);
1619 goto out;
1620 }
1621 /* Hi := HASH(Hi || msg.timestamp) */
1622 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1623
1624 /*
1625 * [W] 5.1 "The responder keeps track of the greatest timestamp
1626 * received per peer and discards packets containing
1627 * timestamps less than or equal to it."
1628 */
1629 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1630 sizeof(timestamp));
1631 if (ret <= 0) {
1632 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1633 "%s: peer %s: invalid init msg: timestamp is old\n",
1634 if_name(&wg->wg_if), wgp->wgp_name);
1635 goto out;
1636 }
1637 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1638
1639 /*
1640 * Message is good -- we're committing to handle it now, unless
1641 * we were already initiating a session.
1642 */
1643 wgs = wgp->wgp_session_unstable;
1644 switch (wgs->wgs_state) {
1645 case WGS_STATE_UNKNOWN: /* new session initiated by peer */
1646 break;
1647 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, drop */
1648 /* XXX Who wins if both sides send INIT? */
1649 WG_TRACE("Session already initializing, ignoring the message");
1650 goto out;
1651 case WGS_STATE_INIT_PASSIVE: /* peer is retrying, start over */
1652 WG_TRACE("Session already initializing, destroying old states");
1653 /*
1654 * XXX Avoid this -- just resend our response -- if the
1655 * INIT message is identical to the previous one.
1656 */
1657 wg_put_session_index(wg, wgs);
1658 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1659 wgs->wgs_state);
1660 break;
1661 case WGS_STATE_ESTABLISHED: /* can't happen */
1662 panic("unstable session can't be established");
1663 case WGS_STATE_DESTROYING: /* rekey initiated by peer */
1664 WG_TRACE("Session destroying, but force to clear");
1665 wg_put_session_index(wg, wgs);
1666 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1667 wgs->wgs_state);
1668 break;
1669 default:
1670 panic("invalid session state: %d", wgs->wgs_state);
1671 }
1672
1673 /*
1674 * Assign a fresh session index.
1675 */
1676 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1677 wgs->wgs_state);
1678 wg_get_session_index(wg, wgs);
1679
1680 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1681 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1682 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1683 sizeof(wgmi->wgmi_ephemeral));
1684
1685 wg_update_endpoint_if_necessary(wgp, src);
1686
1687 /*
1688 * Count the time of the INIT message as the time of
1689 * establishment -- this is used to decide when to erase keys,
1690 * and we want to start counting as soon as we have generated
1691 * keys.
1692 *
1693 * No need for atomic store because the session can't be used
1694 * in the rx or tx paths yet -- not until we transition to
1695 * INTI_PASSIVE.
1696 */
1697 wgs->wgs_time_established = time_uptime32;
1698 wg_schedule_session_dtor_timer(wgp);
1699
1700 /*
1701 * Respond to the initiator with our ephemeral public key.
1702 */
1703 wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1704
1705 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
1706 " calculate keys as responder\n",
1707 wgs->wgs_local_index, wgs->wgs_remote_index);
1708 wg_calculate_keys(wgs, false);
1709 wg_clear_states(wgs);
1710
1711 /*
1712 * Session is ready to receive data now that we have received
1713 * the peer initiator's ephemeral key pair, generated our
1714 * responder's ephemeral key pair, and derived a session key.
1715 *
1716 * Transition from UNKNOWN to INIT_PASSIVE to publish it to the
1717 * data rx path, wg_handle_msg_data, where the
1718 * atomic_load_acquire matching this atomic_store_release
1719 * happens.
1720 *
1721 * (Session is not, however, ready to send data until the peer
1722 * has acknowledged our response by sending its first data
1723 * packet. So don't swap the sessions yet.)
1724 */
1725 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_INIT_PASSIVE\n",
1726 wgs->wgs_local_index, wgs->wgs_remote_index);
1727 atomic_store_release(&wgs->wgs_state, WGS_STATE_INIT_PASSIVE);
1728 WG_TRACE("WGS_STATE_INIT_PASSIVE");
1729
1730 out:
1731 mutex_exit(wgp->wgp_lock);
1732 wg_put_peer(wgp, &psref_peer);
1733 }
1734
1735 static struct socket *
1736 wg_get_so_by_af(struct wg_softc *wg, const int af)
1737 {
1738
1739 switch (af) {
1740 #ifdef INET
1741 case AF_INET:
1742 return wg->wg_so4;
1743 #endif
1744 #ifdef INET6
1745 case AF_INET6:
1746 return wg->wg_so6;
1747 #endif
1748 default:
1749 panic("wg: no such af: %d", af);
1750 }
1751 }
1752
1753 static struct socket *
1754 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1755 {
1756
1757 return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
1758 }
1759
1760 static struct wg_sockaddr *
1761 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1762 {
1763 struct wg_sockaddr *wgsa;
1764 int s;
1765
1766 s = pserialize_read_enter();
1767 wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1768 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1769 pserialize_read_exit(s);
1770
1771 return wgsa;
1772 }
1773
1774 static void
1775 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1776 {
1777
1778 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1779 }
1780
1781 static int
1782 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1783 {
1784 int error;
1785 struct socket *so;
1786 struct psref psref;
1787 struct wg_sockaddr *wgsa;
1788
1789 wgsa = wg_get_endpoint_sa(wgp, &psref);
1790 so = wg_get_so_by_peer(wgp, wgsa);
1791 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1792 wg_put_sa(wgp, wgsa, &psref);
1793
1794 return error;
1795 }
1796
1797 static void
1798 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1799 {
1800 int error;
1801 struct mbuf *m;
1802 struct wg_msg_init *wgmi;
1803 struct wg_session *wgs;
1804
1805 KASSERT(mutex_owned(wgp->wgp_lock));
1806
1807 wgs = wgp->wgp_session_unstable;
1808 /* XXX pull dispatch out into wg_task_send_init_message */
1809 switch (wgs->wgs_state) {
1810 case WGS_STATE_UNKNOWN: /* new session initiated by us */
1811 break;
1812 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, stop */
1813 WG_TRACE("Session already initializing, skip starting new one");
1814 return;
1815 case WGS_STATE_INIT_PASSIVE: /* peer was trying -- XXX what now? */
1816 WG_TRACE("Session already initializing, waiting for peer");
1817 return;
1818 case WGS_STATE_ESTABLISHED: /* can't happen */
1819 panic("unstable session can't be established");
1820 case WGS_STATE_DESTROYING: /* rekey initiated by us too early */
1821 WG_TRACE("Session destroying");
1822 wg_put_session_index(wg, wgs);
1823 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1824 wgs->wgs_state);
1825 break;
1826 }
1827
1828 /*
1829 * Assign a fresh session index.
1830 */
1831 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1832 wgs->wgs_state);
1833 wg_get_session_index(wg, wgs);
1834
1835 /*
1836 * We have initiated a session. Transition to INIT_ACTIVE.
1837 * This doesn't publish it for use in the data rx path,
1838 * wg_handle_msg_data, or in the data tx path, wg_output -- we
1839 * have to wait for the peer to respond with their ephemeral
1840 * public key before we can derive a session key for tx/rx.
1841 * Hence only atomic_store_relaxed.
1842 */
1843 WG_DLOG("session[L=%"PRIx32" R=(unknown)] -> WGS_STATE_INIT_ACTIVE\n",
1844 wgs->wgs_local_index);
1845 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_INIT_ACTIVE);
1846
1847 m = m_gethdr(M_WAIT, MT_DATA);
1848 if (sizeof(*wgmi) > MHLEN) {
1849 m_clget(m, M_WAIT);
1850 CTASSERT(sizeof(*wgmi) <= MCLBYTES);
1851 }
1852 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1853 wgmi = mtod(m, struct wg_msg_init *);
1854 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1855
1856 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
1857 if (error) {
1858 /*
1859 * Sending out an initiation packet failed; give up on
1860 * this session and toss packet waiting for it if any.
1861 *
1862 * XXX Why don't we just let the periodic handshake
1863 * retry logic work in this case?
1864 */
1865 WG_DLOG("send_hs_msg failed, error=%d\n", error);
1866 wg_put_session_index(wg, wgs);
1867 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
1868 m_freem(m);
1869 return;
1870 }
1871
1872 WG_TRACE("init msg sent");
1873 if (wgp->wgp_handshake_start_time == 0)
1874 wgp->wgp_handshake_start_time = time_uptime;
1875 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1876 MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
1877 }
1878
1879 static void
1880 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1881 struct wg_session *wgs, struct wg_msg_resp *wgmr,
1882 const struct wg_msg_init *wgmi)
1883 {
1884 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1885 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1886 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1887 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1888 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1889
1890 KASSERT(mutex_owned(wgp->wgp_lock));
1891 KASSERT(wgs == wgp->wgp_session_unstable);
1892 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1893 wgs->wgs_state);
1894
1895 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1896 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1897
1898 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
1899 wgmr->wgmr_sender = wgs->wgs_local_index;
1900 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1901
1902 /* [W] 5.4.3 Second Message: Responder to Initiator */
1903
1904 /* [N] 2.2: "e" */
1905 /* Er^priv, Er^pub := DH-GENERATE() */
1906 wg_algo_generate_keypair(pubkey, privkey);
1907 /* Cr := KDF1(Cr, Er^pub) */
1908 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1909 /* msg.ephemeral := Er^pub */
1910 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1911 /* Hr := HASH(Hr || msg.ephemeral) */
1912 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1913
1914 WG_DUMP_HASH("ckey", ckey);
1915 WG_DUMP_HASH("hash", hash);
1916
1917 /* [N] 2.2: "ee" */
1918 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1919 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1920
1921 /* [N] 2.2: "se" */
1922 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1923 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1924
1925 /* [N] 9.2: "psk" */
1926 {
1927 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1928 /* Cr, r, k := KDF3(Cr, Q) */
1929 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1930 sizeof(wgp->wgp_psk));
1931 /* Hr := HASH(Hr || r) */
1932 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1933 }
1934
1935 /* msg.empty := AEAD(k, 0, e, Hr) */
1936 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1937 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1938 /* Hr := HASH(Hr || msg.empty) */
1939 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1940
1941 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1942
1943 /* [W] 5.4.4: Cookie MACs */
1944 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1945 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1946 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1947 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1948 /* Need mac1 to decrypt a cookie from a cookie message */
1949 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1950 sizeof(wgp->wgp_last_sent_mac1));
1951 wgp->wgp_last_sent_mac1_valid = true;
1952
1953 if (wgp->wgp_latest_cookie_time == 0 ||
1954 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1955 /* msg.mac2 := 0^16 */
1956 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1957 else {
1958 /* msg.mac2 := MAC(Lm, msg_b) */
1959 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1960 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1961 (const uint8_t *)wgmr,
1962 offsetof(struct wg_msg_resp, wgmr_mac2),
1963 NULL, 0);
1964 }
1965
1966 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1967 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1968 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1969 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1970 wgs->wgs_remote_index = wgmi->wgmi_sender;
1971 WG_DLOG("sender=%x\n", wgs->wgs_local_index);
1972 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1973 }
1974
1975 static void
1976 wg_swap_sessions(struct wg_peer *wgp)
1977 {
1978 struct wg_session *wgs, *wgs_prev;
1979
1980 KASSERT(mutex_owned(wgp->wgp_lock));
1981
1982 wgs = wgp->wgp_session_unstable;
1983 KASSERTMSG(wgs->wgs_state == WGS_STATE_ESTABLISHED, "state=%d",
1984 wgs->wgs_state);
1985
1986 wgs_prev = wgp->wgp_session_stable;
1987 KASSERTMSG((wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
1988 wgs_prev->wgs_state == WGS_STATE_UNKNOWN),
1989 "state=%d", wgs_prev->wgs_state);
1990 atomic_store_release(&wgp->wgp_session_stable, wgs);
1991 wgp->wgp_session_unstable = wgs_prev;
1992 }
1993
1994 static void __noinline
1995 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1996 const struct sockaddr *src)
1997 {
1998 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1999 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
2000 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
2001 struct wg_peer *wgp;
2002 struct wg_session *wgs;
2003 struct psref psref;
2004 int error;
2005 uint8_t mac1[WG_MAC_LEN];
2006 struct wg_session *wgs_prev;
2007 struct mbuf *m;
2008
2009 wg_algo_mac_mac1(mac1, sizeof(mac1),
2010 wg->wg_pubkey, sizeof(wg->wg_pubkey),
2011 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
2012
2013 /*
2014 * [W] 5.3: Denial of Service Mitigation & Cookies
2015 * "the responder, ..., must always reject messages with an invalid
2016 * msg.mac1"
2017 */
2018 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
2019 WG_DLOG("mac1 is invalid\n");
2020 return;
2021 }
2022
2023 WG_TRACE("resp msg received");
2024 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
2025 if (wgs == NULL) {
2026 WG_TRACE("No session found");
2027 return;
2028 }
2029
2030 wgp = wgs->wgs_peer;
2031
2032 mutex_enter(wgp->wgp_lock);
2033
2034 /* If we weren't waiting for a handshake response, drop it. */
2035 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
2036 WG_TRACE("peer sent spurious handshake response, ignoring");
2037 goto out;
2038 }
2039
2040 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
2041 WG_TRACE("under load");
2042 /*
2043 * [W] 5.3: Denial of Service Mitigation & Cookies
2044 * "the responder, ..., and when under load may reject messages
2045 * with an invalid msg.mac2. If the responder receives a
2046 * message with a valid msg.mac1 yet with an invalid msg.mac2,
2047 * and is under load, it may respond with a cookie reply
2048 * message"
2049 */
2050 uint8_t zero[WG_MAC_LEN] = {0};
2051 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
2052 WG_TRACE("sending a cookie message: no cookie included");
2053 wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2054 wgmr->wgmr_mac1, src);
2055 goto out;
2056 }
2057 if (!wgp->wgp_last_sent_cookie_valid) {
2058 WG_TRACE("sending a cookie message: no cookie sent ever");
2059 wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2060 wgmr->wgmr_mac1, src);
2061 goto out;
2062 }
2063 uint8_t mac2[WG_MAC_LEN];
2064 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
2065 WG_COOKIE_LEN, (const uint8_t *)wgmr,
2066 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
2067 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
2068 WG_DLOG("mac2 is invalid\n");
2069 goto out;
2070 }
2071 WG_TRACE("under load, but continue to sending");
2072 }
2073
2074 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
2075 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
2076
2077 /*
2078 * [W] 5.4.3 Second Message: Responder to Initiator
2079 * "When the initiator receives this message, it does the same
2080 * operations so that its final state variables are identical,
2081 * replacing the operands of the DH function to produce equivalent
2082 * values."
2083 * Note that the following comments of operations are just copies of
2084 * the initiator's ones.
2085 */
2086
2087 /* [N] 2.2: "e" */
2088 /* Cr := KDF1(Cr, Er^pub) */
2089 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
2090 sizeof(wgmr->wgmr_ephemeral));
2091 /* Hr := HASH(Hr || msg.ephemeral) */
2092 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
2093
2094 WG_DUMP_HASH("ckey", ckey);
2095 WG_DUMP_HASH("hash", hash);
2096
2097 /* [N] 2.2: "ee" */
2098 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
2099 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
2100 wgmr->wgmr_ephemeral);
2101
2102 /* [N] 2.2: "se" */
2103 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
2104 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
2105
2106 /* [N] 9.2: "psk" */
2107 {
2108 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
2109 /* Cr, r, k := KDF3(Cr, Q) */
2110 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
2111 sizeof(wgp->wgp_psk));
2112 /* Hr := HASH(Hr || r) */
2113 wg_algo_hash(hash, kdfout, sizeof(kdfout));
2114 }
2115
2116 {
2117 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
2118 /* msg.empty := AEAD(k, 0, e, Hr) */
2119 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
2120 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
2121 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
2122 if (error != 0) {
2123 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2124 "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
2125 if_name(&wg->wg_if), wgp->wgp_name);
2126 goto out;
2127 }
2128 /* Hr := HASH(Hr || msg.empty) */
2129 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
2130 }
2131
2132 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
2133 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
2134 wgs->wgs_remote_index = wgmr->wgmr_sender;
2135 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
2136
2137 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
2138 wgs->wgs_state);
2139 wgs->wgs_time_established = time_uptime32;
2140 wg_schedule_session_dtor_timer(wgp);
2141 wgs->wgs_time_last_data_sent = 0;
2142 wgs->wgs_is_initiator = true;
2143 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
2144 " calculate keys as initiator\n",
2145 wgs->wgs_local_index, wgs->wgs_remote_index);
2146 wg_calculate_keys(wgs, true);
2147 wg_clear_states(wgs);
2148
2149 /*
2150 * Session is ready to receive data now that we have received
2151 * the responder's response.
2152 *
2153 * Transition from INIT_ACTIVE to ESTABLISHED to publish it to
2154 * the data rx path, wg_handle_msg_data.
2155 */
2156 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32" -> WGS_STATE_ESTABLISHED\n",
2157 wgs->wgs_local_index, wgs->wgs_remote_index);
2158 atomic_store_release(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
2159 WG_TRACE("WGS_STATE_ESTABLISHED");
2160
2161 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
2162
2163 /*
2164 * Session is ready to send data now that we have received the
2165 * responder's response.
2166 *
2167 * Swap the sessions to publish the new one as the stable
2168 * session for the data tx path, wg_output.
2169 */
2170 wg_swap_sessions(wgp);
2171 KASSERT(wgs == wgp->wgp_session_stable);
2172 wgs_prev = wgp->wgp_session_unstable;
2173 getnanotime(&wgp->wgp_last_handshake_time);
2174 wgp->wgp_handshake_start_time = 0;
2175 wgp->wgp_last_sent_mac1_valid = false;
2176 wgp->wgp_last_sent_cookie_valid = false;
2177
2178 wg_update_endpoint_if_necessary(wgp, src);
2179
2180 /*
2181 * If we had a data packet queued up, send it; otherwise send a
2182 * keepalive message -- either way we have to send something
2183 * immediately or else the responder will never answer.
2184 */
2185 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
2186 kpreempt_disable();
2187 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
2188 M_SETCTX(m, wgp);
2189 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
2190 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
2191 if_name(&wg->wg_if));
2192 m_freem(m);
2193 }
2194 kpreempt_enable();
2195 } else {
2196 wg_send_keepalive_msg(wgp, wgs);
2197 }
2198
2199 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2200 /*
2201 * Transition ESTABLISHED->DESTROYING. The session
2202 * will remain usable for the data rx path to process
2203 * packets still in flight to us, but we won't use it
2204 * for data tx.
2205 */
2206 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
2207 " -> WGS_STATE_DESTROYING\n",
2208 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
2209 atomic_store_relaxed(&wgs_prev->wgs_state,
2210 WGS_STATE_DESTROYING);
2211 } else {
2212 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2213 "state=%d", wgs_prev->wgs_state);
2214 }
2215
2216 out:
2217 mutex_exit(wgp->wgp_lock);
2218 wg_put_session(wgs, &psref);
2219 }
2220
2221 static void
2222 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
2223 struct wg_session *wgs, const struct wg_msg_init *wgmi)
2224 {
2225 int error;
2226 struct mbuf *m;
2227 struct wg_msg_resp *wgmr;
2228
2229 KASSERT(mutex_owned(wgp->wgp_lock));
2230 KASSERT(wgs == wgp->wgp_session_unstable);
2231 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
2232 wgs->wgs_state);
2233
2234 m = m_gethdr(M_WAIT, MT_DATA);
2235 if (sizeof(*wgmr) > MHLEN) {
2236 m_clget(m, M_WAIT);
2237 CTASSERT(sizeof(*wgmr) <= MCLBYTES);
2238 }
2239 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
2240 wgmr = mtod(m, struct wg_msg_resp *);
2241 wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
2242
2243 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
2244 if (error) {
2245 WG_DLOG("send_hs_msg failed, error=%d\n", error);
2246 return;
2247 }
2248
2249 WG_TRACE("resp msg sent");
2250 }
2251
2252 static struct wg_peer *
2253 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
2254 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
2255 {
2256 struct wg_peer *wgp;
2257
2258 int s = pserialize_read_enter();
2259 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
2260 if (wgp != NULL)
2261 wg_get_peer(wgp, psref);
2262 pserialize_read_exit(s);
2263
2264 return wgp;
2265 }
2266
2267 static void
2268 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
2269 struct wg_msg_cookie *wgmc, const uint32_t sender,
2270 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
2271 {
2272 uint8_t cookie[WG_COOKIE_LEN];
2273 uint8_t key[WG_HASH_LEN];
2274 uint8_t addr[sizeof(struct in6_addr)];
2275 size_t addrlen;
2276 uint16_t uh_sport; /* be */
2277
2278 KASSERT(mutex_owned(wgp->wgp_lock));
2279
2280 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
2281 wgmc->wgmc_receiver = sender;
2282 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
2283
2284 /*
2285 * [W] 5.4.7: Under Load: Cookie Reply Message
2286 * "The secret variable, Rm, changes every two minutes to a
2287 * random value"
2288 */
2289 if ((time_uptime - wgp->wgp_last_cookiesecret_time) >
2290 WG_COOKIESECRET_TIME) {
2291 cprng_strong(kern_cprng, wgp->wgp_cookiesecret,
2292 sizeof(wgp->wgp_cookiesecret), 0);
2293 wgp->wgp_last_cookiesecret_time = time_uptime;
2294 }
2295
2296 switch (src->sa_family) {
2297 #ifdef INET
2298 case AF_INET: {
2299 const struct sockaddr_in *sin = satocsin(src);
2300 addrlen = sizeof(sin->sin_addr);
2301 memcpy(addr, &sin->sin_addr, addrlen);
2302 uh_sport = sin->sin_port;
2303 break;
2304 }
2305 #endif
2306 #ifdef INET6
2307 case AF_INET6: {
2308 const struct sockaddr_in6 *sin6 = satocsin6(src);
2309 addrlen = sizeof(sin6->sin6_addr);
2310 memcpy(addr, &sin6->sin6_addr, addrlen);
2311 uh_sport = sin6->sin6_port;
2312 break;
2313 }
2314 #endif
2315 default:
2316 panic("invalid af=%d", src->sa_family);
2317 }
2318
2319 wg_algo_mac(cookie, sizeof(cookie),
2320 wgp->wgp_cookiesecret, sizeof(wgp->wgp_cookiesecret),
2321 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2322 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2323 sizeof(wg->wg_pubkey));
2324 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2325 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2326
2327 /* Need to store to calculate mac2 */
2328 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2329 wgp->wgp_last_sent_cookie_valid = true;
2330 }
2331
2332 static void
2333 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2334 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
2335 const struct sockaddr *src)
2336 {
2337 int error;
2338 struct mbuf *m;
2339 struct wg_msg_cookie *wgmc;
2340
2341 KASSERT(mutex_owned(wgp->wgp_lock));
2342
2343 m = m_gethdr(M_WAIT, MT_DATA);
2344 if (sizeof(*wgmc) > MHLEN) {
2345 m_clget(m, M_WAIT);
2346 CTASSERT(sizeof(*wgmc) <= MCLBYTES);
2347 }
2348 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2349 wgmc = mtod(m, struct wg_msg_cookie *);
2350 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2351
2352 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
2353 if (error) {
2354 WG_DLOG("send_hs_msg failed, error=%d\n", error);
2355 return;
2356 }
2357
2358 WG_TRACE("cookie msg sent");
2359 }
2360
2361 static bool
2362 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2363 {
2364 #ifdef WG_DEBUG_PARAMS
2365 if (wg_force_underload)
2366 return true;
2367 #endif
2368
2369 /*
2370 * XXX we don't have a means of a load estimation. The purpose of
2371 * the mechanism is a DoS mitigation, so we consider frequent handshake
2372 * messages as (a kind of) load; if a message of the same type comes
2373 * to a peer within 1 second, we consider we are under load.
2374 */
2375 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2376 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2377 return (time_uptime - last) == 0;
2378 }
2379
2380 static void
2381 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2382 {
2383
2384 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2385
2386 /*
2387 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2388 */
2389 if (initiator) {
2390 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2391 wgs->wgs_chaining_key, NULL, 0);
2392 } else {
2393 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2394 wgs->wgs_chaining_key, NULL, 0);
2395 }
2396 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2397 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2398 }
2399
2400 static uint64_t
2401 wg_session_get_send_counter(struct wg_session *wgs)
2402 {
2403 #ifdef __HAVE_ATOMIC64_LOADSTORE
2404 return atomic_load_relaxed(&wgs->wgs_send_counter);
2405 #else
2406 uint64_t send_counter;
2407
2408 mutex_enter(&wgs->wgs_send_counter_lock);
2409 send_counter = wgs->wgs_send_counter;
2410 mutex_exit(&wgs->wgs_send_counter_lock);
2411
2412 return send_counter;
2413 #endif
2414 }
2415
2416 static uint64_t
2417 wg_session_inc_send_counter(struct wg_session *wgs)
2418 {
2419 #ifdef __HAVE_ATOMIC64_LOADSTORE
2420 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2421 #else
2422 uint64_t send_counter;
2423
2424 mutex_enter(&wgs->wgs_send_counter_lock);
2425 send_counter = wgs->wgs_send_counter++;
2426 mutex_exit(&wgs->wgs_send_counter_lock);
2427
2428 return send_counter;
2429 #endif
2430 }
2431
2432 static void
2433 wg_clear_states(struct wg_session *wgs)
2434 {
2435
2436 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2437
2438 wgs->wgs_send_counter = 0;
2439 sliwin_reset(&wgs->wgs_recvwin->window);
2440
2441 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2442 wgs_clear(handshake_hash);
2443 wgs_clear(chaining_key);
2444 wgs_clear(ephemeral_key_pub);
2445 wgs_clear(ephemeral_key_priv);
2446 wgs_clear(ephemeral_key_peer);
2447 #undef wgs_clear
2448 }
2449
2450 static struct wg_session *
2451 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2452 struct psref *psref)
2453 {
2454 struct wg_session *wgs;
2455
2456 int s = pserialize_read_enter();
2457 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2458 if (wgs != NULL) {
2459 uint32_t oindex __diagused =
2460 atomic_load_relaxed(&wgs->wgs_local_index);
2461 KASSERTMSG(index == oindex,
2462 "index=%"PRIx32" wgs->wgs_local_index=%"PRIx32,
2463 index, oindex);
2464 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2465 }
2466 pserialize_read_exit(s);
2467
2468 return wgs;
2469 }
2470
2471 static void
2472 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2473 {
2474 struct mbuf *m;
2475
2476 /*
2477 * [W] 6.5 Passive Keepalive
2478 * "A keepalive message is simply a transport data message with
2479 * a zero-length encapsulated encrypted inner-packet."
2480 */
2481 WG_TRACE("");
2482 m = m_gethdr(M_WAIT, MT_DATA);
2483 wg_send_data_msg(wgp, wgs, m);
2484 }
2485
2486 static bool
2487 wg_need_to_send_init_message(struct wg_session *wgs)
2488 {
2489 /*
2490 * [W] 6.2 Transport Message Limits
2491 * "if a peer is the initiator of a current secure session,
2492 * WireGuard will send a handshake initiation message to begin
2493 * a new secure session ... if after receiving a transport data
2494 * message, the current secure session is (REJECT-AFTER-TIME
2495 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2496 * not yet acted upon this event."
2497 */
2498 return wgs->wgs_is_initiator &&
2499 atomic_load_relaxed(&wgs->wgs_time_last_data_sent) == 0 &&
2500 ((time_uptime32 -
2501 atomic_load_relaxed(&wgs->wgs_time_established)) >=
2502 (wg_reject_after_time - wg_keepalive_timeout -
2503 wg_rekey_timeout));
2504 }
2505
2506 static void
2507 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
2508 {
2509
2510 mutex_enter(wgp->wgp_intr_lock);
2511 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2512 if (wgp->wgp_tasks == 0)
2513 /*
2514 * XXX If the current CPU is already loaded -- e.g., if
2515 * there's already a bunch of handshakes queued up --
2516 * consider tossing this over to another CPU to
2517 * distribute the load.
2518 */
2519 workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
2520 wgp->wgp_tasks |= task;
2521 mutex_exit(wgp->wgp_intr_lock);
2522 }
2523
2524 static void
2525 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2526 {
2527 struct wg_sockaddr *wgsa_prev;
2528
2529 WG_TRACE("Changing endpoint");
2530
2531 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2532 wgsa_prev = wgp->wgp_endpoint;
2533 atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2534 wgp->wgp_endpoint0 = wgsa_prev;
2535 atomic_store_release(&wgp->wgp_endpoint_available, true);
2536
2537 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2538 }
2539
2540 static bool
2541 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2542 {
2543 uint16_t packet_len;
2544 const struct ip *ip;
2545
2546 if (__predict_false(decrypted_len < sizeof(*ip))) {
2547 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2548 sizeof(*ip));
2549 return false;
2550 }
2551
2552 ip = (const struct ip *)packet;
2553 if (ip->ip_v == 4)
2554 *af = AF_INET;
2555 else if (ip->ip_v == 6)
2556 *af = AF_INET6;
2557 else {
2558 WG_DLOG("ip_v=%d\n", ip->ip_v);
2559 return false;
2560 }
2561
2562 WG_DLOG("af=%d\n", *af);
2563
2564 switch (*af) {
2565 #ifdef INET
2566 case AF_INET:
2567 packet_len = ntohs(ip->ip_len);
2568 break;
2569 #endif
2570 #ifdef INET6
2571 case AF_INET6: {
2572 const struct ip6_hdr *ip6;
2573
2574 if (__predict_false(decrypted_len < sizeof(*ip6))) {
2575 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2576 sizeof(*ip6));
2577 return false;
2578 }
2579
2580 ip6 = (const struct ip6_hdr *)packet;
2581 packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
2582 break;
2583 }
2584 #endif
2585 default:
2586 return false;
2587 }
2588
2589 if (packet_len > decrypted_len) {
2590 WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
2591 decrypted_len);
2592 return false;
2593 }
2594
2595 return true;
2596 }
2597
2598 static bool
2599 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2600 int af, char *packet)
2601 {
2602 struct sockaddr_storage ss;
2603 struct sockaddr *sa;
2604 struct psref psref;
2605 struct wg_peer *wgp;
2606 bool ok;
2607
2608 /*
2609 * II CRYPTOKEY ROUTING
2610 * "it will only accept it if its source IP resolves in the
2611 * table to the public key used in the secure session for
2612 * decrypting it."
2613 */
2614
2615 switch (af) {
2616 #ifdef INET
2617 case AF_INET: {
2618 const struct ip *ip = (const struct ip *)packet;
2619 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2620 sockaddr_in_init(sin, &ip->ip_src, 0);
2621 sa = sintosa(sin);
2622 break;
2623 }
2624 #endif
2625 #ifdef INET6
2626 case AF_INET6: {
2627 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2628 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2629 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2630 sa = sin6tosa(sin6);
2631 break;
2632 }
2633 #endif
2634 default:
2635 __USE(ss);
2636 return false;
2637 }
2638
2639 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2640 ok = (wgp == wgp_expected);
2641 if (wgp != NULL)
2642 wg_put_peer(wgp, &psref);
2643
2644 return ok;
2645 }
2646
2647 static void
2648 wg_session_dtor_timer(void *arg)
2649 {
2650 struct wg_peer *wgp = arg;
2651
2652 WG_TRACE("enter");
2653
2654 wg_schedule_session_dtor_timer(wgp);
2655 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2656 }
2657
2658 static void
2659 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2660 {
2661
2662 /*
2663 * If the periodic session destructor is already pending to
2664 * handle the previous session, that's fine -- leave it in
2665 * place; it will be scheduled again.
2666 */
2667 if (callout_pending(&wgp->wgp_session_dtor_timer)) {
2668 WG_DLOG("session dtor already pending\n");
2669 return;
2670 }
2671
2672 WG_DLOG("scheduling session dtor in %u secs\n", wg_reject_after_time);
2673 callout_schedule(&wgp->wgp_session_dtor_timer,
2674 wg_reject_after_time*hz);
2675 }
2676
2677 static bool
2678 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2679 {
2680 if (sa1->sa_family != sa2->sa_family)
2681 return false;
2682
2683 switch (sa1->sa_family) {
2684 #ifdef INET
2685 case AF_INET:
2686 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2687 #endif
2688 #ifdef INET6
2689 case AF_INET6:
2690 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2691 #endif
2692 default:
2693 return false;
2694 }
2695 }
2696
2697 static void
2698 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2699 const struct sockaddr *src)
2700 {
2701 struct wg_sockaddr *wgsa;
2702 struct psref psref;
2703
2704 wgsa = wg_get_endpoint_sa(wgp, &psref);
2705
2706 #ifdef WG_DEBUG_LOG
2707 char oldaddr[128], newaddr[128];
2708 sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2709 sockaddr_format(src, newaddr, sizeof(newaddr));
2710 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2711 #endif
2712
2713 /*
2714 * III: "Since the packet has authenticated correctly, the source IP of
2715 * the outer UDP/IP packet is used to update the endpoint for peer..."
2716 */
2717 if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2718 !sockaddr_port_match(src, wgsatosa(wgsa)))) {
2719 /* XXX We can't change the endpoint twice in a short period */
2720 if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2721 wg_change_endpoint(wgp, src);
2722 }
2723 }
2724
2725 wg_put_sa(wgp, wgsa, &psref);
2726 }
2727
2728 static void __noinline
2729 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2730 const struct sockaddr *src)
2731 {
2732 struct wg_msg_data *wgmd;
2733 char *encrypted_buf = NULL, *decrypted_buf;
2734 size_t encrypted_len, decrypted_len;
2735 struct wg_session *wgs;
2736 struct wg_peer *wgp;
2737 int state;
2738 uint32_t age;
2739 size_t mlen;
2740 struct psref psref;
2741 int error, af;
2742 bool success, free_encrypted_buf = false, ok;
2743 struct mbuf *n;
2744
2745 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2746 wgmd = mtod(m, struct wg_msg_data *);
2747
2748 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2749 WG_TRACE("data");
2750
2751 /* Find the putative session, or drop. */
2752 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2753 if (wgs == NULL) {
2754 WG_TRACE("No session found");
2755 m_freem(m);
2756 return;
2757 }
2758
2759 /*
2760 * We are only ready to handle data when in INIT_PASSIVE,
2761 * ESTABLISHED, or DESTROYING. All transitions out of that
2762 * state dissociate the session index and drain psrefs.
2763 *
2764 * atomic_load_acquire matches atomic_store_release in either
2765 * wg_handle_msg_init or wg_handle_msg_resp. (The transition
2766 * INIT_PASSIVE to ESTABLISHED in wg_task_establish_session
2767 * doesn't make a difference for this rx path.)
2768 */
2769 state = atomic_load_acquire(&wgs->wgs_state);
2770 switch (state) {
2771 case WGS_STATE_UNKNOWN:
2772 case WGS_STATE_INIT_ACTIVE:
2773 WG_TRACE("not yet ready for data");
2774 goto out;
2775 case WGS_STATE_INIT_PASSIVE:
2776 case WGS_STATE_ESTABLISHED:
2777 case WGS_STATE_DESTROYING:
2778 break;
2779 }
2780
2781 /*
2782 * Reject if the session is too old.
2783 */
2784 age = time_uptime32 - atomic_load_relaxed(&wgs->wgs_time_established);
2785 if (__predict_false(age >= wg_reject_after_time)) {
2786 WG_DLOG("session %"PRIx32" too old, %"PRIu32" sec\n",
2787 wgmd->wgmd_receiver, age);
2788 goto out;
2789 }
2790
2791 /*
2792 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2793 * to update the endpoint if authentication succeeds.
2794 */
2795 wgp = wgs->wgs_peer;
2796
2797 /*
2798 * Reject outrageously wrong sequence numbers before doing any
2799 * crypto work or taking any locks.
2800 */
2801 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2802 le64toh(wgmd->wgmd_counter));
2803 if (error) {
2804 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2805 "%s: peer %s: out-of-window packet: %"PRIu64"\n",
2806 if_name(&wg->wg_if), wgp->wgp_name,
2807 le64toh(wgmd->wgmd_counter));
2808 goto out;
2809 }
2810
2811 /* Ensure the payload and authenticator are contiguous. */
2812 mlen = m_length(m);
2813 encrypted_len = mlen - sizeof(*wgmd);
2814 if (encrypted_len < WG_AUTHTAG_LEN) {
2815 WG_DLOG("Short encrypted_len: %zu\n", encrypted_len);
2816 goto out;
2817 }
2818 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2819 if (success) {
2820 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2821 } else {
2822 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2823 if (encrypted_buf == NULL) {
2824 WG_DLOG("failed to allocate encrypted_buf\n");
2825 goto out;
2826 }
2827 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2828 free_encrypted_buf = true;
2829 }
2830 /* m_ensure_contig may change m regardless of its result */
2831 KASSERT(m->m_len >= sizeof(*wgmd));
2832 wgmd = mtod(m, struct wg_msg_data *);
2833
2834 /*
2835 * Get a buffer for the plaintext. Add WG_AUTHTAG_LEN to avoid
2836 * a zero-length buffer (XXX). Drop if plaintext is longer
2837 * than MCLBYTES (XXX).
2838 */
2839 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2840 if (decrypted_len > MCLBYTES) {
2841 /* FIXME handle larger data than MCLBYTES */
2842 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2843 goto out;
2844 }
2845 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2846 if (n == NULL) {
2847 WG_DLOG("wg_get_mbuf failed\n");
2848 goto out;
2849 }
2850 decrypted_buf = mtod(n, char *);
2851
2852 /* Decrypt and verify the packet. */
2853 WG_DLOG("mlen=%zu, encrypted_len=%zu\n", mlen, encrypted_len);
2854 error = wg_algo_aead_dec(decrypted_buf,
2855 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2856 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
2857 encrypted_len, NULL, 0);
2858 if (error != 0) {
2859 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2860 "%s: peer %s: failed to wg_algo_aead_dec\n",
2861 if_name(&wg->wg_if), wgp->wgp_name);
2862 m_freem(n);
2863 goto out;
2864 }
2865 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2866
2867 /* Packet is genuine. Reject it if a replay or just too old. */
2868 mutex_enter(&wgs->wgs_recvwin->lock);
2869 error = sliwin_update(&wgs->wgs_recvwin->window,
2870 le64toh(wgmd->wgmd_counter));
2871 mutex_exit(&wgs->wgs_recvwin->lock);
2872 if (error) {
2873 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2874 "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
2875 if_name(&wg->wg_if), wgp->wgp_name,
2876 le64toh(wgmd->wgmd_counter));
2877 m_freem(n);
2878 goto out;
2879 }
2880
2881 /* We're done with m now; free it and chuck the pointers. */
2882 m_freem(m);
2883 m = NULL;
2884 wgmd = NULL;
2885
2886 /*
2887 * The packet is genuine. Update the peer's endpoint if the
2888 * source address changed.
2889 *
2890 * XXX How to prevent DoS by replaying genuine packets from the
2891 * wrong source address?
2892 */
2893 wg_update_endpoint_if_necessary(wgp, src);
2894
2895 /*
2896 * Validate the encapsulated packet header and get the address
2897 * family, or drop.
2898 */
2899 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2900 if (!ok) {
2901 m_freem(n);
2902 goto update_state;
2903 }
2904
2905 /* Submit it into our network stack if routable. */
2906 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2907 if (ok) {
2908 wg->wg_ops->input(&wg->wg_if, n, af);
2909 } else {
2910 char addrstr[INET6_ADDRSTRLEN];
2911 memset(addrstr, 0, sizeof(addrstr));
2912 switch (af) {
2913 #ifdef INET
2914 case AF_INET: {
2915 const struct ip *ip = (const struct ip *)decrypted_buf;
2916 IN_PRINT(addrstr, &ip->ip_src);
2917 break;
2918 }
2919 #endif
2920 #ifdef INET6
2921 case AF_INET6: {
2922 const struct ip6_hdr *ip6 =
2923 (const struct ip6_hdr *)decrypted_buf;
2924 IN6_PRINT(addrstr, &ip6->ip6_src);
2925 break;
2926 }
2927 #endif
2928 default:
2929 panic("invalid af=%d", af);
2930 }
2931 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2932 "%s: peer %s: invalid source address (%s)\n",
2933 if_name(&wg->wg_if), wgp->wgp_name, addrstr);
2934 m_freem(n);
2935 /*
2936 * The inner address is invalid however the session is valid
2937 * so continue the session processing below.
2938 */
2939 }
2940 n = NULL;
2941
2942 update_state:
2943 /* Update the state machine if necessary. */
2944 if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
2945 /*
2946 * We were waiting for the initiator to send their
2947 * first data transport message, and that has happened.
2948 * Schedule a task to establish this session.
2949 */
2950 wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
2951 } else {
2952 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2953 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2954 }
2955 /*
2956 * [W] 6.5 Passive Keepalive
2957 * "If a peer has received a validly-authenticated transport
2958 * data message (section 5.4.6), but does not have any packets
2959 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2960 * a keepalive message."
2961 */
2962 const uint32_t now = time_uptime32;
2963 const uint32_t time_last_data_sent =
2964 atomic_load_relaxed(&wgs->wgs_time_last_data_sent);
2965 WG_DLOG("time_uptime32=%"PRIu32
2966 " wgs_time_last_data_sent=%"PRIu32"\n",
2967 now, time_last_data_sent);
2968 if ((now - time_last_data_sent) >= wg_keepalive_timeout) {
2969 WG_TRACE("Schedule sending keepalive message");
2970 /*
2971 * We can't send a keepalive message here to avoid
2972 * a deadlock; we already hold the solock of a socket
2973 * that is used to send the message.
2974 */
2975 wg_schedule_peer_task(wgp,
2976 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2977 }
2978 }
2979 out:
2980 wg_put_session(wgs, &psref);
2981 m_freem(m);
2982 if (free_encrypted_buf)
2983 kmem_intr_free(encrypted_buf, encrypted_len);
2984 }
2985
2986 static void __noinline
2987 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2988 {
2989 struct wg_session *wgs;
2990 struct wg_peer *wgp;
2991 struct psref psref;
2992 int error;
2993 uint8_t key[WG_HASH_LEN];
2994 uint8_t cookie[WG_COOKIE_LEN];
2995
2996 WG_TRACE("cookie msg received");
2997
2998 /* Find the putative session. */
2999 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
3000 if (wgs == NULL) {
3001 WG_TRACE("No session found");
3002 return;
3003 }
3004
3005 /* Lock the peer so we can update the cookie state. */
3006 wgp = wgs->wgs_peer;
3007 mutex_enter(wgp->wgp_lock);
3008
3009 if (!wgp->wgp_last_sent_mac1_valid) {
3010 WG_TRACE("No valid mac1 sent (or expired)");
3011 goto out;
3012 }
3013
3014 /*
3015 * wgp_last_sent_mac1_valid is only set to true when we are
3016 * transitioning to INIT_ACTIVE or INIT_PASSIVE, and always
3017 * cleared on transition out of them.
3018 */
3019 KASSERTMSG((wgs->wgs_state == WGS_STATE_INIT_ACTIVE ||
3020 wgs->wgs_state == WGS_STATE_INIT_PASSIVE),
3021 "state=%d", wgs->wgs_state);
3022
3023 /* Decrypt the cookie and store it for later handshake retry. */
3024 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
3025 sizeof(wgp->wgp_pubkey));
3026 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
3027 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
3028 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
3029 wgmc->wgmc_salt);
3030 if (error != 0) {
3031 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3032 "%s: peer %s: wg_algo_aead_dec for cookie failed: "
3033 "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
3034 goto out;
3035 }
3036 /*
3037 * [W] 6.6: Interaction with Cookie Reply System
3038 * "it should simply store the decrypted cookie value from the cookie
3039 * reply message, and wait for the expiration of the REKEY-TIMEOUT
3040 * timer for retrying a handshake initiation message."
3041 */
3042 wgp->wgp_latest_cookie_time = time_uptime;
3043 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
3044 out:
3045 mutex_exit(wgp->wgp_lock);
3046 wg_put_session(wgs, &psref);
3047 }
3048
3049 static struct mbuf *
3050 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
3051 {
3052 struct wg_msg wgm;
3053 size_t mbuflen;
3054 size_t msglen;
3055
3056 /*
3057 * Get the mbuf chain length. It is already guaranteed, by
3058 * wg_overudp_cb, to be large enough for a struct wg_msg.
3059 */
3060 mbuflen = m_length(m);
3061 KASSERT(mbuflen >= sizeof(struct wg_msg));
3062
3063 /*
3064 * Copy the message header (32-bit message type) out -- we'll
3065 * worry about contiguity and alignment later.
3066 */
3067 m_copydata(m, 0, sizeof(wgm), &wgm);
3068 switch (le32toh(wgm.wgm_type)) {
3069 case WG_MSG_TYPE_INIT:
3070 msglen = sizeof(struct wg_msg_init);
3071 break;
3072 case WG_MSG_TYPE_RESP:
3073 msglen = sizeof(struct wg_msg_resp);
3074 break;
3075 case WG_MSG_TYPE_COOKIE:
3076 msglen = sizeof(struct wg_msg_cookie);
3077 break;
3078 case WG_MSG_TYPE_DATA:
3079 msglen = sizeof(struct wg_msg_data);
3080 break;
3081 default:
3082 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
3083 "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
3084 le32toh(wgm.wgm_type));
3085 goto error;
3086 }
3087
3088 /* Verify the mbuf chain is long enough for this type of message. */
3089 if (__predict_false(mbuflen < msglen)) {
3090 WG_DLOG("Invalid msg size: mbuflen=%zu type=%u\n", mbuflen,
3091 le32toh(wgm.wgm_type));
3092 goto error;
3093 }
3094
3095 /* Make the message header contiguous if necessary. */
3096 if (__predict_false(m->m_len < msglen)) {
3097 m = m_pullup(m, msglen);
3098 if (m == NULL)
3099 return NULL;
3100 }
3101
3102 return m;
3103
3104 error:
3105 m_freem(m);
3106 return NULL;
3107 }
3108
3109 static void
3110 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
3111 const struct sockaddr *src)
3112 {
3113 struct wg_msg *wgm;
3114
3115 KASSERT(curlwp->l_pflag & LP_BOUND);
3116
3117 m = wg_validate_msg_header(wg, m);
3118 if (__predict_false(m == NULL))
3119 return;
3120
3121 KASSERT(m->m_len >= sizeof(struct wg_msg));
3122 wgm = mtod(m, struct wg_msg *);
3123 switch (le32toh(wgm->wgm_type)) {
3124 case WG_MSG_TYPE_INIT:
3125 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
3126 break;
3127 case WG_MSG_TYPE_RESP:
3128 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
3129 break;
3130 case WG_MSG_TYPE_COOKIE:
3131 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
3132 break;
3133 case WG_MSG_TYPE_DATA:
3134 wg_handle_msg_data(wg, m, src);
3135 /* wg_handle_msg_data frees m for us */
3136 return;
3137 default:
3138 panic("invalid message type: %d", le32toh(wgm->wgm_type));
3139 }
3140
3141 m_freem(m);
3142 }
3143
3144 static void
3145 wg_receive_packets(struct wg_softc *wg, const int af)
3146 {
3147
3148 for (;;) {
3149 int error, flags;
3150 struct socket *so;
3151 struct mbuf *m = NULL;
3152 struct uio dummy_uio;
3153 struct mbuf *paddr = NULL;
3154 struct sockaddr *src;
3155
3156 so = wg_get_so_by_af(wg, af);
3157 flags = MSG_DONTWAIT;
3158 dummy_uio.uio_resid = 1000000000;
3159
3160 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
3161 &flags);
3162 if (error || m == NULL) {
3163 //if (error == EWOULDBLOCK)
3164 return;
3165 }
3166
3167 KASSERT(paddr != NULL);
3168 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
3169 src = mtod(paddr, struct sockaddr *);
3170
3171 wg_handle_packet(wg, m, src);
3172 }
3173 }
3174
3175 static void
3176 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
3177 {
3178
3179 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
3180 }
3181
3182 static void
3183 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
3184 {
3185
3186 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
3187 }
3188
3189 static void
3190 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
3191 {
3192 struct wg_session *wgs;
3193
3194 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
3195
3196 KASSERT(mutex_owned(wgp->wgp_lock));
3197
3198 if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
3199 WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
3200 if_name(&wg->wg_if));
3201 /* XXX should do something? */
3202 return;
3203 }
3204
3205 /*
3206 * If we already have an established session, there's no need
3207 * to initiate a new one -- unless the rekey-after-time or
3208 * rekey-after-messages limits have passed.
3209 */
3210 wgs = wgp->wgp_session_stable;
3211 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3212 !atomic_swap_uint(&wgp->wgp_force_rekey, 0))
3213 return;
3214
3215 /*
3216 * Ensure we're initiating a new session. If the unstable
3217 * session is already INIT_ACTIVE or INIT_PASSIVE, this does
3218 * nothing.
3219 */
3220 wg_send_handshake_msg_init(wg, wgp);
3221 }
3222
3223 static void
3224 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
3225 {
3226 struct wg_session *wgs;
3227
3228 WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
3229
3230 KASSERT(mutex_owned(wgp->wgp_lock));
3231 KASSERT(wgp->wgp_handshake_start_time != 0);
3232
3233 wgs = wgp->wgp_session_unstable;
3234 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
3235 return;
3236
3237 /*
3238 * XXX no real need to assign a new index here, but we do need
3239 * to transition to UNKNOWN temporarily
3240 */
3241 wg_put_session_index(wg, wgs);
3242
3243 /* [W] 6.4 Handshake Initiation Retransmission */
3244 if ((time_uptime - wgp->wgp_handshake_start_time) >
3245 wg_rekey_attempt_time) {
3246 /* Give up handshaking */
3247 wgp->wgp_handshake_start_time = 0;
3248 WG_TRACE("give up");
3249
3250 /*
3251 * If a new data packet comes, handshaking will be retried
3252 * and a new session would be established at that time,
3253 * however we don't want to send pending packets then.
3254 */
3255 wg_purge_pending_packets(wgp);
3256 return;
3257 }
3258
3259 wg_task_send_init_message(wg, wgp);
3260 }
3261
3262 static void
3263 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
3264 {
3265 struct wg_session *wgs, *wgs_prev;
3266 struct mbuf *m;
3267
3268 KASSERT(mutex_owned(wgp->wgp_lock));
3269
3270 wgs = wgp->wgp_session_unstable;
3271 if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
3272 /* XXX Can this happen? */
3273 return;
3274
3275 wgs->wgs_time_last_data_sent = 0;
3276 wgs->wgs_is_initiator = false;
3277
3278 /*
3279 * Session was already ready to receive data. Transition from
3280 * INIT_PASSIVE to ESTABLISHED just so we can swap the
3281 * sessions.
3282 *
3283 * atomic_store_relaxed because this doesn't affect the data rx
3284 * path, wg_handle_msg_data -- changing from INIT_PASSIVE to
3285 * ESTABLISHED makes no difference to the data rx path, and the
3286 * transition to INIT_PASSIVE with store-release already
3287 * published the state needed by the data rx path.
3288 */
3289 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_ESTABLISHED\n",
3290 wgs->wgs_local_index, wgs->wgs_remote_index);
3291 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
3292 WG_TRACE("WGS_STATE_ESTABLISHED");
3293
3294 /*
3295 * Session is ready to send data too now that we have received
3296 * the peer initiator's first data packet.
3297 *
3298 * Swap the sessions to publish the new one as the stable
3299 * session for the data tx path, wg_output.
3300 */
3301 wg_swap_sessions(wgp);
3302 KASSERT(wgs == wgp->wgp_session_stable);
3303 wgs_prev = wgp->wgp_session_unstable;
3304 getnanotime(&wgp->wgp_last_handshake_time);
3305 wgp->wgp_handshake_start_time = 0;
3306 wgp->wgp_last_sent_mac1_valid = false;
3307 wgp->wgp_last_sent_cookie_valid = false;
3308
3309 /* If we had a data packet queued up, send it. */
3310 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
3311 kpreempt_disable();
3312 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
3313 M_SETCTX(m, wgp);
3314 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
3315 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
3316 if_name(&wg->wg_if));
3317 m_freem(m);
3318 }
3319 kpreempt_enable();
3320 }
3321
3322 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
3323 /*
3324 * Transition ESTABLISHED->DESTROYING. The session
3325 * will remain usable for the data rx path to process
3326 * packets still in flight to us, but we won't use it
3327 * for data tx.
3328 */
3329 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
3330 " -> WGS_STATE_DESTROYING\n",
3331 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
3332 atomic_store_relaxed(&wgs_prev->wgs_state,
3333 WGS_STATE_DESTROYING);
3334 } else {
3335 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
3336 "state=%d", wgs_prev->wgs_state);
3337 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
3338 " -> WGS_STATE_UNKNOWN\n",
3339 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
3340 wgs_prev->wgs_local_index = 0; /* paranoia */
3341 wgs_prev->wgs_remote_index = 0; /* paranoia */
3342 wg_clear_states(wgs_prev); /* paranoia */
3343 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
3344 }
3345 }
3346
3347 static void
3348 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
3349 {
3350
3351 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
3352
3353 KASSERT(mutex_owned(wgp->wgp_lock));
3354
3355 if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
3356 pserialize_perform(wgp->wgp_psz);
3357 mutex_exit(wgp->wgp_lock);
3358 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
3359 wg_psref_class);
3360 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
3361 wg_psref_class);
3362 mutex_enter(wgp->wgp_lock);
3363 atomic_store_release(&wgp->wgp_endpoint_changing, 0);
3364 }
3365 }
3366
3367 static void
3368 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
3369 {
3370 struct wg_session *wgs;
3371
3372 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
3373
3374 KASSERT(mutex_owned(wgp->wgp_lock));
3375
3376 wgs = wgp->wgp_session_stable;
3377 if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
3378 return;
3379
3380 wg_send_keepalive_msg(wgp, wgs);
3381 }
3382
3383 static void
3384 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
3385 {
3386 struct wg_session *wgs;
3387 uint32_t age;
3388
3389 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
3390
3391 KASSERT(mutex_owned(wgp->wgp_lock));
3392
3393 /*
3394 * If theres's any previous unstable session, i.e., one that
3395 * was ESTABLISHED and is now DESTROYING, older than
3396 * reject-after-time, destroy it. Upcoming sessions are still
3397 * in INIT_ACTIVE or INIT_PASSIVE -- we don't touch those here.
3398 *
3399 * No atomic for access to wgs_time_established because it is
3400 * only updated under wgp_lock.
3401 */
3402 wgs = wgp->wgp_session_unstable;
3403 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
3404 if (wgs->wgs_state == WGS_STATE_DESTROYING &&
3405 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3406 wg_reject_after_time)) {
3407 WG_DLOG("destroying past session %"PRIu32" sec old\n", age);
3408 wg_put_session_index(wg, wgs);
3409 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3410 wgs->wgs_state);
3411 }
3412
3413 /*
3414 * If theres's any ESTABLISHED stable session older than
3415 * reject-after-time, destroy it. (The stable session can also
3416 * be in UNKNOWN state -- nothing to do in that case)
3417 */
3418 wgs = wgp->wgp_session_stable;
3419 KASSERT(wgs->wgs_state != WGS_STATE_INIT_ACTIVE);
3420 KASSERT(wgs->wgs_state != WGS_STATE_INIT_PASSIVE);
3421 KASSERT(wgs->wgs_state != WGS_STATE_DESTROYING);
3422 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3423 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3424 wg_reject_after_time)) {
3425 WG_DLOG("destroying current session %"PRIu32" sec old\n", age);
3426 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_DESTROYING);
3427 wg_put_session_index(wg, wgs);
3428 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3429 wgs->wgs_state);
3430 }
3431
3432 /*
3433 * If there's no sessions left, no need to have the timer run
3434 * until the next time around -- halt it.
3435 *
3436 * It is only ever scheduled with wgp_lock held or in the
3437 * callout itself, and callout_halt prevents rescheudling
3438 * itself, so this never races with rescheduling.
3439 */
3440 if (wgp->wgp_session_unstable->wgs_state == WGS_STATE_UNKNOWN &&
3441 wgp->wgp_session_stable->wgs_state == WGS_STATE_UNKNOWN)
3442 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3443 }
3444
3445 static void
3446 wg_peer_work(struct work *wk, void *cookie)
3447 {
3448 struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
3449 struct wg_softc *wg = wgp->wgp_sc;
3450 unsigned int tasks;
3451
3452 mutex_enter(wgp->wgp_intr_lock);
3453 while ((tasks = wgp->wgp_tasks) != 0) {
3454 wgp->wgp_tasks = 0;
3455 mutex_exit(wgp->wgp_intr_lock);
3456
3457 mutex_enter(wgp->wgp_lock);
3458 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
3459 wg_task_send_init_message(wg, wgp);
3460 if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
3461 wg_task_retry_handshake(wg, wgp);
3462 if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
3463 wg_task_establish_session(wg, wgp);
3464 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
3465 wg_task_endpoint_changed(wg, wgp);
3466 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
3467 wg_task_send_keepalive_message(wg, wgp);
3468 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
3469 wg_task_destroy_prev_session(wg, wgp);
3470 mutex_exit(wgp->wgp_lock);
3471
3472 mutex_enter(wgp->wgp_intr_lock);
3473 }
3474 mutex_exit(wgp->wgp_intr_lock);
3475 }
3476
3477 static void
3478 wg_job(struct threadpool_job *job)
3479 {
3480 struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
3481 int bound, upcalls;
3482
3483 mutex_enter(wg->wg_intr_lock);
3484 while ((upcalls = wg->wg_upcalls) != 0) {
3485 wg->wg_upcalls = 0;
3486 mutex_exit(wg->wg_intr_lock);
3487 bound = curlwp_bind();
3488 if (ISSET(upcalls, WG_UPCALL_INET))
3489 wg_receive_packets(wg, AF_INET);
3490 if (ISSET(upcalls, WG_UPCALL_INET6))
3491 wg_receive_packets(wg, AF_INET6);
3492 curlwp_bindx(bound);
3493 mutex_enter(wg->wg_intr_lock);
3494 }
3495 threadpool_job_done(job);
3496 mutex_exit(wg->wg_intr_lock);
3497 }
3498
3499 static int
3500 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3501 {
3502 int error = 0;
3503 uint16_t old_port = wg->wg_listen_port;
3504
3505 if (port != 0 && old_port == port)
3506 return 0;
3507
3508 #ifdef INET
3509 struct sockaddr_in _sin, *sin = &_sin;
3510 sin->sin_len = sizeof(*sin);
3511 sin->sin_family = AF_INET;
3512 sin->sin_addr.s_addr = INADDR_ANY;
3513 sin->sin_port = htons(port);
3514
3515 error = sobind(wg->wg_so4, sintosa(sin), curlwp);
3516 if (error)
3517 return error;
3518 #endif
3519
3520 #ifdef INET6
3521 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3522 sin6->sin6_len = sizeof(*sin6);
3523 sin6->sin6_family = AF_INET6;
3524 sin6->sin6_addr = in6addr_any;
3525 sin6->sin6_port = htons(port);
3526
3527 error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
3528 if (error)
3529 return error;
3530 #endif
3531
3532 wg->wg_listen_port = port;
3533
3534 return error;
3535 }
3536
3537 static void
3538 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
3539 {
3540 struct wg_softc *wg = cookie;
3541 int reason;
3542
3543 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3544 WG_UPCALL_INET :
3545 WG_UPCALL_INET6;
3546
3547 mutex_enter(wg->wg_intr_lock);
3548 wg->wg_upcalls |= reason;
3549 threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
3550 mutex_exit(wg->wg_intr_lock);
3551 }
3552
3553 static int
3554 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3555 struct sockaddr *src, void *arg)
3556 {
3557 struct wg_softc *wg = arg;
3558 struct wg_msg wgm;
3559 struct mbuf *m = *mp;
3560
3561 WG_TRACE("enter");
3562
3563 /* Verify the mbuf chain is long enough to have a wg msg header. */
3564 KASSERT(offset <= m_length(m));
3565 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3566 /* drop on the floor */
3567 m_freem(m);
3568 return -1;
3569 }
3570
3571 /*
3572 * Copy the message header (32-bit message type) out -- we'll
3573 * worry about contiguity and alignment later.
3574 */
3575 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3576 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3577
3578 /*
3579 * Handle DATA packets promptly as they arrive, if they are in
3580 * an active session. Other packets may require expensive
3581 * public-key crypto and are not as sensitive to latency, so
3582 * defer them to the worker thread.
3583 */
3584 switch (le32toh(wgm.wgm_type)) {
3585 case WG_MSG_TYPE_DATA:
3586 /* handle immediately */
3587 m_adj(m, offset);
3588 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3589 m = m_pullup(m, sizeof(struct wg_msg_data));
3590 if (m == NULL)
3591 return -1;
3592 }
3593 wg_handle_msg_data(wg, m, src);
3594 *mp = NULL;
3595 return 1;
3596 case WG_MSG_TYPE_INIT:
3597 case WG_MSG_TYPE_RESP:
3598 case WG_MSG_TYPE_COOKIE:
3599 /* pass through to so_receive in wg_receive_packets */
3600 return 0;
3601 default:
3602 /* drop on the floor */
3603 m_freem(m);
3604 return -1;
3605 }
3606 }
3607
3608 static int
3609 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
3610 {
3611 int error;
3612 struct socket *so;
3613
3614 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3615 if (error != 0)
3616 return error;
3617
3618 solock(so);
3619 so->so_upcallarg = wg;
3620 so->so_upcall = wg_so_upcall;
3621 so->so_rcv.sb_flags |= SB_UPCALL;
3622 inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3623 sounlock(so);
3624
3625 *sop = so;
3626
3627 return 0;
3628 }
3629
3630 static bool
3631 wg_session_hit_limits(struct wg_session *wgs)
3632 {
3633 uint32_t time_established =
3634 atomic_load_relaxed(&wgs->wgs_time_established);
3635
3636 /*
3637 * [W] 6.2: Transport Message Limits
3638 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3639 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3640 * comes first, WireGuard will refuse to send or receive any more
3641 * transport data messages using the current secure session, ..."
3642 */
3643 KASSERT(time_established != 0 || time_uptime > UINT32_MAX);
3644 if ((time_uptime32 - time_established) > wg_reject_after_time) {
3645 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3646 return true;
3647 } else if (wg_session_get_send_counter(wgs) >
3648 wg_reject_after_messages) {
3649 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3650 return true;
3651 }
3652
3653 return false;
3654 }
3655
3656 static void
3657 wgintr(void *cookie)
3658 {
3659 struct wg_peer *wgp;
3660 struct wg_session *wgs;
3661 struct mbuf *m;
3662 struct psref psref;
3663
3664 while ((m = pktq_dequeue(wg_pktq)) != NULL) {
3665 wgp = M_GETCTX(m, struct wg_peer *);
3666 if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3667 WG_TRACE("no stable session");
3668 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3669 goto next0;
3670 }
3671 if (__predict_false(wg_session_hit_limits(wgs))) {
3672 WG_TRACE("stable session hit limits");
3673 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3674 goto next1;
3675 }
3676 wg_send_data_msg(wgp, wgs, m);
3677 m = NULL; /* consumed */
3678 next1: wg_put_session(wgs, &psref);
3679 next0: m_freem(m);
3680 /* XXX Yield to avoid userland starvation? */
3681 }
3682 }
3683
3684 static void
3685 wg_purge_pending_packets(struct wg_peer *wgp)
3686 {
3687 struct mbuf *m;
3688
3689 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
3690 m_freem(m);
3691 #ifdef ALTQ
3692 wg_start(&wgp->wgp_sc->wg_if);
3693 #endif
3694 pktq_barrier(wg_pktq);
3695 }
3696
3697 static void
3698 wg_handshake_timeout_timer(void *arg)
3699 {
3700 struct wg_peer *wgp = arg;
3701
3702 WG_TRACE("enter");
3703
3704 wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3705 }
3706
3707 static struct wg_peer *
3708 wg_alloc_peer(struct wg_softc *wg)
3709 {
3710 struct wg_peer *wgp;
3711
3712 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3713
3714 wgp->wgp_sc = wg;
3715 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3716 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3717 wg_handshake_timeout_timer, wgp);
3718 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3719 callout_setfunc(&wgp->wgp_session_dtor_timer,
3720 wg_session_dtor_timer, wgp);
3721 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3722 wgp->wgp_endpoint_changing = false;
3723 wgp->wgp_endpoint_available = false;
3724 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3725 wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3726 wgp->wgp_psz = pserialize_create();
3727 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3728
3729 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3730 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3731 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3732 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3733
3734 struct wg_session *wgs;
3735 wgp->wgp_session_stable =
3736 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3737 wgp->wgp_session_unstable =
3738 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3739 wgs = wgp->wgp_session_stable;
3740 wgs->wgs_peer = wgp;
3741 wgs->wgs_state = WGS_STATE_UNKNOWN;
3742 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3743 #ifndef __HAVE_ATOMIC64_LOADSTORE
3744 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3745 #endif
3746 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3747 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3748
3749 wgs = wgp->wgp_session_unstable;
3750 wgs->wgs_peer = wgp;
3751 wgs->wgs_state = WGS_STATE_UNKNOWN;
3752 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3753 #ifndef __HAVE_ATOMIC64_LOADSTORE
3754 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3755 #endif
3756 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3757 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3758
3759 return wgp;
3760 }
3761
3762 static void
3763 wg_destroy_peer(struct wg_peer *wgp)
3764 {
3765 struct wg_session *wgs;
3766 struct wg_softc *wg = wgp->wgp_sc;
3767
3768 /* Prevent new packets from this peer on any source address. */
3769 rw_enter(wg->wg_rwlock, RW_WRITER);
3770 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3771 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3772 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3773 struct radix_node *rn;
3774
3775 KASSERT(rnh != NULL);
3776 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3777 &wga->wga_sa_mask, rnh);
3778 if (rn == NULL) {
3779 char addrstr[128];
3780 sockaddr_format(&wga->wga_sa_addr, addrstr,
3781 sizeof(addrstr));
3782 WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
3783 if_name(&wg->wg_if), addrstr);
3784 }
3785 }
3786 rw_exit(wg->wg_rwlock);
3787
3788 /* Purge pending packets. */
3789 wg_purge_pending_packets(wgp);
3790
3791 /* Halt all packet processing and timeouts. */
3792 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3793 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3794
3795 /* Wait for any queued work to complete. */
3796 workqueue_wait(wg_wq, &wgp->wgp_work);
3797
3798 wgs = wgp->wgp_session_unstable;
3799 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3800 mutex_enter(wgp->wgp_lock);
3801 wg_destroy_session(wg, wgs);
3802 mutex_exit(wgp->wgp_lock);
3803 }
3804 mutex_destroy(&wgs->wgs_recvwin->lock);
3805 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3806 #ifndef __HAVE_ATOMIC64_LOADSTORE
3807 mutex_destroy(&wgs->wgs_send_counter_lock);
3808 #endif
3809 kmem_free(wgs, sizeof(*wgs));
3810
3811 wgs = wgp->wgp_session_stable;
3812 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3813 mutex_enter(wgp->wgp_lock);
3814 wg_destroy_session(wg, wgs);
3815 mutex_exit(wgp->wgp_lock);
3816 }
3817 mutex_destroy(&wgs->wgs_recvwin->lock);
3818 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3819 #ifndef __HAVE_ATOMIC64_LOADSTORE
3820 mutex_destroy(&wgs->wgs_send_counter_lock);
3821 #endif
3822 kmem_free(wgs, sizeof(*wgs));
3823
3824 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3825 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3826 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3827 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3828
3829 pserialize_destroy(wgp->wgp_psz);
3830 mutex_obj_free(wgp->wgp_intr_lock);
3831 mutex_obj_free(wgp->wgp_lock);
3832
3833 kmem_free(wgp, sizeof(*wgp));
3834 }
3835
3836 static void
3837 wg_destroy_all_peers(struct wg_softc *wg)
3838 {
3839 struct wg_peer *wgp, *wgp0 __diagused;
3840 void *garbage_byname, *garbage_bypubkey;
3841
3842 restart:
3843 garbage_byname = garbage_bypubkey = NULL;
3844 mutex_enter(wg->wg_lock);
3845 WG_PEER_WRITER_FOREACH(wgp, wg) {
3846 if (wgp->wgp_name[0]) {
3847 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3848 strlen(wgp->wgp_name));
3849 KASSERT(wgp0 == wgp);
3850 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3851 }
3852 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3853 sizeof(wgp->wgp_pubkey));
3854 KASSERT(wgp0 == wgp);
3855 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3856 WG_PEER_WRITER_REMOVE(wgp);
3857 wg->wg_npeers--;
3858 mutex_enter(wgp->wgp_lock);
3859 pserialize_perform(wgp->wgp_psz);
3860 mutex_exit(wgp->wgp_lock);
3861 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3862 break;
3863 }
3864 mutex_exit(wg->wg_lock);
3865
3866 if (wgp == NULL)
3867 return;
3868
3869 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3870
3871 wg_destroy_peer(wgp);
3872 thmap_gc(wg->wg_peers_byname, garbage_byname);
3873 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3874
3875 goto restart;
3876 }
3877
3878 static int
3879 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3880 {
3881 struct wg_peer *wgp, *wgp0 __diagused;
3882 void *garbage_byname, *garbage_bypubkey;
3883
3884 mutex_enter(wg->wg_lock);
3885 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
3886 if (wgp != NULL) {
3887 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3888 sizeof(wgp->wgp_pubkey));
3889 KASSERT(wgp0 == wgp);
3890 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3891 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3892 WG_PEER_WRITER_REMOVE(wgp);
3893 wg->wg_npeers--;
3894 if (wg->wg_npeers == 0)
3895 if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
3896 mutex_enter(wgp->wgp_lock);
3897 pserialize_perform(wgp->wgp_psz);
3898 mutex_exit(wgp->wgp_lock);
3899 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3900 }
3901 mutex_exit(wg->wg_lock);
3902
3903 if (wgp == NULL)
3904 return ENOENT;
3905
3906 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3907
3908 wg_destroy_peer(wgp);
3909 thmap_gc(wg->wg_peers_byname, garbage_byname);
3910 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3911
3912 return 0;
3913 }
3914
3915 static int
3916 wg_if_attach(struct wg_softc *wg)
3917 {
3918
3919 wg->wg_if.if_addrlen = 0;
3920 wg->wg_if.if_mtu = WG_MTU;
3921 wg->wg_if.if_flags = IFF_MULTICAST;
3922 wg->wg_if.if_extflags = IFEF_MPSAFE;
3923 wg->wg_if.if_ioctl = wg_ioctl;
3924 wg->wg_if.if_output = wg_output;
3925 wg->wg_if.if_init = wg_init;
3926 #ifdef ALTQ
3927 wg->wg_if.if_start = wg_start;
3928 #endif
3929 wg->wg_if.if_stop = wg_stop;
3930 wg->wg_if.if_type = IFT_OTHER;
3931 wg->wg_if.if_dlt = DLT_NULL;
3932 wg->wg_if.if_softc = wg;
3933 #ifdef ALTQ
3934 IFQ_SET_READY(&wg->wg_if.if_snd);
3935 #endif
3936 if_initialize(&wg->wg_if);
3937
3938 wg->wg_if.if_link_state = LINK_STATE_DOWN;
3939 if_alloc_sadl(&wg->wg_if);
3940 if_register(&wg->wg_if);
3941
3942 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3943
3944 return 0;
3945 }
3946
3947 static void
3948 wg_if_detach(struct wg_softc *wg)
3949 {
3950 struct ifnet *ifp = &wg->wg_if;
3951
3952 bpf_detach(ifp);
3953 if_detach(ifp);
3954 }
3955
3956 static int
3957 wg_clone_create(struct if_clone *ifc, int unit)
3958 {
3959 struct wg_softc *wg;
3960 int error;
3961
3962 wg_guarantee_initialized();
3963
3964 error = wg_count_inc();
3965 if (error)
3966 return error;
3967
3968 wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
3969
3970 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3971
3972 PSLIST_INIT(&wg->wg_peers);
3973 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
3974 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
3975 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
3976 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3977 wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3978 wg->wg_rwlock = rw_obj_alloc();
3979 threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
3980 "%s", if_name(&wg->wg_if));
3981 wg->wg_ops = &wg_ops_rumpkernel;
3982
3983 error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
3984 if (error)
3985 goto fail0;
3986
3987 #ifdef INET
3988 error = wg_socreate(wg, AF_INET, &wg->wg_so4);
3989 if (error)
3990 goto fail1;
3991 rn_inithead((void **)&wg->wg_rtable_ipv4,
3992 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3993 #endif
3994 #ifdef INET6
3995 error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
3996 if (error)
3997 goto fail2;
3998 rn_inithead((void **)&wg->wg_rtable_ipv6,
3999 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
4000 #endif
4001
4002 error = wg_if_attach(wg);
4003 if (error)
4004 goto fail3;
4005
4006 return 0;
4007
4008 fail4: __unused
4009 wg_destroy_all_peers(wg);
4010 wg_if_detach(wg);
4011 fail3:
4012 #ifdef INET6
4013 solock(wg->wg_so6);
4014 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4015 sounlock(wg->wg_so6);
4016 #endif
4017 #ifdef INET
4018 solock(wg->wg_so4);
4019 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4020 sounlock(wg->wg_so4);
4021 #endif
4022 mutex_enter(wg->wg_intr_lock);
4023 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4024 mutex_exit(wg->wg_intr_lock);
4025 #ifdef INET6
4026 if (wg->wg_rtable_ipv6 != NULL)
4027 free(wg->wg_rtable_ipv6, M_RTABLE);
4028 soclose(wg->wg_so6);
4029 fail2:
4030 #endif
4031 #ifdef INET
4032 if (wg->wg_rtable_ipv4 != NULL)
4033 free(wg->wg_rtable_ipv4, M_RTABLE);
4034 soclose(wg->wg_so4);
4035 fail1:
4036 #endif
4037 threadpool_put(wg->wg_threadpool, PRI_NONE);
4038 fail0: threadpool_job_destroy(&wg->wg_job);
4039 rw_obj_free(wg->wg_rwlock);
4040 mutex_obj_free(wg->wg_intr_lock);
4041 mutex_obj_free(wg->wg_lock);
4042 thmap_destroy(wg->wg_sessions_byindex);
4043 thmap_destroy(wg->wg_peers_byname);
4044 thmap_destroy(wg->wg_peers_bypubkey);
4045 PSLIST_DESTROY(&wg->wg_peers);
4046 kmem_free(wg, sizeof(*wg));
4047 wg_count_dec();
4048 return error;
4049 }
4050
4051 static int
4052 wg_clone_destroy(struct ifnet *ifp)
4053 {
4054 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
4055
4056 #ifdef WG_RUMPKERNEL
4057 if (wg_user_mode(wg)) {
4058 rumpuser_wg_destroy(wg->wg_user);
4059 wg->wg_user = NULL;
4060 }
4061 #endif
4062
4063 wg_destroy_all_peers(wg);
4064 wg_if_detach(wg);
4065 #ifdef INET6
4066 solock(wg->wg_so6);
4067 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4068 sounlock(wg->wg_so6);
4069 #endif
4070 #ifdef INET
4071 solock(wg->wg_so4);
4072 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4073 sounlock(wg->wg_so4);
4074 #endif
4075 mutex_enter(wg->wg_intr_lock);
4076 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4077 mutex_exit(wg->wg_intr_lock);
4078 #ifdef INET6
4079 if (wg->wg_rtable_ipv6 != NULL)
4080 free(wg->wg_rtable_ipv6, M_RTABLE);
4081 soclose(wg->wg_so6);
4082 #endif
4083 #ifdef INET
4084 if (wg->wg_rtable_ipv4 != NULL)
4085 free(wg->wg_rtable_ipv4, M_RTABLE);
4086 soclose(wg->wg_so4);
4087 #endif
4088 threadpool_put(wg->wg_threadpool, PRI_NONE);
4089 threadpool_job_destroy(&wg->wg_job);
4090 rw_obj_free(wg->wg_rwlock);
4091 mutex_obj_free(wg->wg_intr_lock);
4092 mutex_obj_free(wg->wg_lock);
4093 thmap_destroy(wg->wg_sessions_byindex);
4094 thmap_destroy(wg->wg_peers_byname);
4095 thmap_destroy(wg->wg_peers_bypubkey);
4096 PSLIST_DESTROY(&wg->wg_peers);
4097 kmem_free(wg, sizeof(*wg));
4098 wg_count_dec();
4099
4100 return 0;
4101 }
4102
4103 static struct wg_peer *
4104 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
4105 struct psref *psref)
4106 {
4107 struct radix_node_head *rnh;
4108 struct radix_node *rn;
4109 struct wg_peer *wgp = NULL;
4110 struct wg_allowedip *wga;
4111
4112 #ifdef WG_DEBUG_LOG
4113 char addrstr[128];
4114 sockaddr_format(sa, addrstr, sizeof(addrstr));
4115 WG_DLOG("sa=%s\n", addrstr);
4116 #endif
4117
4118 rw_enter(wg->wg_rwlock, RW_READER);
4119
4120 rnh = wg_rnh(wg, sa->sa_family);
4121 if (rnh == NULL)
4122 goto out;
4123
4124 rn = rnh->rnh_matchaddr(sa, rnh);
4125 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
4126 goto out;
4127
4128 WG_TRACE("success");
4129
4130 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
4131 wgp = wga->wga_peer;
4132 wg_get_peer(wgp, psref);
4133
4134 out:
4135 rw_exit(wg->wg_rwlock);
4136 return wgp;
4137 }
4138
4139 static void
4140 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
4141 struct wg_session *wgs, struct wg_msg_data *wgmd)
4142 {
4143
4144 memset(wgmd, 0, sizeof(*wgmd));
4145 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
4146 wgmd->wgmd_receiver = wgs->wgs_remote_index;
4147 /* [W] 5.4.6: msg.counter := Nm^send */
4148 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
4149 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
4150 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
4151 }
4152
4153 static int
4154 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
4155 const struct rtentry *rt)
4156 {
4157 struct wg_softc *wg = ifp->if_softc;
4158 struct wg_peer *wgp = NULL;
4159 struct wg_session *wgs = NULL;
4160 struct psref wgp_psref, wgs_psref;
4161 int bound;
4162 int error;
4163
4164 bound = curlwp_bind();
4165
4166 /* TODO make the nest limit configurable via sysctl */
4167 error = if_tunnel_check_nesting(ifp, m, 1);
4168 if (error) {
4169 WGLOG(LOG_ERR,
4170 "%s: tunneling loop detected and packet dropped\n",
4171 if_name(&wg->wg_if));
4172 goto out0;
4173 }
4174
4175 #ifdef ALTQ
4176 bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
4177 & ALTQF_ENABLED;
4178 if (altq)
4179 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
4180 #endif
4181
4182 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
4183
4184 m->m_flags &= ~(M_BCAST|M_MCAST);
4185
4186 wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
4187 if (wgp == NULL) {
4188 WG_TRACE("peer not found");
4189 error = EHOSTUNREACH;
4190 goto out0;
4191 }
4192
4193 /* Clear checksum-offload flags. */
4194 m->m_pkthdr.csum_flags = 0;
4195 m->m_pkthdr.csum_data = 0;
4196
4197 /* Check whether there's an established session. */
4198 wgs = wg_get_stable_session(wgp, &wgs_psref);
4199 if (wgs == NULL) {
4200 /*
4201 * No established session. If we're the first to try
4202 * sending data, schedule a handshake and queue the
4203 * packet for when the handshake is done; otherwise
4204 * just drop the packet and let the ongoing handshake
4205 * attempt continue. We could queue more data packets
4206 * but it's not clear that's worthwhile.
4207 */
4208 if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
4209 m = NULL; /* consume */
4210 WG_TRACE("queued first packet; init handshake");
4211 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4212 } else {
4213 WG_TRACE("first packet already queued, dropping");
4214 }
4215 goto out1;
4216 }
4217
4218 /* There's an established session. Toss it in the queue. */
4219 #ifdef ALTQ
4220 if (altq) {
4221 mutex_enter(ifp->if_snd.ifq_lock);
4222 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
4223 M_SETCTX(m, wgp);
4224 ALTQ_ENQUEUE(&ifp->if_snd, m, error);
4225 m = NULL; /* consume */
4226 }
4227 mutex_exit(ifp->if_snd.ifq_lock);
4228 if (m == NULL) {
4229 wg_start(ifp);
4230 goto out2;
4231 }
4232 }
4233 #endif
4234 kpreempt_disable();
4235 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
4236 M_SETCTX(m, wgp);
4237 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
4238 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
4239 if_name(&wg->wg_if));
4240 error = ENOBUFS;
4241 goto out3;
4242 }
4243 m = NULL; /* consumed */
4244 error = 0;
4245 out3: kpreempt_enable();
4246
4247 #ifdef ALTQ
4248 out2:
4249 #endif
4250 wg_put_session(wgs, &wgs_psref);
4251 out1: wg_put_peer(wgp, &wgp_psref);
4252 out0: m_freem(m);
4253 curlwp_bindx(bound);
4254 return error;
4255 }
4256
4257 static int
4258 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
4259 {
4260 struct psref psref;
4261 struct wg_sockaddr *wgsa;
4262 int error;
4263 struct socket *so;
4264
4265 wgsa = wg_get_endpoint_sa(wgp, &psref);
4266 so = wg_get_so_by_peer(wgp, wgsa);
4267 solock(so);
4268 switch (wgsatosa(wgsa)->sa_family) {
4269 #ifdef INET
4270 case AF_INET:
4271 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
4272 break;
4273 #endif
4274 #ifdef INET6
4275 case AF_INET6:
4276 error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
4277 NULL, curlwp);
4278 break;
4279 #endif
4280 default:
4281 m_freem(m);
4282 error = EPFNOSUPPORT;
4283 }
4284 sounlock(so);
4285 wg_put_sa(wgp, wgsa, &psref);
4286
4287 return error;
4288 }
4289
4290 /* Inspired by pppoe_get_mbuf */
4291 static struct mbuf *
4292 wg_get_mbuf(size_t leading_len, size_t len)
4293 {
4294 struct mbuf *m;
4295
4296 KASSERT(leading_len <= MCLBYTES);
4297 KASSERT(len <= MCLBYTES - leading_len);
4298
4299 m = m_gethdr(M_DONTWAIT, MT_DATA);
4300 if (m == NULL)
4301 return NULL;
4302 if (len + leading_len > MHLEN) {
4303 m_clget(m, M_DONTWAIT);
4304 if ((m->m_flags & M_EXT) == 0) {
4305 m_free(m);
4306 return NULL;
4307 }
4308 }
4309 m->m_data += leading_len;
4310 m->m_pkthdr.len = m->m_len = len;
4311
4312 return m;
4313 }
4314
4315 static void
4316 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs, struct mbuf *m)
4317 {
4318 struct wg_softc *wg = wgp->wgp_sc;
4319 int error;
4320 size_t inner_len, padded_len, encrypted_len;
4321 char *padded_buf = NULL;
4322 size_t mlen;
4323 struct wg_msg_data *wgmd;
4324 bool free_padded_buf = false;
4325 struct mbuf *n;
4326 size_t leading_len = max_hdr + sizeof(struct udphdr);
4327
4328 mlen = m_length(m);
4329 inner_len = mlen;
4330 padded_len = roundup(mlen, 16);
4331 encrypted_len = padded_len + WG_AUTHTAG_LEN;
4332 WG_DLOG("inner=%zu, padded=%zu, encrypted_len=%zu\n",
4333 inner_len, padded_len, encrypted_len);
4334 if (mlen != 0) {
4335 bool success;
4336 success = m_ensure_contig(&m, padded_len);
4337 if (success) {
4338 padded_buf = mtod(m, char *);
4339 } else {
4340 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
4341 if (padded_buf == NULL) {
4342 error = ENOBUFS;
4343 goto out;
4344 }
4345 free_padded_buf = true;
4346 m_copydata(m, 0, mlen, padded_buf);
4347 }
4348 memset(padded_buf + mlen, 0, padded_len - inner_len);
4349 }
4350
4351 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
4352 if (n == NULL) {
4353 error = ENOBUFS;
4354 goto out;
4355 }
4356 KASSERT(n->m_len >= sizeof(*wgmd));
4357 wgmd = mtod(n, struct wg_msg_data *);
4358 wg_fill_msg_data(wg, wgp, wgs, wgmd);
4359
4360 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
4361 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
4362 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4363 padded_buf, padded_len,
4364 NULL, 0);
4365
4366 error = wg->wg_ops->send_data_msg(wgp, n); /* consumes n */
4367 if (error) {
4368 WG_DLOG("send_data_msg failed, error=%d\n", error);
4369 goto out;
4370 }
4371
4372 /*
4373 * Packet was sent out -- count it in the interface statistics.
4374 */
4375 if_statadd(&wg->wg_if, if_obytes, mlen);
4376 if_statinc(&wg->wg_if, if_opackets);
4377
4378 /*
4379 * Record when we last sent data, for determining when we need
4380 * to send a passive keepalive.
4381 *
4382 * Other logic assumes that wgs_time_last_data_sent is zero iff
4383 * we have never sent data on this session. Early at boot, if
4384 * wg(4) starts operating within <1sec, or after 136 years of
4385 * uptime, we may observe time_uptime32 = 0. In that case,
4386 * pretend we observed 1 instead. That way, we correctly
4387 * indicate we have sent data on this session; the only logic
4388 * this might adversely affect is the keepalive timeout
4389 * detection, which might spuriously send a keepalive during
4390 * one second every 136 years. All of this is very silly, of
4391 * course, but the cost to guaranteeing wgs_time_last_data_sent
4392 * is nonzero is negligible here.
4393 */
4394 const uint32_t now = time_uptime32;
4395 atomic_store_relaxed(&wgs->wgs_time_last_data_sent, MAX(now, 1));
4396
4397 /*
4398 * Check rekey-after-time.
4399 */
4400 if (wgs->wgs_is_initiator &&
4401 ((time_uptime32 -
4402 atomic_load_relaxed(&wgs->wgs_time_established)) >=
4403 wg_rekey_after_time)) {
4404 /*
4405 * [W] 6.2 Transport Message Limits
4406 * "if a peer is the initiator of a current secure
4407 * session, WireGuard will send a handshake initiation
4408 * message to begin a new secure session if, after
4409 * transmitting a transport data message, the current
4410 * secure session is REKEY-AFTER-TIME seconds old,"
4411 */
4412 WG_TRACE("rekey after time");
4413 atomic_store_relaxed(&wgp->wgp_force_rekey, 1);
4414 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4415 }
4416
4417 /*
4418 * Check rekey-after-messages.
4419 */
4420 if (wg_session_get_send_counter(wgs) >= wg_rekey_after_messages) {
4421 /*
4422 * [W] 6.2 Transport Message Limits
4423 * "WireGuard will try to create a new session, by
4424 * sending a handshake initiation message (section
4425 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
4426 * transport data messages..."
4427 */
4428 WG_TRACE("rekey after messages");
4429 atomic_store_relaxed(&wgp->wgp_force_rekey, 1);
4430 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4431 }
4432
4433 out: m_freem(m);
4434 if (free_padded_buf)
4435 kmem_intr_free(padded_buf, padded_len);
4436 }
4437
4438 static void
4439 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
4440 {
4441 pktqueue_t *pktq;
4442 size_t pktlen;
4443
4444 KASSERT(af == AF_INET || af == AF_INET6);
4445
4446 WG_TRACE("");
4447
4448 m_set_rcvif(m, ifp);
4449 pktlen = m->m_pkthdr.len;
4450
4451 bpf_mtap_af(ifp, af, m, BPF_D_IN);
4452
4453 switch (af) {
4454 #ifdef INET
4455 case AF_INET:
4456 pktq = ip_pktq;
4457 break;
4458 #endif
4459 #ifdef INET6
4460 case AF_INET6:
4461 pktq = ip6_pktq;
4462 break;
4463 #endif
4464 default:
4465 panic("invalid af=%d", af);
4466 }
4467
4468 kpreempt_disable();
4469 const u_int h = curcpu()->ci_index;
4470 if (__predict_true(pktq_enqueue(pktq, m, h))) {
4471 if_statadd(ifp, if_ibytes, pktlen);
4472 if_statinc(ifp, if_ipackets);
4473 } else {
4474 m_freem(m);
4475 }
4476 kpreempt_enable();
4477 }
4478
4479 static void
4480 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
4481 const uint8_t privkey[WG_STATIC_KEY_LEN])
4482 {
4483
4484 crypto_scalarmult_base(pubkey, privkey);
4485 }
4486
4487 static int
4488 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
4489 {
4490 struct radix_node_head *rnh;
4491 struct radix_node *rn;
4492 int error = 0;
4493
4494 rw_enter(wg->wg_rwlock, RW_WRITER);
4495 rnh = wg_rnh(wg, wga->wga_family);
4496 KASSERT(rnh != NULL);
4497 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
4498 wga->wga_nodes);
4499 rw_exit(wg->wg_rwlock);
4500
4501 if (rn == NULL)
4502 error = EEXIST;
4503
4504 return error;
4505 }
4506
4507 static int
4508 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
4509 struct wg_peer **wgpp)
4510 {
4511 int error = 0;
4512 const void *pubkey;
4513 size_t pubkey_len;
4514 const void *psk;
4515 size_t psk_len;
4516 const char *name = NULL;
4517
4518 if (prop_dictionary_get_string(peer, "name", &name)) {
4519 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
4520 error = EINVAL;
4521 goto out;
4522 }
4523 }
4524
4525 if (!prop_dictionary_get_data(peer, "public_key",
4526 &pubkey, &pubkey_len)) {
4527 error = EINVAL;
4528 goto out;
4529 }
4530 #ifdef WG_DEBUG_DUMP
4531 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4532 char *hex = gethexdump(pubkey, pubkey_len);
4533 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%zu\n%s\n",
4534 pubkey, pubkey_len, hex);
4535 puthexdump(hex, pubkey, pubkey_len);
4536 }
4537 #endif
4538
4539 struct wg_peer *wgp = wg_alloc_peer(wg);
4540 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4541 if (name != NULL)
4542 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4543
4544 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4545 if (psk_len != sizeof(wgp->wgp_psk)) {
4546 error = EINVAL;
4547 goto out;
4548 }
4549 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4550 }
4551
4552 const void *addr;
4553 size_t addr_len;
4554 struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4555
4556 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4557 goto skip_endpoint;
4558 if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4559 addr_len > sizeof(*wgsatoss(wgsa))) {
4560 error = EINVAL;
4561 goto out;
4562 }
4563 memcpy(wgsatoss(wgsa), addr, addr_len);
4564 switch (wgsa_family(wgsa)) {
4565 #ifdef INET
4566 case AF_INET:
4567 break;
4568 #endif
4569 #ifdef INET6
4570 case AF_INET6:
4571 break;
4572 #endif
4573 default:
4574 error = EPFNOSUPPORT;
4575 goto out;
4576 }
4577 if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4578 error = EINVAL;
4579 goto out;
4580 }
4581 {
4582 char addrstr[128];
4583 sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4584 WG_DLOG("addr=%s\n", addrstr);
4585 }
4586 wgp->wgp_endpoint_available = true;
4587
4588 prop_array_t allowedips;
4589 skip_endpoint:
4590 allowedips = prop_dictionary_get(peer, "allowedips");
4591 if (allowedips == NULL)
4592 goto skip;
4593
4594 prop_object_iterator_t _it = prop_array_iterator(allowedips);
4595 prop_dictionary_t prop_allowedip;
4596 int j = 0;
4597 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4598 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4599
4600 if (!prop_dictionary_get_int(prop_allowedip, "family",
4601 &wga->wga_family))
4602 continue;
4603 if (!prop_dictionary_get_data(prop_allowedip, "ip",
4604 &addr, &addr_len))
4605 continue;
4606 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4607 &wga->wga_cidr))
4608 continue;
4609
4610 switch (wga->wga_family) {
4611 #ifdef INET
4612 case AF_INET: {
4613 struct sockaddr_in sin;
4614 char addrstr[128];
4615 struct in_addr mask;
4616 struct sockaddr_in sin_mask;
4617
4618 if (addr_len != sizeof(struct in_addr))
4619 return EINVAL;
4620 memcpy(&wga->wga_addr4, addr, addr_len);
4621
4622 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4623 0);
4624 sockaddr_copy(&wga->wga_sa_addr,
4625 sizeof(sin), sintosa(&sin));
4626
4627 sockaddr_format(sintosa(&sin),
4628 addrstr, sizeof(addrstr));
4629 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4630
4631 in_len2mask(&mask, wga->wga_cidr);
4632 sockaddr_in_init(&sin_mask, &mask, 0);
4633 sockaddr_copy(&wga->wga_sa_mask,
4634 sizeof(sin_mask), sintosa(&sin_mask));
4635
4636 break;
4637 }
4638 #endif
4639 #ifdef INET6
4640 case AF_INET6: {
4641 struct sockaddr_in6 sin6;
4642 char addrstr[128];
4643 struct in6_addr mask;
4644 struct sockaddr_in6 sin6_mask;
4645
4646 if (addr_len != sizeof(struct in6_addr))
4647 return EINVAL;
4648 memcpy(&wga->wga_addr6, addr, addr_len);
4649
4650 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4651 0, 0, 0);
4652 sockaddr_copy(&wga->wga_sa_addr,
4653 sizeof(sin6), sin6tosa(&sin6));
4654
4655 sockaddr_format(sin6tosa(&sin6),
4656 addrstr, sizeof(addrstr));
4657 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4658
4659 in6_prefixlen2mask(&mask, wga->wga_cidr);
4660 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4661 sockaddr_copy(&wga->wga_sa_mask,
4662 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4663
4664 break;
4665 }
4666 #endif
4667 default:
4668 error = EINVAL;
4669 goto out;
4670 }
4671 wga->wga_peer = wgp;
4672
4673 error = wg_rtable_add_route(wg, wga);
4674 if (error != 0)
4675 goto out;
4676
4677 j++;
4678 }
4679 wgp->wgp_n_allowedips = j;
4680 skip:
4681 *wgpp = wgp;
4682 out:
4683 return error;
4684 }
4685
4686 static int
4687 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4688 {
4689 int error;
4690 char *buf;
4691
4692 WG_DLOG("buf=%p, len=%zu\n", ifd->ifd_data, ifd->ifd_len);
4693 if (ifd->ifd_len >= WG_MAX_PROPLEN)
4694 return E2BIG;
4695 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4696 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4697 if (error != 0)
4698 return error;
4699 buf[ifd->ifd_len] = '\0';
4700 #ifdef WG_DEBUG_DUMP
4701 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4702 log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
4703 (const char *)buf);
4704 }
4705 #endif
4706 *_buf = buf;
4707 return 0;
4708 }
4709
4710 static int
4711 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4712 {
4713 int error;
4714 prop_dictionary_t prop_dict;
4715 char *buf = NULL;
4716 const void *privkey;
4717 size_t privkey_len;
4718
4719 error = wg_alloc_prop_buf(&buf, ifd);
4720 if (error != 0)
4721 return error;
4722 error = EINVAL;
4723 prop_dict = prop_dictionary_internalize(buf);
4724 if (prop_dict == NULL)
4725 goto out;
4726 if (!prop_dictionary_get_data(prop_dict, "private_key",
4727 &privkey, &privkey_len))
4728 goto out;
4729 #ifdef WG_DEBUG_DUMP
4730 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4731 char *hex = gethexdump(privkey, privkey_len);
4732 log(LOG_DEBUG, "privkey=%p, privkey_len=%zu\n%s\n",
4733 privkey, privkey_len, hex);
4734 puthexdump(hex, privkey, privkey_len);
4735 }
4736 #endif
4737 if (privkey_len != WG_STATIC_KEY_LEN)
4738 goto out;
4739 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4740 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4741 error = 0;
4742
4743 out:
4744 kmem_free(buf, ifd->ifd_len + 1);
4745 return error;
4746 }
4747
4748 static int
4749 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4750 {
4751 int error;
4752 prop_dictionary_t prop_dict;
4753 char *buf = NULL;
4754 uint16_t port;
4755
4756 error = wg_alloc_prop_buf(&buf, ifd);
4757 if (error != 0)
4758 return error;
4759 error = EINVAL;
4760 prop_dict = prop_dictionary_internalize(buf);
4761 if (prop_dict == NULL)
4762 goto out;
4763 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4764 goto out;
4765
4766 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4767
4768 out:
4769 kmem_free(buf, ifd->ifd_len + 1);
4770 return error;
4771 }
4772
4773 static int
4774 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4775 {
4776 int error;
4777 prop_dictionary_t prop_dict;
4778 char *buf = NULL;
4779 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4780
4781 error = wg_alloc_prop_buf(&buf, ifd);
4782 if (error != 0)
4783 return error;
4784 error = EINVAL;
4785 prop_dict = prop_dictionary_internalize(buf);
4786 if (prop_dict == NULL)
4787 goto out;
4788
4789 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4790 if (error != 0)
4791 goto out;
4792
4793 mutex_enter(wg->wg_lock);
4794 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4795 sizeof(wgp->wgp_pubkey)) != NULL ||
4796 (wgp->wgp_name[0] &&
4797 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4798 strlen(wgp->wgp_name)) != NULL)) {
4799 mutex_exit(wg->wg_lock);
4800 wg_destroy_peer(wgp);
4801 error = EEXIST;
4802 goto out;
4803 }
4804 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4805 sizeof(wgp->wgp_pubkey), wgp);
4806 KASSERT(wgp0 == wgp);
4807 if (wgp->wgp_name[0]) {
4808 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4809 strlen(wgp->wgp_name), wgp);
4810 KASSERT(wgp0 == wgp);
4811 }
4812 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4813 wg->wg_npeers++;
4814 mutex_exit(wg->wg_lock);
4815
4816 if_link_state_change(&wg->wg_if, LINK_STATE_UP);
4817
4818 out:
4819 kmem_free(buf, ifd->ifd_len + 1);
4820 return error;
4821 }
4822
4823 static int
4824 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4825 {
4826 int error;
4827 prop_dictionary_t prop_dict;
4828 char *buf = NULL;
4829 const char *name;
4830
4831 error = wg_alloc_prop_buf(&buf, ifd);
4832 if (error != 0)
4833 return error;
4834 error = EINVAL;
4835 prop_dict = prop_dictionary_internalize(buf);
4836 if (prop_dict == NULL)
4837 goto out;
4838
4839 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4840 goto out;
4841 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4842 goto out;
4843
4844 error = wg_destroy_peer_name(wg, name);
4845 out:
4846 kmem_free(buf, ifd->ifd_len + 1);
4847 return error;
4848 }
4849
4850 static bool
4851 wg_is_authorized(struct wg_softc *wg, u_long cmd)
4852 {
4853 int au = cmd == SIOCGDRVSPEC ?
4854 KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
4855 KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
4856 return kauth_authorize_network(kauth_cred_get(),
4857 KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
4858 (void *)cmd, NULL) == 0;
4859 }
4860
4861 static int
4862 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4863 {
4864 int error = ENOMEM;
4865 prop_dictionary_t prop_dict;
4866 prop_array_t peers = NULL;
4867 char *buf;
4868 struct wg_peer *wgp;
4869 int s, i;
4870
4871 prop_dict = prop_dictionary_create();
4872 if (prop_dict == NULL)
4873 goto error;
4874
4875 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4876 if (!prop_dictionary_set_data(prop_dict, "private_key",
4877 wg->wg_privkey, WG_STATIC_KEY_LEN))
4878 goto error;
4879 }
4880
4881 if (wg->wg_listen_port != 0) {
4882 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4883 wg->wg_listen_port))
4884 goto error;
4885 }
4886
4887 if (wg->wg_npeers == 0)
4888 goto skip_peers;
4889
4890 peers = prop_array_create();
4891 if (peers == NULL)
4892 goto error;
4893
4894 s = pserialize_read_enter();
4895 i = 0;
4896 WG_PEER_READER_FOREACH(wgp, wg) {
4897 struct wg_sockaddr *wgsa;
4898 struct psref wgp_psref, wgsa_psref;
4899 prop_dictionary_t prop_peer;
4900
4901 wg_get_peer(wgp, &wgp_psref);
4902 pserialize_read_exit(s);
4903
4904 prop_peer = prop_dictionary_create();
4905 if (prop_peer == NULL)
4906 goto next;
4907
4908 if (strlen(wgp->wgp_name) > 0) {
4909 if (!prop_dictionary_set_string(prop_peer, "name",
4910 wgp->wgp_name))
4911 goto next;
4912 }
4913
4914 if (!prop_dictionary_set_data(prop_peer, "public_key",
4915 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4916 goto next;
4917
4918 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4919 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4920 sizeof(wgp->wgp_psk))) {
4921 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4922 if (!prop_dictionary_set_data(prop_peer,
4923 "preshared_key",
4924 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4925 goto next;
4926 }
4927 }
4928
4929 wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
4930 CTASSERT(AF_UNSPEC == 0);
4931 if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
4932 !prop_dictionary_set_data(prop_peer, "endpoint",
4933 wgsatoss(wgsa),
4934 sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
4935 wg_put_sa(wgp, wgsa, &wgsa_psref);
4936 goto next;
4937 }
4938 wg_put_sa(wgp, wgsa, &wgsa_psref);
4939
4940 const struct timespec *t = &wgp->wgp_last_handshake_time;
4941
4942 if (!prop_dictionary_set_uint64(prop_peer,
4943 "last_handshake_time_sec", (uint64_t)t->tv_sec))
4944 goto next;
4945 if (!prop_dictionary_set_uint32(prop_peer,
4946 "last_handshake_time_nsec", (uint32_t)t->tv_nsec))
4947 goto next;
4948
4949 if (wgp->wgp_n_allowedips == 0)
4950 goto skip_allowedips;
4951
4952 prop_array_t allowedips = prop_array_create();
4953 if (allowedips == NULL)
4954 goto next;
4955 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4956 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4957 prop_dictionary_t prop_allowedip;
4958
4959 prop_allowedip = prop_dictionary_create();
4960 if (prop_allowedip == NULL)
4961 break;
4962
4963 if (!prop_dictionary_set_int(prop_allowedip, "family",
4964 wga->wga_family))
4965 goto _next;
4966 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4967 wga->wga_cidr))
4968 goto _next;
4969
4970 switch (wga->wga_family) {
4971 #ifdef INET
4972 case AF_INET:
4973 if (!prop_dictionary_set_data(prop_allowedip,
4974 "ip", &wga->wga_addr4,
4975 sizeof(wga->wga_addr4)))
4976 goto _next;
4977 break;
4978 #endif
4979 #ifdef INET6
4980 case AF_INET6:
4981 if (!prop_dictionary_set_data(prop_allowedip,
4982 "ip", &wga->wga_addr6,
4983 sizeof(wga->wga_addr6)))
4984 goto _next;
4985 break;
4986 #endif
4987 default:
4988 panic("invalid af=%d", wga->wga_family);
4989 }
4990 prop_array_set(allowedips, j, prop_allowedip);
4991 _next:
4992 prop_object_release(prop_allowedip);
4993 }
4994 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4995 prop_object_release(allowedips);
4996
4997 skip_allowedips:
4998
4999 prop_array_set(peers, i, prop_peer);
5000 next:
5001 if (prop_peer)
5002 prop_object_release(prop_peer);
5003 i++;
5004
5005 s = pserialize_read_enter();
5006 wg_put_peer(wgp, &wgp_psref);
5007 }
5008 pserialize_read_exit(s);
5009
5010 prop_dictionary_set(prop_dict, "peers", peers);
5011 prop_object_release(peers);
5012 peers = NULL;
5013
5014 skip_peers:
5015 buf = prop_dictionary_externalize(prop_dict);
5016 if (buf == NULL)
5017 goto error;
5018 if (ifd->ifd_len < (strlen(buf) + 1)) {
5019 error = EINVAL;
5020 goto error;
5021 }
5022 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
5023
5024 free(buf, 0);
5025 error:
5026 if (peers != NULL)
5027 prop_object_release(peers);
5028 if (prop_dict != NULL)
5029 prop_object_release(prop_dict);
5030
5031 return error;
5032 }
5033
5034 static int
5035 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5036 {
5037 struct wg_softc *wg = ifp->if_softc;
5038 struct ifreq *ifr = data;
5039 struct ifaddr *ifa = data;
5040 struct ifdrv *ifd = data;
5041 int error = 0;
5042
5043 switch (cmd) {
5044 case SIOCINITIFADDR:
5045 if (ifa->ifa_addr->sa_family != AF_LINK &&
5046 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
5047 (IFF_UP | IFF_RUNNING)) {
5048 ifp->if_flags |= IFF_UP;
5049 error = if_init(ifp);
5050 }
5051 return error;
5052 case SIOCADDMULTI:
5053 case SIOCDELMULTI:
5054 switch (ifr->ifr_addr.sa_family) {
5055 #ifdef INET
5056 case AF_INET: /* IP supports Multicast */
5057 break;
5058 #endif
5059 #ifdef INET6
5060 case AF_INET6: /* IP6 supports Multicast */
5061 break;
5062 #endif
5063 default: /* Other protocols doesn't support Multicast */
5064 error = EAFNOSUPPORT;
5065 break;
5066 }
5067 return error;
5068 case SIOCSDRVSPEC:
5069 if (!wg_is_authorized(wg, cmd)) {
5070 return EPERM;
5071 }
5072 switch (ifd->ifd_cmd) {
5073 case WG_IOCTL_SET_PRIVATE_KEY:
5074 error = wg_ioctl_set_private_key(wg, ifd);
5075 break;
5076 case WG_IOCTL_SET_LISTEN_PORT:
5077 error = wg_ioctl_set_listen_port(wg, ifd);
5078 break;
5079 case WG_IOCTL_ADD_PEER:
5080 error = wg_ioctl_add_peer(wg, ifd);
5081 break;
5082 case WG_IOCTL_DELETE_PEER:
5083 error = wg_ioctl_delete_peer(wg, ifd);
5084 break;
5085 default:
5086 error = EINVAL;
5087 break;
5088 }
5089 return error;
5090 case SIOCGDRVSPEC:
5091 return wg_ioctl_get(wg, ifd);
5092 case SIOCSIFFLAGS:
5093 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5094 break;
5095 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5096 case IFF_RUNNING:
5097 /*
5098 * If interface is marked down and it is running,
5099 * then stop and disable it.
5100 */
5101 if_stop(ifp, 1);
5102 break;
5103 case IFF_UP:
5104 /*
5105 * If interface is marked up and it is stopped, then
5106 * start it.
5107 */
5108 error = if_init(ifp);
5109 break;
5110 default:
5111 break;
5112 }
5113 return error;
5114 #ifdef WG_RUMPKERNEL
5115 case SIOCSLINKSTR:
5116 error = wg_ioctl_linkstr(wg, ifd);
5117 if (error)
5118 return error;
5119 wg->wg_ops = &wg_ops_rumpuser;
5120 return 0;
5121 #endif
5122 default:
5123 break;
5124 }
5125
5126 error = ifioctl_common(ifp, cmd, data);
5127
5128 #ifdef WG_RUMPKERNEL
5129 if (!wg_user_mode(wg))
5130 return error;
5131
5132 /* Do the same to the corresponding tun device on the host */
5133 /*
5134 * XXX Actually the command has not been handled yet. It
5135 * will be handled via pr_ioctl form doifioctl later.
5136 */
5137 switch (cmd) {
5138 #ifdef INET
5139 case SIOCAIFADDR:
5140 case SIOCDIFADDR: {
5141 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
5142 struct in_aliasreq *ifra = &_ifra;
5143 KASSERT(error == ENOTTY);
5144 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5145 IFNAMSIZ);
5146 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
5147 if (error == 0)
5148 error = ENOTTY;
5149 break;
5150 }
5151 #endif
5152 #ifdef INET6
5153 case SIOCAIFADDR_IN6:
5154 case SIOCDIFADDR_IN6: {
5155 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
5156 struct in6_aliasreq *ifra = &_ifra;
5157 KASSERT(error == ENOTTY);
5158 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5159 IFNAMSIZ);
5160 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
5161 if (error == 0)
5162 error = ENOTTY;
5163 break;
5164 }
5165 #endif
5166 default:
5167 break;
5168 }
5169 #endif /* WG_RUMPKERNEL */
5170
5171 return error;
5172 }
5173
5174 static int
5175 wg_init(struct ifnet *ifp)
5176 {
5177
5178 ifp->if_flags |= IFF_RUNNING;
5179
5180 /* TODO flush pending packets. */
5181 return 0;
5182 }
5183
5184 #ifdef ALTQ
5185 static void
5186 wg_start(struct ifnet *ifp)
5187 {
5188 struct mbuf *m;
5189
5190 for (;;) {
5191 IFQ_DEQUEUE(&ifp->if_snd, m);
5192 if (m == NULL)
5193 break;
5194
5195 kpreempt_disable();
5196 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
5197 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
5198 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
5199 if_name(ifp));
5200 m_freem(m);
5201 }
5202 kpreempt_enable();
5203 }
5204 }
5205 #endif
5206
5207 static void
5208 wg_stop(struct ifnet *ifp, int disable)
5209 {
5210
5211 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
5212 ifp->if_flags &= ~IFF_RUNNING;
5213
5214 /* Need to do something? */
5215 }
5216
5217 #ifdef WG_DEBUG_PARAMS
5218 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
5219 {
5220 const struct sysctlnode *node = NULL;
5221
5222 sysctl_createv(clog, 0, NULL, &node,
5223 CTLFLAG_PERMANENT,
5224 CTLTYPE_NODE, "wg",
5225 SYSCTL_DESCR("wg(4)"),
5226 NULL, 0, NULL, 0,
5227 CTL_NET, CTL_CREATE, CTL_EOL);
5228 sysctl_createv(clog, 0, &node, NULL,
5229 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5230 CTLTYPE_QUAD, "rekey_after_messages",
5231 SYSCTL_DESCR("session liftime by messages"),
5232 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
5233 sysctl_createv(clog, 0, &node, NULL,
5234 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5235 CTLTYPE_INT, "rekey_after_time",
5236 SYSCTL_DESCR("session liftime"),
5237 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
5238 sysctl_createv(clog, 0, &node, NULL,
5239 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5240 CTLTYPE_INT, "rekey_timeout",
5241 SYSCTL_DESCR("session handshake retry time"),
5242 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
5243 sysctl_createv(clog, 0, &node, NULL,
5244 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5245 CTLTYPE_INT, "rekey_attempt_time",
5246 SYSCTL_DESCR("session handshake timeout"),
5247 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
5248 sysctl_createv(clog, 0, &node, NULL,
5249 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5250 CTLTYPE_INT, "keepalive_timeout",
5251 SYSCTL_DESCR("keepalive timeout"),
5252 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
5253 sysctl_createv(clog, 0, &node, NULL,
5254 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5255 CTLTYPE_BOOL, "force_underload",
5256 SYSCTL_DESCR("force to detemine under load"),
5257 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
5258 sysctl_createv(clog, 0, &node, NULL,
5259 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5260 CTLTYPE_INT, "debug",
5261 SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
5262 NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
5263 }
5264 #endif
5265
5266 #ifdef WG_RUMPKERNEL
5267 static bool
5268 wg_user_mode(struct wg_softc *wg)
5269 {
5270
5271 return wg->wg_user != NULL;
5272 }
5273
5274 static int
5275 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
5276 {
5277 struct ifnet *ifp = &wg->wg_if;
5278 int error;
5279
5280 if (ifp->if_flags & IFF_UP)
5281 return EBUSY;
5282
5283 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
5284 /* XXX do nothing */
5285 return 0;
5286 } else if (ifd->ifd_cmd != 0) {
5287 return EINVAL;
5288 } else if (wg->wg_user != NULL) {
5289 return EBUSY;
5290 }
5291
5292 /* Assume \0 included */
5293 if (ifd->ifd_len > IFNAMSIZ) {
5294 return E2BIG;
5295 } else if (ifd->ifd_len < 1) {
5296 return EINVAL;
5297 }
5298
5299 char tun_name[IFNAMSIZ];
5300 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
5301 if (error != 0)
5302 return error;
5303
5304 if (strncmp(tun_name, "tun", 3) != 0)
5305 return EINVAL;
5306
5307 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
5308
5309 return error;
5310 }
5311
5312 static int
5313 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
5314 {
5315 int error;
5316 struct psref psref;
5317 struct wg_sockaddr *wgsa;
5318 struct wg_softc *wg = wgp->wgp_sc;
5319 struct iovec iov[1];
5320
5321 wgsa = wg_get_endpoint_sa(wgp, &psref);
5322
5323 iov[0].iov_base = mtod(m, void *);
5324 iov[0].iov_len = m->m_len;
5325
5326 /* Send messages to a peer via an ordinary socket. */
5327 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
5328
5329 wg_put_sa(wgp, wgsa, &psref);
5330
5331 m_freem(m);
5332
5333 return error;
5334 }
5335
5336 static void
5337 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
5338 {
5339 struct wg_softc *wg = ifp->if_softc;
5340 struct iovec iov[2];
5341 struct sockaddr_storage ss;
5342
5343 KASSERT(af == AF_INET || af == AF_INET6);
5344
5345 WG_TRACE("");
5346
5347 switch (af) {
5348 #ifdef INET
5349 case AF_INET: {
5350 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
5351 struct ip *ip;
5352
5353 KASSERT(m->m_len >= sizeof(struct ip));
5354 ip = mtod(m, struct ip *);
5355 sockaddr_in_init(sin, &ip->ip_dst, 0);
5356 break;
5357 }
5358 #endif
5359 #ifdef INET6
5360 case AF_INET6: {
5361 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
5362 struct ip6_hdr *ip6;
5363
5364 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
5365 ip6 = mtod(m, struct ip6_hdr *);
5366 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
5367 break;
5368 }
5369 #endif
5370 default:
5371 goto out;
5372 }
5373
5374 iov[0].iov_base = &ss;
5375 iov[0].iov_len = ss.ss_len;
5376 iov[1].iov_base = mtod(m, void *);
5377 iov[1].iov_len = m->m_len;
5378
5379 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5380
5381 /* Send decrypted packets to users via a tun. */
5382 rumpuser_wg_send_user(wg->wg_user, iov, 2);
5383
5384 out: m_freem(m);
5385 }
5386
5387 static int
5388 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
5389 {
5390 int error;
5391 uint16_t old_port = wg->wg_listen_port;
5392
5393 if (port != 0 && old_port == port)
5394 return 0;
5395
5396 error = rumpuser_wg_sock_bind(wg->wg_user, port);
5397 if (error)
5398 return error;
5399
5400 wg->wg_listen_port = port;
5401 return 0;
5402 }
5403
5404 /*
5405 * Receive user packets.
5406 */
5407 void
5408 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5409 {
5410 struct ifnet *ifp = &wg->wg_if;
5411 struct mbuf *m;
5412 const struct sockaddr *dst;
5413 int error;
5414
5415 WG_TRACE("");
5416
5417 dst = iov[0].iov_base;
5418
5419 m = m_gethdr(M_DONTWAIT, MT_DATA);
5420 if (m == NULL)
5421 return;
5422 m->m_len = m->m_pkthdr.len = 0;
5423 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5424
5425 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5426 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5427
5428 error = wg_output(ifp, m, dst, NULL); /* consumes m */
5429 if (error)
5430 WG_DLOG("wg_output failed, error=%d\n", error);
5431 }
5432
5433 /*
5434 * Receive packets from a peer.
5435 */
5436 void
5437 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5438 {
5439 struct mbuf *m;
5440 const struct sockaddr *src;
5441 int bound;
5442
5443 WG_TRACE("");
5444
5445 src = iov[0].iov_base;
5446
5447 m = m_gethdr(M_DONTWAIT, MT_DATA);
5448 if (m == NULL)
5449 return;
5450 m->m_len = m->m_pkthdr.len = 0;
5451 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5452
5453 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5454 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5455
5456 bound = curlwp_bind();
5457 wg_handle_packet(wg, m, src);
5458 curlwp_bindx(bound);
5459 }
5460 #endif /* WG_RUMPKERNEL */
5461
5462 /*
5463 * Module infrastructure
5464 */
5465 #include "if_module.h"
5466
5467 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
5468