if_wg.c revision 1.114 1 /* $NetBSD: if_wg.c,v 1.114 2024/07/29 02:29:11 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.114 2024/07/29 02:29:11 riastradh Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_altq_enabled.h"
48 #include "opt_inet.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/atomic.h>
55 #include <sys/callout.h>
56 #include <sys/cprng.h>
57 #include <sys/cpu.h>
58 #include <sys/device.h>
59 #include <sys/domain.h>
60 #include <sys/errno.h>
61 #include <sys/intr.h>
62 #include <sys/ioctl.h>
63 #include <sys/kernel.h>
64 #include <sys/kmem.h>
65 #include <sys/mbuf.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/once.h>
69 #include <sys/percpu.h>
70 #include <sys/pserialize.h>
71 #include <sys/psref.h>
72 #include <sys/queue.h>
73 #include <sys/rwlock.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/systm.h>
80 #include <sys/thmap.h>
81 #include <sys/threadpool.h>
82 #include <sys/time.h>
83 #include <sys/timespec.h>
84 #include <sys/workqueue.h>
85
86 #include <lib/libkern/libkern.h>
87
88 #include <net/bpf.h>
89 #include <net/if.h>
90 #include <net/if_types.h>
91 #include <net/if_wg.h>
92 #include <net/pktqueue.h>
93 #include <net/route.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_pcb.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_var.h>
101 #include <netinet/udp.h>
102 #include <netinet/udp_var.h>
103 #endif /* INET */
104
105 #ifdef INET6
106 #include <netinet/ip6.h>
107 #include <netinet6/in6_pcb.h>
108 #include <netinet6/in6_var.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/udp6_var.h>
111 #endif /* INET6 */
112
113 #include <prop/proplib.h>
114
115 #include <crypto/blake2/blake2s.h>
116 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
117 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
118 #include <crypto/sodium/crypto_scalarmult.h>
119
120 #include "ioconf.h"
121
122 #ifdef WG_RUMPKERNEL
123 #include "wg_user.h"
124 #endif
125
126 #ifndef time_uptime32
127 #define time_uptime32 ((uint32_t)time_uptime)
128 #endif
129
130 /*
131 * Data structures
132 * - struct wg_softc is an instance of wg interfaces
133 * - It has a list of peers (struct wg_peer)
134 * - It has a threadpool job that sends/receives handshake messages and
135 * runs event handlers
136 * - It has its own two routing tables: one is for IPv4 and the other IPv6
137 * - struct wg_peer is a representative of a peer
138 * - It has a struct work to handle handshakes and timer tasks
139 * - It has a pair of session instances (struct wg_session)
140 * - It has a pair of endpoint instances (struct wg_sockaddr)
141 * - Normally one endpoint is used and the second one is used only on
142 * a peer migration (a change of peer's IP address)
143 * - It has a list of IP addresses and sub networks called allowedips
144 * (struct wg_allowedip)
145 * - A packets sent over a session is allowed if its destination matches
146 * any IP addresses or sub networks of the list
147 * - struct wg_session represents a session of a secure tunnel with a peer
148 * - Two instances of sessions belong to a peer; a stable session and a
149 * unstable session
150 * - A handshake process of a session always starts with a unstable instance
151 * - Once a session is established, its instance becomes stable and the
152 * other becomes unstable instead
153 * - Data messages are always sent via a stable session
154 *
155 * Locking notes:
156 * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
157 * - Changes to the peer list are serialized by wg_lock
158 * - The peer list may be read with pserialize(9) and psref(9)
159 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
160 * => XXX replace by pserialize when routing table is psz-safe
161 * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
162 * only in thread context and serializes:
163 * - the stable and unstable session pointers
164 * - all unstable session state
165 * - Packet processing may be done in softint context:
166 * - The stable session can be read under pserialize(9) or psref(9)
167 * - The stable session is always ESTABLISHED
168 * - On a session swap, we must wait for all readers to release a
169 * reference to a stable session before changing wgs_state and
170 * session states
171 * - Lock order: wg_lock -> wgp_lock
172 */
173
174
175 #define WGLOG(level, fmt, args...) \
176 log(level, "%s: " fmt, __func__, ##args)
177
178 #define WG_DEBUG
179
180 /* Debug options */
181 #ifdef WG_DEBUG
182 /* Output debug logs */
183 #ifndef WG_DEBUG_LOG
184 #define WG_DEBUG_LOG
185 #endif
186 /* Output trace logs */
187 #ifndef WG_DEBUG_TRACE
188 #define WG_DEBUG_TRACE
189 #endif
190 /* Output hash values, etc. */
191 #ifndef WG_DEBUG_DUMP
192 #define WG_DEBUG_DUMP
193 #endif
194 /* Make some internal parameters configurable for testing and debugging */
195 #ifndef WG_DEBUG_PARAMS
196 #define WG_DEBUG_PARAMS
197 #endif
198 #endif /* WG_DEBUG */
199
200 #ifndef WG_DEBUG
201 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) || \
202 defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS)
203 # define WG_DEBUG
204 # endif
205 #endif
206
207 #ifdef WG_DEBUG
208 int wg_debug;
209 #define WG_DEBUG_FLAGS_LOG 1
210 #define WG_DEBUG_FLAGS_TRACE 2
211 #define WG_DEBUG_FLAGS_DUMP 4
212 #endif
213
214 #ifdef WG_DEBUG_TRACE
215 #define WG_TRACE(msg) do { \
216 if (wg_debug & WG_DEBUG_FLAGS_TRACE) \
217 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg)); \
218 } while (0)
219 #else
220 #define WG_TRACE(msg) __nothing
221 #endif
222
223 #ifdef WG_DEBUG_LOG
224 #define WG_DLOG(fmt, args...) do { \
225 if (wg_debug & WG_DEBUG_FLAGS_LOG) \
226 log(LOG_DEBUG, "%s: " fmt, __func__, ##args); \
227 } while (0)
228 #else
229 #define WG_DLOG(fmt, args...) __nothing
230 #endif
231
232 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
233 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
234 &(wgprc)->wgprc_curpps, 1)) { \
235 log(level, fmt, ##args); \
236 } \
237 } while (0)
238
239 #ifdef WG_DEBUG_PARAMS
240 static bool wg_force_underload = false;
241 #endif
242
243 #ifdef WG_DEBUG_DUMP
244
245 static char enomem[10] = "[enomem]";
246
247 #define MAX_HDUMP_LEN 10000 /* large enough */
248
249 /*
250 * gethexdump(p, n)
251 *
252 * Allocate a string returning a hexdump of bytes p[0..n),
253 * truncated to MAX_HDUMP_LEN. Must be freed with puthexdump.
254 *
255 * We use this instead of libkern hexdump() because the result is
256 * logged with log(LOG_DEBUG, ...), which puts a priority tag on
257 * every message, so it can't be done incrementally.
258 */
259 static char *
260 gethexdump(const void *vp, size_t n)
261 {
262 char *buf;
263 const uint8_t *p = vp;
264 size_t i, alloc;
265
266 alloc = n;
267 if (n > MAX_HDUMP_LEN)
268 alloc = MAX_HDUMP_LEN;
269 buf = kmem_alloc(3*alloc + 5, KM_NOSLEEP);
270 if (buf == NULL)
271 return enomem;
272 for (i = 0; i < alloc; i++)
273 snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
274 if (alloc != n)
275 snprintf(buf + 3*i, 4 + 1, " ...");
276 return buf;
277 }
278
279 static void
280 puthexdump(char *buf, const void *p, size_t n)
281 {
282
283 if (buf == NULL || buf == enomem)
284 return;
285 if (n > MAX_HDUMP_LEN)
286 n = MAX_HDUMP_LEN;
287 kmem_free(buf, 3*n + 5);
288 }
289
290 #ifdef WG_RUMPKERNEL
291 static void
292 wg_dump_buf(const char *func, const char *buf, const size_t size)
293 {
294 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
295 return;
296
297 char *hex = gethexdump(buf, size);
298
299 log(LOG_DEBUG, "%s: %s\n", func, hex);
300 puthexdump(hex, buf, size);
301 }
302 #endif
303
304 static void
305 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
306 const size_t size)
307 {
308 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
309 return;
310
311 char *hex = gethexdump(hash, size);
312
313 log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex);
314 puthexdump(hex, hash, size);
315 }
316
317 #define WG_DUMP_HASH(name, hash) \
318 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
319 #define WG_DUMP_HASH48(name, hash) \
320 wg_dump_hash(__func__, name, hash, 48)
321 #define WG_DUMP_BUF(buf, size) \
322 wg_dump_buf(__func__, buf, size)
323 #else
324 #define WG_DUMP_HASH(name, hash) __nothing
325 #define WG_DUMP_HASH48(name, hash) __nothing
326 #define WG_DUMP_BUF(buf, size) __nothing
327 #endif /* WG_DEBUG_DUMP */
328
329 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
330 #define WG_MAX_PROPLEN 32766
331
332 #define WG_MTU 1420
333 #define WG_ALLOWEDIPS 16
334
335 #define CURVE25519_KEY_LEN 32
336 #define TAI64N_LEN (sizeof(uint32_t) * 3)
337 #define POLY1305_AUTHTAG_LEN 16
338 #define HMAC_BLOCK_LEN 64
339
340 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
341 /* [N] 4.3: Hash functions */
342 #define NOISE_DHLEN 32
343 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
344 #define NOISE_HASHLEN 32
345 #define NOISE_BLOCKLEN 64
346 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
347 /* [N] 5.1: "k" */
348 #define NOISE_CIPHER_KEY_LEN 32
349 /*
350 * [N] 9.2: "psk"
351 * "... psk is a 32-byte secret value provided by the application."
352 */
353 #define NOISE_PRESHARED_KEY_LEN 32
354
355 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
356 #define WG_TIMESTAMP_LEN TAI64N_LEN
357
358 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
359
360 #define WG_COOKIE_LEN 16
361 #define WG_MAC_LEN 16
362 #define WG_COOKIESECRET_LEN 32
363
364 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
365 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
366 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
367 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
368 #define WG_HASH_LEN NOISE_HASHLEN
369 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
370 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
371 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
372 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
373 #define WG_DATA_KEY_LEN 32
374 #define WG_SALT_LEN 24
375
376 /*
377 * The protocol messages
378 */
379 struct wg_msg {
380 uint32_t wgm_type;
381 } __packed;
382
383 /* [W] 5.4.2 First Message: Initiator to Responder */
384 struct wg_msg_init {
385 uint32_t wgmi_type;
386 uint32_t wgmi_sender;
387 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
388 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
389 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
390 uint8_t wgmi_mac1[WG_MAC_LEN];
391 uint8_t wgmi_mac2[WG_MAC_LEN];
392 } __packed;
393
394 /* [W] 5.4.3 Second Message: Responder to Initiator */
395 struct wg_msg_resp {
396 uint32_t wgmr_type;
397 uint32_t wgmr_sender;
398 uint32_t wgmr_receiver;
399 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
400 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
401 uint8_t wgmr_mac1[WG_MAC_LEN];
402 uint8_t wgmr_mac2[WG_MAC_LEN];
403 } __packed;
404
405 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
406 struct wg_msg_data {
407 uint32_t wgmd_type;
408 uint32_t wgmd_receiver;
409 uint64_t wgmd_counter;
410 uint32_t wgmd_packet[];
411 } __packed;
412
413 /* [W] 5.4.7 Under Load: Cookie Reply Message */
414 struct wg_msg_cookie {
415 uint32_t wgmc_type;
416 uint32_t wgmc_receiver;
417 uint8_t wgmc_salt[WG_SALT_LEN];
418 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
419 } __packed;
420
421 #define WG_MSG_TYPE_INIT 1
422 #define WG_MSG_TYPE_RESP 2
423 #define WG_MSG_TYPE_COOKIE 3
424 #define WG_MSG_TYPE_DATA 4
425 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
426
427 /* Sliding windows */
428
429 #define SLIWIN_BITS 2048u
430 #define SLIWIN_TYPE uint32_t
431 #define SLIWIN_BPW (NBBY*sizeof(SLIWIN_TYPE))
432 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
433 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
434
435 struct sliwin {
436 SLIWIN_TYPE B[SLIWIN_WORDS];
437 uint64_t T;
438 };
439
440 static void
441 sliwin_reset(struct sliwin *W)
442 {
443
444 memset(W, 0, sizeof(*W));
445 }
446
447 static int
448 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
449 {
450
451 /*
452 * If it's more than one window older than the highest sequence
453 * number we've seen, reject.
454 */
455 #ifdef __HAVE_ATOMIC64_LOADSTORE
456 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
457 return EAUTH;
458 #endif
459
460 /*
461 * Otherwise, we need to take the lock to decide, so don't
462 * reject just yet. Caller must serialize a call to
463 * sliwin_update in this case.
464 */
465 return 0;
466 }
467
468 static int
469 sliwin_update(struct sliwin *W, uint64_t S)
470 {
471 unsigned word, bit;
472
473 /*
474 * If it's more than one window older than the highest sequence
475 * number we've seen, reject.
476 */
477 if (S + SLIWIN_NPKT < W->T)
478 return EAUTH;
479
480 /*
481 * If it's higher than the highest sequence number we've seen,
482 * advance the window.
483 */
484 if (S > W->T) {
485 uint64_t i = W->T / SLIWIN_BPW;
486 uint64_t j = S / SLIWIN_BPW;
487 unsigned k;
488
489 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
490 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
491 #ifdef __HAVE_ATOMIC64_LOADSTORE
492 atomic_store_relaxed(&W->T, S);
493 #else
494 W->T = S;
495 #endif
496 }
497
498 /* Test and set the bit -- if already set, reject. */
499 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
500 bit = S % SLIWIN_BPW;
501 if (W->B[word] & (1UL << bit))
502 return EAUTH;
503 W->B[word] |= 1U << bit;
504
505 /* Accept! */
506 return 0;
507 }
508
509 struct wg_session {
510 struct wg_peer *wgs_peer;
511 struct psref_target
512 wgs_psref;
513
514 int wgs_state;
515 #define WGS_STATE_UNKNOWN 0
516 #define WGS_STATE_INIT_ACTIVE 1
517 #define WGS_STATE_INIT_PASSIVE 2
518 #define WGS_STATE_ESTABLISHED 3
519 #define WGS_STATE_DESTROYING 4
520
521 volatile uint32_t
522 wgs_time_established;
523 volatile uint32_t
524 wgs_time_last_data_sent;
525 volatile bool wgs_force_rekey;
526 bool wgs_is_initiator;
527
528 uint32_t wgs_local_index;
529 uint32_t wgs_remote_index;
530 #ifdef __HAVE_ATOMIC64_LOADSTORE
531 volatile uint64_t
532 wgs_send_counter;
533 #else
534 kmutex_t wgs_send_counter_lock;
535 uint64_t wgs_send_counter;
536 #endif
537
538 struct {
539 kmutex_t lock;
540 struct sliwin window;
541 } *wgs_recvwin;
542
543 uint8_t wgs_handshake_hash[WG_HASH_LEN];
544 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
545 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
546 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
547 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
548 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
549 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
550 };
551
552 struct wg_sockaddr {
553 union {
554 struct sockaddr_storage _ss;
555 struct sockaddr _sa;
556 struct sockaddr_in _sin;
557 struct sockaddr_in6 _sin6;
558 };
559 struct psref_target wgsa_psref;
560 };
561
562 #define wgsatoss(wgsa) (&(wgsa)->_ss)
563 #define wgsatosa(wgsa) (&(wgsa)->_sa)
564 #define wgsatosin(wgsa) (&(wgsa)->_sin)
565 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
566
567 #define wgsa_family(wgsa) (wgsatosa(wgsa)->sa_family)
568
569 struct wg_peer;
570 struct wg_allowedip {
571 struct radix_node wga_nodes[2];
572 struct wg_sockaddr _wga_sa_addr;
573 struct wg_sockaddr _wga_sa_mask;
574 #define wga_sa_addr _wga_sa_addr._sa
575 #define wga_sa_mask _wga_sa_mask._sa
576
577 int wga_family;
578 uint8_t wga_cidr;
579 union {
580 struct in_addr _ip4;
581 struct in6_addr _ip6;
582 } wga_addr;
583 #define wga_addr4 wga_addr._ip4
584 #define wga_addr6 wga_addr._ip6
585
586 struct wg_peer *wga_peer;
587 };
588
589 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
590
591 struct wg_ppsratecheck {
592 struct timeval wgprc_lasttime;
593 int wgprc_curpps;
594 };
595
596 struct wg_softc;
597 struct wg_peer {
598 struct wg_softc *wgp_sc;
599 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
600 struct pslist_entry wgp_peerlist_entry;
601 pserialize_t wgp_psz;
602 struct psref_target wgp_psref;
603 kmutex_t *wgp_lock;
604 kmutex_t *wgp_intr_lock;
605
606 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
607 struct wg_sockaddr *wgp_endpoint;
608 struct wg_sockaddr *wgp_endpoint0;
609 volatile unsigned wgp_endpoint_changing;
610 bool wgp_endpoint_available;
611
612 /* The preshared key (optional) */
613 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
614
615 struct wg_session *wgp_session_stable;
616 struct wg_session *wgp_session_unstable;
617
618 /* first outgoing packet awaiting session initiation */
619 struct mbuf *volatile wgp_pending;
620
621 /* timestamp in big-endian */
622 wg_timestamp_t wgp_timestamp_latest_init;
623
624 struct timespec wgp_last_handshake_time;
625
626 callout_t wgp_handshake_timeout_timer;
627 callout_t wgp_session_dtor_timer;
628
629 time_t wgp_handshake_start_time;
630
631 int wgp_n_allowedips;
632 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
633
634 time_t wgp_latest_cookie_time;
635 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
636 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
637 bool wgp_last_sent_mac1_valid;
638 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
639 bool wgp_last_sent_cookie_valid;
640
641 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
642
643 time_t wgp_last_cookiesecret_time;
644 uint8_t wgp_cookiesecret[WG_COOKIESECRET_LEN];
645
646 struct wg_ppsratecheck wgp_ppsratecheck;
647
648 struct work wgp_work;
649 unsigned int wgp_tasks;
650 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
651 #define WGP_TASK_RETRY_HANDSHAKE __BIT(1)
652 #define WGP_TASK_ESTABLISH_SESSION __BIT(2)
653 #define WGP_TASK_ENDPOINT_CHANGED __BIT(3)
654 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(4)
655 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(5)
656 };
657
658 struct wg_ops;
659
660 struct wg_softc {
661 struct ifnet wg_if;
662 LIST_ENTRY(wg_softc) wg_list;
663 kmutex_t *wg_lock;
664 kmutex_t *wg_intr_lock;
665 krwlock_t *wg_rwlock;
666
667 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
668 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
669
670 int wg_npeers;
671 struct pslist_head wg_peers;
672 struct thmap *wg_peers_bypubkey;
673 struct thmap *wg_peers_byname;
674 struct thmap *wg_sessions_byindex;
675 uint16_t wg_listen_port;
676
677 struct threadpool *wg_threadpool;
678
679 struct threadpool_job wg_job;
680 int wg_upcalls;
681 #define WG_UPCALL_INET __BIT(0)
682 #define WG_UPCALL_INET6 __BIT(1)
683
684 #ifdef INET
685 struct socket *wg_so4;
686 struct radix_node_head *wg_rtable_ipv4;
687 #endif
688 #ifdef INET6
689 struct socket *wg_so6;
690 struct radix_node_head *wg_rtable_ipv6;
691 #endif
692
693 struct wg_ppsratecheck wg_ppsratecheck;
694
695 struct wg_ops *wg_ops;
696
697 #ifdef WG_RUMPKERNEL
698 struct wg_user *wg_user;
699 #endif
700 };
701
702 /* [W] 6.1 Preliminaries */
703 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
704 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
705 #define WG_REKEY_AFTER_TIME 120
706 #define WG_REJECT_AFTER_TIME 180
707 #define WG_REKEY_ATTEMPT_TIME 90
708 #define WG_REKEY_TIMEOUT 5
709 #define WG_KEEPALIVE_TIMEOUT 10
710
711 #define WG_COOKIE_TIME 120
712 #define WG_COOKIESECRET_TIME (2 * 60)
713
714 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
715 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
716 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
717 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
718 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
719 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
720 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
721
722 static struct mbuf *
723 wg_get_mbuf(size_t, size_t);
724
725 static void wg_send_data_msg(struct wg_peer *, struct wg_session *,
726 struct mbuf *);
727 static void wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
728 const uint32_t, const uint8_t[static WG_MAC_LEN],
729 const struct sockaddr *);
730 static void wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
731 struct wg_session *, const struct wg_msg_init *);
732 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
733
734 static struct wg_peer *
735 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
736 struct psref *);
737 static struct wg_peer *
738 wg_lookup_peer_by_pubkey(struct wg_softc *,
739 const uint8_t[static WG_STATIC_KEY_LEN], struct psref *);
740
741 static struct wg_session *
742 wg_lookup_session_by_index(struct wg_softc *,
743 const uint32_t, struct psref *);
744
745 static void wg_update_endpoint_if_necessary(struct wg_peer *,
746 const struct sockaddr *);
747
748 static void wg_schedule_session_dtor_timer(struct wg_peer *);
749
750 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
751 static void wg_calculate_keys(struct wg_session *, const bool);
752
753 static void wg_clear_states(struct wg_session *);
754
755 static void wg_get_peer(struct wg_peer *, struct psref *);
756 static void wg_put_peer(struct wg_peer *, struct psref *);
757
758 static int wg_send_so(struct wg_peer *, struct mbuf *);
759 static int wg_send_udp(struct wg_peer *, struct mbuf *);
760 static int wg_output(struct ifnet *, struct mbuf *,
761 const struct sockaddr *, const struct rtentry *);
762 static void wg_input(struct ifnet *, struct mbuf *, const int);
763 static int wg_ioctl(struct ifnet *, u_long, void *);
764 static int wg_bind_port(struct wg_softc *, const uint16_t);
765 static int wg_init(struct ifnet *);
766 #ifdef ALTQ
767 static void wg_start(struct ifnet *);
768 #endif
769 static void wg_stop(struct ifnet *, int);
770
771 static void wg_peer_work(struct work *, void *);
772 static void wg_job(struct threadpool_job *);
773 static void wgintr(void *);
774 static void wg_purge_pending_packets(struct wg_peer *);
775
776 static int wg_clone_create(struct if_clone *, int);
777 static int wg_clone_destroy(struct ifnet *);
778
779 struct wg_ops {
780 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
781 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
782 void (*input)(struct ifnet *, struct mbuf *, const int);
783 int (*bind_port)(struct wg_softc *, const uint16_t);
784 };
785
786 struct wg_ops wg_ops_rumpkernel = {
787 .send_hs_msg = wg_send_so,
788 .send_data_msg = wg_send_udp,
789 .input = wg_input,
790 .bind_port = wg_bind_port,
791 };
792
793 #ifdef WG_RUMPKERNEL
794 static bool wg_user_mode(struct wg_softc *);
795 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
796
797 static int wg_send_user(struct wg_peer *, struct mbuf *);
798 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
799 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
800
801 struct wg_ops wg_ops_rumpuser = {
802 .send_hs_msg = wg_send_user,
803 .send_data_msg = wg_send_user,
804 .input = wg_input_user,
805 .bind_port = wg_bind_port_user,
806 };
807 #endif
808
809 #define WG_PEER_READER_FOREACH(wgp, wg) \
810 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
811 wgp_peerlist_entry)
812 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
813 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
814 wgp_peerlist_entry)
815 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
816 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
817 #define WG_PEER_WRITER_REMOVE(wgp) \
818 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
819
820 struct wg_route {
821 struct radix_node wgr_nodes[2];
822 struct wg_peer *wgr_peer;
823 };
824
825 static struct radix_node_head *
826 wg_rnh(struct wg_softc *wg, const int family)
827 {
828
829 switch (family) {
830 #ifdef INET
831 case AF_INET:
832 return wg->wg_rtable_ipv4;
833 #endif
834 #ifdef INET6
835 case AF_INET6:
836 return wg->wg_rtable_ipv6;
837 #endif
838 default:
839 return NULL;
840 }
841 }
842
843
844 /*
845 * Global variables
846 */
847 static volatile unsigned wg_count __cacheline_aligned;
848
849 struct psref_class *wg_psref_class __read_mostly;
850
851 static struct if_clone wg_cloner =
852 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
853
854 static struct pktqueue *wg_pktq __read_mostly;
855 static struct workqueue *wg_wq __read_mostly;
856
857 void wgattach(int);
858 /* ARGSUSED */
859 void
860 wgattach(int count)
861 {
862 /*
863 * Nothing to do here, initialization is handled by the
864 * module initialization code in wginit() below).
865 */
866 }
867
868 static void
869 wginit(void)
870 {
871
872 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
873
874 if_clone_attach(&wg_cloner);
875 }
876
877 /*
878 * XXX Kludge: This should just happen in wginit, but workqueue_create
879 * cannot be run until after CPUs have been detected, and wginit runs
880 * before configure.
881 */
882 static int
883 wginitqueues(void)
884 {
885 int error __diagused;
886
887 wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
888 KASSERT(wg_pktq != NULL);
889
890 error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
891 PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
892 KASSERTMSG(error == 0, "error=%d", error);
893
894 return 0;
895 }
896
897 static void
898 wg_guarantee_initialized(void)
899 {
900 static ONCE_DECL(init);
901 int error __diagused;
902
903 error = RUN_ONCE(&init, wginitqueues);
904 KASSERTMSG(error == 0, "error=%d", error);
905 }
906
907 static int
908 wg_count_inc(void)
909 {
910 unsigned o, n;
911
912 do {
913 o = atomic_load_relaxed(&wg_count);
914 if (o == UINT_MAX)
915 return ENFILE;
916 n = o + 1;
917 } while (atomic_cas_uint(&wg_count, o, n) != o);
918
919 return 0;
920 }
921
922 static void
923 wg_count_dec(void)
924 {
925 unsigned c __diagused;
926
927 c = atomic_dec_uint_nv(&wg_count);
928 KASSERT(c != UINT_MAX);
929 }
930
931 static int
932 wgdetach(void)
933 {
934
935 /* Prevent new interface creation. */
936 if_clone_detach(&wg_cloner);
937
938 /* Check whether there are any existing interfaces. */
939 if (atomic_load_relaxed(&wg_count)) {
940 /* Back out -- reattach the cloner. */
941 if_clone_attach(&wg_cloner);
942 return EBUSY;
943 }
944
945 /* No interfaces left. Nuke it. */
946 if (wg_wq)
947 workqueue_destroy(wg_wq);
948 if (wg_pktq)
949 pktq_destroy(wg_pktq);
950 psref_class_destroy(wg_psref_class);
951
952 return 0;
953 }
954
955 static void
956 wg_init_key_and_hash(uint8_t ckey[static WG_CHAINING_KEY_LEN],
957 uint8_t hash[static WG_HASH_LEN])
958 {
959 /* [W] 5.4: CONSTRUCTION */
960 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
961 /* [W] 5.4: IDENTIFIER */
962 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
963 struct blake2s state;
964
965 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
966 signature, strlen(signature));
967
968 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
969 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
970
971 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
972 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
973 blake2s_update(&state, id, strlen(id));
974 blake2s_final(&state, hash);
975
976 WG_DUMP_HASH("ckey", ckey);
977 WG_DUMP_HASH("hash", hash);
978 }
979
980 static void
981 wg_algo_hash(uint8_t hash[static WG_HASH_LEN], const uint8_t input[],
982 const size_t inputsize)
983 {
984 struct blake2s state;
985
986 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
987 blake2s_update(&state, hash, WG_HASH_LEN);
988 blake2s_update(&state, input, inputsize);
989 blake2s_final(&state, hash);
990 }
991
992 static void
993 wg_algo_mac(uint8_t out[], const size_t outsize,
994 const uint8_t key[], const size_t keylen,
995 const uint8_t input1[], const size_t input1len,
996 const uint8_t input2[], const size_t input2len)
997 {
998 struct blake2s state;
999
1000 blake2s_init(&state, outsize, key, keylen);
1001
1002 blake2s_update(&state, input1, input1len);
1003 if (input2 != NULL)
1004 blake2s_update(&state, input2, input2len);
1005 blake2s_final(&state, out);
1006 }
1007
1008 static void
1009 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
1010 const uint8_t input1[], const size_t input1len,
1011 const uint8_t input2[], const size_t input2len)
1012 {
1013 struct blake2s state;
1014 /* [W] 5.4: LABEL-MAC1 */
1015 const char *label = "mac1----";
1016 uint8_t key[WG_HASH_LEN];
1017
1018 blake2s_init(&state, sizeof(key), NULL, 0);
1019 blake2s_update(&state, label, strlen(label));
1020 blake2s_update(&state, input1, input1len);
1021 blake2s_final(&state, key);
1022
1023 blake2s_init(&state, outsize, key, sizeof(key));
1024 if (input2 != NULL)
1025 blake2s_update(&state, input2, input2len);
1026 blake2s_final(&state, out);
1027 }
1028
1029 static void
1030 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
1031 const uint8_t input1[], const size_t input1len)
1032 {
1033 struct blake2s state;
1034 /* [W] 5.4: LABEL-COOKIE */
1035 const char *label = "cookie--";
1036
1037 blake2s_init(&state, outsize, NULL, 0);
1038 blake2s_update(&state, label, strlen(label));
1039 blake2s_update(&state, input1, input1len);
1040 blake2s_final(&state, out);
1041 }
1042
1043 static void
1044 wg_algo_generate_keypair(uint8_t pubkey[static WG_EPHEMERAL_KEY_LEN],
1045 uint8_t privkey[static WG_EPHEMERAL_KEY_LEN])
1046 {
1047
1048 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1049
1050 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
1051 crypto_scalarmult_base(pubkey, privkey);
1052 }
1053
1054 static void
1055 wg_algo_dh(uint8_t out[static WG_DH_OUTPUT_LEN],
1056 const uint8_t privkey[static WG_STATIC_KEY_LEN],
1057 const uint8_t pubkey[static WG_STATIC_KEY_LEN])
1058 {
1059
1060 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1061
1062 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
1063 KASSERT(ret == 0);
1064 }
1065
1066 static void
1067 wg_algo_hmac(uint8_t out[], const size_t outlen,
1068 const uint8_t key[], const size_t keylen,
1069 const uint8_t in[], const size_t inlen)
1070 {
1071 #define IPAD 0x36
1072 #define OPAD 0x5c
1073 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
1074 uint8_t ipad[HMAC_BLOCK_LEN];
1075 uint8_t opad[HMAC_BLOCK_LEN];
1076 size_t i;
1077 struct blake2s state;
1078
1079 KASSERT(outlen == WG_HASH_LEN);
1080 KASSERT(keylen <= HMAC_BLOCK_LEN);
1081
1082 memcpy(hmackey, key, keylen);
1083
1084 for (i = 0; i < sizeof(hmackey); i++) {
1085 ipad[i] = hmackey[i] ^ IPAD;
1086 opad[i] = hmackey[i] ^ OPAD;
1087 }
1088
1089 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1090 blake2s_update(&state, ipad, sizeof(ipad));
1091 blake2s_update(&state, in, inlen);
1092 blake2s_final(&state, out);
1093
1094 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1095 blake2s_update(&state, opad, sizeof(opad));
1096 blake2s_update(&state, out, WG_HASH_LEN);
1097 blake2s_final(&state, out);
1098 #undef IPAD
1099 #undef OPAD
1100 }
1101
1102 static void
1103 wg_algo_kdf(uint8_t out1[static WG_KDF_OUTPUT_LEN],
1104 uint8_t out2[WG_KDF_OUTPUT_LEN],
1105 uint8_t out3[WG_KDF_OUTPUT_LEN],
1106 const uint8_t ckey[static WG_CHAINING_KEY_LEN],
1107 const uint8_t input[], const size_t inputlen)
1108 {
1109 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
1110 uint8_t one[1];
1111
1112 /*
1113 * [N] 4.3: "an input_key_material byte sequence with length
1114 * either zero bytes, 32 bytes, or DHLEN bytes."
1115 */
1116 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
1117
1118 WG_DUMP_HASH("ckey", ckey);
1119 if (input != NULL)
1120 WG_DUMP_HASH("input", input);
1121 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
1122 input, inputlen);
1123 WG_DUMP_HASH("tmp1", tmp1);
1124 one[0] = 1;
1125 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1126 one, sizeof(one));
1127 WG_DUMP_HASH("out1", out1);
1128 if (out2 == NULL)
1129 return;
1130 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
1131 tmp2[WG_KDF_OUTPUT_LEN] = 2;
1132 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1133 tmp2, sizeof(tmp2));
1134 WG_DUMP_HASH("out2", out2);
1135 if (out3 == NULL)
1136 return;
1137 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
1138 tmp2[WG_KDF_OUTPUT_LEN] = 3;
1139 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1140 tmp2, sizeof(tmp2));
1141 WG_DUMP_HASH("out3", out3);
1142 }
1143
1144 static void __noinline
1145 wg_algo_dh_kdf(uint8_t ckey[static WG_CHAINING_KEY_LEN],
1146 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1147 const uint8_t local_key[static WG_STATIC_KEY_LEN],
1148 const uint8_t remote_key[static WG_STATIC_KEY_LEN])
1149 {
1150 uint8_t dhout[WG_DH_OUTPUT_LEN];
1151
1152 wg_algo_dh(dhout, local_key, remote_key);
1153 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1154
1155 WG_DUMP_HASH("dhout", dhout);
1156 WG_DUMP_HASH("ckey", ckey);
1157 if (cipher_key != NULL)
1158 WG_DUMP_HASH("cipher_key", cipher_key);
1159 }
1160
1161 static void
1162 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize,
1163 const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
1164 const uint64_t counter,
1165 const uint8_t plain[], const size_t plainsize,
1166 const uint8_t auth[], size_t authlen)
1167 {
1168 uint8_t nonce[(32 + 64) / 8] = {0};
1169 long long unsigned int outsize;
1170 int error __diagused;
1171
1172 le64enc(&nonce[4], counter);
1173
1174 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1175 plainsize, auth, authlen, NULL, nonce, key);
1176 KASSERT(error == 0);
1177 KASSERT(outsize == expected_outsize);
1178 }
1179
1180 static int
1181 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize,
1182 const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
1183 const uint64_t counter,
1184 const uint8_t encrypted[], const size_t encryptedsize,
1185 const uint8_t auth[], size_t authlen)
1186 {
1187 uint8_t nonce[(32 + 64) / 8] = {0};
1188 long long unsigned int outsize;
1189 int error;
1190
1191 le64enc(&nonce[4], counter);
1192
1193 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1194 encrypted, encryptedsize, auth, authlen, nonce, key);
1195 if (error == 0)
1196 KASSERT(outsize == expected_outsize);
1197 return error;
1198 }
1199
1200 static void
1201 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1202 const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
1203 const uint8_t plain[], const size_t plainsize,
1204 const uint8_t auth[], size_t authlen,
1205 const uint8_t nonce[static WG_SALT_LEN])
1206 {
1207 long long unsigned int outsize;
1208 int error __diagused;
1209
1210 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1211 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1212 plain, plainsize, auth, authlen, NULL, nonce, key);
1213 KASSERT(error == 0);
1214 KASSERT(outsize == expected_outsize);
1215 }
1216
1217 static int
1218 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1219 const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
1220 const uint8_t encrypted[], const size_t encryptedsize,
1221 const uint8_t auth[], size_t authlen,
1222 const uint8_t nonce[static WG_SALT_LEN])
1223 {
1224 long long unsigned int outsize;
1225 int error;
1226
1227 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1228 encrypted, encryptedsize, auth, authlen, nonce, key);
1229 if (error == 0)
1230 KASSERT(outsize == expected_outsize);
1231 return error;
1232 }
1233
1234 static void
1235 wg_algo_tai64n(wg_timestamp_t timestamp)
1236 {
1237 struct timespec ts;
1238
1239 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1240 getnanotime(&ts);
1241 /* TAI64 label in external TAI64 format */
1242 be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
1243 /* second beginning from 1970 TAI */
1244 be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
1245 /* nanosecond in big-endian format */
1246 be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
1247 }
1248
1249 /*
1250 * wg_get_stable_session(wgp, psref)
1251 *
1252 * Get a passive reference to the current stable session, or
1253 * return NULL if there is no current stable session.
1254 *
1255 * The pointer is always there but the session is not necessarily
1256 * ESTABLISHED; if it is not ESTABLISHED, return NULL. However,
1257 * the session may transition from ESTABLISHED to DESTROYING while
1258 * holding the passive reference.
1259 */
1260 static struct wg_session *
1261 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1262 {
1263 int s;
1264 struct wg_session *wgs;
1265
1266 s = pserialize_read_enter();
1267 wgs = atomic_load_consume(&wgp->wgp_session_stable);
1268 if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
1269 wgs = NULL;
1270 else
1271 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1272 pserialize_read_exit(s);
1273
1274 return wgs;
1275 }
1276
1277 static void
1278 wg_put_session(struct wg_session *wgs, struct psref *psref)
1279 {
1280
1281 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1282 }
1283
1284 static void
1285 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1286 {
1287 struct wg_peer *wgp = wgs->wgs_peer;
1288 struct wg_session *wgs0 __diagused;
1289 void *garbage;
1290
1291 KASSERT(mutex_owned(wgp->wgp_lock));
1292 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1293
1294 /* Remove the session from the table. */
1295 wgs0 = thmap_del(wg->wg_sessions_byindex,
1296 &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1297 KASSERT(wgs0 == wgs);
1298 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1299
1300 /* Wait for passive references to drain. */
1301 pserialize_perform(wgp->wgp_psz);
1302 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1303
1304 /*
1305 * Free memory, zero state, and transition to UNKNOWN. We have
1306 * exclusive access to the session now, so there is no need for
1307 * an atomic store.
1308 */
1309 thmap_gc(wg->wg_sessions_byindex, garbage);
1310 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_UNKNOWN\n",
1311 wgs->wgs_local_index, wgs->wgs_remote_index);
1312 wgs->wgs_local_index = 0;
1313 wgs->wgs_remote_index = 0;
1314 wg_clear_states(wgs);
1315 wgs->wgs_state = WGS_STATE_UNKNOWN;
1316 wgs->wgs_force_rekey = false;
1317 }
1318
1319 /*
1320 * wg_get_session_index(wg, wgs)
1321 *
1322 * Choose a session index for wgs->wgs_local_index, and store it
1323 * in wg's table of sessions by index.
1324 *
1325 * wgs must be the unstable session of its peer, and must be
1326 * transitioning out of the UNKNOWN state.
1327 */
1328 static void
1329 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1330 {
1331 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1332 struct wg_session *wgs0;
1333 uint32_t index;
1334
1335 KASSERT(mutex_owned(wgp->wgp_lock));
1336 KASSERT(wgs == wgp->wgp_session_unstable);
1337 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1338 wgs->wgs_state);
1339
1340 do {
1341 /* Pick a uniform random index. */
1342 index = cprng_strong32();
1343
1344 /* Try to take it. */
1345 wgs->wgs_local_index = index;
1346 wgs0 = thmap_put(wg->wg_sessions_byindex,
1347 &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1348
1349 /* If someone else beat us, start over. */
1350 } while (__predict_false(wgs0 != wgs));
1351 }
1352
1353 /*
1354 * wg_put_session_index(wg, wgs)
1355 *
1356 * Remove wgs from the table of sessions by index, wait for any
1357 * passive references to drain, and transition the session to the
1358 * UNKNOWN state.
1359 *
1360 * wgs must be the unstable session of its peer, and must not be
1361 * UNKNOWN or ESTABLISHED.
1362 */
1363 static void
1364 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1365 {
1366 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1367
1368 KASSERT(mutex_owned(wgp->wgp_lock));
1369 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1370 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1371
1372 wg_destroy_session(wg, wgs);
1373 psref_target_init(&wgs->wgs_psref, wg_psref_class);
1374 }
1375
1376 /*
1377 * Handshake patterns
1378 *
1379 * [W] 5: "These messages use the "IK" pattern from Noise"
1380 * [N] 7.5. Interactive handshake patterns (fundamental)
1381 * "The first character refers to the initiators static key:"
1382 * "I = Static key for initiator Immediately transmitted to responder,
1383 * despite reduced or absent identity hiding"
1384 * "The second character refers to the responders static key:"
1385 * "K = Static key for responder Known to initiator"
1386 * "IK:
1387 * <- s
1388 * ...
1389 * -> e, es, s, ss
1390 * <- e, ee, se"
1391 * [N] 9.4. Pattern modifiers
1392 * "IKpsk2:
1393 * <- s
1394 * ...
1395 * -> e, es, s, ss
1396 * <- e, ee, se, psk"
1397 */
1398 static void
1399 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1400 struct wg_session *wgs, struct wg_msg_init *wgmi)
1401 {
1402 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1403 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1404 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1405 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1406 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1407
1408 KASSERT(mutex_owned(wgp->wgp_lock));
1409 KASSERT(wgs == wgp->wgp_session_unstable);
1410 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
1411 wgs->wgs_state);
1412
1413 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1414 wgmi->wgmi_sender = wgs->wgs_local_index;
1415
1416 /* [W] 5.4.2: First Message: Initiator to Responder */
1417
1418 /* Ci := HASH(CONSTRUCTION) */
1419 /* Hi := HASH(Ci || IDENTIFIER) */
1420 wg_init_key_and_hash(ckey, hash);
1421 /* Hi := HASH(Hi || Sr^pub) */
1422 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1423
1424 WG_DUMP_HASH("hash", hash);
1425
1426 /* [N] 2.2: "e" */
1427 /* Ei^priv, Ei^pub := DH-GENERATE() */
1428 wg_algo_generate_keypair(pubkey, privkey);
1429 /* Ci := KDF1(Ci, Ei^pub) */
1430 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1431 /* msg.ephemeral := Ei^pub */
1432 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1433 /* Hi := HASH(Hi || msg.ephemeral) */
1434 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1435
1436 WG_DUMP_HASH("ckey", ckey);
1437 WG_DUMP_HASH("hash", hash);
1438
1439 /* [N] 2.2: "es" */
1440 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1441 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1442
1443 /* [N] 2.2: "s" */
1444 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1445 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1446 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1447 hash, sizeof(hash));
1448 /* Hi := HASH(Hi || msg.static) */
1449 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1450
1451 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1452
1453 /* [N] 2.2: "ss" */
1454 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1455 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1456
1457 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1458 wg_timestamp_t timestamp;
1459 wg_algo_tai64n(timestamp);
1460 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1461 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1462 /* Hi := HASH(Hi || msg.timestamp) */
1463 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1464
1465 /* [W] 5.4.4 Cookie MACs */
1466 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1467 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1468 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1469 /* Need mac1 to decrypt a cookie from a cookie message */
1470 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1471 sizeof(wgp->wgp_last_sent_mac1));
1472 wgp->wgp_last_sent_mac1_valid = true;
1473
1474 if (wgp->wgp_latest_cookie_time == 0 ||
1475 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1476 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1477 else {
1478 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1479 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1480 (const uint8_t *)wgmi,
1481 offsetof(struct wg_msg_init, wgmi_mac2),
1482 NULL, 0);
1483 }
1484
1485 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1486 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1487 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1488 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1489 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1490 }
1491
1492 static void __noinline
1493 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1494 const struct sockaddr *src)
1495 {
1496 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1497 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1498 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1499 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1500 struct wg_peer *wgp;
1501 struct wg_session *wgs;
1502 int error, ret;
1503 struct psref psref_peer;
1504 uint8_t mac1[WG_MAC_LEN];
1505
1506 WG_TRACE("init msg received");
1507
1508 wg_algo_mac_mac1(mac1, sizeof(mac1),
1509 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1510 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1511
1512 /*
1513 * [W] 5.3: Denial of Service Mitigation & Cookies
1514 * "the responder, ..., must always reject messages with an invalid
1515 * msg.mac1"
1516 */
1517 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1518 WG_DLOG("mac1 is invalid\n");
1519 return;
1520 }
1521
1522 /*
1523 * [W] 5.4.2: First Message: Initiator to Responder
1524 * "When the responder receives this message, it does the same
1525 * operations so that its final state variables are identical,
1526 * replacing the operands of the DH function to produce equivalent
1527 * values."
1528 * Note that the following comments of operations are just copies of
1529 * the initiator's ones.
1530 */
1531
1532 /* Ci := HASH(CONSTRUCTION) */
1533 /* Hi := HASH(Ci || IDENTIFIER) */
1534 wg_init_key_and_hash(ckey, hash);
1535 /* Hi := HASH(Hi || Sr^pub) */
1536 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1537
1538 /* [N] 2.2: "e" */
1539 /* Ci := KDF1(Ci, Ei^pub) */
1540 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1541 sizeof(wgmi->wgmi_ephemeral));
1542 /* Hi := HASH(Hi || msg.ephemeral) */
1543 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1544
1545 WG_DUMP_HASH("ckey", ckey);
1546
1547 /* [N] 2.2: "es" */
1548 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1549 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1550
1551 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1552
1553 /* [N] 2.2: "s" */
1554 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1555 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1556 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1557 if (error != 0) {
1558 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1559 "%s: wg_algo_aead_dec for secret key failed\n",
1560 if_name(&wg->wg_if));
1561 return;
1562 }
1563 /* Hi := HASH(Hi || msg.static) */
1564 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1565
1566 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1567 if (wgp == NULL) {
1568 WG_DLOG("peer not found\n");
1569 return;
1570 }
1571
1572 /*
1573 * Lock the peer to serialize access to cookie state.
1574 *
1575 * XXX Can we safely avoid holding the lock across DH? Take it
1576 * just to verify mac2 and then unlock/DH/lock?
1577 */
1578 mutex_enter(wgp->wgp_lock);
1579
1580 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1581 WG_TRACE("under load");
1582 /*
1583 * [W] 5.3: Denial of Service Mitigation & Cookies
1584 * "the responder, ..., and when under load may reject messages
1585 * with an invalid msg.mac2. If the responder receives a
1586 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1587 * and is under load, it may respond with a cookie reply
1588 * message"
1589 */
1590 uint8_t zero[WG_MAC_LEN] = {0};
1591 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1592 WG_TRACE("sending a cookie message: no cookie included");
1593 wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1594 wgmi->wgmi_mac1, src);
1595 goto out;
1596 }
1597 if (!wgp->wgp_last_sent_cookie_valid) {
1598 WG_TRACE("sending a cookie message: no cookie sent ever");
1599 wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1600 wgmi->wgmi_mac1, src);
1601 goto out;
1602 }
1603 uint8_t mac2[WG_MAC_LEN];
1604 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1605 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1606 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1607 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1608 WG_DLOG("mac2 is invalid\n");
1609 goto out;
1610 }
1611 WG_TRACE("under load, but continue to sending");
1612 }
1613
1614 /* [N] 2.2: "ss" */
1615 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1616 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1617
1618 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1619 wg_timestamp_t timestamp;
1620 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1621 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1622 hash, sizeof(hash));
1623 if (error != 0) {
1624 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1625 "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
1626 if_name(&wg->wg_if), wgp->wgp_name);
1627 goto out;
1628 }
1629 /* Hi := HASH(Hi || msg.timestamp) */
1630 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1631
1632 /*
1633 * [W] 5.1 "The responder keeps track of the greatest timestamp
1634 * received per peer and discards packets containing
1635 * timestamps less than or equal to it."
1636 */
1637 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1638 sizeof(timestamp));
1639 if (ret <= 0) {
1640 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1641 "%s: peer %s: invalid init msg: timestamp is old\n",
1642 if_name(&wg->wg_if), wgp->wgp_name);
1643 goto out;
1644 }
1645 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1646
1647 /*
1648 * Message is good -- we're committing to handle it now, unless
1649 * we were already initiating a session.
1650 */
1651 wgs = wgp->wgp_session_unstable;
1652 switch (wgs->wgs_state) {
1653 case WGS_STATE_UNKNOWN: /* new session initiated by peer */
1654 break;
1655 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, drop */
1656 /* XXX Who wins if both sides send INIT? */
1657 WG_TRACE("Session already initializing, ignoring the message");
1658 goto out;
1659 case WGS_STATE_INIT_PASSIVE: /* peer is retrying, start over */
1660 WG_TRACE("Session already initializing, destroying old states");
1661 /*
1662 * XXX Avoid this -- just resend our response -- if the
1663 * INIT message is identical to the previous one.
1664 */
1665 wg_put_session_index(wg, wgs);
1666 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1667 wgs->wgs_state);
1668 break;
1669 case WGS_STATE_ESTABLISHED: /* can't happen */
1670 panic("unstable session can't be established");
1671 case WGS_STATE_DESTROYING: /* rekey initiated by peer */
1672 WG_TRACE("Session destroying, but force to clear");
1673 wg_put_session_index(wg, wgs);
1674 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1675 wgs->wgs_state);
1676 break;
1677 default:
1678 panic("invalid session state: %d", wgs->wgs_state);
1679 }
1680
1681 /*
1682 * Assign a fresh session index.
1683 */
1684 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1685 wgs->wgs_state);
1686 wg_get_session_index(wg, wgs);
1687
1688 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1689 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1690 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1691 sizeof(wgmi->wgmi_ephemeral));
1692
1693 wg_update_endpoint_if_necessary(wgp, src);
1694
1695 /*
1696 * Count the time of the INIT message as the time of
1697 * establishment -- this is used to decide when to erase keys,
1698 * and we want to start counting as soon as we have generated
1699 * keys.
1700 *
1701 * No need for atomic store because the session can't be used
1702 * in the rx or tx paths yet -- not until we transition to
1703 * INTI_PASSIVE.
1704 */
1705 wgs->wgs_time_established = time_uptime32;
1706 wg_schedule_session_dtor_timer(wgp);
1707
1708 /*
1709 * Respond to the initiator with our ephemeral public key.
1710 */
1711 wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1712
1713 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
1714 " calculate keys as responder\n",
1715 wgs->wgs_local_index, wgs->wgs_remote_index);
1716 wg_calculate_keys(wgs, false);
1717 wg_clear_states(wgs);
1718
1719 /*
1720 * Session is ready to receive data now that we have received
1721 * the peer initiator's ephemeral key pair, generated our
1722 * responder's ephemeral key pair, and derived a session key.
1723 *
1724 * Transition from UNKNOWN to INIT_PASSIVE to publish it to the
1725 * data rx path, wg_handle_msg_data, where the
1726 * atomic_load_acquire matching this atomic_store_release
1727 * happens.
1728 *
1729 * (Session is not, however, ready to send data until the peer
1730 * has acknowledged our response by sending its first data
1731 * packet. So don't swap the sessions yet.)
1732 */
1733 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_INIT_PASSIVE\n",
1734 wgs->wgs_local_index, wgs->wgs_remote_index);
1735 atomic_store_release(&wgs->wgs_state, WGS_STATE_INIT_PASSIVE);
1736 WG_TRACE("WGS_STATE_INIT_PASSIVE");
1737
1738 out:
1739 mutex_exit(wgp->wgp_lock);
1740 wg_put_peer(wgp, &psref_peer);
1741 }
1742
1743 static struct socket *
1744 wg_get_so_by_af(struct wg_softc *wg, const int af)
1745 {
1746
1747 switch (af) {
1748 #ifdef INET
1749 case AF_INET:
1750 return wg->wg_so4;
1751 #endif
1752 #ifdef INET6
1753 case AF_INET6:
1754 return wg->wg_so6;
1755 #endif
1756 default:
1757 panic("wg: no such af: %d", af);
1758 }
1759 }
1760
1761 static struct socket *
1762 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1763 {
1764
1765 return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
1766 }
1767
1768 static struct wg_sockaddr *
1769 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1770 {
1771 struct wg_sockaddr *wgsa;
1772 int s;
1773
1774 s = pserialize_read_enter();
1775 wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1776 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1777 pserialize_read_exit(s);
1778
1779 return wgsa;
1780 }
1781
1782 static void
1783 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1784 {
1785
1786 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1787 }
1788
1789 static int
1790 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1791 {
1792 int error;
1793 struct socket *so;
1794 struct psref psref;
1795 struct wg_sockaddr *wgsa;
1796
1797 wgsa = wg_get_endpoint_sa(wgp, &psref);
1798 so = wg_get_so_by_peer(wgp, wgsa);
1799 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1800 wg_put_sa(wgp, wgsa, &psref);
1801
1802 return error;
1803 }
1804
1805 static void
1806 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1807 {
1808 int error;
1809 struct mbuf *m;
1810 struct wg_msg_init *wgmi;
1811 struct wg_session *wgs;
1812
1813 KASSERT(mutex_owned(wgp->wgp_lock));
1814
1815 wgs = wgp->wgp_session_unstable;
1816 /* XXX pull dispatch out into wg_task_send_init_message */
1817 switch (wgs->wgs_state) {
1818 case WGS_STATE_UNKNOWN: /* new session initiated by us */
1819 break;
1820 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, stop */
1821 WG_TRACE("Session already initializing, skip starting new one");
1822 return;
1823 case WGS_STATE_INIT_PASSIVE: /* peer was trying -- XXX what now? */
1824 WG_TRACE("Session already initializing, waiting for peer");
1825 return;
1826 case WGS_STATE_ESTABLISHED: /* can't happen */
1827 panic("unstable session can't be established");
1828 case WGS_STATE_DESTROYING: /* rekey initiated by us too early */
1829 WG_TRACE("Session destroying");
1830 wg_put_session_index(wg, wgs);
1831 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1832 wgs->wgs_state);
1833 break;
1834 }
1835
1836 /*
1837 * Assign a fresh session index.
1838 */
1839 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1840 wgs->wgs_state);
1841 wg_get_session_index(wg, wgs);
1842
1843 /*
1844 * We have initiated a session. Transition to INIT_ACTIVE.
1845 * This doesn't publish it for use in the data rx path,
1846 * wg_handle_msg_data, or in the data tx path, wg_output -- we
1847 * have to wait for the peer to respond with their ephemeral
1848 * public key before we can derive a session key for tx/rx.
1849 * Hence only atomic_store_relaxed.
1850 */
1851 WG_DLOG("session[L=%"PRIx32" R=(unknown)] -> WGS_STATE_INIT_ACTIVE\n",
1852 wgs->wgs_local_index);
1853 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_INIT_ACTIVE);
1854
1855 m = m_gethdr(M_WAIT, MT_DATA);
1856 if (sizeof(*wgmi) > MHLEN) {
1857 m_clget(m, M_WAIT);
1858 CTASSERT(sizeof(*wgmi) <= MCLBYTES);
1859 }
1860 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1861 wgmi = mtod(m, struct wg_msg_init *);
1862 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1863
1864 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
1865 if (error) {
1866 /*
1867 * Sending out an initiation packet failed; give up on
1868 * this session and toss packet waiting for it if any.
1869 *
1870 * XXX Why don't we just let the periodic handshake
1871 * retry logic work in this case?
1872 */
1873 WG_DLOG("send_hs_msg failed, error=%d\n", error);
1874 wg_put_session_index(wg, wgs);
1875 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
1876 m_freem(m);
1877 return;
1878 }
1879
1880 WG_TRACE("init msg sent");
1881 if (wgp->wgp_handshake_start_time == 0)
1882 wgp->wgp_handshake_start_time = time_uptime;
1883 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1884 MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
1885 }
1886
1887 static void
1888 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1889 struct wg_session *wgs, struct wg_msg_resp *wgmr,
1890 const struct wg_msg_init *wgmi)
1891 {
1892 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1893 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1894 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1895 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1896 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1897
1898 KASSERT(mutex_owned(wgp->wgp_lock));
1899 KASSERT(wgs == wgp->wgp_session_unstable);
1900 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1901 wgs->wgs_state);
1902
1903 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1904 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1905
1906 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
1907 wgmr->wgmr_sender = wgs->wgs_local_index;
1908 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1909
1910 /* [W] 5.4.3 Second Message: Responder to Initiator */
1911
1912 /* [N] 2.2: "e" */
1913 /* Er^priv, Er^pub := DH-GENERATE() */
1914 wg_algo_generate_keypair(pubkey, privkey);
1915 /* Cr := KDF1(Cr, Er^pub) */
1916 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1917 /* msg.ephemeral := Er^pub */
1918 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1919 /* Hr := HASH(Hr || msg.ephemeral) */
1920 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1921
1922 WG_DUMP_HASH("ckey", ckey);
1923 WG_DUMP_HASH("hash", hash);
1924
1925 /* [N] 2.2: "ee" */
1926 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1927 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1928
1929 /* [N] 2.2: "se" */
1930 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1931 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1932
1933 /* [N] 9.2: "psk" */
1934 {
1935 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1936 /* Cr, r, k := KDF3(Cr, Q) */
1937 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1938 sizeof(wgp->wgp_psk));
1939 /* Hr := HASH(Hr || r) */
1940 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1941 }
1942
1943 /* msg.empty := AEAD(k, 0, e, Hr) */
1944 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1945 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1946 /* Hr := HASH(Hr || msg.empty) */
1947 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1948
1949 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1950
1951 /* [W] 5.4.4: Cookie MACs */
1952 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1953 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1954 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1955 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1956 /* Need mac1 to decrypt a cookie from a cookie message */
1957 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1958 sizeof(wgp->wgp_last_sent_mac1));
1959 wgp->wgp_last_sent_mac1_valid = true;
1960
1961 if (wgp->wgp_latest_cookie_time == 0 ||
1962 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1963 /* msg.mac2 := 0^16 */
1964 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1965 else {
1966 /* msg.mac2 := MAC(Lm, msg_b) */
1967 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1968 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1969 (const uint8_t *)wgmr,
1970 offsetof(struct wg_msg_resp, wgmr_mac2),
1971 NULL, 0);
1972 }
1973
1974 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1975 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1976 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1977 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1978 wgs->wgs_remote_index = wgmi->wgmi_sender;
1979 WG_DLOG("sender=%x\n", wgs->wgs_local_index);
1980 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1981 }
1982
1983 static void
1984 wg_swap_sessions(struct wg_peer *wgp)
1985 {
1986 struct wg_session *wgs, *wgs_prev;
1987
1988 KASSERT(mutex_owned(wgp->wgp_lock));
1989
1990 wgs = wgp->wgp_session_unstable;
1991 KASSERTMSG(wgs->wgs_state == WGS_STATE_ESTABLISHED, "state=%d",
1992 wgs->wgs_state);
1993
1994 wgs_prev = wgp->wgp_session_stable;
1995 KASSERTMSG((wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
1996 wgs_prev->wgs_state == WGS_STATE_UNKNOWN),
1997 "state=%d", wgs_prev->wgs_state);
1998 atomic_store_release(&wgp->wgp_session_stable, wgs);
1999 wgp->wgp_session_unstable = wgs_prev;
2000 }
2001
2002 static void __noinline
2003 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
2004 const struct sockaddr *src)
2005 {
2006 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
2007 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
2008 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
2009 struct wg_peer *wgp;
2010 struct wg_session *wgs;
2011 struct psref psref;
2012 int error;
2013 uint8_t mac1[WG_MAC_LEN];
2014 struct wg_session *wgs_prev;
2015 struct mbuf *m;
2016
2017 wg_algo_mac_mac1(mac1, sizeof(mac1),
2018 wg->wg_pubkey, sizeof(wg->wg_pubkey),
2019 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
2020
2021 /*
2022 * [W] 5.3: Denial of Service Mitigation & Cookies
2023 * "the responder, ..., must always reject messages with an invalid
2024 * msg.mac1"
2025 */
2026 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
2027 WG_DLOG("mac1 is invalid\n");
2028 return;
2029 }
2030
2031 WG_TRACE("resp msg received");
2032 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
2033 if (wgs == NULL) {
2034 WG_TRACE("No session found");
2035 return;
2036 }
2037
2038 wgp = wgs->wgs_peer;
2039
2040 mutex_enter(wgp->wgp_lock);
2041
2042 /* If we weren't waiting for a handshake response, drop it. */
2043 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
2044 WG_TRACE("peer sent spurious handshake response, ignoring");
2045 goto out;
2046 }
2047
2048 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
2049 WG_TRACE("under load");
2050 /*
2051 * [W] 5.3: Denial of Service Mitigation & Cookies
2052 * "the responder, ..., and when under load may reject messages
2053 * with an invalid msg.mac2. If the responder receives a
2054 * message with a valid msg.mac1 yet with an invalid msg.mac2,
2055 * and is under load, it may respond with a cookie reply
2056 * message"
2057 */
2058 uint8_t zero[WG_MAC_LEN] = {0};
2059 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
2060 WG_TRACE("sending a cookie message: no cookie included");
2061 wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2062 wgmr->wgmr_mac1, src);
2063 goto out;
2064 }
2065 if (!wgp->wgp_last_sent_cookie_valid) {
2066 WG_TRACE("sending a cookie message: no cookie sent ever");
2067 wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2068 wgmr->wgmr_mac1, src);
2069 goto out;
2070 }
2071 uint8_t mac2[WG_MAC_LEN];
2072 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
2073 WG_COOKIE_LEN, (const uint8_t *)wgmr,
2074 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
2075 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
2076 WG_DLOG("mac2 is invalid\n");
2077 goto out;
2078 }
2079 WG_TRACE("under load, but continue to sending");
2080 }
2081
2082 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
2083 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
2084
2085 /*
2086 * [W] 5.4.3 Second Message: Responder to Initiator
2087 * "When the initiator receives this message, it does the same
2088 * operations so that its final state variables are identical,
2089 * replacing the operands of the DH function to produce equivalent
2090 * values."
2091 * Note that the following comments of operations are just copies of
2092 * the initiator's ones.
2093 */
2094
2095 /* [N] 2.2: "e" */
2096 /* Cr := KDF1(Cr, Er^pub) */
2097 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
2098 sizeof(wgmr->wgmr_ephemeral));
2099 /* Hr := HASH(Hr || msg.ephemeral) */
2100 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
2101
2102 WG_DUMP_HASH("ckey", ckey);
2103 WG_DUMP_HASH("hash", hash);
2104
2105 /* [N] 2.2: "ee" */
2106 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
2107 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
2108 wgmr->wgmr_ephemeral);
2109
2110 /* [N] 2.2: "se" */
2111 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
2112 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
2113
2114 /* [N] 9.2: "psk" */
2115 {
2116 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
2117 /* Cr, r, k := KDF3(Cr, Q) */
2118 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
2119 sizeof(wgp->wgp_psk));
2120 /* Hr := HASH(Hr || r) */
2121 wg_algo_hash(hash, kdfout, sizeof(kdfout));
2122 }
2123
2124 {
2125 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
2126 /* msg.empty := AEAD(k, 0, e, Hr) */
2127 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
2128 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
2129 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
2130 if (error != 0) {
2131 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2132 "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
2133 if_name(&wg->wg_if), wgp->wgp_name);
2134 goto out;
2135 }
2136 /* Hr := HASH(Hr || msg.empty) */
2137 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
2138 }
2139
2140 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
2141 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
2142 wgs->wgs_remote_index = wgmr->wgmr_sender;
2143 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
2144
2145 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
2146 wgs->wgs_state);
2147 wgs->wgs_time_established = time_uptime32;
2148 wg_schedule_session_dtor_timer(wgp);
2149 wgs->wgs_time_last_data_sent = 0;
2150 wgs->wgs_is_initiator = true;
2151 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
2152 " calculate keys as initiator\n",
2153 wgs->wgs_local_index, wgs->wgs_remote_index);
2154 wg_calculate_keys(wgs, true);
2155 wg_clear_states(wgs);
2156
2157 /*
2158 * Session is ready to receive data now that we have received
2159 * the responder's response.
2160 *
2161 * Transition from INIT_ACTIVE to ESTABLISHED to publish it to
2162 * the data rx path, wg_handle_msg_data.
2163 */
2164 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32" -> WGS_STATE_ESTABLISHED\n",
2165 wgs->wgs_local_index, wgs->wgs_remote_index);
2166 atomic_store_release(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
2167 WG_TRACE("WGS_STATE_ESTABLISHED");
2168
2169 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
2170
2171 /*
2172 * Session is ready to send data now that we have received the
2173 * responder's response.
2174 *
2175 * Swap the sessions to publish the new one as the stable
2176 * session for the data tx path, wg_output.
2177 */
2178 wg_swap_sessions(wgp);
2179 KASSERT(wgs == wgp->wgp_session_stable);
2180 wgs_prev = wgp->wgp_session_unstable;
2181 getnanotime(&wgp->wgp_last_handshake_time);
2182 wgp->wgp_handshake_start_time = 0;
2183 wgp->wgp_last_sent_mac1_valid = false;
2184 wgp->wgp_last_sent_cookie_valid = false;
2185
2186 wg_update_endpoint_if_necessary(wgp, src);
2187
2188 /*
2189 * If we had a data packet queued up, send it; otherwise send a
2190 * keepalive message -- either way we have to send something
2191 * immediately or else the responder will never answer.
2192 */
2193 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
2194 kpreempt_disable();
2195 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
2196 M_SETCTX(m, wgp);
2197 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
2198 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
2199 if_name(&wg->wg_if));
2200 m_freem(m);
2201 }
2202 kpreempt_enable();
2203 } else {
2204 wg_send_keepalive_msg(wgp, wgs);
2205 }
2206
2207 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2208 /*
2209 * Transition ESTABLISHED->DESTROYING. The session
2210 * will remain usable for the data rx path to process
2211 * packets still in flight to us, but we won't use it
2212 * for data tx.
2213 */
2214 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
2215 " -> WGS_STATE_DESTROYING\n",
2216 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
2217 atomic_store_relaxed(&wgs_prev->wgs_state,
2218 WGS_STATE_DESTROYING);
2219 } else {
2220 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2221 "state=%d", wgs_prev->wgs_state);
2222 }
2223
2224 out:
2225 mutex_exit(wgp->wgp_lock);
2226 wg_put_session(wgs, &psref);
2227 }
2228
2229 static void
2230 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
2231 struct wg_session *wgs, const struct wg_msg_init *wgmi)
2232 {
2233 int error;
2234 struct mbuf *m;
2235 struct wg_msg_resp *wgmr;
2236
2237 KASSERT(mutex_owned(wgp->wgp_lock));
2238 KASSERT(wgs == wgp->wgp_session_unstable);
2239 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
2240 wgs->wgs_state);
2241
2242 m = m_gethdr(M_WAIT, MT_DATA);
2243 if (sizeof(*wgmr) > MHLEN) {
2244 m_clget(m, M_WAIT);
2245 CTASSERT(sizeof(*wgmr) <= MCLBYTES);
2246 }
2247 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
2248 wgmr = mtod(m, struct wg_msg_resp *);
2249 wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
2250
2251 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
2252 if (error) {
2253 WG_DLOG("send_hs_msg failed, error=%d\n", error);
2254 return;
2255 }
2256
2257 WG_TRACE("resp msg sent");
2258 }
2259
2260 static struct wg_peer *
2261 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
2262 const uint8_t pubkey[static WG_STATIC_KEY_LEN], struct psref *psref)
2263 {
2264 struct wg_peer *wgp;
2265
2266 int s = pserialize_read_enter();
2267 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
2268 if (wgp != NULL)
2269 wg_get_peer(wgp, psref);
2270 pserialize_read_exit(s);
2271
2272 return wgp;
2273 }
2274
2275 static void
2276 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
2277 struct wg_msg_cookie *wgmc, const uint32_t sender,
2278 const uint8_t mac1[static WG_MAC_LEN], const struct sockaddr *src)
2279 {
2280 uint8_t cookie[WG_COOKIE_LEN];
2281 uint8_t key[WG_HASH_LEN];
2282 uint8_t addr[sizeof(struct in6_addr)];
2283 size_t addrlen;
2284 uint16_t uh_sport; /* be */
2285
2286 KASSERT(mutex_owned(wgp->wgp_lock));
2287
2288 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
2289 wgmc->wgmc_receiver = sender;
2290 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
2291
2292 /*
2293 * [W] 5.4.7: Under Load: Cookie Reply Message
2294 * "The secret variable, Rm, changes every two minutes to a
2295 * random value"
2296 */
2297 if ((time_uptime - wgp->wgp_last_cookiesecret_time) >
2298 WG_COOKIESECRET_TIME) {
2299 cprng_strong(kern_cprng, wgp->wgp_cookiesecret,
2300 sizeof(wgp->wgp_cookiesecret), 0);
2301 wgp->wgp_last_cookiesecret_time = time_uptime;
2302 }
2303
2304 switch (src->sa_family) {
2305 #ifdef INET
2306 case AF_INET: {
2307 const struct sockaddr_in *sin = satocsin(src);
2308 addrlen = sizeof(sin->sin_addr);
2309 memcpy(addr, &sin->sin_addr, addrlen);
2310 uh_sport = sin->sin_port;
2311 break;
2312 }
2313 #endif
2314 #ifdef INET6
2315 case AF_INET6: {
2316 const struct sockaddr_in6 *sin6 = satocsin6(src);
2317 addrlen = sizeof(sin6->sin6_addr);
2318 memcpy(addr, &sin6->sin6_addr, addrlen);
2319 uh_sport = sin6->sin6_port;
2320 break;
2321 }
2322 #endif
2323 default:
2324 panic("invalid af=%d", src->sa_family);
2325 }
2326
2327 wg_algo_mac(cookie, sizeof(cookie),
2328 wgp->wgp_cookiesecret, sizeof(wgp->wgp_cookiesecret),
2329 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2330 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2331 sizeof(wg->wg_pubkey));
2332 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2333 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2334
2335 /* Need to store to calculate mac2 */
2336 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2337 wgp->wgp_last_sent_cookie_valid = true;
2338 }
2339
2340 static void
2341 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2342 const uint32_t sender, const uint8_t mac1[static WG_MAC_LEN],
2343 const struct sockaddr *src)
2344 {
2345 int error;
2346 struct mbuf *m;
2347 struct wg_msg_cookie *wgmc;
2348
2349 KASSERT(mutex_owned(wgp->wgp_lock));
2350
2351 m = m_gethdr(M_WAIT, MT_DATA);
2352 if (sizeof(*wgmc) > MHLEN) {
2353 m_clget(m, M_WAIT);
2354 CTASSERT(sizeof(*wgmc) <= MCLBYTES);
2355 }
2356 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2357 wgmc = mtod(m, struct wg_msg_cookie *);
2358 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2359
2360 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
2361 if (error) {
2362 WG_DLOG("send_hs_msg failed, error=%d\n", error);
2363 return;
2364 }
2365
2366 WG_TRACE("cookie msg sent");
2367 }
2368
2369 static bool
2370 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2371 {
2372 #ifdef WG_DEBUG_PARAMS
2373 if (wg_force_underload)
2374 return true;
2375 #endif
2376
2377 /*
2378 * XXX we don't have a means of a load estimation. The purpose of
2379 * the mechanism is a DoS mitigation, so we consider frequent handshake
2380 * messages as (a kind of) load; if a message of the same type comes
2381 * to a peer within 1 second, we consider we are under load.
2382 */
2383 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2384 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2385 return (time_uptime - last) == 0;
2386 }
2387
2388 static void
2389 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2390 {
2391
2392 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2393
2394 /*
2395 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2396 */
2397 if (initiator) {
2398 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2399 wgs->wgs_chaining_key, NULL, 0);
2400 } else {
2401 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2402 wgs->wgs_chaining_key, NULL, 0);
2403 }
2404 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2405 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2406 }
2407
2408 static uint64_t
2409 wg_session_get_send_counter(struct wg_session *wgs)
2410 {
2411 #ifdef __HAVE_ATOMIC64_LOADSTORE
2412 return atomic_load_relaxed(&wgs->wgs_send_counter);
2413 #else
2414 uint64_t send_counter;
2415
2416 mutex_enter(&wgs->wgs_send_counter_lock);
2417 send_counter = wgs->wgs_send_counter;
2418 mutex_exit(&wgs->wgs_send_counter_lock);
2419
2420 return send_counter;
2421 #endif
2422 }
2423
2424 static uint64_t
2425 wg_session_inc_send_counter(struct wg_session *wgs)
2426 {
2427 #ifdef __HAVE_ATOMIC64_LOADSTORE
2428 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2429 #else
2430 uint64_t send_counter;
2431
2432 mutex_enter(&wgs->wgs_send_counter_lock);
2433 send_counter = wgs->wgs_send_counter++;
2434 mutex_exit(&wgs->wgs_send_counter_lock);
2435
2436 return send_counter;
2437 #endif
2438 }
2439
2440 static void
2441 wg_clear_states(struct wg_session *wgs)
2442 {
2443
2444 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2445
2446 wgs->wgs_send_counter = 0;
2447 sliwin_reset(&wgs->wgs_recvwin->window);
2448
2449 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2450 wgs_clear(handshake_hash);
2451 wgs_clear(chaining_key);
2452 wgs_clear(ephemeral_key_pub);
2453 wgs_clear(ephemeral_key_priv);
2454 wgs_clear(ephemeral_key_peer);
2455 #undef wgs_clear
2456 }
2457
2458 static struct wg_session *
2459 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2460 struct psref *psref)
2461 {
2462 struct wg_session *wgs;
2463
2464 int s = pserialize_read_enter();
2465 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2466 if (wgs != NULL) {
2467 uint32_t oindex __diagused =
2468 atomic_load_relaxed(&wgs->wgs_local_index);
2469 KASSERTMSG(index == oindex,
2470 "index=%"PRIx32" wgs->wgs_local_index=%"PRIx32,
2471 index, oindex);
2472 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2473 }
2474 pserialize_read_exit(s);
2475
2476 return wgs;
2477 }
2478
2479 static void
2480 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2481 {
2482 struct mbuf *m;
2483
2484 /*
2485 * [W] 6.5 Passive Keepalive
2486 * "A keepalive message is simply a transport data message with
2487 * a zero-length encapsulated encrypted inner-packet."
2488 */
2489 WG_TRACE("");
2490 m = m_gethdr(M_WAIT, MT_DATA);
2491 wg_send_data_msg(wgp, wgs, m);
2492 }
2493
2494 static bool
2495 wg_need_to_send_init_message(struct wg_session *wgs)
2496 {
2497 /*
2498 * [W] 6.2 Transport Message Limits
2499 * "if a peer is the initiator of a current secure session,
2500 * WireGuard will send a handshake initiation message to begin
2501 * a new secure session ... if after receiving a transport data
2502 * message, the current secure session is (REJECT-AFTER-TIME
2503 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2504 * not yet acted upon this event."
2505 */
2506 return wgs->wgs_is_initiator &&
2507 atomic_load_relaxed(&wgs->wgs_time_last_data_sent) == 0 &&
2508 ((time_uptime32 -
2509 atomic_load_relaxed(&wgs->wgs_time_established)) >=
2510 (wg_reject_after_time - wg_keepalive_timeout -
2511 wg_rekey_timeout));
2512 }
2513
2514 static void
2515 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
2516 {
2517
2518 mutex_enter(wgp->wgp_intr_lock);
2519 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2520 if (wgp->wgp_tasks == 0)
2521 /*
2522 * XXX If the current CPU is already loaded -- e.g., if
2523 * there's already a bunch of handshakes queued up --
2524 * consider tossing this over to another CPU to
2525 * distribute the load.
2526 */
2527 workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
2528 wgp->wgp_tasks |= task;
2529 mutex_exit(wgp->wgp_intr_lock);
2530 }
2531
2532 static void
2533 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2534 {
2535 struct wg_sockaddr *wgsa_prev;
2536
2537 WG_TRACE("Changing endpoint");
2538
2539 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2540 wgsa_prev = wgp->wgp_endpoint;
2541 atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2542 wgp->wgp_endpoint0 = wgsa_prev;
2543 atomic_store_release(&wgp->wgp_endpoint_available, true);
2544
2545 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2546 }
2547
2548 static bool
2549 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2550 {
2551 uint16_t packet_len;
2552 const struct ip *ip;
2553
2554 if (__predict_false(decrypted_len < sizeof(*ip))) {
2555 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2556 sizeof(*ip));
2557 return false;
2558 }
2559
2560 ip = (const struct ip *)packet;
2561 if (ip->ip_v == 4)
2562 *af = AF_INET;
2563 else if (ip->ip_v == 6)
2564 *af = AF_INET6;
2565 else {
2566 WG_DLOG("ip_v=%d\n", ip->ip_v);
2567 return false;
2568 }
2569
2570 WG_DLOG("af=%d\n", *af);
2571
2572 switch (*af) {
2573 #ifdef INET
2574 case AF_INET:
2575 packet_len = ntohs(ip->ip_len);
2576 break;
2577 #endif
2578 #ifdef INET6
2579 case AF_INET6: {
2580 const struct ip6_hdr *ip6;
2581
2582 if (__predict_false(decrypted_len < sizeof(*ip6))) {
2583 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2584 sizeof(*ip6));
2585 return false;
2586 }
2587
2588 ip6 = (const struct ip6_hdr *)packet;
2589 packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
2590 break;
2591 }
2592 #endif
2593 default:
2594 return false;
2595 }
2596
2597 if (packet_len > decrypted_len) {
2598 WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
2599 decrypted_len);
2600 return false;
2601 }
2602
2603 return true;
2604 }
2605
2606 static bool
2607 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2608 int af, char *packet)
2609 {
2610 struct sockaddr_storage ss;
2611 struct sockaddr *sa;
2612 struct psref psref;
2613 struct wg_peer *wgp;
2614 bool ok;
2615
2616 /*
2617 * II CRYPTOKEY ROUTING
2618 * "it will only accept it if its source IP resolves in the
2619 * table to the public key used in the secure session for
2620 * decrypting it."
2621 */
2622
2623 switch (af) {
2624 #ifdef INET
2625 case AF_INET: {
2626 const struct ip *ip = (const struct ip *)packet;
2627 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2628 sockaddr_in_init(sin, &ip->ip_src, 0);
2629 sa = sintosa(sin);
2630 break;
2631 }
2632 #endif
2633 #ifdef INET6
2634 case AF_INET6: {
2635 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2636 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2637 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2638 sa = sin6tosa(sin6);
2639 break;
2640 }
2641 #endif
2642 default:
2643 __USE(ss);
2644 return false;
2645 }
2646
2647 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2648 ok = (wgp == wgp_expected);
2649 if (wgp != NULL)
2650 wg_put_peer(wgp, &psref);
2651
2652 return ok;
2653 }
2654
2655 static void
2656 wg_session_dtor_timer(void *arg)
2657 {
2658 struct wg_peer *wgp = arg;
2659
2660 WG_TRACE("enter");
2661
2662 wg_schedule_session_dtor_timer(wgp);
2663 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2664 }
2665
2666 static void
2667 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2668 {
2669
2670 /*
2671 * If the periodic session destructor is already pending to
2672 * handle the previous session, that's fine -- leave it in
2673 * place; it will be scheduled again.
2674 */
2675 if (callout_pending(&wgp->wgp_session_dtor_timer)) {
2676 WG_DLOG("session dtor already pending\n");
2677 return;
2678 }
2679
2680 WG_DLOG("scheduling session dtor in %u secs\n", wg_reject_after_time);
2681 callout_schedule(&wgp->wgp_session_dtor_timer,
2682 wg_reject_after_time*hz);
2683 }
2684
2685 static bool
2686 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2687 {
2688 if (sa1->sa_family != sa2->sa_family)
2689 return false;
2690
2691 switch (sa1->sa_family) {
2692 #ifdef INET
2693 case AF_INET:
2694 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2695 #endif
2696 #ifdef INET6
2697 case AF_INET6:
2698 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2699 #endif
2700 default:
2701 return false;
2702 }
2703 }
2704
2705 static void
2706 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2707 const struct sockaddr *src)
2708 {
2709 struct wg_sockaddr *wgsa;
2710 struct psref psref;
2711
2712 wgsa = wg_get_endpoint_sa(wgp, &psref);
2713
2714 #ifdef WG_DEBUG_LOG
2715 char oldaddr[128], newaddr[128];
2716 sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2717 sockaddr_format(src, newaddr, sizeof(newaddr));
2718 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2719 #endif
2720
2721 /*
2722 * III: "Since the packet has authenticated correctly, the source IP of
2723 * the outer UDP/IP packet is used to update the endpoint for peer..."
2724 */
2725 if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2726 !sockaddr_port_match(src, wgsatosa(wgsa)))) {
2727 /* XXX We can't change the endpoint twice in a short period */
2728 if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2729 wg_change_endpoint(wgp, src);
2730 }
2731 }
2732
2733 wg_put_sa(wgp, wgsa, &psref);
2734 }
2735
2736 static void __noinline
2737 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2738 const struct sockaddr *src)
2739 {
2740 struct wg_msg_data *wgmd;
2741 char *encrypted_buf = NULL, *decrypted_buf;
2742 size_t encrypted_len, decrypted_len;
2743 struct wg_session *wgs;
2744 struct wg_peer *wgp;
2745 int state;
2746 uint32_t age;
2747 size_t mlen;
2748 struct psref psref;
2749 int error, af;
2750 bool success, free_encrypted_buf = false, ok;
2751 struct mbuf *n;
2752
2753 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2754 wgmd = mtod(m, struct wg_msg_data *);
2755
2756 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2757 WG_TRACE("data");
2758
2759 /* Find the putative session, or drop. */
2760 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2761 if (wgs == NULL) {
2762 WG_TRACE("No session found");
2763 m_freem(m);
2764 return;
2765 }
2766
2767 /*
2768 * We are only ready to handle data when in INIT_PASSIVE,
2769 * ESTABLISHED, or DESTROYING. All transitions out of that
2770 * state dissociate the session index and drain psrefs.
2771 *
2772 * atomic_load_acquire matches atomic_store_release in either
2773 * wg_handle_msg_init or wg_handle_msg_resp. (The transition
2774 * INIT_PASSIVE to ESTABLISHED in wg_task_establish_session
2775 * doesn't make a difference for this rx path.)
2776 */
2777 state = atomic_load_acquire(&wgs->wgs_state);
2778 switch (state) {
2779 case WGS_STATE_UNKNOWN:
2780 case WGS_STATE_INIT_ACTIVE:
2781 WG_TRACE("not yet ready for data");
2782 goto out;
2783 case WGS_STATE_INIT_PASSIVE:
2784 case WGS_STATE_ESTABLISHED:
2785 case WGS_STATE_DESTROYING:
2786 break;
2787 }
2788
2789 /*
2790 * Reject if the session is too old.
2791 */
2792 age = time_uptime32 - atomic_load_relaxed(&wgs->wgs_time_established);
2793 if (__predict_false(age >= wg_reject_after_time)) {
2794 WG_DLOG("session %"PRIx32" too old, %"PRIu32" sec\n",
2795 wgmd->wgmd_receiver, age);
2796 goto out;
2797 }
2798
2799 /*
2800 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2801 * to update the endpoint if authentication succeeds.
2802 */
2803 wgp = wgs->wgs_peer;
2804
2805 /*
2806 * Reject outrageously wrong sequence numbers before doing any
2807 * crypto work or taking any locks.
2808 */
2809 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2810 le64toh(wgmd->wgmd_counter));
2811 if (error) {
2812 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2813 "%s: peer %s: out-of-window packet: %"PRIu64"\n",
2814 if_name(&wg->wg_if), wgp->wgp_name,
2815 le64toh(wgmd->wgmd_counter));
2816 goto out;
2817 }
2818
2819 /* Ensure the payload and authenticator are contiguous. */
2820 mlen = m_length(m);
2821 encrypted_len = mlen - sizeof(*wgmd);
2822 if (encrypted_len < WG_AUTHTAG_LEN) {
2823 WG_DLOG("Short encrypted_len: %zu\n", encrypted_len);
2824 goto out;
2825 }
2826 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2827 if (success) {
2828 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2829 } else {
2830 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2831 if (encrypted_buf == NULL) {
2832 WG_DLOG("failed to allocate encrypted_buf\n");
2833 goto out;
2834 }
2835 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2836 free_encrypted_buf = true;
2837 }
2838 /* m_ensure_contig may change m regardless of its result */
2839 KASSERT(m->m_len >= sizeof(*wgmd));
2840 wgmd = mtod(m, struct wg_msg_data *);
2841
2842 /*
2843 * Get a buffer for the plaintext. Add WG_AUTHTAG_LEN to avoid
2844 * a zero-length buffer (XXX). Drop if plaintext is longer
2845 * than MCLBYTES (XXX).
2846 */
2847 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2848 if (decrypted_len > MCLBYTES) {
2849 /* FIXME handle larger data than MCLBYTES */
2850 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2851 goto out;
2852 }
2853 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2854 if (n == NULL) {
2855 WG_DLOG("wg_get_mbuf failed\n");
2856 goto out;
2857 }
2858 decrypted_buf = mtod(n, char *);
2859
2860 /* Decrypt and verify the packet. */
2861 WG_DLOG("mlen=%zu, encrypted_len=%zu\n", mlen, encrypted_len);
2862 error = wg_algo_aead_dec(decrypted_buf,
2863 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2864 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
2865 encrypted_len, NULL, 0);
2866 if (error != 0) {
2867 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2868 "%s: peer %s: failed to wg_algo_aead_dec\n",
2869 if_name(&wg->wg_if), wgp->wgp_name);
2870 m_freem(n);
2871 goto out;
2872 }
2873 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2874
2875 /* Packet is genuine. Reject it if a replay or just too old. */
2876 mutex_enter(&wgs->wgs_recvwin->lock);
2877 error = sliwin_update(&wgs->wgs_recvwin->window,
2878 le64toh(wgmd->wgmd_counter));
2879 mutex_exit(&wgs->wgs_recvwin->lock);
2880 if (error) {
2881 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2882 "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
2883 if_name(&wg->wg_if), wgp->wgp_name,
2884 le64toh(wgmd->wgmd_counter));
2885 m_freem(n);
2886 goto out;
2887 }
2888
2889 /* We're done with m now; free it and chuck the pointers. */
2890 m_freem(m);
2891 m = NULL;
2892 wgmd = NULL;
2893
2894 /*
2895 * The packet is genuine. Update the peer's endpoint if the
2896 * source address changed.
2897 *
2898 * XXX How to prevent DoS by replaying genuine packets from the
2899 * wrong source address?
2900 */
2901 wg_update_endpoint_if_necessary(wgp, src);
2902
2903 /*
2904 * Validate the encapsulated packet header and get the address
2905 * family, or drop.
2906 */
2907 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2908 if (!ok) {
2909 m_freem(n);
2910 goto update_state;
2911 }
2912
2913 /* Submit it into our network stack if routable. */
2914 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2915 if (ok) {
2916 wg->wg_ops->input(&wg->wg_if, n, af);
2917 } else {
2918 char addrstr[INET6_ADDRSTRLEN];
2919 memset(addrstr, 0, sizeof(addrstr));
2920 switch (af) {
2921 #ifdef INET
2922 case AF_INET: {
2923 const struct ip *ip = (const struct ip *)decrypted_buf;
2924 IN_PRINT(addrstr, &ip->ip_src);
2925 break;
2926 }
2927 #endif
2928 #ifdef INET6
2929 case AF_INET6: {
2930 const struct ip6_hdr *ip6 =
2931 (const struct ip6_hdr *)decrypted_buf;
2932 IN6_PRINT(addrstr, &ip6->ip6_src);
2933 break;
2934 }
2935 #endif
2936 default:
2937 panic("invalid af=%d", af);
2938 }
2939 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2940 "%s: peer %s: invalid source address (%s)\n",
2941 if_name(&wg->wg_if), wgp->wgp_name, addrstr);
2942 m_freem(n);
2943 /*
2944 * The inner address is invalid however the session is valid
2945 * so continue the session processing below.
2946 */
2947 }
2948 n = NULL;
2949
2950 update_state:
2951 /* Update the state machine if necessary. */
2952 if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
2953 /*
2954 * We were waiting for the initiator to send their
2955 * first data transport message, and that has happened.
2956 * Schedule a task to establish this session.
2957 */
2958 wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
2959 } else {
2960 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2961 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2962 }
2963 /*
2964 * [W] 6.5 Passive Keepalive
2965 * "If a peer has received a validly-authenticated transport
2966 * data message (section 5.4.6), but does not have any packets
2967 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2968 * a keepalive message."
2969 */
2970 const uint32_t now = time_uptime32;
2971 const uint32_t time_last_data_sent =
2972 atomic_load_relaxed(&wgs->wgs_time_last_data_sent);
2973 WG_DLOG("time_uptime32=%"PRIu32
2974 " wgs_time_last_data_sent=%"PRIu32"\n",
2975 now, time_last_data_sent);
2976 if ((now - time_last_data_sent) >= wg_keepalive_timeout) {
2977 WG_TRACE("Schedule sending keepalive message");
2978 /*
2979 * We can't send a keepalive message here to avoid
2980 * a deadlock; we already hold the solock of a socket
2981 * that is used to send the message.
2982 */
2983 wg_schedule_peer_task(wgp,
2984 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2985 }
2986 }
2987 out:
2988 wg_put_session(wgs, &psref);
2989 m_freem(m);
2990 if (free_encrypted_buf)
2991 kmem_intr_free(encrypted_buf, encrypted_len);
2992 }
2993
2994 static void __noinline
2995 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2996 {
2997 struct wg_session *wgs;
2998 struct wg_peer *wgp;
2999 struct psref psref;
3000 int error;
3001 uint8_t key[WG_HASH_LEN];
3002 uint8_t cookie[WG_COOKIE_LEN];
3003
3004 WG_TRACE("cookie msg received");
3005
3006 /* Find the putative session. */
3007 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
3008 if (wgs == NULL) {
3009 WG_TRACE("No session found");
3010 return;
3011 }
3012
3013 /* Lock the peer so we can update the cookie state. */
3014 wgp = wgs->wgs_peer;
3015 mutex_enter(wgp->wgp_lock);
3016
3017 if (!wgp->wgp_last_sent_mac1_valid) {
3018 WG_TRACE("No valid mac1 sent (or expired)");
3019 goto out;
3020 }
3021
3022 /*
3023 * wgp_last_sent_mac1_valid is only set to true when we are
3024 * transitioning to INIT_ACTIVE or INIT_PASSIVE, and always
3025 * cleared on transition out of them.
3026 */
3027 KASSERTMSG((wgs->wgs_state == WGS_STATE_INIT_ACTIVE ||
3028 wgs->wgs_state == WGS_STATE_INIT_PASSIVE),
3029 "state=%d", wgs->wgs_state);
3030
3031 /* Decrypt the cookie and store it for later handshake retry. */
3032 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
3033 sizeof(wgp->wgp_pubkey));
3034 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
3035 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
3036 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
3037 wgmc->wgmc_salt);
3038 if (error != 0) {
3039 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3040 "%s: peer %s: wg_algo_aead_dec for cookie failed: "
3041 "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
3042 goto out;
3043 }
3044 /*
3045 * [W] 6.6: Interaction with Cookie Reply System
3046 * "it should simply store the decrypted cookie value from the cookie
3047 * reply message, and wait for the expiration of the REKEY-TIMEOUT
3048 * timer for retrying a handshake initiation message."
3049 */
3050 wgp->wgp_latest_cookie_time = time_uptime;
3051 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
3052 out:
3053 mutex_exit(wgp->wgp_lock);
3054 wg_put_session(wgs, &psref);
3055 }
3056
3057 static struct mbuf *
3058 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
3059 {
3060 struct wg_msg wgm;
3061 size_t mbuflen;
3062 size_t msglen;
3063
3064 /*
3065 * Get the mbuf chain length. It is already guaranteed, by
3066 * wg_overudp_cb, to be large enough for a struct wg_msg.
3067 */
3068 mbuflen = m_length(m);
3069 KASSERT(mbuflen >= sizeof(struct wg_msg));
3070
3071 /*
3072 * Copy the message header (32-bit message type) out -- we'll
3073 * worry about contiguity and alignment later.
3074 */
3075 m_copydata(m, 0, sizeof(wgm), &wgm);
3076 switch (le32toh(wgm.wgm_type)) {
3077 case WG_MSG_TYPE_INIT:
3078 msglen = sizeof(struct wg_msg_init);
3079 break;
3080 case WG_MSG_TYPE_RESP:
3081 msglen = sizeof(struct wg_msg_resp);
3082 break;
3083 case WG_MSG_TYPE_COOKIE:
3084 msglen = sizeof(struct wg_msg_cookie);
3085 break;
3086 case WG_MSG_TYPE_DATA:
3087 msglen = sizeof(struct wg_msg_data);
3088 break;
3089 default:
3090 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
3091 "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
3092 le32toh(wgm.wgm_type));
3093 goto error;
3094 }
3095
3096 /* Verify the mbuf chain is long enough for this type of message. */
3097 if (__predict_false(mbuflen < msglen)) {
3098 WG_DLOG("Invalid msg size: mbuflen=%zu type=%u\n", mbuflen,
3099 le32toh(wgm.wgm_type));
3100 goto error;
3101 }
3102
3103 /* Make the message header contiguous if necessary. */
3104 if (__predict_false(m->m_len < msglen)) {
3105 m = m_pullup(m, msglen);
3106 if (m == NULL)
3107 return NULL;
3108 }
3109
3110 return m;
3111
3112 error:
3113 m_freem(m);
3114 return NULL;
3115 }
3116
3117 static void
3118 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
3119 const struct sockaddr *src)
3120 {
3121 struct wg_msg *wgm;
3122
3123 KASSERT(curlwp->l_pflag & LP_BOUND);
3124
3125 m = wg_validate_msg_header(wg, m);
3126 if (__predict_false(m == NULL))
3127 return;
3128
3129 KASSERT(m->m_len >= sizeof(struct wg_msg));
3130 wgm = mtod(m, struct wg_msg *);
3131 switch (le32toh(wgm->wgm_type)) {
3132 case WG_MSG_TYPE_INIT:
3133 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
3134 break;
3135 case WG_MSG_TYPE_RESP:
3136 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
3137 break;
3138 case WG_MSG_TYPE_COOKIE:
3139 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
3140 break;
3141 case WG_MSG_TYPE_DATA:
3142 wg_handle_msg_data(wg, m, src);
3143 /* wg_handle_msg_data frees m for us */
3144 return;
3145 default:
3146 panic("invalid message type: %d", le32toh(wgm->wgm_type));
3147 }
3148
3149 m_freem(m);
3150 }
3151
3152 static void
3153 wg_receive_packets(struct wg_softc *wg, const int af)
3154 {
3155
3156 for (;;) {
3157 int error, flags;
3158 struct socket *so;
3159 struct mbuf *m = NULL;
3160 struct uio dummy_uio;
3161 struct mbuf *paddr = NULL;
3162 struct sockaddr *src;
3163
3164 so = wg_get_so_by_af(wg, af);
3165 flags = MSG_DONTWAIT;
3166 dummy_uio.uio_resid = 1000000000;
3167
3168 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
3169 &flags);
3170 if (error || m == NULL) {
3171 //if (error == EWOULDBLOCK)
3172 return;
3173 }
3174
3175 KASSERT(paddr != NULL);
3176 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
3177 src = mtod(paddr, struct sockaddr *);
3178
3179 wg_handle_packet(wg, m, src);
3180 }
3181 }
3182
3183 static void
3184 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
3185 {
3186
3187 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
3188 }
3189
3190 static void
3191 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
3192 {
3193
3194 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
3195 }
3196
3197 static void
3198 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
3199 {
3200 struct wg_session *wgs;
3201
3202 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
3203
3204 KASSERT(mutex_owned(wgp->wgp_lock));
3205
3206 if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
3207 WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
3208 if_name(&wg->wg_if));
3209 /* XXX should do something? */
3210 return;
3211 }
3212
3213 /*
3214 * If we already have an established session, there's no need
3215 * to initiate a new one -- unless the rekey-after-time or
3216 * rekey-after-messages limits have passed.
3217 */
3218 wgs = wgp->wgp_session_stable;
3219 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3220 !atomic_load_relaxed(&wgs->wgs_force_rekey))
3221 return;
3222
3223 /*
3224 * Ensure we're initiating a new session. If the unstable
3225 * session is already INIT_ACTIVE or INIT_PASSIVE, this does
3226 * nothing.
3227 */
3228 wg_send_handshake_msg_init(wg, wgp);
3229 }
3230
3231 static void
3232 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
3233 {
3234 struct wg_session *wgs;
3235
3236 WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
3237
3238 KASSERT(mutex_owned(wgp->wgp_lock));
3239 KASSERT(wgp->wgp_handshake_start_time != 0);
3240
3241 wgs = wgp->wgp_session_unstable;
3242 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
3243 return;
3244
3245 /*
3246 * XXX no real need to assign a new index here, but we do need
3247 * to transition to UNKNOWN temporarily
3248 */
3249 wg_put_session_index(wg, wgs);
3250
3251 /* [W] 6.4 Handshake Initiation Retransmission */
3252 if ((time_uptime - wgp->wgp_handshake_start_time) >
3253 wg_rekey_attempt_time) {
3254 /* Give up handshaking */
3255 wgp->wgp_handshake_start_time = 0;
3256 WG_TRACE("give up");
3257
3258 /*
3259 * If a new data packet comes, handshaking will be retried
3260 * and a new session would be established at that time,
3261 * however we don't want to send pending packets then.
3262 */
3263 wg_purge_pending_packets(wgp);
3264 return;
3265 }
3266
3267 wg_task_send_init_message(wg, wgp);
3268 }
3269
3270 static void
3271 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
3272 {
3273 struct wg_session *wgs, *wgs_prev;
3274 struct mbuf *m;
3275
3276 KASSERT(mutex_owned(wgp->wgp_lock));
3277
3278 wgs = wgp->wgp_session_unstable;
3279 if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
3280 /* XXX Can this happen? */
3281 return;
3282
3283 wgs->wgs_time_last_data_sent = 0;
3284 wgs->wgs_is_initiator = false;
3285
3286 /*
3287 * Session was already ready to receive data. Transition from
3288 * INIT_PASSIVE to ESTABLISHED just so we can swap the
3289 * sessions.
3290 *
3291 * atomic_store_relaxed because this doesn't affect the data rx
3292 * path, wg_handle_msg_data -- changing from INIT_PASSIVE to
3293 * ESTABLISHED makes no difference to the data rx path, and the
3294 * transition to INIT_PASSIVE with store-release already
3295 * published the state needed by the data rx path.
3296 */
3297 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_ESTABLISHED\n",
3298 wgs->wgs_local_index, wgs->wgs_remote_index);
3299 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
3300 WG_TRACE("WGS_STATE_ESTABLISHED");
3301
3302 /*
3303 * Session is ready to send data too now that we have received
3304 * the peer initiator's first data packet.
3305 *
3306 * Swap the sessions to publish the new one as the stable
3307 * session for the data tx path, wg_output.
3308 */
3309 wg_swap_sessions(wgp);
3310 KASSERT(wgs == wgp->wgp_session_stable);
3311 wgs_prev = wgp->wgp_session_unstable;
3312 getnanotime(&wgp->wgp_last_handshake_time);
3313 wgp->wgp_handshake_start_time = 0;
3314 wgp->wgp_last_sent_mac1_valid = false;
3315 wgp->wgp_last_sent_cookie_valid = false;
3316
3317 /* If we had a data packet queued up, send it. */
3318 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
3319 kpreempt_disable();
3320 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
3321 M_SETCTX(m, wgp);
3322 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
3323 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
3324 if_name(&wg->wg_if));
3325 m_freem(m);
3326 }
3327 kpreempt_enable();
3328 }
3329
3330 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
3331 /*
3332 * Transition ESTABLISHED->DESTROYING. The session
3333 * will remain usable for the data rx path to process
3334 * packets still in flight to us, but we won't use it
3335 * for data tx.
3336 */
3337 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
3338 " -> WGS_STATE_DESTROYING\n",
3339 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
3340 atomic_store_relaxed(&wgs_prev->wgs_state,
3341 WGS_STATE_DESTROYING);
3342 } else {
3343 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
3344 "state=%d", wgs_prev->wgs_state);
3345 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
3346 " -> WGS_STATE_UNKNOWN\n",
3347 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
3348 wgs_prev->wgs_local_index = 0; /* paranoia */
3349 wgs_prev->wgs_remote_index = 0; /* paranoia */
3350 wg_clear_states(wgs_prev); /* paranoia */
3351 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
3352 }
3353 }
3354
3355 static void
3356 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
3357 {
3358
3359 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
3360
3361 KASSERT(mutex_owned(wgp->wgp_lock));
3362
3363 if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
3364 pserialize_perform(wgp->wgp_psz);
3365 mutex_exit(wgp->wgp_lock);
3366 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
3367 wg_psref_class);
3368 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
3369 wg_psref_class);
3370 mutex_enter(wgp->wgp_lock);
3371 atomic_store_release(&wgp->wgp_endpoint_changing, 0);
3372 }
3373 }
3374
3375 static void
3376 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
3377 {
3378 struct wg_session *wgs;
3379
3380 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
3381
3382 KASSERT(mutex_owned(wgp->wgp_lock));
3383
3384 wgs = wgp->wgp_session_stable;
3385 if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
3386 return;
3387
3388 wg_send_keepalive_msg(wgp, wgs);
3389 }
3390
3391 static void
3392 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
3393 {
3394 struct wg_session *wgs;
3395 uint32_t age;
3396
3397 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
3398
3399 KASSERT(mutex_owned(wgp->wgp_lock));
3400
3401 /*
3402 * If theres's any previous unstable session, i.e., one that
3403 * was ESTABLISHED and is now DESTROYING, older than
3404 * reject-after-time, destroy it. Upcoming sessions are still
3405 * in INIT_ACTIVE or INIT_PASSIVE -- we don't touch those here.
3406 *
3407 * No atomic for access to wgs_time_established because it is
3408 * only updated under wgp_lock.
3409 */
3410 wgs = wgp->wgp_session_unstable;
3411 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
3412 if (wgs->wgs_state == WGS_STATE_DESTROYING &&
3413 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3414 wg_reject_after_time)) {
3415 WG_DLOG("destroying past session %"PRIu32" sec old\n", age);
3416 wg_put_session_index(wg, wgs);
3417 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3418 wgs->wgs_state);
3419 }
3420
3421 /*
3422 * If theres's any ESTABLISHED stable session older than
3423 * reject-after-time, destroy it. (The stable session can also
3424 * be in UNKNOWN state -- nothing to do in that case)
3425 */
3426 wgs = wgp->wgp_session_stable;
3427 KASSERT(wgs->wgs_state != WGS_STATE_INIT_ACTIVE);
3428 KASSERT(wgs->wgs_state != WGS_STATE_INIT_PASSIVE);
3429 KASSERT(wgs->wgs_state != WGS_STATE_DESTROYING);
3430 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3431 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3432 wg_reject_after_time)) {
3433 WG_DLOG("destroying current session %"PRIu32" sec old\n", age);
3434 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_DESTROYING);
3435 wg_put_session_index(wg, wgs);
3436 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3437 wgs->wgs_state);
3438 }
3439
3440 /*
3441 * If there's no sessions left, no need to have the timer run
3442 * until the next time around -- halt it.
3443 *
3444 * It is only ever scheduled with wgp_lock held or in the
3445 * callout itself, and callout_halt prevents rescheudling
3446 * itself, so this never races with rescheduling.
3447 */
3448 if (wgp->wgp_session_unstable->wgs_state == WGS_STATE_UNKNOWN &&
3449 wgp->wgp_session_stable->wgs_state == WGS_STATE_UNKNOWN)
3450 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3451 }
3452
3453 static void
3454 wg_peer_work(struct work *wk, void *cookie)
3455 {
3456 struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
3457 struct wg_softc *wg = wgp->wgp_sc;
3458 unsigned int tasks;
3459
3460 mutex_enter(wgp->wgp_intr_lock);
3461 while ((tasks = wgp->wgp_tasks) != 0) {
3462 wgp->wgp_tasks = 0;
3463 mutex_exit(wgp->wgp_intr_lock);
3464
3465 mutex_enter(wgp->wgp_lock);
3466 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
3467 wg_task_send_init_message(wg, wgp);
3468 if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
3469 wg_task_retry_handshake(wg, wgp);
3470 if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
3471 wg_task_establish_session(wg, wgp);
3472 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
3473 wg_task_endpoint_changed(wg, wgp);
3474 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
3475 wg_task_send_keepalive_message(wg, wgp);
3476 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
3477 wg_task_destroy_prev_session(wg, wgp);
3478 mutex_exit(wgp->wgp_lock);
3479
3480 mutex_enter(wgp->wgp_intr_lock);
3481 }
3482 mutex_exit(wgp->wgp_intr_lock);
3483 }
3484
3485 static void
3486 wg_job(struct threadpool_job *job)
3487 {
3488 struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
3489 int bound, upcalls;
3490
3491 mutex_enter(wg->wg_intr_lock);
3492 while ((upcalls = wg->wg_upcalls) != 0) {
3493 wg->wg_upcalls = 0;
3494 mutex_exit(wg->wg_intr_lock);
3495 bound = curlwp_bind();
3496 if (ISSET(upcalls, WG_UPCALL_INET))
3497 wg_receive_packets(wg, AF_INET);
3498 if (ISSET(upcalls, WG_UPCALL_INET6))
3499 wg_receive_packets(wg, AF_INET6);
3500 curlwp_bindx(bound);
3501 mutex_enter(wg->wg_intr_lock);
3502 }
3503 threadpool_job_done(job);
3504 mutex_exit(wg->wg_intr_lock);
3505 }
3506
3507 static int
3508 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3509 {
3510 int error = 0;
3511 uint16_t old_port = wg->wg_listen_port;
3512
3513 if (port != 0 && old_port == port)
3514 return 0;
3515
3516 #ifdef INET
3517 struct sockaddr_in _sin, *sin = &_sin;
3518 sin->sin_len = sizeof(*sin);
3519 sin->sin_family = AF_INET;
3520 sin->sin_addr.s_addr = INADDR_ANY;
3521 sin->sin_port = htons(port);
3522
3523 error = sobind(wg->wg_so4, sintosa(sin), curlwp);
3524 if (error)
3525 return error;
3526 #endif
3527
3528 #ifdef INET6
3529 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3530 sin6->sin6_len = sizeof(*sin6);
3531 sin6->sin6_family = AF_INET6;
3532 sin6->sin6_addr = in6addr_any;
3533 sin6->sin6_port = htons(port);
3534
3535 error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
3536 if (error)
3537 return error;
3538 #endif
3539
3540 wg->wg_listen_port = port;
3541
3542 return error;
3543 }
3544
3545 static void
3546 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
3547 {
3548 struct wg_softc *wg = cookie;
3549 int reason;
3550
3551 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3552 WG_UPCALL_INET :
3553 WG_UPCALL_INET6;
3554
3555 mutex_enter(wg->wg_intr_lock);
3556 wg->wg_upcalls |= reason;
3557 threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
3558 mutex_exit(wg->wg_intr_lock);
3559 }
3560
3561 static int
3562 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3563 struct sockaddr *src, void *arg)
3564 {
3565 struct wg_softc *wg = arg;
3566 struct wg_msg wgm;
3567 struct mbuf *m = *mp;
3568
3569 WG_TRACE("enter");
3570
3571 /* Verify the mbuf chain is long enough to have a wg msg header. */
3572 KASSERT(offset <= m_length(m));
3573 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3574 /* drop on the floor */
3575 m_freem(m);
3576 return -1;
3577 }
3578
3579 /*
3580 * Copy the message header (32-bit message type) out -- we'll
3581 * worry about contiguity and alignment later.
3582 */
3583 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3584 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3585
3586 /*
3587 * Handle DATA packets promptly as they arrive, if they are in
3588 * an active session. Other packets may require expensive
3589 * public-key crypto and are not as sensitive to latency, so
3590 * defer them to the worker thread.
3591 */
3592 switch (le32toh(wgm.wgm_type)) {
3593 case WG_MSG_TYPE_DATA:
3594 /* handle immediately */
3595 m_adj(m, offset);
3596 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3597 m = m_pullup(m, sizeof(struct wg_msg_data));
3598 if (m == NULL)
3599 return -1;
3600 }
3601 wg_handle_msg_data(wg, m, src);
3602 *mp = NULL;
3603 return 1;
3604 case WG_MSG_TYPE_INIT:
3605 case WG_MSG_TYPE_RESP:
3606 case WG_MSG_TYPE_COOKIE:
3607 /* pass through to so_receive in wg_receive_packets */
3608 return 0;
3609 default:
3610 /* drop on the floor */
3611 m_freem(m);
3612 return -1;
3613 }
3614 }
3615
3616 static int
3617 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
3618 {
3619 int error;
3620 struct socket *so;
3621
3622 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3623 if (error != 0)
3624 return error;
3625
3626 solock(so);
3627 so->so_upcallarg = wg;
3628 so->so_upcall = wg_so_upcall;
3629 so->so_rcv.sb_flags |= SB_UPCALL;
3630 inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3631 sounlock(so);
3632
3633 *sop = so;
3634
3635 return 0;
3636 }
3637
3638 static bool
3639 wg_session_hit_limits(struct wg_session *wgs)
3640 {
3641 uint32_t time_established =
3642 atomic_load_relaxed(&wgs->wgs_time_established);
3643
3644 /*
3645 * [W] 6.2: Transport Message Limits
3646 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3647 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3648 * comes first, WireGuard will refuse to send or receive any more
3649 * transport data messages using the current secure session, ..."
3650 */
3651 KASSERT(time_established != 0 || time_uptime > UINT32_MAX);
3652 if ((time_uptime32 - time_established) > wg_reject_after_time) {
3653 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3654 return true;
3655 } else if (wg_session_get_send_counter(wgs) >
3656 wg_reject_after_messages) {
3657 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3658 return true;
3659 }
3660
3661 return false;
3662 }
3663
3664 static void
3665 wgintr(void *cookie)
3666 {
3667 struct wg_peer *wgp;
3668 struct wg_session *wgs;
3669 struct mbuf *m;
3670 struct psref psref;
3671
3672 while ((m = pktq_dequeue(wg_pktq)) != NULL) {
3673 wgp = M_GETCTX(m, struct wg_peer *);
3674 if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3675 WG_TRACE("no stable session");
3676 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3677 goto next0;
3678 }
3679 if (__predict_false(wg_session_hit_limits(wgs))) {
3680 WG_TRACE("stable session hit limits");
3681 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3682 goto next1;
3683 }
3684 wg_send_data_msg(wgp, wgs, m);
3685 m = NULL; /* consumed */
3686 next1: wg_put_session(wgs, &psref);
3687 next0: m_freem(m);
3688 /* XXX Yield to avoid userland starvation? */
3689 }
3690 }
3691
3692 static void
3693 wg_purge_pending_packets(struct wg_peer *wgp)
3694 {
3695 struct mbuf *m;
3696
3697 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
3698 m_freem(m);
3699 #ifdef ALTQ
3700 wg_start(&wgp->wgp_sc->wg_if);
3701 #endif
3702 pktq_barrier(wg_pktq);
3703 }
3704
3705 static void
3706 wg_handshake_timeout_timer(void *arg)
3707 {
3708 struct wg_peer *wgp = arg;
3709
3710 WG_TRACE("enter");
3711
3712 wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3713 }
3714
3715 static struct wg_peer *
3716 wg_alloc_peer(struct wg_softc *wg)
3717 {
3718 struct wg_peer *wgp;
3719
3720 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3721
3722 wgp->wgp_sc = wg;
3723 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3724 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3725 wg_handshake_timeout_timer, wgp);
3726 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3727 callout_setfunc(&wgp->wgp_session_dtor_timer,
3728 wg_session_dtor_timer, wgp);
3729 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3730 wgp->wgp_endpoint_changing = false;
3731 wgp->wgp_endpoint_available = false;
3732 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3733 wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3734 wgp->wgp_psz = pserialize_create();
3735 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3736
3737 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3738 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3739 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3740 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3741
3742 struct wg_session *wgs;
3743 wgp->wgp_session_stable =
3744 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3745 wgp->wgp_session_unstable =
3746 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3747 wgs = wgp->wgp_session_stable;
3748 wgs->wgs_peer = wgp;
3749 wgs->wgs_state = WGS_STATE_UNKNOWN;
3750 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3751 #ifndef __HAVE_ATOMIC64_LOADSTORE
3752 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3753 #endif
3754 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3755 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3756
3757 wgs = wgp->wgp_session_unstable;
3758 wgs->wgs_peer = wgp;
3759 wgs->wgs_state = WGS_STATE_UNKNOWN;
3760 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3761 #ifndef __HAVE_ATOMIC64_LOADSTORE
3762 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3763 #endif
3764 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3765 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3766
3767 return wgp;
3768 }
3769
3770 static void
3771 wg_destroy_peer(struct wg_peer *wgp)
3772 {
3773 struct wg_session *wgs;
3774 struct wg_softc *wg = wgp->wgp_sc;
3775
3776 /* Prevent new packets from this peer on any source address. */
3777 rw_enter(wg->wg_rwlock, RW_WRITER);
3778 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3779 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3780 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3781 struct radix_node *rn;
3782
3783 KASSERT(rnh != NULL);
3784 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3785 &wga->wga_sa_mask, rnh);
3786 if (rn == NULL) {
3787 char addrstr[128];
3788 sockaddr_format(&wga->wga_sa_addr, addrstr,
3789 sizeof(addrstr));
3790 WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
3791 if_name(&wg->wg_if), addrstr);
3792 }
3793 }
3794 rw_exit(wg->wg_rwlock);
3795
3796 /* Purge pending packets. */
3797 wg_purge_pending_packets(wgp);
3798
3799 /* Halt all packet processing and timeouts. */
3800 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3801 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3802
3803 /* Wait for any queued work to complete. */
3804 workqueue_wait(wg_wq, &wgp->wgp_work);
3805
3806 wgs = wgp->wgp_session_unstable;
3807 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3808 mutex_enter(wgp->wgp_lock);
3809 wg_destroy_session(wg, wgs);
3810 mutex_exit(wgp->wgp_lock);
3811 }
3812 mutex_destroy(&wgs->wgs_recvwin->lock);
3813 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3814 #ifndef __HAVE_ATOMIC64_LOADSTORE
3815 mutex_destroy(&wgs->wgs_send_counter_lock);
3816 #endif
3817 kmem_free(wgs, sizeof(*wgs));
3818
3819 wgs = wgp->wgp_session_stable;
3820 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3821 mutex_enter(wgp->wgp_lock);
3822 wg_destroy_session(wg, wgs);
3823 mutex_exit(wgp->wgp_lock);
3824 }
3825 mutex_destroy(&wgs->wgs_recvwin->lock);
3826 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3827 #ifndef __HAVE_ATOMIC64_LOADSTORE
3828 mutex_destroy(&wgs->wgs_send_counter_lock);
3829 #endif
3830 kmem_free(wgs, sizeof(*wgs));
3831
3832 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3833 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3834 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3835 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3836
3837 pserialize_destroy(wgp->wgp_psz);
3838 mutex_obj_free(wgp->wgp_intr_lock);
3839 mutex_obj_free(wgp->wgp_lock);
3840
3841 kmem_free(wgp, sizeof(*wgp));
3842 }
3843
3844 static void
3845 wg_destroy_all_peers(struct wg_softc *wg)
3846 {
3847 struct wg_peer *wgp, *wgp0 __diagused;
3848 void *garbage_byname, *garbage_bypubkey;
3849
3850 restart:
3851 garbage_byname = garbage_bypubkey = NULL;
3852 mutex_enter(wg->wg_lock);
3853 WG_PEER_WRITER_FOREACH(wgp, wg) {
3854 if (wgp->wgp_name[0]) {
3855 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3856 strlen(wgp->wgp_name));
3857 KASSERT(wgp0 == wgp);
3858 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3859 }
3860 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3861 sizeof(wgp->wgp_pubkey));
3862 KASSERT(wgp0 == wgp);
3863 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3864 WG_PEER_WRITER_REMOVE(wgp);
3865 wg->wg_npeers--;
3866 mutex_enter(wgp->wgp_lock);
3867 pserialize_perform(wgp->wgp_psz);
3868 mutex_exit(wgp->wgp_lock);
3869 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3870 break;
3871 }
3872 mutex_exit(wg->wg_lock);
3873
3874 if (wgp == NULL)
3875 return;
3876
3877 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3878
3879 wg_destroy_peer(wgp);
3880 thmap_gc(wg->wg_peers_byname, garbage_byname);
3881 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3882
3883 goto restart;
3884 }
3885
3886 static int
3887 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3888 {
3889 struct wg_peer *wgp, *wgp0 __diagused;
3890 void *garbage_byname, *garbage_bypubkey;
3891
3892 mutex_enter(wg->wg_lock);
3893 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
3894 if (wgp != NULL) {
3895 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3896 sizeof(wgp->wgp_pubkey));
3897 KASSERT(wgp0 == wgp);
3898 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3899 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3900 WG_PEER_WRITER_REMOVE(wgp);
3901 wg->wg_npeers--;
3902 if (wg->wg_npeers == 0)
3903 if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
3904 mutex_enter(wgp->wgp_lock);
3905 pserialize_perform(wgp->wgp_psz);
3906 mutex_exit(wgp->wgp_lock);
3907 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3908 }
3909 mutex_exit(wg->wg_lock);
3910
3911 if (wgp == NULL)
3912 return ENOENT;
3913
3914 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3915
3916 wg_destroy_peer(wgp);
3917 thmap_gc(wg->wg_peers_byname, garbage_byname);
3918 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3919
3920 return 0;
3921 }
3922
3923 static int
3924 wg_if_attach(struct wg_softc *wg)
3925 {
3926
3927 wg->wg_if.if_addrlen = 0;
3928 wg->wg_if.if_mtu = WG_MTU;
3929 wg->wg_if.if_flags = IFF_MULTICAST;
3930 wg->wg_if.if_extflags = IFEF_MPSAFE;
3931 wg->wg_if.if_ioctl = wg_ioctl;
3932 wg->wg_if.if_output = wg_output;
3933 wg->wg_if.if_init = wg_init;
3934 #ifdef ALTQ
3935 wg->wg_if.if_start = wg_start;
3936 #endif
3937 wg->wg_if.if_stop = wg_stop;
3938 wg->wg_if.if_type = IFT_OTHER;
3939 wg->wg_if.if_dlt = DLT_NULL;
3940 wg->wg_if.if_softc = wg;
3941 #ifdef ALTQ
3942 IFQ_SET_READY(&wg->wg_if.if_snd);
3943 #endif
3944 if_initialize(&wg->wg_if);
3945
3946 wg->wg_if.if_link_state = LINK_STATE_DOWN;
3947 if_alloc_sadl(&wg->wg_if);
3948 if_register(&wg->wg_if);
3949
3950 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3951
3952 return 0;
3953 }
3954
3955 static void
3956 wg_if_detach(struct wg_softc *wg)
3957 {
3958 struct ifnet *ifp = &wg->wg_if;
3959
3960 bpf_detach(ifp);
3961 if_detach(ifp);
3962 }
3963
3964 static int
3965 wg_clone_create(struct if_clone *ifc, int unit)
3966 {
3967 struct wg_softc *wg;
3968 int error;
3969
3970 wg_guarantee_initialized();
3971
3972 error = wg_count_inc();
3973 if (error)
3974 return error;
3975
3976 wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
3977
3978 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3979
3980 PSLIST_INIT(&wg->wg_peers);
3981 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
3982 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
3983 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
3984 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3985 wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3986 wg->wg_rwlock = rw_obj_alloc();
3987 threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
3988 "%s", if_name(&wg->wg_if));
3989 wg->wg_ops = &wg_ops_rumpkernel;
3990
3991 error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
3992 if (error)
3993 goto fail0;
3994
3995 #ifdef INET
3996 error = wg_socreate(wg, AF_INET, &wg->wg_so4);
3997 if (error)
3998 goto fail1;
3999 rn_inithead((void **)&wg->wg_rtable_ipv4,
4000 offsetof(struct sockaddr_in, sin_addr) * NBBY);
4001 #endif
4002 #ifdef INET6
4003 error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
4004 if (error)
4005 goto fail2;
4006 rn_inithead((void **)&wg->wg_rtable_ipv6,
4007 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
4008 #endif
4009
4010 error = wg_if_attach(wg);
4011 if (error)
4012 goto fail3;
4013
4014 return 0;
4015
4016 fail4: __unused
4017 wg_destroy_all_peers(wg);
4018 wg_if_detach(wg);
4019 fail3:
4020 #ifdef INET6
4021 solock(wg->wg_so6);
4022 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4023 sounlock(wg->wg_so6);
4024 #endif
4025 #ifdef INET
4026 solock(wg->wg_so4);
4027 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4028 sounlock(wg->wg_so4);
4029 #endif
4030 mutex_enter(wg->wg_intr_lock);
4031 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4032 mutex_exit(wg->wg_intr_lock);
4033 #ifdef INET6
4034 if (wg->wg_rtable_ipv6 != NULL)
4035 free(wg->wg_rtable_ipv6, M_RTABLE);
4036 soclose(wg->wg_so6);
4037 fail2:
4038 #endif
4039 #ifdef INET
4040 if (wg->wg_rtable_ipv4 != NULL)
4041 free(wg->wg_rtable_ipv4, M_RTABLE);
4042 soclose(wg->wg_so4);
4043 fail1:
4044 #endif
4045 threadpool_put(wg->wg_threadpool, PRI_NONE);
4046 fail0: threadpool_job_destroy(&wg->wg_job);
4047 rw_obj_free(wg->wg_rwlock);
4048 mutex_obj_free(wg->wg_intr_lock);
4049 mutex_obj_free(wg->wg_lock);
4050 thmap_destroy(wg->wg_sessions_byindex);
4051 thmap_destroy(wg->wg_peers_byname);
4052 thmap_destroy(wg->wg_peers_bypubkey);
4053 PSLIST_DESTROY(&wg->wg_peers);
4054 kmem_free(wg, sizeof(*wg));
4055 wg_count_dec();
4056 return error;
4057 }
4058
4059 static int
4060 wg_clone_destroy(struct ifnet *ifp)
4061 {
4062 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
4063
4064 #ifdef WG_RUMPKERNEL
4065 if (wg_user_mode(wg)) {
4066 rumpuser_wg_destroy(wg->wg_user);
4067 wg->wg_user = NULL;
4068 }
4069 #endif
4070
4071 wg_destroy_all_peers(wg);
4072 wg_if_detach(wg);
4073 #ifdef INET6
4074 solock(wg->wg_so6);
4075 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4076 sounlock(wg->wg_so6);
4077 #endif
4078 #ifdef INET
4079 solock(wg->wg_so4);
4080 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4081 sounlock(wg->wg_so4);
4082 #endif
4083 mutex_enter(wg->wg_intr_lock);
4084 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4085 mutex_exit(wg->wg_intr_lock);
4086 #ifdef INET6
4087 if (wg->wg_rtable_ipv6 != NULL)
4088 free(wg->wg_rtable_ipv6, M_RTABLE);
4089 soclose(wg->wg_so6);
4090 #endif
4091 #ifdef INET
4092 if (wg->wg_rtable_ipv4 != NULL)
4093 free(wg->wg_rtable_ipv4, M_RTABLE);
4094 soclose(wg->wg_so4);
4095 #endif
4096 threadpool_put(wg->wg_threadpool, PRI_NONE);
4097 threadpool_job_destroy(&wg->wg_job);
4098 rw_obj_free(wg->wg_rwlock);
4099 mutex_obj_free(wg->wg_intr_lock);
4100 mutex_obj_free(wg->wg_lock);
4101 thmap_destroy(wg->wg_sessions_byindex);
4102 thmap_destroy(wg->wg_peers_byname);
4103 thmap_destroy(wg->wg_peers_bypubkey);
4104 PSLIST_DESTROY(&wg->wg_peers);
4105 kmem_free(wg, sizeof(*wg));
4106 wg_count_dec();
4107
4108 return 0;
4109 }
4110
4111 static struct wg_peer *
4112 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
4113 struct psref *psref)
4114 {
4115 struct radix_node_head *rnh;
4116 struct radix_node *rn;
4117 struct wg_peer *wgp = NULL;
4118 struct wg_allowedip *wga;
4119
4120 #ifdef WG_DEBUG_LOG
4121 char addrstr[128];
4122 sockaddr_format(sa, addrstr, sizeof(addrstr));
4123 WG_DLOG("sa=%s\n", addrstr);
4124 #endif
4125
4126 rw_enter(wg->wg_rwlock, RW_READER);
4127
4128 rnh = wg_rnh(wg, sa->sa_family);
4129 if (rnh == NULL)
4130 goto out;
4131
4132 rn = rnh->rnh_matchaddr(sa, rnh);
4133 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
4134 goto out;
4135
4136 WG_TRACE("success");
4137
4138 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
4139 wgp = wga->wga_peer;
4140 wg_get_peer(wgp, psref);
4141
4142 out:
4143 rw_exit(wg->wg_rwlock);
4144 return wgp;
4145 }
4146
4147 static void
4148 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
4149 struct wg_session *wgs, struct wg_msg_data *wgmd)
4150 {
4151
4152 memset(wgmd, 0, sizeof(*wgmd));
4153 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
4154 wgmd->wgmd_receiver = wgs->wgs_remote_index;
4155 /* [W] 5.4.6: msg.counter := Nm^send */
4156 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
4157 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
4158 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
4159 }
4160
4161 static int
4162 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
4163 const struct rtentry *rt)
4164 {
4165 struct wg_softc *wg = ifp->if_softc;
4166 struct wg_peer *wgp = NULL;
4167 struct wg_session *wgs = NULL;
4168 struct psref wgp_psref, wgs_psref;
4169 int bound;
4170 int error;
4171
4172 bound = curlwp_bind();
4173
4174 /* TODO make the nest limit configurable via sysctl */
4175 error = if_tunnel_check_nesting(ifp, m, 1);
4176 if (error) {
4177 WGLOG(LOG_ERR,
4178 "%s: tunneling loop detected and packet dropped\n",
4179 if_name(&wg->wg_if));
4180 goto out0;
4181 }
4182
4183 #ifdef ALTQ
4184 bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
4185 & ALTQF_ENABLED;
4186 if (altq)
4187 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
4188 #endif
4189
4190 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
4191
4192 m->m_flags &= ~(M_BCAST|M_MCAST);
4193
4194 wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
4195 if (wgp == NULL) {
4196 WG_TRACE("peer not found");
4197 error = EHOSTUNREACH;
4198 goto out0;
4199 }
4200
4201 /* Clear checksum-offload flags. */
4202 m->m_pkthdr.csum_flags = 0;
4203 m->m_pkthdr.csum_data = 0;
4204
4205 /* Check whether there's an established session. */
4206 wgs = wg_get_stable_session(wgp, &wgs_psref);
4207 if (wgs == NULL) {
4208 /*
4209 * No established session. If we're the first to try
4210 * sending data, schedule a handshake and queue the
4211 * packet for when the handshake is done; otherwise
4212 * just drop the packet and let the ongoing handshake
4213 * attempt continue. We could queue more data packets
4214 * but it's not clear that's worthwhile.
4215 */
4216 if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
4217 m = NULL; /* consume */
4218 WG_TRACE("queued first packet; init handshake");
4219 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4220 } else {
4221 WG_TRACE("first packet already queued, dropping");
4222 }
4223 goto out1;
4224 }
4225
4226 /* There's an established session. Toss it in the queue. */
4227 #ifdef ALTQ
4228 if (altq) {
4229 mutex_enter(ifp->if_snd.ifq_lock);
4230 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
4231 M_SETCTX(m, wgp);
4232 ALTQ_ENQUEUE(&ifp->if_snd, m, error);
4233 m = NULL; /* consume */
4234 }
4235 mutex_exit(ifp->if_snd.ifq_lock);
4236 if (m == NULL) {
4237 wg_start(ifp);
4238 goto out2;
4239 }
4240 }
4241 #endif
4242 kpreempt_disable();
4243 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
4244 M_SETCTX(m, wgp);
4245 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
4246 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
4247 if_name(&wg->wg_if));
4248 error = ENOBUFS;
4249 goto out3;
4250 }
4251 m = NULL; /* consumed */
4252 error = 0;
4253 out3: kpreempt_enable();
4254
4255 #ifdef ALTQ
4256 out2:
4257 #endif
4258 wg_put_session(wgs, &wgs_psref);
4259 out1: wg_put_peer(wgp, &wgp_psref);
4260 out0: m_freem(m);
4261 curlwp_bindx(bound);
4262 return error;
4263 }
4264
4265 static int
4266 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
4267 {
4268 struct psref psref;
4269 struct wg_sockaddr *wgsa;
4270 int error;
4271 struct socket *so;
4272
4273 wgsa = wg_get_endpoint_sa(wgp, &psref);
4274 so = wg_get_so_by_peer(wgp, wgsa);
4275 solock(so);
4276 switch (wgsatosa(wgsa)->sa_family) {
4277 #ifdef INET
4278 case AF_INET:
4279 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
4280 break;
4281 #endif
4282 #ifdef INET6
4283 case AF_INET6:
4284 error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
4285 NULL, curlwp);
4286 break;
4287 #endif
4288 default:
4289 m_freem(m);
4290 error = EPFNOSUPPORT;
4291 }
4292 sounlock(so);
4293 wg_put_sa(wgp, wgsa, &psref);
4294
4295 return error;
4296 }
4297
4298 /* Inspired by pppoe_get_mbuf */
4299 static struct mbuf *
4300 wg_get_mbuf(size_t leading_len, size_t len)
4301 {
4302 struct mbuf *m;
4303
4304 KASSERT(leading_len <= MCLBYTES);
4305 KASSERT(len <= MCLBYTES - leading_len);
4306
4307 m = m_gethdr(M_DONTWAIT, MT_DATA);
4308 if (m == NULL)
4309 return NULL;
4310 if (len + leading_len > MHLEN) {
4311 m_clget(m, M_DONTWAIT);
4312 if ((m->m_flags & M_EXT) == 0) {
4313 m_free(m);
4314 return NULL;
4315 }
4316 }
4317 m->m_data += leading_len;
4318 m->m_pkthdr.len = m->m_len = len;
4319
4320 return m;
4321 }
4322
4323 static void
4324 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs, struct mbuf *m)
4325 {
4326 struct wg_softc *wg = wgp->wgp_sc;
4327 int error;
4328 size_t inner_len, padded_len, encrypted_len;
4329 char *padded_buf = NULL;
4330 size_t mlen;
4331 struct wg_msg_data *wgmd;
4332 bool free_padded_buf = false;
4333 struct mbuf *n;
4334 size_t leading_len = max_hdr + sizeof(struct udphdr);
4335
4336 mlen = m_length(m);
4337 inner_len = mlen;
4338 padded_len = roundup(mlen, 16);
4339 encrypted_len = padded_len + WG_AUTHTAG_LEN;
4340 WG_DLOG("inner=%zu, padded=%zu, encrypted_len=%zu\n",
4341 inner_len, padded_len, encrypted_len);
4342 if (mlen != 0) {
4343 bool success;
4344 success = m_ensure_contig(&m, padded_len);
4345 if (success) {
4346 padded_buf = mtod(m, char *);
4347 } else {
4348 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
4349 if (padded_buf == NULL) {
4350 error = ENOBUFS;
4351 goto out;
4352 }
4353 free_padded_buf = true;
4354 m_copydata(m, 0, mlen, padded_buf);
4355 }
4356 memset(padded_buf + mlen, 0, padded_len - inner_len);
4357 }
4358
4359 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
4360 if (n == NULL) {
4361 error = ENOBUFS;
4362 goto out;
4363 }
4364 KASSERT(n->m_len >= sizeof(*wgmd));
4365 wgmd = mtod(n, struct wg_msg_data *);
4366 wg_fill_msg_data(wg, wgp, wgs, wgmd);
4367
4368 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
4369 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
4370 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4371 padded_buf, padded_len,
4372 NULL, 0);
4373
4374 error = wg->wg_ops->send_data_msg(wgp, n); /* consumes n */
4375 if (error) {
4376 WG_DLOG("send_data_msg failed, error=%d\n", error);
4377 goto out;
4378 }
4379
4380 /*
4381 * Packet was sent out -- count it in the interface statistics.
4382 */
4383 if_statadd(&wg->wg_if, if_obytes, mlen);
4384 if_statinc(&wg->wg_if, if_opackets);
4385
4386 /*
4387 * Record when we last sent data, for determining when we need
4388 * to send a passive keepalive.
4389 *
4390 * Other logic assumes that wgs_time_last_data_sent is zero iff
4391 * we have never sent data on this session. Early at boot, if
4392 * wg(4) starts operating within <1sec, or after 136 years of
4393 * uptime, we may observe time_uptime32 = 0. In that case,
4394 * pretend we observed 1 instead. That way, we correctly
4395 * indicate we have sent data on this session; the only logic
4396 * this might adversely affect is the keepalive timeout
4397 * detection, which might spuriously send a keepalive during
4398 * one second every 136 years. All of this is very silly, of
4399 * course, but the cost to guaranteeing wgs_time_last_data_sent
4400 * is nonzero is negligible here.
4401 */
4402 const uint32_t now = time_uptime32;
4403 atomic_store_relaxed(&wgs->wgs_time_last_data_sent, MAX(now, 1));
4404
4405 /*
4406 * Check rekey-after-time.
4407 */
4408 if (wgs->wgs_is_initiator &&
4409 ((time_uptime32 -
4410 atomic_load_relaxed(&wgs->wgs_time_established)) >=
4411 wg_rekey_after_time)) {
4412 /*
4413 * [W] 6.2 Transport Message Limits
4414 * "if a peer is the initiator of a current secure
4415 * session, WireGuard will send a handshake initiation
4416 * message to begin a new secure session if, after
4417 * transmitting a transport data message, the current
4418 * secure session is REKEY-AFTER-TIME seconds old,"
4419 */
4420 WG_TRACE("rekey after time");
4421 atomic_store_relaxed(&wgs->wgs_force_rekey, true);
4422 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4423 }
4424
4425 /*
4426 * Check rekey-after-messages.
4427 */
4428 if (wg_session_get_send_counter(wgs) >= wg_rekey_after_messages) {
4429 /*
4430 * [W] 6.2 Transport Message Limits
4431 * "WireGuard will try to create a new session, by
4432 * sending a handshake initiation message (section
4433 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
4434 * transport data messages..."
4435 */
4436 WG_TRACE("rekey after messages");
4437 atomic_store_relaxed(&wgs->wgs_force_rekey, true);
4438 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4439 }
4440
4441 out: m_freem(m);
4442 if (free_padded_buf)
4443 kmem_intr_free(padded_buf, padded_len);
4444 }
4445
4446 static void
4447 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
4448 {
4449 pktqueue_t *pktq;
4450 size_t pktlen;
4451
4452 KASSERT(af == AF_INET || af == AF_INET6);
4453
4454 WG_TRACE("");
4455
4456 m_set_rcvif(m, ifp);
4457 pktlen = m->m_pkthdr.len;
4458
4459 bpf_mtap_af(ifp, af, m, BPF_D_IN);
4460
4461 switch (af) {
4462 #ifdef INET
4463 case AF_INET:
4464 pktq = ip_pktq;
4465 break;
4466 #endif
4467 #ifdef INET6
4468 case AF_INET6:
4469 pktq = ip6_pktq;
4470 break;
4471 #endif
4472 default:
4473 panic("invalid af=%d", af);
4474 }
4475
4476 kpreempt_disable();
4477 const u_int h = curcpu()->ci_index;
4478 if (__predict_true(pktq_enqueue(pktq, m, h))) {
4479 if_statadd(ifp, if_ibytes, pktlen);
4480 if_statinc(ifp, if_ipackets);
4481 } else {
4482 m_freem(m);
4483 }
4484 kpreempt_enable();
4485 }
4486
4487 static void
4488 wg_calc_pubkey(uint8_t pubkey[static WG_STATIC_KEY_LEN],
4489 const uint8_t privkey[static WG_STATIC_KEY_LEN])
4490 {
4491
4492 crypto_scalarmult_base(pubkey, privkey);
4493 }
4494
4495 static int
4496 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
4497 {
4498 struct radix_node_head *rnh;
4499 struct radix_node *rn;
4500 int error = 0;
4501
4502 rw_enter(wg->wg_rwlock, RW_WRITER);
4503 rnh = wg_rnh(wg, wga->wga_family);
4504 KASSERT(rnh != NULL);
4505 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
4506 wga->wga_nodes);
4507 rw_exit(wg->wg_rwlock);
4508
4509 if (rn == NULL)
4510 error = EEXIST;
4511
4512 return error;
4513 }
4514
4515 static int
4516 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
4517 struct wg_peer **wgpp)
4518 {
4519 int error = 0;
4520 const void *pubkey;
4521 size_t pubkey_len;
4522 const void *psk;
4523 size_t psk_len;
4524 const char *name = NULL;
4525
4526 if (prop_dictionary_get_string(peer, "name", &name)) {
4527 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
4528 error = EINVAL;
4529 goto out;
4530 }
4531 }
4532
4533 if (!prop_dictionary_get_data(peer, "public_key",
4534 &pubkey, &pubkey_len)) {
4535 error = EINVAL;
4536 goto out;
4537 }
4538 #ifdef WG_DEBUG_DUMP
4539 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4540 char *hex = gethexdump(pubkey, pubkey_len);
4541 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%zu\n%s\n",
4542 pubkey, pubkey_len, hex);
4543 puthexdump(hex, pubkey, pubkey_len);
4544 }
4545 #endif
4546
4547 struct wg_peer *wgp = wg_alloc_peer(wg);
4548 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4549 if (name != NULL)
4550 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4551
4552 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4553 if (psk_len != sizeof(wgp->wgp_psk)) {
4554 error = EINVAL;
4555 goto out;
4556 }
4557 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4558 }
4559
4560 const void *addr;
4561 size_t addr_len;
4562 struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4563
4564 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4565 goto skip_endpoint;
4566 if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4567 addr_len > sizeof(*wgsatoss(wgsa))) {
4568 error = EINVAL;
4569 goto out;
4570 }
4571 memcpy(wgsatoss(wgsa), addr, addr_len);
4572 switch (wgsa_family(wgsa)) {
4573 #ifdef INET
4574 case AF_INET:
4575 break;
4576 #endif
4577 #ifdef INET6
4578 case AF_INET6:
4579 break;
4580 #endif
4581 default:
4582 error = EPFNOSUPPORT;
4583 goto out;
4584 }
4585 if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4586 error = EINVAL;
4587 goto out;
4588 }
4589 {
4590 char addrstr[128];
4591 sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4592 WG_DLOG("addr=%s\n", addrstr);
4593 }
4594 wgp->wgp_endpoint_available = true;
4595
4596 prop_array_t allowedips;
4597 skip_endpoint:
4598 allowedips = prop_dictionary_get(peer, "allowedips");
4599 if (allowedips == NULL)
4600 goto skip;
4601
4602 prop_object_iterator_t _it = prop_array_iterator(allowedips);
4603 prop_dictionary_t prop_allowedip;
4604 int j = 0;
4605 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4606 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4607
4608 if (!prop_dictionary_get_int(prop_allowedip, "family",
4609 &wga->wga_family))
4610 continue;
4611 if (!prop_dictionary_get_data(prop_allowedip, "ip",
4612 &addr, &addr_len))
4613 continue;
4614 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4615 &wga->wga_cidr))
4616 continue;
4617
4618 switch (wga->wga_family) {
4619 #ifdef INET
4620 case AF_INET: {
4621 struct sockaddr_in sin;
4622 char addrstr[128];
4623 struct in_addr mask;
4624 struct sockaddr_in sin_mask;
4625
4626 if (addr_len != sizeof(struct in_addr))
4627 return EINVAL;
4628 memcpy(&wga->wga_addr4, addr, addr_len);
4629
4630 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4631 0);
4632 sockaddr_copy(&wga->wga_sa_addr,
4633 sizeof(sin), sintosa(&sin));
4634
4635 sockaddr_format(sintosa(&sin),
4636 addrstr, sizeof(addrstr));
4637 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4638
4639 in_len2mask(&mask, wga->wga_cidr);
4640 sockaddr_in_init(&sin_mask, &mask, 0);
4641 sockaddr_copy(&wga->wga_sa_mask,
4642 sizeof(sin_mask), sintosa(&sin_mask));
4643
4644 break;
4645 }
4646 #endif
4647 #ifdef INET6
4648 case AF_INET6: {
4649 struct sockaddr_in6 sin6;
4650 char addrstr[128];
4651 struct in6_addr mask;
4652 struct sockaddr_in6 sin6_mask;
4653
4654 if (addr_len != sizeof(struct in6_addr))
4655 return EINVAL;
4656 memcpy(&wga->wga_addr6, addr, addr_len);
4657
4658 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4659 0, 0, 0);
4660 sockaddr_copy(&wga->wga_sa_addr,
4661 sizeof(sin6), sin6tosa(&sin6));
4662
4663 sockaddr_format(sin6tosa(&sin6),
4664 addrstr, sizeof(addrstr));
4665 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4666
4667 in6_prefixlen2mask(&mask, wga->wga_cidr);
4668 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4669 sockaddr_copy(&wga->wga_sa_mask,
4670 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4671
4672 break;
4673 }
4674 #endif
4675 default:
4676 error = EINVAL;
4677 goto out;
4678 }
4679 wga->wga_peer = wgp;
4680
4681 error = wg_rtable_add_route(wg, wga);
4682 if (error != 0)
4683 goto out;
4684
4685 j++;
4686 }
4687 wgp->wgp_n_allowedips = j;
4688 skip:
4689 *wgpp = wgp;
4690 out:
4691 return error;
4692 }
4693
4694 static int
4695 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4696 {
4697 int error;
4698 char *buf;
4699
4700 WG_DLOG("buf=%p, len=%zu\n", ifd->ifd_data, ifd->ifd_len);
4701 if (ifd->ifd_len >= WG_MAX_PROPLEN)
4702 return E2BIG;
4703 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4704 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4705 if (error != 0)
4706 return error;
4707 buf[ifd->ifd_len] = '\0';
4708 #ifdef WG_DEBUG_DUMP
4709 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4710 log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
4711 (const char *)buf);
4712 }
4713 #endif
4714 *_buf = buf;
4715 return 0;
4716 }
4717
4718 static int
4719 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4720 {
4721 int error;
4722 prop_dictionary_t prop_dict;
4723 char *buf = NULL;
4724 const void *privkey;
4725 size_t privkey_len;
4726
4727 error = wg_alloc_prop_buf(&buf, ifd);
4728 if (error != 0)
4729 return error;
4730 error = EINVAL;
4731 prop_dict = prop_dictionary_internalize(buf);
4732 if (prop_dict == NULL)
4733 goto out;
4734 if (!prop_dictionary_get_data(prop_dict, "private_key",
4735 &privkey, &privkey_len))
4736 goto out;
4737 #ifdef WG_DEBUG_DUMP
4738 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4739 char *hex = gethexdump(privkey, privkey_len);
4740 log(LOG_DEBUG, "privkey=%p, privkey_len=%zu\n%s\n",
4741 privkey, privkey_len, hex);
4742 puthexdump(hex, privkey, privkey_len);
4743 }
4744 #endif
4745 if (privkey_len != WG_STATIC_KEY_LEN)
4746 goto out;
4747 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4748 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4749 error = 0;
4750
4751 out:
4752 kmem_free(buf, ifd->ifd_len + 1);
4753 return error;
4754 }
4755
4756 static int
4757 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4758 {
4759 int error;
4760 prop_dictionary_t prop_dict;
4761 char *buf = NULL;
4762 uint16_t port;
4763
4764 error = wg_alloc_prop_buf(&buf, ifd);
4765 if (error != 0)
4766 return error;
4767 error = EINVAL;
4768 prop_dict = prop_dictionary_internalize(buf);
4769 if (prop_dict == NULL)
4770 goto out;
4771 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4772 goto out;
4773
4774 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4775
4776 out:
4777 kmem_free(buf, ifd->ifd_len + 1);
4778 return error;
4779 }
4780
4781 static int
4782 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4783 {
4784 int error;
4785 prop_dictionary_t prop_dict;
4786 char *buf = NULL;
4787 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4788
4789 error = wg_alloc_prop_buf(&buf, ifd);
4790 if (error != 0)
4791 return error;
4792 error = EINVAL;
4793 prop_dict = prop_dictionary_internalize(buf);
4794 if (prop_dict == NULL)
4795 goto out;
4796
4797 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4798 if (error != 0)
4799 goto out;
4800
4801 mutex_enter(wg->wg_lock);
4802 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4803 sizeof(wgp->wgp_pubkey)) != NULL ||
4804 (wgp->wgp_name[0] &&
4805 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4806 strlen(wgp->wgp_name)) != NULL)) {
4807 mutex_exit(wg->wg_lock);
4808 wg_destroy_peer(wgp);
4809 error = EEXIST;
4810 goto out;
4811 }
4812 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4813 sizeof(wgp->wgp_pubkey), wgp);
4814 KASSERT(wgp0 == wgp);
4815 if (wgp->wgp_name[0]) {
4816 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4817 strlen(wgp->wgp_name), wgp);
4818 KASSERT(wgp0 == wgp);
4819 }
4820 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4821 wg->wg_npeers++;
4822 mutex_exit(wg->wg_lock);
4823
4824 if_link_state_change(&wg->wg_if, LINK_STATE_UP);
4825
4826 out:
4827 kmem_free(buf, ifd->ifd_len + 1);
4828 return error;
4829 }
4830
4831 static int
4832 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4833 {
4834 int error;
4835 prop_dictionary_t prop_dict;
4836 char *buf = NULL;
4837 const char *name;
4838
4839 error = wg_alloc_prop_buf(&buf, ifd);
4840 if (error != 0)
4841 return error;
4842 error = EINVAL;
4843 prop_dict = prop_dictionary_internalize(buf);
4844 if (prop_dict == NULL)
4845 goto out;
4846
4847 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4848 goto out;
4849 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4850 goto out;
4851
4852 error = wg_destroy_peer_name(wg, name);
4853 out:
4854 kmem_free(buf, ifd->ifd_len + 1);
4855 return error;
4856 }
4857
4858 static bool
4859 wg_is_authorized(struct wg_softc *wg, u_long cmd)
4860 {
4861 int au = cmd == SIOCGDRVSPEC ?
4862 KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
4863 KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
4864 return kauth_authorize_network(kauth_cred_get(),
4865 KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
4866 (void *)cmd, NULL) == 0;
4867 }
4868
4869 static int
4870 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4871 {
4872 int error = ENOMEM;
4873 prop_dictionary_t prop_dict;
4874 prop_array_t peers = NULL;
4875 char *buf;
4876 struct wg_peer *wgp;
4877 int s, i;
4878
4879 prop_dict = prop_dictionary_create();
4880 if (prop_dict == NULL)
4881 goto error;
4882
4883 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4884 if (!prop_dictionary_set_data(prop_dict, "private_key",
4885 wg->wg_privkey, WG_STATIC_KEY_LEN))
4886 goto error;
4887 }
4888
4889 if (wg->wg_listen_port != 0) {
4890 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4891 wg->wg_listen_port))
4892 goto error;
4893 }
4894
4895 if (wg->wg_npeers == 0)
4896 goto skip_peers;
4897
4898 peers = prop_array_create();
4899 if (peers == NULL)
4900 goto error;
4901
4902 s = pserialize_read_enter();
4903 i = 0;
4904 WG_PEER_READER_FOREACH(wgp, wg) {
4905 struct wg_sockaddr *wgsa;
4906 struct psref wgp_psref, wgsa_psref;
4907 prop_dictionary_t prop_peer;
4908
4909 wg_get_peer(wgp, &wgp_psref);
4910 pserialize_read_exit(s);
4911
4912 prop_peer = prop_dictionary_create();
4913 if (prop_peer == NULL)
4914 goto next;
4915
4916 if (strlen(wgp->wgp_name) > 0) {
4917 if (!prop_dictionary_set_string(prop_peer, "name",
4918 wgp->wgp_name))
4919 goto next;
4920 }
4921
4922 if (!prop_dictionary_set_data(prop_peer, "public_key",
4923 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4924 goto next;
4925
4926 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4927 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4928 sizeof(wgp->wgp_psk))) {
4929 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4930 if (!prop_dictionary_set_data(prop_peer,
4931 "preshared_key",
4932 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4933 goto next;
4934 }
4935 }
4936
4937 wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
4938 CTASSERT(AF_UNSPEC == 0);
4939 if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
4940 !prop_dictionary_set_data(prop_peer, "endpoint",
4941 wgsatoss(wgsa),
4942 sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
4943 wg_put_sa(wgp, wgsa, &wgsa_psref);
4944 goto next;
4945 }
4946 wg_put_sa(wgp, wgsa, &wgsa_psref);
4947
4948 const struct timespec *t = &wgp->wgp_last_handshake_time;
4949
4950 if (!prop_dictionary_set_uint64(prop_peer,
4951 "last_handshake_time_sec", (uint64_t)t->tv_sec))
4952 goto next;
4953 if (!prop_dictionary_set_uint32(prop_peer,
4954 "last_handshake_time_nsec", (uint32_t)t->tv_nsec))
4955 goto next;
4956
4957 if (wgp->wgp_n_allowedips == 0)
4958 goto skip_allowedips;
4959
4960 prop_array_t allowedips = prop_array_create();
4961 if (allowedips == NULL)
4962 goto next;
4963 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4964 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4965 prop_dictionary_t prop_allowedip;
4966
4967 prop_allowedip = prop_dictionary_create();
4968 if (prop_allowedip == NULL)
4969 break;
4970
4971 if (!prop_dictionary_set_int(prop_allowedip, "family",
4972 wga->wga_family))
4973 goto _next;
4974 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4975 wga->wga_cidr))
4976 goto _next;
4977
4978 switch (wga->wga_family) {
4979 #ifdef INET
4980 case AF_INET:
4981 if (!prop_dictionary_set_data(prop_allowedip,
4982 "ip", &wga->wga_addr4,
4983 sizeof(wga->wga_addr4)))
4984 goto _next;
4985 break;
4986 #endif
4987 #ifdef INET6
4988 case AF_INET6:
4989 if (!prop_dictionary_set_data(prop_allowedip,
4990 "ip", &wga->wga_addr6,
4991 sizeof(wga->wga_addr6)))
4992 goto _next;
4993 break;
4994 #endif
4995 default:
4996 panic("invalid af=%d", wga->wga_family);
4997 }
4998 prop_array_set(allowedips, j, prop_allowedip);
4999 _next:
5000 prop_object_release(prop_allowedip);
5001 }
5002 prop_dictionary_set(prop_peer, "allowedips", allowedips);
5003 prop_object_release(allowedips);
5004
5005 skip_allowedips:
5006
5007 prop_array_set(peers, i, prop_peer);
5008 next:
5009 if (prop_peer)
5010 prop_object_release(prop_peer);
5011 i++;
5012
5013 s = pserialize_read_enter();
5014 wg_put_peer(wgp, &wgp_psref);
5015 }
5016 pserialize_read_exit(s);
5017
5018 prop_dictionary_set(prop_dict, "peers", peers);
5019 prop_object_release(peers);
5020 peers = NULL;
5021
5022 skip_peers:
5023 buf = prop_dictionary_externalize(prop_dict);
5024 if (buf == NULL)
5025 goto error;
5026 if (ifd->ifd_len < (strlen(buf) + 1)) {
5027 error = EINVAL;
5028 goto error;
5029 }
5030 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
5031
5032 free(buf, 0);
5033 error:
5034 if (peers != NULL)
5035 prop_object_release(peers);
5036 if (prop_dict != NULL)
5037 prop_object_release(prop_dict);
5038
5039 return error;
5040 }
5041
5042 static int
5043 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5044 {
5045 struct wg_softc *wg = ifp->if_softc;
5046 struct ifreq *ifr = data;
5047 struct ifaddr *ifa = data;
5048 struct ifdrv *ifd = data;
5049 int error = 0;
5050
5051 switch (cmd) {
5052 case SIOCINITIFADDR:
5053 if (ifa->ifa_addr->sa_family != AF_LINK &&
5054 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
5055 (IFF_UP | IFF_RUNNING)) {
5056 ifp->if_flags |= IFF_UP;
5057 error = if_init(ifp);
5058 }
5059 return error;
5060 case SIOCADDMULTI:
5061 case SIOCDELMULTI:
5062 switch (ifr->ifr_addr.sa_family) {
5063 #ifdef INET
5064 case AF_INET: /* IP supports Multicast */
5065 break;
5066 #endif
5067 #ifdef INET6
5068 case AF_INET6: /* IP6 supports Multicast */
5069 break;
5070 #endif
5071 default: /* Other protocols doesn't support Multicast */
5072 error = EAFNOSUPPORT;
5073 break;
5074 }
5075 return error;
5076 case SIOCSDRVSPEC:
5077 if (!wg_is_authorized(wg, cmd)) {
5078 return EPERM;
5079 }
5080 switch (ifd->ifd_cmd) {
5081 case WG_IOCTL_SET_PRIVATE_KEY:
5082 error = wg_ioctl_set_private_key(wg, ifd);
5083 break;
5084 case WG_IOCTL_SET_LISTEN_PORT:
5085 error = wg_ioctl_set_listen_port(wg, ifd);
5086 break;
5087 case WG_IOCTL_ADD_PEER:
5088 error = wg_ioctl_add_peer(wg, ifd);
5089 break;
5090 case WG_IOCTL_DELETE_PEER:
5091 error = wg_ioctl_delete_peer(wg, ifd);
5092 break;
5093 default:
5094 error = EINVAL;
5095 break;
5096 }
5097 return error;
5098 case SIOCGDRVSPEC:
5099 return wg_ioctl_get(wg, ifd);
5100 case SIOCSIFFLAGS:
5101 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5102 break;
5103 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5104 case IFF_RUNNING:
5105 /*
5106 * If interface is marked down and it is running,
5107 * then stop and disable it.
5108 */
5109 if_stop(ifp, 1);
5110 break;
5111 case IFF_UP:
5112 /*
5113 * If interface is marked up and it is stopped, then
5114 * start it.
5115 */
5116 error = if_init(ifp);
5117 break;
5118 default:
5119 break;
5120 }
5121 return error;
5122 #ifdef WG_RUMPKERNEL
5123 case SIOCSLINKSTR:
5124 error = wg_ioctl_linkstr(wg, ifd);
5125 if (error)
5126 return error;
5127 wg->wg_ops = &wg_ops_rumpuser;
5128 return 0;
5129 #endif
5130 default:
5131 break;
5132 }
5133
5134 error = ifioctl_common(ifp, cmd, data);
5135
5136 #ifdef WG_RUMPKERNEL
5137 if (!wg_user_mode(wg))
5138 return error;
5139
5140 /* Do the same to the corresponding tun device on the host */
5141 /*
5142 * XXX Actually the command has not been handled yet. It
5143 * will be handled via pr_ioctl form doifioctl later.
5144 */
5145 switch (cmd) {
5146 #ifdef INET
5147 case SIOCAIFADDR:
5148 case SIOCDIFADDR: {
5149 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
5150 struct in_aliasreq *ifra = &_ifra;
5151 KASSERT(error == ENOTTY);
5152 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5153 IFNAMSIZ);
5154 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
5155 if (error == 0)
5156 error = ENOTTY;
5157 break;
5158 }
5159 #endif
5160 #ifdef INET6
5161 case SIOCAIFADDR_IN6:
5162 case SIOCDIFADDR_IN6: {
5163 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
5164 struct in6_aliasreq *ifra = &_ifra;
5165 KASSERT(error == ENOTTY);
5166 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5167 IFNAMSIZ);
5168 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
5169 if (error == 0)
5170 error = ENOTTY;
5171 break;
5172 }
5173 #endif
5174 default:
5175 break;
5176 }
5177 #endif /* WG_RUMPKERNEL */
5178
5179 return error;
5180 }
5181
5182 static int
5183 wg_init(struct ifnet *ifp)
5184 {
5185
5186 ifp->if_flags |= IFF_RUNNING;
5187
5188 /* TODO flush pending packets. */
5189 return 0;
5190 }
5191
5192 #ifdef ALTQ
5193 static void
5194 wg_start(struct ifnet *ifp)
5195 {
5196 struct mbuf *m;
5197
5198 for (;;) {
5199 IFQ_DEQUEUE(&ifp->if_snd, m);
5200 if (m == NULL)
5201 break;
5202
5203 kpreempt_disable();
5204 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
5205 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
5206 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
5207 if_name(ifp));
5208 m_freem(m);
5209 }
5210 kpreempt_enable();
5211 }
5212 }
5213 #endif
5214
5215 static void
5216 wg_stop(struct ifnet *ifp, int disable)
5217 {
5218
5219 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
5220 ifp->if_flags &= ~IFF_RUNNING;
5221
5222 /* Need to do something? */
5223 }
5224
5225 #ifdef WG_DEBUG_PARAMS
5226 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
5227 {
5228 const struct sysctlnode *node = NULL;
5229
5230 sysctl_createv(clog, 0, NULL, &node,
5231 CTLFLAG_PERMANENT,
5232 CTLTYPE_NODE, "wg",
5233 SYSCTL_DESCR("wg(4)"),
5234 NULL, 0, NULL, 0,
5235 CTL_NET, CTL_CREATE, CTL_EOL);
5236 sysctl_createv(clog, 0, &node, NULL,
5237 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5238 CTLTYPE_QUAD, "rekey_after_messages",
5239 SYSCTL_DESCR("session liftime by messages"),
5240 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
5241 sysctl_createv(clog, 0, &node, NULL,
5242 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5243 CTLTYPE_INT, "rekey_after_time",
5244 SYSCTL_DESCR("session liftime"),
5245 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
5246 sysctl_createv(clog, 0, &node, NULL,
5247 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5248 CTLTYPE_INT, "rekey_timeout",
5249 SYSCTL_DESCR("session handshake retry time"),
5250 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
5251 sysctl_createv(clog, 0, &node, NULL,
5252 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5253 CTLTYPE_INT, "rekey_attempt_time",
5254 SYSCTL_DESCR("session handshake timeout"),
5255 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
5256 sysctl_createv(clog, 0, &node, NULL,
5257 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5258 CTLTYPE_INT, "keepalive_timeout",
5259 SYSCTL_DESCR("keepalive timeout"),
5260 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
5261 sysctl_createv(clog, 0, &node, NULL,
5262 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5263 CTLTYPE_BOOL, "force_underload",
5264 SYSCTL_DESCR("force to detemine under load"),
5265 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
5266 sysctl_createv(clog, 0, &node, NULL,
5267 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5268 CTLTYPE_INT, "debug",
5269 SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
5270 NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
5271 }
5272 #endif
5273
5274 #ifdef WG_RUMPKERNEL
5275 static bool
5276 wg_user_mode(struct wg_softc *wg)
5277 {
5278
5279 return wg->wg_user != NULL;
5280 }
5281
5282 static int
5283 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
5284 {
5285 struct ifnet *ifp = &wg->wg_if;
5286 int error;
5287
5288 if (ifp->if_flags & IFF_UP)
5289 return EBUSY;
5290
5291 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
5292 /* XXX do nothing */
5293 return 0;
5294 } else if (ifd->ifd_cmd != 0) {
5295 return EINVAL;
5296 } else if (wg->wg_user != NULL) {
5297 return EBUSY;
5298 }
5299
5300 /* Assume \0 included */
5301 if (ifd->ifd_len > IFNAMSIZ) {
5302 return E2BIG;
5303 } else if (ifd->ifd_len < 1) {
5304 return EINVAL;
5305 }
5306
5307 char tun_name[IFNAMSIZ];
5308 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
5309 if (error != 0)
5310 return error;
5311
5312 if (strncmp(tun_name, "tun", 3) != 0)
5313 return EINVAL;
5314
5315 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
5316
5317 return error;
5318 }
5319
5320 static int
5321 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
5322 {
5323 int error;
5324 struct psref psref;
5325 struct wg_sockaddr *wgsa;
5326 struct wg_softc *wg = wgp->wgp_sc;
5327 struct iovec iov[1];
5328
5329 wgsa = wg_get_endpoint_sa(wgp, &psref);
5330
5331 iov[0].iov_base = mtod(m, void *);
5332 iov[0].iov_len = m->m_len;
5333
5334 /* Send messages to a peer via an ordinary socket. */
5335 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
5336
5337 wg_put_sa(wgp, wgsa, &psref);
5338
5339 m_freem(m);
5340
5341 return error;
5342 }
5343
5344 static void
5345 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
5346 {
5347 struct wg_softc *wg = ifp->if_softc;
5348 struct iovec iov[2];
5349 struct sockaddr_storage ss;
5350
5351 KASSERT(af == AF_INET || af == AF_INET6);
5352
5353 WG_TRACE("");
5354
5355 switch (af) {
5356 #ifdef INET
5357 case AF_INET: {
5358 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
5359 struct ip *ip;
5360
5361 KASSERT(m->m_len >= sizeof(struct ip));
5362 ip = mtod(m, struct ip *);
5363 sockaddr_in_init(sin, &ip->ip_dst, 0);
5364 break;
5365 }
5366 #endif
5367 #ifdef INET6
5368 case AF_INET6: {
5369 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
5370 struct ip6_hdr *ip6;
5371
5372 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
5373 ip6 = mtod(m, struct ip6_hdr *);
5374 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
5375 break;
5376 }
5377 #endif
5378 default:
5379 goto out;
5380 }
5381
5382 iov[0].iov_base = &ss;
5383 iov[0].iov_len = ss.ss_len;
5384 iov[1].iov_base = mtod(m, void *);
5385 iov[1].iov_len = m->m_len;
5386
5387 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5388
5389 /* Send decrypted packets to users via a tun. */
5390 rumpuser_wg_send_user(wg->wg_user, iov, 2);
5391
5392 out: m_freem(m);
5393 }
5394
5395 static int
5396 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
5397 {
5398 int error;
5399 uint16_t old_port = wg->wg_listen_port;
5400
5401 if (port != 0 && old_port == port)
5402 return 0;
5403
5404 error = rumpuser_wg_sock_bind(wg->wg_user, port);
5405 if (error)
5406 return error;
5407
5408 wg->wg_listen_port = port;
5409 return 0;
5410 }
5411
5412 /*
5413 * Receive user packets.
5414 */
5415 void
5416 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5417 {
5418 struct ifnet *ifp = &wg->wg_if;
5419 struct mbuf *m;
5420 const struct sockaddr *dst;
5421 int error;
5422
5423 WG_TRACE("");
5424
5425 dst = iov[0].iov_base;
5426
5427 m = m_gethdr(M_DONTWAIT, MT_DATA);
5428 if (m == NULL)
5429 return;
5430 m->m_len = m->m_pkthdr.len = 0;
5431 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5432
5433 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5434 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5435
5436 error = wg_output(ifp, m, dst, NULL); /* consumes m */
5437 if (error)
5438 WG_DLOG("wg_output failed, error=%d\n", error);
5439 }
5440
5441 /*
5442 * Receive packets from a peer.
5443 */
5444 void
5445 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5446 {
5447 struct mbuf *m;
5448 const struct sockaddr *src;
5449 int bound;
5450
5451 WG_TRACE("");
5452
5453 src = iov[0].iov_base;
5454
5455 m = m_gethdr(M_DONTWAIT, MT_DATA);
5456 if (m == NULL)
5457 return;
5458 m->m_len = m->m_pkthdr.len = 0;
5459 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5460
5461 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5462 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5463
5464 bound = curlwp_bind();
5465 wg_handle_packet(wg, m, src);
5466 curlwp_bindx(bound);
5467 }
5468 #endif /* WG_RUMPKERNEL */
5469
5470 /*
5471 * Module infrastructure
5472 */
5473 #include "if_module.h"
5474
5475 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
5476