if_wg.c revision 1.117 1 /* $NetBSD: if_wg.c,v 1.117 2024/07/29 02:33:58 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.117 2024/07/29 02:33:58 riastradh Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_altq_enabled.h"
48 #include "opt_inet.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/atomic.h>
55 #include <sys/callout.h>
56 #include <sys/cprng.h>
57 #include <sys/cpu.h>
58 #include <sys/device.h>
59 #include <sys/domain.h>
60 #include <sys/errno.h>
61 #include <sys/intr.h>
62 #include <sys/ioctl.h>
63 #include <sys/kernel.h>
64 #include <sys/kmem.h>
65 #include <sys/mbuf.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/once.h>
69 #include <sys/percpu.h>
70 #include <sys/pserialize.h>
71 #include <sys/psref.h>
72 #include <sys/queue.h>
73 #include <sys/rwlock.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/systm.h>
80 #include <sys/thmap.h>
81 #include <sys/threadpool.h>
82 #include <sys/time.h>
83 #include <sys/timespec.h>
84 #include <sys/workqueue.h>
85
86 #include <lib/libkern/libkern.h>
87
88 #include <net/bpf.h>
89 #include <net/if.h>
90 #include <net/if_types.h>
91 #include <net/if_wg.h>
92 #include <net/pktqueue.h>
93 #include <net/route.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_pcb.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_var.h>
101 #include <netinet/udp.h>
102 #include <netinet/udp_var.h>
103 #endif /* INET */
104
105 #ifdef INET6
106 #include <netinet/ip6.h>
107 #include <netinet6/in6_pcb.h>
108 #include <netinet6/in6_var.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/udp6_var.h>
111 #endif /* INET6 */
112
113 #include <prop/proplib.h>
114
115 #include <crypto/blake2/blake2s.h>
116 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
117 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
118 #include <crypto/sodium/crypto_scalarmult.h>
119
120 #include "ioconf.h"
121
122 #ifdef WG_RUMPKERNEL
123 #include "wg_user.h"
124 #endif
125
126 #ifndef time_uptime32
127 #define time_uptime32 ((uint32_t)time_uptime)
128 #endif
129
130 /*
131 * Data structures
132 * - struct wg_softc is an instance of wg interfaces
133 * - It has a list of peers (struct wg_peer)
134 * - It has a threadpool job that sends/receives handshake messages and
135 * runs event handlers
136 * - It has its own two routing tables: one is for IPv4 and the other IPv6
137 * - struct wg_peer is a representative of a peer
138 * - It has a struct work to handle handshakes and timer tasks
139 * - It has a pair of session instances (struct wg_session)
140 * - It has a pair of endpoint instances (struct wg_sockaddr)
141 * - Normally one endpoint is used and the second one is used only on
142 * a peer migration (a change of peer's IP address)
143 * - It has a list of IP addresses and sub networks called allowedips
144 * (struct wg_allowedip)
145 * - A packets sent over a session is allowed if its destination matches
146 * any IP addresses or sub networks of the list
147 * - struct wg_session represents a session of a secure tunnel with a peer
148 * - Two instances of sessions belong to a peer; a stable session and a
149 * unstable session
150 * - A handshake process of a session always starts with a unstable instance
151 * - Once a session is established, its instance becomes stable and the
152 * other becomes unstable instead
153 * - Data messages are always sent via a stable session
154 *
155 * Locking notes:
156 * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
157 * - Changes to the peer list are serialized by wg_lock
158 * - The peer list may be read with pserialize(9) and psref(9)
159 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
160 * => XXX replace by pserialize when routing table is psz-safe
161 * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
162 * only in thread context and serializes:
163 * - the stable and unstable session pointers
164 * - all unstable session state
165 * - Packet processing may be done in softint context:
166 * - The stable session can be read under pserialize(9) or psref(9)
167 * - The stable session is always ESTABLISHED
168 * - On a session swap, we must wait for all readers to release a
169 * reference to a stable session before changing wgs_state and
170 * session states
171 * - Lock order: wg_lock -> wgp_lock
172 */
173
174
175 #define WGLOG(level, fmt, args...) \
176 log(level, "%s: " fmt, __func__, ##args)
177
178 #define WG_DEBUG
179
180 /* Debug options */
181 #ifdef WG_DEBUG
182 /* Output debug logs */
183 #ifndef WG_DEBUG_LOG
184 #define WG_DEBUG_LOG
185 #endif
186 /* Output trace logs */
187 #ifndef WG_DEBUG_TRACE
188 #define WG_DEBUG_TRACE
189 #endif
190 /* Output hash values, etc. */
191 #ifndef WG_DEBUG_DUMP
192 #define WG_DEBUG_DUMP
193 #endif
194 /* Make some internal parameters configurable for testing and debugging */
195 #ifndef WG_DEBUG_PARAMS
196 #define WG_DEBUG_PARAMS
197 #endif
198 #endif /* WG_DEBUG */
199
200 #ifndef WG_DEBUG
201 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) || \
202 defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS)
203 # define WG_DEBUG
204 # endif
205 #endif
206
207 #ifdef WG_DEBUG
208 int wg_debug;
209 #define WG_DEBUG_FLAGS_LOG 1
210 #define WG_DEBUG_FLAGS_TRACE 2
211 #define WG_DEBUG_FLAGS_DUMP 4
212 #endif
213
214 #ifdef WG_DEBUG_TRACE
215 #define WG_TRACE(msg) do { \
216 if (wg_debug & WG_DEBUG_FLAGS_TRACE) \
217 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg)); \
218 } while (0)
219 #else
220 #define WG_TRACE(msg) __nothing
221 #endif
222
223 #ifdef WG_DEBUG_LOG
224 #define WG_DLOG(fmt, args...) do { \
225 if (wg_debug & WG_DEBUG_FLAGS_LOG) \
226 log(LOG_DEBUG, "%s: " fmt, __func__, ##args); \
227 } while (0)
228 #else
229 #define WG_DLOG(fmt, args...) __nothing
230 #endif
231
232 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
233 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
234 &(wgprc)->wgprc_curpps, 1)) { \
235 log(level, fmt, ##args); \
236 } \
237 } while (0)
238
239 #ifdef WG_DEBUG_PARAMS
240 static bool wg_force_underload = false;
241 #endif
242
243 #ifdef WG_DEBUG_DUMP
244
245 static char enomem[10] = "[enomem]";
246
247 #define MAX_HDUMP_LEN 10000 /* large enough */
248
249 /*
250 * gethexdump(p, n)
251 *
252 * Allocate a string returning a hexdump of bytes p[0..n),
253 * truncated to MAX_HDUMP_LEN. Must be freed with puthexdump.
254 *
255 * We use this instead of libkern hexdump() because the result is
256 * logged with log(LOG_DEBUG, ...), which puts a priority tag on
257 * every message, so it can't be done incrementally.
258 */
259 static char *
260 gethexdump(const void *vp, size_t n)
261 {
262 char *buf;
263 const uint8_t *p = vp;
264 size_t i, alloc;
265
266 alloc = n;
267 if (n > MAX_HDUMP_LEN)
268 alloc = MAX_HDUMP_LEN;
269 buf = kmem_alloc(3*alloc + 5, KM_NOSLEEP);
270 if (buf == NULL)
271 return enomem;
272 for (i = 0; i < alloc; i++)
273 snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
274 if (alloc != n)
275 snprintf(buf + 3*i, 4 + 1, " ...");
276 return buf;
277 }
278
279 static void
280 puthexdump(char *buf, const void *p, size_t n)
281 {
282
283 if (buf == NULL || buf == enomem)
284 return;
285 if (n > MAX_HDUMP_LEN)
286 n = MAX_HDUMP_LEN;
287 kmem_free(buf, 3*n + 5);
288 }
289
290 #ifdef WG_RUMPKERNEL
291 static void
292 wg_dump_buf(const char *func, const char *buf, const size_t size)
293 {
294 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
295 return;
296
297 char *hex = gethexdump(buf, size);
298
299 log(LOG_DEBUG, "%s: %s\n", func, hex);
300 puthexdump(hex, buf, size);
301 }
302 #endif
303
304 static void
305 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
306 const size_t size)
307 {
308 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
309 return;
310
311 char *hex = gethexdump(hash, size);
312
313 log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex);
314 puthexdump(hex, hash, size);
315 }
316
317 #define WG_DUMP_HASH(name, hash) \
318 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
319 #define WG_DUMP_HASH48(name, hash) \
320 wg_dump_hash(__func__, name, hash, 48)
321 #define WG_DUMP_BUF(buf, size) \
322 wg_dump_buf(__func__, buf, size)
323 #else
324 #define WG_DUMP_HASH(name, hash) __nothing
325 #define WG_DUMP_HASH48(name, hash) __nothing
326 #define WG_DUMP_BUF(buf, size) __nothing
327 #endif /* WG_DEBUG_DUMP */
328
329 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
330 #define WG_MAX_PROPLEN 32766
331
332 #define WG_MTU 1420
333 #define WG_ALLOWEDIPS 16
334
335 #define CURVE25519_KEY_LEN 32
336 #define TAI64N_LEN (sizeof(uint32_t) * 3)
337 #define POLY1305_AUTHTAG_LEN 16
338 #define HMAC_BLOCK_LEN 64
339
340 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
341 /* [N] 4.3: Hash functions */
342 #define NOISE_DHLEN 32
343 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
344 #define NOISE_HASHLEN 32
345 #define NOISE_BLOCKLEN 64
346 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
347 /* [N] 5.1: "k" */
348 #define NOISE_CIPHER_KEY_LEN 32
349 /*
350 * [N] 9.2: "psk"
351 * "... psk is a 32-byte secret value provided by the application."
352 */
353 #define NOISE_PRESHARED_KEY_LEN 32
354
355 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
356 #define WG_TIMESTAMP_LEN TAI64N_LEN
357
358 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
359
360 #define WG_COOKIE_LEN 16
361 #define WG_MAC_LEN 16
362 #define WG_COOKIESECRET_LEN 32
363
364 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
365 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
366 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
367 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
368 #define WG_HASH_LEN NOISE_HASHLEN
369 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
370 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
371 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
372 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
373 #define WG_DATA_KEY_LEN 32
374 #define WG_SALT_LEN 24
375
376 /*
377 * The protocol messages
378 */
379 struct wg_msg {
380 uint32_t wgm_type;
381 } __packed;
382
383 /* [W] 5.4.2 First Message: Initiator to Responder */
384 struct wg_msg_init {
385 uint32_t wgmi_type;
386 uint32_t wgmi_sender;
387 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
388 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
389 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
390 uint8_t wgmi_mac1[WG_MAC_LEN];
391 uint8_t wgmi_mac2[WG_MAC_LEN];
392 } __packed;
393
394 /* [W] 5.4.3 Second Message: Responder to Initiator */
395 struct wg_msg_resp {
396 uint32_t wgmr_type;
397 uint32_t wgmr_sender;
398 uint32_t wgmr_receiver;
399 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
400 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
401 uint8_t wgmr_mac1[WG_MAC_LEN];
402 uint8_t wgmr_mac2[WG_MAC_LEN];
403 } __packed;
404
405 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
406 struct wg_msg_data {
407 uint32_t wgmd_type;
408 uint32_t wgmd_receiver;
409 uint64_t wgmd_counter;
410 uint32_t wgmd_packet[];
411 } __packed;
412
413 /* [W] 5.4.7 Under Load: Cookie Reply Message */
414 struct wg_msg_cookie {
415 uint32_t wgmc_type;
416 uint32_t wgmc_receiver;
417 uint8_t wgmc_salt[WG_SALT_LEN];
418 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
419 } __packed;
420
421 #define WG_MSG_TYPE_INIT 1
422 #define WG_MSG_TYPE_RESP 2
423 #define WG_MSG_TYPE_COOKIE 3
424 #define WG_MSG_TYPE_DATA 4
425 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
426
427 /* Sliding windows */
428
429 #define SLIWIN_BITS 2048u
430 #define SLIWIN_TYPE uint32_t
431 #define SLIWIN_BPW (NBBY*sizeof(SLIWIN_TYPE))
432 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
433 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
434
435 struct sliwin {
436 SLIWIN_TYPE B[SLIWIN_WORDS];
437 uint64_t T;
438 };
439
440 static void
441 sliwin_reset(struct sliwin *W)
442 {
443
444 memset(W, 0, sizeof(*W));
445 }
446
447 static int
448 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
449 {
450
451 /*
452 * If it's more than one window older than the highest sequence
453 * number we've seen, reject.
454 */
455 #ifdef __HAVE_ATOMIC64_LOADSTORE
456 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
457 return EAUTH;
458 #endif
459
460 /*
461 * Otherwise, we need to take the lock to decide, so don't
462 * reject just yet. Caller must serialize a call to
463 * sliwin_update in this case.
464 */
465 return 0;
466 }
467
468 static int
469 sliwin_update(struct sliwin *W, uint64_t S)
470 {
471 unsigned word, bit;
472
473 /*
474 * If it's more than one window older than the highest sequence
475 * number we've seen, reject.
476 */
477 if (S + SLIWIN_NPKT < W->T)
478 return EAUTH;
479
480 /*
481 * If it's higher than the highest sequence number we've seen,
482 * advance the window.
483 */
484 if (S > W->T) {
485 uint64_t i = W->T / SLIWIN_BPW;
486 uint64_t j = S / SLIWIN_BPW;
487 unsigned k;
488
489 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
490 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
491 #ifdef __HAVE_ATOMIC64_LOADSTORE
492 atomic_store_relaxed(&W->T, S);
493 #else
494 W->T = S;
495 #endif
496 }
497
498 /* Test and set the bit -- if already set, reject. */
499 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
500 bit = S % SLIWIN_BPW;
501 if (W->B[word] & (1UL << bit))
502 return EAUTH;
503 W->B[word] |= 1U << bit;
504
505 /* Accept! */
506 return 0;
507 }
508
509 struct wg_session {
510 struct wg_peer *wgs_peer;
511 struct psref_target
512 wgs_psref;
513
514 int wgs_state;
515 #define WGS_STATE_UNKNOWN 0
516 #define WGS_STATE_INIT_ACTIVE 1
517 #define WGS_STATE_INIT_PASSIVE 2
518 #define WGS_STATE_ESTABLISHED 3
519 #define WGS_STATE_DESTROYING 4
520
521 uint32_t wgs_time_established;
522 volatile uint32_t
523 wgs_time_last_data_sent;
524 volatile bool wgs_force_rekey;
525 bool wgs_is_initiator;
526
527 uint32_t wgs_local_index;
528 uint32_t wgs_remote_index;
529 #ifdef __HAVE_ATOMIC64_LOADSTORE
530 volatile uint64_t
531 wgs_send_counter;
532 #else
533 kmutex_t wgs_send_counter_lock;
534 uint64_t wgs_send_counter;
535 #endif
536
537 struct {
538 kmutex_t lock;
539 struct sliwin window;
540 } *wgs_recvwin;
541
542 uint8_t wgs_handshake_hash[WG_HASH_LEN];
543 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
544 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
545 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
546 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
547 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
548 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
549 };
550
551 struct wg_sockaddr {
552 union {
553 struct sockaddr_storage _ss;
554 struct sockaddr _sa;
555 struct sockaddr_in _sin;
556 struct sockaddr_in6 _sin6;
557 };
558 struct psref_target wgsa_psref;
559 };
560
561 #define wgsatoss(wgsa) (&(wgsa)->_ss)
562 #define wgsatosa(wgsa) (&(wgsa)->_sa)
563 #define wgsatosin(wgsa) (&(wgsa)->_sin)
564 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
565
566 #define wgsa_family(wgsa) (wgsatosa(wgsa)->sa_family)
567
568 struct wg_peer;
569 struct wg_allowedip {
570 struct radix_node wga_nodes[2];
571 struct wg_sockaddr _wga_sa_addr;
572 struct wg_sockaddr _wga_sa_mask;
573 #define wga_sa_addr _wga_sa_addr._sa
574 #define wga_sa_mask _wga_sa_mask._sa
575
576 int wga_family;
577 uint8_t wga_cidr;
578 union {
579 struct in_addr _ip4;
580 struct in6_addr _ip6;
581 } wga_addr;
582 #define wga_addr4 wga_addr._ip4
583 #define wga_addr6 wga_addr._ip6
584
585 struct wg_peer *wga_peer;
586 };
587
588 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
589
590 struct wg_ppsratecheck {
591 struct timeval wgprc_lasttime;
592 int wgprc_curpps;
593 };
594
595 struct wg_softc;
596 struct wg_peer {
597 struct wg_softc *wgp_sc;
598 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
599 struct pslist_entry wgp_peerlist_entry;
600 pserialize_t wgp_psz;
601 struct psref_target wgp_psref;
602 kmutex_t *wgp_lock;
603 kmutex_t *wgp_intr_lock;
604
605 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
606 struct wg_sockaddr *wgp_endpoint;
607 struct wg_sockaddr *wgp_endpoint0;
608 volatile unsigned wgp_endpoint_changing;
609 bool wgp_endpoint_available;
610
611 /* The preshared key (optional) */
612 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
613
614 struct wg_session *wgp_session_stable;
615 struct wg_session *wgp_session_unstable;
616
617 /* first outgoing packet awaiting session initiation */
618 struct mbuf *volatile wgp_pending;
619
620 /* timestamp in big-endian */
621 wg_timestamp_t wgp_timestamp_latest_init;
622
623 struct timespec wgp_last_handshake_time;
624
625 callout_t wgp_handshake_timeout_timer;
626 callout_t wgp_session_dtor_timer;
627
628 time_t wgp_handshake_start_time;
629
630 int wgp_n_allowedips;
631 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
632
633 time_t wgp_latest_cookie_time;
634 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
635 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
636 bool wgp_last_sent_mac1_valid;
637 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
638 bool wgp_last_sent_cookie_valid;
639
640 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
641
642 time_t wgp_last_cookiesecret_time;
643 uint8_t wgp_cookiesecret[WG_COOKIESECRET_LEN];
644
645 struct wg_ppsratecheck wgp_ppsratecheck;
646
647 struct work wgp_work;
648 unsigned int wgp_tasks;
649 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
650 #define WGP_TASK_RETRY_HANDSHAKE __BIT(1)
651 #define WGP_TASK_ESTABLISH_SESSION __BIT(2)
652 #define WGP_TASK_ENDPOINT_CHANGED __BIT(3)
653 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(4)
654 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(5)
655 };
656
657 struct wg_ops;
658
659 struct wg_softc {
660 struct ifnet wg_if;
661 LIST_ENTRY(wg_softc) wg_list;
662 kmutex_t *wg_lock;
663 kmutex_t *wg_intr_lock;
664 krwlock_t *wg_rwlock;
665
666 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
667 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
668
669 int wg_npeers;
670 struct pslist_head wg_peers;
671 struct thmap *wg_peers_bypubkey;
672 struct thmap *wg_peers_byname;
673 struct thmap *wg_sessions_byindex;
674 uint16_t wg_listen_port;
675
676 struct threadpool *wg_threadpool;
677
678 struct threadpool_job wg_job;
679 int wg_upcalls;
680 #define WG_UPCALL_INET __BIT(0)
681 #define WG_UPCALL_INET6 __BIT(1)
682
683 #ifdef INET
684 struct socket *wg_so4;
685 struct radix_node_head *wg_rtable_ipv4;
686 #endif
687 #ifdef INET6
688 struct socket *wg_so6;
689 struct radix_node_head *wg_rtable_ipv6;
690 #endif
691
692 struct wg_ppsratecheck wg_ppsratecheck;
693
694 struct wg_ops *wg_ops;
695
696 #ifdef WG_RUMPKERNEL
697 struct wg_user *wg_user;
698 #endif
699 };
700
701 /* [W] 6.1 Preliminaries */
702 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
703 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
704 #define WG_REKEY_AFTER_TIME 120
705 #define WG_REJECT_AFTER_TIME 180
706 #define WG_REKEY_ATTEMPT_TIME 90
707 #define WG_REKEY_TIMEOUT 5
708 #define WG_KEEPALIVE_TIMEOUT 10
709
710 #define WG_COOKIE_TIME 120
711 #define WG_COOKIESECRET_TIME (2 * 60)
712
713 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
714 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
715 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
716 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
717 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
718 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
719 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
720
721 static struct mbuf *
722 wg_get_mbuf(size_t, size_t);
723
724 static void wg_send_data_msg(struct wg_peer *, struct wg_session *,
725 struct mbuf *);
726 static void wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
727 const uint32_t, const uint8_t[static WG_MAC_LEN],
728 const struct sockaddr *);
729 static void wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
730 struct wg_session *, const struct wg_msg_init *);
731 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
732
733 static struct wg_peer *
734 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
735 struct psref *);
736 static struct wg_peer *
737 wg_lookup_peer_by_pubkey(struct wg_softc *,
738 const uint8_t[static WG_STATIC_KEY_LEN], struct psref *);
739
740 static struct wg_session *
741 wg_lookup_session_by_index(struct wg_softc *,
742 const uint32_t, struct psref *);
743
744 static void wg_update_endpoint_if_necessary(struct wg_peer *,
745 const struct sockaddr *);
746
747 static void wg_schedule_session_dtor_timer(struct wg_peer *);
748
749 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
750 static void wg_calculate_keys(struct wg_session *, const bool);
751
752 static void wg_clear_states(struct wg_session *);
753
754 static void wg_get_peer(struct wg_peer *, struct psref *);
755 static void wg_put_peer(struct wg_peer *, struct psref *);
756
757 static int wg_send_so(struct wg_peer *, struct mbuf *);
758 static int wg_send_udp(struct wg_peer *, struct mbuf *);
759 static int wg_output(struct ifnet *, struct mbuf *,
760 const struct sockaddr *, const struct rtentry *);
761 static void wg_input(struct ifnet *, struct mbuf *, const int);
762 static int wg_ioctl(struct ifnet *, u_long, void *);
763 static int wg_bind_port(struct wg_softc *, const uint16_t);
764 static int wg_init(struct ifnet *);
765 #ifdef ALTQ
766 static void wg_start(struct ifnet *);
767 #endif
768 static void wg_stop(struct ifnet *, int);
769
770 static void wg_peer_work(struct work *, void *);
771 static void wg_job(struct threadpool_job *);
772 static void wgintr(void *);
773 static void wg_purge_pending_packets(struct wg_peer *);
774
775 static int wg_clone_create(struct if_clone *, int);
776 static int wg_clone_destroy(struct ifnet *);
777
778 struct wg_ops {
779 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
780 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
781 void (*input)(struct ifnet *, struct mbuf *, const int);
782 int (*bind_port)(struct wg_softc *, const uint16_t);
783 };
784
785 struct wg_ops wg_ops_rumpkernel = {
786 .send_hs_msg = wg_send_so,
787 .send_data_msg = wg_send_udp,
788 .input = wg_input,
789 .bind_port = wg_bind_port,
790 };
791
792 #ifdef WG_RUMPKERNEL
793 static bool wg_user_mode(struct wg_softc *);
794 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
795
796 static int wg_send_user(struct wg_peer *, struct mbuf *);
797 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
798 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
799
800 struct wg_ops wg_ops_rumpuser = {
801 .send_hs_msg = wg_send_user,
802 .send_data_msg = wg_send_user,
803 .input = wg_input_user,
804 .bind_port = wg_bind_port_user,
805 };
806 #endif
807
808 #define WG_PEER_READER_FOREACH(wgp, wg) \
809 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
810 wgp_peerlist_entry)
811 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
812 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
813 wgp_peerlist_entry)
814 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
815 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
816 #define WG_PEER_WRITER_REMOVE(wgp) \
817 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
818
819 struct wg_route {
820 struct radix_node wgr_nodes[2];
821 struct wg_peer *wgr_peer;
822 };
823
824 static struct radix_node_head *
825 wg_rnh(struct wg_softc *wg, const int family)
826 {
827
828 switch (family) {
829 #ifdef INET
830 case AF_INET:
831 return wg->wg_rtable_ipv4;
832 #endif
833 #ifdef INET6
834 case AF_INET6:
835 return wg->wg_rtable_ipv6;
836 #endif
837 default:
838 return NULL;
839 }
840 }
841
842
843 /*
844 * Global variables
845 */
846 static volatile unsigned wg_count __cacheline_aligned;
847
848 struct psref_class *wg_psref_class __read_mostly;
849
850 static struct if_clone wg_cloner =
851 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
852
853 static struct pktqueue *wg_pktq __read_mostly;
854 static struct workqueue *wg_wq __read_mostly;
855
856 void wgattach(int);
857 /* ARGSUSED */
858 void
859 wgattach(int count)
860 {
861 /*
862 * Nothing to do here, initialization is handled by the
863 * module initialization code in wginit() below).
864 */
865 }
866
867 static void
868 wginit(void)
869 {
870
871 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
872
873 if_clone_attach(&wg_cloner);
874 }
875
876 /*
877 * XXX Kludge: This should just happen in wginit, but workqueue_create
878 * cannot be run until after CPUs have been detected, and wginit runs
879 * before configure.
880 */
881 static int
882 wginitqueues(void)
883 {
884 int error __diagused;
885
886 wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
887 KASSERT(wg_pktq != NULL);
888
889 error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
890 PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
891 KASSERTMSG(error == 0, "error=%d", error);
892
893 return 0;
894 }
895
896 static void
897 wg_guarantee_initialized(void)
898 {
899 static ONCE_DECL(init);
900 int error __diagused;
901
902 error = RUN_ONCE(&init, wginitqueues);
903 KASSERTMSG(error == 0, "error=%d", error);
904 }
905
906 static int
907 wg_count_inc(void)
908 {
909 unsigned o, n;
910
911 do {
912 o = atomic_load_relaxed(&wg_count);
913 if (o == UINT_MAX)
914 return ENFILE;
915 n = o + 1;
916 } while (atomic_cas_uint(&wg_count, o, n) != o);
917
918 return 0;
919 }
920
921 static void
922 wg_count_dec(void)
923 {
924 unsigned c __diagused;
925
926 c = atomic_dec_uint_nv(&wg_count);
927 KASSERT(c != UINT_MAX);
928 }
929
930 static int
931 wgdetach(void)
932 {
933
934 /* Prevent new interface creation. */
935 if_clone_detach(&wg_cloner);
936
937 /* Check whether there are any existing interfaces. */
938 if (atomic_load_relaxed(&wg_count)) {
939 /* Back out -- reattach the cloner. */
940 if_clone_attach(&wg_cloner);
941 return EBUSY;
942 }
943
944 /* No interfaces left. Nuke it. */
945 if (wg_wq)
946 workqueue_destroy(wg_wq);
947 if (wg_pktq)
948 pktq_destroy(wg_pktq);
949 psref_class_destroy(wg_psref_class);
950
951 return 0;
952 }
953
954 static void
955 wg_init_key_and_hash(uint8_t ckey[static WG_CHAINING_KEY_LEN],
956 uint8_t hash[static WG_HASH_LEN])
957 {
958 /* [W] 5.4: CONSTRUCTION */
959 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
960 /* [W] 5.4: IDENTIFIER */
961 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
962 struct blake2s state;
963
964 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
965 signature, strlen(signature));
966
967 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
968 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
969
970 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
971 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
972 blake2s_update(&state, id, strlen(id));
973 blake2s_final(&state, hash);
974
975 WG_DUMP_HASH("ckey", ckey);
976 WG_DUMP_HASH("hash", hash);
977 }
978
979 static void
980 wg_algo_hash(uint8_t hash[static WG_HASH_LEN], const uint8_t input[],
981 const size_t inputsize)
982 {
983 struct blake2s state;
984
985 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
986 blake2s_update(&state, hash, WG_HASH_LEN);
987 blake2s_update(&state, input, inputsize);
988 blake2s_final(&state, hash);
989 }
990
991 static void
992 wg_algo_mac(uint8_t out[], const size_t outsize,
993 const uint8_t key[], const size_t keylen,
994 const uint8_t input1[], const size_t input1len,
995 const uint8_t input2[], const size_t input2len)
996 {
997 struct blake2s state;
998
999 blake2s_init(&state, outsize, key, keylen);
1000
1001 blake2s_update(&state, input1, input1len);
1002 if (input2 != NULL)
1003 blake2s_update(&state, input2, input2len);
1004 blake2s_final(&state, out);
1005 }
1006
1007 static void
1008 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
1009 const uint8_t input1[], const size_t input1len,
1010 const uint8_t input2[], const size_t input2len)
1011 {
1012 struct blake2s state;
1013 /* [W] 5.4: LABEL-MAC1 */
1014 const char *label = "mac1----";
1015 uint8_t key[WG_HASH_LEN];
1016
1017 blake2s_init(&state, sizeof(key), NULL, 0);
1018 blake2s_update(&state, label, strlen(label));
1019 blake2s_update(&state, input1, input1len);
1020 blake2s_final(&state, key);
1021
1022 blake2s_init(&state, outsize, key, sizeof(key));
1023 if (input2 != NULL)
1024 blake2s_update(&state, input2, input2len);
1025 blake2s_final(&state, out);
1026 }
1027
1028 static void
1029 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
1030 const uint8_t input1[], const size_t input1len)
1031 {
1032 struct blake2s state;
1033 /* [W] 5.4: LABEL-COOKIE */
1034 const char *label = "cookie--";
1035
1036 blake2s_init(&state, outsize, NULL, 0);
1037 blake2s_update(&state, label, strlen(label));
1038 blake2s_update(&state, input1, input1len);
1039 blake2s_final(&state, out);
1040 }
1041
1042 static void
1043 wg_algo_generate_keypair(uint8_t pubkey[static WG_EPHEMERAL_KEY_LEN],
1044 uint8_t privkey[static WG_EPHEMERAL_KEY_LEN])
1045 {
1046
1047 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1048
1049 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
1050 crypto_scalarmult_base(pubkey, privkey);
1051 }
1052
1053 static void
1054 wg_algo_dh(uint8_t out[static WG_DH_OUTPUT_LEN],
1055 const uint8_t privkey[static WG_STATIC_KEY_LEN],
1056 const uint8_t pubkey[static WG_STATIC_KEY_LEN])
1057 {
1058
1059 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1060
1061 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
1062 KASSERT(ret == 0);
1063 }
1064
1065 static void
1066 wg_algo_hmac(uint8_t out[], const size_t outlen,
1067 const uint8_t key[], const size_t keylen,
1068 const uint8_t in[], const size_t inlen)
1069 {
1070 #define IPAD 0x36
1071 #define OPAD 0x5c
1072 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
1073 uint8_t ipad[HMAC_BLOCK_LEN];
1074 uint8_t opad[HMAC_BLOCK_LEN];
1075 size_t i;
1076 struct blake2s state;
1077
1078 KASSERT(outlen == WG_HASH_LEN);
1079 KASSERT(keylen <= HMAC_BLOCK_LEN);
1080
1081 memcpy(hmackey, key, keylen);
1082
1083 for (i = 0; i < sizeof(hmackey); i++) {
1084 ipad[i] = hmackey[i] ^ IPAD;
1085 opad[i] = hmackey[i] ^ OPAD;
1086 }
1087
1088 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1089 blake2s_update(&state, ipad, sizeof(ipad));
1090 blake2s_update(&state, in, inlen);
1091 blake2s_final(&state, out);
1092
1093 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1094 blake2s_update(&state, opad, sizeof(opad));
1095 blake2s_update(&state, out, WG_HASH_LEN);
1096 blake2s_final(&state, out);
1097 #undef IPAD
1098 #undef OPAD
1099 }
1100
1101 static void
1102 wg_algo_kdf(uint8_t out1[static WG_KDF_OUTPUT_LEN],
1103 uint8_t out2[WG_KDF_OUTPUT_LEN],
1104 uint8_t out3[WG_KDF_OUTPUT_LEN],
1105 const uint8_t ckey[static WG_CHAINING_KEY_LEN],
1106 const uint8_t input[], const size_t inputlen)
1107 {
1108 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
1109 uint8_t one[1];
1110
1111 /*
1112 * [N] 4.3: "an input_key_material byte sequence with length
1113 * either zero bytes, 32 bytes, or DHLEN bytes."
1114 */
1115 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
1116
1117 WG_DUMP_HASH("ckey", ckey);
1118 if (input != NULL)
1119 WG_DUMP_HASH("input", input);
1120 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
1121 input, inputlen);
1122 WG_DUMP_HASH("tmp1", tmp1);
1123 one[0] = 1;
1124 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1125 one, sizeof(one));
1126 WG_DUMP_HASH("out1", out1);
1127 if (out2 == NULL)
1128 return;
1129 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
1130 tmp2[WG_KDF_OUTPUT_LEN] = 2;
1131 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1132 tmp2, sizeof(tmp2));
1133 WG_DUMP_HASH("out2", out2);
1134 if (out3 == NULL)
1135 return;
1136 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
1137 tmp2[WG_KDF_OUTPUT_LEN] = 3;
1138 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1139 tmp2, sizeof(tmp2));
1140 WG_DUMP_HASH("out3", out3);
1141 }
1142
1143 static void __noinline
1144 wg_algo_dh_kdf(uint8_t ckey[static WG_CHAINING_KEY_LEN],
1145 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1146 const uint8_t local_key[static WG_STATIC_KEY_LEN],
1147 const uint8_t remote_key[static WG_STATIC_KEY_LEN])
1148 {
1149 uint8_t dhout[WG_DH_OUTPUT_LEN];
1150
1151 wg_algo_dh(dhout, local_key, remote_key);
1152 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1153
1154 WG_DUMP_HASH("dhout", dhout);
1155 WG_DUMP_HASH("ckey", ckey);
1156 if (cipher_key != NULL)
1157 WG_DUMP_HASH("cipher_key", cipher_key);
1158 }
1159
1160 static void
1161 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize,
1162 const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
1163 const uint64_t counter,
1164 const uint8_t plain[], const size_t plainsize,
1165 const uint8_t auth[], size_t authlen)
1166 {
1167 uint8_t nonce[(32 + 64) / 8] = {0};
1168 long long unsigned int outsize;
1169 int error __diagused;
1170
1171 le64enc(&nonce[4], counter);
1172
1173 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1174 plainsize, auth, authlen, NULL, nonce, key);
1175 KASSERT(error == 0);
1176 KASSERT(outsize == expected_outsize);
1177 }
1178
1179 static int
1180 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize,
1181 const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
1182 const uint64_t counter,
1183 const uint8_t encrypted[], const size_t encryptedsize,
1184 const uint8_t auth[], size_t authlen)
1185 {
1186 uint8_t nonce[(32 + 64) / 8] = {0};
1187 long long unsigned int outsize;
1188 int error;
1189
1190 le64enc(&nonce[4], counter);
1191
1192 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1193 encrypted, encryptedsize, auth, authlen, nonce, key);
1194 if (error == 0)
1195 KASSERT(outsize == expected_outsize);
1196 return error;
1197 }
1198
1199 static void
1200 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1201 const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
1202 const uint8_t plain[], const size_t plainsize,
1203 const uint8_t auth[], size_t authlen,
1204 const uint8_t nonce[static WG_SALT_LEN])
1205 {
1206 long long unsigned int outsize;
1207 int error __diagused;
1208
1209 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1210 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1211 plain, plainsize, auth, authlen, NULL, nonce, key);
1212 KASSERT(error == 0);
1213 KASSERT(outsize == expected_outsize);
1214 }
1215
1216 static int
1217 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1218 const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
1219 const uint8_t encrypted[], const size_t encryptedsize,
1220 const uint8_t auth[], size_t authlen,
1221 const uint8_t nonce[static WG_SALT_LEN])
1222 {
1223 long long unsigned int outsize;
1224 int error;
1225
1226 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1227 encrypted, encryptedsize, auth, authlen, nonce, key);
1228 if (error == 0)
1229 KASSERT(outsize == expected_outsize);
1230 return error;
1231 }
1232
1233 static void
1234 wg_algo_tai64n(wg_timestamp_t timestamp)
1235 {
1236 struct timespec ts;
1237
1238 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1239 getnanotime(&ts);
1240 /* TAI64 label in external TAI64 format */
1241 be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
1242 /* second beginning from 1970 TAI */
1243 be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
1244 /* nanosecond in big-endian format */
1245 be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
1246 }
1247
1248 /*
1249 * wg_get_stable_session(wgp, psref)
1250 *
1251 * Get a passive reference to the current stable session, or
1252 * return NULL if there is no current stable session.
1253 *
1254 * The pointer is always there but the session is not necessarily
1255 * ESTABLISHED; if it is not ESTABLISHED, return NULL. However,
1256 * the session may transition from ESTABLISHED to DESTROYING while
1257 * holding the passive reference.
1258 */
1259 static struct wg_session *
1260 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1261 {
1262 int s;
1263 struct wg_session *wgs;
1264
1265 s = pserialize_read_enter();
1266 wgs = atomic_load_consume(&wgp->wgp_session_stable);
1267 if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
1268 wgs = NULL;
1269 else
1270 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1271 pserialize_read_exit(s);
1272
1273 return wgs;
1274 }
1275
1276 static void
1277 wg_put_session(struct wg_session *wgs, struct psref *psref)
1278 {
1279
1280 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1281 }
1282
1283 static void
1284 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1285 {
1286 struct wg_peer *wgp = wgs->wgs_peer;
1287 struct wg_session *wgs0 __diagused;
1288 void *garbage;
1289
1290 KASSERT(mutex_owned(wgp->wgp_lock));
1291 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1292
1293 /* Remove the session from the table. */
1294 wgs0 = thmap_del(wg->wg_sessions_byindex,
1295 &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1296 KASSERT(wgs0 == wgs);
1297 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1298
1299 /* Wait for passive references to drain. */
1300 pserialize_perform(wgp->wgp_psz);
1301 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1302
1303 /*
1304 * Free memory, zero state, and transition to UNKNOWN. We have
1305 * exclusive access to the session now, so there is no need for
1306 * an atomic store.
1307 */
1308 thmap_gc(wg->wg_sessions_byindex, garbage);
1309 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_UNKNOWN\n",
1310 wgs->wgs_local_index, wgs->wgs_remote_index);
1311 wgs->wgs_local_index = 0;
1312 wgs->wgs_remote_index = 0;
1313 wg_clear_states(wgs);
1314 wgs->wgs_state = WGS_STATE_UNKNOWN;
1315 wgs->wgs_force_rekey = false;
1316 }
1317
1318 /*
1319 * wg_get_session_index(wg, wgs)
1320 *
1321 * Choose a session index for wgs->wgs_local_index, and store it
1322 * in wg's table of sessions by index.
1323 *
1324 * wgs must be the unstable session of its peer, and must be
1325 * transitioning out of the UNKNOWN state.
1326 */
1327 static void
1328 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1329 {
1330 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1331 struct wg_session *wgs0;
1332 uint32_t index;
1333
1334 KASSERT(mutex_owned(wgp->wgp_lock));
1335 KASSERT(wgs == wgp->wgp_session_unstable);
1336 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1337 wgs->wgs_state);
1338
1339 do {
1340 /* Pick a uniform random index. */
1341 index = cprng_strong32();
1342
1343 /* Try to take it. */
1344 wgs->wgs_local_index = index;
1345 wgs0 = thmap_put(wg->wg_sessions_byindex,
1346 &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1347
1348 /* If someone else beat us, start over. */
1349 } while (__predict_false(wgs0 != wgs));
1350 }
1351
1352 /*
1353 * wg_put_session_index(wg, wgs)
1354 *
1355 * Remove wgs from the table of sessions by index, wait for any
1356 * passive references to drain, and transition the session to the
1357 * UNKNOWN state.
1358 *
1359 * wgs must be the unstable session of its peer, and must not be
1360 * UNKNOWN or ESTABLISHED.
1361 */
1362 static void
1363 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1364 {
1365 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1366
1367 KASSERT(mutex_owned(wgp->wgp_lock));
1368 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1369 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1370
1371 wg_destroy_session(wg, wgs);
1372 psref_target_init(&wgs->wgs_psref, wg_psref_class);
1373 }
1374
1375 /*
1376 * Handshake patterns
1377 *
1378 * [W] 5: "These messages use the "IK" pattern from Noise"
1379 * [N] 7.5. Interactive handshake patterns (fundamental)
1380 * "The first character refers to the initiators static key:"
1381 * "I = Static key for initiator Immediately transmitted to responder,
1382 * despite reduced or absent identity hiding"
1383 * "The second character refers to the responders static key:"
1384 * "K = Static key for responder Known to initiator"
1385 * "IK:
1386 * <- s
1387 * ...
1388 * -> e, es, s, ss
1389 * <- e, ee, se"
1390 * [N] 9.4. Pattern modifiers
1391 * "IKpsk2:
1392 * <- s
1393 * ...
1394 * -> e, es, s, ss
1395 * <- e, ee, se, psk"
1396 */
1397 static void
1398 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1399 struct wg_session *wgs, struct wg_msg_init *wgmi)
1400 {
1401 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1402 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1403 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1404 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1405 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1406
1407 KASSERT(mutex_owned(wgp->wgp_lock));
1408 KASSERT(wgs == wgp->wgp_session_unstable);
1409 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
1410 wgs->wgs_state);
1411
1412 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1413 wgmi->wgmi_sender = wgs->wgs_local_index;
1414
1415 /* [W] 5.4.2: First Message: Initiator to Responder */
1416
1417 /* Ci := HASH(CONSTRUCTION) */
1418 /* Hi := HASH(Ci || IDENTIFIER) */
1419 wg_init_key_and_hash(ckey, hash);
1420 /* Hi := HASH(Hi || Sr^pub) */
1421 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1422
1423 WG_DUMP_HASH("hash", hash);
1424
1425 /* [N] 2.2: "e" */
1426 /* Ei^priv, Ei^pub := DH-GENERATE() */
1427 wg_algo_generate_keypair(pubkey, privkey);
1428 /* Ci := KDF1(Ci, Ei^pub) */
1429 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1430 /* msg.ephemeral := Ei^pub */
1431 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1432 /* Hi := HASH(Hi || msg.ephemeral) */
1433 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1434
1435 WG_DUMP_HASH("ckey", ckey);
1436 WG_DUMP_HASH("hash", hash);
1437
1438 /* [N] 2.2: "es" */
1439 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1440 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1441
1442 /* [N] 2.2: "s" */
1443 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1444 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1445 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1446 hash, sizeof(hash));
1447 /* Hi := HASH(Hi || msg.static) */
1448 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1449
1450 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1451
1452 /* [N] 2.2: "ss" */
1453 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1454 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1455
1456 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1457 wg_timestamp_t timestamp;
1458 wg_algo_tai64n(timestamp);
1459 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1460 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1461 /* Hi := HASH(Hi || msg.timestamp) */
1462 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1463
1464 /* [W] 5.4.4 Cookie MACs */
1465 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1466 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1467 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1468 /* Need mac1 to decrypt a cookie from a cookie message */
1469 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1470 sizeof(wgp->wgp_last_sent_mac1));
1471 wgp->wgp_last_sent_mac1_valid = true;
1472
1473 if (wgp->wgp_latest_cookie_time == 0 ||
1474 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1475 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1476 else {
1477 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1478 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1479 (const uint8_t *)wgmi,
1480 offsetof(struct wg_msg_init, wgmi_mac2),
1481 NULL, 0);
1482 }
1483
1484 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1485 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1486 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1487 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1488 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1489 }
1490
1491 static void __noinline
1492 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1493 const struct sockaddr *src)
1494 {
1495 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1496 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1497 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1498 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1499 struct wg_peer *wgp;
1500 struct wg_session *wgs;
1501 int error, ret;
1502 struct psref psref_peer;
1503 uint8_t mac1[WG_MAC_LEN];
1504
1505 WG_TRACE("init msg received");
1506
1507 wg_algo_mac_mac1(mac1, sizeof(mac1),
1508 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1509 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1510
1511 /*
1512 * [W] 5.3: Denial of Service Mitigation & Cookies
1513 * "the responder, ..., must always reject messages with an invalid
1514 * msg.mac1"
1515 */
1516 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1517 WG_DLOG("mac1 is invalid\n");
1518 return;
1519 }
1520
1521 /*
1522 * [W] 5.4.2: First Message: Initiator to Responder
1523 * "When the responder receives this message, it does the same
1524 * operations so that its final state variables are identical,
1525 * replacing the operands of the DH function to produce equivalent
1526 * values."
1527 * Note that the following comments of operations are just copies of
1528 * the initiator's ones.
1529 */
1530
1531 /* Ci := HASH(CONSTRUCTION) */
1532 /* Hi := HASH(Ci || IDENTIFIER) */
1533 wg_init_key_and_hash(ckey, hash);
1534 /* Hi := HASH(Hi || Sr^pub) */
1535 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1536
1537 /* [N] 2.2: "e" */
1538 /* Ci := KDF1(Ci, Ei^pub) */
1539 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1540 sizeof(wgmi->wgmi_ephemeral));
1541 /* Hi := HASH(Hi || msg.ephemeral) */
1542 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1543
1544 WG_DUMP_HASH("ckey", ckey);
1545
1546 /* [N] 2.2: "es" */
1547 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1548 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1549
1550 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1551
1552 /* [N] 2.2: "s" */
1553 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1554 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1555 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1556 if (error != 0) {
1557 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1558 "%s: wg_algo_aead_dec for secret key failed\n",
1559 if_name(&wg->wg_if));
1560 return;
1561 }
1562 /* Hi := HASH(Hi || msg.static) */
1563 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1564
1565 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1566 if (wgp == NULL) {
1567 WG_DLOG("peer not found\n");
1568 return;
1569 }
1570
1571 /*
1572 * Lock the peer to serialize access to cookie state.
1573 *
1574 * XXX Can we safely avoid holding the lock across DH? Take it
1575 * just to verify mac2 and then unlock/DH/lock?
1576 */
1577 mutex_enter(wgp->wgp_lock);
1578
1579 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1580 WG_TRACE("under load");
1581 /*
1582 * [W] 5.3: Denial of Service Mitigation & Cookies
1583 * "the responder, ..., and when under load may reject messages
1584 * with an invalid msg.mac2. If the responder receives a
1585 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1586 * and is under load, it may respond with a cookie reply
1587 * message"
1588 */
1589 uint8_t zero[WG_MAC_LEN] = {0};
1590 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1591 WG_TRACE("sending a cookie message: no cookie included");
1592 wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1593 wgmi->wgmi_mac1, src);
1594 goto out;
1595 }
1596 if (!wgp->wgp_last_sent_cookie_valid) {
1597 WG_TRACE("sending a cookie message: no cookie sent ever");
1598 wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1599 wgmi->wgmi_mac1, src);
1600 goto out;
1601 }
1602 uint8_t mac2[WG_MAC_LEN];
1603 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1604 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1605 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1606 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1607 WG_DLOG("mac2 is invalid\n");
1608 goto out;
1609 }
1610 WG_TRACE("under load, but continue to sending");
1611 }
1612
1613 /* [N] 2.2: "ss" */
1614 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1615 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1616
1617 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1618 wg_timestamp_t timestamp;
1619 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1620 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1621 hash, sizeof(hash));
1622 if (error != 0) {
1623 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1624 "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
1625 if_name(&wg->wg_if), wgp->wgp_name);
1626 goto out;
1627 }
1628 /* Hi := HASH(Hi || msg.timestamp) */
1629 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1630
1631 /*
1632 * [W] 5.1 "The responder keeps track of the greatest timestamp
1633 * received per peer and discards packets containing
1634 * timestamps less than or equal to it."
1635 */
1636 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1637 sizeof(timestamp));
1638 if (ret <= 0) {
1639 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1640 "%s: peer %s: invalid init msg: timestamp is old\n",
1641 if_name(&wg->wg_if), wgp->wgp_name);
1642 goto out;
1643 }
1644 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1645
1646 /*
1647 * Message is good -- we're committing to handle it now, unless
1648 * we were already initiating a session.
1649 */
1650 wgs = wgp->wgp_session_unstable;
1651 switch (wgs->wgs_state) {
1652 case WGS_STATE_UNKNOWN: /* new session initiated by peer */
1653 break;
1654 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, drop */
1655 /* XXX Who wins if both sides send INIT? */
1656 WG_TRACE("Session already initializing, ignoring the message");
1657 goto out;
1658 case WGS_STATE_INIT_PASSIVE: /* peer is retrying, start over */
1659 WG_TRACE("Session already initializing, destroying old states");
1660 /*
1661 * XXX Avoid this -- just resend our response -- if the
1662 * INIT message is identical to the previous one.
1663 */
1664 wg_put_session_index(wg, wgs);
1665 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1666 wgs->wgs_state);
1667 break;
1668 case WGS_STATE_ESTABLISHED: /* can't happen */
1669 panic("unstable session can't be established");
1670 case WGS_STATE_DESTROYING: /* rekey initiated by peer */
1671 WG_TRACE("Session destroying, but force to clear");
1672 wg_put_session_index(wg, wgs);
1673 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1674 wgs->wgs_state);
1675 break;
1676 default:
1677 panic("invalid session state: %d", wgs->wgs_state);
1678 }
1679
1680 /*
1681 * Assign a fresh session index.
1682 */
1683 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1684 wgs->wgs_state);
1685 wg_get_session_index(wg, wgs);
1686
1687 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1688 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1689 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1690 sizeof(wgmi->wgmi_ephemeral));
1691
1692 wg_update_endpoint_if_necessary(wgp, src);
1693
1694 /*
1695 * Even though we don't transition from INIT_PASSIVE to
1696 * ESTABLISHED until we receive the first data packet from the
1697 * initiator, we count the time of the INIT message as the time
1698 * of establishment -- this is used to decide when to erase
1699 * keys, and we want to start counting as soon as we have
1700 * generated keys.
1701 */
1702 wgs->wgs_time_established = time_uptime32;
1703 wg_schedule_session_dtor_timer(wgp);
1704
1705 /*
1706 * Respond to the initiator with our ephemeral public key.
1707 */
1708 wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1709
1710 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
1711 " calculate keys as responder\n",
1712 wgs->wgs_local_index, wgs->wgs_remote_index);
1713 wg_calculate_keys(wgs, false);
1714 wg_clear_states(wgs);
1715
1716 /*
1717 * Session is ready to receive data now that we have received
1718 * the peer initiator's ephemeral key pair, generated our
1719 * responder's ephemeral key pair, and derived a session key.
1720 *
1721 * Transition from UNKNOWN to INIT_PASSIVE to publish it to the
1722 * data rx path, wg_handle_msg_data, where the
1723 * atomic_load_acquire matching this atomic_store_release
1724 * happens.
1725 *
1726 * (Session is not, however, ready to send data until the peer
1727 * has acknowledged our response by sending its first data
1728 * packet. So don't swap the sessions yet.)
1729 */
1730 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_INIT_PASSIVE\n",
1731 wgs->wgs_local_index, wgs->wgs_remote_index);
1732 atomic_store_release(&wgs->wgs_state, WGS_STATE_INIT_PASSIVE);
1733 WG_TRACE("WGS_STATE_INIT_PASSIVE");
1734
1735 out:
1736 mutex_exit(wgp->wgp_lock);
1737 wg_put_peer(wgp, &psref_peer);
1738 }
1739
1740 static struct socket *
1741 wg_get_so_by_af(struct wg_softc *wg, const int af)
1742 {
1743
1744 switch (af) {
1745 #ifdef INET
1746 case AF_INET:
1747 return wg->wg_so4;
1748 #endif
1749 #ifdef INET6
1750 case AF_INET6:
1751 return wg->wg_so6;
1752 #endif
1753 default:
1754 panic("wg: no such af: %d", af);
1755 }
1756 }
1757
1758 static struct socket *
1759 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1760 {
1761
1762 return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
1763 }
1764
1765 static struct wg_sockaddr *
1766 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1767 {
1768 struct wg_sockaddr *wgsa;
1769 int s;
1770
1771 s = pserialize_read_enter();
1772 wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1773 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1774 pserialize_read_exit(s);
1775
1776 return wgsa;
1777 }
1778
1779 static void
1780 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1781 {
1782
1783 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1784 }
1785
1786 static int
1787 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1788 {
1789 int error;
1790 struct socket *so;
1791 struct psref psref;
1792 struct wg_sockaddr *wgsa;
1793
1794 wgsa = wg_get_endpoint_sa(wgp, &psref);
1795 so = wg_get_so_by_peer(wgp, wgsa);
1796 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1797 wg_put_sa(wgp, wgsa, &psref);
1798
1799 return error;
1800 }
1801
1802 static void
1803 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1804 {
1805 int error;
1806 struct mbuf *m;
1807 struct wg_msg_init *wgmi;
1808 struct wg_session *wgs;
1809
1810 KASSERT(mutex_owned(wgp->wgp_lock));
1811
1812 wgs = wgp->wgp_session_unstable;
1813 /* XXX pull dispatch out into wg_task_send_init_message */
1814 switch (wgs->wgs_state) {
1815 case WGS_STATE_UNKNOWN: /* new session initiated by us */
1816 break;
1817 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, stop */
1818 WG_TRACE("Session already initializing, skip starting new one");
1819 return;
1820 case WGS_STATE_INIT_PASSIVE: /* peer was trying -- XXX what now? */
1821 WG_TRACE("Session already initializing, waiting for peer");
1822 return;
1823 case WGS_STATE_ESTABLISHED: /* can't happen */
1824 panic("unstable session can't be established");
1825 case WGS_STATE_DESTROYING: /* rekey initiated by us too early */
1826 WG_TRACE("Session destroying");
1827 wg_put_session_index(wg, wgs);
1828 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1829 wgs->wgs_state);
1830 break;
1831 }
1832
1833 /*
1834 * Assign a fresh session index.
1835 */
1836 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1837 wgs->wgs_state);
1838 wg_get_session_index(wg, wgs);
1839
1840 /*
1841 * We have initiated a session. Transition to INIT_ACTIVE.
1842 * This doesn't publish it for use in the data rx path,
1843 * wg_handle_msg_data, or in the data tx path, wg_output -- we
1844 * have to wait for the peer to respond with their ephemeral
1845 * public key before we can derive a session key for tx/rx.
1846 * Hence only atomic_store_relaxed.
1847 */
1848 WG_DLOG("session[L=%"PRIx32" R=(unknown)] -> WGS_STATE_INIT_ACTIVE\n",
1849 wgs->wgs_local_index);
1850 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_INIT_ACTIVE);
1851
1852 m = m_gethdr(M_WAIT, MT_DATA);
1853 if (sizeof(*wgmi) > MHLEN) {
1854 m_clget(m, M_WAIT);
1855 CTASSERT(sizeof(*wgmi) <= MCLBYTES);
1856 }
1857 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1858 wgmi = mtod(m, struct wg_msg_init *);
1859 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1860
1861 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
1862 if (error) {
1863 /*
1864 * Sending out an initiation packet failed; give up on
1865 * this session and toss packet waiting for it if any.
1866 *
1867 * XXX Why don't we just let the periodic handshake
1868 * retry logic work in this case?
1869 */
1870 WG_DLOG("send_hs_msg failed, error=%d\n", error);
1871 wg_put_session_index(wg, wgs);
1872 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
1873 m_freem(m);
1874 return;
1875 }
1876
1877 WG_TRACE("init msg sent");
1878 if (wgp->wgp_handshake_start_time == 0)
1879 wgp->wgp_handshake_start_time = time_uptime;
1880 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1881 MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
1882 }
1883
1884 static void
1885 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1886 struct wg_session *wgs, struct wg_msg_resp *wgmr,
1887 const struct wg_msg_init *wgmi)
1888 {
1889 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1890 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1891 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1892 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1893 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1894
1895 KASSERT(mutex_owned(wgp->wgp_lock));
1896 KASSERT(wgs == wgp->wgp_session_unstable);
1897 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1898 wgs->wgs_state);
1899
1900 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1901 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1902
1903 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
1904 wgmr->wgmr_sender = wgs->wgs_local_index;
1905 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1906
1907 /* [W] 5.4.3 Second Message: Responder to Initiator */
1908
1909 /* [N] 2.2: "e" */
1910 /* Er^priv, Er^pub := DH-GENERATE() */
1911 wg_algo_generate_keypair(pubkey, privkey);
1912 /* Cr := KDF1(Cr, Er^pub) */
1913 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1914 /* msg.ephemeral := Er^pub */
1915 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1916 /* Hr := HASH(Hr || msg.ephemeral) */
1917 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1918
1919 WG_DUMP_HASH("ckey", ckey);
1920 WG_DUMP_HASH("hash", hash);
1921
1922 /* [N] 2.2: "ee" */
1923 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1924 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1925
1926 /* [N] 2.2: "se" */
1927 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1928 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1929
1930 /* [N] 9.2: "psk" */
1931 {
1932 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1933 /* Cr, r, k := KDF3(Cr, Q) */
1934 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1935 sizeof(wgp->wgp_psk));
1936 /* Hr := HASH(Hr || r) */
1937 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1938 }
1939
1940 /* msg.empty := AEAD(k, 0, e, Hr) */
1941 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1942 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1943 /* Hr := HASH(Hr || msg.empty) */
1944 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1945
1946 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1947
1948 /* [W] 5.4.4: Cookie MACs */
1949 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1950 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1951 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1952 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1953 /* Need mac1 to decrypt a cookie from a cookie message */
1954 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1955 sizeof(wgp->wgp_last_sent_mac1));
1956 wgp->wgp_last_sent_mac1_valid = true;
1957
1958 if (wgp->wgp_latest_cookie_time == 0 ||
1959 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1960 /* msg.mac2 := 0^16 */
1961 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1962 else {
1963 /* msg.mac2 := MAC(Lm, msg_b) */
1964 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1965 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1966 (const uint8_t *)wgmr,
1967 offsetof(struct wg_msg_resp, wgmr_mac2),
1968 NULL, 0);
1969 }
1970
1971 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1972 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1973 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1974 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1975 wgs->wgs_remote_index = wgmi->wgmi_sender;
1976 WG_DLOG("sender=%x\n", wgs->wgs_local_index);
1977 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1978 }
1979
1980 static void
1981 wg_swap_sessions(struct wg_peer *wgp)
1982 {
1983 struct wg_session *wgs, *wgs_prev;
1984
1985 KASSERT(mutex_owned(wgp->wgp_lock));
1986
1987 /*
1988 * Get the newly established session, to become the new
1989 * session. Caller must have transitioned from INIT_ACTIVE to
1990 * INIT_PASSIVE to ESTABLISHED already. This will become the
1991 * stable session.
1992 */
1993 wgs = wgp->wgp_session_unstable;
1994 KASSERTMSG(wgs->wgs_state == WGS_STATE_ESTABLISHED, "state=%d",
1995 wgs->wgs_state);
1996
1997 /*
1998 * Get the stable session, which is either the previously
1999 * established session in the ESTABLISHED state, or has not
2000 * been established at all and is UNKNOWN. This will become
2001 * the unstable session.
2002 */
2003 wgs_prev = wgp->wgp_session_stable;
2004 KASSERTMSG((wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
2005 wgs_prev->wgs_state == WGS_STATE_UNKNOWN),
2006 "state=%d", wgs_prev->wgs_state);
2007
2008 /*
2009 * Publish the newly established session for the tx path to use
2010 * and make the other one the unstable session to handle
2011 * stragglers in the rx path and later be used for the next
2012 * session's handshake.
2013 *
2014 * If wgs_prev was previously ESTABLISHED, caller must
2015 * transition it to DESTROYING and then pass through
2016 * wg_put_session_index before recycling it.
2017 *
2018 * XXX Factor that logic out into this routine.
2019 */
2020 atomic_store_release(&wgp->wgp_session_stable, wgs);
2021 wgp->wgp_session_unstable = wgs_prev;
2022 }
2023
2024 static void __noinline
2025 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
2026 const struct sockaddr *src)
2027 {
2028 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
2029 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
2030 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
2031 struct wg_peer *wgp;
2032 struct wg_session *wgs;
2033 struct psref psref;
2034 int error;
2035 uint8_t mac1[WG_MAC_LEN];
2036 struct wg_session *wgs_prev;
2037 struct mbuf *m;
2038
2039 wg_algo_mac_mac1(mac1, sizeof(mac1),
2040 wg->wg_pubkey, sizeof(wg->wg_pubkey),
2041 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
2042
2043 /*
2044 * [W] 5.3: Denial of Service Mitigation & Cookies
2045 * "the responder, ..., must always reject messages with an invalid
2046 * msg.mac1"
2047 */
2048 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
2049 WG_DLOG("mac1 is invalid\n");
2050 return;
2051 }
2052
2053 WG_TRACE("resp msg received");
2054 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
2055 if (wgs == NULL) {
2056 WG_TRACE("No session found");
2057 return;
2058 }
2059
2060 wgp = wgs->wgs_peer;
2061
2062 mutex_enter(wgp->wgp_lock);
2063
2064 /* If we weren't waiting for a handshake response, drop it. */
2065 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
2066 WG_TRACE("peer sent spurious handshake response, ignoring");
2067 goto out;
2068 }
2069
2070 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
2071 WG_TRACE("under load");
2072 /*
2073 * [W] 5.3: Denial of Service Mitigation & Cookies
2074 * "the responder, ..., and when under load may reject messages
2075 * with an invalid msg.mac2. If the responder receives a
2076 * message with a valid msg.mac1 yet with an invalid msg.mac2,
2077 * and is under load, it may respond with a cookie reply
2078 * message"
2079 */
2080 uint8_t zero[WG_MAC_LEN] = {0};
2081 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
2082 WG_TRACE("sending a cookie message: no cookie included");
2083 wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2084 wgmr->wgmr_mac1, src);
2085 goto out;
2086 }
2087 if (!wgp->wgp_last_sent_cookie_valid) {
2088 WG_TRACE("sending a cookie message: no cookie sent ever");
2089 wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2090 wgmr->wgmr_mac1, src);
2091 goto out;
2092 }
2093 uint8_t mac2[WG_MAC_LEN];
2094 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
2095 WG_COOKIE_LEN, (const uint8_t *)wgmr,
2096 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
2097 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
2098 WG_DLOG("mac2 is invalid\n");
2099 goto out;
2100 }
2101 WG_TRACE("under load, but continue to sending");
2102 }
2103
2104 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
2105 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
2106
2107 /*
2108 * [W] 5.4.3 Second Message: Responder to Initiator
2109 * "When the initiator receives this message, it does the same
2110 * operations so that its final state variables are identical,
2111 * replacing the operands of the DH function to produce equivalent
2112 * values."
2113 * Note that the following comments of operations are just copies of
2114 * the initiator's ones.
2115 */
2116
2117 /* [N] 2.2: "e" */
2118 /* Cr := KDF1(Cr, Er^pub) */
2119 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
2120 sizeof(wgmr->wgmr_ephemeral));
2121 /* Hr := HASH(Hr || msg.ephemeral) */
2122 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
2123
2124 WG_DUMP_HASH("ckey", ckey);
2125 WG_DUMP_HASH("hash", hash);
2126
2127 /* [N] 2.2: "ee" */
2128 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
2129 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
2130 wgmr->wgmr_ephemeral);
2131
2132 /* [N] 2.2: "se" */
2133 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
2134 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
2135
2136 /* [N] 9.2: "psk" */
2137 {
2138 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
2139 /* Cr, r, k := KDF3(Cr, Q) */
2140 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
2141 sizeof(wgp->wgp_psk));
2142 /* Hr := HASH(Hr || r) */
2143 wg_algo_hash(hash, kdfout, sizeof(kdfout));
2144 }
2145
2146 {
2147 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
2148 /* msg.empty := AEAD(k, 0, e, Hr) */
2149 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
2150 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
2151 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
2152 if (error != 0) {
2153 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2154 "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
2155 if_name(&wg->wg_if), wgp->wgp_name);
2156 goto out;
2157 }
2158 /* Hr := HASH(Hr || msg.empty) */
2159 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
2160 }
2161
2162 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
2163 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
2164 wgs->wgs_remote_index = wgmr->wgmr_sender;
2165 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
2166
2167 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
2168 wgs->wgs_state);
2169 wgs->wgs_time_established = time_uptime32;
2170 wg_schedule_session_dtor_timer(wgp);
2171 wgs->wgs_time_last_data_sent = 0;
2172 wgs->wgs_is_initiator = true;
2173 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
2174 " calculate keys as initiator\n",
2175 wgs->wgs_local_index, wgs->wgs_remote_index);
2176 wg_calculate_keys(wgs, true);
2177 wg_clear_states(wgs);
2178
2179 /*
2180 * Session is ready to receive data now that we have received
2181 * the responder's response.
2182 *
2183 * Transition from INIT_ACTIVE to ESTABLISHED to publish it to
2184 * the data rx path, wg_handle_msg_data.
2185 */
2186 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32" -> WGS_STATE_ESTABLISHED\n",
2187 wgs->wgs_local_index, wgs->wgs_remote_index);
2188 atomic_store_release(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
2189 WG_TRACE("WGS_STATE_ESTABLISHED");
2190
2191 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
2192
2193 /*
2194 * Session is ready to send data now that we have received the
2195 * responder's response.
2196 *
2197 * Swap the sessions to publish the new one as the stable
2198 * session for the data tx path, wg_output.
2199 */
2200 wg_swap_sessions(wgp);
2201 KASSERT(wgs == wgp->wgp_session_stable);
2202 wgs_prev = wgp->wgp_session_unstable;
2203 getnanotime(&wgp->wgp_last_handshake_time);
2204 wgp->wgp_handshake_start_time = 0;
2205 wgp->wgp_last_sent_mac1_valid = false;
2206 wgp->wgp_last_sent_cookie_valid = false;
2207
2208 wg_update_endpoint_if_necessary(wgp, src);
2209
2210 /*
2211 * If we had a data packet queued up, send it; otherwise send a
2212 * keepalive message -- either way we have to send something
2213 * immediately or else the responder will never answer.
2214 */
2215 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
2216 kpreempt_disable();
2217 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
2218 M_SETCTX(m, wgp);
2219 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
2220 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
2221 if_name(&wg->wg_if));
2222 m_freem(m);
2223 }
2224 kpreempt_enable();
2225 } else {
2226 wg_send_keepalive_msg(wgp, wgs);
2227 }
2228
2229 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2230 /*
2231 * Transition ESTABLISHED->DESTROYING. The session
2232 * will remain usable for the data rx path to process
2233 * packets still in flight to us, but we won't use it
2234 * for data tx.
2235 */
2236 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
2237 " -> WGS_STATE_DESTROYING\n",
2238 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
2239 atomic_store_relaxed(&wgs_prev->wgs_state,
2240 WGS_STATE_DESTROYING);
2241 } else {
2242 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2243 "state=%d", wgs_prev->wgs_state);
2244 }
2245
2246 out:
2247 mutex_exit(wgp->wgp_lock);
2248 wg_put_session(wgs, &psref);
2249 }
2250
2251 static void
2252 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
2253 struct wg_session *wgs, const struct wg_msg_init *wgmi)
2254 {
2255 int error;
2256 struct mbuf *m;
2257 struct wg_msg_resp *wgmr;
2258
2259 KASSERT(mutex_owned(wgp->wgp_lock));
2260 KASSERT(wgs == wgp->wgp_session_unstable);
2261 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
2262 wgs->wgs_state);
2263
2264 m = m_gethdr(M_WAIT, MT_DATA);
2265 if (sizeof(*wgmr) > MHLEN) {
2266 m_clget(m, M_WAIT);
2267 CTASSERT(sizeof(*wgmr) <= MCLBYTES);
2268 }
2269 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
2270 wgmr = mtod(m, struct wg_msg_resp *);
2271 wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
2272
2273 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
2274 if (error) {
2275 WG_DLOG("send_hs_msg failed, error=%d\n", error);
2276 return;
2277 }
2278
2279 WG_TRACE("resp msg sent");
2280 }
2281
2282 static struct wg_peer *
2283 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
2284 const uint8_t pubkey[static WG_STATIC_KEY_LEN], struct psref *psref)
2285 {
2286 struct wg_peer *wgp;
2287
2288 int s = pserialize_read_enter();
2289 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
2290 if (wgp != NULL)
2291 wg_get_peer(wgp, psref);
2292 pserialize_read_exit(s);
2293
2294 return wgp;
2295 }
2296
2297 static void
2298 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
2299 struct wg_msg_cookie *wgmc, const uint32_t sender,
2300 const uint8_t mac1[static WG_MAC_LEN], const struct sockaddr *src)
2301 {
2302 uint8_t cookie[WG_COOKIE_LEN];
2303 uint8_t key[WG_HASH_LEN];
2304 uint8_t addr[sizeof(struct in6_addr)];
2305 size_t addrlen;
2306 uint16_t uh_sport; /* be */
2307
2308 KASSERT(mutex_owned(wgp->wgp_lock));
2309
2310 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
2311 wgmc->wgmc_receiver = sender;
2312 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
2313
2314 /*
2315 * [W] 5.4.7: Under Load: Cookie Reply Message
2316 * "The secret variable, Rm, changes every two minutes to a
2317 * random value"
2318 */
2319 if ((time_uptime - wgp->wgp_last_cookiesecret_time) >
2320 WG_COOKIESECRET_TIME) {
2321 cprng_strong(kern_cprng, wgp->wgp_cookiesecret,
2322 sizeof(wgp->wgp_cookiesecret), 0);
2323 wgp->wgp_last_cookiesecret_time = time_uptime;
2324 }
2325
2326 switch (src->sa_family) {
2327 #ifdef INET
2328 case AF_INET: {
2329 const struct sockaddr_in *sin = satocsin(src);
2330 addrlen = sizeof(sin->sin_addr);
2331 memcpy(addr, &sin->sin_addr, addrlen);
2332 uh_sport = sin->sin_port;
2333 break;
2334 }
2335 #endif
2336 #ifdef INET6
2337 case AF_INET6: {
2338 const struct sockaddr_in6 *sin6 = satocsin6(src);
2339 addrlen = sizeof(sin6->sin6_addr);
2340 memcpy(addr, &sin6->sin6_addr, addrlen);
2341 uh_sport = sin6->sin6_port;
2342 break;
2343 }
2344 #endif
2345 default:
2346 panic("invalid af=%d", src->sa_family);
2347 }
2348
2349 wg_algo_mac(cookie, sizeof(cookie),
2350 wgp->wgp_cookiesecret, sizeof(wgp->wgp_cookiesecret),
2351 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2352 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2353 sizeof(wg->wg_pubkey));
2354 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2355 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2356
2357 /* Need to store to calculate mac2 */
2358 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2359 wgp->wgp_last_sent_cookie_valid = true;
2360 }
2361
2362 static void
2363 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2364 const uint32_t sender, const uint8_t mac1[static WG_MAC_LEN],
2365 const struct sockaddr *src)
2366 {
2367 int error;
2368 struct mbuf *m;
2369 struct wg_msg_cookie *wgmc;
2370
2371 KASSERT(mutex_owned(wgp->wgp_lock));
2372
2373 m = m_gethdr(M_WAIT, MT_DATA);
2374 if (sizeof(*wgmc) > MHLEN) {
2375 m_clget(m, M_WAIT);
2376 CTASSERT(sizeof(*wgmc) <= MCLBYTES);
2377 }
2378 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2379 wgmc = mtod(m, struct wg_msg_cookie *);
2380 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2381
2382 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
2383 if (error) {
2384 WG_DLOG("send_hs_msg failed, error=%d\n", error);
2385 return;
2386 }
2387
2388 WG_TRACE("cookie msg sent");
2389 }
2390
2391 static bool
2392 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2393 {
2394 #ifdef WG_DEBUG_PARAMS
2395 if (wg_force_underload)
2396 return true;
2397 #endif
2398
2399 /*
2400 * XXX we don't have a means of a load estimation. The purpose of
2401 * the mechanism is a DoS mitigation, so we consider frequent handshake
2402 * messages as (a kind of) load; if a message of the same type comes
2403 * to a peer within 1 second, we consider we are under load.
2404 */
2405 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2406 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2407 return (time_uptime - last) == 0;
2408 }
2409
2410 static void
2411 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2412 {
2413
2414 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2415
2416 /*
2417 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2418 */
2419 if (initiator) {
2420 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2421 wgs->wgs_chaining_key, NULL, 0);
2422 } else {
2423 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2424 wgs->wgs_chaining_key, NULL, 0);
2425 }
2426 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2427 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2428 }
2429
2430 static uint64_t
2431 wg_session_get_send_counter(struct wg_session *wgs)
2432 {
2433 #ifdef __HAVE_ATOMIC64_LOADSTORE
2434 return atomic_load_relaxed(&wgs->wgs_send_counter);
2435 #else
2436 uint64_t send_counter;
2437
2438 mutex_enter(&wgs->wgs_send_counter_lock);
2439 send_counter = wgs->wgs_send_counter;
2440 mutex_exit(&wgs->wgs_send_counter_lock);
2441
2442 return send_counter;
2443 #endif
2444 }
2445
2446 static uint64_t
2447 wg_session_inc_send_counter(struct wg_session *wgs)
2448 {
2449 #ifdef __HAVE_ATOMIC64_LOADSTORE
2450 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2451 #else
2452 uint64_t send_counter;
2453
2454 mutex_enter(&wgs->wgs_send_counter_lock);
2455 send_counter = wgs->wgs_send_counter++;
2456 mutex_exit(&wgs->wgs_send_counter_lock);
2457
2458 return send_counter;
2459 #endif
2460 }
2461
2462 static void
2463 wg_clear_states(struct wg_session *wgs)
2464 {
2465
2466 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2467
2468 wgs->wgs_send_counter = 0;
2469 sliwin_reset(&wgs->wgs_recvwin->window);
2470
2471 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2472 wgs_clear(handshake_hash);
2473 wgs_clear(chaining_key);
2474 wgs_clear(ephemeral_key_pub);
2475 wgs_clear(ephemeral_key_priv);
2476 wgs_clear(ephemeral_key_peer);
2477 #undef wgs_clear
2478 }
2479
2480 static struct wg_session *
2481 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2482 struct psref *psref)
2483 {
2484 struct wg_session *wgs;
2485
2486 int s = pserialize_read_enter();
2487 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2488 if (wgs != NULL) {
2489 uint32_t oindex __diagused =
2490 atomic_load_relaxed(&wgs->wgs_local_index);
2491 KASSERTMSG(index == oindex,
2492 "index=%"PRIx32" wgs->wgs_local_index=%"PRIx32,
2493 index, oindex);
2494 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2495 }
2496 pserialize_read_exit(s);
2497
2498 return wgs;
2499 }
2500
2501 static void
2502 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2503 {
2504 struct mbuf *m;
2505
2506 /*
2507 * [W] 6.5 Passive Keepalive
2508 * "A keepalive message is simply a transport data message with
2509 * a zero-length encapsulated encrypted inner-packet."
2510 */
2511 WG_TRACE("");
2512 m = m_gethdr(M_WAIT, MT_DATA);
2513 wg_send_data_msg(wgp, wgs, m);
2514 }
2515
2516 static bool
2517 wg_need_to_send_init_message(struct wg_session *wgs)
2518 {
2519 /*
2520 * [W] 6.2 Transport Message Limits
2521 * "if a peer is the initiator of a current secure session,
2522 * WireGuard will send a handshake initiation message to begin
2523 * a new secure session ... if after receiving a transport data
2524 * message, the current secure session is (REJECT-AFTER-TIME
2525 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2526 * not yet acted upon this event."
2527 */
2528 return wgs->wgs_is_initiator &&
2529 atomic_load_relaxed(&wgs->wgs_time_last_data_sent) == 0 &&
2530 (time_uptime32 - wgs->wgs_time_established >=
2531 (wg_reject_after_time - wg_keepalive_timeout -
2532 wg_rekey_timeout));
2533 }
2534
2535 static void
2536 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
2537 {
2538
2539 mutex_enter(wgp->wgp_intr_lock);
2540 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2541 if (wgp->wgp_tasks == 0)
2542 /*
2543 * XXX If the current CPU is already loaded -- e.g., if
2544 * there's already a bunch of handshakes queued up --
2545 * consider tossing this over to another CPU to
2546 * distribute the load.
2547 */
2548 workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
2549 wgp->wgp_tasks |= task;
2550 mutex_exit(wgp->wgp_intr_lock);
2551 }
2552
2553 static void
2554 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2555 {
2556 struct wg_sockaddr *wgsa_prev;
2557
2558 WG_TRACE("Changing endpoint");
2559
2560 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2561 wgsa_prev = wgp->wgp_endpoint;
2562 atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2563 wgp->wgp_endpoint0 = wgsa_prev;
2564 atomic_store_release(&wgp->wgp_endpoint_available, true);
2565
2566 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2567 }
2568
2569 static bool
2570 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2571 {
2572 uint16_t packet_len;
2573 const struct ip *ip;
2574
2575 if (__predict_false(decrypted_len < sizeof(*ip))) {
2576 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2577 sizeof(*ip));
2578 return false;
2579 }
2580
2581 ip = (const struct ip *)packet;
2582 if (ip->ip_v == 4)
2583 *af = AF_INET;
2584 else if (ip->ip_v == 6)
2585 *af = AF_INET6;
2586 else {
2587 WG_DLOG("ip_v=%d\n", ip->ip_v);
2588 return false;
2589 }
2590
2591 WG_DLOG("af=%d\n", *af);
2592
2593 switch (*af) {
2594 #ifdef INET
2595 case AF_INET:
2596 packet_len = ntohs(ip->ip_len);
2597 break;
2598 #endif
2599 #ifdef INET6
2600 case AF_INET6: {
2601 const struct ip6_hdr *ip6;
2602
2603 if (__predict_false(decrypted_len < sizeof(*ip6))) {
2604 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2605 sizeof(*ip6));
2606 return false;
2607 }
2608
2609 ip6 = (const struct ip6_hdr *)packet;
2610 packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
2611 break;
2612 }
2613 #endif
2614 default:
2615 return false;
2616 }
2617
2618 if (packet_len > decrypted_len) {
2619 WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
2620 decrypted_len);
2621 return false;
2622 }
2623
2624 return true;
2625 }
2626
2627 static bool
2628 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2629 int af, char *packet)
2630 {
2631 struct sockaddr_storage ss;
2632 struct sockaddr *sa;
2633 struct psref psref;
2634 struct wg_peer *wgp;
2635 bool ok;
2636
2637 /*
2638 * II CRYPTOKEY ROUTING
2639 * "it will only accept it if its source IP resolves in the
2640 * table to the public key used in the secure session for
2641 * decrypting it."
2642 */
2643
2644 switch (af) {
2645 #ifdef INET
2646 case AF_INET: {
2647 const struct ip *ip = (const struct ip *)packet;
2648 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2649 sockaddr_in_init(sin, &ip->ip_src, 0);
2650 sa = sintosa(sin);
2651 break;
2652 }
2653 #endif
2654 #ifdef INET6
2655 case AF_INET6: {
2656 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2657 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2658 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2659 sa = sin6tosa(sin6);
2660 break;
2661 }
2662 #endif
2663 default:
2664 __USE(ss);
2665 return false;
2666 }
2667
2668 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2669 ok = (wgp == wgp_expected);
2670 if (wgp != NULL)
2671 wg_put_peer(wgp, &psref);
2672
2673 return ok;
2674 }
2675
2676 static void
2677 wg_session_dtor_timer(void *arg)
2678 {
2679 struct wg_peer *wgp = arg;
2680
2681 WG_TRACE("enter");
2682
2683 wg_schedule_session_dtor_timer(wgp);
2684 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2685 }
2686
2687 static void
2688 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2689 {
2690
2691 /*
2692 * If the periodic session destructor is already pending to
2693 * handle the previous session, that's fine -- leave it in
2694 * place; it will be scheduled again.
2695 */
2696 if (callout_pending(&wgp->wgp_session_dtor_timer)) {
2697 WG_DLOG("session dtor already pending\n");
2698 return;
2699 }
2700
2701 WG_DLOG("scheduling session dtor in %u secs\n", wg_reject_after_time);
2702 callout_schedule(&wgp->wgp_session_dtor_timer,
2703 wg_reject_after_time*hz);
2704 }
2705
2706 static bool
2707 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2708 {
2709 if (sa1->sa_family != sa2->sa_family)
2710 return false;
2711
2712 switch (sa1->sa_family) {
2713 #ifdef INET
2714 case AF_INET:
2715 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2716 #endif
2717 #ifdef INET6
2718 case AF_INET6:
2719 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2720 #endif
2721 default:
2722 return false;
2723 }
2724 }
2725
2726 static void
2727 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2728 const struct sockaddr *src)
2729 {
2730 struct wg_sockaddr *wgsa;
2731 struct psref psref;
2732
2733 wgsa = wg_get_endpoint_sa(wgp, &psref);
2734
2735 #ifdef WG_DEBUG_LOG
2736 char oldaddr[128], newaddr[128];
2737 sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2738 sockaddr_format(src, newaddr, sizeof(newaddr));
2739 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2740 #endif
2741
2742 /*
2743 * III: "Since the packet has authenticated correctly, the source IP of
2744 * the outer UDP/IP packet is used to update the endpoint for peer..."
2745 */
2746 if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2747 !sockaddr_port_match(src, wgsatosa(wgsa)))) {
2748 /* XXX We can't change the endpoint twice in a short period */
2749 if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2750 wg_change_endpoint(wgp, src);
2751 }
2752 }
2753
2754 wg_put_sa(wgp, wgsa, &psref);
2755 }
2756
2757 static void __noinline
2758 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2759 const struct sockaddr *src)
2760 {
2761 struct wg_msg_data *wgmd;
2762 char *encrypted_buf = NULL, *decrypted_buf;
2763 size_t encrypted_len, decrypted_len;
2764 struct wg_session *wgs;
2765 struct wg_peer *wgp;
2766 int state;
2767 uint32_t age;
2768 size_t mlen;
2769 struct psref psref;
2770 int error, af;
2771 bool success, free_encrypted_buf = false, ok;
2772 struct mbuf *n;
2773
2774 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2775 wgmd = mtod(m, struct wg_msg_data *);
2776
2777 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2778 WG_TRACE("data");
2779
2780 /* Find the putative session, or drop. */
2781 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2782 if (wgs == NULL) {
2783 WG_TRACE("No session found");
2784 m_freem(m);
2785 return;
2786 }
2787
2788 /*
2789 * We are only ready to handle data when in INIT_PASSIVE,
2790 * ESTABLISHED, or DESTROYING. All transitions out of that
2791 * state dissociate the session index and drain psrefs.
2792 *
2793 * atomic_load_acquire matches atomic_store_release in either
2794 * wg_handle_msg_init or wg_handle_msg_resp. (The transition
2795 * INIT_PASSIVE to ESTABLISHED in wg_task_establish_session
2796 * doesn't make a difference for this rx path.)
2797 */
2798 state = atomic_load_acquire(&wgs->wgs_state);
2799 switch (state) {
2800 case WGS_STATE_UNKNOWN:
2801 case WGS_STATE_INIT_ACTIVE:
2802 WG_TRACE("not yet ready for data");
2803 goto out;
2804 case WGS_STATE_INIT_PASSIVE:
2805 case WGS_STATE_ESTABLISHED:
2806 case WGS_STATE_DESTROYING:
2807 break;
2808 }
2809
2810 /*
2811 * Reject if the session is too old.
2812 */
2813 age = time_uptime32 - wgs->wgs_time_established;
2814 if (__predict_false(age >= wg_reject_after_time)) {
2815 WG_DLOG("session %"PRIx32" too old, %"PRIu32" sec\n",
2816 wgmd->wgmd_receiver, age);
2817 goto out;
2818 }
2819
2820 /*
2821 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2822 * to update the endpoint if authentication succeeds.
2823 */
2824 wgp = wgs->wgs_peer;
2825
2826 /*
2827 * Reject outrageously wrong sequence numbers before doing any
2828 * crypto work or taking any locks.
2829 */
2830 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2831 le64toh(wgmd->wgmd_counter));
2832 if (error) {
2833 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2834 "%s: peer %s: out-of-window packet: %"PRIu64"\n",
2835 if_name(&wg->wg_if), wgp->wgp_name,
2836 le64toh(wgmd->wgmd_counter));
2837 goto out;
2838 }
2839
2840 /* Ensure the payload and authenticator are contiguous. */
2841 mlen = m_length(m);
2842 encrypted_len = mlen - sizeof(*wgmd);
2843 if (encrypted_len < WG_AUTHTAG_LEN) {
2844 WG_DLOG("Short encrypted_len: %zu\n", encrypted_len);
2845 goto out;
2846 }
2847 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2848 if (success) {
2849 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2850 } else {
2851 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2852 if (encrypted_buf == NULL) {
2853 WG_DLOG("failed to allocate encrypted_buf\n");
2854 goto out;
2855 }
2856 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2857 free_encrypted_buf = true;
2858 }
2859 /* m_ensure_contig may change m regardless of its result */
2860 KASSERT(m->m_len >= sizeof(*wgmd));
2861 wgmd = mtod(m, struct wg_msg_data *);
2862
2863 /*
2864 * Get a buffer for the plaintext. Add WG_AUTHTAG_LEN to avoid
2865 * a zero-length buffer (XXX). Drop if plaintext is longer
2866 * than MCLBYTES (XXX).
2867 */
2868 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2869 if (decrypted_len > MCLBYTES) {
2870 /* FIXME handle larger data than MCLBYTES */
2871 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2872 goto out;
2873 }
2874 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2875 if (n == NULL) {
2876 WG_DLOG("wg_get_mbuf failed\n");
2877 goto out;
2878 }
2879 decrypted_buf = mtod(n, char *);
2880
2881 /* Decrypt and verify the packet. */
2882 WG_DLOG("mlen=%zu, encrypted_len=%zu\n", mlen, encrypted_len);
2883 error = wg_algo_aead_dec(decrypted_buf,
2884 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2885 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
2886 encrypted_len, NULL, 0);
2887 if (error != 0) {
2888 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2889 "%s: peer %s: failed to wg_algo_aead_dec\n",
2890 if_name(&wg->wg_if), wgp->wgp_name);
2891 m_freem(n);
2892 goto out;
2893 }
2894 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2895
2896 /* Packet is genuine. Reject it if a replay or just too old. */
2897 mutex_enter(&wgs->wgs_recvwin->lock);
2898 error = sliwin_update(&wgs->wgs_recvwin->window,
2899 le64toh(wgmd->wgmd_counter));
2900 mutex_exit(&wgs->wgs_recvwin->lock);
2901 if (error) {
2902 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2903 "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
2904 if_name(&wg->wg_if), wgp->wgp_name,
2905 le64toh(wgmd->wgmd_counter));
2906 m_freem(n);
2907 goto out;
2908 }
2909
2910 /* We're done with m now; free it and chuck the pointers. */
2911 m_freem(m);
2912 m = NULL;
2913 wgmd = NULL;
2914
2915 /*
2916 * The packet is genuine. Update the peer's endpoint if the
2917 * source address changed.
2918 *
2919 * XXX How to prevent DoS by replaying genuine packets from the
2920 * wrong source address?
2921 */
2922 wg_update_endpoint_if_necessary(wgp, src);
2923
2924 /*
2925 * Validate the encapsulated packet header and get the address
2926 * family, or drop.
2927 */
2928 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2929 if (!ok) {
2930 m_freem(n);
2931 goto update_state;
2932 }
2933
2934 /* Submit it into our network stack if routable. */
2935 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2936 if (ok) {
2937 wg->wg_ops->input(&wg->wg_if, n, af);
2938 } else {
2939 char addrstr[INET6_ADDRSTRLEN];
2940 memset(addrstr, 0, sizeof(addrstr));
2941 switch (af) {
2942 #ifdef INET
2943 case AF_INET: {
2944 const struct ip *ip = (const struct ip *)decrypted_buf;
2945 IN_PRINT(addrstr, &ip->ip_src);
2946 break;
2947 }
2948 #endif
2949 #ifdef INET6
2950 case AF_INET6: {
2951 const struct ip6_hdr *ip6 =
2952 (const struct ip6_hdr *)decrypted_buf;
2953 IN6_PRINT(addrstr, &ip6->ip6_src);
2954 break;
2955 }
2956 #endif
2957 default:
2958 panic("invalid af=%d", af);
2959 }
2960 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2961 "%s: peer %s: invalid source address (%s)\n",
2962 if_name(&wg->wg_if), wgp->wgp_name, addrstr);
2963 m_freem(n);
2964 /*
2965 * The inner address is invalid however the session is valid
2966 * so continue the session processing below.
2967 */
2968 }
2969 n = NULL;
2970
2971 update_state:
2972 /* Update the state machine if necessary. */
2973 if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
2974 /*
2975 * We were waiting for the initiator to send their
2976 * first data transport message, and that has happened.
2977 * Schedule a task to establish this session.
2978 */
2979 wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
2980 } else {
2981 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2982 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2983 }
2984 /*
2985 * [W] 6.5 Passive Keepalive
2986 * "If a peer has received a validly-authenticated transport
2987 * data message (section 5.4.6), but does not have any packets
2988 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2989 * a keepalive message."
2990 */
2991 const uint32_t now = time_uptime32;
2992 const uint32_t time_last_data_sent =
2993 atomic_load_relaxed(&wgs->wgs_time_last_data_sent);
2994 WG_DLOG("time_uptime32=%"PRIu32
2995 " wgs_time_last_data_sent=%"PRIu32"\n",
2996 now, time_last_data_sent);
2997 if ((now - time_last_data_sent) >= wg_keepalive_timeout) {
2998 WG_TRACE("Schedule sending keepalive message");
2999 /*
3000 * We can't send a keepalive message here to avoid
3001 * a deadlock; we already hold the solock of a socket
3002 * that is used to send the message.
3003 */
3004 wg_schedule_peer_task(wgp,
3005 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
3006 }
3007 }
3008 out:
3009 wg_put_session(wgs, &psref);
3010 m_freem(m);
3011 if (free_encrypted_buf)
3012 kmem_intr_free(encrypted_buf, encrypted_len);
3013 }
3014
3015 static void __noinline
3016 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
3017 {
3018 struct wg_session *wgs;
3019 struct wg_peer *wgp;
3020 struct psref psref;
3021 int error;
3022 uint8_t key[WG_HASH_LEN];
3023 uint8_t cookie[WG_COOKIE_LEN];
3024
3025 WG_TRACE("cookie msg received");
3026
3027 /* Find the putative session. */
3028 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
3029 if (wgs == NULL) {
3030 WG_TRACE("No session found");
3031 return;
3032 }
3033
3034 /* Lock the peer so we can update the cookie state. */
3035 wgp = wgs->wgs_peer;
3036 mutex_enter(wgp->wgp_lock);
3037
3038 if (!wgp->wgp_last_sent_mac1_valid) {
3039 WG_TRACE("No valid mac1 sent (or expired)");
3040 goto out;
3041 }
3042
3043 /*
3044 * wgp_last_sent_mac1_valid is only set to true when we are
3045 * transitioning to INIT_ACTIVE or INIT_PASSIVE, and always
3046 * cleared on transition out of them.
3047 */
3048 KASSERTMSG((wgs->wgs_state == WGS_STATE_INIT_ACTIVE ||
3049 wgs->wgs_state == WGS_STATE_INIT_PASSIVE),
3050 "state=%d", wgs->wgs_state);
3051
3052 /* Decrypt the cookie and store it for later handshake retry. */
3053 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
3054 sizeof(wgp->wgp_pubkey));
3055 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
3056 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
3057 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
3058 wgmc->wgmc_salt);
3059 if (error != 0) {
3060 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3061 "%s: peer %s: wg_algo_aead_dec for cookie failed: "
3062 "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
3063 goto out;
3064 }
3065 /*
3066 * [W] 6.6: Interaction with Cookie Reply System
3067 * "it should simply store the decrypted cookie value from the cookie
3068 * reply message, and wait for the expiration of the REKEY-TIMEOUT
3069 * timer for retrying a handshake initiation message."
3070 */
3071 wgp->wgp_latest_cookie_time = time_uptime;
3072 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
3073 out:
3074 mutex_exit(wgp->wgp_lock);
3075 wg_put_session(wgs, &psref);
3076 }
3077
3078 static struct mbuf *
3079 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
3080 {
3081 struct wg_msg wgm;
3082 size_t mbuflen;
3083 size_t msglen;
3084
3085 /*
3086 * Get the mbuf chain length. It is already guaranteed, by
3087 * wg_overudp_cb, to be large enough for a struct wg_msg.
3088 */
3089 mbuflen = m_length(m);
3090 KASSERT(mbuflen >= sizeof(struct wg_msg));
3091
3092 /*
3093 * Copy the message header (32-bit message type) out -- we'll
3094 * worry about contiguity and alignment later.
3095 */
3096 m_copydata(m, 0, sizeof(wgm), &wgm);
3097 switch (le32toh(wgm.wgm_type)) {
3098 case WG_MSG_TYPE_INIT:
3099 msglen = sizeof(struct wg_msg_init);
3100 break;
3101 case WG_MSG_TYPE_RESP:
3102 msglen = sizeof(struct wg_msg_resp);
3103 break;
3104 case WG_MSG_TYPE_COOKIE:
3105 msglen = sizeof(struct wg_msg_cookie);
3106 break;
3107 case WG_MSG_TYPE_DATA:
3108 msglen = sizeof(struct wg_msg_data);
3109 break;
3110 default:
3111 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
3112 "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
3113 le32toh(wgm.wgm_type));
3114 goto error;
3115 }
3116
3117 /* Verify the mbuf chain is long enough for this type of message. */
3118 if (__predict_false(mbuflen < msglen)) {
3119 WG_DLOG("Invalid msg size: mbuflen=%zu type=%u\n", mbuflen,
3120 le32toh(wgm.wgm_type));
3121 goto error;
3122 }
3123
3124 /* Make the message header contiguous if necessary. */
3125 if (__predict_false(m->m_len < msglen)) {
3126 m = m_pullup(m, msglen);
3127 if (m == NULL)
3128 return NULL;
3129 }
3130
3131 return m;
3132
3133 error:
3134 m_freem(m);
3135 return NULL;
3136 }
3137
3138 static void
3139 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
3140 const struct sockaddr *src)
3141 {
3142 struct wg_msg *wgm;
3143
3144 KASSERT(curlwp->l_pflag & LP_BOUND);
3145
3146 m = wg_validate_msg_header(wg, m);
3147 if (__predict_false(m == NULL))
3148 return;
3149
3150 KASSERT(m->m_len >= sizeof(struct wg_msg));
3151 wgm = mtod(m, struct wg_msg *);
3152 switch (le32toh(wgm->wgm_type)) {
3153 case WG_MSG_TYPE_INIT:
3154 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
3155 break;
3156 case WG_MSG_TYPE_RESP:
3157 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
3158 break;
3159 case WG_MSG_TYPE_COOKIE:
3160 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
3161 break;
3162 case WG_MSG_TYPE_DATA:
3163 wg_handle_msg_data(wg, m, src);
3164 /* wg_handle_msg_data frees m for us */
3165 return;
3166 default:
3167 panic("invalid message type: %d", le32toh(wgm->wgm_type));
3168 }
3169
3170 m_freem(m);
3171 }
3172
3173 static void
3174 wg_receive_packets(struct wg_softc *wg, const int af)
3175 {
3176
3177 for (;;) {
3178 int error, flags;
3179 struct socket *so;
3180 struct mbuf *m = NULL;
3181 struct uio dummy_uio;
3182 struct mbuf *paddr = NULL;
3183 struct sockaddr *src;
3184
3185 so = wg_get_so_by_af(wg, af);
3186 flags = MSG_DONTWAIT;
3187 dummy_uio.uio_resid = 1000000000;
3188
3189 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
3190 &flags);
3191 if (error || m == NULL) {
3192 //if (error == EWOULDBLOCK)
3193 return;
3194 }
3195
3196 KASSERT(paddr != NULL);
3197 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
3198 src = mtod(paddr, struct sockaddr *);
3199
3200 wg_handle_packet(wg, m, src);
3201 }
3202 }
3203
3204 static void
3205 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
3206 {
3207
3208 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
3209 }
3210
3211 static void
3212 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
3213 {
3214
3215 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
3216 }
3217
3218 static void
3219 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
3220 {
3221 struct wg_session *wgs;
3222
3223 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
3224
3225 KASSERT(mutex_owned(wgp->wgp_lock));
3226
3227 if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
3228 WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
3229 if_name(&wg->wg_if));
3230 /* XXX should do something? */
3231 return;
3232 }
3233
3234 /*
3235 * If we already have an established session, there's no need
3236 * to initiate a new one -- unless the rekey-after-time or
3237 * rekey-after-messages limits have passed.
3238 */
3239 wgs = wgp->wgp_session_stable;
3240 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3241 !atomic_load_relaxed(&wgs->wgs_force_rekey))
3242 return;
3243
3244 /*
3245 * Ensure we're initiating a new session. If the unstable
3246 * session is already INIT_ACTIVE or INIT_PASSIVE, this does
3247 * nothing.
3248 */
3249 wg_send_handshake_msg_init(wg, wgp);
3250 }
3251
3252 static void
3253 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
3254 {
3255 struct wg_session *wgs;
3256
3257 WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
3258
3259 KASSERT(mutex_owned(wgp->wgp_lock));
3260 KASSERT(wgp->wgp_handshake_start_time != 0);
3261
3262 wgs = wgp->wgp_session_unstable;
3263 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
3264 return;
3265
3266 /*
3267 * XXX no real need to assign a new index here, but we do need
3268 * to transition to UNKNOWN temporarily
3269 */
3270 wg_put_session_index(wg, wgs);
3271
3272 /* [W] 6.4 Handshake Initiation Retransmission */
3273 if ((time_uptime - wgp->wgp_handshake_start_time) >
3274 wg_rekey_attempt_time) {
3275 /* Give up handshaking */
3276 wgp->wgp_handshake_start_time = 0;
3277 WG_TRACE("give up");
3278
3279 /*
3280 * If a new data packet comes, handshaking will be retried
3281 * and a new session would be established at that time,
3282 * however we don't want to send pending packets then.
3283 */
3284 wg_purge_pending_packets(wgp);
3285 return;
3286 }
3287
3288 wg_task_send_init_message(wg, wgp);
3289 }
3290
3291 static void
3292 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
3293 {
3294 struct wg_session *wgs, *wgs_prev;
3295 struct mbuf *m;
3296
3297 KASSERT(mutex_owned(wgp->wgp_lock));
3298
3299 wgs = wgp->wgp_session_unstable;
3300 if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
3301 /* XXX Can this happen? */
3302 return;
3303
3304 wgs->wgs_time_last_data_sent = 0;
3305 wgs->wgs_is_initiator = false;
3306
3307 /*
3308 * Session was already ready to receive data. Transition from
3309 * INIT_PASSIVE to ESTABLISHED just so we can swap the
3310 * sessions.
3311 *
3312 * atomic_store_relaxed because this doesn't affect the data rx
3313 * path, wg_handle_msg_data -- changing from INIT_PASSIVE to
3314 * ESTABLISHED makes no difference to the data rx path, and the
3315 * transition to INIT_PASSIVE with store-release already
3316 * published the state needed by the data rx path.
3317 */
3318 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_ESTABLISHED\n",
3319 wgs->wgs_local_index, wgs->wgs_remote_index);
3320 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
3321 WG_TRACE("WGS_STATE_ESTABLISHED");
3322
3323 /*
3324 * Session is ready to send data too now that we have received
3325 * the peer initiator's first data packet.
3326 *
3327 * Swap the sessions to publish the new one as the stable
3328 * session for the data tx path, wg_output.
3329 */
3330 wg_swap_sessions(wgp);
3331 KASSERT(wgs == wgp->wgp_session_stable);
3332 wgs_prev = wgp->wgp_session_unstable;
3333 getnanotime(&wgp->wgp_last_handshake_time);
3334 wgp->wgp_handshake_start_time = 0;
3335 wgp->wgp_last_sent_mac1_valid = false;
3336 wgp->wgp_last_sent_cookie_valid = false;
3337
3338 /* If we had a data packet queued up, send it. */
3339 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
3340 kpreempt_disable();
3341 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
3342 M_SETCTX(m, wgp);
3343 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
3344 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
3345 if_name(&wg->wg_if));
3346 m_freem(m);
3347 }
3348 kpreempt_enable();
3349 }
3350
3351 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
3352 /*
3353 * Transition ESTABLISHED->DESTROYING. The session
3354 * will remain usable for the data rx path to process
3355 * packets still in flight to us, but we won't use it
3356 * for data tx.
3357 */
3358 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
3359 " -> WGS_STATE_DESTROYING\n",
3360 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
3361 atomic_store_relaxed(&wgs_prev->wgs_state,
3362 WGS_STATE_DESTROYING);
3363 } else {
3364 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
3365 "state=%d", wgs_prev->wgs_state);
3366 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
3367 " -> WGS_STATE_UNKNOWN\n",
3368 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
3369 wgs_prev->wgs_local_index = 0; /* paranoia */
3370 wgs_prev->wgs_remote_index = 0; /* paranoia */
3371 wg_clear_states(wgs_prev); /* paranoia */
3372 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
3373 }
3374 }
3375
3376 static void
3377 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
3378 {
3379
3380 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
3381
3382 KASSERT(mutex_owned(wgp->wgp_lock));
3383
3384 if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
3385 pserialize_perform(wgp->wgp_psz);
3386 mutex_exit(wgp->wgp_lock);
3387 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
3388 wg_psref_class);
3389 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
3390 wg_psref_class);
3391 mutex_enter(wgp->wgp_lock);
3392 atomic_store_release(&wgp->wgp_endpoint_changing, 0);
3393 }
3394 }
3395
3396 static void
3397 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
3398 {
3399 struct wg_session *wgs;
3400
3401 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
3402
3403 KASSERT(mutex_owned(wgp->wgp_lock));
3404
3405 wgs = wgp->wgp_session_stable;
3406 if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
3407 return;
3408
3409 wg_send_keepalive_msg(wgp, wgs);
3410 }
3411
3412 static void
3413 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
3414 {
3415 struct wg_session *wgs;
3416 uint32_t age;
3417
3418 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
3419
3420 KASSERT(mutex_owned(wgp->wgp_lock));
3421
3422 /*
3423 * If theres's any previous unstable session, i.e., one that
3424 * was ESTABLISHED and is now DESTROYING, older than
3425 * reject-after-time, destroy it. Upcoming sessions are still
3426 * in INIT_ACTIVE or INIT_PASSIVE -- we don't touch those here.
3427 */
3428 wgs = wgp->wgp_session_unstable;
3429 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
3430 if (wgs->wgs_state == WGS_STATE_DESTROYING &&
3431 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3432 wg_reject_after_time)) {
3433 WG_DLOG("destroying past session %"PRIu32" sec old\n", age);
3434 wg_put_session_index(wg, wgs);
3435 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3436 wgs->wgs_state);
3437 }
3438
3439 /*
3440 * If theres's any ESTABLISHED stable session older than
3441 * reject-after-time, destroy it. (The stable session can also
3442 * be in UNKNOWN state -- nothing to do in that case)
3443 */
3444 wgs = wgp->wgp_session_stable;
3445 KASSERT(wgs->wgs_state != WGS_STATE_INIT_ACTIVE);
3446 KASSERT(wgs->wgs_state != WGS_STATE_INIT_PASSIVE);
3447 KASSERT(wgs->wgs_state != WGS_STATE_DESTROYING);
3448 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3449 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3450 wg_reject_after_time)) {
3451 WG_DLOG("destroying current session %"PRIu32" sec old\n", age);
3452 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_DESTROYING);
3453 wg_put_session_index(wg, wgs);
3454 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3455 wgs->wgs_state);
3456 }
3457
3458 /*
3459 * If there's no sessions left, no need to have the timer run
3460 * until the next time around -- halt it.
3461 *
3462 * It is only ever scheduled with wgp_lock held or in the
3463 * callout itself, and callout_halt prevents rescheudling
3464 * itself, so this never races with rescheduling.
3465 */
3466 if (wgp->wgp_session_unstable->wgs_state == WGS_STATE_UNKNOWN &&
3467 wgp->wgp_session_stable->wgs_state == WGS_STATE_UNKNOWN)
3468 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3469 }
3470
3471 static void
3472 wg_peer_work(struct work *wk, void *cookie)
3473 {
3474 struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
3475 struct wg_softc *wg = wgp->wgp_sc;
3476 unsigned int tasks;
3477
3478 mutex_enter(wgp->wgp_intr_lock);
3479 while ((tasks = wgp->wgp_tasks) != 0) {
3480 wgp->wgp_tasks = 0;
3481 mutex_exit(wgp->wgp_intr_lock);
3482
3483 mutex_enter(wgp->wgp_lock);
3484 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
3485 wg_task_send_init_message(wg, wgp);
3486 if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
3487 wg_task_retry_handshake(wg, wgp);
3488 if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
3489 wg_task_establish_session(wg, wgp);
3490 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
3491 wg_task_endpoint_changed(wg, wgp);
3492 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
3493 wg_task_send_keepalive_message(wg, wgp);
3494 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
3495 wg_task_destroy_prev_session(wg, wgp);
3496 mutex_exit(wgp->wgp_lock);
3497
3498 mutex_enter(wgp->wgp_intr_lock);
3499 }
3500 mutex_exit(wgp->wgp_intr_lock);
3501 }
3502
3503 static void
3504 wg_job(struct threadpool_job *job)
3505 {
3506 struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
3507 int bound, upcalls;
3508
3509 mutex_enter(wg->wg_intr_lock);
3510 while ((upcalls = wg->wg_upcalls) != 0) {
3511 wg->wg_upcalls = 0;
3512 mutex_exit(wg->wg_intr_lock);
3513 bound = curlwp_bind();
3514 if (ISSET(upcalls, WG_UPCALL_INET))
3515 wg_receive_packets(wg, AF_INET);
3516 if (ISSET(upcalls, WG_UPCALL_INET6))
3517 wg_receive_packets(wg, AF_INET6);
3518 curlwp_bindx(bound);
3519 mutex_enter(wg->wg_intr_lock);
3520 }
3521 threadpool_job_done(job);
3522 mutex_exit(wg->wg_intr_lock);
3523 }
3524
3525 static int
3526 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3527 {
3528 int error = 0;
3529 uint16_t old_port = wg->wg_listen_port;
3530
3531 if (port != 0 && old_port == port)
3532 return 0;
3533
3534 #ifdef INET
3535 struct sockaddr_in _sin, *sin = &_sin;
3536 sin->sin_len = sizeof(*sin);
3537 sin->sin_family = AF_INET;
3538 sin->sin_addr.s_addr = INADDR_ANY;
3539 sin->sin_port = htons(port);
3540
3541 error = sobind(wg->wg_so4, sintosa(sin), curlwp);
3542 if (error)
3543 return error;
3544 #endif
3545
3546 #ifdef INET6
3547 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3548 sin6->sin6_len = sizeof(*sin6);
3549 sin6->sin6_family = AF_INET6;
3550 sin6->sin6_addr = in6addr_any;
3551 sin6->sin6_port = htons(port);
3552
3553 error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
3554 if (error)
3555 return error;
3556 #endif
3557
3558 wg->wg_listen_port = port;
3559
3560 return error;
3561 }
3562
3563 static void
3564 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
3565 {
3566 struct wg_softc *wg = cookie;
3567 int reason;
3568
3569 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3570 WG_UPCALL_INET :
3571 WG_UPCALL_INET6;
3572
3573 mutex_enter(wg->wg_intr_lock);
3574 wg->wg_upcalls |= reason;
3575 threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
3576 mutex_exit(wg->wg_intr_lock);
3577 }
3578
3579 static int
3580 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3581 struct sockaddr *src, void *arg)
3582 {
3583 struct wg_softc *wg = arg;
3584 struct wg_msg wgm;
3585 struct mbuf *m = *mp;
3586
3587 WG_TRACE("enter");
3588
3589 /* Verify the mbuf chain is long enough to have a wg msg header. */
3590 KASSERT(offset <= m_length(m));
3591 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3592 /* drop on the floor */
3593 m_freem(m);
3594 return -1;
3595 }
3596
3597 /*
3598 * Copy the message header (32-bit message type) out -- we'll
3599 * worry about contiguity and alignment later.
3600 */
3601 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3602 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3603
3604 /*
3605 * Handle DATA packets promptly as they arrive, if they are in
3606 * an active session. Other packets may require expensive
3607 * public-key crypto and are not as sensitive to latency, so
3608 * defer them to the worker thread.
3609 */
3610 switch (le32toh(wgm.wgm_type)) {
3611 case WG_MSG_TYPE_DATA:
3612 /* handle immediately */
3613 m_adj(m, offset);
3614 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3615 m = m_pullup(m, sizeof(struct wg_msg_data));
3616 if (m == NULL)
3617 return -1;
3618 }
3619 wg_handle_msg_data(wg, m, src);
3620 *mp = NULL;
3621 return 1;
3622 case WG_MSG_TYPE_INIT:
3623 case WG_MSG_TYPE_RESP:
3624 case WG_MSG_TYPE_COOKIE:
3625 /* pass through to so_receive in wg_receive_packets */
3626 return 0;
3627 default:
3628 /* drop on the floor */
3629 m_freem(m);
3630 return -1;
3631 }
3632 }
3633
3634 static int
3635 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
3636 {
3637 int error;
3638 struct socket *so;
3639
3640 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3641 if (error != 0)
3642 return error;
3643
3644 solock(so);
3645 so->so_upcallarg = wg;
3646 so->so_upcall = wg_so_upcall;
3647 so->so_rcv.sb_flags |= SB_UPCALL;
3648 inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3649 sounlock(so);
3650
3651 *sop = so;
3652
3653 return 0;
3654 }
3655
3656 static bool
3657 wg_session_hit_limits(struct wg_session *wgs)
3658 {
3659
3660 /*
3661 * [W] 6.2: Transport Message Limits
3662 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3663 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3664 * comes first, WireGuard will refuse to send or receive any more
3665 * transport data messages using the current secure session, ..."
3666 */
3667 KASSERT(wgs->wgs_time_established != 0 || time_uptime > UINT32_MAX);
3668 if (time_uptime32 - wgs->wgs_time_established > wg_reject_after_time) {
3669 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3670 return true;
3671 } else if (wg_session_get_send_counter(wgs) >
3672 wg_reject_after_messages) {
3673 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3674 return true;
3675 }
3676
3677 return false;
3678 }
3679
3680 static void
3681 wgintr(void *cookie)
3682 {
3683 struct wg_peer *wgp;
3684 struct wg_session *wgs;
3685 struct mbuf *m;
3686 struct psref psref;
3687
3688 while ((m = pktq_dequeue(wg_pktq)) != NULL) {
3689 wgp = M_GETCTX(m, struct wg_peer *);
3690 if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3691 WG_TRACE("no stable session");
3692 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3693 goto next0;
3694 }
3695 if (__predict_false(wg_session_hit_limits(wgs))) {
3696 WG_TRACE("stable session hit limits");
3697 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3698 goto next1;
3699 }
3700 wg_send_data_msg(wgp, wgs, m);
3701 m = NULL; /* consumed */
3702 next1: wg_put_session(wgs, &psref);
3703 next0: m_freem(m);
3704 /* XXX Yield to avoid userland starvation? */
3705 }
3706 }
3707
3708 static void
3709 wg_purge_pending_packets(struct wg_peer *wgp)
3710 {
3711 struct mbuf *m;
3712
3713 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
3714 m_freem(m);
3715 #ifdef ALTQ
3716 wg_start(&wgp->wgp_sc->wg_if);
3717 #endif
3718 pktq_barrier(wg_pktq);
3719 }
3720
3721 static void
3722 wg_handshake_timeout_timer(void *arg)
3723 {
3724 struct wg_peer *wgp = arg;
3725
3726 WG_TRACE("enter");
3727
3728 wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3729 }
3730
3731 static struct wg_peer *
3732 wg_alloc_peer(struct wg_softc *wg)
3733 {
3734 struct wg_peer *wgp;
3735
3736 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3737
3738 wgp->wgp_sc = wg;
3739 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3740 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3741 wg_handshake_timeout_timer, wgp);
3742 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3743 callout_setfunc(&wgp->wgp_session_dtor_timer,
3744 wg_session_dtor_timer, wgp);
3745 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3746 wgp->wgp_endpoint_changing = false;
3747 wgp->wgp_endpoint_available = false;
3748 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3749 wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3750 wgp->wgp_psz = pserialize_create();
3751 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3752
3753 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3754 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3755 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3756 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3757
3758 struct wg_session *wgs;
3759 wgp->wgp_session_stable =
3760 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3761 wgp->wgp_session_unstable =
3762 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3763 wgs = wgp->wgp_session_stable;
3764 wgs->wgs_peer = wgp;
3765 wgs->wgs_state = WGS_STATE_UNKNOWN;
3766 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3767 #ifndef __HAVE_ATOMIC64_LOADSTORE
3768 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3769 #endif
3770 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3771 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3772
3773 wgs = wgp->wgp_session_unstable;
3774 wgs->wgs_peer = wgp;
3775 wgs->wgs_state = WGS_STATE_UNKNOWN;
3776 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3777 #ifndef __HAVE_ATOMIC64_LOADSTORE
3778 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3779 #endif
3780 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3781 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3782
3783 return wgp;
3784 }
3785
3786 static void
3787 wg_destroy_peer(struct wg_peer *wgp)
3788 {
3789 struct wg_session *wgs;
3790 struct wg_softc *wg = wgp->wgp_sc;
3791
3792 /* Prevent new packets from this peer on any source address. */
3793 rw_enter(wg->wg_rwlock, RW_WRITER);
3794 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3795 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3796 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3797 struct radix_node *rn;
3798
3799 KASSERT(rnh != NULL);
3800 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3801 &wga->wga_sa_mask, rnh);
3802 if (rn == NULL) {
3803 char addrstr[128];
3804 sockaddr_format(&wga->wga_sa_addr, addrstr,
3805 sizeof(addrstr));
3806 WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
3807 if_name(&wg->wg_if), addrstr);
3808 }
3809 }
3810 rw_exit(wg->wg_rwlock);
3811
3812 /* Purge pending packets. */
3813 wg_purge_pending_packets(wgp);
3814
3815 /* Halt all packet processing and timeouts. */
3816 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3817 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3818
3819 /* Wait for any queued work to complete. */
3820 workqueue_wait(wg_wq, &wgp->wgp_work);
3821
3822 wgs = wgp->wgp_session_unstable;
3823 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3824 mutex_enter(wgp->wgp_lock);
3825 wg_destroy_session(wg, wgs);
3826 mutex_exit(wgp->wgp_lock);
3827 }
3828 mutex_destroy(&wgs->wgs_recvwin->lock);
3829 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3830 #ifndef __HAVE_ATOMIC64_LOADSTORE
3831 mutex_destroy(&wgs->wgs_send_counter_lock);
3832 #endif
3833 kmem_free(wgs, sizeof(*wgs));
3834
3835 wgs = wgp->wgp_session_stable;
3836 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3837 mutex_enter(wgp->wgp_lock);
3838 wg_destroy_session(wg, wgs);
3839 mutex_exit(wgp->wgp_lock);
3840 }
3841 mutex_destroy(&wgs->wgs_recvwin->lock);
3842 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3843 #ifndef __HAVE_ATOMIC64_LOADSTORE
3844 mutex_destroy(&wgs->wgs_send_counter_lock);
3845 #endif
3846 kmem_free(wgs, sizeof(*wgs));
3847
3848 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3849 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3850 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3851 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3852
3853 pserialize_destroy(wgp->wgp_psz);
3854 mutex_obj_free(wgp->wgp_intr_lock);
3855 mutex_obj_free(wgp->wgp_lock);
3856
3857 kmem_free(wgp, sizeof(*wgp));
3858 }
3859
3860 static void
3861 wg_destroy_all_peers(struct wg_softc *wg)
3862 {
3863 struct wg_peer *wgp, *wgp0 __diagused;
3864 void *garbage_byname, *garbage_bypubkey;
3865
3866 restart:
3867 garbage_byname = garbage_bypubkey = NULL;
3868 mutex_enter(wg->wg_lock);
3869 WG_PEER_WRITER_FOREACH(wgp, wg) {
3870 if (wgp->wgp_name[0]) {
3871 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3872 strlen(wgp->wgp_name));
3873 KASSERT(wgp0 == wgp);
3874 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3875 }
3876 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3877 sizeof(wgp->wgp_pubkey));
3878 KASSERT(wgp0 == wgp);
3879 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3880 WG_PEER_WRITER_REMOVE(wgp);
3881 wg->wg_npeers--;
3882 mutex_enter(wgp->wgp_lock);
3883 pserialize_perform(wgp->wgp_psz);
3884 mutex_exit(wgp->wgp_lock);
3885 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3886 break;
3887 }
3888 mutex_exit(wg->wg_lock);
3889
3890 if (wgp == NULL)
3891 return;
3892
3893 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3894
3895 wg_destroy_peer(wgp);
3896 thmap_gc(wg->wg_peers_byname, garbage_byname);
3897 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3898
3899 goto restart;
3900 }
3901
3902 static int
3903 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3904 {
3905 struct wg_peer *wgp, *wgp0 __diagused;
3906 void *garbage_byname, *garbage_bypubkey;
3907
3908 mutex_enter(wg->wg_lock);
3909 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
3910 if (wgp != NULL) {
3911 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3912 sizeof(wgp->wgp_pubkey));
3913 KASSERT(wgp0 == wgp);
3914 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3915 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3916 WG_PEER_WRITER_REMOVE(wgp);
3917 wg->wg_npeers--;
3918 if (wg->wg_npeers == 0)
3919 if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
3920 mutex_enter(wgp->wgp_lock);
3921 pserialize_perform(wgp->wgp_psz);
3922 mutex_exit(wgp->wgp_lock);
3923 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3924 }
3925 mutex_exit(wg->wg_lock);
3926
3927 if (wgp == NULL)
3928 return ENOENT;
3929
3930 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3931
3932 wg_destroy_peer(wgp);
3933 thmap_gc(wg->wg_peers_byname, garbage_byname);
3934 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3935
3936 return 0;
3937 }
3938
3939 static int
3940 wg_if_attach(struct wg_softc *wg)
3941 {
3942
3943 wg->wg_if.if_addrlen = 0;
3944 wg->wg_if.if_mtu = WG_MTU;
3945 wg->wg_if.if_flags = IFF_MULTICAST;
3946 wg->wg_if.if_extflags = IFEF_MPSAFE;
3947 wg->wg_if.if_ioctl = wg_ioctl;
3948 wg->wg_if.if_output = wg_output;
3949 wg->wg_if.if_init = wg_init;
3950 #ifdef ALTQ
3951 wg->wg_if.if_start = wg_start;
3952 #endif
3953 wg->wg_if.if_stop = wg_stop;
3954 wg->wg_if.if_type = IFT_OTHER;
3955 wg->wg_if.if_dlt = DLT_NULL;
3956 wg->wg_if.if_softc = wg;
3957 #ifdef ALTQ
3958 IFQ_SET_READY(&wg->wg_if.if_snd);
3959 #endif
3960 if_initialize(&wg->wg_if);
3961
3962 wg->wg_if.if_link_state = LINK_STATE_DOWN;
3963 if_alloc_sadl(&wg->wg_if);
3964 if_register(&wg->wg_if);
3965
3966 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3967
3968 return 0;
3969 }
3970
3971 static void
3972 wg_if_detach(struct wg_softc *wg)
3973 {
3974 struct ifnet *ifp = &wg->wg_if;
3975
3976 bpf_detach(ifp);
3977 if_detach(ifp);
3978 }
3979
3980 static int
3981 wg_clone_create(struct if_clone *ifc, int unit)
3982 {
3983 struct wg_softc *wg;
3984 int error;
3985
3986 wg_guarantee_initialized();
3987
3988 error = wg_count_inc();
3989 if (error)
3990 return error;
3991
3992 wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
3993
3994 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3995
3996 PSLIST_INIT(&wg->wg_peers);
3997 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
3998 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
3999 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
4000 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
4001 wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
4002 wg->wg_rwlock = rw_obj_alloc();
4003 threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
4004 "%s", if_name(&wg->wg_if));
4005 wg->wg_ops = &wg_ops_rumpkernel;
4006
4007 error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
4008 if (error)
4009 goto fail0;
4010
4011 #ifdef INET
4012 error = wg_socreate(wg, AF_INET, &wg->wg_so4);
4013 if (error)
4014 goto fail1;
4015 rn_inithead((void **)&wg->wg_rtable_ipv4,
4016 offsetof(struct sockaddr_in, sin_addr) * NBBY);
4017 #endif
4018 #ifdef INET6
4019 error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
4020 if (error)
4021 goto fail2;
4022 rn_inithead((void **)&wg->wg_rtable_ipv6,
4023 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
4024 #endif
4025
4026 error = wg_if_attach(wg);
4027 if (error)
4028 goto fail3;
4029
4030 return 0;
4031
4032 fail4: __unused
4033 wg_destroy_all_peers(wg);
4034 wg_if_detach(wg);
4035 fail3:
4036 #ifdef INET6
4037 solock(wg->wg_so6);
4038 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4039 sounlock(wg->wg_so6);
4040 #endif
4041 #ifdef INET
4042 solock(wg->wg_so4);
4043 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4044 sounlock(wg->wg_so4);
4045 #endif
4046 mutex_enter(wg->wg_intr_lock);
4047 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4048 mutex_exit(wg->wg_intr_lock);
4049 #ifdef INET6
4050 if (wg->wg_rtable_ipv6 != NULL)
4051 free(wg->wg_rtable_ipv6, M_RTABLE);
4052 soclose(wg->wg_so6);
4053 fail2:
4054 #endif
4055 #ifdef INET
4056 if (wg->wg_rtable_ipv4 != NULL)
4057 free(wg->wg_rtable_ipv4, M_RTABLE);
4058 soclose(wg->wg_so4);
4059 fail1:
4060 #endif
4061 threadpool_put(wg->wg_threadpool, PRI_NONE);
4062 fail0: threadpool_job_destroy(&wg->wg_job);
4063 rw_obj_free(wg->wg_rwlock);
4064 mutex_obj_free(wg->wg_intr_lock);
4065 mutex_obj_free(wg->wg_lock);
4066 thmap_destroy(wg->wg_sessions_byindex);
4067 thmap_destroy(wg->wg_peers_byname);
4068 thmap_destroy(wg->wg_peers_bypubkey);
4069 PSLIST_DESTROY(&wg->wg_peers);
4070 kmem_free(wg, sizeof(*wg));
4071 wg_count_dec();
4072 return error;
4073 }
4074
4075 static int
4076 wg_clone_destroy(struct ifnet *ifp)
4077 {
4078 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
4079
4080 #ifdef WG_RUMPKERNEL
4081 if (wg_user_mode(wg)) {
4082 rumpuser_wg_destroy(wg->wg_user);
4083 wg->wg_user = NULL;
4084 }
4085 #endif
4086
4087 wg_destroy_all_peers(wg);
4088 wg_if_detach(wg);
4089 #ifdef INET6
4090 solock(wg->wg_so6);
4091 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4092 sounlock(wg->wg_so6);
4093 #endif
4094 #ifdef INET
4095 solock(wg->wg_so4);
4096 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4097 sounlock(wg->wg_so4);
4098 #endif
4099 mutex_enter(wg->wg_intr_lock);
4100 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4101 mutex_exit(wg->wg_intr_lock);
4102 #ifdef INET6
4103 if (wg->wg_rtable_ipv6 != NULL)
4104 free(wg->wg_rtable_ipv6, M_RTABLE);
4105 soclose(wg->wg_so6);
4106 #endif
4107 #ifdef INET
4108 if (wg->wg_rtable_ipv4 != NULL)
4109 free(wg->wg_rtable_ipv4, M_RTABLE);
4110 soclose(wg->wg_so4);
4111 #endif
4112 threadpool_put(wg->wg_threadpool, PRI_NONE);
4113 threadpool_job_destroy(&wg->wg_job);
4114 rw_obj_free(wg->wg_rwlock);
4115 mutex_obj_free(wg->wg_intr_lock);
4116 mutex_obj_free(wg->wg_lock);
4117 thmap_destroy(wg->wg_sessions_byindex);
4118 thmap_destroy(wg->wg_peers_byname);
4119 thmap_destroy(wg->wg_peers_bypubkey);
4120 PSLIST_DESTROY(&wg->wg_peers);
4121 kmem_free(wg, sizeof(*wg));
4122 wg_count_dec();
4123
4124 return 0;
4125 }
4126
4127 static struct wg_peer *
4128 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
4129 struct psref *psref)
4130 {
4131 struct radix_node_head *rnh;
4132 struct radix_node *rn;
4133 struct wg_peer *wgp = NULL;
4134 struct wg_allowedip *wga;
4135
4136 #ifdef WG_DEBUG_LOG
4137 char addrstr[128];
4138 sockaddr_format(sa, addrstr, sizeof(addrstr));
4139 WG_DLOG("sa=%s\n", addrstr);
4140 #endif
4141
4142 rw_enter(wg->wg_rwlock, RW_READER);
4143
4144 rnh = wg_rnh(wg, sa->sa_family);
4145 if (rnh == NULL)
4146 goto out;
4147
4148 rn = rnh->rnh_matchaddr(sa, rnh);
4149 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
4150 goto out;
4151
4152 WG_TRACE("success");
4153
4154 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
4155 wgp = wga->wga_peer;
4156 wg_get_peer(wgp, psref);
4157
4158 out:
4159 rw_exit(wg->wg_rwlock);
4160 return wgp;
4161 }
4162
4163 static void
4164 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
4165 struct wg_session *wgs, struct wg_msg_data *wgmd)
4166 {
4167
4168 memset(wgmd, 0, sizeof(*wgmd));
4169 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
4170 wgmd->wgmd_receiver = wgs->wgs_remote_index;
4171 /* [W] 5.4.6: msg.counter := Nm^send */
4172 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
4173 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
4174 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
4175 }
4176
4177 static int
4178 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
4179 const struct rtentry *rt)
4180 {
4181 struct wg_softc *wg = ifp->if_softc;
4182 struct wg_peer *wgp = NULL;
4183 struct wg_session *wgs = NULL;
4184 struct psref wgp_psref, wgs_psref;
4185 int bound;
4186 int error;
4187
4188 bound = curlwp_bind();
4189
4190 /* TODO make the nest limit configurable via sysctl */
4191 error = if_tunnel_check_nesting(ifp, m, 1);
4192 if (error) {
4193 WGLOG(LOG_ERR,
4194 "%s: tunneling loop detected and packet dropped\n",
4195 if_name(&wg->wg_if));
4196 goto out0;
4197 }
4198
4199 #ifdef ALTQ
4200 bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
4201 & ALTQF_ENABLED;
4202 if (altq)
4203 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
4204 #endif
4205
4206 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
4207
4208 m->m_flags &= ~(M_BCAST|M_MCAST);
4209
4210 wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
4211 if (wgp == NULL) {
4212 WG_TRACE("peer not found");
4213 error = EHOSTUNREACH;
4214 goto out0;
4215 }
4216
4217 /* Clear checksum-offload flags. */
4218 m->m_pkthdr.csum_flags = 0;
4219 m->m_pkthdr.csum_data = 0;
4220
4221 /* Check whether there's an established session. */
4222 wgs = wg_get_stable_session(wgp, &wgs_psref);
4223 if (wgs == NULL) {
4224 /*
4225 * No established session. If we're the first to try
4226 * sending data, schedule a handshake and queue the
4227 * packet for when the handshake is done; otherwise
4228 * just drop the packet and let the ongoing handshake
4229 * attempt continue. We could queue more data packets
4230 * but it's not clear that's worthwhile.
4231 */
4232 if ((m = atomic_swap_ptr(&wgp->wgp_pending, m)) == NULL) {
4233 WG_TRACE("queued first packet; init handshake");
4234 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4235 } else {
4236 WG_TRACE("first packet already queued, dropping");
4237 }
4238 goto out1;
4239 }
4240
4241 /* There's an established session. Toss it in the queue. */
4242 #ifdef ALTQ
4243 if (altq) {
4244 mutex_enter(ifp->if_snd.ifq_lock);
4245 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
4246 M_SETCTX(m, wgp);
4247 ALTQ_ENQUEUE(&ifp->if_snd, m, error);
4248 m = NULL; /* consume */
4249 }
4250 mutex_exit(ifp->if_snd.ifq_lock);
4251 if (m == NULL) {
4252 wg_start(ifp);
4253 goto out2;
4254 }
4255 }
4256 #endif
4257 kpreempt_disable();
4258 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
4259 M_SETCTX(m, wgp);
4260 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
4261 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
4262 if_name(&wg->wg_if));
4263 error = ENOBUFS;
4264 goto out3;
4265 }
4266 m = NULL; /* consumed */
4267 error = 0;
4268 out3: kpreempt_enable();
4269
4270 #ifdef ALTQ
4271 out2:
4272 #endif
4273 wg_put_session(wgs, &wgs_psref);
4274 out1: wg_put_peer(wgp, &wgp_psref);
4275 out0: m_freem(m);
4276 curlwp_bindx(bound);
4277 return error;
4278 }
4279
4280 static int
4281 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
4282 {
4283 struct psref psref;
4284 struct wg_sockaddr *wgsa;
4285 int error;
4286 struct socket *so;
4287
4288 wgsa = wg_get_endpoint_sa(wgp, &psref);
4289 so = wg_get_so_by_peer(wgp, wgsa);
4290 solock(so);
4291 switch (wgsatosa(wgsa)->sa_family) {
4292 #ifdef INET
4293 case AF_INET:
4294 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
4295 break;
4296 #endif
4297 #ifdef INET6
4298 case AF_INET6:
4299 error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
4300 NULL, curlwp);
4301 break;
4302 #endif
4303 default:
4304 m_freem(m);
4305 error = EPFNOSUPPORT;
4306 }
4307 sounlock(so);
4308 wg_put_sa(wgp, wgsa, &psref);
4309
4310 return error;
4311 }
4312
4313 /* Inspired by pppoe_get_mbuf */
4314 static struct mbuf *
4315 wg_get_mbuf(size_t leading_len, size_t len)
4316 {
4317 struct mbuf *m;
4318
4319 KASSERT(leading_len <= MCLBYTES);
4320 KASSERT(len <= MCLBYTES - leading_len);
4321
4322 m = m_gethdr(M_DONTWAIT, MT_DATA);
4323 if (m == NULL)
4324 return NULL;
4325 if (len + leading_len > MHLEN) {
4326 m_clget(m, M_DONTWAIT);
4327 if ((m->m_flags & M_EXT) == 0) {
4328 m_free(m);
4329 return NULL;
4330 }
4331 }
4332 m->m_data += leading_len;
4333 m->m_pkthdr.len = m->m_len = len;
4334
4335 return m;
4336 }
4337
4338 static void
4339 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs, struct mbuf *m)
4340 {
4341 struct wg_softc *wg = wgp->wgp_sc;
4342 int error;
4343 size_t inner_len, padded_len, encrypted_len;
4344 char *padded_buf = NULL;
4345 size_t mlen;
4346 struct wg_msg_data *wgmd;
4347 bool free_padded_buf = false;
4348 struct mbuf *n;
4349 size_t leading_len = max_hdr + sizeof(struct udphdr);
4350
4351 mlen = m_length(m);
4352 inner_len = mlen;
4353 padded_len = roundup(mlen, 16);
4354 encrypted_len = padded_len + WG_AUTHTAG_LEN;
4355 WG_DLOG("inner=%zu, padded=%zu, encrypted_len=%zu\n",
4356 inner_len, padded_len, encrypted_len);
4357 if (mlen != 0) {
4358 bool success;
4359 success = m_ensure_contig(&m, padded_len);
4360 if (success) {
4361 padded_buf = mtod(m, char *);
4362 } else {
4363 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
4364 if (padded_buf == NULL) {
4365 error = ENOBUFS;
4366 goto out;
4367 }
4368 free_padded_buf = true;
4369 m_copydata(m, 0, mlen, padded_buf);
4370 }
4371 memset(padded_buf + mlen, 0, padded_len - inner_len);
4372 }
4373
4374 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
4375 if (n == NULL) {
4376 error = ENOBUFS;
4377 goto out;
4378 }
4379 KASSERT(n->m_len >= sizeof(*wgmd));
4380 wgmd = mtod(n, struct wg_msg_data *);
4381 wg_fill_msg_data(wg, wgp, wgs, wgmd);
4382
4383 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
4384 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
4385 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4386 padded_buf, padded_len,
4387 NULL, 0);
4388
4389 error = wg->wg_ops->send_data_msg(wgp, n); /* consumes n */
4390 if (error) {
4391 WG_DLOG("send_data_msg failed, error=%d\n", error);
4392 goto out;
4393 }
4394
4395 /*
4396 * Packet was sent out -- count it in the interface statistics.
4397 */
4398 if_statadd(&wg->wg_if, if_obytes, mlen);
4399 if_statinc(&wg->wg_if, if_opackets);
4400
4401 /*
4402 * Record when we last sent data, for determining when we need
4403 * to send a passive keepalive.
4404 *
4405 * Other logic assumes that wgs_time_last_data_sent is zero iff
4406 * we have never sent data on this session. Early at boot, if
4407 * wg(4) starts operating within <1sec, or after 136 years of
4408 * uptime, we may observe time_uptime32 = 0. In that case,
4409 * pretend we observed 1 instead. That way, we correctly
4410 * indicate we have sent data on this session; the only logic
4411 * this might adversely affect is the keepalive timeout
4412 * detection, which might spuriously send a keepalive during
4413 * one second every 136 years. All of this is very silly, of
4414 * course, but the cost to guaranteeing wgs_time_last_data_sent
4415 * is nonzero is negligible here.
4416 */
4417 const uint32_t now = time_uptime32;
4418 atomic_store_relaxed(&wgs->wgs_time_last_data_sent, MAX(now, 1));
4419
4420 /*
4421 * Check rekey-after-time.
4422 */
4423 if (wgs->wgs_is_initiator &&
4424 now - wgs->wgs_time_established >= wg_rekey_after_time) {
4425 /*
4426 * [W] 6.2 Transport Message Limits
4427 * "if a peer is the initiator of a current secure
4428 * session, WireGuard will send a handshake initiation
4429 * message to begin a new secure session if, after
4430 * transmitting a transport data message, the current
4431 * secure session is REKEY-AFTER-TIME seconds old,"
4432 */
4433 WG_TRACE("rekey after time");
4434 atomic_store_relaxed(&wgs->wgs_force_rekey, true);
4435 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4436 }
4437
4438 /*
4439 * Check rekey-after-messages.
4440 */
4441 if (wg_session_get_send_counter(wgs) >= wg_rekey_after_messages) {
4442 /*
4443 * [W] 6.2 Transport Message Limits
4444 * "WireGuard will try to create a new session, by
4445 * sending a handshake initiation message (section
4446 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
4447 * transport data messages..."
4448 */
4449 WG_TRACE("rekey after messages");
4450 atomic_store_relaxed(&wgs->wgs_force_rekey, true);
4451 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4452 }
4453
4454 out: m_freem(m);
4455 if (free_padded_buf)
4456 kmem_intr_free(padded_buf, padded_len);
4457 }
4458
4459 static void
4460 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
4461 {
4462 pktqueue_t *pktq;
4463 size_t pktlen;
4464
4465 KASSERT(af == AF_INET || af == AF_INET6);
4466
4467 WG_TRACE("");
4468
4469 m_set_rcvif(m, ifp);
4470 pktlen = m->m_pkthdr.len;
4471
4472 bpf_mtap_af(ifp, af, m, BPF_D_IN);
4473
4474 switch (af) {
4475 #ifdef INET
4476 case AF_INET:
4477 pktq = ip_pktq;
4478 break;
4479 #endif
4480 #ifdef INET6
4481 case AF_INET6:
4482 pktq = ip6_pktq;
4483 break;
4484 #endif
4485 default:
4486 panic("invalid af=%d", af);
4487 }
4488
4489 kpreempt_disable();
4490 const u_int h = curcpu()->ci_index;
4491 if (__predict_true(pktq_enqueue(pktq, m, h))) {
4492 if_statadd(ifp, if_ibytes, pktlen);
4493 if_statinc(ifp, if_ipackets);
4494 } else {
4495 m_freem(m);
4496 }
4497 kpreempt_enable();
4498 }
4499
4500 static void
4501 wg_calc_pubkey(uint8_t pubkey[static WG_STATIC_KEY_LEN],
4502 const uint8_t privkey[static WG_STATIC_KEY_LEN])
4503 {
4504
4505 crypto_scalarmult_base(pubkey, privkey);
4506 }
4507
4508 static int
4509 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
4510 {
4511 struct radix_node_head *rnh;
4512 struct radix_node *rn;
4513 int error = 0;
4514
4515 rw_enter(wg->wg_rwlock, RW_WRITER);
4516 rnh = wg_rnh(wg, wga->wga_family);
4517 KASSERT(rnh != NULL);
4518 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
4519 wga->wga_nodes);
4520 rw_exit(wg->wg_rwlock);
4521
4522 if (rn == NULL)
4523 error = EEXIST;
4524
4525 return error;
4526 }
4527
4528 static int
4529 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
4530 struct wg_peer **wgpp)
4531 {
4532 int error = 0;
4533 const void *pubkey;
4534 size_t pubkey_len;
4535 const void *psk;
4536 size_t psk_len;
4537 const char *name = NULL;
4538
4539 if (prop_dictionary_get_string(peer, "name", &name)) {
4540 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
4541 error = EINVAL;
4542 goto out;
4543 }
4544 }
4545
4546 if (!prop_dictionary_get_data(peer, "public_key",
4547 &pubkey, &pubkey_len)) {
4548 error = EINVAL;
4549 goto out;
4550 }
4551 #ifdef WG_DEBUG_DUMP
4552 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4553 char *hex = gethexdump(pubkey, pubkey_len);
4554 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%zu\n%s\n",
4555 pubkey, pubkey_len, hex);
4556 puthexdump(hex, pubkey, pubkey_len);
4557 }
4558 #endif
4559
4560 struct wg_peer *wgp = wg_alloc_peer(wg);
4561 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4562 if (name != NULL)
4563 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4564
4565 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4566 if (psk_len != sizeof(wgp->wgp_psk)) {
4567 error = EINVAL;
4568 goto out;
4569 }
4570 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4571 }
4572
4573 const void *addr;
4574 size_t addr_len;
4575 struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4576
4577 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4578 goto skip_endpoint;
4579 if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4580 addr_len > sizeof(*wgsatoss(wgsa))) {
4581 error = EINVAL;
4582 goto out;
4583 }
4584 memcpy(wgsatoss(wgsa), addr, addr_len);
4585 switch (wgsa_family(wgsa)) {
4586 #ifdef INET
4587 case AF_INET:
4588 break;
4589 #endif
4590 #ifdef INET6
4591 case AF_INET6:
4592 break;
4593 #endif
4594 default:
4595 error = EPFNOSUPPORT;
4596 goto out;
4597 }
4598 if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4599 error = EINVAL;
4600 goto out;
4601 }
4602 {
4603 char addrstr[128];
4604 sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4605 WG_DLOG("addr=%s\n", addrstr);
4606 }
4607 wgp->wgp_endpoint_available = true;
4608
4609 prop_array_t allowedips;
4610 skip_endpoint:
4611 allowedips = prop_dictionary_get(peer, "allowedips");
4612 if (allowedips == NULL)
4613 goto skip;
4614
4615 prop_object_iterator_t _it = prop_array_iterator(allowedips);
4616 prop_dictionary_t prop_allowedip;
4617 int j = 0;
4618 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4619 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4620
4621 if (!prop_dictionary_get_int(prop_allowedip, "family",
4622 &wga->wga_family))
4623 continue;
4624 if (!prop_dictionary_get_data(prop_allowedip, "ip",
4625 &addr, &addr_len))
4626 continue;
4627 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4628 &wga->wga_cidr))
4629 continue;
4630
4631 switch (wga->wga_family) {
4632 #ifdef INET
4633 case AF_INET: {
4634 struct sockaddr_in sin;
4635 char addrstr[128];
4636 struct in_addr mask;
4637 struct sockaddr_in sin_mask;
4638
4639 if (addr_len != sizeof(struct in_addr))
4640 return EINVAL;
4641 memcpy(&wga->wga_addr4, addr, addr_len);
4642
4643 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4644 0);
4645 sockaddr_copy(&wga->wga_sa_addr,
4646 sizeof(sin), sintosa(&sin));
4647
4648 sockaddr_format(sintosa(&sin),
4649 addrstr, sizeof(addrstr));
4650 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4651
4652 in_len2mask(&mask, wga->wga_cidr);
4653 sockaddr_in_init(&sin_mask, &mask, 0);
4654 sockaddr_copy(&wga->wga_sa_mask,
4655 sizeof(sin_mask), sintosa(&sin_mask));
4656
4657 break;
4658 }
4659 #endif
4660 #ifdef INET6
4661 case AF_INET6: {
4662 struct sockaddr_in6 sin6;
4663 char addrstr[128];
4664 struct in6_addr mask;
4665 struct sockaddr_in6 sin6_mask;
4666
4667 if (addr_len != sizeof(struct in6_addr))
4668 return EINVAL;
4669 memcpy(&wga->wga_addr6, addr, addr_len);
4670
4671 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4672 0, 0, 0);
4673 sockaddr_copy(&wga->wga_sa_addr,
4674 sizeof(sin6), sin6tosa(&sin6));
4675
4676 sockaddr_format(sin6tosa(&sin6),
4677 addrstr, sizeof(addrstr));
4678 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4679
4680 in6_prefixlen2mask(&mask, wga->wga_cidr);
4681 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4682 sockaddr_copy(&wga->wga_sa_mask,
4683 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4684
4685 break;
4686 }
4687 #endif
4688 default:
4689 error = EINVAL;
4690 goto out;
4691 }
4692 wga->wga_peer = wgp;
4693
4694 error = wg_rtable_add_route(wg, wga);
4695 if (error != 0)
4696 goto out;
4697
4698 j++;
4699 }
4700 wgp->wgp_n_allowedips = j;
4701 skip:
4702 *wgpp = wgp;
4703 out:
4704 return error;
4705 }
4706
4707 static int
4708 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4709 {
4710 int error;
4711 char *buf;
4712
4713 WG_DLOG("buf=%p, len=%zu\n", ifd->ifd_data, ifd->ifd_len);
4714 if (ifd->ifd_len >= WG_MAX_PROPLEN)
4715 return E2BIG;
4716 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4717 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4718 if (error != 0)
4719 return error;
4720 buf[ifd->ifd_len] = '\0';
4721 #ifdef WG_DEBUG_DUMP
4722 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4723 log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
4724 (const char *)buf);
4725 }
4726 #endif
4727 *_buf = buf;
4728 return 0;
4729 }
4730
4731 static int
4732 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4733 {
4734 int error;
4735 prop_dictionary_t prop_dict;
4736 char *buf = NULL;
4737 const void *privkey;
4738 size_t privkey_len;
4739
4740 error = wg_alloc_prop_buf(&buf, ifd);
4741 if (error != 0)
4742 return error;
4743 error = EINVAL;
4744 prop_dict = prop_dictionary_internalize(buf);
4745 if (prop_dict == NULL)
4746 goto out;
4747 if (!prop_dictionary_get_data(prop_dict, "private_key",
4748 &privkey, &privkey_len))
4749 goto out;
4750 #ifdef WG_DEBUG_DUMP
4751 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4752 char *hex = gethexdump(privkey, privkey_len);
4753 log(LOG_DEBUG, "privkey=%p, privkey_len=%zu\n%s\n",
4754 privkey, privkey_len, hex);
4755 puthexdump(hex, privkey, privkey_len);
4756 }
4757 #endif
4758 if (privkey_len != WG_STATIC_KEY_LEN)
4759 goto out;
4760 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4761 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4762 error = 0;
4763
4764 out:
4765 kmem_free(buf, ifd->ifd_len + 1);
4766 return error;
4767 }
4768
4769 static int
4770 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4771 {
4772 int error;
4773 prop_dictionary_t prop_dict;
4774 char *buf = NULL;
4775 uint16_t port;
4776
4777 error = wg_alloc_prop_buf(&buf, ifd);
4778 if (error != 0)
4779 return error;
4780 error = EINVAL;
4781 prop_dict = prop_dictionary_internalize(buf);
4782 if (prop_dict == NULL)
4783 goto out;
4784 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4785 goto out;
4786
4787 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4788
4789 out:
4790 kmem_free(buf, ifd->ifd_len + 1);
4791 return error;
4792 }
4793
4794 static int
4795 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4796 {
4797 int error;
4798 prop_dictionary_t prop_dict;
4799 char *buf = NULL;
4800 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4801
4802 error = wg_alloc_prop_buf(&buf, ifd);
4803 if (error != 0)
4804 return error;
4805 error = EINVAL;
4806 prop_dict = prop_dictionary_internalize(buf);
4807 if (prop_dict == NULL)
4808 goto out;
4809
4810 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4811 if (error != 0)
4812 goto out;
4813
4814 mutex_enter(wg->wg_lock);
4815 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4816 sizeof(wgp->wgp_pubkey)) != NULL ||
4817 (wgp->wgp_name[0] &&
4818 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4819 strlen(wgp->wgp_name)) != NULL)) {
4820 mutex_exit(wg->wg_lock);
4821 wg_destroy_peer(wgp);
4822 error = EEXIST;
4823 goto out;
4824 }
4825 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4826 sizeof(wgp->wgp_pubkey), wgp);
4827 KASSERT(wgp0 == wgp);
4828 if (wgp->wgp_name[0]) {
4829 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4830 strlen(wgp->wgp_name), wgp);
4831 KASSERT(wgp0 == wgp);
4832 }
4833 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4834 wg->wg_npeers++;
4835 mutex_exit(wg->wg_lock);
4836
4837 if_link_state_change(&wg->wg_if, LINK_STATE_UP);
4838
4839 out:
4840 kmem_free(buf, ifd->ifd_len + 1);
4841 return error;
4842 }
4843
4844 static int
4845 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4846 {
4847 int error;
4848 prop_dictionary_t prop_dict;
4849 char *buf = NULL;
4850 const char *name;
4851
4852 error = wg_alloc_prop_buf(&buf, ifd);
4853 if (error != 0)
4854 return error;
4855 error = EINVAL;
4856 prop_dict = prop_dictionary_internalize(buf);
4857 if (prop_dict == NULL)
4858 goto out;
4859
4860 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4861 goto out;
4862 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4863 goto out;
4864
4865 error = wg_destroy_peer_name(wg, name);
4866 out:
4867 kmem_free(buf, ifd->ifd_len + 1);
4868 return error;
4869 }
4870
4871 static bool
4872 wg_is_authorized(struct wg_softc *wg, u_long cmd)
4873 {
4874 int au = cmd == SIOCGDRVSPEC ?
4875 KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
4876 KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
4877 return kauth_authorize_network(kauth_cred_get(),
4878 KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
4879 (void *)cmd, NULL) == 0;
4880 }
4881
4882 static int
4883 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4884 {
4885 int error = ENOMEM;
4886 prop_dictionary_t prop_dict;
4887 prop_array_t peers = NULL;
4888 char *buf;
4889 struct wg_peer *wgp;
4890 int s, i;
4891
4892 prop_dict = prop_dictionary_create();
4893 if (prop_dict == NULL)
4894 goto error;
4895
4896 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4897 if (!prop_dictionary_set_data(prop_dict, "private_key",
4898 wg->wg_privkey, WG_STATIC_KEY_LEN))
4899 goto error;
4900 }
4901
4902 if (wg->wg_listen_port != 0) {
4903 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4904 wg->wg_listen_port))
4905 goto error;
4906 }
4907
4908 if (wg->wg_npeers == 0)
4909 goto skip_peers;
4910
4911 peers = prop_array_create();
4912 if (peers == NULL)
4913 goto error;
4914
4915 s = pserialize_read_enter();
4916 i = 0;
4917 WG_PEER_READER_FOREACH(wgp, wg) {
4918 struct wg_sockaddr *wgsa;
4919 struct psref wgp_psref, wgsa_psref;
4920 prop_dictionary_t prop_peer;
4921
4922 wg_get_peer(wgp, &wgp_psref);
4923 pserialize_read_exit(s);
4924
4925 prop_peer = prop_dictionary_create();
4926 if (prop_peer == NULL)
4927 goto next;
4928
4929 if (strlen(wgp->wgp_name) > 0) {
4930 if (!prop_dictionary_set_string(prop_peer, "name",
4931 wgp->wgp_name))
4932 goto next;
4933 }
4934
4935 if (!prop_dictionary_set_data(prop_peer, "public_key",
4936 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4937 goto next;
4938
4939 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4940 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4941 sizeof(wgp->wgp_psk))) {
4942 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4943 if (!prop_dictionary_set_data(prop_peer,
4944 "preshared_key",
4945 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4946 goto next;
4947 }
4948 }
4949
4950 wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
4951 CTASSERT(AF_UNSPEC == 0);
4952 if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
4953 !prop_dictionary_set_data(prop_peer, "endpoint",
4954 wgsatoss(wgsa),
4955 sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
4956 wg_put_sa(wgp, wgsa, &wgsa_psref);
4957 goto next;
4958 }
4959 wg_put_sa(wgp, wgsa, &wgsa_psref);
4960
4961 const struct timespec *t = &wgp->wgp_last_handshake_time;
4962
4963 if (!prop_dictionary_set_uint64(prop_peer,
4964 "last_handshake_time_sec", (uint64_t)t->tv_sec))
4965 goto next;
4966 if (!prop_dictionary_set_uint32(prop_peer,
4967 "last_handshake_time_nsec", (uint32_t)t->tv_nsec))
4968 goto next;
4969
4970 if (wgp->wgp_n_allowedips == 0)
4971 goto skip_allowedips;
4972
4973 prop_array_t allowedips = prop_array_create();
4974 if (allowedips == NULL)
4975 goto next;
4976 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4977 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4978 prop_dictionary_t prop_allowedip;
4979
4980 prop_allowedip = prop_dictionary_create();
4981 if (prop_allowedip == NULL)
4982 break;
4983
4984 if (!prop_dictionary_set_int(prop_allowedip, "family",
4985 wga->wga_family))
4986 goto _next;
4987 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4988 wga->wga_cidr))
4989 goto _next;
4990
4991 switch (wga->wga_family) {
4992 #ifdef INET
4993 case AF_INET:
4994 if (!prop_dictionary_set_data(prop_allowedip,
4995 "ip", &wga->wga_addr4,
4996 sizeof(wga->wga_addr4)))
4997 goto _next;
4998 break;
4999 #endif
5000 #ifdef INET6
5001 case AF_INET6:
5002 if (!prop_dictionary_set_data(prop_allowedip,
5003 "ip", &wga->wga_addr6,
5004 sizeof(wga->wga_addr6)))
5005 goto _next;
5006 break;
5007 #endif
5008 default:
5009 panic("invalid af=%d", wga->wga_family);
5010 }
5011 prop_array_set(allowedips, j, prop_allowedip);
5012 _next:
5013 prop_object_release(prop_allowedip);
5014 }
5015 prop_dictionary_set(prop_peer, "allowedips", allowedips);
5016 prop_object_release(allowedips);
5017
5018 skip_allowedips:
5019
5020 prop_array_set(peers, i, prop_peer);
5021 next:
5022 if (prop_peer)
5023 prop_object_release(prop_peer);
5024 i++;
5025
5026 s = pserialize_read_enter();
5027 wg_put_peer(wgp, &wgp_psref);
5028 }
5029 pserialize_read_exit(s);
5030
5031 prop_dictionary_set(prop_dict, "peers", peers);
5032 prop_object_release(peers);
5033 peers = NULL;
5034
5035 skip_peers:
5036 buf = prop_dictionary_externalize(prop_dict);
5037 if (buf == NULL)
5038 goto error;
5039 if (ifd->ifd_len < (strlen(buf) + 1)) {
5040 error = EINVAL;
5041 goto error;
5042 }
5043 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
5044
5045 free(buf, 0);
5046 error:
5047 if (peers != NULL)
5048 prop_object_release(peers);
5049 if (prop_dict != NULL)
5050 prop_object_release(prop_dict);
5051
5052 return error;
5053 }
5054
5055 static int
5056 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5057 {
5058 struct wg_softc *wg = ifp->if_softc;
5059 struct ifreq *ifr = data;
5060 struct ifaddr *ifa = data;
5061 struct ifdrv *ifd = data;
5062 int error = 0;
5063
5064 switch (cmd) {
5065 case SIOCINITIFADDR:
5066 if (ifa->ifa_addr->sa_family != AF_LINK &&
5067 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
5068 (IFF_UP | IFF_RUNNING)) {
5069 ifp->if_flags |= IFF_UP;
5070 error = if_init(ifp);
5071 }
5072 return error;
5073 case SIOCADDMULTI:
5074 case SIOCDELMULTI:
5075 switch (ifr->ifr_addr.sa_family) {
5076 #ifdef INET
5077 case AF_INET: /* IP supports Multicast */
5078 break;
5079 #endif
5080 #ifdef INET6
5081 case AF_INET6: /* IP6 supports Multicast */
5082 break;
5083 #endif
5084 default: /* Other protocols doesn't support Multicast */
5085 error = EAFNOSUPPORT;
5086 break;
5087 }
5088 return error;
5089 case SIOCSDRVSPEC:
5090 if (!wg_is_authorized(wg, cmd)) {
5091 return EPERM;
5092 }
5093 switch (ifd->ifd_cmd) {
5094 case WG_IOCTL_SET_PRIVATE_KEY:
5095 error = wg_ioctl_set_private_key(wg, ifd);
5096 break;
5097 case WG_IOCTL_SET_LISTEN_PORT:
5098 error = wg_ioctl_set_listen_port(wg, ifd);
5099 break;
5100 case WG_IOCTL_ADD_PEER:
5101 error = wg_ioctl_add_peer(wg, ifd);
5102 break;
5103 case WG_IOCTL_DELETE_PEER:
5104 error = wg_ioctl_delete_peer(wg, ifd);
5105 break;
5106 default:
5107 error = EINVAL;
5108 break;
5109 }
5110 return error;
5111 case SIOCGDRVSPEC:
5112 return wg_ioctl_get(wg, ifd);
5113 case SIOCSIFFLAGS:
5114 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5115 break;
5116 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5117 case IFF_RUNNING:
5118 /*
5119 * If interface is marked down and it is running,
5120 * then stop and disable it.
5121 */
5122 if_stop(ifp, 1);
5123 break;
5124 case IFF_UP:
5125 /*
5126 * If interface is marked up and it is stopped, then
5127 * start it.
5128 */
5129 error = if_init(ifp);
5130 break;
5131 default:
5132 break;
5133 }
5134 return error;
5135 #ifdef WG_RUMPKERNEL
5136 case SIOCSLINKSTR:
5137 error = wg_ioctl_linkstr(wg, ifd);
5138 if (error)
5139 return error;
5140 wg->wg_ops = &wg_ops_rumpuser;
5141 return 0;
5142 #endif
5143 default:
5144 break;
5145 }
5146
5147 error = ifioctl_common(ifp, cmd, data);
5148
5149 #ifdef WG_RUMPKERNEL
5150 if (!wg_user_mode(wg))
5151 return error;
5152
5153 /* Do the same to the corresponding tun device on the host */
5154 /*
5155 * XXX Actually the command has not been handled yet. It
5156 * will be handled via pr_ioctl form doifioctl later.
5157 */
5158 switch (cmd) {
5159 #ifdef INET
5160 case SIOCAIFADDR:
5161 case SIOCDIFADDR: {
5162 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
5163 struct in_aliasreq *ifra = &_ifra;
5164 KASSERT(error == ENOTTY);
5165 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5166 IFNAMSIZ);
5167 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
5168 if (error == 0)
5169 error = ENOTTY;
5170 break;
5171 }
5172 #endif
5173 #ifdef INET6
5174 case SIOCAIFADDR_IN6:
5175 case SIOCDIFADDR_IN6: {
5176 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
5177 struct in6_aliasreq *ifra = &_ifra;
5178 KASSERT(error == ENOTTY);
5179 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5180 IFNAMSIZ);
5181 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
5182 if (error == 0)
5183 error = ENOTTY;
5184 break;
5185 }
5186 #endif
5187 default:
5188 break;
5189 }
5190 #endif /* WG_RUMPKERNEL */
5191
5192 return error;
5193 }
5194
5195 static int
5196 wg_init(struct ifnet *ifp)
5197 {
5198
5199 ifp->if_flags |= IFF_RUNNING;
5200
5201 /* TODO flush pending packets. */
5202 return 0;
5203 }
5204
5205 #ifdef ALTQ
5206 static void
5207 wg_start(struct ifnet *ifp)
5208 {
5209 struct mbuf *m;
5210
5211 for (;;) {
5212 IFQ_DEQUEUE(&ifp->if_snd, m);
5213 if (m == NULL)
5214 break;
5215
5216 kpreempt_disable();
5217 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
5218 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
5219 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
5220 if_name(ifp));
5221 m_freem(m);
5222 }
5223 kpreempt_enable();
5224 }
5225 }
5226 #endif
5227
5228 static void
5229 wg_stop(struct ifnet *ifp, int disable)
5230 {
5231
5232 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
5233 ifp->if_flags &= ~IFF_RUNNING;
5234
5235 /* Need to do something? */
5236 }
5237
5238 #ifdef WG_DEBUG_PARAMS
5239 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
5240 {
5241 const struct sysctlnode *node = NULL;
5242
5243 sysctl_createv(clog, 0, NULL, &node,
5244 CTLFLAG_PERMANENT,
5245 CTLTYPE_NODE, "wg",
5246 SYSCTL_DESCR("wg(4)"),
5247 NULL, 0, NULL, 0,
5248 CTL_NET, CTL_CREATE, CTL_EOL);
5249 sysctl_createv(clog, 0, &node, NULL,
5250 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5251 CTLTYPE_QUAD, "rekey_after_messages",
5252 SYSCTL_DESCR("session liftime by messages"),
5253 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
5254 sysctl_createv(clog, 0, &node, NULL,
5255 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5256 CTLTYPE_INT, "rekey_after_time",
5257 SYSCTL_DESCR("session liftime"),
5258 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
5259 sysctl_createv(clog, 0, &node, NULL,
5260 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5261 CTLTYPE_INT, "rekey_timeout",
5262 SYSCTL_DESCR("session handshake retry time"),
5263 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
5264 sysctl_createv(clog, 0, &node, NULL,
5265 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5266 CTLTYPE_INT, "rekey_attempt_time",
5267 SYSCTL_DESCR("session handshake timeout"),
5268 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
5269 sysctl_createv(clog, 0, &node, NULL,
5270 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5271 CTLTYPE_INT, "keepalive_timeout",
5272 SYSCTL_DESCR("keepalive timeout"),
5273 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
5274 sysctl_createv(clog, 0, &node, NULL,
5275 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5276 CTLTYPE_BOOL, "force_underload",
5277 SYSCTL_DESCR("force to detemine under load"),
5278 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
5279 sysctl_createv(clog, 0, &node, NULL,
5280 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5281 CTLTYPE_INT, "debug",
5282 SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
5283 NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
5284 }
5285 #endif
5286
5287 #ifdef WG_RUMPKERNEL
5288 static bool
5289 wg_user_mode(struct wg_softc *wg)
5290 {
5291
5292 return wg->wg_user != NULL;
5293 }
5294
5295 static int
5296 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
5297 {
5298 struct ifnet *ifp = &wg->wg_if;
5299 int error;
5300
5301 if (ifp->if_flags & IFF_UP)
5302 return EBUSY;
5303
5304 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
5305 /* XXX do nothing */
5306 return 0;
5307 } else if (ifd->ifd_cmd != 0) {
5308 return EINVAL;
5309 } else if (wg->wg_user != NULL) {
5310 return EBUSY;
5311 }
5312
5313 /* Assume \0 included */
5314 if (ifd->ifd_len > IFNAMSIZ) {
5315 return E2BIG;
5316 } else if (ifd->ifd_len < 1) {
5317 return EINVAL;
5318 }
5319
5320 char tun_name[IFNAMSIZ];
5321 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
5322 if (error != 0)
5323 return error;
5324
5325 if (strncmp(tun_name, "tun", 3) != 0)
5326 return EINVAL;
5327
5328 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
5329
5330 return error;
5331 }
5332
5333 static int
5334 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
5335 {
5336 int error;
5337 struct psref psref;
5338 struct wg_sockaddr *wgsa;
5339 struct wg_softc *wg = wgp->wgp_sc;
5340 struct iovec iov[1];
5341
5342 wgsa = wg_get_endpoint_sa(wgp, &psref);
5343
5344 iov[0].iov_base = mtod(m, void *);
5345 iov[0].iov_len = m->m_len;
5346
5347 /* Send messages to a peer via an ordinary socket. */
5348 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
5349
5350 wg_put_sa(wgp, wgsa, &psref);
5351
5352 m_freem(m);
5353
5354 return error;
5355 }
5356
5357 static void
5358 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
5359 {
5360 struct wg_softc *wg = ifp->if_softc;
5361 struct iovec iov[2];
5362 struct sockaddr_storage ss;
5363
5364 KASSERT(af == AF_INET || af == AF_INET6);
5365
5366 WG_TRACE("");
5367
5368 switch (af) {
5369 #ifdef INET
5370 case AF_INET: {
5371 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
5372 struct ip *ip;
5373
5374 KASSERT(m->m_len >= sizeof(struct ip));
5375 ip = mtod(m, struct ip *);
5376 sockaddr_in_init(sin, &ip->ip_dst, 0);
5377 break;
5378 }
5379 #endif
5380 #ifdef INET6
5381 case AF_INET6: {
5382 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
5383 struct ip6_hdr *ip6;
5384
5385 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
5386 ip6 = mtod(m, struct ip6_hdr *);
5387 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
5388 break;
5389 }
5390 #endif
5391 default:
5392 goto out;
5393 }
5394
5395 iov[0].iov_base = &ss;
5396 iov[0].iov_len = ss.ss_len;
5397 iov[1].iov_base = mtod(m, void *);
5398 iov[1].iov_len = m->m_len;
5399
5400 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5401
5402 /* Send decrypted packets to users via a tun. */
5403 rumpuser_wg_send_user(wg->wg_user, iov, 2);
5404
5405 out: m_freem(m);
5406 }
5407
5408 static int
5409 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
5410 {
5411 int error;
5412 uint16_t old_port = wg->wg_listen_port;
5413
5414 if (port != 0 && old_port == port)
5415 return 0;
5416
5417 error = rumpuser_wg_sock_bind(wg->wg_user, port);
5418 if (error)
5419 return error;
5420
5421 wg->wg_listen_port = port;
5422 return 0;
5423 }
5424
5425 /*
5426 * Receive user packets.
5427 */
5428 void
5429 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5430 {
5431 struct ifnet *ifp = &wg->wg_if;
5432 struct mbuf *m;
5433 const struct sockaddr *dst;
5434 int error;
5435
5436 WG_TRACE("");
5437
5438 dst = iov[0].iov_base;
5439
5440 m = m_gethdr(M_DONTWAIT, MT_DATA);
5441 if (m == NULL)
5442 return;
5443 m->m_len = m->m_pkthdr.len = 0;
5444 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5445
5446 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5447 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5448
5449 error = wg_output(ifp, m, dst, NULL); /* consumes m */
5450 if (error)
5451 WG_DLOG("wg_output failed, error=%d\n", error);
5452 }
5453
5454 /*
5455 * Receive packets from a peer.
5456 */
5457 void
5458 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5459 {
5460 struct mbuf *m;
5461 const struct sockaddr *src;
5462 int bound;
5463
5464 WG_TRACE("");
5465
5466 src = iov[0].iov_base;
5467
5468 m = m_gethdr(M_DONTWAIT, MT_DATA);
5469 if (m == NULL)
5470 return;
5471 m->m_len = m->m_pkthdr.len = 0;
5472 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5473
5474 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5475 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5476
5477 bound = curlwp_bind();
5478 wg_handle_packet(wg, m, src);
5479 curlwp_bindx(bound);
5480 }
5481 #endif /* WG_RUMPKERNEL */
5482
5483 /*
5484 * Module infrastructure
5485 */
5486 #include "if_module.h"
5487
5488 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
5489