Home | History | Annotate | Line # | Download | only in net
if_wg.c revision 1.119
      1 /*	$NetBSD: if_wg.c,v 1.119 2024/07/29 16:00:41 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * This network interface aims to implement the WireGuard protocol.
     34  * The implementation is based on the paper of WireGuard as of
     35  * 2018-06-30 [1].  The paper is referred in the source code with label
     36  * [W].  Also the specification of the Noise protocol framework as of
     37  * 2018-07-11 [2] is referred with label [N].
     38  *
     39  * [1] https://www.wireguard.com/papers/wireguard.pdf
     40  * [2] http://noiseprotocol.org/noise.pdf
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.119 2024/07/29 16:00:41 riastradh Exp $");
     45 
     46 #ifdef _KERNEL_OPT
     47 #include "opt_altq_enabled.h"
     48 #include "opt_inet.h"
     49 #endif
     50 
     51 #include <sys/param.h>
     52 #include <sys/types.h>
     53 
     54 #include <sys/atomic.h>
     55 #include <sys/callout.h>
     56 #include <sys/cprng.h>
     57 #include <sys/cpu.h>
     58 #include <sys/device.h>
     59 #include <sys/domain.h>
     60 #include <sys/errno.h>
     61 #include <sys/intr.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/kernel.h>
     64 #include <sys/kmem.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/module.h>
     67 #include <sys/mutex.h>
     68 #include <sys/once.h>
     69 #include <sys/percpu.h>
     70 #include <sys/pserialize.h>
     71 #include <sys/psref.h>
     72 #include <sys/queue.h>
     73 #include <sys/rwlock.h>
     74 #include <sys/socket.h>
     75 #include <sys/socketvar.h>
     76 #include <sys/sockio.h>
     77 #include <sys/sysctl.h>
     78 #include <sys/syslog.h>
     79 #include <sys/systm.h>
     80 #include <sys/thmap.h>
     81 #include <sys/threadpool.h>
     82 #include <sys/time.h>
     83 #include <sys/timespec.h>
     84 #include <sys/workqueue.h>
     85 
     86 #include <lib/libkern/libkern.h>
     87 
     88 #include <net/bpf.h>
     89 #include <net/if.h>
     90 #include <net/if_types.h>
     91 #include <net/if_wg.h>
     92 #include <net/pktqueue.h>
     93 #include <net/route.h>
     94 
     95 #ifdef INET
     96 #include <netinet/in.h>
     97 #include <netinet/in_pcb.h>
     98 #include <netinet/in_var.h>
     99 #include <netinet/ip.h>
    100 #include <netinet/ip_var.h>
    101 #include <netinet/udp.h>
    102 #include <netinet/udp_var.h>
    103 #endif	/* INET */
    104 
    105 #ifdef INET6
    106 #include <netinet/ip6.h>
    107 #include <netinet6/in6_pcb.h>
    108 #include <netinet6/in6_var.h>
    109 #include <netinet6/ip6_var.h>
    110 #include <netinet6/udp6_var.h>
    111 #endif	/* INET6 */
    112 
    113 #include <prop/proplib.h>
    114 
    115 #include <crypto/blake2/blake2s.h>
    116 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
    117 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
    118 #include <crypto/sodium/crypto_scalarmult.h>
    119 
    120 #include "ioconf.h"
    121 
    122 #ifdef WG_RUMPKERNEL
    123 #include "wg_user.h"
    124 #endif
    125 
    126 #ifndef time_uptime32
    127 #define	time_uptime32	((uint32_t)time_uptime)
    128 #endif
    129 
    130 /*
    131  * Data structures
    132  * - struct wg_softc is an instance of wg interfaces
    133  *   - It has a list of peers (struct wg_peer)
    134  *   - It has a threadpool job that sends/receives handshake messages and
    135  *     runs event handlers
    136  *   - It has its own two routing tables: one is for IPv4 and the other IPv6
    137  * - struct wg_peer is a representative of a peer
    138  *   - It has a struct work to handle handshakes and timer tasks
    139  *   - It has a pair of session instances (struct wg_session)
    140  *   - It has a pair of endpoint instances (struct wg_sockaddr)
    141  *     - Normally one endpoint is used and the second one is used only on
    142  *       a peer migration (a change of peer's IP address)
    143  *   - It has a list of IP addresses and sub networks called allowedips
    144  *     (struct wg_allowedip)
    145  *     - A packets sent over a session is allowed if its destination matches
    146  *       any IP addresses or sub networks of the list
    147  * - struct wg_session represents a session of a secure tunnel with a peer
    148  *   - Two instances of sessions belong to a peer; a stable session and a
    149  *     unstable session
    150  *   - A handshake process of a session always starts with a unstable instance
    151  *   - Once a session is established, its instance becomes stable and the
    152  *     other becomes unstable instead
    153  *   - Data messages are always sent via a stable session
    154  *
    155  * Locking notes:
    156  * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
    157  *   - Changes to the peer list are serialized by wg_lock
    158  *   - The peer list may be read with pserialize(9) and psref(9)
    159  *   - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
    160  *     => XXX replace by pserialize when routing table is psz-safe
    161  * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
    162  *   only in thread context and serializes:
    163  *   - the stable and unstable session pointers
    164  *   - all unstable session state
    165  * - Packet processing may be done in softint context:
    166  *   - The stable session can be read under pserialize(9) or psref(9)
    167  *     - The stable session is always ESTABLISHED
    168  *     - On a session swap, we must wait for all readers to release a
    169  *       reference to a stable session before changing wgs_state and
    170  *       session states
    171  * - Lock order: wg_lock -> wgp_lock
    172  */
    173 
    174 
    175 #define WGLOG(level, fmt, args...)					      \
    176 	log(level, "%s: " fmt, __func__, ##args)
    177 
    178 #define WG_DEBUG
    179 
    180 /* Debug options */
    181 #ifdef WG_DEBUG
    182 /* Output debug logs */
    183 #ifndef WG_DEBUG_LOG
    184 #define WG_DEBUG_LOG
    185 #endif
    186 /* Output trace logs */
    187 #ifndef WG_DEBUG_TRACE
    188 #define WG_DEBUG_TRACE
    189 #endif
    190 /* Output hash values, etc. */
    191 #ifndef WG_DEBUG_DUMP
    192 #define WG_DEBUG_DUMP
    193 #endif
    194 /* Make some internal parameters configurable for testing and debugging */
    195 #ifndef WG_DEBUG_PARAMS
    196 #define WG_DEBUG_PARAMS
    197 #endif
    198 #endif /* WG_DEBUG */
    199 
    200 #ifndef WG_DEBUG
    201 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) ||		    \
    202 	defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS)
    203 #   define WG_DEBUG
    204 # endif
    205 #endif
    206 
    207 #ifdef WG_DEBUG
    208 int wg_debug;
    209 #define WG_DEBUG_FLAGS_LOG	1
    210 #define WG_DEBUG_FLAGS_TRACE	2
    211 #define WG_DEBUG_FLAGS_DUMP	4
    212 #endif
    213 
    214 #ifdef WG_DEBUG_TRACE
    215 #define WG_TRACE(msg)	 do {						\
    216 	if (wg_debug & WG_DEBUG_FLAGS_TRACE)				\
    217 	    log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg));	\
    218 } while (0)
    219 #else
    220 #define WG_TRACE(msg)	__nothing
    221 #endif
    222 
    223 #ifdef WG_DEBUG_LOG
    224 #define WG_DLOG(fmt, args...)	 do {					\
    225 	if (wg_debug & WG_DEBUG_FLAGS_LOG)				\
    226 	    log(LOG_DEBUG, "%s: " fmt, __func__, ##args);		\
    227 } while (0)
    228 #else
    229 #define WG_DLOG(fmt, args...)	__nothing
    230 #endif
    231 
    232 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...)	do {		\
    233 	if (ppsratecheck(&(wgprc)->wgprc_lasttime,			\
    234 	    &(wgprc)->wgprc_curpps, 1)) {				\
    235 		log(level, fmt, ##args);				\
    236 	}								\
    237 } while (0)
    238 
    239 #ifdef WG_DEBUG_PARAMS
    240 static bool wg_force_underload = false;
    241 #endif
    242 
    243 #ifdef WG_DEBUG_DUMP
    244 
    245 static char enomem[10] = "[enomem]";
    246 
    247 #define	MAX_HDUMP_LEN	10000	/* large enough */
    248 
    249 /*
    250  * gethexdump(p, n)
    251  *
    252  *	Allocate a string returning a hexdump of bytes p[0..n),
    253  *	truncated to MAX_HDUMP_LEN.  Must be freed with puthexdump.
    254  *
    255  *	We use this instead of libkern hexdump() because the result is
    256  *	logged with log(LOG_DEBUG, ...), which puts a priority tag on
    257  *	every message, so it can't be done incrementally.
    258  */
    259 static char *
    260 gethexdump(const void *vp, size_t n)
    261 {
    262 	char *buf;
    263 	const uint8_t *p = vp;
    264 	size_t i, alloc;
    265 
    266 	alloc = n;
    267 	if (n > MAX_HDUMP_LEN)
    268 		alloc = MAX_HDUMP_LEN;
    269 	buf = kmem_alloc(3*alloc + 5, KM_NOSLEEP);
    270 	if (buf == NULL)
    271 		return enomem;
    272 	for (i = 0; i < alloc; i++)
    273 		snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
    274 	if (alloc != n)
    275 		snprintf(buf + 3*i, 4 + 1, " ...");
    276 	return buf;
    277 }
    278 
    279 static void
    280 puthexdump(char *buf, const void *p, size_t n)
    281 {
    282 
    283 	if (buf == NULL || buf == enomem)
    284 		return;
    285 	if (n > MAX_HDUMP_LEN)
    286 		n = MAX_HDUMP_LEN;
    287 	kmem_free(buf, 3*n + 5);
    288 }
    289 
    290 #ifdef WG_RUMPKERNEL
    291 static void
    292 wg_dump_buf(const char *func, const char *buf, const size_t size)
    293 {
    294 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    295 		return;
    296 
    297 	char *hex = gethexdump(buf, size);
    298 
    299 	log(LOG_DEBUG, "%s: %s\n", func, hex);
    300 	puthexdump(hex, buf, size);
    301 }
    302 #endif
    303 
    304 static void
    305 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
    306     const size_t size)
    307 {
    308 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    309 		return;
    310 
    311 	char *hex = gethexdump(hash, size);
    312 
    313 	log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex);
    314 	puthexdump(hex, hash, size);
    315 }
    316 
    317 #define WG_DUMP_HASH(name, hash) \
    318 	wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
    319 #define WG_DUMP_HASH48(name, hash) \
    320 	wg_dump_hash(__func__, name, hash, 48)
    321 #define WG_DUMP_BUF(buf, size) \
    322 	wg_dump_buf(__func__, buf, size)
    323 #else
    324 #define WG_DUMP_HASH(name, hash)	__nothing
    325 #define WG_DUMP_HASH48(name, hash)	__nothing
    326 #define WG_DUMP_BUF(buf, size)	__nothing
    327 #endif /* WG_DEBUG_DUMP */
    328 
    329 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
    330 #define	WG_MAX_PROPLEN		32766
    331 
    332 #define WG_MTU			1420
    333 #define WG_ALLOWEDIPS		16
    334 
    335 #define CURVE25519_KEY_LEN	32
    336 #define TAI64N_LEN		(sizeof(uint32_t) * 3)
    337 #define POLY1305_AUTHTAG_LEN	16
    338 #define HMAC_BLOCK_LEN		64
    339 
    340 /* [N] 4.1: "DHLEN must be 32 or greater."  WireGuard chooses 32. */
    341 /* [N] 4.3: Hash functions */
    342 #define NOISE_DHLEN		32
    343 /* [N] 4.3: "Must be 32 or 64."  WireGuard chooses 32. */
    344 #define NOISE_HASHLEN		32
    345 #define NOISE_BLOCKLEN		64
    346 #define NOISE_HKDF_OUTPUT_LEN	NOISE_HASHLEN
    347 /* [N] 5.1: "k" */
    348 #define NOISE_CIPHER_KEY_LEN	32
    349 /*
    350  * [N] 9.2: "psk"
    351  *          "... psk is a 32-byte secret value provided by the application."
    352  */
    353 #define NOISE_PRESHARED_KEY_LEN	32
    354 
    355 #define WG_STATIC_KEY_LEN	CURVE25519_KEY_LEN
    356 #define WG_TIMESTAMP_LEN	TAI64N_LEN
    357 
    358 #define WG_PRESHARED_KEY_LEN	NOISE_PRESHARED_KEY_LEN
    359 
    360 #define WG_COOKIE_LEN		16
    361 #define WG_MAC_LEN		16
    362 #define WG_COOKIESECRET_LEN	32
    363 
    364 #define WG_EPHEMERAL_KEY_LEN	CURVE25519_KEY_LEN
    365 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
    366 #define WG_CHAINING_KEY_LEN	NOISE_HASHLEN
    367 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
    368 #define WG_HASH_LEN		NOISE_HASHLEN
    369 #define WG_CIPHER_KEY_LEN	NOISE_CIPHER_KEY_LEN
    370 #define WG_DH_OUTPUT_LEN	NOISE_DHLEN
    371 #define WG_KDF_OUTPUT_LEN	NOISE_HKDF_OUTPUT_LEN
    372 #define WG_AUTHTAG_LEN		POLY1305_AUTHTAG_LEN
    373 #define WG_DATA_KEY_LEN		32
    374 #define WG_SALT_LEN		24
    375 
    376 /*
    377  * The protocol messages
    378  */
    379 struct wg_msg {
    380 	uint32_t	wgm_type;
    381 } __packed;
    382 
    383 /* [W] 5.4.2 First Message: Initiator to Responder */
    384 struct wg_msg_init {
    385 	uint32_t	wgmi_type;
    386 	uint32_t	wgmi_sender;
    387 	uint8_t		wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
    388 	uint8_t		wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
    389 	uint8_t		wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
    390 	uint8_t		wgmi_mac1[WG_MAC_LEN];
    391 	uint8_t		wgmi_mac2[WG_MAC_LEN];
    392 } __packed;
    393 
    394 /* [W] 5.4.3 Second Message: Responder to Initiator */
    395 struct wg_msg_resp {
    396 	uint32_t	wgmr_type;
    397 	uint32_t	wgmr_sender;
    398 	uint32_t	wgmr_receiver;
    399 	uint8_t		wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
    400 	uint8_t		wgmr_empty[0 + WG_AUTHTAG_LEN];
    401 	uint8_t		wgmr_mac1[WG_MAC_LEN];
    402 	uint8_t		wgmr_mac2[WG_MAC_LEN];
    403 } __packed;
    404 
    405 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
    406 struct wg_msg_data {
    407 	uint32_t	wgmd_type;
    408 	uint32_t	wgmd_receiver;
    409 	uint64_t	wgmd_counter;
    410 	uint32_t	wgmd_packet[];
    411 } __packed;
    412 
    413 /* [W] 5.4.7 Under Load: Cookie Reply Message */
    414 struct wg_msg_cookie {
    415 	uint32_t	wgmc_type;
    416 	uint32_t	wgmc_receiver;
    417 	uint8_t		wgmc_salt[WG_SALT_LEN];
    418 	uint8_t		wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
    419 } __packed;
    420 
    421 #define WG_MSG_TYPE_INIT		1
    422 #define WG_MSG_TYPE_RESP		2
    423 #define WG_MSG_TYPE_COOKIE		3
    424 #define WG_MSG_TYPE_DATA		4
    425 #define WG_MSG_TYPE_MAX			WG_MSG_TYPE_DATA
    426 
    427 /* Sliding windows */
    428 
    429 #define	SLIWIN_BITS	2048u
    430 #define	SLIWIN_TYPE	uint32_t
    431 #define	SLIWIN_BPW	(NBBY*sizeof(SLIWIN_TYPE))
    432 #define	SLIWIN_WORDS	howmany(SLIWIN_BITS, SLIWIN_BPW)
    433 #define	SLIWIN_NPKT	(SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
    434 
    435 struct sliwin {
    436 	SLIWIN_TYPE	B[SLIWIN_WORDS];
    437 	uint64_t	T;
    438 };
    439 
    440 static void
    441 sliwin_reset(struct sliwin *W)
    442 {
    443 
    444 	memset(W, 0, sizeof(*W));
    445 }
    446 
    447 static int
    448 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
    449 {
    450 
    451 	/*
    452 	 * If it's more than one window older than the highest sequence
    453 	 * number we've seen, reject.
    454 	 */
    455 #ifdef __HAVE_ATOMIC64_LOADSTORE
    456 	if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
    457 		return EAUTH;
    458 #endif
    459 
    460 	/*
    461 	 * Otherwise, we need to take the lock to decide, so don't
    462 	 * reject just yet.  Caller must serialize a call to
    463 	 * sliwin_update in this case.
    464 	 */
    465 	return 0;
    466 }
    467 
    468 static int
    469 sliwin_update(struct sliwin *W, uint64_t S)
    470 {
    471 	unsigned word, bit;
    472 
    473 	/*
    474 	 * If it's more than one window older than the highest sequence
    475 	 * number we've seen, reject.
    476 	 */
    477 	if (S + SLIWIN_NPKT < W->T)
    478 		return EAUTH;
    479 
    480 	/*
    481 	 * If it's higher than the highest sequence number we've seen,
    482 	 * advance the window.
    483 	 */
    484 	if (S > W->T) {
    485 		uint64_t i = W->T / SLIWIN_BPW;
    486 		uint64_t j = S / SLIWIN_BPW;
    487 		unsigned k;
    488 
    489 		for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
    490 			W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
    491 #ifdef __HAVE_ATOMIC64_LOADSTORE
    492 		atomic_store_relaxed(&W->T, S);
    493 #else
    494 		W->T = S;
    495 #endif
    496 	}
    497 
    498 	/* Test and set the bit -- if already set, reject.  */
    499 	word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
    500 	bit = S % SLIWIN_BPW;
    501 	if (W->B[word] & (1UL << bit))
    502 		return EAUTH;
    503 	W->B[word] |= 1U << bit;
    504 
    505 	/* Accept!  */
    506 	return 0;
    507 }
    508 
    509 struct wg_session {
    510 	struct wg_peer	*wgs_peer;
    511 	struct psref_target
    512 			wgs_psref;
    513 
    514 	int		wgs_state;
    515 #define WGS_STATE_UNKNOWN	0
    516 #define WGS_STATE_INIT_ACTIVE	1
    517 #define WGS_STATE_INIT_PASSIVE	2
    518 #define WGS_STATE_ESTABLISHED	3
    519 #define WGS_STATE_DESTROYING	4
    520 
    521 	uint32_t	wgs_time_established;
    522 	volatile uint32_t
    523 			wgs_time_last_data_sent;
    524 	volatile bool	wgs_force_rekey;
    525 	bool		wgs_is_initiator;
    526 
    527 	uint32_t	wgs_local_index;
    528 	uint32_t	wgs_remote_index;
    529 #ifdef __HAVE_ATOMIC64_LOADSTORE
    530 	volatile uint64_t
    531 			wgs_send_counter;
    532 #else
    533 	kmutex_t	wgs_send_counter_lock;
    534 	uint64_t	wgs_send_counter;
    535 #endif
    536 
    537 	struct {
    538 		kmutex_t	lock;
    539 		struct sliwin	window;
    540 	}		*wgs_recvwin;
    541 
    542 	uint8_t		wgs_handshake_hash[WG_HASH_LEN];
    543 	uint8_t		wgs_chaining_key[WG_CHAINING_KEY_LEN];
    544 	uint8_t		wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
    545 	uint8_t		wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
    546 	uint8_t		wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
    547 	uint8_t		wgs_tkey_send[WG_DATA_KEY_LEN];
    548 	uint8_t		wgs_tkey_recv[WG_DATA_KEY_LEN];
    549 };
    550 
    551 struct wg_sockaddr {
    552 	union {
    553 		struct sockaddr_storage _ss;
    554 		struct sockaddr _sa;
    555 		struct sockaddr_in _sin;
    556 		struct sockaddr_in6 _sin6;
    557 	};
    558 	struct psref_target	wgsa_psref;
    559 };
    560 
    561 #define wgsatoss(wgsa)		(&(wgsa)->_ss)
    562 #define wgsatosa(wgsa)		(&(wgsa)->_sa)
    563 #define wgsatosin(wgsa)		(&(wgsa)->_sin)
    564 #define wgsatosin6(wgsa)	(&(wgsa)->_sin6)
    565 
    566 #define	wgsa_family(wgsa)	(wgsatosa(wgsa)->sa_family)
    567 
    568 struct wg_peer;
    569 struct wg_allowedip {
    570 	struct radix_node	wga_nodes[2];
    571 	struct wg_sockaddr	_wga_sa_addr;
    572 	struct wg_sockaddr	_wga_sa_mask;
    573 #define wga_sa_addr		_wga_sa_addr._sa
    574 #define wga_sa_mask		_wga_sa_mask._sa
    575 
    576 	int			wga_family;
    577 	uint8_t			wga_cidr;
    578 	union {
    579 		struct in_addr _ip4;
    580 		struct in6_addr _ip6;
    581 	} wga_addr;
    582 #define wga_addr4	wga_addr._ip4
    583 #define wga_addr6	wga_addr._ip6
    584 
    585 	struct wg_peer		*wga_peer;
    586 };
    587 
    588 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
    589 
    590 struct wg_ppsratecheck {
    591 	struct timeval		wgprc_lasttime;
    592 	int			wgprc_curpps;
    593 };
    594 
    595 struct wg_softc;
    596 struct wg_peer {
    597 	struct wg_softc		*wgp_sc;
    598 	char			wgp_name[WG_PEER_NAME_MAXLEN + 1];
    599 	struct pslist_entry	wgp_peerlist_entry;
    600 	pserialize_t		wgp_psz;
    601 	struct psref_target	wgp_psref;
    602 	kmutex_t		*wgp_lock;
    603 	kmutex_t		*wgp_intr_lock;
    604 
    605 	uint8_t	wgp_pubkey[WG_STATIC_KEY_LEN];
    606 	struct wg_sockaddr	*wgp_endpoint;
    607 	struct wg_sockaddr	*wgp_endpoint0;
    608 	volatile unsigned	wgp_endpoint_changing;
    609 	bool			wgp_endpoint_available;
    610 
    611 			/* The preshared key (optional) */
    612 	uint8_t		wgp_psk[WG_PRESHARED_KEY_LEN];
    613 
    614 	struct wg_session	*wgp_session_stable;
    615 	struct wg_session	*wgp_session_unstable;
    616 
    617 	/* first outgoing packet awaiting session initiation */
    618 	struct mbuf		*volatile wgp_pending;
    619 
    620 	/* timestamp in big-endian */
    621 	wg_timestamp_t	wgp_timestamp_latest_init;
    622 
    623 	struct timespec		wgp_last_handshake_time;
    624 
    625 	callout_t		wgp_handshake_timeout_timer;
    626 	callout_t		wgp_session_dtor_timer;
    627 
    628 	time_t			wgp_handshake_start_time;
    629 
    630 	int			wgp_n_allowedips;
    631 	struct wg_allowedip	wgp_allowedips[WG_ALLOWEDIPS];
    632 
    633 	time_t			wgp_latest_cookie_time;
    634 	uint8_t			wgp_latest_cookie[WG_COOKIE_LEN];
    635 	uint8_t			wgp_last_sent_mac1[WG_MAC_LEN];
    636 	bool			wgp_last_sent_mac1_valid;
    637 	uint8_t			wgp_last_sent_cookie[WG_COOKIE_LEN];
    638 	bool			wgp_last_sent_cookie_valid;
    639 
    640 	time_t			wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
    641 
    642 	time_t			wgp_last_cookiesecret_time;
    643 	uint8_t			wgp_cookiesecret[WG_COOKIESECRET_LEN];
    644 
    645 	struct wg_ppsratecheck	wgp_ppsratecheck;
    646 
    647 	struct work		wgp_work;
    648 	unsigned int		wgp_tasks;
    649 #define WGP_TASK_SEND_INIT_MESSAGE		__BIT(0)
    650 #define WGP_TASK_RETRY_HANDSHAKE		__BIT(1)
    651 #define WGP_TASK_ESTABLISH_SESSION		__BIT(2)
    652 #define WGP_TASK_ENDPOINT_CHANGED		__BIT(3)
    653 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE		__BIT(4)
    654 #define WGP_TASK_DESTROY_PREV_SESSION		__BIT(5)
    655 };
    656 
    657 struct wg_ops;
    658 
    659 struct wg_softc {
    660 	struct ifnet	wg_if;
    661 	LIST_ENTRY(wg_softc) wg_list;
    662 	kmutex_t	*wg_lock;
    663 	kmutex_t	*wg_intr_lock;
    664 	krwlock_t	*wg_rwlock;
    665 
    666 	uint8_t		wg_privkey[WG_STATIC_KEY_LEN];
    667 	uint8_t		wg_pubkey[WG_STATIC_KEY_LEN];
    668 
    669 	int		wg_npeers;
    670 	struct pslist_head	wg_peers;
    671 	struct thmap	*wg_peers_bypubkey;
    672 	struct thmap	*wg_peers_byname;
    673 	struct thmap	*wg_sessions_byindex;
    674 	uint16_t	wg_listen_port;
    675 
    676 	struct threadpool	*wg_threadpool;
    677 
    678 	struct threadpool_job	wg_job;
    679 	int			wg_upcalls;
    680 #define	WG_UPCALL_INET	__BIT(0)
    681 #define	WG_UPCALL_INET6	__BIT(1)
    682 
    683 #ifdef INET
    684 	struct socket		*wg_so4;
    685 	struct radix_node_head	*wg_rtable_ipv4;
    686 #endif
    687 #ifdef INET6
    688 	struct socket		*wg_so6;
    689 	struct radix_node_head	*wg_rtable_ipv6;
    690 #endif
    691 
    692 	struct wg_ppsratecheck	wg_ppsratecheck;
    693 
    694 	struct wg_ops		*wg_ops;
    695 
    696 #ifdef WG_RUMPKERNEL
    697 	struct wg_user		*wg_user;
    698 #endif
    699 };
    700 
    701 /* [W] 6.1 Preliminaries */
    702 #define WG_REKEY_AFTER_MESSAGES		(1ULL << 60)
    703 #define WG_REJECT_AFTER_MESSAGES	(UINT64_MAX - (1 << 13))
    704 #define WG_REKEY_AFTER_TIME		120
    705 #define WG_REJECT_AFTER_TIME		180
    706 #define WG_REKEY_ATTEMPT_TIME		 90
    707 #define WG_REKEY_TIMEOUT		  5
    708 #define WG_KEEPALIVE_TIMEOUT		 10
    709 
    710 #define WG_COOKIE_TIME			120
    711 #define WG_COOKIESECRET_TIME		(2 * 60)
    712 
    713 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
    714 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
    715 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
    716 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
    717 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
    718 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
    719 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
    720 
    721 static struct mbuf *
    722 		wg_get_mbuf(size_t, size_t);
    723 
    724 static void	wg_send_data_msg(struct wg_peer *, struct wg_session *,
    725 		    struct mbuf *);
    726 static void	wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
    727 		    const uint32_t, const uint8_t[static WG_MAC_LEN],
    728 		    const struct sockaddr *);
    729 static void	wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
    730 		    struct wg_session *, const struct wg_msg_init *);
    731 static void	wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
    732 
    733 static struct wg_peer *
    734 		wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
    735 		    struct psref *);
    736 static struct wg_peer *
    737 		wg_lookup_peer_by_pubkey(struct wg_softc *,
    738 		    const uint8_t[static WG_STATIC_KEY_LEN], struct psref *);
    739 
    740 static struct wg_session *
    741 		wg_lookup_session_by_index(struct wg_softc *,
    742 		    const uint32_t, struct psref *);
    743 
    744 static void	wg_update_endpoint_if_necessary(struct wg_peer *,
    745 		    const struct sockaddr *);
    746 
    747 static void	wg_schedule_session_dtor_timer(struct wg_peer *);
    748 
    749 static bool	wg_is_underload(struct wg_softc *, struct wg_peer *, int);
    750 static void	wg_calculate_keys(struct wg_session *, const bool);
    751 
    752 static void	wg_clear_states(struct wg_session *);
    753 
    754 static void	wg_get_peer(struct wg_peer *, struct psref *);
    755 static void	wg_put_peer(struct wg_peer *, struct psref *);
    756 
    757 static int	wg_send_so(struct wg_peer *, struct mbuf *);
    758 static int	wg_send_udp(struct wg_peer *, struct mbuf *);
    759 static int	wg_output(struct ifnet *, struct mbuf *,
    760 			   const struct sockaddr *, const struct rtentry *);
    761 static void	wg_input(struct ifnet *, struct mbuf *, const int);
    762 static int	wg_ioctl(struct ifnet *, u_long, void *);
    763 static int	wg_bind_port(struct wg_softc *, const uint16_t);
    764 static int	wg_init(struct ifnet *);
    765 #ifdef ALTQ
    766 static void	wg_start(struct ifnet *);
    767 #endif
    768 static void	wg_stop(struct ifnet *, int);
    769 
    770 static void	wg_peer_work(struct work *, void *);
    771 static void	wg_job(struct threadpool_job *);
    772 static void	wgintr(void *);
    773 static void	wg_purge_pending_packets(struct wg_peer *);
    774 
    775 static int	wg_clone_create(struct if_clone *, int);
    776 static int	wg_clone_destroy(struct ifnet *);
    777 
    778 struct wg_ops {
    779 	int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
    780 	int (*send_data_msg)(struct wg_peer *, struct mbuf *);
    781 	void (*input)(struct ifnet *, struct mbuf *, const int);
    782 	int (*bind_port)(struct wg_softc *, const uint16_t);
    783 };
    784 
    785 struct wg_ops wg_ops_rumpkernel = {
    786 	.send_hs_msg	= wg_send_so,
    787 	.send_data_msg	= wg_send_udp,
    788 	.input		= wg_input,
    789 	.bind_port	= wg_bind_port,
    790 };
    791 
    792 #ifdef WG_RUMPKERNEL
    793 static bool	wg_user_mode(struct wg_softc *);
    794 static int	wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
    795 
    796 static int	wg_send_user(struct wg_peer *, struct mbuf *);
    797 static void	wg_input_user(struct ifnet *, struct mbuf *, const int);
    798 static int	wg_bind_port_user(struct wg_softc *, const uint16_t);
    799 
    800 struct wg_ops wg_ops_rumpuser = {
    801 	.send_hs_msg	= wg_send_user,
    802 	.send_data_msg	= wg_send_user,
    803 	.input		= wg_input_user,
    804 	.bind_port	= wg_bind_port_user,
    805 };
    806 #endif
    807 
    808 #define WG_PEER_READER_FOREACH(wgp, wg)					\
    809 	PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    810 	    wgp_peerlist_entry)
    811 #define WG_PEER_WRITER_FOREACH(wgp, wg)					\
    812 	PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    813 	    wgp_peerlist_entry)
    814 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg)				\
    815 	PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
    816 #define WG_PEER_WRITER_REMOVE(wgp)					\
    817 	PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
    818 
    819 struct wg_route {
    820 	struct radix_node	wgr_nodes[2];
    821 	struct wg_peer		*wgr_peer;
    822 };
    823 
    824 static struct radix_node_head *
    825 wg_rnh(struct wg_softc *wg, const int family)
    826 {
    827 
    828 	switch (family) {
    829 #ifdef INET
    830 		case AF_INET:
    831 			return wg->wg_rtable_ipv4;
    832 #endif
    833 #ifdef INET6
    834 		case AF_INET6:
    835 			return wg->wg_rtable_ipv6;
    836 #endif
    837 		default:
    838 			return NULL;
    839 	}
    840 }
    841 
    842 
    843 /*
    844  * Global variables
    845  */
    846 static volatile unsigned wg_count __cacheline_aligned;
    847 
    848 struct psref_class *wg_psref_class __read_mostly;
    849 
    850 static struct if_clone wg_cloner =
    851     IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
    852 
    853 static struct pktqueue *wg_pktq __read_mostly;
    854 static struct workqueue *wg_wq __read_mostly;
    855 
    856 void wgattach(int);
    857 /* ARGSUSED */
    858 void
    859 wgattach(int count)
    860 {
    861 	/*
    862 	 * Nothing to do here, initialization is handled by the
    863 	 * module initialization code in wginit() below).
    864 	 */
    865 }
    866 
    867 static void
    868 wginit(void)
    869 {
    870 
    871 	wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
    872 
    873 	if_clone_attach(&wg_cloner);
    874 }
    875 
    876 /*
    877  * XXX Kludge: This should just happen in wginit, but workqueue_create
    878  * cannot be run until after CPUs have been detected, and wginit runs
    879  * before configure.
    880  */
    881 static int
    882 wginitqueues(void)
    883 {
    884 	int error __diagused;
    885 
    886 	wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
    887 	KASSERT(wg_pktq != NULL);
    888 
    889 	error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
    890 	    PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
    891 	KASSERTMSG(error == 0, "error=%d", error);
    892 
    893 	return 0;
    894 }
    895 
    896 static void
    897 wg_guarantee_initialized(void)
    898 {
    899 	static ONCE_DECL(init);
    900 	int error __diagused;
    901 
    902 	error = RUN_ONCE(&init, wginitqueues);
    903 	KASSERTMSG(error == 0, "error=%d", error);
    904 }
    905 
    906 static int
    907 wg_count_inc(void)
    908 {
    909 	unsigned o, n;
    910 
    911 	do {
    912 		o = atomic_load_relaxed(&wg_count);
    913 		if (o == UINT_MAX)
    914 			return ENFILE;
    915 		n = o + 1;
    916 	} while (atomic_cas_uint(&wg_count, o, n) != o);
    917 
    918 	return 0;
    919 }
    920 
    921 static void
    922 wg_count_dec(void)
    923 {
    924 	unsigned c __diagused;
    925 
    926 	membar_release();	/* match atomic_load_acquire in wgdetach */
    927 	c = atomic_dec_uint_nv(&wg_count);
    928 	KASSERT(c != UINT_MAX);
    929 }
    930 
    931 static int
    932 wgdetach(void)
    933 {
    934 
    935 	/* Prevent new interface creation.  */
    936 	if_clone_detach(&wg_cloner);
    937 
    938 	/*
    939 	 * Check whether there are any existing interfaces.  Matches
    940 	 * membar_release and atomic_dec_uint_nv in wg_count_dec.
    941 	 */
    942 	if (atomic_load_acquire(&wg_count)) {
    943 		/* Back out -- reattach the cloner.  */
    944 		if_clone_attach(&wg_cloner);
    945 		return EBUSY;
    946 	}
    947 
    948 	/* No interfaces left.  Nuke it.  */
    949 	if (wg_wq)
    950 		workqueue_destroy(wg_wq);
    951 	if (wg_pktq)
    952 		pktq_destroy(wg_pktq);
    953 	psref_class_destroy(wg_psref_class);
    954 
    955 	return 0;
    956 }
    957 
    958 static void
    959 wg_init_key_and_hash(uint8_t ckey[static WG_CHAINING_KEY_LEN],
    960     uint8_t hash[static WG_HASH_LEN])
    961 {
    962 	/* [W] 5.4: CONSTRUCTION */
    963 	const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
    964 	/* [W] 5.4: IDENTIFIER */
    965 	const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
    966 	struct blake2s state;
    967 
    968 	blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
    969 	    signature, strlen(signature));
    970 
    971 	CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
    972 	memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
    973 
    974 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    975 	blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
    976 	blake2s_update(&state, id, strlen(id));
    977 	blake2s_final(&state, hash);
    978 
    979 	WG_DUMP_HASH("ckey", ckey);
    980 	WG_DUMP_HASH("hash", hash);
    981 }
    982 
    983 static void
    984 wg_algo_hash(uint8_t hash[static WG_HASH_LEN], const uint8_t input[],
    985     const size_t inputsize)
    986 {
    987 	struct blake2s state;
    988 
    989 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    990 	blake2s_update(&state, hash, WG_HASH_LEN);
    991 	blake2s_update(&state, input, inputsize);
    992 	blake2s_final(&state, hash);
    993 }
    994 
    995 static void
    996 wg_algo_mac(uint8_t out[], const size_t outsize,
    997     const uint8_t key[], const size_t keylen,
    998     const uint8_t input1[], const size_t input1len,
    999     const uint8_t input2[], const size_t input2len)
   1000 {
   1001 	struct blake2s state;
   1002 
   1003 	blake2s_init(&state, outsize, key, keylen);
   1004 
   1005 	blake2s_update(&state, input1, input1len);
   1006 	if (input2 != NULL)
   1007 		blake2s_update(&state, input2, input2len);
   1008 	blake2s_final(&state, out);
   1009 }
   1010 
   1011 static void
   1012 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
   1013     const uint8_t input1[], const size_t input1len,
   1014     const uint8_t input2[], const size_t input2len)
   1015 {
   1016 	struct blake2s state;
   1017 	/* [W] 5.4: LABEL-MAC1 */
   1018 	const char *label = "mac1----";
   1019 	uint8_t key[WG_HASH_LEN];
   1020 
   1021 	blake2s_init(&state, sizeof(key), NULL, 0);
   1022 	blake2s_update(&state, label, strlen(label));
   1023 	blake2s_update(&state, input1, input1len);
   1024 	blake2s_final(&state, key);
   1025 
   1026 	blake2s_init(&state, outsize, key, sizeof(key));
   1027 	if (input2 != NULL)
   1028 		blake2s_update(&state, input2, input2len);
   1029 	blake2s_final(&state, out);
   1030 }
   1031 
   1032 static void
   1033 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
   1034     const uint8_t input1[], const size_t input1len)
   1035 {
   1036 	struct blake2s state;
   1037 	/* [W] 5.4: LABEL-COOKIE */
   1038 	const char *label = "cookie--";
   1039 
   1040 	blake2s_init(&state, outsize, NULL, 0);
   1041 	blake2s_update(&state, label, strlen(label));
   1042 	blake2s_update(&state, input1, input1len);
   1043 	blake2s_final(&state, out);
   1044 }
   1045 
   1046 static void
   1047 wg_algo_generate_keypair(uint8_t pubkey[static WG_EPHEMERAL_KEY_LEN],
   1048     uint8_t privkey[static WG_EPHEMERAL_KEY_LEN])
   1049 {
   1050 
   1051 	CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1052 
   1053 	cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
   1054 	crypto_scalarmult_base(pubkey, privkey);
   1055 }
   1056 
   1057 static void
   1058 wg_algo_dh(uint8_t out[static WG_DH_OUTPUT_LEN],
   1059     const uint8_t privkey[static WG_STATIC_KEY_LEN],
   1060     const uint8_t pubkey[static WG_STATIC_KEY_LEN])
   1061 {
   1062 
   1063 	CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1064 
   1065 	int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
   1066 	KASSERT(ret == 0);
   1067 }
   1068 
   1069 static void
   1070 wg_algo_hmac(uint8_t out[], const size_t outlen,
   1071     const uint8_t key[], const size_t keylen,
   1072     const uint8_t in[], const size_t inlen)
   1073 {
   1074 #define IPAD	0x36
   1075 #define OPAD	0x5c
   1076 	uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
   1077 	uint8_t ipad[HMAC_BLOCK_LEN];
   1078 	uint8_t opad[HMAC_BLOCK_LEN];
   1079 	size_t i;
   1080 	struct blake2s state;
   1081 
   1082 	KASSERT(outlen == WG_HASH_LEN);
   1083 	KASSERT(keylen <= HMAC_BLOCK_LEN);
   1084 
   1085 	memcpy(hmackey, key, keylen);
   1086 
   1087 	for (i = 0; i < sizeof(hmackey); i++) {
   1088 		ipad[i] = hmackey[i] ^ IPAD;
   1089 		opad[i] = hmackey[i] ^ OPAD;
   1090 	}
   1091 
   1092 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1093 	blake2s_update(&state, ipad, sizeof(ipad));
   1094 	blake2s_update(&state, in, inlen);
   1095 	blake2s_final(&state, out);
   1096 
   1097 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1098 	blake2s_update(&state, opad, sizeof(opad));
   1099 	blake2s_update(&state, out, WG_HASH_LEN);
   1100 	blake2s_final(&state, out);
   1101 #undef IPAD
   1102 #undef OPAD
   1103 }
   1104 
   1105 static void
   1106 wg_algo_kdf(uint8_t out1[static WG_KDF_OUTPUT_LEN],
   1107     uint8_t out2[WG_KDF_OUTPUT_LEN],
   1108     uint8_t out3[WG_KDF_OUTPUT_LEN],
   1109     const uint8_t ckey[static WG_CHAINING_KEY_LEN],
   1110     const uint8_t input[], const size_t inputlen)
   1111 {
   1112 	uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
   1113 	uint8_t one[1];
   1114 
   1115 	/*
   1116 	 * [N] 4.3: "an input_key_material byte sequence with length
   1117 	 * either zero bytes, 32 bytes, or DHLEN bytes."
   1118 	 */
   1119 	KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
   1120 
   1121 	WG_DUMP_HASH("ckey", ckey);
   1122 	if (input != NULL)
   1123 		WG_DUMP_HASH("input", input);
   1124 	wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
   1125 	    input, inputlen);
   1126 	WG_DUMP_HASH("tmp1", tmp1);
   1127 	one[0] = 1;
   1128 	wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1129 	    one, sizeof(one));
   1130 	WG_DUMP_HASH("out1", out1);
   1131 	if (out2 == NULL)
   1132 		return;
   1133 	memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
   1134 	tmp2[WG_KDF_OUTPUT_LEN] = 2;
   1135 	wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1136 	    tmp2, sizeof(tmp2));
   1137 	WG_DUMP_HASH("out2", out2);
   1138 	if (out3 == NULL)
   1139 		return;
   1140 	memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
   1141 	tmp2[WG_KDF_OUTPUT_LEN] = 3;
   1142 	wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1143 	    tmp2, sizeof(tmp2));
   1144 	WG_DUMP_HASH("out3", out3);
   1145 }
   1146 
   1147 static void __noinline
   1148 wg_algo_dh_kdf(uint8_t ckey[static WG_CHAINING_KEY_LEN],
   1149     uint8_t cipher_key[WG_CIPHER_KEY_LEN],
   1150     const uint8_t local_key[static WG_STATIC_KEY_LEN],
   1151     const uint8_t remote_key[static WG_STATIC_KEY_LEN])
   1152 {
   1153 	uint8_t dhout[WG_DH_OUTPUT_LEN];
   1154 
   1155 	wg_algo_dh(dhout, local_key, remote_key);
   1156 	wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
   1157 
   1158 	WG_DUMP_HASH("dhout", dhout);
   1159 	WG_DUMP_HASH("ckey", ckey);
   1160 	if (cipher_key != NULL)
   1161 		WG_DUMP_HASH("cipher_key", cipher_key);
   1162 }
   1163 
   1164 static void
   1165 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize,
   1166     const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
   1167     const uint64_t counter,
   1168     const uint8_t plain[], const size_t plainsize,
   1169     const uint8_t auth[], size_t authlen)
   1170 {
   1171 	uint8_t nonce[(32 + 64) / 8] = {0};
   1172 	long long unsigned int outsize;
   1173 	int error __diagused;
   1174 
   1175 	le64enc(&nonce[4], counter);
   1176 
   1177 	error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
   1178 	    plainsize, auth, authlen, NULL, nonce, key);
   1179 	KASSERT(error == 0);
   1180 	KASSERT(outsize == expected_outsize);
   1181 }
   1182 
   1183 static int
   1184 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize,
   1185     const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
   1186     const uint64_t counter,
   1187     const uint8_t encrypted[], const size_t encryptedsize,
   1188     const uint8_t auth[], size_t authlen)
   1189 {
   1190 	uint8_t nonce[(32 + 64) / 8] = {0};
   1191 	long long unsigned int outsize;
   1192 	int error;
   1193 
   1194 	le64enc(&nonce[4], counter);
   1195 
   1196 	error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1197 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1198 	if (error == 0)
   1199 		KASSERT(outsize == expected_outsize);
   1200 	return error;
   1201 }
   1202 
   1203 static void
   1204 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
   1205     const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
   1206     const uint8_t plain[], const size_t plainsize,
   1207     const uint8_t auth[], size_t authlen,
   1208     const uint8_t nonce[static WG_SALT_LEN])
   1209 {
   1210 	long long unsigned int outsize;
   1211 	int error __diagused;
   1212 
   1213 	CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
   1214 	error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
   1215 	    plain, plainsize, auth, authlen, NULL, nonce, key);
   1216 	KASSERT(error == 0);
   1217 	KASSERT(outsize == expected_outsize);
   1218 }
   1219 
   1220 static int
   1221 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
   1222     const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
   1223     const uint8_t encrypted[], const size_t encryptedsize,
   1224     const uint8_t auth[], size_t authlen,
   1225     const uint8_t nonce[static WG_SALT_LEN])
   1226 {
   1227 	long long unsigned int outsize;
   1228 	int error;
   1229 
   1230 	error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1231 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1232 	if (error == 0)
   1233 		KASSERT(outsize == expected_outsize);
   1234 	return error;
   1235 }
   1236 
   1237 static void
   1238 wg_algo_tai64n(wg_timestamp_t timestamp)
   1239 {
   1240 	struct timespec ts;
   1241 
   1242 	/* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
   1243 	getnanotime(&ts);
   1244 	/* TAI64 label in external TAI64 format */
   1245 	be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
   1246 	/* second beginning from 1970 TAI */
   1247 	be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
   1248 	/* nanosecond in big-endian format */
   1249 	be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
   1250 }
   1251 
   1252 /*
   1253  * wg_get_stable_session(wgp, psref)
   1254  *
   1255  *	Get a passive reference to the current stable session, or
   1256  *	return NULL if there is no current stable session.
   1257  *
   1258  *	The pointer is always there but the session is not necessarily
   1259  *	ESTABLISHED; if it is not ESTABLISHED, return NULL.  However,
   1260  *	the session may transition from ESTABLISHED to DESTROYING while
   1261  *	holding the passive reference.
   1262  */
   1263 static struct wg_session *
   1264 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
   1265 {
   1266 	int s;
   1267 	struct wg_session *wgs;
   1268 
   1269 	s = pserialize_read_enter();
   1270 	wgs = atomic_load_consume(&wgp->wgp_session_stable);
   1271 	if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
   1272 		wgs = NULL;
   1273 	else
   1274 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   1275 	pserialize_read_exit(s);
   1276 
   1277 	return wgs;
   1278 }
   1279 
   1280 static void
   1281 wg_put_session(struct wg_session *wgs, struct psref *psref)
   1282 {
   1283 
   1284 	psref_release(psref, &wgs->wgs_psref, wg_psref_class);
   1285 }
   1286 
   1287 static void
   1288 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
   1289 {
   1290 	struct wg_peer *wgp = wgs->wgs_peer;
   1291 	struct wg_session *wgs0 __diagused;
   1292 	void *garbage;
   1293 
   1294 	KASSERT(mutex_owned(wgp->wgp_lock));
   1295 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1296 
   1297 	/* Remove the session from the table.  */
   1298 	wgs0 = thmap_del(wg->wg_sessions_byindex,
   1299 	    &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
   1300 	KASSERT(wgs0 == wgs);
   1301 	garbage = thmap_stage_gc(wg->wg_sessions_byindex);
   1302 
   1303 	/* Wait for passive references to drain.  */
   1304 	pserialize_perform(wgp->wgp_psz);
   1305 	psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
   1306 
   1307 	/*
   1308 	 * Free memory, zero state, and transition to UNKNOWN.  We have
   1309 	 * exclusive access to the session now, so there is no need for
   1310 	 * an atomic store.
   1311 	 */
   1312 	thmap_gc(wg->wg_sessions_byindex, garbage);
   1313 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_UNKNOWN\n",
   1314 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   1315 	wgs->wgs_local_index = 0;
   1316 	wgs->wgs_remote_index = 0;
   1317 	wg_clear_states(wgs);
   1318 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   1319 	wgs->wgs_force_rekey = false;
   1320 }
   1321 
   1322 /*
   1323  * wg_get_session_index(wg, wgs)
   1324  *
   1325  *	Choose a session index for wgs->wgs_local_index, and store it
   1326  *	in wg's table of sessions by index.
   1327  *
   1328  *	wgs must be the unstable session of its peer, and must be
   1329  *	transitioning out of the UNKNOWN state.
   1330  */
   1331 static void
   1332 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1333 {
   1334 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1335 	struct wg_session *wgs0;
   1336 	uint32_t index;
   1337 
   1338 	KASSERT(mutex_owned(wgp->wgp_lock));
   1339 	KASSERT(wgs == wgp->wgp_session_unstable);
   1340 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1341 	    wgs->wgs_state);
   1342 
   1343 	do {
   1344 		/* Pick a uniform random index.  */
   1345 		index = cprng_strong32();
   1346 
   1347 		/* Try to take it.  */
   1348 		wgs->wgs_local_index = index;
   1349 		wgs0 = thmap_put(wg->wg_sessions_byindex,
   1350 		    &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
   1351 
   1352 		/* If someone else beat us, start over.  */
   1353 	} while (__predict_false(wgs0 != wgs));
   1354 }
   1355 
   1356 /*
   1357  * wg_put_session_index(wg, wgs)
   1358  *
   1359  *	Remove wgs from the table of sessions by index, wait for any
   1360  *	passive references to drain, and transition the session to the
   1361  *	UNKNOWN state.
   1362  *
   1363  *	wgs must be the unstable session of its peer, and must not be
   1364  *	UNKNOWN or ESTABLISHED.
   1365  */
   1366 static void
   1367 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1368 {
   1369 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1370 
   1371 	KASSERT(mutex_owned(wgp->wgp_lock));
   1372 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1373 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
   1374 
   1375 	wg_destroy_session(wg, wgs);
   1376 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   1377 }
   1378 
   1379 /*
   1380  * Handshake patterns
   1381  *
   1382  * [W] 5: "These messages use the "IK" pattern from Noise"
   1383  * [N] 7.5. Interactive handshake patterns (fundamental)
   1384  *     "The first character refers to the initiators static key:"
   1385  *     "I = Static key for initiator Immediately transmitted to responder,
   1386  *          despite reduced or absent identity hiding"
   1387  *     "The second character refers to the responders static key:"
   1388  *     "K = Static key for responder Known to initiator"
   1389  *     "IK:
   1390  *        <- s
   1391  *        ...
   1392  *        -> e, es, s, ss
   1393  *        <- e, ee, se"
   1394  * [N] 9.4. Pattern modifiers
   1395  *     "IKpsk2:
   1396  *        <- s
   1397  *        ...
   1398  *        -> e, es, s, ss
   1399  *        <- e, ee, se, psk"
   1400  */
   1401 static void
   1402 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
   1403     struct wg_session *wgs, struct wg_msg_init *wgmi)
   1404 {
   1405 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1406 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1407 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1408 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1409 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1410 
   1411 	KASSERT(mutex_owned(wgp->wgp_lock));
   1412 	KASSERT(wgs == wgp->wgp_session_unstable);
   1413 	KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
   1414 	    wgs->wgs_state);
   1415 
   1416 	wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
   1417 	wgmi->wgmi_sender = wgs->wgs_local_index;
   1418 
   1419 	/* [W] 5.4.2: First Message: Initiator to Responder */
   1420 
   1421 	/* Ci := HASH(CONSTRUCTION) */
   1422 	/* Hi := HASH(Ci || IDENTIFIER) */
   1423 	wg_init_key_and_hash(ckey, hash);
   1424 	/* Hi := HASH(Hi || Sr^pub) */
   1425 	wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
   1426 
   1427 	WG_DUMP_HASH("hash", hash);
   1428 
   1429 	/* [N] 2.2: "e" */
   1430 	/* Ei^priv, Ei^pub := DH-GENERATE() */
   1431 	wg_algo_generate_keypair(pubkey, privkey);
   1432 	/* Ci := KDF1(Ci, Ei^pub) */
   1433 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1434 	/* msg.ephemeral := Ei^pub */
   1435 	memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
   1436 	/* Hi := HASH(Hi || msg.ephemeral) */
   1437 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1438 
   1439 	WG_DUMP_HASH("ckey", ckey);
   1440 	WG_DUMP_HASH("hash", hash);
   1441 
   1442 	/* [N] 2.2: "es" */
   1443 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1444 	wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
   1445 
   1446 	/* [N] 2.2: "s" */
   1447 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1448 	wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
   1449 	    cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1450 	    hash, sizeof(hash));
   1451 	/* Hi := HASH(Hi || msg.static) */
   1452 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1453 
   1454 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1455 
   1456 	/* [N] 2.2: "ss" */
   1457 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1458 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1459 
   1460 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1461 	wg_timestamp_t timestamp;
   1462 	wg_algo_tai64n(timestamp);
   1463 	wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1464 	    cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
   1465 	/* Hi := HASH(Hi || msg.timestamp) */
   1466 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1467 
   1468 	/* [W] 5.4.4 Cookie MACs */
   1469 	wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
   1470 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1471 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1472 	/* Need mac1 to decrypt a cookie from a cookie message */
   1473 	memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
   1474 	    sizeof(wgp->wgp_last_sent_mac1));
   1475 	wgp->wgp_last_sent_mac1_valid = true;
   1476 
   1477 	if (wgp->wgp_latest_cookie_time == 0 ||
   1478 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1479 		memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
   1480 	else {
   1481 		wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
   1482 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1483 		    (const uint8_t *)wgmi,
   1484 		    offsetof(struct wg_msg_init, wgmi_mac2),
   1485 		    NULL, 0);
   1486 	}
   1487 
   1488 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1489 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1490 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1491 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1492 	WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
   1493 }
   1494 
   1495 static void __noinline
   1496 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
   1497     const struct sockaddr *src)
   1498 {
   1499 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1500 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1501 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1502 	uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
   1503 	struct wg_peer *wgp;
   1504 	struct wg_session *wgs;
   1505 	int error, ret;
   1506 	struct psref psref_peer;
   1507 	uint8_t mac1[WG_MAC_LEN];
   1508 
   1509 	WG_TRACE("init msg received");
   1510 
   1511 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1512 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1513 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1514 
   1515 	/*
   1516 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1517 	 * "the responder, ..., must always reject messages with an invalid
   1518 	 *  msg.mac1"
   1519 	 */
   1520 	if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
   1521 		WG_DLOG("mac1 is invalid\n");
   1522 		return;
   1523 	}
   1524 
   1525 	/*
   1526 	 * [W] 5.4.2: First Message: Initiator to Responder
   1527 	 * "When the responder receives this message, it does the same
   1528 	 *  operations so that its final state variables are identical,
   1529 	 *  replacing the operands of the DH function to produce equivalent
   1530 	 *  values."
   1531 	 *  Note that the following comments of operations are just copies of
   1532 	 *  the initiator's ones.
   1533 	 */
   1534 
   1535 	/* Ci := HASH(CONSTRUCTION) */
   1536 	/* Hi := HASH(Ci || IDENTIFIER) */
   1537 	wg_init_key_and_hash(ckey, hash);
   1538 	/* Hi := HASH(Hi || Sr^pub) */
   1539 	wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
   1540 
   1541 	/* [N] 2.2: "e" */
   1542 	/* Ci := KDF1(Ci, Ei^pub) */
   1543 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
   1544 	    sizeof(wgmi->wgmi_ephemeral));
   1545 	/* Hi := HASH(Hi || msg.ephemeral) */
   1546 	wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
   1547 
   1548 	WG_DUMP_HASH("ckey", ckey);
   1549 
   1550 	/* [N] 2.2: "es" */
   1551 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1552 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
   1553 
   1554 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1555 
   1556 	/* [N] 2.2: "s" */
   1557 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1558 	error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
   1559 	    wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
   1560 	if (error != 0) {
   1561 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   1562 		    "%s: wg_algo_aead_dec for secret key failed\n",
   1563 		    if_name(&wg->wg_if));
   1564 		return;
   1565 	}
   1566 	/* Hi := HASH(Hi || msg.static) */
   1567 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1568 
   1569 	wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
   1570 	if (wgp == NULL) {
   1571 		WG_DLOG("peer not found\n");
   1572 		return;
   1573 	}
   1574 
   1575 	/*
   1576 	 * Lock the peer to serialize access to cookie state.
   1577 	 *
   1578 	 * XXX Can we safely avoid holding the lock across DH?  Take it
   1579 	 * just to verify mac2 and then unlock/DH/lock?
   1580 	 */
   1581 	mutex_enter(wgp->wgp_lock);
   1582 
   1583 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
   1584 		WG_TRACE("under load");
   1585 		/*
   1586 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1587 		 * "the responder, ..., and when under load may reject messages
   1588 		 *  with an invalid msg.mac2.  If the responder receives a
   1589 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1590 		 *  and is under load, it may respond with a cookie reply
   1591 		 *  message"
   1592 		 */
   1593 		uint8_t zero[WG_MAC_LEN] = {0};
   1594 		if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
   1595 			WG_TRACE("sending a cookie message: no cookie included");
   1596 			wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1597 			    wgmi->wgmi_mac1, src);
   1598 			goto out;
   1599 		}
   1600 		if (!wgp->wgp_last_sent_cookie_valid) {
   1601 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1602 			wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1603 			    wgmi->wgmi_mac1, src);
   1604 			goto out;
   1605 		}
   1606 		uint8_t mac2[WG_MAC_LEN];
   1607 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1608 		    WG_COOKIE_LEN, (const uint8_t *)wgmi,
   1609 		    offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
   1610 		if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
   1611 			WG_DLOG("mac2 is invalid\n");
   1612 			goto out;
   1613 		}
   1614 		WG_TRACE("under load, but continue to sending");
   1615 	}
   1616 
   1617 	/* [N] 2.2: "ss" */
   1618 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1619 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1620 
   1621 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1622 	wg_timestamp_t timestamp;
   1623 	error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
   1624 	    wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1625 	    hash, sizeof(hash));
   1626 	if (error != 0) {
   1627 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1628 		    "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
   1629 		    if_name(&wg->wg_if), wgp->wgp_name);
   1630 		goto out;
   1631 	}
   1632 	/* Hi := HASH(Hi || msg.timestamp) */
   1633 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1634 
   1635 	/*
   1636 	 * [W] 5.1 "The responder keeps track of the greatest timestamp
   1637 	 *      received per peer and discards packets containing
   1638 	 *      timestamps less than or equal to it."
   1639 	 */
   1640 	ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
   1641 	    sizeof(timestamp));
   1642 	if (ret <= 0) {
   1643 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1644 		    "%s: peer %s: invalid init msg: timestamp is old\n",
   1645 		    if_name(&wg->wg_if), wgp->wgp_name);
   1646 		goto out;
   1647 	}
   1648 	memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
   1649 
   1650 	/*
   1651 	 * Message is good -- we're committing to handle it now, unless
   1652 	 * we were already initiating a session.
   1653 	 */
   1654 	wgs = wgp->wgp_session_unstable;
   1655 	switch (wgs->wgs_state) {
   1656 	case WGS_STATE_UNKNOWN:		/* new session initiated by peer */
   1657 		break;
   1658 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, drop */
   1659 		/* XXX Who wins if both sides send INIT?  */
   1660 		WG_TRACE("Session already initializing, ignoring the message");
   1661 		goto out;
   1662 	case WGS_STATE_INIT_PASSIVE:	/* peer is retrying, start over */
   1663 		WG_TRACE("Session already initializing, destroying old states");
   1664 		/*
   1665 		 * XXX Avoid this -- just resend our response -- if the
   1666 		 * INIT message is identical to the previous one.
   1667 		 */
   1668 		wg_put_session_index(wg, wgs);
   1669 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1670 		    wgs->wgs_state);
   1671 		break;
   1672 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1673 		panic("unstable session can't be established");
   1674 	case WGS_STATE_DESTROYING:	/* rekey initiated by peer */
   1675 		WG_TRACE("Session destroying, but force to clear");
   1676 		wg_put_session_index(wg, wgs);
   1677 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1678 		    wgs->wgs_state);
   1679 		break;
   1680 	default:
   1681 		panic("invalid session state: %d", wgs->wgs_state);
   1682 	}
   1683 
   1684 	/*
   1685 	 * Assign a fresh session index.
   1686 	 */
   1687 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1688 	    wgs->wgs_state);
   1689 	wg_get_session_index(wg, wgs);
   1690 
   1691 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1692 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1693 	memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
   1694 	    sizeof(wgmi->wgmi_ephemeral));
   1695 
   1696 	wg_update_endpoint_if_necessary(wgp, src);
   1697 
   1698 	/*
   1699 	 * Even though we don't transition from INIT_PASSIVE to
   1700 	 * ESTABLISHED until we receive the first data packet from the
   1701 	 * initiator, we count the time of the INIT message as the time
   1702 	 * of establishment -- this is used to decide when to erase
   1703 	 * keys, and we want to start counting as soon as we have
   1704 	 * generated keys.
   1705 	 */
   1706 	wgs->wgs_time_established = time_uptime32;
   1707 	wg_schedule_session_dtor_timer(wgp);
   1708 
   1709 	/*
   1710 	 * Respond to the initiator with our ephemeral public key.
   1711 	 */
   1712 	wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
   1713 
   1714 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
   1715 	    " calculate keys as responder\n",
   1716 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   1717 	wg_calculate_keys(wgs, false);
   1718 	wg_clear_states(wgs);
   1719 
   1720 	/*
   1721 	 * Session is ready to receive data now that we have received
   1722 	 * the peer initiator's ephemeral key pair, generated our
   1723 	 * responder's ephemeral key pair, and derived a session key.
   1724 	 *
   1725 	 * Transition from UNKNOWN to INIT_PASSIVE to publish it to the
   1726 	 * data rx path, wg_handle_msg_data, where the
   1727 	 * atomic_load_acquire matching this atomic_store_release
   1728 	 * happens.
   1729 	 *
   1730 	 * (Session is not, however, ready to send data until the peer
   1731 	 * has acknowledged our response by sending its first data
   1732 	 * packet.  So don't swap the sessions yet.)
   1733 	 */
   1734 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_INIT_PASSIVE\n",
   1735 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   1736 	atomic_store_release(&wgs->wgs_state, WGS_STATE_INIT_PASSIVE);
   1737 	WG_TRACE("WGS_STATE_INIT_PASSIVE");
   1738 
   1739 out:
   1740 	mutex_exit(wgp->wgp_lock);
   1741 	wg_put_peer(wgp, &psref_peer);
   1742 }
   1743 
   1744 static struct socket *
   1745 wg_get_so_by_af(struct wg_softc *wg, const int af)
   1746 {
   1747 
   1748 	switch (af) {
   1749 #ifdef INET
   1750 	case AF_INET:
   1751 		return wg->wg_so4;
   1752 #endif
   1753 #ifdef INET6
   1754 	case AF_INET6:
   1755 		return wg->wg_so6;
   1756 #endif
   1757 	default:
   1758 		panic("wg: no such af: %d", af);
   1759 	}
   1760 }
   1761 
   1762 static struct socket *
   1763 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
   1764 {
   1765 
   1766 	return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
   1767 }
   1768 
   1769 static struct wg_sockaddr *
   1770 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
   1771 {
   1772 	struct wg_sockaddr *wgsa;
   1773 	int s;
   1774 
   1775 	s = pserialize_read_enter();
   1776 	wgsa = atomic_load_consume(&wgp->wgp_endpoint);
   1777 	psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
   1778 	pserialize_read_exit(s);
   1779 
   1780 	return wgsa;
   1781 }
   1782 
   1783 static void
   1784 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
   1785 {
   1786 
   1787 	psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
   1788 }
   1789 
   1790 static int
   1791 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
   1792 {
   1793 	int error;
   1794 	struct socket *so;
   1795 	struct psref psref;
   1796 	struct wg_sockaddr *wgsa;
   1797 
   1798 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   1799 	so = wg_get_so_by_peer(wgp, wgsa);
   1800 	error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
   1801 	wg_put_sa(wgp, wgsa, &psref);
   1802 
   1803 	return error;
   1804 }
   1805 
   1806 static void
   1807 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
   1808 {
   1809 	int error;
   1810 	struct mbuf *m;
   1811 	struct wg_msg_init *wgmi;
   1812 	struct wg_session *wgs;
   1813 
   1814 	KASSERT(mutex_owned(wgp->wgp_lock));
   1815 
   1816 	wgs = wgp->wgp_session_unstable;
   1817 	/* XXX pull dispatch out into wg_task_send_init_message */
   1818 	switch (wgs->wgs_state) {
   1819 	case WGS_STATE_UNKNOWN:		/* new session initiated by us */
   1820 		break;
   1821 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, stop */
   1822 		WG_TRACE("Session already initializing, skip starting new one");
   1823 		return;
   1824 	case WGS_STATE_INIT_PASSIVE:	/* peer was trying -- XXX what now? */
   1825 		WG_TRACE("Session already initializing, waiting for peer");
   1826 		return;
   1827 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1828 		panic("unstable session can't be established");
   1829 	case WGS_STATE_DESTROYING:	/* rekey initiated by us too early */
   1830 		WG_TRACE("Session destroying");
   1831 		wg_put_session_index(wg, wgs);
   1832 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1833 		    wgs->wgs_state);
   1834 		break;
   1835 	}
   1836 
   1837 	/*
   1838 	 * Assign a fresh session index.
   1839 	 */
   1840 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1841 	    wgs->wgs_state);
   1842 	wg_get_session_index(wg, wgs);
   1843 
   1844 	/*
   1845 	 * We have initiated a session.  Transition to INIT_ACTIVE.
   1846 	 * This doesn't publish it for use in the data rx path,
   1847 	 * wg_handle_msg_data, or in the data tx path, wg_output -- we
   1848 	 * have to wait for the peer to respond with their ephemeral
   1849 	 * public key before we can derive a session key for tx/rx.
   1850 	 * Hence only atomic_store_relaxed.
   1851 	 */
   1852 	WG_DLOG("session[L=%"PRIx32" R=(unknown)] -> WGS_STATE_INIT_ACTIVE\n",
   1853 	    wgs->wgs_local_index);
   1854 	atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_INIT_ACTIVE);
   1855 
   1856 	m = m_gethdr(M_WAIT, MT_DATA);
   1857 	if (sizeof(*wgmi) > MHLEN) {
   1858 		m_clget(m, M_WAIT);
   1859 		CTASSERT(sizeof(*wgmi) <= MCLBYTES);
   1860 	}
   1861 	m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
   1862 	wgmi = mtod(m, struct wg_msg_init *);
   1863 	wg_fill_msg_init(wg, wgp, wgs, wgmi);
   1864 
   1865 	error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
   1866 	if (error) {
   1867 		/*
   1868 		 * Sending out an initiation packet failed; give up on
   1869 		 * this session and toss packet waiting for it if any.
   1870 		 *
   1871 		 * XXX Why don't we just let the periodic handshake
   1872 		 * retry logic work in this case?
   1873 		 */
   1874 		WG_DLOG("send_hs_msg failed, error=%d\n", error);
   1875 		wg_put_session_index(wg, wgs);
   1876 		m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   1877 		m_freem(m);
   1878 		return;
   1879 	}
   1880 
   1881 	WG_TRACE("init msg sent");
   1882 	if (wgp->wgp_handshake_start_time == 0)
   1883 		wgp->wgp_handshake_start_time = time_uptime;
   1884 	callout_schedule(&wgp->wgp_handshake_timeout_timer,
   1885 	    MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
   1886 }
   1887 
   1888 static void
   1889 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   1890     struct wg_session *wgs, struct wg_msg_resp *wgmr,
   1891     const struct wg_msg_init *wgmi)
   1892 {
   1893 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   1894 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
   1895 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   1896 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1897 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1898 
   1899 	KASSERT(mutex_owned(wgp->wgp_lock));
   1900 	KASSERT(wgs == wgp->wgp_session_unstable);
   1901 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1902 	    wgs->wgs_state);
   1903 
   1904 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   1905 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   1906 
   1907 	wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
   1908 	wgmr->wgmr_sender = wgs->wgs_local_index;
   1909 	wgmr->wgmr_receiver = wgmi->wgmi_sender;
   1910 
   1911 	/* [W] 5.4.3 Second Message: Responder to Initiator */
   1912 
   1913 	/* [N] 2.2: "e" */
   1914 	/* Er^priv, Er^pub := DH-GENERATE() */
   1915 	wg_algo_generate_keypair(pubkey, privkey);
   1916 	/* Cr := KDF1(Cr, Er^pub) */
   1917 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1918 	/* msg.ephemeral := Er^pub */
   1919 	memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
   1920 	/* Hr := HASH(Hr || msg.ephemeral) */
   1921 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1922 
   1923 	WG_DUMP_HASH("ckey", ckey);
   1924 	WG_DUMP_HASH("hash", hash);
   1925 
   1926 	/* [N] 2.2: "ee" */
   1927 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   1928 	wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
   1929 
   1930 	/* [N] 2.2: "se" */
   1931 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   1932 	wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
   1933 
   1934 	/* [N] 9.2: "psk" */
   1935     {
   1936 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   1937 	/* Cr, r, k := KDF3(Cr, Q) */
   1938 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   1939 	    sizeof(wgp->wgp_psk));
   1940 	/* Hr := HASH(Hr || r) */
   1941 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   1942     }
   1943 
   1944 	/* msg.empty := AEAD(k, 0, e, Hr) */
   1945 	wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
   1946 	    cipher_key, 0, NULL, 0, hash, sizeof(hash));
   1947 	/* Hr := HASH(Hr || msg.empty) */
   1948 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   1949 
   1950 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   1951 
   1952 	/* [W] 5.4.4: Cookie MACs */
   1953 	/* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
   1954 	wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
   1955 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1956 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   1957 	/* Need mac1 to decrypt a cookie from a cookie message */
   1958 	memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
   1959 	    sizeof(wgp->wgp_last_sent_mac1));
   1960 	wgp->wgp_last_sent_mac1_valid = true;
   1961 
   1962 	if (wgp->wgp_latest_cookie_time == 0 ||
   1963 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1964 		/* msg.mac2 := 0^16 */
   1965 		memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
   1966 	else {
   1967 		/* msg.mac2 := MAC(Lm, msg_b) */
   1968 		wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
   1969 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1970 		    (const uint8_t *)wgmr,
   1971 		    offsetof(struct wg_msg_resp, wgmr_mac2),
   1972 		    NULL, 0);
   1973 	}
   1974 
   1975 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1976 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1977 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1978 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1979 	wgs->wgs_remote_index = wgmi->wgmi_sender;
   1980 	WG_DLOG("sender=%x\n", wgs->wgs_local_index);
   1981 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   1982 }
   1983 
   1984 static void
   1985 wg_swap_sessions(struct wg_peer *wgp)
   1986 {
   1987 	struct wg_session *wgs, *wgs_prev;
   1988 
   1989 	KASSERT(mutex_owned(wgp->wgp_lock));
   1990 
   1991 	/*
   1992 	 * Get the newly established session, to become the new
   1993 	 * session.  Caller must have transitioned from INIT_ACTIVE to
   1994 	 * INIT_PASSIVE or to ESTABLISHED already.  This will become
   1995 	 * the stable session.
   1996 	 */
   1997 	wgs = wgp->wgp_session_unstable;
   1998 	KASSERTMSG(wgs->wgs_state == WGS_STATE_ESTABLISHED, "state=%d",
   1999 	    wgs->wgs_state);
   2000 
   2001 	/*
   2002 	 * Get the stable session, which is either the previously
   2003 	 * established session in the ESTABLISHED state, or has not
   2004 	 * been established at all and is UNKNOWN.  This will become
   2005 	 * the unstable session.
   2006 	 */
   2007 	wgs_prev = wgp->wgp_session_stable;
   2008 	KASSERTMSG((wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
   2009 		wgs_prev->wgs_state == WGS_STATE_UNKNOWN),
   2010 	    "state=%d", wgs_prev->wgs_state);
   2011 
   2012 	/*
   2013 	 * Publish the newly established session for the tx path to use
   2014 	 * and make the other one the unstable session to handle
   2015 	 * stragglers in the rx path and later be used for the next
   2016 	 * session's handshake.
   2017 	 *
   2018 	 * If wgs_prev was previously ESTABLISHED, caller must
   2019 	 * transition it to DESTROYING and then pass through
   2020 	 * wg_put_session_index before recycling it.
   2021 	 *
   2022 	 * XXX Factor that logic out into this routine.
   2023 	 */
   2024 	atomic_store_release(&wgp->wgp_session_stable, wgs);
   2025 	wgp->wgp_session_unstable = wgs_prev;
   2026 }
   2027 
   2028 static void __noinline
   2029 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
   2030     const struct sockaddr *src)
   2031 {
   2032 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   2033 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
   2034 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   2035 	struct wg_peer *wgp;
   2036 	struct wg_session *wgs;
   2037 	struct psref psref;
   2038 	int error;
   2039 	uint8_t mac1[WG_MAC_LEN];
   2040 	struct wg_session *wgs_prev;
   2041 	struct mbuf *m;
   2042 
   2043 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   2044 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   2045 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   2046 
   2047 	/*
   2048 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   2049 	 * "the responder, ..., must always reject messages with an invalid
   2050 	 *  msg.mac1"
   2051 	 */
   2052 	if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
   2053 		WG_DLOG("mac1 is invalid\n");
   2054 		return;
   2055 	}
   2056 
   2057 	WG_TRACE("resp msg received");
   2058 	wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
   2059 	if (wgs == NULL) {
   2060 		WG_TRACE("No session found");
   2061 		return;
   2062 	}
   2063 
   2064 	wgp = wgs->wgs_peer;
   2065 
   2066 	mutex_enter(wgp->wgp_lock);
   2067 
   2068 	/* If we weren't waiting for a handshake response, drop it.  */
   2069 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
   2070 		WG_TRACE("peer sent spurious handshake response, ignoring");
   2071 		goto out;
   2072 	}
   2073 
   2074 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
   2075 		WG_TRACE("under load");
   2076 		/*
   2077 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   2078 		 * "the responder, ..., and when under load may reject messages
   2079 		 *  with an invalid msg.mac2.  If the responder receives a
   2080 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   2081 		 *  and is under load, it may respond with a cookie reply
   2082 		 *  message"
   2083 		 */
   2084 		uint8_t zero[WG_MAC_LEN] = {0};
   2085 		if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
   2086 			WG_TRACE("sending a cookie message: no cookie included");
   2087 			wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   2088 			    wgmr->wgmr_mac1, src);
   2089 			goto out;
   2090 		}
   2091 		if (!wgp->wgp_last_sent_cookie_valid) {
   2092 			WG_TRACE("sending a cookie message: no cookie sent ever");
   2093 			wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   2094 			    wgmr->wgmr_mac1, src);
   2095 			goto out;
   2096 		}
   2097 		uint8_t mac2[WG_MAC_LEN];
   2098 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   2099 		    WG_COOKIE_LEN, (const uint8_t *)wgmr,
   2100 		    offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
   2101 		if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
   2102 			WG_DLOG("mac2 is invalid\n");
   2103 			goto out;
   2104 		}
   2105 		WG_TRACE("under load, but continue to sending");
   2106 	}
   2107 
   2108 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   2109 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   2110 
   2111 	/*
   2112 	 * [W] 5.4.3 Second Message: Responder to Initiator
   2113 	 * "When the initiator receives this message, it does the same
   2114 	 *  operations so that its final state variables are identical,
   2115 	 *  replacing the operands of the DH function to produce equivalent
   2116 	 *  values."
   2117 	 *  Note that the following comments of operations are just copies of
   2118 	 *  the initiator's ones.
   2119 	 */
   2120 
   2121 	/* [N] 2.2: "e" */
   2122 	/* Cr := KDF1(Cr, Er^pub) */
   2123 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
   2124 	    sizeof(wgmr->wgmr_ephemeral));
   2125 	/* Hr := HASH(Hr || msg.ephemeral) */
   2126 	wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
   2127 
   2128 	WG_DUMP_HASH("ckey", ckey);
   2129 	WG_DUMP_HASH("hash", hash);
   2130 
   2131 	/* [N] 2.2: "ee" */
   2132 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   2133 	wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
   2134 	    wgmr->wgmr_ephemeral);
   2135 
   2136 	/* [N] 2.2: "se" */
   2137 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   2138 	wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
   2139 
   2140 	/* [N] 9.2: "psk" */
   2141     {
   2142 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   2143 	/* Cr, r, k := KDF3(Cr, Q) */
   2144 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   2145 	    sizeof(wgp->wgp_psk));
   2146 	/* Hr := HASH(Hr || r) */
   2147 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   2148     }
   2149 
   2150     {
   2151 	uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
   2152 	/* msg.empty := AEAD(k, 0, e, Hr) */
   2153 	error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
   2154 	    sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
   2155 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   2156 	if (error != 0) {
   2157 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2158 		    "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
   2159 		    if_name(&wg->wg_if), wgp->wgp_name);
   2160 		goto out;
   2161 	}
   2162 	/* Hr := HASH(Hr || msg.empty) */
   2163 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   2164     }
   2165 
   2166 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
   2167 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
   2168 	wgs->wgs_remote_index = wgmr->wgmr_sender;
   2169 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   2170 
   2171 	KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
   2172 	    wgs->wgs_state);
   2173 	wgs->wgs_time_established = time_uptime32;
   2174 	wg_schedule_session_dtor_timer(wgp);
   2175 	wgs->wgs_time_last_data_sent = 0;
   2176 	wgs->wgs_is_initiator = true;
   2177 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
   2178 	    " calculate keys as initiator\n",
   2179 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   2180 	wg_calculate_keys(wgs, true);
   2181 	wg_clear_states(wgs);
   2182 
   2183 	/*
   2184 	 * Session is ready to receive data now that we have received
   2185 	 * the responder's response.
   2186 	 *
   2187 	 * Transition from INIT_ACTIVE to ESTABLISHED to publish it to
   2188 	 * the data rx path, wg_handle_msg_data.
   2189 	 */
   2190 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32" -> WGS_STATE_ESTABLISHED\n",
   2191 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   2192 	atomic_store_release(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
   2193 	WG_TRACE("WGS_STATE_ESTABLISHED");
   2194 
   2195 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
   2196 
   2197 	/*
   2198 	 * Session is ready to send data now that we have received the
   2199 	 * responder's response.
   2200 	 *
   2201 	 * Swap the sessions to publish the new one as the stable
   2202 	 * session for the data tx path, wg_output.
   2203 	 */
   2204 	wg_swap_sessions(wgp);
   2205 	KASSERT(wgs == wgp->wgp_session_stable);
   2206 	wgs_prev = wgp->wgp_session_unstable;
   2207 	getnanotime(&wgp->wgp_last_handshake_time);
   2208 	wgp->wgp_handshake_start_time = 0;
   2209 	wgp->wgp_last_sent_mac1_valid = false;
   2210 	wgp->wgp_last_sent_cookie_valid = false;
   2211 
   2212 	wg_update_endpoint_if_necessary(wgp, src);
   2213 
   2214 	/*
   2215 	 * If we had a data packet queued up, send it; otherwise send a
   2216 	 * keepalive message -- either way we have to send something
   2217 	 * immediately or else the responder will never answer.
   2218 	 */
   2219 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   2220 		kpreempt_disable();
   2221 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
   2222 		M_SETCTX(m, wgp);
   2223 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   2224 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   2225 			    if_name(&wg->wg_if));
   2226 			m_freem(m);
   2227 		}
   2228 		kpreempt_enable();
   2229 	} else {
   2230 		wg_send_keepalive_msg(wgp, wgs);
   2231 	}
   2232 
   2233 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   2234 		/*
   2235 		 * Transition ESTABLISHED->DESTROYING.  The session
   2236 		 * will remain usable for the data rx path to process
   2237 		 * packets still in flight to us, but we won't use it
   2238 		 * for data tx.
   2239 		 */
   2240 		WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
   2241 		    " -> WGS_STATE_DESTROYING\n",
   2242 		    wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
   2243 		atomic_store_relaxed(&wgs_prev->wgs_state,
   2244 		    WGS_STATE_DESTROYING);
   2245 	} else {
   2246 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   2247 		    "state=%d", wgs_prev->wgs_state);
   2248 	}
   2249 
   2250 out:
   2251 	mutex_exit(wgp->wgp_lock);
   2252 	wg_put_session(wgs, &psref);
   2253 }
   2254 
   2255 static void
   2256 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   2257     struct wg_session *wgs, const struct wg_msg_init *wgmi)
   2258 {
   2259 	int error;
   2260 	struct mbuf *m;
   2261 	struct wg_msg_resp *wgmr;
   2262 
   2263 	KASSERT(mutex_owned(wgp->wgp_lock));
   2264 	KASSERT(wgs == wgp->wgp_session_unstable);
   2265 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   2266 	    wgs->wgs_state);
   2267 
   2268 	m = m_gethdr(M_WAIT, MT_DATA);
   2269 	if (sizeof(*wgmr) > MHLEN) {
   2270 		m_clget(m, M_WAIT);
   2271 		CTASSERT(sizeof(*wgmr) <= MCLBYTES);
   2272 	}
   2273 	m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
   2274 	wgmr = mtod(m, struct wg_msg_resp *);
   2275 	wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
   2276 
   2277 	error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
   2278 	if (error) {
   2279 		WG_DLOG("send_hs_msg failed, error=%d\n", error);
   2280 		return;
   2281 	}
   2282 
   2283 	WG_TRACE("resp msg sent");
   2284 }
   2285 
   2286 static struct wg_peer *
   2287 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
   2288     const uint8_t pubkey[static WG_STATIC_KEY_LEN], struct psref *psref)
   2289 {
   2290 	struct wg_peer *wgp;
   2291 
   2292 	int s = pserialize_read_enter();
   2293 	wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
   2294 	if (wgp != NULL)
   2295 		wg_get_peer(wgp, psref);
   2296 	pserialize_read_exit(s);
   2297 
   2298 	return wgp;
   2299 }
   2300 
   2301 static void
   2302 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
   2303     struct wg_msg_cookie *wgmc, const uint32_t sender,
   2304     const uint8_t mac1[static WG_MAC_LEN], const struct sockaddr *src)
   2305 {
   2306 	uint8_t cookie[WG_COOKIE_LEN];
   2307 	uint8_t key[WG_HASH_LEN];
   2308 	uint8_t addr[sizeof(struct in6_addr)];
   2309 	size_t addrlen;
   2310 	uint16_t uh_sport; /* be */
   2311 
   2312 	KASSERT(mutex_owned(wgp->wgp_lock));
   2313 
   2314 	wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
   2315 	wgmc->wgmc_receiver = sender;
   2316 	cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
   2317 
   2318 	/*
   2319 	 * [W] 5.4.7: Under Load: Cookie Reply Message
   2320 	 * "The secret variable, Rm, changes every two minutes to a
   2321 	 * random value"
   2322 	 */
   2323 	if ((time_uptime - wgp->wgp_last_cookiesecret_time) >
   2324 	    WG_COOKIESECRET_TIME) {
   2325 		cprng_strong(kern_cprng, wgp->wgp_cookiesecret,
   2326 		    sizeof(wgp->wgp_cookiesecret), 0);
   2327 		wgp->wgp_last_cookiesecret_time = time_uptime;
   2328 	}
   2329 
   2330 	switch (src->sa_family) {
   2331 #ifdef INET
   2332 	case AF_INET: {
   2333 		const struct sockaddr_in *sin = satocsin(src);
   2334 		addrlen = sizeof(sin->sin_addr);
   2335 		memcpy(addr, &sin->sin_addr, addrlen);
   2336 		uh_sport = sin->sin_port;
   2337 		break;
   2338 	    }
   2339 #endif
   2340 #ifdef INET6
   2341 	case AF_INET6: {
   2342 		const struct sockaddr_in6 *sin6 = satocsin6(src);
   2343 		addrlen = sizeof(sin6->sin6_addr);
   2344 		memcpy(addr, &sin6->sin6_addr, addrlen);
   2345 		uh_sport = sin6->sin6_port;
   2346 		break;
   2347 	    }
   2348 #endif
   2349 	default:
   2350 		panic("invalid af=%d", src->sa_family);
   2351 	}
   2352 
   2353 	wg_algo_mac(cookie, sizeof(cookie),
   2354 	    wgp->wgp_cookiesecret, sizeof(wgp->wgp_cookiesecret),
   2355 	    addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
   2356 	wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
   2357 	    sizeof(wg->wg_pubkey));
   2358 	wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
   2359 	    cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
   2360 
   2361 	/* Need to store to calculate mac2 */
   2362 	memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
   2363 	wgp->wgp_last_sent_cookie_valid = true;
   2364 }
   2365 
   2366 static void
   2367 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
   2368     const uint32_t sender, const uint8_t mac1[static WG_MAC_LEN],
   2369     const struct sockaddr *src)
   2370 {
   2371 	int error;
   2372 	struct mbuf *m;
   2373 	struct wg_msg_cookie *wgmc;
   2374 
   2375 	KASSERT(mutex_owned(wgp->wgp_lock));
   2376 
   2377 	m = m_gethdr(M_WAIT, MT_DATA);
   2378 	if (sizeof(*wgmc) > MHLEN) {
   2379 		m_clget(m, M_WAIT);
   2380 		CTASSERT(sizeof(*wgmc) <= MCLBYTES);
   2381 	}
   2382 	m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
   2383 	wgmc = mtod(m, struct wg_msg_cookie *);
   2384 	wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
   2385 
   2386 	error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
   2387 	if (error) {
   2388 		WG_DLOG("send_hs_msg failed, error=%d\n", error);
   2389 		return;
   2390 	}
   2391 
   2392 	WG_TRACE("cookie msg sent");
   2393 }
   2394 
   2395 static bool
   2396 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
   2397 {
   2398 #ifdef WG_DEBUG_PARAMS
   2399 	if (wg_force_underload)
   2400 		return true;
   2401 #endif
   2402 
   2403 	/*
   2404 	 * XXX we don't have a means of a load estimation.  The purpose of
   2405 	 * the mechanism is a DoS mitigation, so we consider frequent handshake
   2406 	 * messages as (a kind of) load; if a message of the same type comes
   2407 	 * to a peer within 1 second, we consider we are under load.
   2408 	 */
   2409 	time_t last = wgp->wgp_last_msg_received_time[msgtype];
   2410 	wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
   2411 	return (time_uptime - last) == 0;
   2412 }
   2413 
   2414 static void
   2415 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
   2416 {
   2417 
   2418 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2419 
   2420 	/*
   2421 	 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
   2422 	 */
   2423 	if (initiator) {
   2424 		wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
   2425 		    wgs->wgs_chaining_key, NULL, 0);
   2426 	} else {
   2427 		wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
   2428 		    wgs->wgs_chaining_key, NULL, 0);
   2429 	}
   2430 	WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
   2431 	WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
   2432 }
   2433 
   2434 static uint64_t
   2435 wg_session_get_send_counter(struct wg_session *wgs)
   2436 {
   2437 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2438 	return atomic_load_relaxed(&wgs->wgs_send_counter);
   2439 #else
   2440 	uint64_t send_counter;
   2441 
   2442 	mutex_enter(&wgs->wgs_send_counter_lock);
   2443 	send_counter = wgs->wgs_send_counter;
   2444 	mutex_exit(&wgs->wgs_send_counter_lock);
   2445 
   2446 	return send_counter;
   2447 #endif
   2448 }
   2449 
   2450 static uint64_t
   2451 wg_session_inc_send_counter(struct wg_session *wgs)
   2452 {
   2453 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2454 	return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
   2455 #else
   2456 	uint64_t send_counter;
   2457 
   2458 	mutex_enter(&wgs->wgs_send_counter_lock);
   2459 	send_counter = wgs->wgs_send_counter++;
   2460 	mutex_exit(&wgs->wgs_send_counter_lock);
   2461 
   2462 	return send_counter;
   2463 #endif
   2464 }
   2465 
   2466 static void
   2467 wg_clear_states(struct wg_session *wgs)
   2468 {
   2469 
   2470 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2471 
   2472 	wgs->wgs_send_counter = 0;
   2473 	sliwin_reset(&wgs->wgs_recvwin->window);
   2474 
   2475 #define wgs_clear(v)	explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
   2476 	wgs_clear(handshake_hash);
   2477 	wgs_clear(chaining_key);
   2478 	wgs_clear(ephemeral_key_pub);
   2479 	wgs_clear(ephemeral_key_priv);
   2480 	wgs_clear(ephemeral_key_peer);
   2481 #undef wgs_clear
   2482 }
   2483 
   2484 static struct wg_session *
   2485 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
   2486     struct psref *psref)
   2487 {
   2488 	struct wg_session *wgs;
   2489 
   2490 	int s = pserialize_read_enter();
   2491 	wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
   2492 	if (wgs != NULL) {
   2493 		uint32_t oindex __diagused =
   2494 		    atomic_load_relaxed(&wgs->wgs_local_index);
   2495 		KASSERTMSG(index == oindex,
   2496 		    "index=%"PRIx32" wgs->wgs_local_index=%"PRIx32,
   2497 		    index, oindex);
   2498 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   2499 	}
   2500 	pserialize_read_exit(s);
   2501 
   2502 	return wgs;
   2503 }
   2504 
   2505 static void
   2506 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
   2507 {
   2508 	struct mbuf *m;
   2509 
   2510 	/*
   2511 	 * [W] 6.5 Passive Keepalive
   2512 	 * "A keepalive message is simply a transport data message with
   2513 	 *  a zero-length encapsulated encrypted inner-packet."
   2514 	 */
   2515 	WG_TRACE("");
   2516 	m = m_gethdr(M_WAIT, MT_DATA);
   2517 	wg_send_data_msg(wgp, wgs, m);
   2518 }
   2519 
   2520 static bool
   2521 wg_need_to_send_init_message(struct wg_session *wgs)
   2522 {
   2523 	/*
   2524 	 * [W] 6.2 Transport Message Limits
   2525 	 * "if a peer is the initiator of a current secure session,
   2526 	 *  WireGuard will send a handshake initiation message to begin
   2527 	 *  a new secure session ... if after receiving a transport data
   2528 	 *  message, the current secure session is (REJECT-AFTER-TIME 
   2529 	 *  KEEPALIVE-TIMEOUT  REKEY-TIMEOUT) seconds old and it has
   2530 	 *  not yet acted upon this event."
   2531 	 */
   2532 	return wgs->wgs_is_initiator &&
   2533 	    atomic_load_relaxed(&wgs->wgs_time_last_data_sent) == 0 &&
   2534 	    (time_uptime32 - wgs->wgs_time_established >=
   2535 		(wg_reject_after_time - wg_keepalive_timeout -
   2536 		    wg_rekey_timeout));
   2537 }
   2538 
   2539 static void
   2540 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
   2541 {
   2542 
   2543 	mutex_enter(wgp->wgp_intr_lock);
   2544 	WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
   2545 	if (wgp->wgp_tasks == 0)
   2546 		/*
   2547 		 * XXX If the current CPU is already loaded -- e.g., if
   2548 		 * there's already a bunch of handshakes queued up --
   2549 		 * consider tossing this over to another CPU to
   2550 		 * distribute the load.
   2551 		 */
   2552 		workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
   2553 	wgp->wgp_tasks |= task;
   2554 	mutex_exit(wgp->wgp_intr_lock);
   2555 }
   2556 
   2557 static void
   2558 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
   2559 {
   2560 	struct wg_sockaddr *wgsa_prev;
   2561 
   2562 	WG_TRACE("Changing endpoint");
   2563 
   2564 	memcpy(wgp->wgp_endpoint0, new, new->sa_len);
   2565 	wgsa_prev = wgp->wgp_endpoint;
   2566 	atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
   2567 	wgp->wgp_endpoint0 = wgsa_prev;
   2568 	atomic_store_release(&wgp->wgp_endpoint_available, true);
   2569 
   2570 	wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
   2571 }
   2572 
   2573 static bool
   2574 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
   2575 {
   2576 	uint16_t packet_len;
   2577 	const struct ip *ip;
   2578 
   2579 	if (__predict_false(decrypted_len < sizeof(*ip))) {
   2580 		WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2581 		    sizeof(*ip));
   2582 		return false;
   2583 	}
   2584 
   2585 	ip = (const struct ip *)packet;
   2586 	if (ip->ip_v == 4)
   2587 		*af = AF_INET;
   2588 	else if (ip->ip_v == 6)
   2589 		*af = AF_INET6;
   2590 	else {
   2591 		WG_DLOG("ip_v=%d\n", ip->ip_v);
   2592 		return false;
   2593 	}
   2594 
   2595 	WG_DLOG("af=%d\n", *af);
   2596 
   2597 	switch (*af) {
   2598 #ifdef INET
   2599 	case AF_INET:
   2600 		packet_len = ntohs(ip->ip_len);
   2601 		break;
   2602 #endif
   2603 #ifdef INET6
   2604 	case AF_INET6: {
   2605 		const struct ip6_hdr *ip6;
   2606 
   2607 		if (__predict_false(decrypted_len < sizeof(*ip6))) {
   2608 			WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2609 			    sizeof(*ip6));
   2610 			return false;
   2611 		}
   2612 
   2613 		ip6 = (const struct ip6_hdr *)packet;
   2614 		packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
   2615 		break;
   2616 	}
   2617 #endif
   2618 	default:
   2619 		return false;
   2620 	}
   2621 
   2622 	if (packet_len > decrypted_len) {
   2623 		WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
   2624 		    decrypted_len);
   2625 		return false;
   2626 	}
   2627 
   2628 	return true;
   2629 }
   2630 
   2631 static bool
   2632 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
   2633     int af, char *packet)
   2634 {
   2635 	struct sockaddr_storage ss;
   2636 	struct sockaddr *sa;
   2637 	struct psref psref;
   2638 	struct wg_peer *wgp;
   2639 	bool ok;
   2640 
   2641 	/*
   2642 	 * II CRYPTOKEY ROUTING
   2643 	 * "it will only accept it if its source IP resolves in the
   2644 	 *  table to the public key used in the secure session for
   2645 	 *  decrypting it."
   2646 	 */
   2647 
   2648 	switch (af) {
   2649 #ifdef INET
   2650 	case AF_INET: {
   2651 		const struct ip *ip = (const struct ip *)packet;
   2652 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   2653 		sockaddr_in_init(sin, &ip->ip_src, 0);
   2654 		sa = sintosa(sin);
   2655 		break;
   2656 	}
   2657 #endif
   2658 #ifdef INET6
   2659 	case AF_INET6: {
   2660 		const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
   2661 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   2662 		sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
   2663 		sa = sin6tosa(sin6);
   2664 		break;
   2665 	}
   2666 #endif
   2667 	default:
   2668 		__USE(ss);
   2669 		return false;
   2670 	}
   2671 
   2672 	wgp = wg_pick_peer_by_sa(wg, sa, &psref);
   2673 	ok = (wgp == wgp_expected);
   2674 	if (wgp != NULL)
   2675 		wg_put_peer(wgp, &psref);
   2676 
   2677 	return ok;
   2678 }
   2679 
   2680 static void
   2681 wg_session_dtor_timer(void *arg)
   2682 {
   2683 	struct wg_peer *wgp = arg;
   2684 
   2685 	WG_TRACE("enter");
   2686 
   2687 	wg_schedule_session_dtor_timer(wgp);
   2688 	wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
   2689 }
   2690 
   2691 static void
   2692 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
   2693 {
   2694 
   2695 	/*
   2696 	 * If the periodic session destructor is already pending to
   2697 	 * handle the previous session, that's fine -- leave it in
   2698 	 * place; it will be scheduled again.
   2699 	 */
   2700 	if (callout_pending(&wgp->wgp_session_dtor_timer)) {
   2701 		WG_DLOG("session dtor already pending\n");
   2702 		return;
   2703 	}
   2704 
   2705 	WG_DLOG("scheduling session dtor in %u secs\n", wg_reject_after_time);
   2706 	callout_schedule(&wgp->wgp_session_dtor_timer,
   2707 	    wg_reject_after_time*hz);
   2708 }
   2709 
   2710 static bool
   2711 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
   2712 {
   2713 	if (sa1->sa_family != sa2->sa_family)
   2714 		return false;
   2715 
   2716 	switch (sa1->sa_family) {
   2717 #ifdef INET
   2718 	case AF_INET:
   2719 		return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
   2720 #endif
   2721 #ifdef INET6
   2722 	case AF_INET6:
   2723 		return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
   2724 #endif
   2725 	default:
   2726 		return false;
   2727 	}
   2728 }
   2729 
   2730 static void
   2731 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
   2732     const struct sockaddr *src)
   2733 {
   2734 	struct wg_sockaddr *wgsa;
   2735 	struct psref psref;
   2736 
   2737 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   2738 
   2739 #ifdef WG_DEBUG_LOG
   2740 	char oldaddr[128], newaddr[128];
   2741 	sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
   2742 	sockaddr_format(src, newaddr, sizeof(newaddr));
   2743 	WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
   2744 #endif
   2745 
   2746 	/*
   2747 	 * III: "Since the packet has authenticated correctly, the source IP of
   2748 	 * the outer UDP/IP packet is used to update the endpoint for peer..."
   2749 	 */
   2750 	if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
   2751 		!sockaddr_port_match(src, wgsatosa(wgsa)))) {
   2752 		/* XXX We can't change the endpoint twice in a short period */
   2753 		if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
   2754 			wg_change_endpoint(wgp, src);
   2755 		}
   2756 	}
   2757 
   2758 	wg_put_sa(wgp, wgsa, &psref);
   2759 }
   2760 
   2761 static void __noinline
   2762 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
   2763     const struct sockaddr *src)
   2764 {
   2765 	struct wg_msg_data *wgmd;
   2766 	char *encrypted_buf = NULL, *decrypted_buf;
   2767 	size_t encrypted_len, decrypted_len;
   2768 	struct wg_session *wgs;
   2769 	struct wg_peer *wgp;
   2770 	int state;
   2771 	uint32_t age;
   2772 	size_t mlen;
   2773 	struct psref psref;
   2774 	int error, af;
   2775 	bool success, free_encrypted_buf = false, ok;
   2776 	struct mbuf *n;
   2777 
   2778 	KASSERT(m->m_len >= sizeof(struct wg_msg_data));
   2779 	wgmd = mtod(m, struct wg_msg_data *);
   2780 
   2781 	KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
   2782 	WG_TRACE("data");
   2783 
   2784 	/* Find the putative session, or drop.  */
   2785 	wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
   2786 	if (wgs == NULL) {
   2787 		WG_TRACE("No session found");
   2788 		m_freem(m);
   2789 		return;
   2790 	}
   2791 
   2792 	/*
   2793 	 * We are only ready to handle data when in INIT_PASSIVE,
   2794 	 * ESTABLISHED, or DESTROYING.  All transitions out of that
   2795 	 * state dissociate the session index and drain psrefs.
   2796 	 *
   2797 	 * atomic_load_acquire matches atomic_store_release in either
   2798 	 * wg_handle_msg_init or wg_handle_msg_resp.  (The transition
   2799 	 * INIT_PASSIVE to ESTABLISHED in wg_task_establish_session
   2800 	 * doesn't make a difference for this rx path.)
   2801 	 */
   2802 	state = atomic_load_acquire(&wgs->wgs_state);
   2803 	switch (state) {
   2804 	case WGS_STATE_UNKNOWN:
   2805 	case WGS_STATE_INIT_ACTIVE:
   2806 		WG_TRACE("not yet ready for data");
   2807 		goto out;
   2808 	case WGS_STATE_INIT_PASSIVE:
   2809 	case WGS_STATE_ESTABLISHED:
   2810 	case WGS_STATE_DESTROYING:
   2811 		break;
   2812 	}
   2813 
   2814 	/*
   2815 	 * Reject if the session is too old.
   2816 	 */
   2817 	age = time_uptime32 - wgs->wgs_time_established;
   2818 	if (__predict_false(age >= wg_reject_after_time)) {
   2819 		WG_DLOG("session %"PRIx32" too old, %"PRIu32" sec\n",
   2820 		    wgmd->wgmd_receiver, age);
   2821 	       goto out;
   2822 	}
   2823 
   2824 	/*
   2825 	 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
   2826 	 * to update the endpoint if authentication succeeds.
   2827 	 */
   2828 	wgp = wgs->wgs_peer;
   2829 
   2830 	/*
   2831 	 * Reject outrageously wrong sequence numbers before doing any
   2832 	 * crypto work or taking any locks.
   2833 	 */
   2834 	error = sliwin_check_fast(&wgs->wgs_recvwin->window,
   2835 	    le64toh(wgmd->wgmd_counter));
   2836 	if (error) {
   2837 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2838 		    "%s: peer %s: out-of-window packet: %"PRIu64"\n",
   2839 		    if_name(&wg->wg_if), wgp->wgp_name,
   2840 		    le64toh(wgmd->wgmd_counter));
   2841 		goto out;
   2842 	}
   2843 
   2844 	/* Ensure the payload and authenticator are contiguous.  */
   2845 	mlen = m_length(m);
   2846 	encrypted_len = mlen - sizeof(*wgmd);
   2847 	if (encrypted_len < WG_AUTHTAG_LEN) {
   2848 		WG_DLOG("Short encrypted_len: %zu\n", encrypted_len);
   2849 		goto out;
   2850 	}
   2851 	success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
   2852 	if (success) {
   2853 		encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
   2854 	} else {
   2855 		encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
   2856 		if (encrypted_buf == NULL) {
   2857 			WG_DLOG("failed to allocate encrypted_buf\n");
   2858 			goto out;
   2859 		}
   2860 		m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
   2861 		free_encrypted_buf = true;
   2862 	}
   2863 	/* m_ensure_contig may change m regardless of its result */
   2864 	KASSERT(m->m_len >= sizeof(*wgmd));
   2865 	wgmd = mtod(m, struct wg_msg_data *);
   2866 
   2867 	/*
   2868 	 * Get a buffer for the plaintext.  Add WG_AUTHTAG_LEN to avoid
   2869 	 * a zero-length buffer (XXX).  Drop if plaintext is longer
   2870 	 * than MCLBYTES (XXX).
   2871 	 */
   2872 	decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
   2873 	if (decrypted_len > MCLBYTES) {
   2874 		/* FIXME handle larger data than MCLBYTES */
   2875 		WG_DLOG("couldn't handle larger data than MCLBYTES\n");
   2876 		goto out;
   2877 	}
   2878 	n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
   2879 	if (n == NULL) {
   2880 		WG_DLOG("wg_get_mbuf failed\n");
   2881 		goto out;
   2882 	}
   2883 	decrypted_buf = mtod(n, char *);
   2884 
   2885 	/* Decrypt and verify the packet.  */
   2886 	WG_DLOG("mlen=%zu, encrypted_len=%zu\n", mlen, encrypted_len);
   2887 	error = wg_algo_aead_dec(decrypted_buf,
   2888 	    encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
   2889 	    wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
   2890 	    encrypted_len, NULL, 0);
   2891 	if (error != 0) {
   2892 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2893 		    "%s: peer %s: failed to wg_algo_aead_dec\n",
   2894 		    if_name(&wg->wg_if), wgp->wgp_name);
   2895 		m_freem(n);
   2896 		goto out;
   2897 	}
   2898 	WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
   2899 
   2900 	/* Packet is genuine.  Reject it if a replay or just too old.  */
   2901 	mutex_enter(&wgs->wgs_recvwin->lock);
   2902 	error = sliwin_update(&wgs->wgs_recvwin->window,
   2903 	    le64toh(wgmd->wgmd_counter));
   2904 	mutex_exit(&wgs->wgs_recvwin->lock);
   2905 	if (error) {
   2906 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2907 		    "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
   2908 		    if_name(&wg->wg_if), wgp->wgp_name,
   2909 		    le64toh(wgmd->wgmd_counter));
   2910 		m_freem(n);
   2911 		goto out;
   2912 	}
   2913 
   2914 	/* We're done with m now; free it and chuck the pointers.  */
   2915 	m_freem(m);
   2916 	m = NULL;
   2917 	wgmd = NULL;
   2918 
   2919 	/*
   2920 	 * The packet is genuine.  Update the peer's endpoint if the
   2921 	 * source address changed.
   2922 	 *
   2923 	 * XXX How to prevent DoS by replaying genuine packets from the
   2924 	 * wrong source address?
   2925 	 */
   2926 	wg_update_endpoint_if_necessary(wgp, src);
   2927 
   2928 	/*
   2929 	 * Validate the encapsulated packet header and get the address
   2930 	 * family, or drop.
   2931 	 */
   2932 	ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
   2933 	if (!ok) {
   2934 		m_freem(n);
   2935 		goto update_state;
   2936 	}
   2937 
   2938 	/* Submit it into our network stack if routable.  */
   2939 	ok = wg_validate_route(wg, wgp, af, decrypted_buf);
   2940 	if (ok) {
   2941 		wg->wg_ops->input(&wg->wg_if, n, af);
   2942 	} else {
   2943 		char addrstr[INET6_ADDRSTRLEN];
   2944 		memset(addrstr, 0, sizeof(addrstr));
   2945 		switch (af) {
   2946 #ifdef INET
   2947 		case AF_INET: {
   2948 			const struct ip *ip = (const struct ip *)decrypted_buf;
   2949 			IN_PRINT(addrstr, &ip->ip_src);
   2950 			break;
   2951 		}
   2952 #endif
   2953 #ifdef INET6
   2954 		case AF_INET6: {
   2955 			const struct ip6_hdr *ip6 =
   2956 			    (const struct ip6_hdr *)decrypted_buf;
   2957 			IN6_PRINT(addrstr, &ip6->ip6_src);
   2958 			break;
   2959 		}
   2960 #endif
   2961 		default:
   2962 			panic("invalid af=%d", af);
   2963 		}
   2964 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2965 		    "%s: peer %s: invalid source address (%s)\n",
   2966 		    if_name(&wg->wg_if), wgp->wgp_name, addrstr);
   2967 		m_freem(n);
   2968 		/*
   2969 		 * The inner address is invalid however the session is valid
   2970 		 * so continue the session processing below.
   2971 		 */
   2972 	}
   2973 	n = NULL;
   2974 
   2975 update_state:
   2976 	/* Update the state machine if necessary.  */
   2977 	if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
   2978 		/*
   2979 		 * We were waiting for the initiator to send their
   2980 		 * first data transport message, and that has happened.
   2981 		 * Schedule a task to establish this session.
   2982 		 */
   2983 		wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
   2984 	} else {
   2985 		if (__predict_false(wg_need_to_send_init_message(wgs))) {
   2986 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   2987 		}
   2988 		/*
   2989 		 * [W] 6.5 Passive Keepalive
   2990 		 * "If a peer has received a validly-authenticated transport
   2991 		 *  data message (section 5.4.6), but does not have any packets
   2992 		 *  itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
   2993 		 *  a keepalive message."
   2994 		 */
   2995 		const uint32_t now = time_uptime32;
   2996 		const uint32_t time_last_data_sent =
   2997 		    atomic_load_relaxed(&wgs->wgs_time_last_data_sent);
   2998 		WG_DLOG("time_uptime32=%"PRIu32
   2999 		    " wgs_time_last_data_sent=%"PRIu32"\n",
   3000 		    now, time_last_data_sent);
   3001 		if ((now - time_last_data_sent) >= wg_keepalive_timeout) {
   3002 			WG_TRACE("Schedule sending keepalive message");
   3003 			/*
   3004 			 * We can't send a keepalive message here to avoid
   3005 			 * a deadlock;  we already hold the solock of a socket
   3006 			 * that is used to send the message.
   3007 			 */
   3008 			wg_schedule_peer_task(wgp,
   3009 			    WGP_TASK_SEND_KEEPALIVE_MESSAGE);
   3010 		}
   3011 	}
   3012 out:
   3013 	wg_put_session(wgs, &psref);
   3014 	m_freem(m);
   3015 	if (free_encrypted_buf)
   3016 		kmem_intr_free(encrypted_buf, encrypted_len);
   3017 }
   3018 
   3019 static void __noinline
   3020 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
   3021 {
   3022 	struct wg_session *wgs;
   3023 	struct wg_peer *wgp;
   3024 	struct psref psref;
   3025 	int error;
   3026 	uint8_t key[WG_HASH_LEN];
   3027 	uint8_t cookie[WG_COOKIE_LEN];
   3028 
   3029 	WG_TRACE("cookie msg received");
   3030 
   3031 	/* Find the putative session.  */
   3032 	wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
   3033 	if (wgs == NULL) {
   3034 		WG_TRACE("No session found");
   3035 		return;
   3036 	}
   3037 
   3038 	/* Lock the peer so we can update the cookie state.  */
   3039 	wgp = wgs->wgs_peer;
   3040 	mutex_enter(wgp->wgp_lock);
   3041 
   3042 	if (!wgp->wgp_last_sent_mac1_valid) {
   3043 		WG_TRACE("No valid mac1 sent (or expired)");
   3044 		goto out;
   3045 	}
   3046 
   3047 	/*
   3048 	 * wgp_last_sent_mac1_valid is only set to true when we are
   3049 	 * transitioning to INIT_ACTIVE or INIT_PASSIVE, and always
   3050 	 * cleared on transition out of them.
   3051 	 */
   3052 	KASSERTMSG((wgs->wgs_state == WGS_STATE_INIT_ACTIVE ||
   3053 		wgs->wgs_state == WGS_STATE_INIT_PASSIVE),
   3054 	    "state=%d", wgs->wgs_state);
   3055 
   3056 	/* Decrypt the cookie and store it for later handshake retry.  */
   3057 	wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
   3058 	    sizeof(wgp->wgp_pubkey));
   3059 	error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
   3060 	    wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
   3061 	    wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
   3062 	    wgmc->wgmc_salt);
   3063 	if (error != 0) {
   3064 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   3065 		    "%s: peer %s: wg_algo_aead_dec for cookie failed: "
   3066 		    "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
   3067 		goto out;
   3068 	}
   3069 	/*
   3070 	 * [W] 6.6: Interaction with Cookie Reply System
   3071 	 * "it should simply store the decrypted cookie value from the cookie
   3072 	 *  reply message, and wait for the expiration of the REKEY-TIMEOUT
   3073 	 *  timer for retrying a handshake initiation message."
   3074 	 */
   3075 	wgp->wgp_latest_cookie_time = time_uptime;
   3076 	memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
   3077 out:
   3078 	mutex_exit(wgp->wgp_lock);
   3079 	wg_put_session(wgs, &psref);
   3080 }
   3081 
   3082 static struct mbuf *
   3083 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
   3084 {
   3085 	struct wg_msg wgm;
   3086 	size_t mbuflen;
   3087 	size_t msglen;
   3088 
   3089 	/*
   3090 	 * Get the mbuf chain length.  It is already guaranteed, by
   3091 	 * wg_overudp_cb, to be large enough for a struct wg_msg.
   3092 	 */
   3093 	mbuflen = m_length(m);
   3094 	KASSERT(mbuflen >= sizeof(struct wg_msg));
   3095 
   3096 	/*
   3097 	 * Copy the message header (32-bit message type) out -- we'll
   3098 	 * worry about contiguity and alignment later.
   3099 	 */
   3100 	m_copydata(m, 0, sizeof(wgm), &wgm);
   3101 	switch (le32toh(wgm.wgm_type)) {
   3102 	case WG_MSG_TYPE_INIT:
   3103 		msglen = sizeof(struct wg_msg_init);
   3104 		break;
   3105 	case WG_MSG_TYPE_RESP:
   3106 		msglen = sizeof(struct wg_msg_resp);
   3107 		break;
   3108 	case WG_MSG_TYPE_COOKIE:
   3109 		msglen = sizeof(struct wg_msg_cookie);
   3110 		break;
   3111 	case WG_MSG_TYPE_DATA:
   3112 		msglen = sizeof(struct wg_msg_data);
   3113 		break;
   3114 	default:
   3115 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   3116 		    "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
   3117 		    le32toh(wgm.wgm_type));
   3118 		goto error;
   3119 	}
   3120 
   3121 	/* Verify the mbuf chain is long enough for this type of message.  */
   3122 	if (__predict_false(mbuflen < msglen)) {
   3123 		WG_DLOG("Invalid msg size: mbuflen=%zu type=%u\n", mbuflen,
   3124 		    le32toh(wgm.wgm_type));
   3125 		goto error;
   3126 	}
   3127 
   3128 	/* Make the message header contiguous if necessary.  */
   3129 	if (__predict_false(m->m_len < msglen)) {
   3130 		m = m_pullup(m, msglen);
   3131 		if (m == NULL)
   3132 			return NULL;
   3133 	}
   3134 
   3135 	return m;
   3136 
   3137 error:
   3138 	m_freem(m);
   3139 	return NULL;
   3140 }
   3141 
   3142 static void
   3143 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
   3144     const struct sockaddr *src)
   3145 {
   3146 	struct wg_msg *wgm;
   3147 
   3148 	KASSERT(curlwp->l_pflag & LP_BOUND);
   3149 
   3150 	m = wg_validate_msg_header(wg, m);
   3151 	if (__predict_false(m == NULL))
   3152 		return;
   3153 
   3154 	KASSERT(m->m_len >= sizeof(struct wg_msg));
   3155 	wgm = mtod(m, struct wg_msg *);
   3156 	switch (le32toh(wgm->wgm_type)) {
   3157 	case WG_MSG_TYPE_INIT:
   3158 		wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
   3159 		break;
   3160 	case WG_MSG_TYPE_RESP:
   3161 		wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
   3162 		break;
   3163 	case WG_MSG_TYPE_COOKIE:
   3164 		wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
   3165 		break;
   3166 	case WG_MSG_TYPE_DATA:
   3167 		wg_handle_msg_data(wg, m, src);
   3168 		/* wg_handle_msg_data frees m for us */
   3169 		return;
   3170 	default:
   3171 		panic("invalid message type: %d", le32toh(wgm->wgm_type));
   3172 	}
   3173 
   3174 	m_freem(m);
   3175 }
   3176 
   3177 static void
   3178 wg_receive_packets(struct wg_softc *wg, const int af)
   3179 {
   3180 
   3181 	for (;;) {
   3182 		int error, flags;
   3183 		struct socket *so;
   3184 		struct mbuf *m = NULL;
   3185 		struct uio dummy_uio;
   3186 		struct mbuf *paddr = NULL;
   3187 		struct sockaddr *src;
   3188 
   3189 		so = wg_get_so_by_af(wg, af);
   3190 		flags = MSG_DONTWAIT;
   3191 		dummy_uio.uio_resid = 1000000000;
   3192 
   3193 		error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
   3194 		    &flags);
   3195 		if (error || m == NULL) {
   3196 			//if (error == EWOULDBLOCK)
   3197 			return;
   3198 		}
   3199 
   3200 		KASSERT(paddr != NULL);
   3201 		KASSERT(paddr->m_len >= sizeof(struct sockaddr));
   3202 		src = mtod(paddr, struct sockaddr *);
   3203 
   3204 		wg_handle_packet(wg, m, src);
   3205 	}
   3206 }
   3207 
   3208 static void
   3209 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
   3210 {
   3211 
   3212 	psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
   3213 }
   3214 
   3215 static void
   3216 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
   3217 {
   3218 
   3219 	psref_release(psref, &wgp->wgp_psref, wg_psref_class);
   3220 }
   3221 
   3222 static void
   3223 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
   3224 {
   3225 	struct wg_session *wgs;
   3226 
   3227 	WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
   3228 
   3229 	KASSERT(mutex_owned(wgp->wgp_lock));
   3230 
   3231 	if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
   3232 		WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
   3233 		    if_name(&wg->wg_if));
   3234 		/* XXX should do something? */
   3235 		return;
   3236 	}
   3237 
   3238 	/*
   3239 	 * If we already have an established session, there's no need
   3240 	 * to initiate a new one -- unless the rekey-after-time or
   3241 	 * rekey-after-messages limits have passed.
   3242 	 */
   3243 	wgs = wgp->wgp_session_stable;
   3244 	if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
   3245 	    !atomic_load_relaxed(&wgs->wgs_force_rekey))
   3246 		return;
   3247 
   3248 	/*
   3249 	 * Ensure we're initiating a new session.  If the unstable
   3250 	 * session is already INIT_ACTIVE or INIT_PASSIVE, this does
   3251 	 * nothing.
   3252 	 */
   3253 	wg_send_handshake_msg_init(wg, wgp);
   3254 }
   3255 
   3256 static void
   3257 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
   3258 {
   3259 	struct wg_session *wgs;
   3260 
   3261 	WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
   3262 
   3263 	KASSERT(mutex_owned(wgp->wgp_lock));
   3264 	KASSERT(wgp->wgp_handshake_start_time != 0);
   3265 
   3266 	wgs = wgp->wgp_session_unstable;
   3267 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   3268 		return;
   3269 
   3270 	/*
   3271 	 * XXX no real need to assign a new index here, but we do need
   3272 	 * to transition to UNKNOWN temporarily
   3273 	 */
   3274 	wg_put_session_index(wg, wgs);
   3275 
   3276 	/* [W] 6.4 Handshake Initiation Retransmission */
   3277 	if ((time_uptime - wgp->wgp_handshake_start_time) >
   3278 	    wg_rekey_attempt_time) {
   3279 		/* Give up handshaking */
   3280 		wgp->wgp_handshake_start_time = 0;
   3281 		WG_TRACE("give up");
   3282 
   3283 		/*
   3284 		 * If a new data packet comes, handshaking will be retried
   3285 		 * and a new session would be established at that time,
   3286 		 * however we don't want to send pending packets then.
   3287 		 */
   3288 		wg_purge_pending_packets(wgp);
   3289 		return;
   3290 	}
   3291 
   3292 	wg_task_send_init_message(wg, wgp);
   3293 }
   3294 
   3295 static void
   3296 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
   3297 {
   3298 	struct wg_session *wgs, *wgs_prev;
   3299 	struct mbuf *m;
   3300 
   3301 	KASSERT(mutex_owned(wgp->wgp_lock));
   3302 
   3303 	wgs = wgp->wgp_session_unstable;
   3304 	if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
   3305 		/* XXX Can this happen?  */
   3306 		return;
   3307 
   3308 	wgs->wgs_time_last_data_sent = 0;
   3309 	wgs->wgs_is_initiator = false;
   3310 
   3311 	/*
   3312 	 * Session was already ready to receive data.  Transition from
   3313 	 * INIT_PASSIVE to ESTABLISHED just so we can swap the
   3314 	 * sessions.
   3315 	 *
   3316 	 * atomic_store_relaxed because this doesn't affect the data rx
   3317 	 * path, wg_handle_msg_data -- changing from INIT_PASSIVE to
   3318 	 * ESTABLISHED makes no difference to the data rx path, and the
   3319 	 * transition to INIT_PASSIVE with store-release already
   3320 	 * published the state needed by the data rx path.
   3321 	 */
   3322 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_ESTABLISHED\n",
   3323 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   3324 	atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
   3325 	WG_TRACE("WGS_STATE_ESTABLISHED");
   3326 
   3327 	/*
   3328 	 * Session is ready to send data too now that we have received
   3329 	 * the peer initiator's first data packet.
   3330 	 *
   3331 	 * Swap the sessions to publish the new one as the stable
   3332 	 * session for the data tx path, wg_output.
   3333 	 */
   3334 	wg_swap_sessions(wgp);
   3335 	KASSERT(wgs == wgp->wgp_session_stable);
   3336 	wgs_prev = wgp->wgp_session_unstable;
   3337 	getnanotime(&wgp->wgp_last_handshake_time);
   3338 	wgp->wgp_handshake_start_time = 0;
   3339 	wgp->wgp_last_sent_mac1_valid = false;
   3340 	wgp->wgp_last_sent_cookie_valid = false;
   3341 
   3342 	/* If we had a data packet queued up, send it.  */
   3343 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   3344 		kpreempt_disable();
   3345 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
   3346 		M_SETCTX(m, wgp);
   3347 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   3348 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   3349 			    if_name(&wg->wg_if));
   3350 			m_freem(m);
   3351 		}
   3352 		kpreempt_enable();
   3353 	}
   3354 
   3355 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   3356 		/*
   3357 		 * Transition ESTABLISHED->DESTROYING.  The session
   3358 		 * will remain usable for the data rx path to process
   3359 		 * packets still in flight to us, but we won't use it
   3360 		 * for data tx.
   3361 		 */
   3362 		WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
   3363 		    " -> WGS_STATE_DESTROYING\n",
   3364 		    wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
   3365 		atomic_store_relaxed(&wgs_prev->wgs_state,
   3366 		    WGS_STATE_DESTROYING);
   3367 	} else {
   3368 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   3369 		    "state=%d", wgs_prev->wgs_state);
   3370 		WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
   3371 		    " -> WGS_STATE_UNKNOWN\n",
   3372 		    wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
   3373 		wgs_prev->wgs_local_index = 0; /* paranoia */
   3374 		wgs_prev->wgs_remote_index = 0; /* paranoia */
   3375 		wg_clear_states(wgs_prev); /* paranoia */
   3376 		wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
   3377 	}
   3378 }
   3379 
   3380 static void
   3381 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
   3382 {
   3383 
   3384 	WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
   3385 
   3386 	KASSERT(mutex_owned(wgp->wgp_lock));
   3387 
   3388 	if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
   3389 		pserialize_perform(wgp->wgp_psz);
   3390 		mutex_exit(wgp->wgp_lock);
   3391 		psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
   3392 		    wg_psref_class);
   3393 		psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
   3394 		    wg_psref_class);
   3395 		mutex_enter(wgp->wgp_lock);
   3396 		atomic_store_release(&wgp->wgp_endpoint_changing, 0);
   3397 	}
   3398 }
   3399 
   3400 static void
   3401 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
   3402 {
   3403 	struct wg_session *wgs;
   3404 
   3405 	WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
   3406 
   3407 	KASSERT(mutex_owned(wgp->wgp_lock));
   3408 
   3409 	wgs = wgp->wgp_session_stable;
   3410 	if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
   3411 		return;
   3412 
   3413 	wg_send_keepalive_msg(wgp, wgs);
   3414 }
   3415 
   3416 static void
   3417 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
   3418 {
   3419 	struct wg_session *wgs;
   3420 	uint32_t age;
   3421 
   3422 	WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
   3423 
   3424 	KASSERT(mutex_owned(wgp->wgp_lock));
   3425 
   3426 	/*
   3427 	 * If theres's any previous unstable session, i.e., one that
   3428 	 * was ESTABLISHED and is now DESTROYING, older than
   3429 	 * reject-after-time, destroy it.  Upcoming sessions are still
   3430 	 * in INIT_ACTIVE or INIT_PASSIVE -- we don't touch those here.
   3431 	 */
   3432 	wgs = wgp->wgp_session_unstable;
   3433 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
   3434 	if (wgs->wgs_state == WGS_STATE_DESTROYING &&
   3435 	    ((age = (time_uptime32 - wgs->wgs_time_established)) >=
   3436 		wg_reject_after_time)) {
   3437 		WG_DLOG("destroying past session %"PRIu32" sec old\n", age);
   3438 		wg_put_session_index(wg, wgs);
   3439 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   3440 		    wgs->wgs_state);
   3441 	}
   3442 
   3443 	/*
   3444 	 * If theres's any ESTABLISHED stable session older than
   3445 	 * reject-after-time, destroy it.  (The stable session can also
   3446 	 * be in UNKNOWN state -- nothing to do in that case)
   3447 	 */
   3448 	wgs = wgp->wgp_session_stable;
   3449 	KASSERT(wgs->wgs_state != WGS_STATE_INIT_ACTIVE);
   3450 	KASSERT(wgs->wgs_state != WGS_STATE_INIT_PASSIVE);
   3451 	KASSERT(wgs->wgs_state != WGS_STATE_DESTROYING);
   3452 	if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
   3453 	    ((age = (time_uptime32 - wgs->wgs_time_established)) >=
   3454 		wg_reject_after_time)) {
   3455 		WG_DLOG("destroying current session %"PRIu32" sec old\n", age);
   3456 		atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_DESTROYING);
   3457 		wg_put_session_index(wg, wgs);
   3458 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   3459 		    wgs->wgs_state);
   3460 	}
   3461 
   3462 	/*
   3463 	 * If there's no sessions left, no need to have the timer run
   3464 	 * until the next time around -- halt it.
   3465 	 *
   3466 	 * It is only ever scheduled with wgp_lock held or in the
   3467 	 * callout itself, and callout_halt prevents rescheudling
   3468 	 * itself, so this never races with rescheduling.
   3469 	 */
   3470 	if (wgp->wgp_session_unstable->wgs_state == WGS_STATE_UNKNOWN &&
   3471 	    wgp->wgp_session_stable->wgs_state == WGS_STATE_UNKNOWN)
   3472 		callout_halt(&wgp->wgp_session_dtor_timer, NULL);
   3473 }
   3474 
   3475 static void
   3476 wg_peer_work(struct work *wk, void *cookie)
   3477 {
   3478 	struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
   3479 	struct wg_softc *wg = wgp->wgp_sc;
   3480 	unsigned int tasks;
   3481 
   3482 	mutex_enter(wgp->wgp_intr_lock);
   3483 	while ((tasks = wgp->wgp_tasks) != 0) {
   3484 		wgp->wgp_tasks = 0;
   3485 		mutex_exit(wgp->wgp_intr_lock);
   3486 
   3487 		mutex_enter(wgp->wgp_lock);
   3488 		if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
   3489 			wg_task_send_init_message(wg, wgp);
   3490 		if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
   3491 			wg_task_retry_handshake(wg, wgp);
   3492 		if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
   3493 			wg_task_establish_session(wg, wgp);
   3494 		if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
   3495 			wg_task_endpoint_changed(wg, wgp);
   3496 		if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
   3497 			wg_task_send_keepalive_message(wg, wgp);
   3498 		if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
   3499 			wg_task_destroy_prev_session(wg, wgp);
   3500 		mutex_exit(wgp->wgp_lock);
   3501 
   3502 		mutex_enter(wgp->wgp_intr_lock);
   3503 	}
   3504 	mutex_exit(wgp->wgp_intr_lock);
   3505 }
   3506 
   3507 static void
   3508 wg_job(struct threadpool_job *job)
   3509 {
   3510 	struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
   3511 	int bound, upcalls;
   3512 
   3513 	mutex_enter(wg->wg_intr_lock);
   3514 	while ((upcalls = wg->wg_upcalls) != 0) {
   3515 		wg->wg_upcalls = 0;
   3516 		mutex_exit(wg->wg_intr_lock);
   3517 		bound = curlwp_bind();
   3518 		if (ISSET(upcalls, WG_UPCALL_INET))
   3519 			wg_receive_packets(wg, AF_INET);
   3520 		if (ISSET(upcalls, WG_UPCALL_INET6))
   3521 			wg_receive_packets(wg, AF_INET6);
   3522 		curlwp_bindx(bound);
   3523 		mutex_enter(wg->wg_intr_lock);
   3524 	}
   3525 	threadpool_job_done(job);
   3526 	mutex_exit(wg->wg_intr_lock);
   3527 }
   3528 
   3529 static int
   3530 wg_bind_port(struct wg_softc *wg, const uint16_t port)
   3531 {
   3532 	int error = 0;
   3533 	uint16_t old_port = wg->wg_listen_port;
   3534 
   3535 	if (port != 0 && old_port == port)
   3536 		return 0;
   3537 
   3538 #ifdef INET
   3539 	struct sockaddr_in _sin, *sin = &_sin;
   3540 	sin->sin_len = sizeof(*sin);
   3541 	sin->sin_family = AF_INET;
   3542 	sin->sin_addr.s_addr = INADDR_ANY;
   3543 	sin->sin_port = htons(port);
   3544 
   3545 	error = sobind(wg->wg_so4, sintosa(sin), curlwp);
   3546 	if (error)
   3547 		return error;
   3548 #endif
   3549 
   3550 #ifdef INET6
   3551 	struct sockaddr_in6 _sin6, *sin6 = &_sin6;
   3552 	sin6->sin6_len = sizeof(*sin6);
   3553 	sin6->sin6_family = AF_INET6;
   3554 	sin6->sin6_addr = in6addr_any;
   3555 	sin6->sin6_port = htons(port);
   3556 
   3557 	error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
   3558 	if (error)
   3559 		return error;
   3560 #endif
   3561 
   3562 	wg->wg_listen_port = port;
   3563 
   3564 	return error;
   3565 }
   3566 
   3567 static void
   3568 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
   3569 {
   3570 	struct wg_softc *wg = cookie;
   3571 	int reason;
   3572 
   3573 	reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
   3574 	    WG_UPCALL_INET :
   3575 	    WG_UPCALL_INET6;
   3576 
   3577 	mutex_enter(wg->wg_intr_lock);
   3578 	wg->wg_upcalls |= reason;
   3579 	threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
   3580 	mutex_exit(wg->wg_intr_lock);
   3581 }
   3582 
   3583 static int
   3584 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
   3585     struct sockaddr *src, void *arg)
   3586 {
   3587 	struct wg_softc *wg = arg;
   3588 	struct wg_msg wgm;
   3589 	struct mbuf *m = *mp;
   3590 
   3591 	WG_TRACE("enter");
   3592 
   3593 	/* Verify the mbuf chain is long enough to have a wg msg header.  */
   3594 	KASSERT(offset <= m_length(m));
   3595 	if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
   3596 		/* drop on the floor */
   3597 		m_freem(m);
   3598 		return -1;
   3599 	}
   3600 
   3601 	/*
   3602 	 * Copy the message header (32-bit message type) out -- we'll
   3603 	 * worry about contiguity and alignment later.
   3604 	 */
   3605 	m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
   3606 	WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
   3607 
   3608 	/*
   3609 	 * Handle DATA packets promptly as they arrive, if they are in
   3610 	 * an active session.  Other packets may require expensive
   3611 	 * public-key crypto and are not as sensitive to latency, so
   3612 	 * defer them to the worker thread.
   3613 	 */
   3614 	switch (le32toh(wgm.wgm_type)) {
   3615 	case WG_MSG_TYPE_DATA:
   3616 		/* handle immediately */
   3617 		m_adj(m, offset);
   3618 		if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
   3619 			m = m_pullup(m, sizeof(struct wg_msg_data));
   3620 			if (m == NULL)
   3621 				return -1;
   3622 		}
   3623 		wg_handle_msg_data(wg, m, src);
   3624 		*mp = NULL;
   3625 		return 1;
   3626 	case WG_MSG_TYPE_INIT:
   3627 	case WG_MSG_TYPE_RESP:
   3628 	case WG_MSG_TYPE_COOKIE:
   3629 		/* pass through to so_receive in wg_receive_packets */
   3630 		return 0;
   3631 	default:
   3632 		/* drop on the floor */
   3633 		m_freem(m);
   3634 		return -1;
   3635 	}
   3636 }
   3637 
   3638 static int
   3639 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
   3640 {
   3641 	int error;
   3642 	struct socket *so;
   3643 
   3644 	error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
   3645 	if (error != 0)
   3646 		return error;
   3647 
   3648 	solock(so);
   3649 	so->so_upcallarg = wg;
   3650 	so->so_upcall = wg_so_upcall;
   3651 	so->so_rcv.sb_flags |= SB_UPCALL;
   3652 	inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
   3653 	sounlock(so);
   3654 
   3655 	*sop = so;
   3656 
   3657 	return 0;
   3658 }
   3659 
   3660 static bool
   3661 wg_session_hit_limits(struct wg_session *wgs)
   3662 {
   3663 
   3664 	/*
   3665 	 * [W] 6.2: Transport Message Limits
   3666 	 * "After REJECT-AFTER-MESSAGES transport data messages or after the
   3667 	 *  current secure session is REJECT-AFTER-TIME seconds old, whichever
   3668 	 *  comes first, WireGuard will refuse to send or receive any more
   3669 	 *  transport data messages using the current secure session, ..."
   3670 	 */
   3671 	KASSERT(wgs->wgs_time_established != 0 || time_uptime > UINT32_MAX);
   3672 	if (time_uptime32 - wgs->wgs_time_established > wg_reject_after_time) {
   3673 		WG_DLOG("The session hits REJECT_AFTER_TIME\n");
   3674 		return true;
   3675 	} else if (wg_session_get_send_counter(wgs) >
   3676 	    wg_reject_after_messages) {
   3677 		WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
   3678 		return true;
   3679 	}
   3680 
   3681 	return false;
   3682 }
   3683 
   3684 static void
   3685 wgintr(void *cookie)
   3686 {
   3687 	struct wg_peer *wgp;
   3688 	struct wg_session *wgs;
   3689 	struct mbuf *m;
   3690 	struct psref psref;
   3691 
   3692 	while ((m = pktq_dequeue(wg_pktq)) != NULL) {
   3693 		wgp = M_GETCTX(m, struct wg_peer *);
   3694 		if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
   3695 			WG_TRACE("no stable session");
   3696 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3697 			goto next0;
   3698 		}
   3699 		if (__predict_false(wg_session_hit_limits(wgs))) {
   3700 			WG_TRACE("stable session hit limits");
   3701 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3702 			goto next1;
   3703 		}
   3704 		wg_send_data_msg(wgp, wgs, m);
   3705 		m = NULL;	/* consumed */
   3706 next1:		wg_put_session(wgs, &psref);
   3707 next0:		m_freem(m);
   3708 		/* XXX Yield to avoid userland starvation?  */
   3709 	}
   3710 }
   3711 
   3712 static void
   3713 wg_purge_pending_packets(struct wg_peer *wgp)
   3714 {
   3715 	struct mbuf *m;
   3716 
   3717 	m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   3718 	m_freem(m);
   3719 #ifdef ALTQ
   3720 	wg_start(&wgp->wgp_sc->wg_if);
   3721 #endif
   3722 	pktq_barrier(wg_pktq);
   3723 }
   3724 
   3725 static void
   3726 wg_handshake_timeout_timer(void *arg)
   3727 {
   3728 	struct wg_peer *wgp = arg;
   3729 
   3730 	WG_TRACE("enter");
   3731 
   3732 	wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
   3733 }
   3734 
   3735 static struct wg_peer *
   3736 wg_alloc_peer(struct wg_softc *wg)
   3737 {
   3738 	struct wg_peer *wgp;
   3739 
   3740 	wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
   3741 
   3742 	wgp->wgp_sc = wg;
   3743 	callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
   3744 	callout_setfunc(&wgp->wgp_handshake_timeout_timer,
   3745 	    wg_handshake_timeout_timer, wgp);
   3746 	callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
   3747 	callout_setfunc(&wgp->wgp_session_dtor_timer,
   3748 	    wg_session_dtor_timer, wgp);
   3749 	PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
   3750 	wgp->wgp_endpoint_changing = false;
   3751 	wgp->wgp_endpoint_available = false;
   3752 	wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3753 	wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3754 	wgp->wgp_psz = pserialize_create();
   3755 	psref_target_init(&wgp->wgp_psref, wg_psref_class);
   3756 
   3757 	wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
   3758 	wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
   3759 	psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3760 	psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3761 
   3762 	struct wg_session *wgs;
   3763 	wgp->wgp_session_stable =
   3764 	    kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
   3765 	wgp->wgp_session_unstable =
   3766 	    kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
   3767 	wgs = wgp->wgp_session_stable;
   3768 	wgs->wgs_peer = wgp;
   3769 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3770 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3771 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3772 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3773 #endif
   3774 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3775 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3776 
   3777 	wgs = wgp->wgp_session_unstable;
   3778 	wgs->wgs_peer = wgp;
   3779 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3780 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3781 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3782 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3783 #endif
   3784 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3785 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3786 
   3787 	return wgp;
   3788 }
   3789 
   3790 static void
   3791 wg_destroy_peer(struct wg_peer *wgp)
   3792 {
   3793 	struct wg_session *wgs;
   3794 	struct wg_softc *wg = wgp->wgp_sc;
   3795 
   3796 	/* Prevent new packets from this peer on any source address.  */
   3797 	rw_enter(wg->wg_rwlock, RW_WRITER);
   3798 	for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
   3799 		struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
   3800 		struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
   3801 		struct radix_node *rn;
   3802 
   3803 		KASSERT(rnh != NULL);
   3804 		rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
   3805 		    &wga->wga_sa_mask, rnh);
   3806 		if (rn == NULL) {
   3807 			char addrstr[128];
   3808 			sockaddr_format(&wga->wga_sa_addr, addrstr,
   3809 			    sizeof(addrstr));
   3810 			WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
   3811 			    if_name(&wg->wg_if), addrstr);
   3812 		}
   3813 	}
   3814 	rw_exit(wg->wg_rwlock);
   3815 
   3816 	/* Purge pending packets.  */
   3817 	wg_purge_pending_packets(wgp);
   3818 
   3819 	/* Halt all packet processing and timeouts.  */
   3820 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
   3821 	callout_halt(&wgp->wgp_session_dtor_timer, NULL);
   3822 
   3823 	/* Wait for any queued work to complete.  */
   3824 	workqueue_wait(wg_wq, &wgp->wgp_work);
   3825 
   3826 	wgs = wgp->wgp_session_unstable;
   3827 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3828 		mutex_enter(wgp->wgp_lock);
   3829 		wg_destroy_session(wg, wgs);
   3830 		mutex_exit(wgp->wgp_lock);
   3831 	}
   3832 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3833 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3834 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3835 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3836 #endif
   3837 	kmem_free(wgs, sizeof(*wgs));
   3838 
   3839 	wgs = wgp->wgp_session_stable;
   3840 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3841 		mutex_enter(wgp->wgp_lock);
   3842 		wg_destroy_session(wg, wgs);
   3843 		mutex_exit(wgp->wgp_lock);
   3844 	}
   3845 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3846 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3847 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3848 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3849 #endif
   3850 	kmem_free(wgs, sizeof(*wgs));
   3851 
   3852 	psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3853 	psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3854 	kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
   3855 	kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
   3856 
   3857 	pserialize_destroy(wgp->wgp_psz);
   3858 	mutex_obj_free(wgp->wgp_intr_lock);
   3859 	mutex_obj_free(wgp->wgp_lock);
   3860 
   3861 	kmem_free(wgp, sizeof(*wgp));
   3862 }
   3863 
   3864 static void
   3865 wg_destroy_all_peers(struct wg_softc *wg)
   3866 {
   3867 	struct wg_peer *wgp, *wgp0 __diagused;
   3868 	void *garbage_byname, *garbage_bypubkey;
   3869 
   3870 restart:
   3871 	garbage_byname = garbage_bypubkey = NULL;
   3872 	mutex_enter(wg->wg_lock);
   3873 	WG_PEER_WRITER_FOREACH(wgp, wg) {
   3874 		if (wgp->wgp_name[0]) {
   3875 			wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
   3876 			    strlen(wgp->wgp_name));
   3877 			KASSERT(wgp0 == wgp);
   3878 			garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3879 		}
   3880 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3881 		    sizeof(wgp->wgp_pubkey));
   3882 		KASSERT(wgp0 == wgp);
   3883 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3884 		WG_PEER_WRITER_REMOVE(wgp);
   3885 		wg->wg_npeers--;
   3886 		mutex_enter(wgp->wgp_lock);
   3887 		pserialize_perform(wgp->wgp_psz);
   3888 		mutex_exit(wgp->wgp_lock);
   3889 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3890 		break;
   3891 	}
   3892 	mutex_exit(wg->wg_lock);
   3893 
   3894 	if (wgp == NULL)
   3895 		return;
   3896 
   3897 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3898 
   3899 	wg_destroy_peer(wgp);
   3900 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3901 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3902 
   3903 	goto restart;
   3904 }
   3905 
   3906 static int
   3907 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
   3908 {
   3909 	struct wg_peer *wgp, *wgp0 __diagused;
   3910 	void *garbage_byname, *garbage_bypubkey;
   3911 
   3912 	mutex_enter(wg->wg_lock);
   3913 	wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
   3914 	if (wgp != NULL) {
   3915 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3916 		    sizeof(wgp->wgp_pubkey));
   3917 		KASSERT(wgp0 == wgp);
   3918 		garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3919 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3920 		WG_PEER_WRITER_REMOVE(wgp);
   3921 		wg->wg_npeers--;
   3922 		if (wg->wg_npeers == 0)
   3923 			if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
   3924 		mutex_enter(wgp->wgp_lock);
   3925 		pserialize_perform(wgp->wgp_psz);
   3926 		mutex_exit(wgp->wgp_lock);
   3927 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3928 	}
   3929 	mutex_exit(wg->wg_lock);
   3930 
   3931 	if (wgp == NULL)
   3932 		return ENOENT;
   3933 
   3934 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3935 
   3936 	wg_destroy_peer(wgp);
   3937 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3938 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3939 
   3940 	return 0;
   3941 }
   3942 
   3943 static int
   3944 wg_if_attach(struct wg_softc *wg)
   3945 {
   3946 
   3947 	wg->wg_if.if_addrlen = 0;
   3948 	wg->wg_if.if_mtu = WG_MTU;
   3949 	wg->wg_if.if_flags = IFF_MULTICAST;
   3950 	wg->wg_if.if_extflags = IFEF_MPSAFE;
   3951 	wg->wg_if.if_ioctl = wg_ioctl;
   3952 	wg->wg_if.if_output = wg_output;
   3953 	wg->wg_if.if_init = wg_init;
   3954 #ifdef ALTQ
   3955 	wg->wg_if.if_start = wg_start;
   3956 #endif
   3957 	wg->wg_if.if_stop = wg_stop;
   3958 	wg->wg_if.if_type = IFT_OTHER;
   3959 	wg->wg_if.if_dlt = DLT_NULL;
   3960 	wg->wg_if.if_softc = wg;
   3961 #ifdef ALTQ
   3962 	IFQ_SET_READY(&wg->wg_if.if_snd);
   3963 #endif
   3964 	if_initialize(&wg->wg_if);
   3965 
   3966 	wg->wg_if.if_link_state = LINK_STATE_DOWN;
   3967 	if_alloc_sadl(&wg->wg_if);
   3968 	if_register(&wg->wg_if);
   3969 
   3970 	bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
   3971 
   3972 	return 0;
   3973 }
   3974 
   3975 static void
   3976 wg_if_detach(struct wg_softc *wg)
   3977 {
   3978 	struct ifnet *ifp = &wg->wg_if;
   3979 
   3980 	bpf_detach(ifp);
   3981 	if_detach(ifp);
   3982 }
   3983 
   3984 static int
   3985 wg_clone_create(struct if_clone *ifc, int unit)
   3986 {
   3987 	struct wg_softc *wg;
   3988 	int error;
   3989 
   3990 	wg_guarantee_initialized();
   3991 
   3992 	error = wg_count_inc();
   3993 	if (error)
   3994 		return error;
   3995 
   3996 	wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
   3997 
   3998 	if_initname(&wg->wg_if, ifc->ifc_name, unit);
   3999 
   4000 	PSLIST_INIT(&wg->wg_peers);
   4001 	wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
   4002 	wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
   4003 	wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
   4004 	wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   4005 	wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   4006 	wg->wg_rwlock = rw_obj_alloc();
   4007 	threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
   4008 	    "%s", if_name(&wg->wg_if));
   4009 	wg->wg_ops = &wg_ops_rumpkernel;
   4010 
   4011 	error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
   4012 	if (error)
   4013 		goto fail0;
   4014 
   4015 #ifdef INET
   4016 	error = wg_socreate(wg, AF_INET, &wg->wg_so4);
   4017 	if (error)
   4018 		goto fail1;
   4019 	rn_inithead((void **)&wg->wg_rtable_ipv4,
   4020 	    offsetof(struct sockaddr_in, sin_addr) * NBBY);
   4021 #endif
   4022 #ifdef INET6
   4023 	error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
   4024 	if (error)
   4025 		goto fail2;
   4026 	rn_inithead((void **)&wg->wg_rtable_ipv6,
   4027 	    offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
   4028 #endif
   4029 
   4030 	error = wg_if_attach(wg);
   4031 	if (error)
   4032 		goto fail3;
   4033 
   4034 	return 0;
   4035 
   4036 fail4: __unused
   4037 	wg_destroy_all_peers(wg);
   4038 	wg_if_detach(wg);
   4039 fail3:
   4040 #ifdef INET6
   4041 	solock(wg->wg_so6);
   4042 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   4043 	sounlock(wg->wg_so6);
   4044 #endif
   4045 #ifdef INET
   4046 	solock(wg->wg_so4);
   4047 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   4048 	sounlock(wg->wg_so4);
   4049 #endif
   4050 	mutex_enter(wg->wg_intr_lock);
   4051 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   4052 	mutex_exit(wg->wg_intr_lock);
   4053 #ifdef INET6
   4054 	if (wg->wg_rtable_ipv6 != NULL)
   4055 		free(wg->wg_rtable_ipv6, M_RTABLE);
   4056 	soclose(wg->wg_so6);
   4057 fail2:
   4058 #endif
   4059 #ifdef INET
   4060 	if (wg->wg_rtable_ipv4 != NULL)
   4061 		free(wg->wg_rtable_ipv4, M_RTABLE);
   4062 	soclose(wg->wg_so4);
   4063 fail1:
   4064 #endif
   4065 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   4066 fail0:	threadpool_job_destroy(&wg->wg_job);
   4067 	rw_obj_free(wg->wg_rwlock);
   4068 	mutex_obj_free(wg->wg_intr_lock);
   4069 	mutex_obj_free(wg->wg_lock);
   4070 	thmap_destroy(wg->wg_sessions_byindex);
   4071 	thmap_destroy(wg->wg_peers_byname);
   4072 	thmap_destroy(wg->wg_peers_bypubkey);
   4073 	PSLIST_DESTROY(&wg->wg_peers);
   4074 	kmem_free(wg, sizeof(*wg));
   4075 	wg_count_dec();
   4076 	return error;
   4077 }
   4078 
   4079 static int
   4080 wg_clone_destroy(struct ifnet *ifp)
   4081 {
   4082 	struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
   4083 
   4084 #ifdef WG_RUMPKERNEL
   4085 	if (wg_user_mode(wg)) {
   4086 		rumpuser_wg_destroy(wg->wg_user);
   4087 		wg->wg_user = NULL;
   4088 	}
   4089 #endif
   4090 
   4091 	wg_destroy_all_peers(wg);
   4092 	wg_if_detach(wg);
   4093 #ifdef INET6
   4094 	solock(wg->wg_so6);
   4095 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   4096 	sounlock(wg->wg_so6);
   4097 #endif
   4098 #ifdef INET
   4099 	solock(wg->wg_so4);
   4100 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   4101 	sounlock(wg->wg_so4);
   4102 #endif
   4103 	mutex_enter(wg->wg_intr_lock);
   4104 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   4105 	mutex_exit(wg->wg_intr_lock);
   4106 #ifdef INET6
   4107 	if (wg->wg_rtable_ipv6 != NULL)
   4108 		free(wg->wg_rtable_ipv6, M_RTABLE);
   4109 	soclose(wg->wg_so6);
   4110 #endif
   4111 #ifdef INET
   4112 	if (wg->wg_rtable_ipv4 != NULL)
   4113 		free(wg->wg_rtable_ipv4, M_RTABLE);
   4114 	soclose(wg->wg_so4);
   4115 #endif
   4116 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   4117 	threadpool_job_destroy(&wg->wg_job);
   4118 	rw_obj_free(wg->wg_rwlock);
   4119 	mutex_obj_free(wg->wg_intr_lock);
   4120 	mutex_obj_free(wg->wg_lock);
   4121 	thmap_destroy(wg->wg_sessions_byindex);
   4122 	thmap_destroy(wg->wg_peers_byname);
   4123 	thmap_destroy(wg->wg_peers_bypubkey);
   4124 	PSLIST_DESTROY(&wg->wg_peers);
   4125 	kmem_free(wg, sizeof(*wg));
   4126 	wg_count_dec();
   4127 
   4128 	return 0;
   4129 }
   4130 
   4131 static struct wg_peer *
   4132 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
   4133     struct psref *psref)
   4134 {
   4135 	struct radix_node_head *rnh;
   4136 	struct radix_node *rn;
   4137 	struct wg_peer *wgp = NULL;
   4138 	struct wg_allowedip *wga;
   4139 
   4140 #ifdef WG_DEBUG_LOG
   4141 	char addrstr[128];
   4142 	sockaddr_format(sa, addrstr, sizeof(addrstr));
   4143 	WG_DLOG("sa=%s\n", addrstr);
   4144 #endif
   4145 
   4146 	rw_enter(wg->wg_rwlock, RW_READER);
   4147 
   4148 	rnh = wg_rnh(wg, sa->sa_family);
   4149 	if (rnh == NULL)
   4150 		goto out;
   4151 
   4152 	rn = rnh->rnh_matchaddr(sa, rnh);
   4153 	if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
   4154 		goto out;
   4155 
   4156 	WG_TRACE("success");
   4157 
   4158 	wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
   4159 	wgp = wga->wga_peer;
   4160 	wg_get_peer(wgp, psref);
   4161 
   4162 out:
   4163 	rw_exit(wg->wg_rwlock);
   4164 	return wgp;
   4165 }
   4166 
   4167 static void
   4168 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
   4169     struct wg_session *wgs, struct wg_msg_data *wgmd)
   4170 {
   4171 
   4172 	memset(wgmd, 0, sizeof(*wgmd));
   4173 	wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
   4174 	wgmd->wgmd_receiver = wgs->wgs_remote_index;
   4175 	/* [W] 5.4.6: msg.counter := Nm^send */
   4176 	/* [W] 5.4.6: Nm^send := Nm^send + 1 */
   4177 	wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
   4178 	WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
   4179 }
   4180 
   4181 static int
   4182 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
   4183     const struct rtentry *rt)
   4184 {
   4185 	struct wg_softc *wg = ifp->if_softc;
   4186 	struct wg_peer *wgp = NULL;
   4187 	struct wg_session *wgs = NULL;
   4188 	struct psref wgp_psref, wgs_psref;
   4189 	int bound;
   4190 	int error;
   4191 
   4192 	bound = curlwp_bind();
   4193 
   4194 	/* TODO make the nest limit configurable via sysctl */
   4195 	error = if_tunnel_check_nesting(ifp, m, 1);
   4196 	if (error) {
   4197 		WGLOG(LOG_ERR,
   4198 		    "%s: tunneling loop detected and packet dropped\n",
   4199 		    if_name(&wg->wg_if));
   4200 		goto out0;
   4201 	}
   4202 
   4203 #ifdef ALTQ
   4204 	bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
   4205 	    & ALTQF_ENABLED;
   4206 	if (altq)
   4207 		IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
   4208 #endif
   4209 
   4210 	bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
   4211 
   4212 	m->m_flags &= ~(M_BCAST|M_MCAST);
   4213 
   4214 	wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
   4215 	if (wgp == NULL) {
   4216 		WG_TRACE("peer not found");
   4217 		error = EHOSTUNREACH;
   4218 		goto out0;
   4219 	}
   4220 
   4221 	/* Clear checksum-offload flags. */
   4222 	m->m_pkthdr.csum_flags = 0;
   4223 	m->m_pkthdr.csum_data = 0;
   4224 
   4225 	/* Check whether there's an established session.  */
   4226 	wgs = wg_get_stable_session(wgp, &wgs_psref);
   4227 	if (wgs == NULL) {
   4228 		/*
   4229 		 * No established session.  If we're the first to try
   4230 		 * sending data, schedule a handshake and queue the
   4231 		 * packet for when the handshake is done; otherwise
   4232 		 * just drop the packet and let the ongoing handshake
   4233 		 * attempt continue.  We could queue more data packets
   4234 		 * but it's not clear that's worthwhile.
   4235 		 */
   4236 		if ((m = atomic_swap_ptr(&wgp->wgp_pending, m)) == NULL) {
   4237 			WG_TRACE("queued first packet; init handshake");
   4238 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   4239 		} else {
   4240 			WG_TRACE("first packet already queued, dropping");
   4241 		}
   4242 		goto out1;
   4243 	}
   4244 
   4245 	/* There's an established session.  Toss it in the queue.  */
   4246 #ifdef ALTQ
   4247 	if (altq) {
   4248 		mutex_enter(ifp->if_snd.ifq_lock);
   4249 		if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   4250 			M_SETCTX(m, wgp);
   4251 			ALTQ_ENQUEUE(&ifp->if_snd, m, error);
   4252 			m = NULL; /* consume */
   4253 		}
   4254 		mutex_exit(ifp->if_snd.ifq_lock);
   4255 		if (m == NULL) {
   4256 			wg_start(ifp);
   4257 			goto out2;
   4258 		}
   4259 	}
   4260 #endif
   4261 	kpreempt_disable();
   4262 	const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   4263 	M_SETCTX(m, wgp);
   4264 	if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   4265 		WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   4266 		    if_name(&wg->wg_if));
   4267 		error = ENOBUFS;
   4268 		goto out3;
   4269 	}
   4270 	m = NULL;		/* consumed */
   4271 	error = 0;
   4272 out3:	kpreempt_enable();
   4273 
   4274 #ifdef ALTQ
   4275 out2:
   4276 #endif
   4277 	wg_put_session(wgs, &wgs_psref);
   4278 out1:	wg_put_peer(wgp, &wgp_psref);
   4279 out0:	m_freem(m);
   4280 	curlwp_bindx(bound);
   4281 	return error;
   4282 }
   4283 
   4284 static int
   4285 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
   4286 {
   4287 	struct psref psref;
   4288 	struct wg_sockaddr *wgsa;
   4289 	int error;
   4290 	struct socket *so;
   4291 
   4292 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   4293 	so = wg_get_so_by_peer(wgp, wgsa);
   4294 	solock(so);
   4295 	switch (wgsatosa(wgsa)->sa_family) {
   4296 #ifdef INET
   4297 	case AF_INET:
   4298 		error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
   4299 		break;
   4300 #endif
   4301 #ifdef INET6
   4302 	case AF_INET6:
   4303 		error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
   4304 		    NULL, curlwp);
   4305 		break;
   4306 #endif
   4307 	default:
   4308 		m_freem(m);
   4309 		error = EPFNOSUPPORT;
   4310 	}
   4311 	sounlock(so);
   4312 	wg_put_sa(wgp, wgsa, &psref);
   4313 
   4314 	return error;
   4315 }
   4316 
   4317 /* Inspired by pppoe_get_mbuf */
   4318 static struct mbuf *
   4319 wg_get_mbuf(size_t leading_len, size_t len)
   4320 {
   4321 	struct mbuf *m;
   4322 
   4323 	KASSERT(leading_len <= MCLBYTES);
   4324 	KASSERT(len <= MCLBYTES - leading_len);
   4325 
   4326 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   4327 	if (m == NULL)
   4328 		return NULL;
   4329 	if (len + leading_len > MHLEN) {
   4330 		m_clget(m, M_DONTWAIT);
   4331 		if ((m->m_flags & M_EXT) == 0) {
   4332 			m_free(m);
   4333 			return NULL;
   4334 		}
   4335 	}
   4336 	m->m_data += leading_len;
   4337 	m->m_pkthdr.len = m->m_len = len;
   4338 
   4339 	return m;
   4340 }
   4341 
   4342 static void
   4343 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs, struct mbuf *m)
   4344 {
   4345 	struct wg_softc *wg = wgp->wgp_sc;
   4346 	int error;
   4347 	size_t inner_len, padded_len, encrypted_len;
   4348 	char *padded_buf = NULL;
   4349 	size_t mlen;
   4350 	struct wg_msg_data *wgmd;
   4351 	bool free_padded_buf = false;
   4352 	struct mbuf *n;
   4353 	size_t leading_len = max_hdr + sizeof(struct udphdr);
   4354 
   4355 	mlen = m_length(m);
   4356 	inner_len = mlen;
   4357 	padded_len = roundup(mlen, 16);
   4358 	encrypted_len = padded_len + WG_AUTHTAG_LEN;
   4359 	WG_DLOG("inner=%zu, padded=%zu, encrypted_len=%zu\n",
   4360 	    inner_len, padded_len, encrypted_len);
   4361 	if (mlen != 0) {
   4362 		bool success;
   4363 		success = m_ensure_contig(&m, padded_len);
   4364 		if (success) {
   4365 			padded_buf = mtod(m, char *);
   4366 		} else {
   4367 			padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
   4368 			if (padded_buf == NULL) {
   4369 				error = ENOBUFS;
   4370 				goto out;
   4371 			}
   4372 			free_padded_buf = true;
   4373 			m_copydata(m, 0, mlen, padded_buf);
   4374 		}
   4375 		memset(padded_buf + mlen, 0, padded_len - inner_len);
   4376 	}
   4377 
   4378 	n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
   4379 	if (n == NULL) {
   4380 		error = ENOBUFS;
   4381 		goto out;
   4382 	}
   4383 	KASSERT(n->m_len >= sizeof(*wgmd));
   4384 	wgmd = mtod(n, struct wg_msg_data *);
   4385 	wg_fill_msg_data(wg, wgp, wgs, wgmd);
   4386 
   4387 	/* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
   4388 	wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
   4389 	    wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
   4390 	    padded_buf, padded_len,
   4391 	    NULL, 0);
   4392 
   4393 	error = wg->wg_ops->send_data_msg(wgp, n); /* consumes n */
   4394 	if (error) {
   4395 		WG_DLOG("send_data_msg failed, error=%d\n", error);
   4396 		goto out;
   4397 	}
   4398 
   4399 	/*
   4400 	 * Packet was sent out -- count it in the interface statistics.
   4401 	 */
   4402 	if_statadd(&wg->wg_if, if_obytes, mlen);
   4403 	if_statinc(&wg->wg_if, if_opackets);
   4404 
   4405 	/*
   4406 	 * Record when we last sent data, for determining when we need
   4407 	 * to send a passive keepalive.
   4408 	 *
   4409 	 * Other logic assumes that wgs_time_last_data_sent is zero iff
   4410 	 * we have never sent data on this session.  Early at boot, if
   4411 	 * wg(4) starts operating within <1sec, or after 136 years of
   4412 	 * uptime, we may observe time_uptime32 = 0.  In that case,
   4413 	 * pretend we observed 1 instead.  That way, we correctly
   4414 	 * indicate we have sent data on this session; the only logic
   4415 	 * this might adversely affect is the keepalive timeout
   4416 	 * detection, which might spuriously send a keepalive during
   4417 	 * one second every 136 years.  All of this is very silly, of
   4418 	 * course, but the cost to guaranteeing wgs_time_last_data_sent
   4419 	 * is nonzero is negligible here.
   4420 	 */
   4421 	const uint32_t now = time_uptime32;
   4422 	atomic_store_relaxed(&wgs->wgs_time_last_data_sent, MAX(now, 1));
   4423 
   4424 	/*
   4425 	 * Check rekey-after-time.
   4426 	 */
   4427 	if (wgs->wgs_is_initiator &&
   4428 	    now - wgs->wgs_time_established >= wg_rekey_after_time) {
   4429 		/*
   4430 		 * [W] 6.2 Transport Message Limits
   4431 		 * "if a peer is the initiator of a current secure
   4432 		 *  session, WireGuard will send a handshake initiation
   4433 		 *  message to begin a new secure session if, after
   4434 		 *  transmitting a transport data message, the current
   4435 		 *  secure session is REKEY-AFTER-TIME seconds old,"
   4436 		 */
   4437 		WG_TRACE("rekey after time");
   4438 		atomic_store_relaxed(&wgs->wgs_force_rekey, true);
   4439 		wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   4440 	}
   4441 
   4442 	/*
   4443 	 * Check rekey-after-messages.
   4444 	 */
   4445 	if (wg_session_get_send_counter(wgs) >= wg_rekey_after_messages) {
   4446 		/*
   4447 		 * [W] 6.2 Transport Message Limits
   4448 		 * "WireGuard will try to create a new session, by
   4449 		 *  sending a handshake initiation message (section
   4450 		 *  5.4.2), after it has sent REKEY-AFTER-MESSAGES
   4451 		 *  transport data messages..."
   4452 		 */
   4453 		WG_TRACE("rekey after messages");
   4454 		atomic_store_relaxed(&wgs->wgs_force_rekey, true);
   4455 		wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   4456 	}
   4457 
   4458 out:	m_freem(m);
   4459 	if (free_padded_buf)
   4460 		kmem_intr_free(padded_buf, padded_len);
   4461 }
   4462 
   4463 static void
   4464 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
   4465 {
   4466 	pktqueue_t *pktq;
   4467 	size_t pktlen;
   4468 
   4469 	KASSERT(af == AF_INET || af == AF_INET6);
   4470 
   4471 	WG_TRACE("");
   4472 
   4473 	m_set_rcvif(m, ifp);
   4474 	pktlen = m->m_pkthdr.len;
   4475 
   4476 	bpf_mtap_af(ifp, af, m, BPF_D_IN);
   4477 
   4478 	switch (af) {
   4479 #ifdef INET
   4480 	case AF_INET:
   4481 		pktq = ip_pktq;
   4482 		break;
   4483 #endif
   4484 #ifdef INET6
   4485 	case AF_INET6:
   4486 		pktq = ip6_pktq;
   4487 		break;
   4488 #endif
   4489 	default:
   4490 		panic("invalid af=%d", af);
   4491 	}
   4492 
   4493 	kpreempt_disable();
   4494 	const u_int h = curcpu()->ci_index;
   4495 	if (__predict_true(pktq_enqueue(pktq, m, h))) {
   4496 		if_statadd(ifp, if_ibytes, pktlen);
   4497 		if_statinc(ifp, if_ipackets);
   4498 	} else {
   4499 		m_freem(m);
   4500 	}
   4501 	kpreempt_enable();
   4502 }
   4503 
   4504 static void
   4505 wg_calc_pubkey(uint8_t pubkey[static WG_STATIC_KEY_LEN],
   4506     const uint8_t privkey[static WG_STATIC_KEY_LEN])
   4507 {
   4508 
   4509 	crypto_scalarmult_base(pubkey, privkey);
   4510 }
   4511 
   4512 static int
   4513 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
   4514 {
   4515 	struct radix_node_head *rnh;
   4516 	struct radix_node *rn;
   4517 	int error = 0;
   4518 
   4519 	rw_enter(wg->wg_rwlock, RW_WRITER);
   4520 	rnh = wg_rnh(wg, wga->wga_family);
   4521 	KASSERT(rnh != NULL);
   4522 	rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
   4523 	    wga->wga_nodes);
   4524 	rw_exit(wg->wg_rwlock);
   4525 
   4526 	if (rn == NULL)
   4527 		error = EEXIST;
   4528 
   4529 	return error;
   4530 }
   4531 
   4532 static int
   4533 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
   4534     struct wg_peer **wgpp)
   4535 {
   4536 	int error = 0;
   4537 	const void *pubkey;
   4538 	size_t pubkey_len;
   4539 	const void *psk;
   4540 	size_t psk_len;
   4541 	const char *name = NULL;
   4542 
   4543 	if (prop_dictionary_get_string(peer, "name", &name)) {
   4544 		if (strlen(name) > WG_PEER_NAME_MAXLEN) {
   4545 			error = EINVAL;
   4546 			goto out;
   4547 		}
   4548 	}
   4549 
   4550 	if (!prop_dictionary_get_data(peer, "public_key",
   4551 		&pubkey, &pubkey_len)) {
   4552 		error = EINVAL;
   4553 		goto out;
   4554 	}
   4555 #ifdef WG_DEBUG_DUMP
   4556         if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4557 		char *hex = gethexdump(pubkey, pubkey_len);
   4558 		log(LOG_DEBUG, "pubkey=%p, pubkey_len=%zu\n%s\n",
   4559 		    pubkey, pubkey_len, hex);
   4560 		puthexdump(hex, pubkey, pubkey_len);
   4561 	}
   4562 #endif
   4563 
   4564 	struct wg_peer *wgp = wg_alloc_peer(wg);
   4565 	memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
   4566 	if (name != NULL)
   4567 		strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
   4568 
   4569 	if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
   4570 		if (psk_len != sizeof(wgp->wgp_psk)) {
   4571 			error = EINVAL;
   4572 			goto out;
   4573 		}
   4574 		memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
   4575 	}
   4576 
   4577 	const void *addr;
   4578 	size_t addr_len;
   4579 	struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
   4580 
   4581 	if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
   4582 		goto skip_endpoint;
   4583 	if (addr_len < sizeof(*wgsatosa(wgsa)) ||
   4584 	    addr_len > sizeof(*wgsatoss(wgsa))) {
   4585 		error = EINVAL;
   4586 		goto out;
   4587 	}
   4588 	memcpy(wgsatoss(wgsa), addr, addr_len);
   4589 	switch (wgsa_family(wgsa)) {
   4590 #ifdef INET
   4591 	case AF_INET:
   4592 		break;
   4593 #endif
   4594 #ifdef INET6
   4595 	case AF_INET6:
   4596 		break;
   4597 #endif
   4598 	default:
   4599 		error = EPFNOSUPPORT;
   4600 		goto out;
   4601 	}
   4602 	if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
   4603 		error = EINVAL;
   4604 		goto out;
   4605 	}
   4606     {
   4607 	char addrstr[128];
   4608 	sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
   4609 	WG_DLOG("addr=%s\n", addrstr);
   4610     }
   4611 	wgp->wgp_endpoint_available = true;
   4612 
   4613 	prop_array_t allowedips;
   4614 skip_endpoint:
   4615 	allowedips = prop_dictionary_get(peer, "allowedips");
   4616 	if (allowedips == NULL)
   4617 		goto skip;
   4618 
   4619 	prop_object_iterator_t _it = prop_array_iterator(allowedips);
   4620 	prop_dictionary_t prop_allowedip;
   4621 	int j = 0;
   4622 	while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
   4623 		struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4624 
   4625 		if (!prop_dictionary_get_int(prop_allowedip, "family",
   4626 			&wga->wga_family))
   4627 			continue;
   4628 		if (!prop_dictionary_get_data(prop_allowedip, "ip",
   4629 			&addr, &addr_len))
   4630 			continue;
   4631 		if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
   4632 			&wga->wga_cidr))
   4633 			continue;
   4634 
   4635 		switch (wga->wga_family) {
   4636 #ifdef INET
   4637 		case AF_INET: {
   4638 			struct sockaddr_in sin;
   4639 			char addrstr[128];
   4640 			struct in_addr mask;
   4641 			struct sockaddr_in sin_mask;
   4642 
   4643 			if (addr_len != sizeof(struct in_addr))
   4644 				return EINVAL;
   4645 			memcpy(&wga->wga_addr4, addr, addr_len);
   4646 
   4647 			sockaddr_in_init(&sin, (const struct in_addr *)addr,
   4648 			    0);
   4649 			sockaddr_copy(&wga->wga_sa_addr,
   4650 			    sizeof(sin), sintosa(&sin));
   4651 
   4652 			sockaddr_format(sintosa(&sin),
   4653 			    addrstr, sizeof(addrstr));
   4654 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4655 
   4656 			in_len2mask(&mask, wga->wga_cidr);
   4657 			sockaddr_in_init(&sin_mask, &mask, 0);
   4658 			sockaddr_copy(&wga->wga_sa_mask,
   4659 			    sizeof(sin_mask), sintosa(&sin_mask));
   4660 
   4661 			break;
   4662 		    }
   4663 #endif
   4664 #ifdef INET6
   4665 		case AF_INET6: {
   4666 			struct sockaddr_in6 sin6;
   4667 			char addrstr[128];
   4668 			struct in6_addr mask;
   4669 			struct sockaddr_in6 sin6_mask;
   4670 
   4671 			if (addr_len != sizeof(struct in6_addr))
   4672 				return EINVAL;
   4673 			memcpy(&wga->wga_addr6, addr, addr_len);
   4674 
   4675 			sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
   4676 			    0, 0, 0);
   4677 			sockaddr_copy(&wga->wga_sa_addr,
   4678 			    sizeof(sin6), sin6tosa(&sin6));
   4679 
   4680 			sockaddr_format(sin6tosa(&sin6),
   4681 			    addrstr, sizeof(addrstr));
   4682 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4683 
   4684 			in6_prefixlen2mask(&mask, wga->wga_cidr);
   4685 			sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
   4686 			sockaddr_copy(&wga->wga_sa_mask,
   4687 			    sizeof(sin6_mask), sin6tosa(&sin6_mask));
   4688 
   4689 			break;
   4690 		    }
   4691 #endif
   4692 		default:
   4693 			error = EINVAL;
   4694 			goto out;
   4695 		}
   4696 		wga->wga_peer = wgp;
   4697 
   4698 		error = wg_rtable_add_route(wg, wga);
   4699 		if (error != 0)
   4700 			goto out;
   4701 
   4702 		j++;
   4703 	}
   4704 	wgp->wgp_n_allowedips = j;
   4705 skip:
   4706 	*wgpp = wgp;
   4707 out:
   4708 	return error;
   4709 }
   4710 
   4711 static int
   4712 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
   4713 {
   4714 	int error;
   4715 	char *buf;
   4716 
   4717 	WG_DLOG("buf=%p, len=%zu\n", ifd->ifd_data, ifd->ifd_len);
   4718 	if (ifd->ifd_len >= WG_MAX_PROPLEN)
   4719 		return E2BIG;
   4720 	buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
   4721 	error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
   4722 	if (error != 0)
   4723 		return error;
   4724 	buf[ifd->ifd_len] = '\0';
   4725 #ifdef WG_DEBUG_DUMP
   4726 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4727 		log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
   4728 		    (const char *)buf);
   4729 	}
   4730 #endif
   4731 	*_buf = buf;
   4732 	return 0;
   4733 }
   4734 
   4735 static int
   4736 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
   4737 {
   4738 	int error;
   4739 	prop_dictionary_t prop_dict;
   4740 	char *buf = NULL;
   4741 	const void *privkey;
   4742 	size_t privkey_len;
   4743 
   4744 	error = wg_alloc_prop_buf(&buf, ifd);
   4745 	if (error != 0)
   4746 		return error;
   4747 	error = EINVAL;
   4748 	prop_dict = prop_dictionary_internalize(buf);
   4749 	if (prop_dict == NULL)
   4750 		goto out;
   4751 	if (!prop_dictionary_get_data(prop_dict, "private_key",
   4752 		&privkey, &privkey_len))
   4753 		goto out;
   4754 #ifdef WG_DEBUG_DUMP
   4755 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4756 		char *hex = gethexdump(privkey, privkey_len);
   4757 		log(LOG_DEBUG, "privkey=%p, privkey_len=%zu\n%s\n",
   4758 		    privkey, privkey_len, hex);
   4759 		puthexdump(hex, privkey, privkey_len);
   4760 	}
   4761 #endif
   4762 	if (privkey_len != WG_STATIC_KEY_LEN)
   4763 		goto out;
   4764 	memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
   4765 	wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
   4766 	error = 0;
   4767 
   4768 out:
   4769 	kmem_free(buf, ifd->ifd_len + 1);
   4770 	return error;
   4771 }
   4772 
   4773 static int
   4774 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
   4775 {
   4776 	int error;
   4777 	prop_dictionary_t prop_dict;
   4778 	char *buf = NULL;
   4779 	uint16_t port;
   4780 
   4781 	error = wg_alloc_prop_buf(&buf, ifd);
   4782 	if (error != 0)
   4783 		return error;
   4784 	error = EINVAL;
   4785 	prop_dict = prop_dictionary_internalize(buf);
   4786 	if (prop_dict == NULL)
   4787 		goto out;
   4788 	if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
   4789 		goto out;
   4790 
   4791 	error = wg->wg_ops->bind_port(wg, (uint16_t)port);
   4792 
   4793 out:
   4794 	kmem_free(buf, ifd->ifd_len + 1);
   4795 	return error;
   4796 }
   4797 
   4798 static int
   4799 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4800 {
   4801 	int error;
   4802 	prop_dictionary_t prop_dict;
   4803 	char *buf = NULL;
   4804 	struct wg_peer *wgp = NULL, *wgp0 __diagused;
   4805 
   4806 	error = wg_alloc_prop_buf(&buf, ifd);
   4807 	if (error != 0)
   4808 		return error;
   4809 	error = EINVAL;
   4810 	prop_dict = prop_dictionary_internalize(buf);
   4811 	if (prop_dict == NULL)
   4812 		goto out;
   4813 
   4814 	error = wg_handle_prop_peer(wg, prop_dict, &wgp);
   4815 	if (error != 0)
   4816 		goto out;
   4817 
   4818 	mutex_enter(wg->wg_lock);
   4819 	if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4820 		sizeof(wgp->wgp_pubkey)) != NULL ||
   4821 	    (wgp->wgp_name[0] &&
   4822 		thmap_get(wg->wg_peers_byname, wgp->wgp_name,
   4823 		    strlen(wgp->wgp_name)) != NULL)) {
   4824 		mutex_exit(wg->wg_lock);
   4825 		wg_destroy_peer(wgp);
   4826 		error = EEXIST;
   4827 		goto out;
   4828 	}
   4829 	wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4830 	    sizeof(wgp->wgp_pubkey), wgp);
   4831 	KASSERT(wgp0 == wgp);
   4832 	if (wgp->wgp_name[0]) {
   4833 		wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
   4834 		    strlen(wgp->wgp_name), wgp);
   4835 		KASSERT(wgp0 == wgp);
   4836 	}
   4837 	WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
   4838 	wg->wg_npeers++;
   4839 	mutex_exit(wg->wg_lock);
   4840 
   4841 	if_link_state_change(&wg->wg_if, LINK_STATE_UP);
   4842 
   4843 out:
   4844 	kmem_free(buf, ifd->ifd_len + 1);
   4845 	return error;
   4846 }
   4847 
   4848 static int
   4849 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4850 {
   4851 	int error;
   4852 	prop_dictionary_t prop_dict;
   4853 	char *buf = NULL;
   4854 	const char *name;
   4855 
   4856 	error = wg_alloc_prop_buf(&buf, ifd);
   4857 	if (error != 0)
   4858 		return error;
   4859 	error = EINVAL;
   4860 	prop_dict = prop_dictionary_internalize(buf);
   4861 	if (prop_dict == NULL)
   4862 		goto out;
   4863 
   4864 	if (!prop_dictionary_get_string(prop_dict, "name", &name))
   4865 		goto out;
   4866 	if (strlen(name) > WG_PEER_NAME_MAXLEN)
   4867 		goto out;
   4868 
   4869 	error = wg_destroy_peer_name(wg, name);
   4870 out:
   4871 	kmem_free(buf, ifd->ifd_len + 1);
   4872 	return error;
   4873 }
   4874 
   4875 static bool
   4876 wg_is_authorized(struct wg_softc *wg, u_long cmd)
   4877 {
   4878 	int au = cmd == SIOCGDRVSPEC ?
   4879 	    KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
   4880 	    KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
   4881 	return kauth_authorize_network(kauth_cred_get(),
   4882 	    KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
   4883 	    (void *)cmd, NULL) == 0;
   4884 }
   4885 
   4886 static int
   4887 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
   4888 {
   4889 	int error = ENOMEM;
   4890 	prop_dictionary_t prop_dict;
   4891 	prop_array_t peers = NULL;
   4892 	char *buf;
   4893 	struct wg_peer *wgp;
   4894 	int s, i;
   4895 
   4896 	prop_dict = prop_dictionary_create();
   4897 	if (prop_dict == NULL)
   4898 		goto error;
   4899 
   4900 	if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   4901 		if (!prop_dictionary_set_data(prop_dict, "private_key",
   4902 			wg->wg_privkey, WG_STATIC_KEY_LEN))
   4903 			goto error;
   4904 	}
   4905 
   4906 	if (wg->wg_listen_port != 0) {
   4907 		if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
   4908 			wg->wg_listen_port))
   4909 			goto error;
   4910 	}
   4911 
   4912 	if (wg->wg_npeers == 0)
   4913 		goto skip_peers;
   4914 
   4915 	peers = prop_array_create();
   4916 	if (peers == NULL)
   4917 		goto error;
   4918 
   4919 	s = pserialize_read_enter();
   4920 	i = 0;
   4921 	WG_PEER_READER_FOREACH(wgp, wg) {
   4922 		struct wg_sockaddr *wgsa;
   4923 		struct psref wgp_psref, wgsa_psref;
   4924 		prop_dictionary_t prop_peer;
   4925 
   4926 		wg_get_peer(wgp, &wgp_psref);
   4927 		pserialize_read_exit(s);
   4928 
   4929 		prop_peer = prop_dictionary_create();
   4930 		if (prop_peer == NULL)
   4931 			goto next;
   4932 
   4933 		if (strlen(wgp->wgp_name) > 0) {
   4934 			if (!prop_dictionary_set_string(prop_peer, "name",
   4935 				wgp->wgp_name))
   4936 				goto next;
   4937 		}
   4938 
   4939 		if (!prop_dictionary_set_data(prop_peer, "public_key",
   4940 			wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
   4941 			goto next;
   4942 
   4943 		uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
   4944 		if (!consttime_memequal(wgp->wgp_psk, psk_zero,
   4945 			sizeof(wgp->wgp_psk))) {
   4946 			if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   4947 				if (!prop_dictionary_set_data(prop_peer,
   4948 					"preshared_key",
   4949 					wgp->wgp_psk, sizeof(wgp->wgp_psk)))
   4950 					goto next;
   4951 			}
   4952 		}
   4953 
   4954 		wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
   4955 		CTASSERT(AF_UNSPEC == 0);
   4956 		if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
   4957 		    !prop_dictionary_set_data(prop_peer, "endpoint",
   4958 			wgsatoss(wgsa),
   4959 			sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
   4960 			wg_put_sa(wgp, wgsa, &wgsa_psref);
   4961 			goto next;
   4962 		}
   4963 		wg_put_sa(wgp, wgsa, &wgsa_psref);
   4964 
   4965 		const struct timespec *t = &wgp->wgp_last_handshake_time;
   4966 
   4967 		if (!prop_dictionary_set_uint64(prop_peer,
   4968 			"last_handshake_time_sec", (uint64_t)t->tv_sec))
   4969 			goto next;
   4970 		if (!prop_dictionary_set_uint32(prop_peer,
   4971 			"last_handshake_time_nsec", (uint32_t)t->tv_nsec))
   4972 			goto next;
   4973 
   4974 		if (wgp->wgp_n_allowedips == 0)
   4975 			goto skip_allowedips;
   4976 
   4977 		prop_array_t allowedips = prop_array_create();
   4978 		if (allowedips == NULL)
   4979 			goto next;
   4980 		for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
   4981 			struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4982 			prop_dictionary_t prop_allowedip;
   4983 
   4984 			prop_allowedip = prop_dictionary_create();
   4985 			if (prop_allowedip == NULL)
   4986 				break;
   4987 
   4988 			if (!prop_dictionary_set_int(prop_allowedip, "family",
   4989 				wga->wga_family))
   4990 				goto _next;
   4991 			if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
   4992 				wga->wga_cidr))
   4993 				goto _next;
   4994 
   4995 			switch (wga->wga_family) {
   4996 #ifdef INET
   4997 			case AF_INET:
   4998 				if (!prop_dictionary_set_data(prop_allowedip,
   4999 					"ip", &wga->wga_addr4,
   5000 					sizeof(wga->wga_addr4)))
   5001 					goto _next;
   5002 				break;
   5003 #endif
   5004 #ifdef INET6
   5005 			case AF_INET6:
   5006 				if (!prop_dictionary_set_data(prop_allowedip,
   5007 					"ip", &wga->wga_addr6,
   5008 					sizeof(wga->wga_addr6)))
   5009 					goto _next;
   5010 				break;
   5011 #endif
   5012 			default:
   5013 				panic("invalid af=%d", wga->wga_family);
   5014 			}
   5015 			prop_array_set(allowedips, j, prop_allowedip);
   5016 		_next:
   5017 			prop_object_release(prop_allowedip);
   5018 		}
   5019 		prop_dictionary_set(prop_peer, "allowedips", allowedips);
   5020 		prop_object_release(allowedips);
   5021 
   5022 	skip_allowedips:
   5023 
   5024 		prop_array_set(peers, i, prop_peer);
   5025 	next:
   5026 		if (prop_peer)
   5027 			prop_object_release(prop_peer);
   5028 		i++;
   5029 
   5030 		s = pserialize_read_enter();
   5031 		wg_put_peer(wgp, &wgp_psref);
   5032 	}
   5033 	pserialize_read_exit(s);
   5034 
   5035 	prop_dictionary_set(prop_dict, "peers", peers);
   5036 	prop_object_release(peers);
   5037 	peers = NULL;
   5038 
   5039 skip_peers:
   5040 	buf = prop_dictionary_externalize(prop_dict);
   5041 	if (buf == NULL)
   5042 		goto error;
   5043 	if (ifd->ifd_len < (strlen(buf) + 1)) {
   5044 		error = EINVAL;
   5045 		goto error;
   5046 	}
   5047 	error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
   5048 
   5049 	free(buf, 0);
   5050 error:
   5051 	if (peers != NULL)
   5052 		prop_object_release(peers);
   5053 	if (prop_dict != NULL)
   5054 		prop_object_release(prop_dict);
   5055 
   5056 	return error;
   5057 }
   5058 
   5059 static int
   5060 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5061 {
   5062 	struct wg_softc *wg = ifp->if_softc;
   5063 	struct ifreq *ifr = data;
   5064 	struct ifaddr *ifa = data;
   5065 	struct ifdrv *ifd = data;
   5066 	int error = 0;
   5067 
   5068 	switch (cmd) {
   5069 	case SIOCINITIFADDR:
   5070 		if (ifa->ifa_addr->sa_family != AF_LINK &&
   5071 		    (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   5072 		    (IFF_UP | IFF_RUNNING)) {
   5073 			ifp->if_flags |= IFF_UP;
   5074 			error = if_init(ifp);
   5075 		}
   5076 		return error;
   5077 	case SIOCADDMULTI:
   5078 	case SIOCDELMULTI:
   5079 		switch (ifr->ifr_addr.sa_family) {
   5080 #ifdef INET
   5081 		case AF_INET:	/* IP supports Multicast */
   5082 			break;
   5083 #endif
   5084 #ifdef INET6
   5085 		case AF_INET6:	/* IP6 supports Multicast */
   5086 			break;
   5087 #endif
   5088 		default:  /* Other protocols doesn't support Multicast */
   5089 			error = EAFNOSUPPORT;
   5090 			break;
   5091 		}
   5092 		return error;
   5093 	case SIOCSDRVSPEC:
   5094 		if (!wg_is_authorized(wg, cmd)) {
   5095 			return EPERM;
   5096 		}
   5097 		switch (ifd->ifd_cmd) {
   5098 		case WG_IOCTL_SET_PRIVATE_KEY:
   5099 			error = wg_ioctl_set_private_key(wg, ifd);
   5100 			break;
   5101 		case WG_IOCTL_SET_LISTEN_PORT:
   5102 			error = wg_ioctl_set_listen_port(wg, ifd);
   5103 			break;
   5104 		case WG_IOCTL_ADD_PEER:
   5105 			error = wg_ioctl_add_peer(wg, ifd);
   5106 			break;
   5107 		case WG_IOCTL_DELETE_PEER:
   5108 			error = wg_ioctl_delete_peer(wg, ifd);
   5109 			break;
   5110 		default:
   5111 			error = EINVAL;
   5112 			break;
   5113 		}
   5114 		return error;
   5115 	case SIOCGDRVSPEC:
   5116 		return wg_ioctl_get(wg, ifd);
   5117 	case SIOCSIFFLAGS:
   5118 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   5119 			break;
   5120 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   5121 		case IFF_RUNNING:
   5122 			/*
   5123 			 * If interface is marked down and it is running,
   5124 			 * then stop and disable it.
   5125 			 */
   5126 			if_stop(ifp, 1);
   5127 			break;
   5128 		case IFF_UP:
   5129 			/*
   5130 			 * If interface is marked up and it is stopped, then
   5131 			 * start it.
   5132 			 */
   5133 			error = if_init(ifp);
   5134 			break;
   5135 		default:
   5136 			break;
   5137 		}
   5138 		return error;
   5139 #ifdef WG_RUMPKERNEL
   5140 	case SIOCSLINKSTR:
   5141 		error = wg_ioctl_linkstr(wg, ifd);
   5142 		if (error)
   5143 			return error;
   5144 		wg->wg_ops = &wg_ops_rumpuser;
   5145 		return 0;
   5146 #endif
   5147 	default:
   5148 		break;
   5149 	}
   5150 
   5151 	error = ifioctl_common(ifp, cmd, data);
   5152 
   5153 #ifdef WG_RUMPKERNEL
   5154 	if (!wg_user_mode(wg))
   5155 		return error;
   5156 
   5157 	/* Do the same to the corresponding tun device on the host */
   5158 	/*
   5159 	 * XXX Actually the command has not been handled yet.  It
   5160 	 *     will be handled via pr_ioctl form doifioctl later.
   5161 	 */
   5162 	switch (cmd) {
   5163 #ifdef INET
   5164 	case SIOCAIFADDR:
   5165 	case SIOCDIFADDR: {
   5166 		struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
   5167 		struct in_aliasreq *ifra = &_ifra;
   5168 		KASSERT(error == ENOTTY);
   5169 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   5170 		    IFNAMSIZ);
   5171 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
   5172 		if (error == 0)
   5173 			error = ENOTTY;
   5174 		break;
   5175 	}
   5176 #endif
   5177 #ifdef INET6
   5178 	case SIOCAIFADDR_IN6:
   5179 	case SIOCDIFADDR_IN6: {
   5180 		struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
   5181 		struct in6_aliasreq *ifra = &_ifra;
   5182 		KASSERT(error == ENOTTY);
   5183 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   5184 		    IFNAMSIZ);
   5185 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
   5186 		if (error == 0)
   5187 			error = ENOTTY;
   5188 		break;
   5189 	}
   5190 #endif
   5191 	default:
   5192 		break;
   5193 	}
   5194 #endif /* WG_RUMPKERNEL */
   5195 
   5196 	return error;
   5197 }
   5198 
   5199 static int
   5200 wg_init(struct ifnet *ifp)
   5201 {
   5202 
   5203 	ifp->if_flags |= IFF_RUNNING;
   5204 
   5205 	/* TODO flush pending packets. */
   5206 	return 0;
   5207 }
   5208 
   5209 #ifdef ALTQ
   5210 static void
   5211 wg_start(struct ifnet *ifp)
   5212 {
   5213 	struct mbuf *m;
   5214 
   5215 	for (;;) {
   5216 		IFQ_DEQUEUE(&ifp->if_snd, m);
   5217 		if (m == NULL)
   5218 			break;
   5219 
   5220 		kpreempt_disable();
   5221 		const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   5222 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   5223 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   5224 			    if_name(ifp));
   5225 			m_freem(m);
   5226 		}
   5227 		kpreempt_enable();
   5228 	}
   5229 }
   5230 #endif
   5231 
   5232 static void
   5233 wg_stop(struct ifnet *ifp, int disable)
   5234 {
   5235 
   5236 	KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
   5237 	ifp->if_flags &= ~IFF_RUNNING;
   5238 
   5239 	/* Need to do something? */
   5240 }
   5241 
   5242 #ifdef WG_DEBUG_PARAMS
   5243 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
   5244 {
   5245 	const struct sysctlnode *node = NULL;
   5246 
   5247 	sysctl_createv(clog, 0, NULL, &node,
   5248 	    CTLFLAG_PERMANENT,
   5249 	    CTLTYPE_NODE, "wg",
   5250 	    SYSCTL_DESCR("wg(4)"),
   5251 	    NULL, 0, NULL, 0,
   5252 	    CTL_NET, CTL_CREATE, CTL_EOL);
   5253 	sysctl_createv(clog, 0, &node, NULL,
   5254 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5255 	    CTLTYPE_QUAD, "rekey_after_messages",
   5256 	    SYSCTL_DESCR("session liftime by messages"),
   5257 	    NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
   5258 	sysctl_createv(clog, 0, &node, NULL,
   5259 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5260 	    CTLTYPE_INT, "rekey_after_time",
   5261 	    SYSCTL_DESCR("session liftime"),
   5262 	    NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
   5263 	sysctl_createv(clog, 0, &node, NULL,
   5264 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5265 	    CTLTYPE_INT, "rekey_timeout",
   5266 	    SYSCTL_DESCR("session handshake retry time"),
   5267 	    NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
   5268 	sysctl_createv(clog, 0, &node, NULL,
   5269 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5270 	    CTLTYPE_INT, "rekey_attempt_time",
   5271 	    SYSCTL_DESCR("session handshake timeout"),
   5272 	    NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
   5273 	sysctl_createv(clog, 0, &node, NULL,
   5274 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5275 	    CTLTYPE_INT, "keepalive_timeout",
   5276 	    SYSCTL_DESCR("keepalive timeout"),
   5277 	    NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
   5278 	sysctl_createv(clog, 0, &node, NULL,
   5279 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5280 	    CTLTYPE_BOOL, "force_underload",
   5281 	    SYSCTL_DESCR("force to detemine under load"),
   5282 	    NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
   5283 	sysctl_createv(clog, 0, &node, NULL,
   5284 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5285 	    CTLTYPE_INT, "debug",
   5286 	    SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
   5287 	    NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
   5288 }
   5289 #endif
   5290 
   5291 #ifdef WG_RUMPKERNEL
   5292 static bool
   5293 wg_user_mode(struct wg_softc *wg)
   5294 {
   5295 
   5296 	return wg->wg_user != NULL;
   5297 }
   5298 
   5299 static int
   5300 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
   5301 {
   5302 	struct ifnet *ifp = &wg->wg_if;
   5303 	int error;
   5304 
   5305 	if (ifp->if_flags & IFF_UP)
   5306 		return EBUSY;
   5307 
   5308 	if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
   5309 		/* XXX do nothing */
   5310 		return 0;
   5311 	} else if (ifd->ifd_cmd != 0) {
   5312 		return EINVAL;
   5313 	} else if (wg->wg_user != NULL) {
   5314 		return EBUSY;
   5315 	}
   5316 
   5317 	/* Assume \0 included */
   5318 	if (ifd->ifd_len > IFNAMSIZ) {
   5319 		return E2BIG;
   5320 	} else if (ifd->ifd_len < 1) {
   5321 		return EINVAL;
   5322 	}
   5323 
   5324 	char tun_name[IFNAMSIZ];
   5325 	error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
   5326 	if (error != 0)
   5327 		return error;
   5328 
   5329 	if (strncmp(tun_name, "tun", 3) != 0)
   5330 		return EINVAL;
   5331 
   5332 	error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
   5333 
   5334 	return error;
   5335 }
   5336 
   5337 static int
   5338 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
   5339 {
   5340 	int error;
   5341 	struct psref psref;
   5342 	struct wg_sockaddr *wgsa;
   5343 	struct wg_softc *wg = wgp->wgp_sc;
   5344 	struct iovec iov[1];
   5345 
   5346 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   5347 
   5348 	iov[0].iov_base = mtod(m, void *);
   5349 	iov[0].iov_len = m->m_len;
   5350 
   5351 	/* Send messages to a peer via an ordinary socket. */
   5352 	error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
   5353 
   5354 	wg_put_sa(wgp, wgsa, &psref);
   5355 
   5356 	m_freem(m);
   5357 
   5358 	return error;
   5359 }
   5360 
   5361 static void
   5362 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
   5363 {
   5364 	struct wg_softc *wg = ifp->if_softc;
   5365 	struct iovec iov[2];
   5366 	struct sockaddr_storage ss;
   5367 
   5368 	KASSERT(af == AF_INET || af == AF_INET6);
   5369 
   5370 	WG_TRACE("");
   5371 
   5372 	switch (af) {
   5373 #ifdef INET
   5374 	case AF_INET: {
   5375 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   5376 		struct ip *ip;
   5377 
   5378 		KASSERT(m->m_len >= sizeof(struct ip));
   5379 		ip = mtod(m, struct ip *);
   5380 		sockaddr_in_init(sin, &ip->ip_dst, 0);
   5381 		break;
   5382 	}
   5383 #endif
   5384 #ifdef INET6
   5385 	case AF_INET6: {
   5386 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   5387 		struct ip6_hdr *ip6;
   5388 
   5389 		KASSERT(m->m_len >= sizeof(struct ip6_hdr));
   5390 		ip6 = mtod(m, struct ip6_hdr *);
   5391 		sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
   5392 		break;
   5393 	}
   5394 #endif
   5395 	default:
   5396 		goto out;
   5397 	}
   5398 
   5399 	iov[0].iov_base = &ss;
   5400 	iov[0].iov_len = ss.ss_len;
   5401 	iov[1].iov_base = mtod(m, void *);
   5402 	iov[1].iov_len = m->m_len;
   5403 
   5404 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5405 
   5406 	/* Send decrypted packets to users via a tun. */
   5407 	rumpuser_wg_send_user(wg->wg_user, iov, 2);
   5408 
   5409 out:	m_freem(m);
   5410 }
   5411 
   5412 static int
   5413 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
   5414 {
   5415 	int error;
   5416 	uint16_t old_port = wg->wg_listen_port;
   5417 
   5418 	if (port != 0 && old_port == port)
   5419 		return 0;
   5420 
   5421 	error = rumpuser_wg_sock_bind(wg->wg_user, port);
   5422 	if (error)
   5423 		return error;
   5424 
   5425 	wg->wg_listen_port = port;
   5426 	return 0;
   5427 }
   5428 
   5429 /*
   5430  * Receive user packets.
   5431  */
   5432 void
   5433 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5434 {
   5435 	struct ifnet *ifp = &wg->wg_if;
   5436 	struct mbuf *m;
   5437 	const struct sockaddr *dst;
   5438 	int error;
   5439 
   5440 	WG_TRACE("");
   5441 
   5442 	dst = iov[0].iov_base;
   5443 
   5444 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5445 	if (m == NULL)
   5446 		return;
   5447 	m->m_len = m->m_pkthdr.len = 0;
   5448 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5449 
   5450 	WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
   5451 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5452 
   5453 	error = wg_output(ifp, m, dst, NULL); /* consumes m */
   5454 	if (error)
   5455 		WG_DLOG("wg_output failed, error=%d\n", error);
   5456 }
   5457 
   5458 /*
   5459  * Receive packets from a peer.
   5460  */
   5461 void
   5462 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5463 {
   5464 	struct mbuf *m;
   5465 	const struct sockaddr *src;
   5466 	int bound;
   5467 
   5468 	WG_TRACE("");
   5469 
   5470 	src = iov[0].iov_base;
   5471 
   5472 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5473 	if (m == NULL)
   5474 		return;
   5475 	m->m_len = m->m_pkthdr.len = 0;
   5476 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5477 
   5478 	WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
   5479 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5480 
   5481 	bound = curlwp_bind();
   5482 	wg_handle_packet(wg, m, src);
   5483 	curlwp_bindx(bound);
   5484 }
   5485 #endif /* WG_RUMPKERNEL */
   5486 
   5487 /*
   5488  * Module infrastructure
   5489  */
   5490 #include "if_module.h"
   5491 
   5492 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
   5493