Home | History | Annotate | Line # | Download | only in net
if_wg.c revision 1.129
      1 /*	$NetBSD: if_wg.c,v 1.129 2024/07/29 19:47:13 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * This network interface aims to implement the WireGuard protocol.
     34  * The implementation is based on the paper of WireGuard as of
     35  * 2018-06-30 [1].  The paper is referred in the source code with label
     36  * [W].  Also the specification of the Noise protocol framework as of
     37  * 2018-07-11 [2] is referred with label [N].
     38  *
     39  * [1] https://www.wireguard.com/papers/wireguard.pdf
     40  * [2] http://noiseprotocol.org/noise.pdf
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.129 2024/07/29 19:47:13 riastradh Exp $");
     45 
     46 #ifdef _KERNEL_OPT
     47 #include "opt_altq_enabled.h"
     48 #include "opt_inet.h"
     49 #endif
     50 
     51 #include <sys/param.h>
     52 #include <sys/types.h>
     53 
     54 #include <sys/atomic.h>
     55 #include <sys/callout.h>
     56 #include <sys/cprng.h>
     57 #include <sys/cpu.h>
     58 #include <sys/device.h>
     59 #include <sys/domain.h>
     60 #include <sys/errno.h>
     61 #include <sys/intr.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/kernel.h>
     64 #include <sys/kmem.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/module.h>
     67 #include <sys/mutex.h>
     68 #include <sys/once.h>
     69 #include <sys/percpu.h>
     70 #include <sys/pserialize.h>
     71 #include <sys/psref.h>
     72 #include <sys/queue.h>
     73 #include <sys/rwlock.h>
     74 #include <sys/socket.h>
     75 #include <sys/socketvar.h>
     76 #include <sys/sockio.h>
     77 #include <sys/sysctl.h>
     78 #include <sys/syslog.h>
     79 #include <sys/systm.h>
     80 #include <sys/thmap.h>
     81 #include <sys/threadpool.h>
     82 #include <sys/time.h>
     83 #include <sys/timespec.h>
     84 #include <sys/workqueue.h>
     85 
     86 #include <lib/libkern/libkern.h>
     87 
     88 #include <net/bpf.h>
     89 #include <net/if.h>
     90 #include <net/if_types.h>
     91 #include <net/if_wg.h>
     92 #include <net/pktqueue.h>
     93 #include <net/route.h>
     94 
     95 #ifdef INET
     96 #include <netinet/in.h>
     97 #include <netinet/in_pcb.h>
     98 #include <netinet/in_var.h>
     99 #include <netinet/ip.h>
    100 #include <netinet/ip_var.h>
    101 #include <netinet/udp.h>
    102 #include <netinet/udp_var.h>
    103 #endif	/* INET */
    104 
    105 #ifdef INET6
    106 #include <netinet/ip6.h>
    107 #include <netinet6/in6_pcb.h>
    108 #include <netinet6/in6_var.h>
    109 #include <netinet6/ip6_var.h>
    110 #include <netinet6/udp6_var.h>
    111 #endif	/* INET6 */
    112 
    113 #include <prop/proplib.h>
    114 
    115 #include <crypto/blake2/blake2s.h>
    116 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
    117 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
    118 #include <crypto/sodium/crypto_scalarmult.h>
    119 
    120 #include "ioconf.h"
    121 
    122 #ifdef WG_RUMPKERNEL
    123 #include "wg_user.h"
    124 #endif
    125 
    126 #ifndef time_uptime32
    127 #define	time_uptime32	((uint32_t)time_uptime)
    128 #endif
    129 
    130 /*
    131  * Data structures
    132  * - struct wg_softc is an instance of wg interfaces
    133  *   - It has a list of peers (struct wg_peer)
    134  *   - It has a threadpool job that sends/receives handshake messages and
    135  *     runs event handlers
    136  *   - It has its own two routing tables: one is for IPv4 and the other IPv6
    137  * - struct wg_peer is a representative of a peer
    138  *   - It has a struct work to handle handshakes and timer tasks
    139  *   - It has a pair of session instances (struct wg_session)
    140  *   - It has a pair of endpoint instances (struct wg_sockaddr)
    141  *     - Normally one endpoint is used and the second one is used only on
    142  *       a peer migration (a change of peer's IP address)
    143  *   - It has a list of IP addresses and sub networks called allowedips
    144  *     (struct wg_allowedip)
    145  *     - A packets sent over a session is allowed if its destination matches
    146  *       any IP addresses or sub networks of the list
    147  * - struct wg_session represents a session of a secure tunnel with a peer
    148  *   - Two instances of sessions belong to a peer; a stable session and a
    149  *     unstable session
    150  *   - A handshake process of a session always starts with a unstable instance
    151  *   - Once a session is established, its instance becomes stable and the
    152  *     other becomes unstable instead
    153  *   - Data messages are always sent via a stable session
    154  *
    155  * Locking notes:
    156  * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
    157  *   - Changes to the peer list are serialized by wg_lock
    158  *   - The peer list may be read with pserialize(9) and psref(9)
    159  *   - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
    160  *     => XXX replace by pserialize when routing table is psz-safe
    161  * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
    162  *   only in thread context and serializes:
    163  *   - the stable and unstable session pointers
    164  *   - all unstable session state
    165  * - Packet processing may be done in softint context:
    166  *   - The stable session can be read under pserialize(9) or psref(9)
    167  *     - The stable session is always ESTABLISHED
    168  *     - On a session swap, we must wait for all readers to release a
    169  *       reference to a stable session before changing wgs_state and
    170  *       session states
    171  * - Lock order: wg_lock -> wgp_lock
    172  */
    173 
    174 
    175 #define WGLOG(level, fmt, args...)					      \
    176 	log(level, "%s: " fmt, __func__, ##args)
    177 
    178 #define WG_DEBUG
    179 
    180 /* Debug options */
    181 #ifdef WG_DEBUG
    182 /* Output debug logs */
    183 #ifndef WG_DEBUG_LOG
    184 #define WG_DEBUG_LOG
    185 #endif
    186 /* Output trace logs */
    187 #ifndef WG_DEBUG_TRACE
    188 #define WG_DEBUG_TRACE
    189 #endif
    190 /* Output hash values, etc. */
    191 #ifndef WG_DEBUG_DUMP
    192 #define WG_DEBUG_DUMP
    193 #endif
    194 /* Make some internal parameters configurable for testing and debugging */
    195 #ifndef WG_DEBUG_PARAMS
    196 #define WG_DEBUG_PARAMS
    197 #endif
    198 #endif /* WG_DEBUG */
    199 
    200 #ifndef WG_DEBUG
    201 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) ||		    \
    202 	defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS)
    203 #   define WG_DEBUG
    204 # endif
    205 #endif
    206 
    207 #ifdef WG_DEBUG
    208 int wg_debug;
    209 #define WG_DEBUG_FLAGS_LOG	1
    210 #define WG_DEBUG_FLAGS_TRACE	2
    211 #define WG_DEBUG_FLAGS_DUMP	4
    212 #endif
    213 
    214 #ifdef WG_DEBUG_TRACE
    215 #define WG_TRACE(msg)	 do {						\
    216 	if (wg_debug & WG_DEBUG_FLAGS_TRACE)				\
    217 	    log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg));	\
    218 } while (0)
    219 #else
    220 #define WG_TRACE(msg)	__nothing
    221 #endif
    222 
    223 #ifdef WG_DEBUG_LOG
    224 #define WG_DLOG(fmt, args...)	 do {					\
    225 	if (wg_debug & WG_DEBUG_FLAGS_LOG)				\
    226 	    log(LOG_DEBUG, "%s: " fmt, __func__, ##args);		\
    227 } while (0)
    228 #else
    229 #define WG_DLOG(fmt, args...)	__nothing
    230 #endif
    231 
    232 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...)	do {		\
    233 	if (ppsratecheck(&(wgprc)->wgprc_lasttime,			\
    234 	    &(wgprc)->wgprc_curpps, 1)) {				\
    235 		log(level, fmt, ##args);				\
    236 	}								\
    237 } while (0)
    238 
    239 #ifdef WG_DEBUG_PARAMS
    240 static bool wg_force_underload = false;
    241 #endif
    242 
    243 #ifdef WG_DEBUG_DUMP
    244 
    245 static char enomem[10] = "[enomem]";
    246 
    247 #define	MAX_HDUMP_LEN	10000	/* large enough */
    248 
    249 /*
    250  * gethexdump(p, n)
    251  *
    252  *	Allocate a string returning a hexdump of bytes p[0..n),
    253  *	truncated to MAX_HDUMP_LEN.  Must be freed with puthexdump.
    254  *
    255  *	We use this instead of libkern hexdump() because the result is
    256  *	logged with log(LOG_DEBUG, ...), which puts a priority tag on
    257  *	every message, so it can't be done incrementally.
    258  */
    259 static char *
    260 gethexdump(const void *vp, size_t n)
    261 {
    262 	char *buf;
    263 	const uint8_t *p = vp;
    264 	size_t i, alloc;
    265 
    266 	alloc = n;
    267 	if (n > MAX_HDUMP_LEN)
    268 		alloc = MAX_HDUMP_LEN;
    269 	buf = kmem_alloc(3*alloc + 5, KM_NOSLEEP);
    270 	if (buf == NULL)
    271 		return enomem;
    272 	for (i = 0; i < alloc; i++)
    273 		snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
    274 	if (alloc != n)
    275 		snprintf(buf + 3*i, 4 + 1, " ...");
    276 	return buf;
    277 }
    278 
    279 static void
    280 puthexdump(char *buf, const void *p, size_t n)
    281 {
    282 
    283 	if (buf == NULL || buf == enomem)
    284 		return;
    285 	if (n > MAX_HDUMP_LEN)
    286 		n = MAX_HDUMP_LEN;
    287 	kmem_free(buf, 3*n + 5);
    288 }
    289 
    290 #ifdef WG_RUMPKERNEL
    291 static void
    292 wg_dump_buf(const char *func, const char *buf, const size_t size)
    293 {
    294 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    295 		return;
    296 
    297 	char *hex = gethexdump(buf, size);
    298 
    299 	log(LOG_DEBUG, "%s: %s\n", func, hex);
    300 	puthexdump(hex, buf, size);
    301 }
    302 #endif
    303 
    304 static void
    305 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
    306     const size_t size)
    307 {
    308 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    309 		return;
    310 
    311 	char *hex = gethexdump(hash, size);
    312 
    313 	log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex);
    314 	puthexdump(hex, hash, size);
    315 }
    316 
    317 #define WG_DUMP_HASH(name, hash) \
    318 	wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
    319 #define WG_DUMP_HASH48(name, hash) \
    320 	wg_dump_hash(__func__, name, hash, 48)
    321 #define WG_DUMP_BUF(buf, size) \
    322 	wg_dump_buf(__func__, buf, size)
    323 #else
    324 #define WG_DUMP_HASH(name, hash)	__nothing
    325 #define WG_DUMP_HASH48(name, hash)	__nothing
    326 #define WG_DUMP_BUF(buf, size)	__nothing
    327 #endif /* WG_DEBUG_DUMP */
    328 
    329 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
    330 #define	WG_MAX_PROPLEN		32766
    331 
    332 #define WG_MTU			1420
    333 #define WG_ALLOWEDIPS		16
    334 
    335 #define CURVE25519_KEY_LEN	32
    336 #define TAI64N_LEN		(sizeof(uint32_t) * 3)
    337 #define POLY1305_AUTHTAG_LEN	16
    338 #define HMAC_BLOCK_LEN		64
    339 
    340 /* [N] 4.1: "DHLEN must be 32 or greater."  WireGuard chooses 32. */
    341 /* [N] 4.3: Hash functions */
    342 #define NOISE_DHLEN		32
    343 /* [N] 4.3: "Must be 32 or 64."  WireGuard chooses 32. */
    344 #define NOISE_HASHLEN		32
    345 #define NOISE_BLOCKLEN		64
    346 #define NOISE_HKDF_OUTPUT_LEN	NOISE_HASHLEN
    347 /* [N] 5.1: "k" */
    348 #define NOISE_CIPHER_KEY_LEN	32
    349 /*
    350  * [N] 9.2: "psk"
    351  *          "... psk is a 32-byte secret value provided by the application."
    352  */
    353 #define NOISE_PRESHARED_KEY_LEN	32
    354 
    355 #define WG_STATIC_KEY_LEN	CURVE25519_KEY_LEN
    356 #define WG_TIMESTAMP_LEN	TAI64N_LEN
    357 
    358 #define WG_PRESHARED_KEY_LEN	NOISE_PRESHARED_KEY_LEN
    359 
    360 #define WG_COOKIE_LEN		16
    361 #define WG_MAC_LEN		16
    362 #define WG_COOKIESECRET_LEN	32
    363 
    364 #define WG_EPHEMERAL_KEY_LEN	CURVE25519_KEY_LEN
    365 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
    366 #define WG_CHAINING_KEY_LEN	NOISE_HASHLEN
    367 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
    368 #define WG_HASH_LEN		NOISE_HASHLEN
    369 #define WG_CIPHER_KEY_LEN	NOISE_CIPHER_KEY_LEN
    370 #define WG_DH_OUTPUT_LEN	NOISE_DHLEN
    371 #define WG_KDF_OUTPUT_LEN	NOISE_HKDF_OUTPUT_LEN
    372 #define WG_AUTHTAG_LEN		POLY1305_AUTHTAG_LEN
    373 #define WG_DATA_KEY_LEN		32
    374 #define WG_SALT_LEN		24
    375 
    376 /*
    377  * The protocol messages
    378  */
    379 struct wg_msg {
    380 	uint32_t	wgm_type;
    381 } __packed;
    382 
    383 /* [W] 5.4.2 First Message: Initiator to Responder */
    384 struct wg_msg_init {
    385 	uint32_t	wgmi_type;
    386 	uint32_t	wgmi_sender;
    387 	uint8_t		wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
    388 	uint8_t		wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
    389 	uint8_t		wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
    390 	uint8_t		wgmi_mac1[WG_MAC_LEN];
    391 	uint8_t		wgmi_mac2[WG_MAC_LEN];
    392 } __packed;
    393 
    394 /* [W] 5.4.3 Second Message: Responder to Initiator */
    395 struct wg_msg_resp {
    396 	uint32_t	wgmr_type;
    397 	uint32_t	wgmr_sender;
    398 	uint32_t	wgmr_receiver;
    399 	uint8_t		wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
    400 	uint8_t		wgmr_empty[0 + WG_AUTHTAG_LEN];
    401 	uint8_t		wgmr_mac1[WG_MAC_LEN];
    402 	uint8_t		wgmr_mac2[WG_MAC_LEN];
    403 } __packed;
    404 
    405 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
    406 struct wg_msg_data {
    407 	uint32_t	wgmd_type;
    408 	uint32_t	wgmd_receiver;
    409 	uint64_t	wgmd_counter;
    410 	uint32_t	wgmd_packet[];
    411 } __packed;
    412 
    413 /* [W] 5.4.7 Under Load: Cookie Reply Message */
    414 struct wg_msg_cookie {
    415 	uint32_t	wgmc_type;
    416 	uint32_t	wgmc_receiver;
    417 	uint8_t		wgmc_salt[WG_SALT_LEN];
    418 	uint8_t		wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
    419 } __packed;
    420 
    421 #define WG_MSG_TYPE_INIT		1
    422 #define WG_MSG_TYPE_RESP		2
    423 #define WG_MSG_TYPE_COOKIE		3
    424 #define WG_MSG_TYPE_DATA		4
    425 #define WG_MSG_TYPE_MAX			WG_MSG_TYPE_DATA
    426 
    427 /* Sliding windows */
    428 
    429 #define	SLIWIN_BITS	2048u
    430 #define	SLIWIN_TYPE	uint32_t
    431 #define	SLIWIN_BPW	(NBBY*sizeof(SLIWIN_TYPE))
    432 #define	SLIWIN_WORDS	howmany(SLIWIN_BITS, SLIWIN_BPW)
    433 #define	SLIWIN_NPKT	(SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
    434 
    435 struct sliwin {
    436 	SLIWIN_TYPE	B[SLIWIN_WORDS];
    437 	uint64_t	T;
    438 };
    439 
    440 /*
    441  * sliwin_reset(W)
    442  *
    443  *	Reset sliding window state to a blank history with no observed
    444  *	sequence numbers.
    445  *
    446  *	Caller must have exclusive access to W.
    447  */
    448 static void
    449 sliwin_reset(struct sliwin *W)
    450 {
    451 
    452 	memset(W, 0, sizeof(*W));
    453 }
    454 
    455 /*
    456  * sliwin_check_fast(W, S)
    457  *
    458  *	Do a fast check of the sliding window W to validate sequence
    459  *	number S.  No state is recorded.  Return 0 on accept, nonzero
    460  *	error code on reject.
    461  *
    462  *	May be called concurrently with other calls to
    463  *	sliwin_check_fast and sliwin_update.
    464  */
    465 static int
    466 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
    467 {
    468 
    469 	/*
    470 	 * If it's more than one window older than the highest sequence
    471 	 * number we've seen, reject.
    472 	 */
    473 #ifdef __HAVE_ATOMIC64_LOADSTORE
    474 	if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
    475 		return EAUTH;
    476 #endif
    477 
    478 	/*
    479 	 * Otherwise, we need to take the lock to decide, so don't
    480 	 * reject just yet.  Caller must serialize a call to
    481 	 * sliwin_update in this case.
    482 	 */
    483 	return 0;
    484 }
    485 
    486 /*
    487  * sliwin_update(W, S)
    488  *
    489  *	Check the sliding window W to validate sequence number S, and
    490  *	if accepted, update it to reflect having observed S.  Return 0
    491  *	on accept, nonzero error code on reject.
    492  *
    493  *	May be called concurrently with other calls to
    494  *	sliwin_check_fast, but caller must exclude other calls to
    495  *	sliwin_update.
    496  */
    497 static int
    498 sliwin_update(struct sliwin *W, uint64_t S)
    499 {
    500 	unsigned word, bit;
    501 
    502 	/*
    503 	 * If it's more than one window older than the highest sequence
    504 	 * number we've seen, reject.
    505 	 */
    506 	if (S + SLIWIN_NPKT < W->T)
    507 		return EAUTH;
    508 
    509 	/*
    510 	 * If it's higher than the highest sequence number we've seen,
    511 	 * advance the window.
    512 	 */
    513 	if (S > W->T) {
    514 		uint64_t i = W->T / SLIWIN_BPW;
    515 		uint64_t j = S / SLIWIN_BPW;
    516 		unsigned k;
    517 
    518 		for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
    519 			W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
    520 #ifdef __HAVE_ATOMIC64_LOADSTORE
    521 		atomic_store_relaxed(&W->T, S);
    522 #else
    523 		W->T = S;
    524 #endif
    525 	}
    526 
    527 	/* Test and set the bit -- if already set, reject.  */
    528 	word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
    529 	bit = S % SLIWIN_BPW;
    530 	if (W->B[word] & (1UL << bit))
    531 		return EAUTH;
    532 	W->B[word] |= 1U << bit;
    533 
    534 	/* Accept!  */
    535 	return 0;
    536 }
    537 
    538 struct wg_session {
    539 	struct wg_peer	*wgs_peer;
    540 	struct psref_target
    541 			wgs_psref;
    542 
    543 	volatile int	wgs_state;
    544 #define WGS_STATE_UNKNOWN	0
    545 #define WGS_STATE_INIT_ACTIVE	1
    546 #define WGS_STATE_INIT_PASSIVE	2
    547 #define WGS_STATE_ESTABLISHED	3
    548 #define WGS_STATE_DESTROYING	4
    549 
    550 	uint32_t	wgs_time_established;
    551 	volatile uint32_t
    552 			wgs_time_last_data_sent;
    553 	volatile bool	wgs_force_rekey;
    554 	bool		wgs_is_initiator;
    555 
    556 	uint32_t	wgs_local_index;
    557 	uint32_t	wgs_remote_index;
    558 #ifdef __HAVE_ATOMIC64_LOADSTORE
    559 	volatile uint64_t
    560 			wgs_send_counter;
    561 #else
    562 	kmutex_t	wgs_send_counter_lock;
    563 	uint64_t	wgs_send_counter;
    564 #endif
    565 
    566 	struct {
    567 		kmutex_t	lock;
    568 		struct sliwin	window;
    569 	}		*wgs_recvwin;
    570 
    571 	uint8_t		wgs_handshake_hash[WG_HASH_LEN];
    572 	uint8_t		wgs_chaining_key[WG_CHAINING_KEY_LEN];
    573 	uint8_t		wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
    574 	uint8_t		wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
    575 	uint8_t		wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
    576 	uint8_t		wgs_tkey_send[WG_DATA_KEY_LEN];
    577 	uint8_t		wgs_tkey_recv[WG_DATA_KEY_LEN];
    578 };
    579 
    580 struct wg_sockaddr {
    581 	union {
    582 		struct sockaddr_storage _ss;
    583 		struct sockaddr _sa;
    584 		struct sockaddr_in _sin;
    585 		struct sockaddr_in6 _sin6;
    586 	};
    587 	struct psref_target	wgsa_psref;
    588 };
    589 
    590 #define wgsatoss(wgsa)		(&(wgsa)->_ss)
    591 #define wgsatosa(wgsa)		(&(wgsa)->_sa)
    592 #define wgsatosin(wgsa)		(&(wgsa)->_sin)
    593 #define wgsatosin6(wgsa)	(&(wgsa)->_sin6)
    594 
    595 #define	wgsa_family(wgsa)	(wgsatosa(wgsa)->sa_family)
    596 
    597 struct wg_peer;
    598 struct wg_allowedip {
    599 	struct radix_node	wga_nodes[2];
    600 	struct wg_sockaddr	_wga_sa_addr;
    601 	struct wg_sockaddr	_wga_sa_mask;
    602 #define wga_sa_addr		_wga_sa_addr._sa
    603 #define wga_sa_mask		_wga_sa_mask._sa
    604 
    605 	int			wga_family;
    606 	uint8_t			wga_cidr;
    607 	union {
    608 		struct in_addr _ip4;
    609 		struct in6_addr _ip6;
    610 	} wga_addr;
    611 #define wga_addr4	wga_addr._ip4
    612 #define wga_addr6	wga_addr._ip6
    613 
    614 	struct wg_peer		*wga_peer;
    615 };
    616 
    617 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
    618 
    619 struct wg_ppsratecheck {
    620 	struct timeval		wgprc_lasttime;
    621 	int			wgprc_curpps;
    622 };
    623 
    624 struct wg_softc;
    625 struct wg_peer {
    626 	struct wg_softc		*wgp_sc;
    627 	char			wgp_name[WG_PEER_NAME_MAXLEN + 1];
    628 	struct pslist_entry	wgp_peerlist_entry;
    629 	pserialize_t		wgp_psz;
    630 	struct psref_target	wgp_psref;
    631 	kmutex_t		*wgp_lock;
    632 	kmutex_t		*wgp_intr_lock;
    633 
    634 	uint8_t	wgp_pubkey[WG_STATIC_KEY_LEN];
    635 	struct wg_sockaddr	*volatile wgp_endpoint;
    636 	struct wg_sockaddr	*wgp_endpoint0;
    637 	volatile unsigned	wgp_endpoint_changing;
    638 	volatile bool		wgp_endpoint_available;
    639 
    640 			/* The preshared key (optional) */
    641 	uint8_t		wgp_psk[WG_PRESHARED_KEY_LEN];
    642 
    643 	struct wg_session	*volatile wgp_session_stable;
    644 	struct wg_session	*wgp_session_unstable;
    645 
    646 	/* first outgoing packet awaiting session initiation */
    647 	struct mbuf		*volatile wgp_pending;
    648 
    649 	/* timestamp in big-endian */
    650 	wg_timestamp_t	wgp_timestamp_latest_init;
    651 
    652 	struct timespec		wgp_last_handshake_time;
    653 
    654 	callout_t		wgp_handshake_timeout_timer;
    655 	callout_t		wgp_session_dtor_timer;
    656 
    657 	time_t			wgp_handshake_start_time;
    658 
    659 	int			wgp_n_allowedips;
    660 	struct wg_allowedip	wgp_allowedips[WG_ALLOWEDIPS];
    661 
    662 	time_t			wgp_latest_cookie_time;
    663 	uint8_t			wgp_latest_cookie[WG_COOKIE_LEN];
    664 	uint8_t			wgp_last_sent_mac1[WG_MAC_LEN];
    665 	bool			wgp_last_sent_mac1_valid;
    666 	uint8_t			wgp_last_sent_cookie[WG_COOKIE_LEN];
    667 	bool			wgp_last_sent_cookie_valid;
    668 
    669 	time_t			wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
    670 
    671 	time_t			wgp_last_cookiesecret_time;
    672 	uint8_t			wgp_cookiesecret[WG_COOKIESECRET_LEN];
    673 
    674 	struct wg_ppsratecheck	wgp_ppsratecheck;
    675 
    676 	struct work		wgp_work;
    677 	unsigned int		wgp_tasks;
    678 #define WGP_TASK_SEND_INIT_MESSAGE		__BIT(0)
    679 #define WGP_TASK_RETRY_HANDSHAKE		__BIT(1)
    680 #define WGP_TASK_ESTABLISH_SESSION		__BIT(2)
    681 #define WGP_TASK_ENDPOINT_CHANGED		__BIT(3)
    682 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE		__BIT(4)
    683 #define WGP_TASK_DESTROY_PREV_SESSION		__BIT(5)
    684 };
    685 
    686 struct wg_ops;
    687 
    688 struct wg_softc {
    689 	struct ifnet	wg_if;
    690 	LIST_ENTRY(wg_softc) wg_list;
    691 	kmutex_t	*wg_lock;
    692 	kmutex_t	*wg_intr_lock;
    693 	krwlock_t	*wg_rwlock;
    694 
    695 	uint8_t		wg_privkey[WG_STATIC_KEY_LEN];
    696 	uint8_t		wg_pubkey[WG_STATIC_KEY_LEN];
    697 
    698 	int		wg_npeers;
    699 	struct pslist_head	wg_peers;
    700 	struct thmap	*wg_peers_bypubkey;
    701 	struct thmap	*wg_peers_byname;
    702 	struct thmap	*wg_sessions_byindex;
    703 	uint16_t	wg_listen_port;
    704 
    705 	struct threadpool	*wg_threadpool;
    706 
    707 	struct threadpool_job	wg_job;
    708 	int			wg_upcalls;
    709 #define	WG_UPCALL_INET	__BIT(0)
    710 #define	WG_UPCALL_INET6	__BIT(1)
    711 
    712 #ifdef INET
    713 	struct socket		*wg_so4;
    714 	struct radix_node_head	*wg_rtable_ipv4;
    715 #endif
    716 #ifdef INET6
    717 	struct socket		*wg_so6;
    718 	struct radix_node_head	*wg_rtable_ipv6;
    719 #endif
    720 
    721 	struct wg_ppsratecheck	wg_ppsratecheck;
    722 
    723 	struct wg_ops		*wg_ops;
    724 
    725 #ifdef WG_RUMPKERNEL
    726 	struct wg_user		*wg_user;
    727 #endif
    728 };
    729 
    730 /* [W] 6.1 Preliminaries */
    731 #define WG_REKEY_AFTER_MESSAGES		(1ULL << 60)
    732 #define WG_REJECT_AFTER_MESSAGES	(UINT64_MAX - (1 << 13))
    733 #define WG_REKEY_AFTER_TIME		120
    734 #define WG_REJECT_AFTER_TIME		180
    735 #define WG_REKEY_ATTEMPT_TIME		 90
    736 #define WG_REKEY_TIMEOUT		  5
    737 #define WG_KEEPALIVE_TIMEOUT		 10
    738 
    739 #define WG_COOKIE_TIME			120
    740 #define WG_COOKIESECRET_TIME		(2 * 60)
    741 
    742 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
    743 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
    744 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
    745 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
    746 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
    747 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
    748 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
    749 
    750 static struct mbuf *
    751 		wg_get_mbuf(size_t, size_t);
    752 
    753 static void	wg_send_data_msg(struct wg_peer *, struct wg_session *,
    754 		    struct mbuf *);
    755 static void	wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
    756 		    const uint32_t, const uint8_t[static WG_MAC_LEN],
    757 		    const struct sockaddr *);
    758 static void	wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
    759 		    struct wg_session *, const struct wg_msg_init *);
    760 static void	wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
    761 
    762 static struct wg_peer *
    763 		wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
    764 		    struct psref *);
    765 static struct wg_peer *
    766 		wg_lookup_peer_by_pubkey(struct wg_softc *,
    767 		    const uint8_t[static WG_STATIC_KEY_LEN], struct psref *);
    768 
    769 static struct wg_session *
    770 		wg_lookup_session_by_index(struct wg_softc *,
    771 		    const uint32_t, struct psref *);
    772 
    773 static void	wg_update_endpoint_if_necessary(struct wg_peer *,
    774 		    const struct sockaddr *);
    775 
    776 static void	wg_schedule_session_dtor_timer(struct wg_peer *);
    777 
    778 static bool	wg_is_underload(struct wg_softc *, struct wg_peer *, int);
    779 static void	wg_calculate_keys(struct wg_session *, const bool);
    780 
    781 static void	wg_clear_states(struct wg_session *);
    782 
    783 static void	wg_get_peer(struct wg_peer *, struct psref *);
    784 static void	wg_put_peer(struct wg_peer *, struct psref *);
    785 
    786 static int	wg_send_so(struct wg_peer *, struct mbuf *);
    787 static int	wg_send_udp(struct wg_peer *, struct mbuf *);
    788 static int	wg_output(struct ifnet *, struct mbuf *,
    789 			   const struct sockaddr *, const struct rtentry *);
    790 static void	wg_input(struct ifnet *, struct mbuf *, const int);
    791 static int	wg_ioctl(struct ifnet *, u_long, void *);
    792 static int	wg_bind_port(struct wg_softc *, const uint16_t);
    793 static int	wg_init(struct ifnet *);
    794 #ifdef ALTQ
    795 static void	wg_start(struct ifnet *);
    796 #endif
    797 static void	wg_stop(struct ifnet *, int);
    798 
    799 static void	wg_peer_work(struct work *, void *);
    800 static void	wg_job(struct threadpool_job *);
    801 static void	wgintr(void *);
    802 static void	wg_purge_pending_packets(struct wg_peer *);
    803 
    804 static int	wg_clone_create(struct if_clone *, int);
    805 static int	wg_clone_destroy(struct ifnet *);
    806 
    807 struct wg_ops {
    808 	int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
    809 	int (*send_data_msg)(struct wg_peer *, struct mbuf *);
    810 	void (*input)(struct ifnet *, struct mbuf *, const int);
    811 	int (*bind_port)(struct wg_softc *, const uint16_t);
    812 };
    813 
    814 struct wg_ops wg_ops_rumpkernel = {
    815 	.send_hs_msg	= wg_send_so,
    816 	.send_data_msg	= wg_send_udp,
    817 	.input		= wg_input,
    818 	.bind_port	= wg_bind_port,
    819 };
    820 
    821 #ifdef WG_RUMPKERNEL
    822 static bool	wg_user_mode(struct wg_softc *);
    823 static int	wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
    824 
    825 static int	wg_send_user(struct wg_peer *, struct mbuf *);
    826 static void	wg_input_user(struct ifnet *, struct mbuf *, const int);
    827 static int	wg_bind_port_user(struct wg_softc *, const uint16_t);
    828 
    829 struct wg_ops wg_ops_rumpuser = {
    830 	.send_hs_msg	= wg_send_user,
    831 	.send_data_msg	= wg_send_user,
    832 	.input		= wg_input_user,
    833 	.bind_port	= wg_bind_port_user,
    834 };
    835 #endif
    836 
    837 #define WG_PEER_READER_FOREACH(wgp, wg)					\
    838 	PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    839 	    wgp_peerlist_entry)
    840 #define WG_PEER_WRITER_FOREACH(wgp, wg)					\
    841 	PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    842 	    wgp_peerlist_entry)
    843 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg)				\
    844 	PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
    845 #define WG_PEER_WRITER_REMOVE(wgp)					\
    846 	PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
    847 
    848 struct wg_route {
    849 	struct radix_node	wgr_nodes[2];
    850 	struct wg_peer		*wgr_peer;
    851 };
    852 
    853 static struct radix_node_head *
    854 wg_rnh(struct wg_softc *wg, const int family)
    855 {
    856 
    857 	switch (family) {
    858 #ifdef INET
    859 		case AF_INET:
    860 			return wg->wg_rtable_ipv4;
    861 #endif
    862 #ifdef INET6
    863 		case AF_INET6:
    864 			return wg->wg_rtable_ipv6;
    865 #endif
    866 		default:
    867 			return NULL;
    868 	}
    869 }
    870 
    871 
    872 /*
    873  * Global variables
    874  */
    875 static volatile unsigned wg_count __cacheline_aligned;
    876 
    877 struct psref_class *wg_psref_class __read_mostly;
    878 
    879 static struct if_clone wg_cloner =
    880     IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
    881 
    882 static struct pktqueue *wg_pktq __read_mostly;
    883 static struct workqueue *wg_wq __read_mostly;
    884 
    885 void wgattach(int);
    886 /* ARGSUSED */
    887 void
    888 wgattach(int count)
    889 {
    890 	/*
    891 	 * Nothing to do here, initialization is handled by the
    892 	 * module initialization code in wginit() below).
    893 	 */
    894 }
    895 
    896 static void
    897 wginit(void)
    898 {
    899 
    900 	wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
    901 
    902 	if_clone_attach(&wg_cloner);
    903 }
    904 
    905 /*
    906  * XXX Kludge: This should just happen in wginit, but workqueue_create
    907  * cannot be run until after CPUs have been detected, and wginit runs
    908  * before configure.
    909  */
    910 static int
    911 wginitqueues(void)
    912 {
    913 	int error __diagused;
    914 
    915 	wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
    916 	KASSERT(wg_pktq != NULL);
    917 
    918 	error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
    919 	    PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
    920 	KASSERTMSG(error == 0, "error=%d", error);
    921 
    922 	return 0;
    923 }
    924 
    925 static void
    926 wg_guarantee_initialized(void)
    927 {
    928 	static ONCE_DECL(init);
    929 	int error __diagused;
    930 
    931 	error = RUN_ONCE(&init, wginitqueues);
    932 	KASSERTMSG(error == 0, "error=%d", error);
    933 }
    934 
    935 static int
    936 wg_count_inc(void)
    937 {
    938 	unsigned o, n;
    939 
    940 	do {
    941 		o = atomic_load_relaxed(&wg_count);
    942 		if (o == UINT_MAX)
    943 			return ENFILE;
    944 		n = o + 1;
    945 	} while (atomic_cas_uint(&wg_count, o, n) != o);
    946 
    947 	return 0;
    948 }
    949 
    950 static void
    951 wg_count_dec(void)
    952 {
    953 	unsigned c __diagused;
    954 
    955 	membar_release();	/* match atomic_load_acquire in wgdetach */
    956 	c = atomic_dec_uint_nv(&wg_count);
    957 	KASSERT(c != UINT_MAX);
    958 }
    959 
    960 static int
    961 wgdetach(void)
    962 {
    963 
    964 	/* Prevent new interface creation.  */
    965 	if_clone_detach(&wg_cloner);
    966 
    967 	/*
    968 	 * Check whether there are any existing interfaces.  Matches
    969 	 * membar_release and atomic_dec_uint_nv in wg_count_dec.
    970 	 */
    971 	if (atomic_load_acquire(&wg_count)) {
    972 		/* Back out -- reattach the cloner.  */
    973 		if_clone_attach(&wg_cloner);
    974 		return EBUSY;
    975 	}
    976 
    977 	/* No interfaces left.  Nuke it.  */
    978 	if (wg_wq)
    979 		workqueue_destroy(wg_wq);
    980 	if (wg_pktq)
    981 		pktq_destroy(wg_pktq);
    982 	psref_class_destroy(wg_psref_class);
    983 
    984 	return 0;
    985 }
    986 
    987 static void
    988 wg_init_key_and_hash(uint8_t ckey[static WG_CHAINING_KEY_LEN],
    989     uint8_t hash[static WG_HASH_LEN])
    990 {
    991 	/* [W] 5.4: CONSTRUCTION */
    992 	const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
    993 	/* [W] 5.4: IDENTIFIER */
    994 	const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
    995 	struct blake2s state;
    996 
    997 	blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
    998 	    signature, strlen(signature));
    999 
   1000 	CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
   1001 	memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
   1002 
   1003 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1004 	blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
   1005 	blake2s_update(&state, id, strlen(id));
   1006 	blake2s_final(&state, hash);
   1007 
   1008 	WG_DUMP_HASH("ckey", ckey);
   1009 	WG_DUMP_HASH("hash", hash);
   1010 }
   1011 
   1012 static void
   1013 wg_algo_hash(uint8_t hash[static WG_HASH_LEN], const uint8_t input[],
   1014     const size_t inputsize)
   1015 {
   1016 	struct blake2s state;
   1017 
   1018 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1019 	blake2s_update(&state, hash, WG_HASH_LEN);
   1020 	blake2s_update(&state, input, inputsize);
   1021 	blake2s_final(&state, hash);
   1022 }
   1023 
   1024 static void
   1025 wg_algo_mac(uint8_t out[], const size_t outsize,
   1026     const uint8_t key[], const size_t keylen,
   1027     const uint8_t input1[], const size_t input1len,
   1028     const uint8_t input2[], const size_t input2len)
   1029 {
   1030 	struct blake2s state;
   1031 
   1032 	blake2s_init(&state, outsize, key, keylen);
   1033 
   1034 	blake2s_update(&state, input1, input1len);
   1035 	if (input2 != NULL)
   1036 		blake2s_update(&state, input2, input2len);
   1037 	blake2s_final(&state, out);
   1038 }
   1039 
   1040 static void
   1041 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
   1042     const uint8_t input1[], const size_t input1len,
   1043     const uint8_t input2[], const size_t input2len)
   1044 {
   1045 	struct blake2s state;
   1046 	/* [W] 5.4: LABEL-MAC1 */
   1047 	const char *label = "mac1----";
   1048 	uint8_t key[WG_HASH_LEN];
   1049 
   1050 	blake2s_init(&state, sizeof(key), NULL, 0);
   1051 	blake2s_update(&state, label, strlen(label));
   1052 	blake2s_update(&state, input1, input1len);
   1053 	blake2s_final(&state, key);
   1054 
   1055 	blake2s_init(&state, outsize, key, sizeof(key));
   1056 	if (input2 != NULL)
   1057 		blake2s_update(&state, input2, input2len);
   1058 	blake2s_final(&state, out);
   1059 }
   1060 
   1061 static void
   1062 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
   1063     const uint8_t input1[], const size_t input1len)
   1064 {
   1065 	struct blake2s state;
   1066 	/* [W] 5.4: LABEL-COOKIE */
   1067 	const char *label = "cookie--";
   1068 
   1069 	blake2s_init(&state, outsize, NULL, 0);
   1070 	blake2s_update(&state, label, strlen(label));
   1071 	blake2s_update(&state, input1, input1len);
   1072 	blake2s_final(&state, out);
   1073 }
   1074 
   1075 static void
   1076 wg_algo_generate_keypair(uint8_t pubkey[static WG_EPHEMERAL_KEY_LEN],
   1077     uint8_t privkey[static WG_EPHEMERAL_KEY_LEN])
   1078 {
   1079 
   1080 	CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1081 
   1082 	cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
   1083 	crypto_scalarmult_base(pubkey, privkey);
   1084 }
   1085 
   1086 static void
   1087 wg_algo_dh(uint8_t out[static WG_DH_OUTPUT_LEN],
   1088     const uint8_t privkey[static WG_STATIC_KEY_LEN],
   1089     const uint8_t pubkey[static WG_STATIC_KEY_LEN])
   1090 {
   1091 
   1092 	CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1093 
   1094 	int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
   1095 	KASSERT(ret == 0);
   1096 }
   1097 
   1098 static void
   1099 wg_algo_hmac(uint8_t out[], const size_t outlen,
   1100     const uint8_t key[], const size_t keylen,
   1101     const uint8_t in[], const size_t inlen)
   1102 {
   1103 #define IPAD	0x36
   1104 #define OPAD	0x5c
   1105 	uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
   1106 	uint8_t ipad[HMAC_BLOCK_LEN];
   1107 	uint8_t opad[HMAC_BLOCK_LEN];
   1108 	size_t i;
   1109 	struct blake2s state;
   1110 
   1111 	KASSERT(outlen == WG_HASH_LEN);
   1112 	KASSERT(keylen <= HMAC_BLOCK_LEN);
   1113 
   1114 	memcpy(hmackey, key, keylen);
   1115 
   1116 	for (i = 0; i < sizeof(hmackey); i++) {
   1117 		ipad[i] = hmackey[i] ^ IPAD;
   1118 		opad[i] = hmackey[i] ^ OPAD;
   1119 	}
   1120 
   1121 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1122 	blake2s_update(&state, ipad, sizeof(ipad));
   1123 	blake2s_update(&state, in, inlen);
   1124 	blake2s_final(&state, out);
   1125 
   1126 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1127 	blake2s_update(&state, opad, sizeof(opad));
   1128 	blake2s_update(&state, out, WG_HASH_LEN);
   1129 	blake2s_final(&state, out);
   1130 #undef IPAD
   1131 #undef OPAD
   1132 }
   1133 
   1134 static void
   1135 wg_algo_kdf(uint8_t out1[static WG_KDF_OUTPUT_LEN],
   1136     uint8_t out2[WG_KDF_OUTPUT_LEN],
   1137     uint8_t out3[WG_KDF_OUTPUT_LEN],
   1138     const uint8_t ckey[static WG_CHAINING_KEY_LEN],
   1139     const uint8_t input[], const size_t inputlen)
   1140 {
   1141 	uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
   1142 	uint8_t one[1];
   1143 
   1144 	/*
   1145 	 * [N] 4.3: "an input_key_material byte sequence with length
   1146 	 * either zero bytes, 32 bytes, or DHLEN bytes."
   1147 	 */
   1148 	KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
   1149 
   1150 	WG_DUMP_HASH("ckey", ckey);
   1151 	if (input != NULL)
   1152 		WG_DUMP_HASH("input", input);
   1153 	wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
   1154 	    input, inputlen);
   1155 	WG_DUMP_HASH("tmp1", tmp1);
   1156 	one[0] = 1;
   1157 	wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1158 	    one, sizeof(one));
   1159 	WG_DUMP_HASH("out1", out1);
   1160 	if (out2 == NULL)
   1161 		return;
   1162 	memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
   1163 	tmp2[WG_KDF_OUTPUT_LEN] = 2;
   1164 	wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1165 	    tmp2, sizeof(tmp2));
   1166 	WG_DUMP_HASH("out2", out2);
   1167 	if (out3 == NULL)
   1168 		return;
   1169 	memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
   1170 	tmp2[WG_KDF_OUTPUT_LEN] = 3;
   1171 	wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1172 	    tmp2, sizeof(tmp2));
   1173 	WG_DUMP_HASH("out3", out3);
   1174 }
   1175 
   1176 static void __noinline
   1177 wg_algo_dh_kdf(uint8_t ckey[static WG_CHAINING_KEY_LEN],
   1178     uint8_t cipher_key[WG_CIPHER_KEY_LEN],
   1179     const uint8_t local_key[static WG_STATIC_KEY_LEN],
   1180     const uint8_t remote_key[static WG_STATIC_KEY_LEN])
   1181 {
   1182 	uint8_t dhout[WG_DH_OUTPUT_LEN];
   1183 
   1184 	wg_algo_dh(dhout, local_key, remote_key);
   1185 	wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
   1186 
   1187 	WG_DUMP_HASH("dhout", dhout);
   1188 	WG_DUMP_HASH("ckey", ckey);
   1189 	if (cipher_key != NULL)
   1190 		WG_DUMP_HASH("cipher_key", cipher_key);
   1191 }
   1192 
   1193 static void
   1194 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize,
   1195     const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
   1196     const uint64_t counter,
   1197     const uint8_t plain[], const size_t plainsize,
   1198     const uint8_t auth[], size_t authlen)
   1199 {
   1200 	uint8_t nonce[(32 + 64) / 8] = {0};
   1201 	long long unsigned int outsize;
   1202 	int error __diagused;
   1203 
   1204 	le64enc(&nonce[4], counter);
   1205 
   1206 	error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
   1207 	    plainsize, auth, authlen, NULL, nonce, key);
   1208 	KASSERT(error == 0);
   1209 	KASSERT(outsize == expected_outsize);
   1210 }
   1211 
   1212 static int
   1213 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize,
   1214     const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
   1215     const uint64_t counter,
   1216     const uint8_t encrypted[], const size_t encryptedsize,
   1217     const uint8_t auth[], size_t authlen)
   1218 {
   1219 	uint8_t nonce[(32 + 64) / 8] = {0};
   1220 	long long unsigned int outsize;
   1221 	int error;
   1222 
   1223 	le64enc(&nonce[4], counter);
   1224 
   1225 	error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1226 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1227 	if (error == 0)
   1228 		KASSERT(outsize == expected_outsize);
   1229 	return error;
   1230 }
   1231 
   1232 static void
   1233 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
   1234     const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
   1235     const uint8_t plain[], const size_t plainsize,
   1236     const uint8_t auth[], size_t authlen,
   1237     const uint8_t nonce[static WG_SALT_LEN])
   1238 {
   1239 	long long unsigned int outsize;
   1240 	int error __diagused;
   1241 
   1242 	CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
   1243 	error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
   1244 	    plain, plainsize, auth, authlen, NULL, nonce, key);
   1245 	KASSERT(error == 0);
   1246 	KASSERT(outsize == expected_outsize);
   1247 }
   1248 
   1249 static int
   1250 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
   1251     const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
   1252     const uint8_t encrypted[], const size_t encryptedsize,
   1253     const uint8_t auth[], size_t authlen,
   1254     const uint8_t nonce[static WG_SALT_LEN])
   1255 {
   1256 	long long unsigned int outsize;
   1257 	int error;
   1258 
   1259 	error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1260 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1261 	if (error == 0)
   1262 		KASSERT(outsize == expected_outsize);
   1263 	return error;
   1264 }
   1265 
   1266 static void
   1267 wg_algo_tai64n(wg_timestamp_t timestamp)
   1268 {
   1269 	struct timespec ts;
   1270 
   1271 	/* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
   1272 	getnanotime(&ts);
   1273 	/* TAI64 label in external TAI64 format */
   1274 	be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
   1275 	/* second beginning from 1970 TAI */
   1276 	be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
   1277 	/* nanosecond in big-endian format */
   1278 	be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
   1279 }
   1280 
   1281 /*
   1282  * wg_get_stable_session(wgp, psref)
   1283  *
   1284  *	Get a passive reference to the current stable session, or
   1285  *	return NULL if there is no current stable session.
   1286  *
   1287  *	The pointer is always there but the session is not necessarily
   1288  *	ESTABLISHED; if it is not ESTABLISHED, return NULL.  However,
   1289  *	the session may transition from ESTABLISHED to DESTROYING while
   1290  *	holding the passive reference.
   1291  */
   1292 static struct wg_session *
   1293 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
   1294 {
   1295 	int s;
   1296 	struct wg_session *wgs;
   1297 
   1298 	s = pserialize_read_enter();
   1299 	wgs = atomic_load_consume(&wgp->wgp_session_stable);
   1300 	if (__predict_false(atomic_load_relaxed(&wgs->wgs_state) !=
   1301 		WGS_STATE_ESTABLISHED))
   1302 		wgs = NULL;
   1303 	else
   1304 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   1305 	pserialize_read_exit(s);
   1306 
   1307 	return wgs;
   1308 }
   1309 
   1310 static void
   1311 wg_put_session(struct wg_session *wgs, struct psref *psref)
   1312 {
   1313 
   1314 	psref_release(psref, &wgs->wgs_psref, wg_psref_class);
   1315 }
   1316 
   1317 static void
   1318 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
   1319 {
   1320 	struct wg_peer *wgp = wgs->wgs_peer;
   1321 	struct wg_session *wgs0 __diagused;
   1322 	void *garbage;
   1323 
   1324 	KASSERT(mutex_owned(wgp->wgp_lock));
   1325 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1326 
   1327 	/* Remove the session from the table.  */
   1328 	wgs0 = thmap_del(wg->wg_sessions_byindex,
   1329 	    &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
   1330 	KASSERT(wgs0 == wgs);
   1331 	garbage = thmap_stage_gc(wg->wg_sessions_byindex);
   1332 
   1333 	/* Wait for passive references to drain.  */
   1334 	pserialize_perform(wgp->wgp_psz);
   1335 	psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
   1336 
   1337 	/*
   1338 	 * Free memory, zero state, and transition to UNKNOWN.  We have
   1339 	 * exclusive access to the session now, so there is no need for
   1340 	 * an atomic store.
   1341 	 */
   1342 	thmap_gc(wg->wg_sessions_byindex, garbage);
   1343 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_UNKNOWN\n",
   1344 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   1345 	wgs->wgs_local_index = 0;
   1346 	wgs->wgs_remote_index = 0;
   1347 	wg_clear_states(wgs);
   1348 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   1349 	wgs->wgs_force_rekey = false;
   1350 }
   1351 
   1352 /*
   1353  * wg_get_session_index(wg, wgs)
   1354  *
   1355  *	Choose a session index for wgs->wgs_local_index, and store it
   1356  *	in wg's table of sessions by index.
   1357  *
   1358  *	wgs must be the unstable session of its peer, and must be
   1359  *	transitioning out of the UNKNOWN state.
   1360  */
   1361 static void
   1362 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1363 {
   1364 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1365 	struct wg_session *wgs0;
   1366 	uint32_t index;
   1367 
   1368 	KASSERT(mutex_owned(wgp->wgp_lock));
   1369 	KASSERT(wgs == wgp->wgp_session_unstable);
   1370 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1371 	    wgs->wgs_state);
   1372 
   1373 	do {
   1374 		/* Pick a uniform random index.  */
   1375 		index = cprng_strong32();
   1376 
   1377 		/* Try to take it.  */
   1378 		wgs->wgs_local_index = index;
   1379 		wgs0 = thmap_put(wg->wg_sessions_byindex,
   1380 		    &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
   1381 
   1382 		/* If someone else beat us, start over.  */
   1383 	} while (__predict_false(wgs0 != wgs));
   1384 }
   1385 
   1386 /*
   1387  * wg_put_session_index(wg, wgs)
   1388  *
   1389  *	Remove wgs from the table of sessions by index, wait for any
   1390  *	passive references to drain, and transition the session to the
   1391  *	UNKNOWN state.
   1392  *
   1393  *	wgs must be the unstable session of its peer, and must not be
   1394  *	UNKNOWN or ESTABLISHED.
   1395  */
   1396 static void
   1397 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1398 {
   1399 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1400 
   1401 	KASSERT(mutex_owned(wgp->wgp_lock));
   1402 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1403 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
   1404 
   1405 	wg_destroy_session(wg, wgs);
   1406 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   1407 }
   1408 
   1409 /*
   1410  * Handshake patterns
   1411  *
   1412  * [W] 5: "These messages use the "IK" pattern from Noise"
   1413  * [N] 7.5. Interactive handshake patterns (fundamental)
   1414  *     "The first character refers to the initiators static key:"
   1415  *     "I = Static key for initiator Immediately transmitted to responder,
   1416  *          despite reduced or absent identity hiding"
   1417  *     "The second character refers to the responders static key:"
   1418  *     "K = Static key for responder Known to initiator"
   1419  *     "IK:
   1420  *        <- s
   1421  *        ...
   1422  *        -> e, es, s, ss
   1423  *        <- e, ee, se"
   1424  * [N] 9.4. Pattern modifiers
   1425  *     "IKpsk2:
   1426  *        <- s
   1427  *        ...
   1428  *        -> e, es, s, ss
   1429  *        <- e, ee, se, psk"
   1430  */
   1431 static void
   1432 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
   1433     struct wg_session *wgs, struct wg_msg_init *wgmi)
   1434 {
   1435 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1436 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1437 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1438 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1439 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1440 
   1441 	KASSERT(mutex_owned(wgp->wgp_lock));
   1442 	KASSERT(wgs == wgp->wgp_session_unstable);
   1443 	KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
   1444 	    wgs->wgs_state);
   1445 
   1446 	wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
   1447 	wgmi->wgmi_sender = wgs->wgs_local_index;
   1448 
   1449 	/* [W] 5.4.2: First Message: Initiator to Responder */
   1450 
   1451 	/* Ci := HASH(CONSTRUCTION) */
   1452 	/* Hi := HASH(Ci || IDENTIFIER) */
   1453 	wg_init_key_and_hash(ckey, hash);
   1454 	/* Hi := HASH(Hi || Sr^pub) */
   1455 	wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
   1456 
   1457 	WG_DUMP_HASH("hash", hash);
   1458 
   1459 	/* [N] 2.2: "e" */
   1460 	/* Ei^priv, Ei^pub := DH-GENERATE() */
   1461 	wg_algo_generate_keypair(pubkey, privkey);
   1462 	/* Ci := KDF1(Ci, Ei^pub) */
   1463 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1464 	/* msg.ephemeral := Ei^pub */
   1465 	memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
   1466 	/* Hi := HASH(Hi || msg.ephemeral) */
   1467 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1468 
   1469 	WG_DUMP_HASH("ckey", ckey);
   1470 	WG_DUMP_HASH("hash", hash);
   1471 
   1472 	/* [N] 2.2: "es" */
   1473 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1474 	wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
   1475 
   1476 	/* [N] 2.2: "s" */
   1477 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1478 	wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
   1479 	    cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1480 	    hash, sizeof(hash));
   1481 	/* Hi := HASH(Hi || msg.static) */
   1482 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1483 
   1484 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1485 
   1486 	/* [N] 2.2: "ss" */
   1487 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1488 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1489 
   1490 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1491 	wg_timestamp_t timestamp;
   1492 	wg_algo_tai64n(timestamp);
   1493 	wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1494 	    cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
   1495 	/* Hi := HASH(Hi || msg.timestamp) */
   1496 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1497 
   1498 	/* [W] 5.4.4 Cookie MACs */
   1499 	wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
   1500 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1501 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1502 	/* Need mac1 to decrypt a cookie from a cookie message */
   1503 	memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
   1504 	    sizeof(wgp->wgp_last_sent_mac1));
   1505 	wgp->wgp_last_sent_mac1_valid = true;
   1506 
   1507 	if (wgp->wgp_latest_cookie_time == 0 ||
   1508 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1509 		memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
   1510 	else {
   1511 		wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
   1512 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1513 		    (const uint8_t *)wgmi,
   1514 		    offsetof(struct wg_msg_init, wgmi_mac2),
   1515 		    NULL, 0);
   1516 	}
   1517 
   1518 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1519 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1520 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1521 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1522 	WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
   1523 }
   1524 
   1525 static void __noinline
   1526 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
   1527     const struct sockaddr *src)
   1528 {
   1529 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1530 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1531 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1532 	uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
   1533 	struct wg_peer *wgp;
   1534 	struct wg_session *wgs;
   1535 	int error, ret;
   1536 	struct psref psref_peer;
   1537 	uint8_t mac1[WG_MAC_LEN];
   1538 
   1539 	WG_TRACE("init msg received");
   1540 
   1541 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1542 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1543 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1544 
   1545 	/*
   1546 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1547 	 * "the responder, ..., must always reject messages with an invalid
   1548 	 *  msg.mac1"
   1549 	 */
   1550 	if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
   1551 		WG_DLOG("mac1 is invalid\n");
   1552 		return;
   1553 	}
   1554 
   1555 	/*
   1556 	 * [W] 5.4.2: First Message: Initiator to Responder
   1557 	 * "When the responder receives this message, it does the same
   1558 	 *  operations so that its final state variables are identical,
   1559 	 *  replacing the operands of the DH function to produce equivalent
   1560 	 *  values."
   1561 	 *  Note that the following comments of operations are just copies of
   1562 	 *  the initiator's ones.
   1563 	 */
   1564 
   1565 	/* Ci := HASH(CONSTRUCTION) */
   1566 	/* Hi := HASH(Ci || IDENTIFIER) */
   1567 	wg_init_key_and_hash(ckey, hash);
   1568 	/* Hi := HASH(Hi || Sr^pub) */
   1569 	wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
   1570 
   1571 	/* [N] 2.2: "e" */
   1572 	/* Ci := KDF1(Ci, Ei^pub) */
   1573 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
   1574 	    sizeof(wgmi->wgmi_ephemeral));
   1575 	/* Hi := HASH(Hi || msg.ephemeral) */
   1576 	wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
   1577 
   1578 	WG_DUMP_HASH("ckey", ckey);
   1579 
   1580 	/* [N] 2.2: "es" */
   1581 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1582 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
   1583 
   1584 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1585 
   1586 	/* [N] 2.2: "s" */
   1587 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1588 	error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
   1589 	    wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
   1590 	if (error != 0) {
   1591 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   1592 		    "%s: wg_algo_aead_dec for secret key failed\n",
   1593 		    if_name(&wg->wg_if));
   1594 		return;
   1595 	}
   1596 	/* Hi := HASH(Hi || msg.static) */
   1597 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1598 
   1599 	wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
   1600 	if (wgp == NULL) {
   1601 		WG_DLOG("peer not found\n");
   1602 		return;
   1603 	}
   1604 
   1605 	/*
   1606 	 * Lock the peer to serialize access to cookie state.
   1607 	 *
   1608 	 * XXX Can we safely avoid holding the lock across DH?  Take it
   1609 	 * just to verify mac2 and then unlock/DH/lock?
   1610 	 */
   1611 	mutex_enter(wgp->wgp_lock);
   1612 
   1613 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
   1614 		WG_TRACE("under load");
   1615 		/*
   1616 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1617 		 * "the responder, ..., and when under load may reject messages
   1618 		 *  with an invalid msg.mac2.  If the responder receives a
   1619 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1620 		 *  and is under load, it may respond with a cookie reply
   1621 		 *  message"
   1622 		 */
   1623 		uint8_t zero[WG_MAC_LEN] = {0};
   1624 		if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
   1625 			WG_TRACE("sending a cookie message: no cookie included");
   1626 			wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1627 			    wgmi->wgmi_mac1, src);
   1628 			goto out;
   1629 		}
   1630 		if (!wgp->wgp_last_sent_cookie_valid) {
   1631 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1632 			wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1633 			    wgmi->wgmi_mac1, src);
   1634 			goto out;
   1635 		}
   1636 		uint8_t mac2[WG_MAC_LEN];
   1637 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1638 		    WG_COOKIE_LEN, (const uint8_t *)wgmi,
   1639 		    offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
   1640 		if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
   1641 			WG_DLOG("mac2 is invalid\n");
   1642 			goto out;
   1643 		}
   1644 		WG_TRACE("under load, but continue to sending");
   1645 	}
   1646 
   1647 	/* [N] 2.2: "ss" */
   1648 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1649 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1650 
   1651 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1652 	wg_timestamp_t timestamp;
   1653 	error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
   1654 	    wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1655 	    hash, sizeof(hash));
   1656 	if (error != 0) {
   1657 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1658 		    "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
   1659 		    if_name(&wg->wg_if), wgp->wgp_name);
   1660 		goto out;
   1661 	}
   1662 	/* Hi := HASH(Hi || msg.timestamp) */
   1663 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1664 
   1665 	/*
   1666 	 * [W] 5.1 "The responder keeps track of the greatest timestamp
   1667 	 *      received per peer and discards packets containing
   1668 	 *      timestamps less than or equal to it."
   1669 	 */
   1670 	ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
   1671 	    sizeof(timestamp));
   1672 	if (ret <= 0) {
   1673 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1674 		    "%s: peer %s: invalid init msg: timestamp is old\n",
   1675 		    if_name(&wg->wg_if), wgp->wgp_name);
   1676 		goto out;
   1677 	}
   1678 	memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
   1679 
   1680 	/*
   1681 	 * Message is good -- we're committing to handle it now, unless
   1682 	 * we were already initiating a session.
   1683 	 */
   1684 	wgs = wgp->wgp_session_unstable;
   1685 	switch (wgs->wgs_state) {
   1686 	case WGS_STATE_UNKNOWN:		/* new session initiated by peer */
   1687 		break;
   1688 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, drop */
   1689 		/* XXX Who wins if both sides send INIT?  */
   1690 		WG_TRACE("Session already initializing, ignoring the message");
   1691 		goto out;
   1692 	case WGS_STATE_INIT_PASSIVE:	/* peer is retrying, start over */
   1693 		WG_TRACE("Session already initializing, destroying old states");
   1694 		/*
   1695 		 * XXX Avoid this -- just resend our response -- if the
   1696 		 * INIT message is identical to the previous one.
   1697 		 */
   1698 		wg_put_session_index(wg, wgs);
   1699 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1700 		    wgs->wgs_state);
   1701 		break;
   1702 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1703 		panic("unstable session can't be established");
   1704 	case WGS_STATE_DESTROYING:	/* rekey initiated by peer */
   1705 		WG_TRACE("Session destroying, but force to clear");
   1706 		wg_put_session_index(wg, wgs);
   1707 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1708 		    wgs->wgs_state);
   1709 		break;
   1710 	default:
   1711 		panic("invalid session state: %d", wgs->wgs_state);
   1712 	}
   1713 
   1714 	/*
   1715 	 * Assign a fresh session index.
   1716 	 */
   1717 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1718 	    wgs->wgs_state);
   1719 	wg_get_session_index(wg, wgs);
   1720 
   1721 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1722 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1723 	memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
   1724 	    sizeof(wgmi->wgmi_ephemeral));
   1725 
   1726 	/*
   1727 	 * The packet is genuine.  Update the peer's endpoint if the
   1728 	 * source address changed.
   1729 	 *
   1730 	 * XXX How to prevent DoS by replaying genuine packets from the
   1731 	 * wrong source address?
   1732 	 */
   1733 	wg_update_endpoint_if_necessary(wgp, src);
   1734 
   1735 	/*
   1736 	 * Even though we don't transition from INIT_PASSIVE to
   1737 	 * ESTABLISHED until we receive the first data packet from the
   1738 	 * initiator, we count the time of the INIT message as the time
   1739 	 * of establishment -- this is used to decide when to erase
   1740 	 * keys, and we want to start counting as soon as we have
   1741 	 * generated keys.
   1742 	 */
   1743 	wgs->wgs_time_established = time_uptime32;
   1744 	wg_schedule_session_dtor_timer(wgp);
   1745 
   1746 	/*
   1747 	 * Respond to the initiator with our ephemeral public key.
   1748 	 */
   1749 	wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
   1750 
   1751 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
   1752 	    " calculate keys as responder\n",
   1753 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   1754 	wg_calculate_keys(wgs, false);
   1755 	wg_clear_states(wgs);
   1756 
   1757 	/*
   1758 	 * Session is ready to receive data now that we have received
   1759 	 * the peer initiator's ephemeral key pair, generated our
   1760 	 * responder's ephemeral key pair, and derived a session key.
   1761 	 *
   1762 	 * Transition from UNKNOWN to INIT_PASSIVE to publish it to the
   1763 	 * data rx path, wg_handle_msg_data, where the
   1764 	 * atomic_load_acquire matching this atomic_store_release
   1765 	 * happens.
   1766 	 *
   1767 	 * (Session is not, however, ready to send data until the peer
   1768 	 * has acknowledged our response by sending its first data
   1769 	 * packet.  So don't swap the sessions yet.)
   1770 	 */
   1771 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_INIT_PASSIVE\n",
   1772 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   1773 	atomic_store_release(&wgs->wgs_state, WGS_STATE_INIT_PASSIVE);
   1774 	WG_TRACE("WGS_STATE_INIT_PASSIVE");
   1775 
   1776 out:
   1777 	mutex_exit(wgp->wgp_lock);
   1778 	wg_put_peer(wgp, &psref_peer);
   1779 }
   1780 
   1781 static struct socket *
   1782 wg_get_so_by_af(struct wg_softc *wg, const int af)
   1783 {
   1784 
   1785 	switch (af) {
   1786 #ifdef INET
   1787 	case AF_INET:
   1788 		return wg->wg_so4;
   1789 #endif
   1790 #ifdef INET6
   1791 	case AF_INET6:
   1792 		return wg->wg_so6;
   1793 #endif
   1794 	default:
   1795 		panic("wg: no such af: %d", af);
   1796 	}
   1797 }
   1798 
   1799 static struct socket *
   1800 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
   1801 {
   1802 
   1803 	return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
   1804 }
   1805 
   1806 static struct wg_sockaddr *
   1807 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
   1808 {
   1809 	struct wg_sockaddr *wgsa;
   1810 	int s;
   1811 
   1812 	s = pserialize_read_enter();
   1813 	wgsa = atomic_load_consume(&wgp->wgp_endpoint);
   1814 	psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
   1815 	pserialize_read_exit(s);
   1816 
   1817 	return wgsa;
   1818 }
   1819 
   1820 static void
   1821 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
   1822 {
   1823 
   1824 	psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
   1825 }
   1826 
   1827 static int
   1828 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
   1829 {
   1830 	int error;
   1831 	struct socket *so;
   1832 	struct psref psref;
   1833 	struct wg_sockaddr *wgsa;
   1834 
   1835 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   1836 	so = wg_get_so_by_peer(wgp, wgsa);
   1837 	error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
   1838 	wg_put_sa(wgp, wgsa, &psref);
   1839 
   1840 	return error;
   1841 }
   1842 
   1843 static void
   1844 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
   1845 {
   1846 	int error;
   1847 	struct mbuf *m;
   1848 	struct wg_msg_init *wgmi;
   1849 	struct wg_session *wgs;
   1850 
   1851 	KASSERT(mutex_owned(wgp->wgp_lock));
   1852 
   1853 	wgs = wgp->wgp_session_unstable;
   1854 	/* XXX pull dispatch out into wg_task_send_init_message */
   1855 	switch (wgs->wgs_state) {
   1856 	case WGS_STATE_UNKNOWN:		/* new session initiated by us */
   1857 		break;
   1858 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, stop */
   1859 		WG_TRACE("Session already initializing, skip starting new one");
   1860 		return;
   1861 	case WGS_STATE_INIT_PASSIVE:	/* peer was trying -- XXX what now? */
   1862 		WG_TRACE("Session already initializing, waiting for peer");
   1863 		return;
   1864 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1865 		panic("unstable session can't be established");
   1866 	case WGS_STATE_DESTROYING:	/* rekey initiated by us too early */
   1867 		WG_TRACE("Session destroying");
   1868 		wg_put_session_index(wg, wgs);
   1869 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1870 		    wgs->wgs_state);
   1871 		break;
   1872 	}
   1873 
   1874 	/*
   1875 	 * Assign a fresh session index.
   1876 	 */
   1877 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1878 	    wgs->wgs_state);
   1879 	wg_get_session_index(wg, wgs);
   1880 
   1881 	/*
   1882 	 * We have initiated a session.  Transition to INIT_ACTIVE.
   1883 	 * This doesn't publish it for use in the data rx path,
   1884 	 * wg_handle_msg_data, or in the data tx path, wg_output -- we
   1885 	 * have to wait for the peer to respond with their ephemeral
   1886 	 * public key before we can derive a session key for tx/rx.
   1887 	 * Hence only atomic_store_relaxed.
   1888 	 */
   1889 	WG_DLOG("session[L=%"PRIx32" R=(unknown)] -> WGS_STATE_INIT_ACTIVE\n",
   1890 	    wgs->wgs_local_index);
   1891 	atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_INIT_ACTIVE);
   1892 
   1893 	m = m_gethdr(M_WAIT, MT_DATA);
   1894 	if (sizeof(*wgmi) > MHLEN) {
   1895 		m_clget(m, M_WAIT);
   1896 		CTASSERT(sizeof(*wgmi) <= MCLBYTES);
   1897 	}
   1898 	m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
   1899 	wgmi = mtod(m, struct wg_msg_init *);
   1900 	wg_fill_msg_init(wg, wgp, wgs, wgmi);
   1901 
   1902 	error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
   1903 	if (error) {
   1904 		/*
   1905 		 * Sending out an initiation packet failed; give up on
   1906 		 * this session and toss packet waiting for it if any.
   1907 		 *
   1908 		 * XXX Why don't we just let the periodic handshake
   1909 		 * retry logic work in this case?
   1910 		 */
   1911 		WG_DLOG("send_hs_msg failed, error=%d\n", error);
   1912 		wg_put_session_index(wg, wgs);
   1913 		m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   1914 		membar_acquire(); /* matches membar_release in wgintr */
   1915 		m_freem(m);
   1916 		return;
   1917 	}
   1918 
   1919 	WG_TRACE("init msg sent");
   1920 	if (wgp->wgp_handshake_start_time == 0)
   1921 		wgp->wgp_handshake_start_time = time_uptime;
   1922 	callout_schedule(&wgp->wgp_handshake_timeout_timer,
   1923 	    MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
   1924 }
   1925 
   1926 static void
   1927 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   1928     struct wg_session *wgs, struct wg_msg_resp *wgmr,
   1929     const struct wg_msg_init *wgmi)
   1930 {
   1931 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   1932 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
   1933 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   1934 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1935 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1936 
   1937 	KASSERT(mutex_owned(wgp->wgp_lock));
   1938 	KASSERT(wgs == wgp->wgp_session_unstable);
   1939 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1940 	    wgs->wgs_state);
   1941 
   1942 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   1943 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   1944 
   1945 	wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
   1946 	wgmr->wgmr_sender = wgs->wgs_local_index;
   1947 	wgmr->wgmr_receiver = wgmi->wgmi_sender;
   1948 
   1949 	/* [W] 5.4.3 Second Message: Responder to Initiator */
   1950 
   1951 	/* [N] 2.2: "e" */
   1952 	/* Er^priv, Er^pub := DH-GENERATE() */
   1953 	wg_algo_generate_keypair(pubkey, privkey);
   1954 	/* Cr := KDF1(Cr, Er^pub) */
   1955 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1956 	/* msg.ephemeral := Er^pub */
   1957 	memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
   1958 	/* Hr := HASH(Hr || msg.ephemeral) */
   1959 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1960 
   1961 	WG_DUMP_HASH("ckey", ckey);
   1962 	WG_DUMP_HASH("hash", hash);
   1963 
   1964 	/* [N] 2.2: "ee" */
   1965 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   1966 	wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
   1967 
   1968 	/* [N] 2.2: "se" */
   1969 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   1970 	wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
   1971 
   1972 	/* [N] 9.2: "psk" */
   1973     {
   1974 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   1975 	/* Cr, r, k := KDF3(Cr, Q) */
   1976 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   1977 	    sizeof(wgp->wgp_psk));
   1978 	/* Hr := HASH(Hr || r) */
   1979 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   1980     }
   1981 
   1982 	/* msg.empty := AEAD(k, 0, e, Hr) */
   1983 	wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
   1984 	    cipher_key, 0, NULL, 0, hash, sizeof(hash));
   1985 	/* Hr := HASH(Hr || msg.empty) */
   1986 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   1987 
   1988 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   1989 
   1990 	/* [W] 5.4.4: Cookie MACs */
   1991 	/* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
   1992 	wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
   1993 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1994 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   1995 	/* Need mac1 to decrypt a cookie from a cookie message */
   1996 	memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
   1997 	    sizeof(wgp->wgp_last_sent_mac1));
   1998 	wgp->wgp_last_sent_mac1_valid = true;
   1999 
   2000 	if (wgp->wgp_latest_cookie_time == 0 ||
   2001 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   2002 		/* msg.mac2 := 0^16 */
   2003 		memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
   2004 	else {
   2005 		/* msg.mac2 := MAC(Lm, msg_b) */
   2006 		wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
   2007 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   2008 		    (const uint8_t *)wgmr,
   2009 		    offsetof(struct wg_msg_resp, wgmr_mac2),
   2010 		    NULL, 0);
   2011 	}
   2012 
   2013 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   2014 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   2015 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   2016 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   2017 	wgs->wgs_remote_index = wgmi->wgmi_sender;
   2018 	WG_DLOG("sender=%x\n", wgs->wgs_local_index);
   2019 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   2020 }
   2021 
   2022 /*
   2023  * wg_swap_sessions(wg, wgp)
   2024  *
   2025  *	Caller has just finished establishing the unstable session in
   2026  *	wg for peer wgp.  Publish it as the stable session, send queued
   2027  *	packets or keepalives as necessary to kick off the session,
   2028  *	move the previously stable session to unstable, and begin
   2029  *	destroying it.
   2030  */
   2031 static void
   2032 wg_swap_sessions(struct wg_softc *wg, struct wg_peer *wgp)
   2033 {
   2034 	struct wg_session *wgs, *wgs_prev;
   2035 	struct mbuf *m;
   2036 
   2037 	KASSERT(mutex_owned(wgp->wgp_lock));
   2038 
   2039 	/*
   2040 	 * Get the newly established session, to become the new
   2041 	 * session.  Caller must have transitioned from INIT_ACTIVE to
   2042 	 * INIT_PASSIVE or to ESTABLISHED already.  This will become
   2043 	 * the stable session.
   2044 	 */
   2045 	wgs = wgp->wgp_session_unstable;
   2046 	KASSERTMSG(wgs->wgs_state == WGS_STATE_ESTABLISHED, "state=%d",
   2047 	    wgs->wgs_state);
   2048 
   2049 	/*
   2050 	 * Get the stable session, which is either the previously
   2051 	 * established session in the ESTABLISHED state, or has not
   2052 	 * been established at all and is UNKNOWN.  This will become
   2053 	 * the unstable session.
   2054 	 */
   2055 	wgs_prev = wgp->wgp_session_stable;
   2056 	KASSERTMSG((wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
   2057 		wgs_prev->wgs_state == WGS_STATE_UNKNOWN),
   2058 	    "state=%d", wgs_prev->wgs_state);
   2059 
   2060 	/*
   2061 	 * Publish the newly established session for the tx path to use
   2062 	 * and make the other one the unstable session to handle
   2063 	 * stragglers in the rx path and later be used for the next
   2064 	 * session's handshake.
   2065 	 */
   2066 	atomic_store_release(&wgp->wgp_session_stable, wgs);
   2067 	wgp->wgp_session_unstable = wgs_prev;
   2068 
   2069 	/*
   2070 	 * Record the handshake time and reset the handshake state.
   2071 	 */
   2072 	getnanotime(&wgp->wgp_last_handshake_time);
   2073 	wgp->wgp_handshake_start_time = 0;
   2074 	wgp->wgp_last_sent_mac1_valid = false;
   2075 	wgp->wgp_last_sent_cookie_valid = false;
   2076 
   2077 	/*
   2078 	 * If we had a data packet queued up, send it.
   2079 	 *
   2080 	 * If not, but we're the initiator, send a keepalive message --
   2081 	 * if we're the initiator we have to send something immediately
   2082 	 * or else the responder will never answer.
   2083 	 */
   2084 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   2085 		membar_acquire(); /* matches membar_release in wgintr */
   2086 		wg_send_data_msg(wgp, wgs, m); /* consumes m */
   2087 		m = NULL;
   2088 	} else if (wgs->wgs_is_initiator) {
   2089 		wg_send_keepalive_msg(wgp, wgs);
   2090 	}
   2091 
   2092 	/*
   2093 	 * If the previous stable session was established, begin to
   2094 	 * destroy it.
   2095 	 */
   2096 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   2097 		/*
   2098 		 * Transition ESTABLISHED->DESTROYING.  The session
   2099 		 * will remain usable for the data rx path to process
   2100 		 * packets still in flight to us, but we won't use it
   2101 		 * for data tx.
   2102 		 */
   2103 		WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
   2104 		    " -> WGS_STATE_DESTROYING\n",
   2105 		    wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
   2106 		atomic_store_relaxed(&wgs_prev->wgs_state,
   2107 		    WGS_STATE_DESTROYING);
   2108 	} else {
   2109 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   2110 		    "state=%d", wgs_prev->wgs_state);
   2111 		wgs_prev->wgs_local_index = 0; /* paranoia */
   2112 		wgs_prev->wgs_remote_index = 0; /* paranoia */
   2113 		wg_clear_states(wgs_prev); /* paranoia */
   2114 		wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
   2115 	}
   2116 }
   2117 
   2118 static void __noinline
   2119 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
   2120     const struct sockaddr *src)
   2121 {
   2122 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   2123 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
   2124 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   2125 	struct wg_peer *wgp;
   2126 	struct wg_session *wgs;
   2127 	struct psref psref;
   2128 	int error;
   2129 	uint8_t mac1[WG_MAC_LEN];
   2130 
   2131 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   2132 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   2133 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   2134 
   2135 	/*
   2136 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   2137 	 * "the responder, ..., must always reject messages with an invalid
   2138 	 *  msg.mac1"
   2139 	 */
   2140 	if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
   2141 		WG_DLOG("mac1 is invalid\n");
   2142 		return;
   2143 	}
   2144 
   2145 	WG_TRACE("resp msg received");
   2146 	wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
   2147 	if (wgs == NULL) {
   2148 		WG_TRACE("No session found");
   2149 		return;
   2150 	}
   2151 
   2152 	wgp = wgs->wgs_peer;
   2153 
   2154 	mutex_enter(wgp->wgp_lock);
   2155 
   2156 	/* If we weren't waiting for a handshake response, drop it.  */
   2157 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
   2158 		WG_TRACE("peer sent spurious handshake response, ignoring");
   2159 		goto out;
   2160 	}
   2161 
   2162 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
   2163 		WG_TRACE("under load");
   2164 		/*
   2165 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   2166 		 * "the responder, ..., and when under load may reject messages
   2167 		 *  with an invalid msg.mac2.  If the responder receives a
   2168 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   2169 		 *  and is under load, it may respond with a cookie reply
   2170 		 *  message"
   2171 		 */
   2172 		uint8_t zero[WG_MAC_LEN] = {0};
   2173 		if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
   2174 			WG_TRACE("sending a cookie message: no cookie included");
   2175 			wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   2176 			    wgmr->wgmr_mac1, src);
   2177 			goto out;
   2178 		}
   2179 		if (!wgp->wgp_last_sent_cookie_valid) {
   2180 			WG_TRACE("sending a cookie message: no cookie sent ever");
   2181 			wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   2182 			    wgmr->wgmr_mac1, src);
   2183 			goto out;
   2184 		}
   2185 		uint8_t mac2[WG_MAC_LEN];
   2186 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   2187 		    WG_COOKIE_LEN, (const uint8_t *)wgmr,
   2188 		    offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
   2189 		if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
   2190 			WG_DLOG("mac2 is invalid\n");
   2191 			goto out;
   2192 		}
   2193 		WG_TRACE("under load, but continue to sending");
   2194 	}
   2195 
   2196 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   2197 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   2198 
   2199 	/*
   2200 	 * [W] 5.4.3 Second Message: Responder to Initiator
   2201 	 * "When the initiator receives this message, it does the same
   2202 	 *  operations so that its final state variables are identical,
   2203 	 *  replacing the operands of the DH function to produce equivalent
   2204 	 *  values."
   2205 	 *  Note that the following comments of operations are just copies of
   2206 	 *  the initiator's ones.
   2207 	 */
   2208 
   2209 	/* [N] 2.2: "e" */
   2210 	/* Cr := KDF1(Cr, Er^pub) */
   2211 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
   2212 	    sizeof(wgmr->wgmr_ephemeral));
   2213 	/* Hr := HASH(Hr || msg.ephemeral) */
   2214 	wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
   2215 
   2216 	WG_DUMP_HASH("ckey", ckey);
   2217 	WG_DUMP_HASH("hash", hash);
   2218 
   2219 	/* [N] 2.2: "ee" */
   2220 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   2221 	wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
   2222 	    wgmr->wgmr_ephemeral);
   2223 
   2224 	/* [N] 2.2: "se" */
   2225 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   2226 	wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
   2227 
   2228 	/* [N] 9.2: "psk" */
   2229     {
   2230 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   2231 	/* Cr, r, k := KDF3(Cr, Q) */
   2232 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   2233 	    sizeof(wgp->wgp_psk));
   2234 	/* Hr := HASH(Hr || r) */
   2235 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   2236     }
   2237 
   2238     {
   2239 	uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
   2240 	/* msg.empty := AEAD(k, 0, e, Hr) */
   2241 	error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
   2242 	    sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
   2243 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   2244 	if (error != 0) {
   2245 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2246 		    "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
   2247 		    if_name(&wg->wg_if), wgp->wgp_name);
   2248 		goto out;
   2249 	}
   2250 	/* Hr := HASH(Hr || msg.empty) */
   2251 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   2252     }
   2253 
   2254 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
   2255 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
   2256 	wgs->wgs_remote_index = wgmr->wgmr_sender;
   2257 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   2258 
   2259 	/*
   2260 	 * The packet is genuine.  Update the peer's endpoint if the
   2261 	 * source address changed.
   2262 	 *
   2263 	 * XXX How to prevent DoS by replaying genuine packets from the
   2264 	 * wrong source address?
   2265 	 */
   2266 	wg_update_endpoint_if_necessary(wgp, src);
   2267 
   2268 	KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
   2269 	    wgs->wgs_state);
   2270 	wgs->wgs_time_established = time_uptime32;
   2271 	wg_schedule_session_dtor_timer(wgp);
   2272 	wgs->wgs_time_last_data_sent = 0;
   2273 	wgs->wgs_is_initiator = true;
   2274 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
   2275 	    " calculate keys as initiator\n",
   2276 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   2277 	wg_calculate_keys(wgs, true);
   2278 	wg_clear_states(wgs);
   2279 
   2280 	/*
   2281 	 * Session is ready to receive data now that we have received
   2282 	 * the responder's response.
   2283 	 *
   2284 	 * Transition from INIT_ACTIVE to ESTABLISHED to publish it to
   2285 	 * the data rx path, wg_handle_msg_data.
   2286 	 */
   2287 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32" -> WGS_STATE_ESTABLISHED\n",
   2288 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   2289 	atomic_store_release(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
   2290 	WG_TRACE("WGS_STATE_ESTABLISHED");
   2291 
   2292 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
   2293 
   2294 	/*
   2295 	 * Session is ready to send data now that we have received the
   2296 	 * responder's response.
   2297 	 *
   2298 	 * Swap the sessions to publish the new one as the stable
   2299 	 * session for the data tx path, wg_output.
   2300 	 */
   2301 	wg_swap_sessions(wg, wgp);
   2302 	KASSERT(wgs == wgp->wgp_session_stable);
   2303 
   2304 out:
   2305 	mutex_exit(wgp->wgp_lock);
   2306 	wg_put_session(wgs, &psref);
   2307 }
   2308 
   2309 static void
   2310 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   2311     struct wg_session *wgs, const struct wg_msg_init *wgmi)
   2312 {
   2313 	int error;
   2314 	struct mbuf *m;
   2315 	struct wg_msg_resp *wgmr;
   2316 
   2317 	KASSERT(mutex_owned(wgp->wgp_lock));
   2318 	KASSERT(wgs == wgp->wgp_session_unstable);
   2319 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   2320 	    wgs->wgs_state);
   2321 
   2322 	m = m_gethdr(M_WAIT, MT_DATA);
   2323 	if (sizeof(*wgmr) > MHLEN) {
   2324 		m_clget(m, M_WAIT);
   2325 		CTASSERT(sizeof(*wgmr) <= MCLBYTES);
   2326 	}
   2327 	m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
   2328 	wgmr = mtod(m, struct wg_msg_resp *);
   2329 	wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
   2330 
   2331 	error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
   2332 	if (error) {
   2333 		WG_DLOG("send_hs_msg failed, error=%d\n", error);
   2334 		return;
   2335 	}
   2336 
   2337 	WG_TRACE("resp msg sent");
   2338 }
   2339 
   2340 static struct wg_peer *
   2341 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
   2342     const uint8_t pubkey[static WG_STATIC_KEY_LEN], struct psref *psref)
   2343 {
   2344 	struct wg_peer *wgp;
   2345 
   2346 	int s = pserialize_read_enter();
   2347 	wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
   2348 	if (wgp != NULL)
   2349 		wg_get_peer(wgp, psref);
   2350 	pserialize_read_exit(s);
   2351 
   2352 	return wgp;
   2353 }
   2354 
   2355 static void
   2356 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
   2357     struct wg_msg_cookie *wgmc, const uint32_t sender,
   2358     const uint8_t mac1[static WG_MAC_LEN], const struct sockaddr *src)
   2359 {
   2360 	uint8_t cookie[WG_COOKIE_LEN];
   2361 	uint8_t key[WG_HASH_LEN];
   2362 	uint8_t addr[sizeof(struct in6_addr)];
   2363 	size_t addrlen;
   2364 	uint16_t uh_sport; /* be */
   2365 
   2366 	KASSERT(mutex_owned(wgp->wgp_lock));
   2367 
   2368 	wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
   2369 	wgmc->wgmc_receiver = sender;
   2370 	cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
   2371 
   2372 	/*
   2373 	 * [W] 5.4.7: Under Load: Cookie Reply Message
   2374 	 * "The secret variable, Rm, changes every two minutes to a
   2375 	 * random value"
   2376 	 */
   2377 	if ((time_uptime - wgp->wgp_last_cookiesecret_time) >
   2378 	    WG_COOKIESECRET_TIME) {
   2379 		cprng_strong(kern_cprng, wgp->wgp_cookiesecret,
   2380 		    sizeof(wgp->wgp_cookiesecret), 0);
   2381 		wgp->wgp_last_cookiesecret_time = time_uptime;
   2382 	}
   2383 
   2384 	switch (src->sa_family) {
   2385 #ifdef INET
   2386 	case AF_INET: {
   2387 		const struct sockaddr_in *sin = satocsin(src);
   2388 		addrlen = sizeof(sin->sin_addr);
   2389 		memcpy(addr, &sin->sin_addr, addrlen);
   2390 		uh_sport = sin->sin_port;
   2391 		break;
   2392 	    }
   2393 #endif
   2394 #ifdef INET6
   2395 	case AF_INET6: {
   2396 		const struct sockaddr_in6 *sin6 = satocsin6(src);
   2397 		addrlen = sizeof(sin6->sin6_addr);
   2398 		memcpy(addr, &sin6->sin6_addr, addrlen);
   2399 		uh_sport = sin6->sin6_port;
   2400 		break;
   2401 	    }
   2402 #endif
   2403 	default:
   2404 		panic("invalid af=%d", src->sa_family);
   2405 	}
   2406 
   2407 	wg_algo_mac(cookie, sizeof(cookie),
   2408 	    wgp->wgp_cookiesecret, sizeof(wgp->wgp_cookiesecret),
   2409 	    addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
   2410 	wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
   2411 	    sizeof(wg->wg_pubkey));
   2412 	wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
   2413 	    cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
   2414 
   2415 	/* Need to store to calculate mac2 */
   2416 	memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
   2417 	wgp->wgp_last_sent_cookie_valid = true;
   2418 }
   2419 
   2420 static void
   2421 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
   2422     const uint32_t sender, const uint8_t mac1[static WG_MAC_LEN],
   2423     const struct sockaddr *src)
   2424 {
   2425 	int error;
   2426 	struct mbuf *m;
   2427 	struct wg_msg_cookie *wgmc;
   2428 
   2429 	KASSERT(mutex_owned(wgp->wgp_lock));
   2430 
   2431 	m = m_gethdr(M_WAIT, MT_DATA);
   2432 	if (sizeof(*wgmc) > MHLEN) {
   2433 		m_clget(m, M_WAIT);
   2434 		CTASSERT(sizeof(*wgmc) <= MCLBYTES);
   2435 	}
   2436 	m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
   2437 	wgmc = mtod(m, struct wg_msg_cookie *);
   2438 	wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
   2439 
   2440 	error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
   2441 	if (error) {
   2442 		WG_DLOG("send_hs_msg failed, error=%d\n", error);
   2443 		return;
   2444 	}
   2445 
   2446 	WG_TRACE("cookie msg sent");
   2447 }
   2448 
   2449 static bool
   2450 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
   2451 {
   2452 #ifdef WG_DEBUG_PARAMS
   2453 	if (wg_force_underload)
   2454 		return true;
   2455 #endif
   2456 
   2457 	/*
   2458 	 * XXX we don't have a means of a load estimation.  The purpose of
   2459 	 * the mechanism is a DoS mitigation, so we consider frequent handshake
   2460 	 * messages as (a kind of) load; if a message of the same type comes
   2461 	 * to a peer within 1 second, we consider we are under load.
   2462 	 */
   2463 	time_t last = wgp->wgp_last_msg_received_time[msgtype];
   2464 	wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
   2465 	return (time_uptime - last) == 0;
   2466 }
   2467 
   2468 static void
   2469 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
   2470 {
   2471 
   2472 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2473 
   2474 	/*
   2475 	 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
   2476 	 */
   2477 	if (initiator) {
   2478 		wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
   2479 		    wgs->wgs_chaining_key, NULL, 0);
   2480 	} else {
   2481 		wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
   2482 		    wgs->wgs_chaining_key, NULL, 0);
   2483 	}
   2484 	WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
   2485 	WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
   2486 }
   2487 
   2488 static uint64_t
   2489 wg_session_get_send_counter(struct wg_session *wgs)
   2490 {
   2491 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2492 	return atomic_load_relaxed(&wgs->wgs_send_counter);
   2493 #else
   2494 	uint64_t send_counter;
   2495 
   2496 	mutex_enter(&wgs->wgs_send_counter_lock);
   2497 	send_counter = wgs->wgs_send_counter;
   2498 	mutex_exit(&wgs->wgs_send_counter_lock);
   2499 
   2500 	return send_counter;
   2501 #endif
   2502 }
   2503 
   2504 static uint64_t
   2505 wg_session_inc_send_counter(struct wg_session *wgs)
   2506 {
   2507 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2508 	return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
   2509 #else
   2510 	uint64_t send_counter;
   2511 
   2512 	mutex_enter(&wgs->wgs_send_counter_lock);
   2513 	send_counter = wgs->wgs_send_counter++;
   2514 	mutex_exit(&wgs->wgs_send_counter_lock);
   2515 
   2516 	return send_counter;
   2517 #endif
   2518 }
   2519 
   2520 static void
   2521 wg_clear_states(struct wg_session *wgs)
   2522 {
   2523 
   2524 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2525 
   2526 	wgs->wgs_send_counter = 0;
   2527 	sliwin_reset(&wgs->wgs_recvwin->window);
   2528 
   2529 #define wgs_clear(v)	explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
   2530 	wgs_clear(handshake_hash);
   2531 	wgs_clear(chaining_key);
   2532 	wgs_clear(ephemeral_key_pub);
   2533 	wgs_clear(ephemeral_key_priv);
   2534 	wgs_clear(ephemeral_key_peer);
   2535 #undef wgs_clear
   2536 }
   2537 
   2538 static struct wg_session *
   2539 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
   2540     struct psref *psref)
   2541 {
   2542 	struct wg_session *wgs;
   2543 
   2544 	int s = pserialize_read_enter();
   2545 	wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
   2546 	if (wgs != NULL) {
   2547 		KASSERTMSG(index == wgs->wgs_local_index,
   2548 		    "index=%"PRIx32" wgs->wgs_local_index=%"PRIx32,
   2549 		    index, wgs->wgs_local_index);
   2550 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   2551 	}
   2552 	pserialize_read_exit(s);
   2553 
   2554 	return wgs;
   2555 }
   2556 
   2557 static void
   2558 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
   2559 {
   2560 	struct mbuf *m;
   2561 
   2562 	/*
   2563 	 * [W] 6.5 Passive Keepalive
   2564 	 * "A keepalive message is simply a transport data message with
   2565 	 *  a zero-length encapsulated encrypted inner-packet."
   2566 	 */
   2567 	WG_TRACE("");
   2568 	m = m_gethdr(M_WAIT, MT_DATA);
   2569 	wg_send_data_msg(wgp, wgs, m);
   2570 }
   2571 
   2572 static bool
   2573 wg_need_to_send_init_message(struct wg_session *wgs)
   2574 {
   2575 	/*
   2576 	 * [W] 6.2 Transport Message Limits
   2577 	 * "if a peer is the initiator of a current secure session,
   2578 	 *  WireGuard will send a handshake initiation message to begin
   2579 	 *  a new secure session ... if after receiving a transport data
   2580 	 *  message, the current secure session is (REJECT-AFTER-TIME 
   2581 	 *  KEEPALIVE-TIMEOUT  REKEY-TIMEOUT) seconds old and it has
   2582 	 *  not yet acted upon this event."
   2583 	 */
   2584 	return wgs->wgs_is_initiator &&
   2585 	    atomic_load_relaxed(&wgs->wgs_time_last_data_sent) == 0 &&
   2586 	    (time_uptime32 - wgs->wgs_time_established >=
   2587 		(wg_reject_after_time - wg_keepalive_timeout -
   2588 		    wg_rekey_timeout));
   2589 }
   2590 
   2591 static void
   2592 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
   2593 {
   2594 
   2595 	mutex_enter(wgp->wgp_intr_lock);
   2596 	WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
   2597 	if (wgp->wgp_tasks == 0)
   2598 		/*
   2599 		 * XXX If the current CPU is already loaded -- e.g., if
   2600 		 * there's already a bunch of handshakes queued up --
   2601 		 * consider tossing this over to another CPU to
   2602 		 * distribute the load.
   2603 		 */
   2604 		workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
   2605 	wgp->wgp_tasks |= task;
   2606 	mutex_exit(wgp->wgp_intr_lock);
   2607 }
   2608 
   2609 static void
   2610 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
   2611 {
   2612 	struct wg_sockaddr *wgsa_prev;
   2613 
   2614 	WG_TRACE("Changing endpoint");
   2615 
   2616 	memcpy(wgp->wgp_endpoint0, new, new->sa_len);
   2617 	wgsa_prev = wgp->wgp_endpoint;
   2618 	atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
   2619 	wgp->wgp_endpoint0 = wgsa_prev;
   2620 	atomic_store_release(&wgp->wgp_endpoint_available, true);
   2621 
   2622 	wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
   2623 }
   2624 
   2625 static bool
   2626 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
   2627 {
   2628 	uint16_t packet_len;
   2629 	const struct ip *ip;
   2630 
   2631 	if (__predict_false(decrypted_len < sizeof(*ip))) {
   2632 		WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2633 		    sizeof(*ip));
   2634 		return false;
   2635 	}
   2636 
   2637 	ip = (const struct ip *)packet;
   2638 	if (ip->ip_v == 4)
   2639 		*af = AF_INET;
   2640 	else if (ip->ip_v == 6)
   2641 		*af = AF_INET6;
   2642 	else {
   2643 		WG_DLOG("ip_v=%d\n", ip->ip_v);
   2644 		return false;
   2645 	}
   2646 
   2647 	WG_DLOG("af=%d\n", *af);
   2648 
   2649 	switch (*af) {
   2650 #ifdef INET
   2651 	case AF_INET:
   2652 		packet_len = ntohs(ip->ip_len);
   2653 		break;
   2654 #endif
   2655 #ifdef INET6
   2656 	case AF_INET6: {
   2657 		const struct ip6_hdr *ip6;
   2658 
   2659 		if (__predict_false(decrypted_len < sizeof(*ip6))) {
   2660 			WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2661 			    sizeof(*ip6));
   2662 			return false;
   2663 		}
   2664 
   2665 		ip6 = (const struct ip6_hdr *)packet;
   2666 		packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
   2667 		break;
   2668 	}
   2669 #endif
   2670 	default:
   2671 		return false;
   2672 	}
   2673 
   2674 	if (packet_len > decrypted_len) {
   2675 		WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
   2676 		    decrypted_len);
   2677 		return false;
   2678 	}
   2679 
   2680 	return true;
   2681 }
   2682 
   2683 static bool
   2684 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
   2685     int af, char *packet)
   2686 {
   2687 	struct sockaddr_storage ss;
   2688 	struct sockaddr *sa;
   2689 	struct psref psref;
   2690 	struct wg_peer *wgp;
   2691 	bool ok;
   2692 
   2693 	/*
   2694 	 * II CRYPTOKEY ROUTING
   2695 	 * "it will only accept it if its source IP resolves in the
   2696 	 *  table to the public key used in the secure session for
   2697 	 *  decrypting it."
   2698 	 */
   2699 
   2700 	switch (af) {
   2701 #ifdef INET
   2702 	case AF_INET: {
   2703 		const struct ip *ip = (const struct ip *)packet;
   2704 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   2705 		sockaddr_in_init(sin, &ip->ip_src, 0);
   2706 		sa = sintosa(sin);
   2707 		break;
   2708 	}
   2709 #endif
   2710 #ifdef INET6
   2711 	case AF_INET6: {
   2712 		const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
   2713 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   2714 		sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
   2715 		sa = sin6tosa(sin6);
   2716 		break;
   2717 	}
   2718 #endif
   2719 	default:
   2720 		__USE(ss);
   2721 		return false;
   2722 	}
   2723 
   2724 	wgp = wg_pick_peer_by_sa(wg, sa, &psref);
   2725 	ok = (wgp == wgp_expected);
   2726 	if (wgp != NULL)
   2727 		wg_put_peer(wgp, &psref);
   2728 
   2729 	return ok;
   2730 }
   2731 
   2732 static void
   2733 wg_session_dtor_timer(void *arg)
   2734 {
   2735 	struct wg_peer *wgp = arg;
   2736 
   2737 	WG_TRACE("enter");
   2738 
   2739 	wg_schedule_session_dtor_timer(wgp);
   2740 	wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
   2741 }
   2742 
   2743 static void
   2744 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
   2745 {
   2746 
   2747 	/*
   2748 	 * If the periodic session destructor is already pending to
   2749 	 * handle the previous session, that's fine -- leave it in
   2750 	 * place; it will be scheduled again.
   2751 	 */
   2752 	if (callout_pending(&wgp->wgp_session_dtor_timer)) {
   2753 		WG_DLOG("session dtor already pending\n");
   2754 		return;
   2755 	}
   2756 
   2757 	WG_DLOG("scheduling session dtor in %u secs\n", wg_reject_after_time);
   2758 	callout_schedule(&wgp->wgp_session_dtor_timer,
   2759 	    wg_reject_after_time*hz);
   2760 }
   2761 
   2762 static bool
   2763 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
   2764 {
   2765 	if (sa1->sa_family != sa2->sa_family)
   2766 		return false;
   2767 
   2768 	switch (sa1->sa_family) {
   2769 #ifdef INET
   2770 	case AF_INET:
   2771 		return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
   2772 #endif
   2773 #ifdef INET6
   2774 	case AF_INET6:
   2775 		return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
   2776 #endif
   2777 	default:
   2778 		return false;
   2779 	}
   2780 }
   2781 
   2782 static void
   2783 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
   2784     const struct sockaddr *src)
   2785 {
   2786 	struct wg_sockaddr *wgsa;
   2787 	struct psref psref;
   2788 
   2789 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   2790 
   2791 #ifdef WG_DEBUG_LOG
   2792 	char oldaddr[128], newaddr[128];
   2793 	sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
   2794 	sockaddr_format(src, newaddr, sizeof(newaddr));
   2795 	WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
   2796 #endif
   2797 
   2798 	/*
   2799 	 * III: "Since the packet has authenticated correctly, the source IP of
   2800 	 * the outer UDP/IP packet is used to update the endpoint for peer..."
   2801 	 */
   2802 	if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
   2803 		!sockaddr_port_match(src, wgsatosa(wgsa)))) {
   2804 		/* XXX We can't change the endpoint twice in a short period */
   2805 		if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
   2806 			wg_change_endpoint(wgp, src);
   2807 		}
   2808 	}
   2809 
   2810 	wg_put_sa(wgp, wgsa, &psref);
   2811 }
   2812 
   2813 static void __noinline
   2814 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
   2815     const struct sockaddr *src)
   2816 {
   2817 	struct wg_msg_data *wgmd;
   2818 	char *encrypted_buf = NULL, *decrypted_buf;
   2819 	size_t encrypted_len, decrypted_len;
   2820 	struct wg_session *wgs;
   2821 	struct wg_peer *wgp;
   2822 	int state;
   2823 	uint32_t age;
   2824 	size_t mlen;
   2825 	struct psref psref;
   2826 	int error, af;
   2827 	bool success, free_encrypted_buf = false, ok;
   2828 	struct mbuf *n;
   2829 
   2830 	KASSERT(m->m_len >= sizeof(struct wg_msg_data));
   2831 	wgmd = mtod(m, struct wg_msg_data *);
   2832 
   2833 	KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
   2834 	WG_TRACE("data");
   2835 
   2836 	/* Find the putative session, or drop.  */
   2837 	wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
   2838 	if (wgs == NULL) {
   2839 		WG_TRACE("No session found");
   2840 		m_freem(m);
   2841 		return;
   2842 	}
   2843 
   2844 	/*
   2845 	 * We are only ready to handle data when in INIT_PASSIVE,
   2846 	 * ESTABLISHED, or DESTROYING.  All transitions out of that
   2847 	 * state dissociate the session index and drain psrefs.
   2848 	 *
   2849 	 * atomic_load_acquire matches atomic_store_release in either
   2850 	 * wg_handle_msg_init or wg_handle_msg_resp.  (The transition
   2851 	 * INIT_PASSIVE to ESTABLISHED in wg_task_establish_session
   2852 	 * doesn't make a difference for this rx path.)
   2853 	 */
   2854 	state = atomic_load_acquire(&wgs->wgs_state);
   2855 	switch (state) {
   2856 	case WGS_STATE_UNKNOWN:
   2857 	case WGS_STATE_INIT_ACTIVE:
   2858 		WG_TRACE("not yet ready for data");
   2859 		goto out;
   2860 	case WGS_STATE_INIT_PASSIVE:
   2861 	case WGS_STATE_ESTABLISHED:
   2862 	case WGS_STATE_DESTROYING:
   2863 		break;
   2864 	}
   2865 
   2866 	/*
   2867 	 * Reject if the session is too old.
   2868 	 */
   2869 	age = time_uptime32 - wgs->wgs_time_established;
   2870 	if (__predict_false(age >= wg_reject_after_time)) {
   2871 		WG_DLOG("session %"PRIx32" too old, %"PRIu32" sec\n",
   2872 		    wgmd->wgmd_receiver, age);
   2873 	       goto out;
   2874 	}
   2875 
   2876 	/*
   2877 	 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
   2878 	 * to update the endpoint if authentication succeeds.
   2879 	 */
   2880 	wgp = wgs->wgs_peer;
   2881 
   2882 	/*
   2883 	 * Reject outrageously wrong sequence numbers before doing any
   2884 	 * crypto work or taking any locks.
   2885 	 */
   2886 	error = sliwin_check_fast(&wgs->wgs_recvwin->window,
   2887 	    le64toh(wgmd->wgmd_counter));
   2888 	if (error) {
   2889 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2890 		    "%s: peer %s: out-of-window packet: %"PRIu64"\n",
   2891 		    if_name(&wg->wg_if), wgp->wgp_name,
   2892 		    le64toh(wgmd->wgmd_counter));
   2893 		goto out;
   2894 	}
   2895 
   2896 	/* Ensure the payload and authenticator are contiguous.  */
   2897 	mlen = m_length(m);
   2898 	encrypted_len = mlen - sizeof(*wgmd);
   2899 	if (encrypted_len < WG_AUTHTAG_LEN) {
   2900 		WG_DLOG("Short encrypted_len: %zu\n", encrypted_len);
   2901 		goto out;
   2902 	}
   2903 	success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
   2904 	if (success) {
   2905 		encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
   2906 	} else {
   2907 		encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
   2908 		if (encrypted_buf == NULL) {
   2909 			WG_DLOG("failed to allocate encrypted_buf\n");
   2910 			goto out;
   2911 		}
   2912 		m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
   2913 		free_encrypted_buf = true;
   2914 	}
   2915 	/* m_ensure_contig may change m regardless of its result */
   2916 	KASSERT(m->m_len >= sizeof(*wgmd));
   2917 	wgmd = mtod(m, struct wg_msg_data *);
   2918 
   2919 	/*
   2920 	 * Get a buffer for the plaintext.  Add WG_AUTHTAG_LEN to avoid
   2921 	 * a zero-length buffer (XXX).  Drop if plaintext is longer
   2922 	 * than MCLBYTES (XXX).
   2923 	 */
   2924 	decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
   2925 	if (decrypted_len > MCLBYTES) {
   2926 		/* FIXME handle larger data than MCLBYTES */
   2927 		WG_DLOG("couldn't handle larger data than MCLBYTES\n");
   2928 		goto out;
   2929 	}
   2930 	n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
   2931 	if (n == NULL) {
   2932 		WG_DLOG("wg_get_mbuf failed\n");
   2933 		goto out;
   2934 	}
   2935 	decrypted_buf = mtod(n, char *);
   2936 
   2937 	/* Decrypt and verify the packet.  */
   2938 	WG_DLOG("mlen=%zu, encrypted_len=%zu\n", mlen, encrypted_len);
   2939 	error = wg_algo_aead_dec(decrypted_buf,
   2940 	    encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
   2941 	    wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
   2942 	    encrypted_len, NULL, 0);
   2943 	if (error != 0) {
   2944 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2945 		    "%s: peer %s: failed to wg_algo_aead_dec\n",
   2946 		    if_name(&wg->wg_if), wgp->wgp_name);
   2947 		m_freem(n);
   2948 		goto out;
   2949 	}
   2950 	WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
   2951 
   2952 	/* Packet is genuine.  Reject it if a replay or just too old.  */
   2953 	mutex_enter(&wgs->wgs_recvwin->lock);
   2954 	error = sliwin_update(&wgs->wgs_recvwin->window,
   2955 	    le64toh(wgmd->wgmd_counter));
   2956 	mutex_exit(&wgs->wgs_recvwin->lock);
   2957 	if (error) {
   2958 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2959 		    "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
   2960 		    if_name(&wg->wg_if), wgp->wgp_name,
   2961 		    le64toh(wgmd->wgmd_counter));
   2962 		m_freem(n);
   2963 		goto out;
   2964 	}
   2965 
   2966 	/* We're done with m now; free it and chuck the pointers.  */
   2967 	m_freem(m);
   2968 	m = NULL;
   2969 	wgmd = NULL;
   2970 
   2971 	/*
   2972 	 * The packet is genuine.  Update the peer's endpoint if the
   2973 	 * source address changed.
   2974 	 *
   2975 	 * XXX How to prevent DoS by replaying genuine packets from the
   2976 	 * wrong source address?
   2977 	 */
   2978 	wg_update_endpoint_if_necessary(wgp, src);
   2979 
   2980 	/*
   2981 	 * Validate the encapsulated packet header and get the address
   2982 	 * family, or drop.
   2983 	 */
   2984 	ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
   2985 	if (!ok) {
   2986 		m_freem(n);
   2987 		goto update_state;
   2988 	}
   2989 
   2990 	/* Submit it into our network stack if routable.  */
   2991 	ok = wg_validate_route(wg, wgp, af, decrypted_buf);
   2992 	if (ok) {
   2993 		wg->wg_ops->input(&wg->wg_if, n, af);
   2994 	} else {
   2995 		char addrstr[INET6_ADDRSTRLEN];
   2996 		memset(addrstr, 0, sizeof(addrstr));
   2997 		switch (af) {
   2998 #ifdef INET
   2999 		case AF_INET: {
   3000 			const struct ip *ip = (const struct ip *)decrypted_buf;
   3001 			IN_PRINT(addrstr, &ip->ip_src);
   3002 			break;
   3003 		}
   3004 #endif
   3005 #ifdef INET6
   3006 		case AF_INET6: {
   3007 			const struct ip6_hdr *ip6 =
   3008 			    (const struct ip6_hdr *)decrypted_buf;
   3009 			IN6_PRINT(addrstr, &ip6->ip6_src);
   3010 			break;
   3011 		}
   3012 #endif
   3013 		default:
   3014 			panic("invalid af=%d", af);
   3015 		}
   3016 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   3017 		    "%s: peer %s: invalid source address (%s)\n",
   3018 		    if_name(&wg->wg_if), wgp->wgp_name, addrstr);
   3019 		m_freem(n);
   3020 		/*
   3021 		 * The inner address is invalid however the session is valid
   3022 		 * so continue the session processing below.
   3023 		 */
   3024 	}
   3025 	n = NULL;
   3026 
   3027 update_state:
   3028 	/* Update the state machine if necessary.  */
   3029 	if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
   3030 		/*
   3031 		 * We were waiting for the initiator to send their
   3032 		 * first data transport message, and that has happened.
   3033 		 * Schedule a task to establish this session.
   3034 		 */
   3035 		wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
   3036 	} else {
   3037 		if (__predict_false(wg_need_to_send_init_message(wgs))) {
   3038 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3039 		}
   3040 		/*
   3041 		 * [W] 6.5 Passive Keepalive
   3042 		 * "If a peer has received a validly-authenticated transport
   3043 		 *  data message (section 5.4.6), but does not have any packets
   3044 		 *  itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
   3045 		 *  a keepalive message."
   3046 		 */
   3047 		const uint32_t now = time_uptime32;
   3048 		const uint32_t time_last_data_sent =
   3049 		    atomic_load_relaxed(&wgs->wgs_time_last_data_sent);
   3050 		WG_DLOG("time_uptime32=%"PRIu32
   3051 		    " wgs_time_last_data_sent=%"PRIu32"\n",
   3052 		    now, time_last_data_sent);
   3053 		if ((now - time_last_data_sent) >= wg_keepalive_timeout) {
   3054 			WG_TRACE("Schedule sending keepalive message");
   3055 			/*
   3056 			 * We can't send a keepalive message here to avoid
   3057 			 * a deadlock;  we already hold the solock of a socket
   3058 			 * that is used to send the message.
   3059 			 */
   3060 			wg_schedule_peer_task(wgp,
   3061 			    WGP_TASK_SEND_KEEPALIVE_MESSAGE);
   3062 		}
   3063 	}
   3064 out:
   3065 	wg_put_session(wgs, &psref);
   3066 	m_freem(m);
   3067 	if (free_encrypted_buf)
   3068 		kmem_intr_free(encrypted_buf, encrypted_len);
   3069 }
   3070 
   3071 static void __noinline
   3072 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
   3073 {
   3074 	struct wg_session *wgs;
   3075 	struct wg_peer *wgp;
   3076 	struct psref psref;
   3077 	int error;
   3078 	uint8_t key[WG_HASH_LEN];
   3079 	uint8_t cookie[WG_COOKIE_LEN];
   3080 
   3081 	WG_TRACE("cookie msg received");
   3082 
   3083 	/* Find the putative session.  */
   3084 	wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
   3085 	if (wgs == NULL) {
   3086 		WG_TRACE("No session found");
   3087 		return;
   3088 	}
   3089 
   3090 	/* Lock the peer so we can update the cookie state.  */
   3091 	wgp = wgs->wgs_peer;
   3092 	mutex_enter(wgp->wgp_lock);
   3093 
   3094 	if (!wgp->wgp_last_sent_mac1_valid) {
   3095 		WG_TRACE("No valid mac1 sent (or expired)");
   3096 		goto out;
   3097 	}
   3098 
   3099 	/*
   3100 	 * wgp_last_sent_mac1_valid is only set to true when we are
   3101 	 * transitioning to INIT_ACTIVE or INIT_PASSIVE, and always
   3102 	 * cleared on transition out of them.
   3103 	 */
   3104 	KASSERTMSG((wgs->wgs_state == WGS_STATE_INIT_ACTIVE ||
   3105 		wgs->wgs_state == WGS_STATE_INIT_PASSIVE),
   3106 	    "state=%d", wgs->wgs_state);
   3107 
   3108 	/* Decrypt the cookie and store it for later handshake retry.  */
   3109 	wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
   3110 	    sizeof(wgp->wgp_pubkey));
   3111 	error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
   3112 	    wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
   3113 	    wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
   3114 	    wgmc->wgmc_salt);
   3115 	if (error != 0) {
   3116 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   3117 		    "%s: peer %s: wg_algo_aead_dec for cookie failed: "
   3118 		    "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
   3119 		goto out;
   3120 	}
   3121 	/*
   3122 	 * [W] 6.6: Interaction with Cookie Reply System
   3123 	 * "it should simply store the decrypted cookie value from the cookie
   3124 	 *  reply message, and wait for the expiration of the REKEY-TIMEOUT
   3125 	 *  timer for retrying a handshake initiation message."
   3126 	 */
   3127 	wgp->wgp_latest_cookie_time = time_uptime;
   3128 	memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
   3129 out:
   3130 	mutex_exit(wgp->wgp_lock);
   3131 	wg_put_session(wgs, &psref);
   3132 }
   3133 
   3134 static struct mbuf *
   3135 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
   3136 {
   3137 	struct wg_msg wgm;
   3138 	size_t mbuflen;
   3139 	size_t msglen;
   3140 
   3141 	/*
   3142 	 * Get the mbuf chain length.  It is already guaranteed, by
   3143 	 * wg_overudp_cb, to be large enough for a struct wg_msg.
   3144 	 */
   3145 	mbuflen = m_length(m);
   3146 	KASSERT(mbuflen >= sizeof(struct wg_msg));
   3147 
   3148 	/*
   3149 	 * Copy the message header (32-bit message type) out -- we'll
   3150 	 * worry about contiguity and alignment later.
   3151 	 */
   3152 	m_copydata(m, 0, sizeof(wgm), &wgm);
   3153 	switch (le32toh(wgm.wgm_type)) {
   3154 	case WG_MSG_TYPE_INIT:
   3155 		msglen = sizeof(struct wg_msg_init);
   3156 		break;
   3157 	case WG_MSG_TYPE_RESP:
   3158 		msglen = sizeof(struct wg_msg_resp);
   3159 		break;
   3160 	case WG_MSG_TYPE_COOKIE:
   3161 		msglen = sizeof(struct wg_msg_cookie);
   3162 		break;
   3163 	case WG_MSG_TYPE_DATA:
   3164 		msglen = sizeof(struct wg_msg_data);
   3165 		break;
   3166 	default:
   3167 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   3168 		    "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
   3169 		    le32toh(wgm.wgm_type));
   3170 		goto error;
   3171 	}
   3172 
   3173 	/* Verify the mbuf chain is long enough for this type of message.  */
   3174 	if (__predict_false(mbuflen < msglen)) {
   3175 		WG_DLOG("Invalid msg size: mbuflen=%zu type=%u\n", mbuflen,
   3176 		    le32toh(wgm.wgm_type));
   3177 		goto error;
   3178 	}
   3179 
   3180 	/* Make the message header contiguous if necessary.  */
   3181 	if (__predict_false(m->m_len < msglen)) {
   3182 		m = m_pullup(m, msglen);
   3183 		if (m == NULL)
   3184 			return NULL;
   3185 	}
   3186 
   3187 	return m;
   3188 
   3189 error:
   3190 	m_freem(m);
   3191 	return NULL;
   3192 }
   3193 
   3194 static void
   3195 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
   3196     const struct sockaddr *src)
   3197 {
   3198 	struct wg_msg *wgm;
   3199 
   3200 	KASSERT(curlwp->l_pflag & LP_BOUND);
   3201 
   3202 	m = wg_validate_msg_header(wg, m);
   3203 	if (__predict_false(m == NULL))
   3204 		return;
   3205 
   3206 	KASSERT(m->m_len >= sizeof(struct wg_msg));
   3207 	wgm = mtod(m, struct wg_msg *);
   3208 	switch (le32toh(wgm->wgm_type)) {
   3209 	case WG_MSG_TYPE_INIT:
   3210 		wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
   3211 		break;
   3212 	case WG_MSG_TYPE_RESP:
   3213 		wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
   3214 		break;
   3215 	case WG_MSG_TYPE_COOKIE:
   3216 		wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
   3217 		break;
   3218 	case WG_MSG_TYPE_DATA:
   3219 		wg_handle_msg_data(wg, m, src);
   3220 		/* wg_handle_msg_data frees m for us */
   3221 		return;
   3222 	default:
   3223 		panic("invalid message type: %d", le32toh(wgm->wgm_type));
   3224 	}
   3225 
   3226 	m_freem(m);
   3227 }
   3228 
   3229 static void
   3230 wg_receive_packets(struct wg_softc *wg, const int af)
   3231 {
   3232 
   3233 	for (;;) {
   3234 		int error, flags;
   3235 		struct socket *so;
   3236 		struct mbuf *m = NULL;
   3237 		struct uio dummy_uio;
   3238 		struct mbuf *paddr = NULL;
   3239 		struct sockaddr *src;
   3240 
   3241 		so = wg_get_so_by_af(wg, af);
   3242 		flags = MSG_DONTWAIT;
   3243 		dummy_uio.uio_resid = 1000000000;
   3244 
   3245 		error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
   3246 		    &flags);
   3247 		if (error || m == NULL) {
   3248 			//if (error == EWOULDBLOCK)
   3249 			return;
   3250 		}
   3251 
   3252 		KASSERT(paddr != NULL);
   3253 		KASSERT(paddr->m_len >= sizeof(struct sockaddr));
   3254 		src = mtod(paddr, struct sockaddr *);
   3255 
   3256 		wg_handle_packet(wg, m, src);
   3257 	}
   3258 }
   3259 
   3260 static void
   3261 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
   3262 {
   3263 
   3264 	psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
   3265 }
   3266 
   3267 static void
   3268 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
   3269 {
   3270 
   3271 	psref_release(psref, &wgp->wgp_psref, wg_psref_class);
   3272 }
   3273 
   3274 static void
   3275 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
   3276 {
   3277 	struct wg_session *wgs;
   3278 
   3279 	WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
   3280 
   3281 	KASSERT(mutex_owned(wgp->wgp_lock));
   3282 
   3283 	if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
   3284 		WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
   3285 		    if_name(&wg->wg_if));
   3286 		/* XXX should do something? */
   3287 		return;
   3288 	}
   3289 
   3290 	/*
   3291 	 * If we already have an established session, there's no need
   3292 	 * to initiate a new one -- unless the rekey-after-time or
   3293 	 * rekey-after-messages limits have passed.
   3294 	 */
   3295 	wgs = wgp->wgp_session_stable;
   3296 	if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
   3297 	    !atomic_load_relaxed(&wgs->wgs_force_rekey))
   3298 		return;
   3299 
   3300 	/*
   3301 	 * Ensure we're initiating a new session.  If the unstable
   3302 	 * session is already INIT_ACTIVE or INIT_PASSIVE, this does
   3303 	 * nothing.
   3304 	 */
   3305 	wg_send_handshake_msg_init(wg, wgp);
   3306 }
   3307 
   3308 static void
   3309 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
   3310 {
   3311 	struct wg_session *wgs;
   3312 
   3313 	WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
   3314 
   3315 	KASSERT(mutex_owned(wgp->wgp_lock));
   3316 	KASSERT(wgp->wgp_handshake_start_time != 0);
   3317 
   3318 	wgs = wgp->wgp_session_unstable;
   3319 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   3320 		return;
   3321 
   3322 	/*
   3323 	 * XXX no real need to assign a new index here, but we do need
   3324 	 * to transition to UNKNOWN temporarily
   3325 	 */
   3326 	wg_put_session_index(wg, wgs);
   3327 
   3328 	/* [W] 6.4 Handshake Initiation Retransmission */
   3329 	if ((time_uptime - wgp->wgp_handshake_start_time) >
   3330 	    wg_rekey_attempt_time) {
   3331 		/* Give up handshaking */
   3332 		wgp->wgp_handshake_start_time = 0;
   3333 		WG_TRACE("give up");
   3334 
   3335 		/*
   3336 		 * If a new data packet comes, handshaking will be retried
   3337 		 * and a new session would be established at that time,
   3338 		 * however we don't want to send pending packets then.
   3339 		 */
   3340 		wg_purge_pending_packets(wgp);
   3341 		return;
   3342 	}
   3343 
   3344 	wg_task_send_init_message(wg, wgp);
   3345 }
   3346 
   3347 static void
   3348 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
   3349 {
   3350 	struct wg_session *wgs;
   3351 
   3352 	KASSERT(mutex_owned(wgp->wgp_lock));
   3353 
   3354 	wgs = wgp->wgp_session_unstable;
   3355 	if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
   3356 		/* XXX Can this happen?  */
   3357 		return;
   3358 
   3359 	wgs->wgs_time_last_data_sent = 0;
   3360 	wgs->wgs_is_initiator = false;
   3361 
   3362 	/*
   3363 	 * Session was already ready to receive data.  Transition from
   3364 	 * INIT_PASSIVE to ESTABLISHED just so we can swap the
   3365 	 * sessions.
   3366 	 *
   3367 	 * atomic_store_relaxed because this doesn't affect the data rx
   3368 	 * path, wg_handle_msg_data -- changing from INIT_PASSIVE to
   3369 	 * ESTABLISHED makes no difference to the data rx path, and the
   3370 	 * transition to INIT_PASSIVE with store-release already
   3371 	 * published the state needed by the data rx path.
   3372 	 */
   3373 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_ESTABLISHED\n",
   3374 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   3375 	atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
   3376 	WG_TRACE("WGS_STATE_ESTABLISHED");
   3377 
   3378 	/*
   3379 	 * Session is ready to send data too now that we have received
   3380 	 * the peer initiator's first data packet.
   3381 	 *
   3382 	 * Swap the sessions to publish the new one as the stable
   3383 	 * session for the data tx path, wg_output.
   3384 	 */
   3385 	wg_swap_sessions(wg, wgp);
   3386 	KASSERT(wgs == wgp->wgp_session_stable);
   3387 }
   3388 
   3389 static void
   3390 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
   3391 {
   3392 
   3393 	WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
   3394 
   3395 	KASSERT(mutex_owned(wgp->wgp_lock));
   3396 
   3397 	if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
   3398 		pserialize_perform(wgp->wgp_psz);
   3399 		mutex_exit(wgp->wgp_lock);
   3400 		psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
   3401 		    wg_psref_class);
   3402 		psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
   3403 		    wg_psref_class);
   3404 		mutex_enter(wgp->wgp_lock);
   3405 		atomic_store_release(&wgp->wgp_endpoint_changing, 0);
   3406 	}
   3407 }
   3408 
   3409 static void
   3410 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
   3411 {
   3412 	struct wg_session *wgs;
   3413 
   3414 	WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
   3415 
   3416 	KASSERT(mutex_owned(wgp->wgp_lock));
   3417 
   3418 	wgs = wgp->wgp_session_stable;
   3419 	if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
   3420 		return;
   3421 
   3422 	wg_send_keepalive_msg(wgp, wgs);
   3423 }
   3424 
   3425 static void
   3426 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
   3427 {
   3428 	struct wg_session *wgs;
   3429 	uint32_t age;
   3430 
   3431 	WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
   3432 
   3433 	KASSERT(mutex_owned(wgp->wgp_lock));
   3434 
   3435 	/*
   3436 	 * If theres's any previous unstable session, i.e., one that
   3437 	 * was ESTABLISHED and is now DESTROYING, older than
   3438 	 * reject-after-time, destroy it.  Upcoming sessions are still
   3439 	 * in INIT_ACTIVE or INIT_PASSIVE -- we don't touch those here.
   3440 	 */
   3441 	wgs = wgp->wgp_session_unstable;
   3442 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
   3443 	if (wgs->wgs_state == WGS_STATE_DESTROYING &&
   3444 	    ((age = (time_uptime32 - wgs->wgs_time_established)) >=
   3445 		wg_reject_after_time)) {
   3446 		WG_DLOG("destroying past session %"PRIu32" sec old\n", age);
   3447 		wg_put_session_index(wg, wgs);
   3448 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   3449 		    wgs->wgs_state);
   3450 	}
   3451 
   3452 	/*
   3453 	 * If theres's any ESTABLISHED stable session older than
   3454 	 * reject-after-time, destroy it.  (The stable session can also
   3455 	 * be in UNKNOWN state -- nothing to do in that case)
   3456 	 */
   3457 	wgs = wgp->wgp_session_stable;
   3458 	KASSERT(wgs->wgs_state != WGS_STATE_INIT_ACTIVE);
   3459 	KASSERT(wgs->wgs_state != WGS_STATE_INIT_PASSIVE);
   3460 	KASSERT(wgs->wgs_state != WGS_STATE_DESTROYING);
   3461 	if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
   3462 	    ((age = (time_uptime32 - wgs->wgs_time_established)) >=
   3463 		wg_reject_after_time)) {
   3464 		WG_DLOG("destroying current session %"PRIu32" sec old\n", age);
   3465 		atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_DESTROYING);
   3466 		wg_put_session_index(wg, wgs);
   3467 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   3468 		    wgs->wgs_state);
   3469 	}
   3470 
   3471 	/*
   3472 	 * If there's no sessions left, no need to have the timer run
   3473 	 * until the next time around -- halt it.
   3474 	 *
   3475 	 * It is only ever scheduled with wgp_lock held or in the
   3476 	 * callout itself, and callout_halt prevents rescheudling
   3477 	 * itself, so this never races with rescheduling.
   3478 	 */
   3479 	if (wgp->wgp_session_unstable->wgs_state == WGS_STATE_UNKNOWN &&
   3480 	    wgp->wgp_session_stable->wgs_state == WGS_STATE_UNKNOWN)
   3481 		callout_halt(&wgp->wgp_session_dtor_timer, NULL);
   3482 }
   3483 
   3484 static void
   3485 wg_peer_work(struct work *wk, void *cookie)
   3486 {
   3487 	struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
   3488 	struct wg_softc *wg = wgp->wgp_sc;
   3489 	unsigned int tasks;
   3490 
   3491 	mutex_enter(wgp->wgp_intr_lock);
   3492 	while ((tasks = wgp->wgp_tasks) != 0) {
   3493 		wgp->wgp_tasks = 0;
   3494 		mutex_exit(wgp->wgp_intr_lock);
   3495 
   3496 		mutex_enter(wgp->wgp_lock);
   3497 		if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
   3498 			wg_task_send_init_message(wg, wgp);
   3499 		if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
   3500 			wg_task_retry_handshake(wg, wgp);
   3501 		if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
   3502 			wg_task_establish_session(wg, wgp);
   3503 		if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
   3504 			wg_task_endpoint_changed(wg, wgp);
   3505 		if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
   3506 			wg_task_send_keepalive_message(wg, wgp);
   3507 		if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
   3508 			wg_task_destroy_prev_session(wg, wgp);
   3509 		mutex_exit(wgp->wgp_lock);
   3510 
   3511 		mutex_enter(wgp->wgp_intr_lock);
   3512 	}
   3513 	mutex_exit(wgp->wgp_intr_lock);
   3514 }
   3515 
   3516 static void
   3517 wg_job(struct threadpool_job *job)
   3518 {
   3519 	struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
   3520 	int bound, upcalls;
   3521 
   3522 	mutex_enter(wg->wg_intr_lock);
   3523 	while ((upcalls = wg->wg_upcalls) != 0) {
   3524 		wg->wg_upcalls = 0;
   3525 		mutex_exit(wg->wg_intr_lock);
   3526 		bound = curlwp_bind();
   3527 		if (ISSET(upcalls, WG_UPCALL_INET))
   3528 			wg_receive_packets(wg, AF_INET);
   3529 		if (ISSET(upcalls, WG_UPCALL_INET6))
   3530 			wg_receive_packets(wg, AF_INET6);
   3531 		curlwp_bindx(bound);
   3532 		mutex_enter(wg->wg_intr_lock);
   3533 	}
   3534 	threadpool_job_done(job);
   3535 	mutex_exit(wg->wg_intr_lock);
   3536 }
   3537 
   3538 static int
   3539 wg_bind_port(struct wg_softc *wg, const uint16_t port)
   3540 {
   3541 	int error = 0;
   3542 	uint16_t old_port = wg->wg_listen_port;
   3543 
   3544 	if (port != 0 && old_port == port)
   3545 		return 0;
   3546 
   3547 #ifdef INET
   3548 	struct sockaddr_in _sin, *sin = &_sin;
   3549 	sin->sin_len = sizeof(*sin);
   3550 	sin->sin_family = AF_INET;
   3551 	sin->sin_addr.s_addr = INADDR_ANY;
   3552 	sin->sin_port = htons(port);
   3553 
   3554 	error = sobind(wg->wg_so4, sintosa(sin), curlwp);
   3555 	if (error)
   3556 		return error;
   3557 #endif
   3558 
   3559 #ifdef INET6
   3560 	struct sockaddr_in6 _sin6, *sin6 = &_sin6;
   3561 	sin6->sin6_len = sizeof(*sin6);
   3562 	sin6->sin6_family = AF_INET6;
   3563 	sin6->sin6_addr = in6addr_any;
   3564 	sin6->sin6_port = htons(port);
   3565 
   3566 	error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
   3567 	if (error)
   3568 		return error;
   3569 #endif
   3570 
   3571 	wg->wg_listen_port = port;
   3572 
   3573 	return error;
   3574 }
   3575 
   3576 static void
   3577 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
   3578 {
   3579 	struct wg_softc *wg = cookie;
   3580 	int reason;
   3581 
   3582 	reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
   3583 	    WG_UPCALL_INET :
   3584 	    WG_UPCALL_INET6;
   3585 
   3586 	mutex_enter(wg->wg_intr_lock);
   3587 	wg->wg_upcalls |= reason;
   3588 	threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
   3589 	mutex_exit(wg->wg_intr_lock);
   3590 }
   3591 
   3592 static int
   3593 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
   3594     struct sockaddr *src, void *arg)
   3595 {
   3596 	struct wg_softc *wg = arg;
   3597 	struct wg_msg wgm;
   3598 	struct mbuf *m = *mp;
   3599 
   3600 	WG_TRACE("enter");
   3601 
   3602 	/* Verify the mbuf chain is long enough to have a wg msg header.  */
   3603 	KASSERT(offset <= m_length(m));
   3604 	if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
   3605 		/* drop on the floor */
   3606 		m_freem(m);
   3607 		return -1;
   3608 	}
   3609 
   3610 	/*
   3611 	 * Copy the message header (32-bit message type) out -- we'll
   3612 	 * worry about contiguity and alignment later.
   3613 	 */
   3614 	m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
   3615 	WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
   3616 
   3617 	/*
   3618 	 * Handle DATA packets promptly as they arrive, if they are in
   3619 	 * an active session.  Other packets may require expensive
   3620 	 * public-key crypto and are not as sensitive to latency, so
   3621 	 * defer them to the worker thread.
   3622 	 */
   3623 	switch (le32toh(wgm.wgm_type)) {
   3624 	case WG_MSG_TYPE_DATA:
   3625 		/* handle immediately */
   3626 		m_adj(m, offset);
   3627 		if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
   3628 			m = m_pullup(m, sizeof(struct wg_msg_data));
   3629 			if (m == NULL)
   3630 				return -1;
   3631 		}
   3632 		wg_handle_msg_data(wg, m, src);
   3633 		*mp = NULL;
   3634 		return 1;
   3635 	case WG_MSG_TYPE_INIT:
   3636 	case WG_MSG_TYPE_RESP:
   3637 	case WG_MSG_TYPE_COOKIE:
   3638 		/* pass through to so_receive in wg_receive_packets */
   3639 		return 0;
   3640 	default:
   3641 		/* drop on the floor */
   3642 		m_freem(m);
   3643 		return -1;
   3644 	}
   3645 }
   3646 
   3647 static int
   3648 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
   3649 {
   3650 	int error;
   3651 	struct socket *so;
   3652 
   3653 	error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
   3654 	if (error != 0)
   3655 		return error;
   3656 
   3657 	solock(so);
   3658 	so->so_upcallarg = wg;
   3659 	so->so_upcall = wg_so_upcall;
   3660 	so->so_rcv.sb_flags |= SB_UPCALL;
   3661 	inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
   3662 	sounlock(so);
   3663 
   3664 	*sop = so;
   3665 
   3666 	return 0;
   3667 }
   3668 
   3669 static bool
   3670 wg_session_hit_limits(struct wg_session *wgs)
   3671 {
   3672 
   3673 	/*
   3674 	 * [W] 6.2: Transport Message Limits
   3675 	 * "After REJECT-AFTER-MESSAGES transport data messages or after the
   3676 	 *  current secure session is REJECT-AFTER-TIME seconds old, whichever
   3677 	 *  comes first, WireGuard will refuse to send or receive any more
   3678 	 *  transport data messages using the current secure session, ..."
   3679 	 */
   3680 	KASSERT(wgs->wgs_time_established != 0 || time_uptime > UINT32_MAX);
   3681 	if (time_uptime32 - wgs->wgs_time_established > wg_reject_after_time) {
   3682 		WG_DLOG("The session hits REJECT_AFTER_TIME\n");
   3683 		return true;
   3684 	} else if (wg_session_get_send_counter(wgs) >
   3685 	    wg_reject_after_messages) {
   3686 		WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
   3687 		return true;
   3688 	}
   3689 
   3690 	return false;
   3691 }
   3692 
   3693 static void
   3694 wgintr(void *cookie)
   3695 {
   3696 	struct wg_peer *wgp;
   3697 	struct wg_session *wgs;
   3698 	struct mbuf *m;
   3699 	struct psref psref;
   3700 
   3701 	while ((m = pktq_dequeue(wg_pktq)) != NULL) {
   3702 		wgp = M_GETCTX(m, struct wg_peer *);
   3703 		if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
   3704 			/*
   3705 			 * No established session.  If we're the first
   3706 			 * to try sending data, schedule a handshake
   3707 			 * and queue the packet for when the handshake
   3708 			 * is done; otherwise just drop the packet and
   3709 			 * let the ongoing handshake attempt continue.
   3710 			 * We could queue more data packets but it's
   3711 			 * not clear that's worthwhile.
   3712 			 */
   3713 			WG_TRACE("no stable session");
   3714 			membar_release();
   3715 			if ((m = atomic_swap_ptr(&wgp->wgp_pending, m)) ==
   3716 			    NULL) {
   3717 				WG_TRACE("queued first packet;"
   3718 				    " init handshake");
   3719 				wg_schedule_peer_task(wgp,
   3720 				    WGP_TASK_SEND_INIT_MESSAGE);
   3721 			} else {
   3722 				membar_acquire();
   3723 				WG_TRACE("first packet already queued,"
   3724 				    " dropping");
   3725 			}
   3726 			goto next0;
   3727 		}
   3728 		if (__predict_false(wg_session_hit_limits(wgs))) {
   3729 			WG_TRACE("stable session hit limits");
   3730 			membar_release();
   3731 			if ((m = atomic_swap_ptr(&wgp->wgp_pending, m)) ==
   3732 			    NULL) {
   3733 				WG_TRACE("queued first packet in a while;"
   3734 				    " reinit handshake");
   3735 				atomic_store_relaxed(&wgs->wgs_force_rekey,
   3736 				    true);
   3737 				wg_schedule_peer_task(wgp,
   3738 				    WGP_TASK_SEND_INIT_MESSAGE);
   3739 			} else {
   3740 				membar_acquire();
   3741 				WG_TRACE("first packet in already queued,"
   3742 				    " dropping");
   3743 			}
   3744 			goto next1;
   3745 		}
   3746 		wg_send_data_msg(wgp, wgs, m);
   3747 		m = NULL;	/* consumed */
   3748 next1:		wg_put_session(wgs, &psref);
   3749 next0:		m_freem(m);
   3750 		/* XXX Yield to avoid userland starvation?  */
   3751 	}
   3752 }
   3753 
   3754 static void
   3755 wg_purge_pending_packets(struct wg_peer *wgp)
   3756 {
   3757 	struct mbuf *m;
   3758 
   3759 	m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   3760 	membar_acquire();     /* matches membar_release in wgintr */
   3761 	m_freem(m);
   3762 #ifdef ALTQ
   3763 	wg_start(&wgp->wgp_sc->wg_if);
   3764 #endif
   3765 	pktq_barrier(wg_pktq);
   3766 }
   3767 
   3768 static void
   3769 wg_handshake_timeout_timer(void *arg)
   3770 {
   3771 	struct wg_peer *wgp = arg;
   3772 
   3773 	WG_TRACE("enter");
   3774 
   3775 	wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
   3776 }
   3777 
   3778 static struct wg_peer *
   3779 wg_alloc_peer(struct wg_softc *wg)
   3780 {
   3781 	struct wg_peer *wgp;
   3782 
   3783 	wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
   3784 
   3785 	wgp->wgp_sc = wg;
   3786 	callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
   3787 	callout_setfunc(&wgp->wgp_handshake_timeout_timer,
   3788 	    wg_handshake_timeout_timer, wgp);
   3789 	callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
   3790 	callout_setfunc(&wgp->wgp_session_dtor_timer,
   3791 	    wg_session_dtor_timer, wgp);
   3792 	PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
   3793 	wgp->wgp_endpoint_changing = false;
   3794 	wgp->wgp_endpoint_available = false;
   3795 	wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3796 	wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3797 	wgp->wgp_psz = pserialize_create();
   3798 	psref_target_init(&wgp->wgp_psref, wg_psref_class);
   3799 
   3800 	wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
   3801 	wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
   3802 	psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3803 	psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3804 
   3805 	struct wg_session *wgs;
   3806 	wgp->wgp_session_stable =
   3807 	    kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
   3808 	wgp->wgp_session_unstable =
   3809 	    kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
   3810 	wgs = wgp->wgp_session_stable;
   3811 	wgs->wgs_peer = wgp;
   3812 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3813 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3814 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3815 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3816 #endif
   3817 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3818 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3819 
   3820 	wgs = wgp->wgp_session_unstable;
   3821 	wgs->wgs_peer = wgp;
   3822 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3823 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3824 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3825 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3826 #endif
   3827 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3828 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3829 
   3830 	return wgp;
   3831 }
   3832 
   3833 static void
   3834 wg_destroy_peer(struct wg_peer *wgp)
   3835 {
   3836 	struct wg_session *wgs;
   3837 	struct wg_softc *wg = wgp->wgp_sc;
   3838 
   3839 	/* Prevent new packets from this peer on any source address.  */
   3840 	rw_enter(wg->wg_rwlock, RW_WRITER);
   3841 	for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
   3842 		struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
   3843 		struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
   3844 		struct radix_node *rn;
   3845 
   3846 		KASSERT(rnh != NULL);
   3847 		rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
   3848 		    &wga->wga_sa_mask, rnh);
   3849 		if (rn == NULL) {
   3850 			char addrstr[128];
   3851 			sockaddr_format(&wga->wga_sa_addr, addrstr,
   3852 			    sizeof(addrstr));
   3853 			WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
   3854 			    if_name(&wg->wg_if), addrstr);
   3855 		}
   3856 	}
   3857 	rw_exit(wg->wg_rwlock);
   3858 
   3859 	/* Purge pending packets.  */
   3860 	wg_purge_pending_packets(wgp);
   3861 
   3862 	/* Halt all packet processing and timeouts.  */
   3863 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
   3864 	callout_halt(&wgp->wgp_session_dtor_timer, NULL);
   3865 
   3866 	/* Wait for any queued work to complete.  */
   3867 	workqueue_wait(wg_wq, &wgp->wgp_work);
   3868 
   3869 	wgs = wgp->wgp_session_unstable;
   3870 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3871 		mutex_enter(wgp->wgp_lock);
   3872 		wg_destroy_session(wg, wgs);
   3873 		mutex_exit(wgp->wgp_lock);
   3874 	}
   3875 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3876 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3877 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3878 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3879 #endif
   3880 	kmem_free(wgs, sizeof(*wgs));
   3881 
   3882 	wgs = wgp->wgp_session_stable;
   3883 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3884 		mutex_enter(wgp->wgp_lock);
   3885 		wg_destroy_session(wg, wgs);
   3886 		mutex_exit(wgp->wgp_lock);
   3887 	}
   3888 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3889 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3890 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3891 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3892 #endif
   3893 	kmem_free(wgs, sizeof(*wgs));
   3894 
   3895 	psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3896 	psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3897 	kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
   3898 	kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
   3899 
   3900 	pserialize_destroy(wgp->wgp_psz);
   3901 	mutex_obj_free(wgp->wgp_intr_lock);
   3902 	mutex_obj_free(wgp->wgp_lock);
   3903 
   3904 	kmem_free(wgp, sizeof(*wgp));
   3905 }
   3906 
   3907 static void
   3908 wg_destroy_all_peers(struct wg_softc *wg)
   3909 {
   3910 	struct wg_peer *wgp, *wgp0 __diagused;
   3911 	void *garbage_byname, *garbage_bypubkey;
   3912 
   3913 restart:
   3914 	garbage_byname = garbage_bypubkey = NULL;
   3915 	mutex_enter(wg->wg_lock);
   3916 	WG_PEER_WRITER_FOREACH(wgp, wg) {
   3917 		if (wgp->wgp_name[0]) {
   3918 			wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
   3919 			    strlen(wgp->wgp_name));
   3920 			KASSERT(wgp0 == wgp);
   3921 			garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3922 		}
   3923 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3924 		    sizeof(wgp->wgp_pubkey));
   3925 		KASSERT(wgp0 == wgp);
   3926 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3927 		WG_PEER_WRITER_REMOVE(wgp);
   3928 		wg->wg_npeers--;
   3929 		mutex_enter(wgp->wgp_lock);
   3930 		pserialize_perform(wgp->wgp_psz);
   3931 		mutex_exit(wgp->wgp_lock);
   3932 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3933 		break;
   3934 	}
   3935 	mutex_exit(wg->wg_lock);
   3936 
   3937 	if (wgp == NULL)
   3938 		return;
   3939 
   3940 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3941 
   3942 	wg_destroy_peer(wgp);
   3943 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3944 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3945 
   3946 	goto restart;
   3947 }
   3948 
   3949 static int
   3950 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
   3951 {
   3952 	struct wg_peer *wgp, *wgp0 __diagused;
   3953 	void *garbage_byname, *garbage_bypubkey;
   3954 
   3955 	mutex_enter(wg->wg_lock);
   3956 	wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
   3957 	if (wgp != NULL) {
   3958 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3959 		    sizeof(wgp->wgp_pubkey));
   3960 		KASSERT(wgp0 == wgp);
   3961 		garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3962 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3963 		WG_PEER_WRITER_REMOVE(wgp);
   3964 		wg->wg_npeers--;
   3965 		if (wg->wg_npeers == 0)
   3966 			if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
   3967 		mutex_enter(wgp->wgp_lock);
   3968 		pserialize_perform(wgp->wgp_psz);
   3969 		mutex_exit(wgp->wgp_lock);
   3970 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3971 	}
   3972 	mutex_exit(wg->wg_lock);
   3973 
   3974 	if (wgp == NULL)
   3975 		return ENOENT;
   3976 
   3977 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3978 
   3979 	wg_destroy_peer(wgp);
   3980 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3981 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3982 
   3983 	return 0;
   3984 }
   3985 
   3986 static int
   3987 wg_if_attach(struct wg_softc *wg)
   3988 {
   3989 
   3990 	wg->wg_if.if_addrlen = 0;
   3991 	wg->wg_if.if_mtu = WG_MTU;
   3992 	wg->wg_if.if_flags = IFF_MULTICAST;
   3993 	wg->wg_if.if_extflags = IFEF_MPSAFE;
   3994 	wg->wg_if.if_ioctl = wg_ioctl;
   3995 	wg->wg_if.if_output = wg_output;
   3996 	wg->wg_if.if_init = wg_init;
   3997 #ifdef ALTQ
   3998 	wg->wg_if.if_start = wg_start;
   3999 #endif
   4000 	wg->wg_if.if_stop = wg_stop;
   4001 	wg->wg_if.if_type = IFT_OTHER;
   4002 	wg->wg_if.if_dlt = DLT_NULL;
   4003 	wg->wg_if.if_softc = wg;
   4004 #ifdef ALTQ
   4005 	IFQ_SET_READY(&wg->wg_if.if_snd);
   4006 #endif
   4007 	if_initialize(&wg->wg_if);
   4008 
   4009 	wg->wg_if.if_link_state = LINK_STATE_DOWN;
   4010 	if_alloc_sadl(&wg->wg_if);
   4011 	if_register(&wg->wg_if);
   4012 
   4013 	bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
   4014 
   4015 	return 0;
   4016 }
   4017 
   4018 static void
   4019 wg_if_detach(struct wg_softc *wg)
   4020 {
   4021 	struct ifnet *ifp = &wg->wg_if;
   4022 
   4023 	bpf_detach(ifp);
   4024 	if_detach(ifp);
   4025 }
   4026 
   4027 static int
   4028 wg_clone_create(struct if_clone *ifc, int unit)
   4029 {
   4030 	struct wg_softc *wg;
   4031 	int error;
   4032 
   4033 	wg_guarantee_initialized();
   4034 
   4035 	error = wg_count_inc();
   4036 	if (error)
   4037 		return error;
   4038 
   4039 	wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
   4040 
   4041 	if_initname(&wg->wg_if, ifc->ifc_name, unit);
   4042 
   4043 	PSLIST_INIT(&wg->wg_peers);
   4044 	wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
   4045 	wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
   4046 	wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
   4047 	wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   4048 	wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   4049 	wg->wg_rwlock = rw_obj_alloc();
   4050 	threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
   4051 	    "%s", if_name(&wg->wg_if));
   4052 	wg->wg_ops = &wg_ops_rumpkernel;
   4053 
   4054 	error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
   4055 	if (error)
   4056 		goto fail0;
   4057 
   4058 #ifdef INET
   4059 	error = wg_socreate(wg, AF_INET, &wg->wg_so4);
   4060 	if (error)
   4061 		goto fail1;
   4062 	rn_inithead((void **)&wg->wg_rtable_ipv4,
   4063 	    offsetof(struct sockaddr_in, sin_addr) * NBBY);
   4064 #endif
   4065 #ifdef INET6
   4066 	error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
   4067 	if (error)
   4068 		goto fail2;
   4069 	rn_inithead((void **)&wg->wg_rtable_ipv6,
   4070 	    offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
   4071 #endif
   4072 
   4073 	error = wg_if_attach(wg);
   4074 	if (error)
   4075 		goto fail3;
   4076 
   4077 	return 0;
   4078 
   4079 fail4: __unused
   4080 	wg_destroy_all_peers(wg);
   4081 	wg_if_detach(wg);
   4082 fail3:
   4083 #ifdef INET6
   4084 	solock(wg->wg_so6);
   4085 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   4086 	sounlock(wg->wg_so6);
   4087 #endif
   4088 #ifdef INET
   4089 	solock(wg->wg_so4);
   4090 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   4091 	sounlock(wg->wg_so4);
   4092 #endif
   4093 	mutex_enter(wg->wg_intr_lock);
   4094 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   4095 	mutex_exit(wg->wg_intr_lock);
   4096 #ifdef INET6
   4097 	if (wg->wg_rtable_ipv6 != NULL)
   4098 		free(wg->wg_rtable_ipv6, M_RTABLE);
   4099 	soclose(wg->wg_so6);
   4100 fail2:
   4101 #endif
   4102 #ifdef INET
   4103 	if (wg->wg_rtable_ipv4 != NULL)
   4104 		free(wg->wg_rtable_ipv4, M_RTABLE);
   4105 	soclose(wg->wg_so4);
   4106 fail1:
   4107 #endif
   4108 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   4109 fail0:	threadpool_job_destroy(&wg->wg_job);
   4110 	rw_obj_free(wg->wg_rwlock);
   4111 	mutex_obj_free(wg->wg_intr_lock);
   4112 	mutex_obj_free(wg->wg_lock);
   4113 	thmap_destroy(wg->wg_sessions_byindex);
   4114 	thmap_destroy(wg->wg_peers_byname);
   4115 	thmap_destroy(wg->wg_peers_bypubkey);
   4116 	PSLIST_DESTROY(&wg->wg_peers);
   4117 	kmem_free(wg, sizeof(*wg));
   4118 	wg_count_dec();
   4119 	return error;
   4120 }
   4121 
   4122 static int
   4123 wg_clone_destroy(struct ifnet *ifp)
   4124 {
   4125 	struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
   4126 
   4127 #ifdef WG_RUMPKERNEL
   4128 	if (wg_user_mode(wg)) {
   4129 		rumpuser_wg_destroy(wg->wg_user);
   4130 		wg->wg_user = NULL;
   4131 	}
   4132 #endif
   4133 
   4134 	wg_destroy_all_peers(wg);
   4135 	wg_if_detach(wg);
   4136 #ifdef INET6
   4137 	solock(wg->wg_so6);
   4138 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   4139 	sounlock(wg->wg_so6);
   4140 #endif
   4141 #ifdef INET
   4142 	solock(wg->wg_so4);
   4143 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   4144 	sounlock(wg->wg_so4);
   4145 #endif
   4146 	mutex_enter(wg->wg_intr_lock);
   4147 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   4148 	mutex_exit(wg->wg_intr_lock);
   4149 #ifdef INET6
   4150 	if (wg->wg_rtable_ipv6 != NULL)
   4151 		free(wg->wg_rtable_ipv6, M_RTABLE);
   4152 	soclose(wg->wg_so6);
   4153 #endif
   4154 #ifdef INET
   4155 	if (wg->wg_rtable_ipv4 != NULL)
   4156 		free(wg->wg_rtable_ipv4, M_RTABLE);
   4157 	soclose(wg->wg_so4);
   4158 #endif
   4159 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   4160 	threadpool_job_destroy(&wg->wg_job);
   4161 	rw_obj_free(wg->wg_rwlock);
   4162 	mutex_obj_free(wg->wg_intr_lock);
   4163 	mutex_obj_free(wg->wg_lock);
   4164 	thmap_destroy(wg->wg_sessions_byindex);
   4165 	thmap_destroy(wg->wg_peers_byname);
   4166 	thmap_destroy(wg->wg_peers_bypubkey);
   4167 	PSLIST_DESTROY(&wg->wg_peers);
   4168 	kmem_free(wg, sizeof(*wg));
   4169 	wg_count_dec();
   4170 
   4171 	return 0;
   4172 }
   4173 
   4174 static struct wg_peer *
   4175 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
   4176     struct psref *psref)
   4177 {
   4178 	struct radix_node_head *rnh;
   4179 	struct radix_node *rn;
   4180 	struct wg_peer *wgp = NULL;
   4181 	struct wg_allowedip *wga;
   4182 
   4183 #ifdef WG_DEBUG_LOG
   4184 	char addrstr[128];
   4185 	sockaddr_format(sa, addrstr, sizeof(addrstr));
   4186 	WG_DLOG("sa=%s\n", addrstr);
   4187 #endif
   4188 
   4189 	rw_enter(wg->wg_rwlock, RW_READER);
   4190 
   4191 	rnh = wg_rnh(wg, sa->sa_family);
   4192 	if (rnh == NULL)
   4193 		goto out;
   4194 
   4195 	rn = rnh->rnh_matchaddr(sa, rnh);
   4196 	if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
   4197 		goto out;
   4198 
   4199 	WG_TRACE("success");
   4200 
   4201 	wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
   4202 	wgp = wga->wga_peer;
   4203 	wg_get_peer(wgp, psref);
   4204 
   4205 out:
   4206 	rw_exit(wg->wg_rwlock);
   4207 	return wgp;
   4208 }
   4209 
   4210 static void
   4211 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
   4212     struct wg_session *wgs, struct wg_msg_data *wgmd)
   4213 {
   4214 
   4215 	memset(wgmd, 0, sizeof(*wgmd));
   4216 	wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
   4217 	wgmd->wgmd_receiver = wgs->wgs_remote_index;
   4218 	/* [W] 5.4.6: msg.counter := Nm^send */
   4219 	/* [W] 5.4.6: Nm^send := Nm^send + 1 */
   4220 	wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
   4221 	WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
   4222 }
   4223 
   4224 static int
   4225 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
   4226     const struct rtentry *rt)
   4227 {
   4228 	struct wg_softc *wg = ifp->if_softc;
   4229 	struct wg_peer *wgp = NULL;
   4230 	struct psref wgp_psref;
   4231 	int bound;
   4232 	int error;
   4233 
   4234 	bound = curlwp_bind();
   4235 
   4236 	/* TODO make the nest limit configurable via sysctl */
   4237 	error = if_tunnel_check_nesting(ifp, m, 1);
   4238 	if (error) {
   4239 		WGLOG(LOG_ERR,
   4240 		    "%s: tunneling loop detected and packet dropped\n",
   4241 		    if_name(&wg->wg_if));
   4242 		goto out0;
   4243 	}
   4244 
   4245 #ifdef ALTQ
   4246 	bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
   4247 	    & ALTQF_ENABLED;
   4248 	if (altq)
   4249 		IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
   4250 #endif
   4251 
   4252 	bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
   4253 
   4254 	m->m_flags &= ~(M_BCAST|M_MCAST);
   4255 
   4256 	wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
   4257 	if (wgp == NULL) {
   4258 		WG_TRACE("peer not found");
   4259 		error = EHOSTUNREACH;
   4260 		goto out0;
   4261 	}
   4262 
   4263 	/* Clear checksum-offload flags. */
   4264 	m->m_pkthdr.csum_flags = 0;
   4265 	m->m_pkthdr.csum_data = 0;
   4266 
   4267 	/* Toss it in the queue.  */
   4268 #ifdef ALTQ
   4269 	if (altq) {
   4270 		mutex_enter(ifp->if_snd.ifq_lock);
   4271 		if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   4272 			M_SETCTX(m, wgp);
   4273 			ALTQ_ENQUEUE(&ifp->if_snd, m, error);
   4274 			m = NULL; /* consume */
   4275 		}
   4276 		mutex_exit(ifp->if_snd.ifq_lock);
   4277 		if (m == NULL) {
   4278 			wg_start(ifp);
   4279 			goto out1;
   4280 		}
   4281 	}
   4282 #endif
   4283 	kpreempt_disable();
   4284 	const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   4285 	M_SETCTX(m, wgp);
   4286 	if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   4287 		WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   4288 		    if_name(&wg->wg_if));
   4289 		error = ENOBUFS;
   4290 		goto out2;
   4291 	}
   4292 	m = NULL;		/* consumed */
   4293 	error = 0;
   4294 out2:	kpreempt_enable();
   4295 
   4296 #ifdef ALTQ
   4297 out1:
   4298 #endif
   4299 	wg_put_peer(wgp, &wgp_psref);
   4300 out0:	m_freem(m);
   4301 	curlwp_bindx(bound);
   4302 	return error;
   4303 }
   4304 
   4305 static int
   4306 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
   4307 {
   4308 	struct psref psref;
   4309 	struct wg_sockaddr *wgsa;
   4310 	int error;
   4311 	struct socket *so;
   4312 
   4313 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   4314 	so = wg_get_so_by_peer(wgp, wgsa);
   4315 	solock(so);
   4316 	switch (wgsatosa(wgsa)->sa_family) {
   4317 #ifdef INET
   4318 	case AF_INET:
   4319 		error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
   4320 		break;
   4321 #endif
   4322 #ifdef INET6
   4323 	case AF_INET6:
   4324 		error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
   4325 		    NULL, curlwp);
   4326 		break;
   4327 #endif
   4328 	default:
   4329 		m_freem(m);
   4330 		error = EPFNOSUPPORT;
   4331 	}
   4332 	sounlock(so);
   4333 	wg_put_sa(wgp, wgsa, &psref);
   4334 
   4335 	return error;
   4336 }
   4337 
   4338 /* Inspired by pppoe_get_mbuf */
   4339 static struct mbuf *
   4340 wg_get_mbuf(size_t leading_len, size_t len)
   4341 {
   4342 	struct mbuf *m;
   4343 
   4344 	KASSERT(leading_len <= MCLBYTES);
   4345 	KASSERT(len <= MCLBYTES - leading_len);
   4346 
   4347 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   4348 	if (m == NULL)
   4349 		return NULL;
   4350 	if (len + leading_len > MHLEN) {
   4351 		m_clget(m, M_DONTWAIT);
   4352 		if ((m->m_flags & M_EXT) == 0) {
   4353 			m_free(m);
   4354 			return NULL;
   4355 		}
   4356 	}
   4357 	m->m_data += leading_len;
   4358 	m->m_pkthdr.len = m->m_len = len;
   4359 
   4360 	return m;
   4361 }
   4362 
   4363 static void
   4364 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs, struct mbuf *m)
   4365 {
   4366 	struct wg_softc *wg = wgp->wgp_sc;
   4367 	int error;
   4368 	size_t inner_len, padded_len, encrypted_len;
   4369 	char *padded_buf = NULL;
   4370 	size_t mlen;
   4371 	struct wg_msg_data *wgmd;
   4372 	bool free_padded_buf = false;
   4373 	struct mbuf *n;
   4374 	size_t leading_len = max_hdr + sizeof(struct udphdr);
   4375 
   4376 	mlen = m_length(m);
   4377 	inner_len = mlen;
   4378 	padded_len = roundup(mlen, 16);
   4379 	encrypted_len = padded_len + WG_AUTHTAG_LEN;
   4380 	WG_DLOG("inner=%zu, padded=%zu, encrypted_len=%zu\n",
   4381 	    inner_len, padded_len, encrypted_len);
   4382 	if (mlen != 0) {
   4383 		bool success;
   4384 		success = m_ensure_contig(&m, padded_len);
   4385 		if (success) {
   4386 			padded_buf = mtod(m, char *);
   4387 		} else {
   4388 			padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
   4389 			if (padded_buf == NULL) {
   4390 				error = ENOBUFS;
   4391 				goto out;
   4392 			}
   4393 			free_padded_buf = true;
   4394 			m_copydata(m, 0, mlen, padded_buf);
   4395 		}
   4396 		memset(padded_buf + mlen, 0, padded_len - inner_len);
   4397 	}
   4398 
   4399 	n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
   4400 	if (n == NULL) {
   4401 		error = ENOBUFS;
   4402 		goto out;
   4403 	}
   4404 	KASSERT(n->m_len >= sizeof(*wgmd));
   4405 	wgmd = mtod(n, struct wg_msg_data *);
   4406 	wg_fill_msg_data(wg, wgp, wgs, wgmd);
   4407 
   4408 	/* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
   4409 	wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
   4410 	    wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
   4411 	    padded_buf, padded_len,
   4412 	    NULL, 0);
   4413 
   4414 	error = wg->wg_ops->send_data_msg(wgp, n); /* consumes n */
   4415 	if (error) {
   4416 		WG_DLOG("send_data_msg failed, error=%d\n", error);
   4417 		goto out;
   4418 	}
   4419 
   4420 	/*
   4421 	 * Packet was sent out -- count it in the interface statistics.
   4422 	 */
   4423 	if_statadd(&wg->wg_if, if_obytes, mlen);
   4424 	if_statinc(&wg->wg_if, if_opackets);
   4425 
   4426 	/*
   4427 	 * Record when we last sent data, for determining when we need
   4428 	 * to send a passive keepalive.
   4429 	 *
   4430 	 * Other logic assumes that wgs_time_last_data_sent is zero iff
   4431 	 * we have never sent data on this session.  Early at boot, if
   4432 	 * wg(4) starts operating within <1sec, or after 136 years of
   4433 	 * uptime, we may observe time_uptime32 = 0.  In that case,
   4434 	 * pretend we observed 1 instead.  That way, we correctly
   4435 	 * indicate we have sent data on this session; the only logic
   4436 	 * this might adversely affect is the keepalive timeout
   4437 	 * detection, which might spuriously send a keepalive during
   4438 	 * one second every 136 years.  All of this is very silly, of
   4439 	 * course, but the cost to guaranteeing wgs_time_last_data_sent
   4440 	 * is nonzero is negligible here.
   4441 	 */
   4442 	const uint32_t now = time_uptime32;
   4443 	atomic_store_relaxed(&wgs->wgs_time_last_data_sent, MAX(now, 1));
   4444 
   4445 	/*
   4446 	 * Check rekey-after-time.
   4447 	 */
   4448 	if (wgs->wgs_is_initiator &&
   4449 	    now - wgs->wgs_time_established >= wg_rekey_after_time) {
   4450 		/*
   4451 		 * [W] 6.2 Transport Message Limits
   4452 		 * "if a peer is the initiator of a current secure
   4453 		 *  session, WireGuard will send a handshake initiation
   4454 		 *  message to begin a new secure session if, after
   4455 		 *  transmitting a transport data message, the current
   4456 		 *  secure session is REKEY-AFTER-TIME seconds old,"
   4457 		 */
   4458 		WG_TRACE("rekey after time");
   4459 		atomic_store_relaxed(&wgs->wgs_force_rekey, true);
   4460 		wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   4461 	}
   4462 
   4463 	/*
   4464 	 * Check rekey-after-messages.
   4465 	 */
   4466 	if (wg_session_get_send_counter(wgs) >= wg_rekey_after_messages) {
   4467 		/*
   4468 		 * [W] 6.2 Transport Message Limits
   4469 		 * "WireGuard will try to create a new session, by
   4470 		 *  sending a handshake initiation message (section
   4471 		 *  5.4.2), after it has sent REKEY-AFTER-MESSAGES
   4472 		 *  transport data messages..."
   4473 		 */
   4474 		WG_TRACE("rekey after messages");
   4475 		atomic_store_relaxed(&wgs->wgs_force_rekey, true);
   4476 		wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   4477 	}
   4478 
   4479 out:	m_freem(m);
   4480 	if (free_padded_buf)
   4481 		kmem_intr_free(padded_buf, padded_len);
   4482 }
   4483 
   4484 static void
   4485 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
   4486 {
   4487 	pktqueue_t *pktq;
   4488 	size_t pktlen;
   4489 
   4490 	KASSERT(af == AF_INET || af == AF_INET6);
   4491 
   4492 	WG_TRACE("");
   4493 
   4494 	m_set_rcvif(m, ifp);
   4495 	pktlen = m->m_pkthdr.len;
   4496 
   4497 	bpf_mtap_af(ifp, af, m, BPF_D_IN);
   4498 
   4499 	switch (af) {
   4500 #ifdef INET
   4501 	case AF_INET:
   4502 		pktq = ip_pktq;
   4503 		break;
   4504 #endif
   4505 #ifdef INET6
   4506 	case AF_INET6:
   4507 		pktq = ip6_pktq;
   4508 		break;
   4509 #endif
   4510 	default:
   4511 		panic("invalid af=%d", af);
   4512 	}
   4513 
   4514 	kpreempt_disable();
   4515 	const u_int h = curcpu()->ci_index;
   4516 	if (__predict_true(pktq_enqueue(pktq, m, h))) {
   4517 		if_statadd(ifp, if_ibytes, pktlen);
   4518 		if_statinc(ifp, if_ipackets);
   4519 	} else {
   4520 		m_freem(m);
   4521 	}
   4522 	kpreempt_enable();
   4523 }
   4524 
   4525 static void
   4526 wg_calc_pubkey(uint8_t pubkey[static WG_STATIC_KEY_LEN],
   4527     const uint8_t privkey[static WG_STATIC_KEY_LEN])
   4528 {
   4529 
   4530 	crypto_scalarmult_base(pubkey, privkey);
   4531 }
   4532 
   4533 static int
   4534 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
   4535 {
   4536 	struct radix_node_head *rnh;
   4537 	struct radix_node *rn;
   4538 	int error = 0;
   4539 
   4540 	rw_enter(wg->wg_rwlock, RW_WRITER);
   4541 	rnh = wg_rnh(wg, wga->wga_family);
   4542 	KASSERT(rnh != NULL);
   4543 	rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
   4544 	    wga->wga_nodes);
   4545 	rw_exit(wg->wg_rwlock);
   4546 
   4547 	if (rn == NULL)
   4548 		error = EEXIST;
   4549 
   4550 	return error;
   4551 }
   4552 
   4553 static int
   4554 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
   4555     struct wg_peer **wgpp)
   4556 {
   4557 	int error = 0;
   4558 	const void *pubkey;
   4559 	size_t pubkey_len;
   4560 	const void *psk;
   4561 	size_t psk_len;
   4562 	const char *name = NULL;
   4563 
   4564 	if (prop_dictionary_get_string(peer, "name", &name)) {
   4565 		if (strlen(name) > WG_PEER_NAME_MAXLEN) {
   4566 			error = EINVAL;
   4567 			goto out;
   4568 		}
   4569 	}
   4570 
   4571 	if (!prop_dictionary_get_data(peer, "public_key",
   4572 		&pubkey, &pubkey_len)) {
   4573 		error = EINVAL;
   4574 		goto out;
   4575 	}
   4576 #ifdef WG_DEBUG_DUMP
   4577         if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4578 		char *hex = gethexdump(pubkey, pubkey_len);
   4579 		log(LOG_DEBUG, "pubkey=%p, pubkey_len=%zu\n%s\n",
   4580 		    pubkey, pubkey_len, hex);
   4581 		puthexdump(hex, pubkey, pubkey_len);
   4582 	}
   4583 #endif
   4584 
   4585 	struct wg_peer *wgp = wg_alloc_peer(wg);
   4586 	memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
   4587 	if (name != NULL)
   4588 		strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
   4589 
   4590 	if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
   4591 		if (psk_len != sizeof(wgp->wgp_psk)) {
   4592 			error = EINVAL;
   4593 			goto out;
   4594 		}
   4595 		memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
   4596 	}
   4597 
   4598 	const void *addr;
   4599 	size_t addr_len;
   4600 	struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
   4601 
   4602 	if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
   4603 		goto skip_endpoint;
   4604 	if (addr_len < sizeof(*wgsatosa(wgsa)) ||
   4605 	    addr_len > sizeof(*wgsatoss(wgsa))) {
   4606 		error = EINVAL;
   4607 		goto out;
   4608 	}
   4609 	memcpy(wgsatoss(wgsa), addr, addr_len);
   4610 	switch (wgsa_family(wgsa)) {
   4611 #ifdef INET
   4612 	case AF_INET:
   4613 		break;
   4614 #endif
   4615 #ifdef INET6
   4616 	case AF_INET6:
   4617 		break;
   4618 #endif
   4619 	default:
   4620 		error = EPFNOSUPPORT;
   4621 		goto out;
   4622 	}
   4623 	if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
   4624 		error = EINVAL;
   4625 		goto out;
   4626 	}
   4627     {
   4628 	char addrstr[128];
   4629 	sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
   4630 	WG_DLOG("addr=%s\n", addrstr);
   4631     }
   4632 	wgp->wgp_endpoint_available = true;
   4633 
   4634 	prop_array_t allowedips;
   4635 skip_endpoint:
   4636 	allowedips = prop_dictionary_get(peer, "allowedips");
   4637 	if (allowedips == NULL)
   4638 		goto skip;
   4639 
   4640 	prop_object_iterator_t _it = prop_array_iterator(allowedips);
   4641 	prop_dictionary_t prop_allowedip;
   4642 	int j = 0;
   4643 	while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
   4644 		struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4645 
   4646 		if (!prop_dictionary_get_int(prop_allowedip, "family",
   4647 			&wga->wga_family))
   4648 			continue;
   4649 		if (!prop_dictionary_get_data(prop_allowedip, "ip",
   4650 			&addr, &addr_len))
   4651 			continue;
   4652 		if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
   4653 			&wga->wga_cidr))
   4654 			continue;
   4655 
   4656 		switch (wga->wga_family) {
   4657 #ifdef INET
   4658 		case AF_INET: {
   4659 			struct sockaddr_in sin;
   4660 			char addrstr[128];
   4661 			struct in_addr mask;
   4662 			struct sockaddr_in sin_mask;
   4663 
   4664 			if (addr_len != sizeof(struct in_addr))
   4665 				return EINVAL;
   4666 			memcpy(&wga->wga_addr4, addr, addr_len);
   4667 
   4668 			sockaddr_in_init(&sin, (const struct in_addr *)addr,
   4669 			    0);
   4670 			sockaddr_copy(&wga->wga_sa_addr,
   4671 			    sizeof(sin), sintosa(&sin));
   4672 
   4673 			sockaddr_format(sintosa(&sin),
   4674 			    addrstr, sizeof(addrstr));
   4675 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4676 
   4677 			in_len2mask(&mask, wga->wga_cidr);
   4678 			sockaddr_in_init(&sin_mask, &mask, 0);
   4679 			sockaddr_copy(&wga->wga_sa_mask,
   4680 			    sizeof(sin_mask), sintosa(&sin_mask));
   4681 
   4682 			break;
   4683 		    }
   4684 #endif
   4685 #ifdef INET6
   4686 		case AF_INET6: {
   4687 			struct sockaddr_in6 sin6;
   4688 			char addrstr[128];
   4689 			struct in6_addr mask;
   4690 			struct sockaddr_in6 sin6_mask;
   4691 
   4692 			if (addr_len != sizeof(struct in6_addr))
   4693 				return EINVAL;
   4694 			memcpy(&wga->wga_addr6, addr, addr_len);
   4695 
   4696 			sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
   4697 			    0, 0, 0);
   4698 			sockaddr_copy(&wga->wga_sa_addr,
   4699 			    sizeof(sin6), sin6tosa(&sin6));
   4700 
   4701 			sockaddr_format(sin6tosa(&sin6),
   4702 			    addrstr, sizeof(addrstr));
   4703 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4704 
   4705 			in6_prefixlen2mask(&mask, wga->wga_cidr);
   4706 			sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
   4707 			sockaddr_copy(&wga->wga_sa_mask,
   4708 			    sizeof(sin6_mask), sin6tosa(&sin6_mask));
   4709 
   4710 			break;
   4711 		    }
   4712 #endif
   4713 		default:
   4714 			error = EINVAL;
   4715 			goto out;
   4716 		}
   4717 		wga->wga_peer = wgp;
   4718 
   4719 		error = wg_rtable_add_route(wg, wga);
   4720 		if (error != 0)
   4721 			goto out;
   4722 
   4723 		j++;
   4724 	}
   4725 	wgp->wgp_n_allowedips = j;
   4726 skip:
   4727 	*wgpp = wgp;
   4728 out:
   4729 	return error;
   4730 }
   4731 
   4732 static int
   4733 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
   4734 {
   4735 	int error;
   4736 	char *buf;
   4737 
   4738 	WG_DLOG("buf=%p, len=%zu\n", ifd->ifd_data, ifd->ifd_len);
   4739 	if (ifd->ifd_len >= WG_MAX_PROPLEN)
   4740 		return E2BIG;
   4741 	buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
   4742 	error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
   4743 	if (error != 0)
   4744 		return error;
   4745 	buf[ifd->ifd_len] = '\0';
   4746 #ifdef WG_DEBUG_DUMP
   4747 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4748 		log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
   4749 		    (const char *)buf);
   4750 	}
   4751 #endif
   4752 	*_buf = buf;
   4753 	return 0;
   4754 }
   4755 
   4756 static int
   4757 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
   4758 {
   4759 	int error;
   4760 	prop_dictionary_t prop_dict;
   4761 	char *buf = NULL;
   4762 	const void *privkey;
   4763 	size_t privkey_len;
   4764 
   4765 	error = wg_alloc_prop_buf(&buf, ifd);
   4766 	if (error != 0)
   4767 		return error;
   4768 	error = EINVAL;
   4769 	prop_dict = prop_dictionary_internalize(buf);
   4770 	if (prop_dict == NULL)
   4771 		goto out;
   4772 	if (!prop_dictionary_get_data(prop_dict, "private_key",
   4773 		&privkey, &privkey_len))
   4774 		goto out;
   4775 #ifdef WG_DEBUG_DUMP
   4776 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4777 		char *hex = gethexdump(privkey, privkey_len);
   4778 		log(LOG_DEBUG, "privkey=%p, privkey_len=%zu\n%s\n",
   4779 		    privkey, privkey_len, hex);
   4780 		puthexdump(hex, privkey, privkey_len);
   4781 	}
   4782 #endif
   4783 	if (privkey_len != WG_STATIC_KEY_LEN)
   4784 		goto out;
   4785 	memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
   4786 	wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
   4787 	error = 0;
   4788 
   4789 out:
   4790 	kmem_free(buf, ifd->ifd_len + 1);
   4791 	return error;
   4792 }
   4793 
   4794 static int
   4795 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
   4796 {
   4797 	int error;
   4798 	prop_dictionary_t prop_dict;
   4799 	char *buf = NULL;
   4800 	uint16_t port;
   4801 
   4802 	error = wg_alloc_prop_buf(&buf, ifd);
   4803 	if (error != 0)
   4804 		return error;
   4805 	error = EINVAL;
   4806 	prop_dict = prop_dictionary_internalize(buf);
   4807 	if (prop_dict == NULL)
   4808 		goto out;
   4809 	if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
   4810 		goto out;
   4811 
   4812 	error = wg->wg_ops->bind_port(wg, (uint16_t)port);
   4813 
   4814 out:
   4815 	kmem_free(buf, ifd->ifd_len + 1);
   4816 	return error;
   4817 }
   4818 
   4819 static int
   4820 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4821 {
   4822 	int error;
   4823 	prop_dictionary_t prop_dict;
   4824 	char *buf = NULL;
   4825 	struct wg_peer *wgp = NULL, *wgp0 __diagused;
   4826 
   4827 	error = wg_alloc_prop_buf(&buf, ifd);
   4828 	if (error != 0)
   4829 		return error;
   4830 	error = EINVAL;
   4831 	prop_dict = prop_dictionary_internalize(buf);
   4832 	if (prop_dict == NULL)
   4833 		goto out;
   4834 
   4835 	error = wg_handle_prop_peer(wg, prop_dict, &wgp);
   4836 	if (error != 0)
   4837 		goto out;
   4838 
   4839 	mutex_enter(wg->wg_lock);
   4840 	if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4841 		sizeof(wgp->wgp_pubkey)) != NULL ||
   4842 	    (wgp->wgp_name[0] &&
   4843 		thmap_get(wg->wg_peers_byname, wgp->wgp_name,
   4844 		    strlen(wgp->wgp_name)) != NULL)) {
   4845 		mutex_exit(wg->wg_lock);
   4846 		wg_destroy_peer(wgp);
   4847 		error = EEXIST;
   4848 		goto out;
   4849 	}
   4850 	wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4851 	    sizeof(wgp->wgp_pubkey), wgp);
   4852 	KASSERT(wgp0 == wgp);
   4853 	if (wgp->wgp_name[0]) {
   4854 		wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
   4855 		    strlen(wgp->wgp_name), wgp);
   4856 		KASSERT(wgp0 == wgp);
   4857 	}
   4858 	WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
   4859 	wg->wg_npeers++;
   4860 	mutex_exit(wg->wg_lock);
   4861 
   4862 	if_link_state_change(&wg->wg_if, LINK_STATE_UP);
   4863 
   4864 out:
   4865 	kmem_free(buf, ifd->ifd_len + 1);
   4866 	return error;
   4867 }
   4868 
   4869 static int
   4870 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4871 {
   4872 	int error;
   4873 	prop_dictionary_t prop_dict;
   4874 	char *buf = NULL;
   4875 	const char *name;
   4876 
   4877 	error = wg_alloc_prop_buf(&buf, ifd);
   4878 	if (error != 0)
   4879 		return error;
   4880 	error = EINVAL;
   4881 	prop_dict = prop_dictionary_internalize(buf);
   4882 	if (prop_dict == NULL)
   4883 		goto out;
   4884 
   4885 	if (!prop_dictionary_get_string(prop_dict, "name", &name))
   4886 		goto out;
   4887 	if (strlen(name) > WG_PEER_NAME_MAXLEN)
   4888 		goto out;
   4889 
   4890 	error = wg_destroy_peer_name(wg, name);
   4891 out:
   4892 	kmem_free(buf, ifd->ifd_len + 1);
   4893 	return error;
   4894 }
   4895 
   4896 static bool
   4897 wg_is_authorized(struct wg_softc *wg, u_long cmd)
   4898 {
   4899 	int au = cmd == SIOCGDRVSPEC ?
   4900 	    KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
   4901 	    KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
   4902 	return kauth_authorize_network(kauth_cred_get(),
   4903 	    KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
   4904 	    (void *)cmd, NULL) == 0;
   4905 }
   4906 
   4907 static int
   4908 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
   4909 {
   4910 	int error = ENOMEM;
   4911 	prop_dictionary_t prop_dict;
   4912 	prop_array_t peers = NULL;
   4913 	char *buf;
   4914 	struct wg_peer *wgp;
   4915 	int s, i;
   4916 
   4917 	prop_dict = prop_dictionary_create();
   4918 	if (prop_dict == NULL)
   4919 		goto error;
   4920 
   4921 	if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   4922 		if (!prop_dictionary_set_data(prop_dict, "private_key",
   4923 			wg->wg_privkey, WG_STATIC_KEY_LEN))
   4924 			goto error;
   4925 	}
   4926 
   4927 	if (wg->wg_listen_port != 0) {
   4928 		if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
   4929 			wg->wg_listen_port))
   4930 			goto error;
   4931 	}
   4932 
   4933 	if (wg->wg_npeers == 0)
   4934 		goto skip_peers;
   4935 
   4936 	peers = prop_array_create();
   4937 	if (peers == NULL)
   4938 		goto error;
   4939 
   4940 	s = pserialize_read_enter();
   4941 	i = 0;
   4942 	WG_PEER_READER_FOREACH(wgp, wg) {
   4943 		struct wg_sockaddr *wgsa;
   4944 		struct psref wgp_psref, wgsa_psref;
   4945 		prop_dictionary_t prop_peer;
   4946 
   4947 		wg_get_peer(wgp, &wgp_psref);
   4948 		pserialize_read_exit(s);
   4949 
   4950 		prop_peer = prop_dictionary_create();
   4951 		if (prop_peer == NULL)
   4952 			goto next;
   4953 
   4954 		if (strlen(wgp->wgp_name) > 0) {
   4955 			if (!prop_dictionary_set_string(prop_peer, "name",
   4956 				wgp->wgp_name))
   4957 				goto next;
   4958 		}
   4959 
   4960 		if (!prop_dictionary_set_data(prop_peer, "public_key",
   4961 			wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
   4962 			goto next;
   4963 
   4964 		uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
   4965 		if (!consttime_memequal(wgp->wgp_psk, psk_zero,
   4966 			sizeof(wgp->wgp_psk))) {
   4967 			if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   4968 				if (!prop_dictionary_set_data(prop_peer,
   4969 					"preshared_key",
   4970 					wgp->wgp_psk, sizeof(wgp->wgp_psk)))
   4971 					goto next;
   4972 			}
   4973 		}
   4974 
   4975 		wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
   4976 		CTASSERT(AF_UNSPEC == 0);
   4977 		if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
   4978 		    !prop_dictionary_set_data(prop_peer, "endpoint",
   4979 			wgsatoss(wgsa),
   4980 			sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
   4981 			wg_put_sa(wgp, wgsa, &wgsa_psref);
   4982 			goto next;
   4983 		}
   4984 		wg_put_sa(wgp, wgsa, &wgsa_psref);
   4985 
   4986 		const struct timespec *t = &wgp->wgp_last_handshake_time;
   4987 
   4988 		if (!prop_dictionary_set_uint64(prop_peer,
   4989 			"last_handshake_time_sec", (uint64_t)t->tv_sec))
   4990 			goto next;
   4991 		if (!prop_dictionary_set_uint32(prop_peer,
   4992 			"last_handshake_time_nsec", (uint32_t)t->tv_nsec))
   4993 			goto next;
   4994 
   4995 		if (wgp->wgp_n_allowedips == 0)
   4996 			goto skip_allowedips;
   4997 
   4998 		prop_array_t allowedips = prop_array_create();
   4999 		if (allowedips == NULL)
   5000 			goto next;
   5001 		for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
   5002 			struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   5003 			prop_dictionary_t prop_allowedip;
   5004 
   5005 			prop_allowedip = prop_dictionary_create();
   5006 			if (prop_allowedip == NULL)
   5007 				break;
   5008 
   5009 			if (!prop_dictionary_set_int(prop_allowedip, "family",
   5010 				wga->wga_family))
   5011 				goto _next;
   5012 			if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
   5013 				wga->wga_cidr))
   5014 				goto _next;
   5015 
   5016 			switch (wga->wga_family) {
   5017 #ifdef INET
   5018 			case AF_INET:
   5019 				if (!prop_dictionary_set_data(prop_allowedip,
   5020 					"ip", &wga->wga_addr4,
   5021 					sizeof(wga->wga_addr4)))
   5022 					goto _next;
   5023 				break;
   5024 #endif
   5025 #ifdef INET6
   5026 			case AF_INET6:
   5027 				if (!prop_dictionary_set_data(prop_allowedip,
   5028 					"ip", &wga->wga_addr6,
   5029 					sizeof(wga->wga_addr6)))
   5030 					goto _next;
   5031 				break;
   5032 #endif
   5033 			default:
   5034 				panic("invalid af=%d", wga->wga_family);
   5035 			}
   5036 			prop_array_set(allowedips, j, prop_allowedip);
   5037 		_next:
   5038 			prop_object_release(prop_allowedip);
   5039 		}
   5040 		prop_dictionary_set(prop_peer, "allowedips", allowedips);
   5041 		prop_object_release(allowedips);
   5042 
   5043 	skip_allowedips:
   5044 
   5045 		prop_array_set(peers, i, prop_peer);
   5046 	next:
   5047 		if (prop_peer)
   5048 			prop_object_release(prop_peer);
   5049 		i++;
   5050 
   5051 		s = pserialize_read_enter();
   5052 		wg_put_peer(wgp, &wgp_psref);
   5053 	}
   5054 	pserialize_read_exit(s);
   5055 
   5056 	prop_dictionary_set(prop_dict, "peers", peers);
   5057 	prop_object_release(peers);
   5058 	peers = NULL;
   5059 
   5060 skip_peers:
   5061 	buf = prop_dictionary_externalize(prop_dict);
   5062 	if (buf == NULL)
   5063 		goto error;
   5064 	if (ifd->ifd_len < (strlen(buf) + 1)) {
   5065 		error = EINVAL;
   5066 		goto error;
   5067 	}
   5068 	error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
   5069 
   5070 	free(buf, 0);
   5071 error:
   5072 	if (peers != NULL)
   5073 		prop_object_release(peers);
   5074 	if (prop_dict != NULL)
   5075 		prop_object_release(prop_dict);
   5076 
   5077 	return error;
   5078 }
   5079 
   5080 static int
   5081 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5082 {
   5083 	struct wg_softc *wg = ifp->if_softc;
   5084 	struct ifreq *ifr = data;
   5085 	struct ifaddr *ifa = data;
   5086 	struct ifdrv *ifd = data;
   5087 	int error = 0;
   5088 
   5089 	switch (cmd) {
   5090 	case SIOCINITIFADDR:
   5091 		if (ifa->ifa_addr->sa_family != AF_LINK &&
   5092 		    (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   5093 		    (IFF_UP | IFF_RUNNING)) {
   5094 			ifp->if_flags |= IFF_UP;
   5095 			error = if_init(ifp);
   5096 		}
   5097 		return error;
   5098 	case SIOCADDMULTI:
   5099 	case SIOCDELMULTI:
   5100 		switch (ifr->ifr_addr.sa_family) {
   5101 #ifdef INET
   5102 		case AF_INET:	/* IP supports Multicast */
   5103 			break;
   5104 #endif
   5105 #ifdef INET6
   5106 		case AF_INET6:	/* IP6 supports Multicast */
   5107 			break;
   5108 #endif
   5109 		default:  /* Other protocols doesn't support Multicast */
   5110 			error = EAFNOSUPPORT;
   5111 			break;
   5112 		}
   5113 		return error;
   5114 	case SIOCSDRVSPEC:
   5115 		if (!wg_is_authorized(wg, cmd)) {
   5116 			return EPERM;
   5117 		}
   5118 		switch (ifd->ifd_cmd) {
   5119 		case WG_IOCTL_SET_PRIVATE_KEY:
   5120 			error = wg_ioctl_set_private_key(wg, ifd);
   5121 			break;
   5122 		case WG_IOCTL_SET_LISTEN_PORT:
   5123 			error = wg_ioctl_set_listen_port(wg, ifd);
   5124 			break;
   5125 		case WG_IOCTL_ADD_PEER:
   5126 			error = wg_ioctl_add_peer(wg, ifd);
   5127 			break;
   5128 		case WG_IOCTL_DELETE_PEER:
   5129 			error = wg_ioctl_delete_peer(wg, ifd);
   5130 			break;
   5131 		default:
   5132 			error = EINVAL;
   5133 			break;
   5134 		}
   5135 		return error;
   5136 	case SIOCGDRVSPEC:
   5137 		return wg_ioctl_get(wg, ifd);
   5138 	case SIOCSIFFLAGS:
   5139 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   5140 			break;
   5141 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   5142 		case IFF_RUNNING:
   5143 			/*
   5144 			 * If interface is marked down and it is running,
   5145 			 * then stop and disable it.
   5146 			 */
   5147 			if_stop(ifp, 1);
   5148 			break;
   5149 		case IFF_UP:
   5150 			/*
   5151 			 * If interface is marked up and it is stopped, then
   5152 			 * start it.
   5153 			 */
   5154 			error = if_init(ifp);
   5155 			break;
   5156 		default:
   5157 			break;
   5158 		}
   5159 		return error;
   5160 #ifdef WG_RUMPKERNEL
   5161 	case SIOCSLINKSTR:
   5162 		error = wg_ioctl_linkstr(wg, ifd);
   5163 		if (error)
   5164 			return error;
   5165 		wg->wg_ops = &wg_ops_rumpuser;
   5166 		return 0;
   5167 #endif
   5168 	default:
   5169 		break;
   5170 	}
   5171 
   5172 	error = ifioctl_common(ifp, cmd, data);
   5173 
   5174 #ifdef WG_RUMPKERNEL
   5175 	if (!wg_user_mode(wg))
   5176 		return error;
   5177 
   5178 	/* Do the same to the corresponding tun device on the host */
   5179 	/*
   5180 	 * XXX Actually the command has not been handled yet.  It
   5181 	 *     will be handled via pr_ioctl form doifioctl later.
   5182 	 */
   5183 	switch (cmd) {
   5184 #ifdef INET
   5185 	case SIOCAIFADDR:
   5186 	case SIOCDIFADDR: {
   5187 		struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
   5188 		struct in_aliasreq *ifra = &_ifra;
   5189 		KASSERT(error == ENOTTY);
   5190 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   5191 		    IFNAMSIZ);
   5192 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
   5193 		if (error == 0)
   5194 			error = ENOTTY;
   5195 		break;
   5196 	}
   5197 #endif
   5198 #ifdef INET6
   5199 	case SIOCAIFADDR_IN6:
   5200 	case SIOCDIFADDR_IN6: {
   5201 		struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
   5202 		struct in6_aliasreq *ifra = &_ifra;
   5203 		KASSERT(error == ENOTTY);
   5204 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   5205 		    IFNAMSIZ);
   5206 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
   5207 		if (error == 0)
   5208 			error = ENOTTY;
   5209 		break;
   5210 	}
   5211 #endif
   5212 	default:
   5213 		break;
   5214 	}
   5215 #endif /* WG_RUMPKERNEL */
   5216 
   5217 	return error;
   5218 }
   5219 
   5220 static int
   5221 wg_init(struct ifnet *ifp)
   5222 {
   5223 
   5224 	ifp->if_flags |= IFF_RUNNING;
   5225 
   5226 	/* TODO flush pending packets. */
   5227 	return 0;
   5228 }
   5229 
   5230 #ifdef ALTQ
   5231 static void
   5232 wg_start(struct ifnet *ifp)
   5233 {
   5234 	struct mbuf *m;
   5235 
   5236 	for (;;) {
   5237 		IFQ_DEQUEUE(&ifp->if_snd, m);
   5238 		if (m == NULL)
   5239 			break;
   5240 
   5241 		kpreempt_disable();
   5242 		const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   5243 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   5244 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   5245 			    if_name(ifp));
   5246 			m_freem(m);
   5247 		}
   5248 		kpreempt_enable();
   5249 	}
   5250 }
   5251 #endif
   5252 
   5253 static void
   5254 wg_stop(struct ifnet *ifp, int disable)
   5255 {
   5256 
   5257 	KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
   5258 	ifp->if_flags &= ~IFF_RUNNING;
   5259 
   5260 	/* Need to do something? */
   5261 }
   5262 
   5263 #ifdef WG_DEBUG_PARAMS
   5264 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
   5265 {
   5266 	const struct sysctlnode *node = NULL;
   5267 
   5268 	sysctl_createv(clog, 0, NULL, &node,
   5269 	    CTLFLAG_PERMANENT,
   5270 	    CTLTYPE_NODE, "wg",
   5271 	    SYSCTL_DESCR("wg(4)"),
   5272 	    NULL, 0, NULL, 0,
   5273 	    CTL_NET, CTL_CREATE, CTL_EOL);
   5274 	sysctl_createv(clog, 0, &node, NULL,
   5275 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5276 	    CTLTYPE_QUAD, "rekey_after_messages",
   5277 	    SYSCTL_DESCR("session liftime by messages"),
   5278 	    NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
   5279 	sysctl_createv(clog, 0, &node, NULL,
   5280 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5281 	    CTLTYPE_INT, "rekey_after_time",
   5282 	    SYSCTL_DESCR("session liftime"),
   5283 	    NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
   5284 	sysctl_createv(clog, 0, &node, NULL,
   5285 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5286 	    CTLTYPE_INT, "rekey_timeout",
   5287 	    SYSCTL_DESCR("session handshake retry time"),
   5288 	    NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
   5289 	sysctl_createv(clog, 0, &node, NULL,
   5290 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5291 	    CTLTYPE_INT, "rekey_attempt_time",
   5292 	    SYSCTL_DESCR("session handshake timeout"),
   5293 	    NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
   5294 	sysctl_createv(clog, 0, &node, NULL,
   5295 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5296 	    CTLTYPE_INT, "keepalive_timeout",
   5297 	    SYSCTL_DESCR("keepalive timeout"),
   5298 	    NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
   5299 	sysctl_createv(clog, 0, &node, NULL,
   5300 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5301 	    CTLTYPE_BOOL, "force_underload",
   5302 	    SYSCTL_DESCR("force to detemine under load"),
   5303 	    NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
   5304 	sysctl_createv(clog, 0, &node, NULL,
   5305 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5306 	    CTLTYPE_INT, "debug",
   5307 	    SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
   5308 	    NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
   5309 }
   5310 #endif
   5311 
   5312 #ifdef WG_RUMPKERNEL
   5313 static bool
   5314 wg_user_mode(struct wg_softc *wg)
   5315 {
   5316 
   5317 	return wg->wg_user != NULL;
   5318 }
   5319 
   5320 static int
   5321 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
   5322 {
   5323 	struct ifnet *ifp = &wg->wg_if;
   5324 	int error;
   5325 
   5326 	if (ifp->if_flags & IFF_UP)
   5327 		return EBUSY;
   5328 
   5329 	if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
   5330 		/* XXX do nothing */
   5331 		return 0;
   5332 	} else if (ifd->ifd_cmd != 0) {
   5333 		return EINVAL;
   5334 	} else if (wg->wg_user != NULL) {
   5335 		return EBUSY;
   5336 	}
   5337 
   5338 	/* Assume \0 included */
   5339 	if (ifd->ifd_len > IFNAMSIZ) {
   5340 		return E2BIG;
   5341 	} else if (ifd->ifd_len < 1) {
   5342 		return EINVAL;
   5343 	}
   5344 
   5345 	char tun_name[IFNAMSIZ];
   5346 	error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
   5347 	if (error != 0)
   5348 		return error;
   5349 
   5350 	if (strncmp(tun_name, "tun", 3) != 0)
   5351 		return EINVAL;
   5352 
   5353 	error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
   5354 
   5355 	return error;
   5356 }
   5357 
   5358 static int
   5359 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
   5360 {
   5361 	int error;
   5362 	struct psref psref;
   5363 	struct wg_sockaddr *wgsa;
   5364 	struct wg_softc *wg = wgp->wgp_sc;
   5365 	struct iovec iov[1];
   5366 
   5367 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   5368 
   5369 	iov[0].iov_base = mtod(m, void *);
   5370 	iov[0].iov_len = m->m_len;
   5371 
   5372 	/* Send messages to a peer via an ordinary socket. */
   5373 	error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
   5374 
   5375 	wg_put_sa(wgp, wgsa, &psref);
   5376 
   5377 	m_freem(m);
   5378 
   5379 	return error;
   5380 }
   5381 
   5382 static void
   5383 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
   5384 {
   5385 	struct wg_softc *wg = ifp->if_softc;
   5386 	struct iovec iov[2];
   5387 	struct sockaddr_storage ss;
   5388 
   5389 	KASSERT(af == AF_INET || af == AF_INET6);
   5390 
   5391 	WG_TRACE("");
   5392 
   5393 	switch (af) {
   5394 #ifdef INET
   5395 	case AF_INET: {
   5396 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   5397 		struct ip *ip;
   5398 
   5399 		KASSERT(m->m_len >= sizeof(struct ip));
   5400 		ip = mtod(m, struct ip *);
   5401 		sockaddr_in_init(sin, &ip->ip_dst, 0);
   5402 		break;
   5403 	}
   5404 #endif
   5405 #ifdef INET6
   5406 	case AF_INET6: {
   5407 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   5408 		struct ip6_hdr *ip6;
   5409 
   5410 		KASSERT(m->m_len >= sizeof(struct ip6_hdr));
   5411 		ip6 = mtod(m, struct ip6_hdr *);
   5412 		sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
   5413 		break;
   5414 	}
   5415 #endif
   5416 	default:
   5417 		goto out;
   5418 	}
   5419 
   5420 	iov[0].iov_base = &ss;
   5421 	iov[0].iov_len = ss.ss_len;
   5422 	iov[1].iov_base = mtod(m, void *);
   5423 	iov[1].iov_len = m->m_len;
   5424 
   5425 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5426 
   5427 	/* Send decrypted packets to users via a tun. */
   5428 	rumpuser_wg_send_user(wg->wg_user, iov, 2);
   5429 
   5430 out:	m_freem(m);
   5431 }
   5432 
   5433 static int
   5434 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
   5435 {
   5436 	int error;
   5437 	uint16_t old_port = wg->wg_listen_port;
   5438 
   5439 	if (port != 0 && old_port == port)
   5440 		return 0;
   5441 
   5442 	error = rumpuser_wg_sock_bind(wg->wg_user, port);
   5443 	if (error)
   5444 		return error;
   5445 
   5446 	wg->wg_listen_port = port;
   5447 	return 0;
   5448 }
   5449 
   5450 /*
   5451  * Receive user packets.
   5452  */
   5453 void
   5454 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5455 {
   5456 	struct ifnet *ifp = &wg->wg_if;
   5457 	struct mbuf *m;
   5458 	const struct sockaddr *dst;
   5459 	int error;
   5460 
   5461 	WG_TRACE("");
   5462 
   5463 	dst = iov[0].iov_base;
   5464 
   5465 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5466 	if (m == NULL)
   5467 		return;
   5468 	m->m_len = m->m_pkthdr.len = 0;
   5469 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5470 
   5471 	WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
   5472 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5473 
   5474 	error = wg_output(ifp, m, dst, NULL); /* consumes m */
   5475 	if (error)
   5476 		WG_DLOG("wg_output failed, error=%d\n", error);
   5477 }
   5478 
   5479 /*
   5480  * Receive packets from a peer.
   5481  */
   5482 void
   5483 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5484 {
   5485 	struct mbuf *m;
   5486 	const struct sockaddr *src;
   5487 	int bound;
   5488 
   5489 	WG_TRACE("");
   5490 
   5491 	src = iov[0].iov_base;
   5492 
   5493 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5494 	if (m == NULL)
   5495 		return;
   5496 	m->m_len = m->m_pkthdr.len = 0;
   5497 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5498 
   5499 	WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
   5500 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5501 
   5502 	bound = curlwp_bind();
   5503 	wg_handle_packet(wg, m, src);
   5504 	curlwp_bindx(bound);
   5505 }
   5506 #endif /* WG_RUMPKERNEL */
   5507 
   5508 /*
   5509  * Module infrastructure
   5510  */
   5511 #include "if_module.h"
   5512 
   5513 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
   5514