if_wg.c revision 1.130 1 /* $NetBSD: if_wg.c,v 1.130 2024/07/31 00:25:47 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.130 2024/07/31 00:25:47 riastradh Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_altq_enabled.h"
48 #include "opt_inet.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/atomic.h>
55 #include <sys/callout.h>
56 #include <sys/cprng.h>
57 #include <sys/cpu.h>
58 #include <sys/device.h>
59 #include <sys/domain.h>
60 #include <sys/errno.h>
61 #include <sys/intr.h>
62 #include <sys/ioctl.h>
63 #include <sys/kernel.h>
64 #include <sys/kmem.h>
65 #include <sys/mbuf.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/once.h>
69 #include <sys/percpu.h>
70 #include <sys/pserialize.h>
71 #include <sys/psref.h>
72 #include <sys/queue.h>
73 #include <sys/rwlock.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/systm.h>
80 #include <sys/thmap.h>
81 #include <sys/threadpool.h>
82 #include <sys/time.h>
83 #include <sys/timespec.h>
84 #include <sys/workqueue.h>
85
86 #include <lib/libkern/libkern.h>
87
88 #include <net/bpf.h>
89 #include <net/if.h>
90 #include <net/if_types.h>
91 #include <net/if_wg.h>
92 #include <net/pktqueue.h>
93 #include <net/route.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_pcb.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_var.h>
101 #include <netinet/udp.h>
102 #include <netinet/udp_var.h>
103 #endif /* INET */
104
105 #ifdef INET6
106 #include <netinet/ip6.h>
107 #include <netinet6/in6_pcb.h>
108 #include <netinet6/in6_var.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/udp6_var.h>
111 #endif /* INET6 */
112
113 #include <prop/proplib.h>
114
115 #include <crypto/blake2/blake2s.h>
116 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
117 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
118 #include <crypto/sodium/crypto_scalarmult.h>
119
120 #include "ioconf.h"
121
122 #ifdef WG_RUMPKERNEL
123 #include "wg_user.h"
124 #endif
125
126 #ifndef time_uptime32
127 #define time_uptime32 ((uint32_t)time_uptime)
128 #endif
129
130 /*
131 * Data structures
132 * - struct wg_softc is an instance of wg interfaces
133 * - It has a list of peers (struct wg_peer)
134 * - It has a threadpool job that sends/receives handshake messages and
135 * runs event handlers
136 * - It has its own two routing tables: one is for IPv4 and the other IPv6
137 * - struct wg_peer is a representative of a peer
138 * - It has a struct work to handle handshakes and timer tasks
139 * - It has a pair of session instances (struct wg_session)
140 * - It has a pair of endpoint instances (struct wg_sockaddr)
141 * - Normally one endpoint is used and the second one is used only on
142 * a peer migration (a change of peer's IP address)
143 * - It has a list of IP addresses and sub networks called allowedips
144 * (struct wg_allowedip)
145 * - A packets sent over a session is allowed if its destination matches
146 * any IP addresses or sub networks of the list
147 * - struct wg_session represents a session of a secure tunnel with a peer
148 * - Two instances of sessions belong to a peer; a stable session and a
149 * unstable session
150 * - A handshake process of a session always starts with a unstable instance
151 * - Once a session is established, its instance becomes stable and the
152 * other becomes unstable instead
153 * - Data messages are always sent via a stable session
154 *
155 * Locking notes:
156 * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
157 * - Changes to the peer list are serialized by wg_lock
158 * - The peer list may be read with pserialize(9) and psref(9)
159 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
160 * => XXX replace by pserialize when routing table is psz-safe
161 * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
162 * only in thread context and serializes:
163 * - the stable and unstable session pointers
164 * - all unstable session state
165 * - Packet processing may be done in softint context:
166 * - The stable session can be read under pserialize(9) or psref(9)
167 * - The stable session is always ESTABLISHED
168 * - On a session swap, we must wait for all readers to release a
169 * reference to a stable session before changing wgs_state and
170 * session states
171 * - Lock order: wg_lock -> wgp_lock
172 */
173
174
175 #define WGLOG(level, fmt, args...) \
176 log(level, "%s: " fmt, __func__, ##args)
177
178 #define WG_DEBUG
179
180 /* Debug options */
181 #ifdef WG_DEBUG
182 /* Output debug logs */
183 #ifndef WG_DEBUG_LOG
184 #define WG_DEBUG_LOG
185 #endif
186 /* Output trace logs */
187 #ifndef WG_DEBUG_TRACE
188 #define WG_DEBUG_TRACE
189 #endif
190 /* Output hash values, etc. */
191 #ifndef WG_DEBUG_DUMP
192 #define WG_DEBUG_DUMP
193 #endif
194 /* Make some internal parameters configurable for testing and debugging */
195 #ifndef WG_DEBUG_PARAMS
196 #define WG_DEBUG_PARAMS
197 #endif
198 #endif /* WG_DEBUG */
199
200 #ifndef WG_DEBUG
201 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) || \
202 defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS)
203 # define WG_DEBUG
204 # endif
205 #endif
206
207 #ifdef WG_DEBUG
208 int wg_debug;
209 #define WG_DEBUG_FLAGS_LOG 1
210 #define WG_DEBUG_FLAGS_TRACE 2
211 #define WG_DEBUG_FLAGS_DUMP 4
212 #endif
213
214 #ifdef WG_DEBUG_TRACE
215 #define WG_TRACE(msg) do { \
216 if (wg_debug & WG_DEBUG_FLAGS_TRACE) \
217 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg)); \
218 } while (0)
219 #else
220 #define WG_TRACE(msg) __nothing
221 #endif
222
223 #ifdef WG_DEBUG_LOG
224 #define WG_DLOG(fmt, args...) do { \
225 if (wg_debug & WG_DEBUG_FLAGS_LOG) \
226 log(LOG_DEBUG, "%s: " fmt, __func__, ##args); \
227 } while (0)
228 #else
229 #define WG_DLOG(fmt, args...) __nothing
230 #endif
231
232 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
233 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
234 &(wgprc)->wgprc_curpps, 1)) { \
235 log(level, fmt, ##args); \
236 } \
237 } while (0)
238
239 #ifdef WG_DEBUG_PARAMS
240 static bool wg_force_underload = false;
241 #endif
242
243 #ifdef WG_DEBUG_DUMP
244
245 static char enomem[10] = "[enomem]";
246
247 #define MAX_HDUMP_LEN 10000 /* large enough */
248
249 /*
250 * gethexdump(p, n)
251 *
252 * Allocate a string returning a hexdump of bytes p[0..n),
253 * truncated to MAX_HDUMP_LEN. Must be freed with puthexdump.
254 *
255 * We use this instead of libkern hexdump() because the result is
256 * logged with log(LOG_DEBUG, ...), which puts a priority tag on
257 * every message, so it can't be done incrementally.
258 */
259 static char *
260 gethexdump(const void *vp, size_t n)
261 {
262 char *buf;
263 const uint8_t *p = vp;
264 size_t i, alloc;
265
266 alloc = n;
267 if (n > MAX_HDUMP_LEN)
268 alloc = MAX_HDUMP_LEN;
269 buf = kmem_alloc(3*alloc + 5, KM_NOSLEEP);
270 if (buf == NULL)
271 return enomem;
272 for (i = 0; i < alloc; i++)
273 snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
274 if (alloc != n)
275 snprintf(buf + 3*i, 4 + 1, " ...");
276 return buf;
277 }
278
279 static void
280 puthexdump(char *buf, const void *p, size_t n)
281 {
282
283 if (buf == NULL || buf == enomem)
284 return;
285 if (n > MAX_HDUMP_LEN)
286 n = MAX_HDUMP_LEN;
287 kmem_free(buf, 3*n + 5);
288 }
289
290 #ifdef WG_RUMPKERNEL
291 static void
292 wg_dump_buf(const char *func, const char *buf, const size_t size)
293 {
294 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
295 return;
296
297 char *hex = gethexdump(buf, size);
298
299 log(LOG_DEBUG, "%s: %s\n", func, hex);
300 puthexdump(hex, buf, size);
301 }
302 #endif
303
304 static void
305 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
306 const size_t size)
307 {
308 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
309 return;
310
311 char *hex = gethexdump(hash, size);
312
313 log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex);
314 puthexdump(hex, hash, size);
315 }
316
317 #define WG_DUMP_HASH(name, hash) \
318 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
319 #define WG_DUMP_HASH48(name, hash) \
320 wg_dump_hash(__func__, name, hash, 48)
321 #define WG_DUMP_BUF(buf, size) \
322 wg_dump_buf(__func__, buf, size)
323 #else
324 #define WG_DUMP_HASH(name, hash) __nothing
325 #define WG_DUMP_HASH48(name, hash) __nothing
326 #define WG_DUMP_BUF(buf, size) __nothing
327 #endif /* WG_DEBUG_DUMP */
328
329 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
330 #define WG_MAX_PROPLEN 32766
331
332 #define WG_MTU 1420
333 #define WG_ALLOWEDIPS 16
334
335 #define CURVE25519_KEY_LEN 32
336 #define TAI64N_LEN (sizeof(uint32_t) * 3)
337 #define POLY1305_AUTHTAG_LEN 16
338 #define HMAC_BLOCK_LEN 64
339
340 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
341 /* [N] 4.3: Hash functions */
342 #define NOISE_DHLEN 32
343 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
344 #define NOISE_HASHLEN 32
345 #define NOISE_BLOCKLEN 64
346 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
347 /* [N] 5.1: "k" */
348 #define NOISE_CIPHER_KEY_LEN 32
349 /*
350 * [N] 9.2: "psk"
351 * "... psk is a 32-byte secret value provided by the application."
352 */
353 #define NOISE_PRESHARED_KEY_LEN 32
354
355 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
356 #define WG_TIMESTAMP_LEN TAI64N_LEN
357
358 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
359
360 #define WG_COOKIE_LEN 16
361 #define WG_MAC_LEN 16
362 #define WG_COOKIESECRET_LEN 32
363
364 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
365 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
366 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
367 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
368 #define WG_HASH_LEN NOISE_HASHLEN
369 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
370 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
371 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
372 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
373 #define WG_DATA_KEY_LEN 32
374 #define WG_SALT_LEN 24
375
376 /*
377 * The protocol messages
378 */
379 struct wg_msg {
380 uint32_t wgm_type;
381 } __packed;
382
383 /* [W] 5.4.2 First Message: Initiator to Responder */
384 struct wg_msg_init {
385 uint32_t wgmi_type;
386 uint32_t wgmi_sender;
387 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
388 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
389 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
390 uint8_t wgmi_mac1[WG_MAC_LEN];
391 uint8_t wgmi_mac2[WG_MAC_LEN];
392 } __packed;
393
394 /* [W] 5.4.3 Second Message: Responder to Initiator */
395 struct wg_msg_resp {
396 uint32_t wgmr_type;
397 uint32_t wgmr_sender;
398 uint32_t wgmr_receiver;
399 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
400 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
401 uint8_t wgmr_mac1[WG_MAC_LEN];
402 uint8_t wgmr_mac2[WG_MAC_LEN];
403 } __packed;
404
405 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
406 struct wg_msg_data {
407 uint32_t wgmd_type;
408 uint32_t wgmd_receiver;
409 uint64_t wgmd_counter;
410 uint32_t wgmd_packet[];
411 } __packed;
412
413 /* [W] 5.4.7 Under Load: Cookie Reply Message */
414 struct wg_msg_cookie {
415 uint32_t wgmc_type;
416 uint32_t wgmc_receiver;
417 uint8_t wgmc_salt[WG_SALT_LEN];
418 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
419 } __packed;
420
421 #define WG_MSG_TYPE_INIT 1
422 #define WG_MSG_TYPE_RESP 2
423 #define WG_MSG_TYPE_COOKIE 3
424 #define WG_MSG_TYPE_DATA 4
425 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
426
427 /* Sliding windows */
428
429 #define SLIWIN_BITS 2048u
430 #define SLIWIN_TYPE uint32_t
431 #define SLIWIN_BPW (NBBY*sizeof(SLIWIN_TYPE))
432 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
433 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
434
435 struct sliwin {
436 SLIWIN_TYPE B[SLIWIN_WORDS];
437 uint64_t T;
438 };
439
440 /*
441 * sliwin_reset(W)
442 *
443 * Reset sliding window state to a blank history with no observed
444 * sequence numbers.
445 *
446 * Caller must have exclusive access to W.
447 */
448 static void
449 sliwin_reset(struct sliwin *W)
450 {
451
452 memset(W, 0, sizeof(*W));
453 }
454
455 /*
456 * sliwin_check_fast(W, S)
457 *
458 * Do a fast check of the sliding window W to validate sequence
459 * number S. No state is recorded. Return 0 on accept, nonzero
460 * error code on reject.
461 *
462 * May be called concurrently with other calls to
463 * sliwin_check_fast and sliwin_update.
464 */
465 static int
466 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
467 {
468
469 /*
470 * If it's more than one window older than the highest sequence
471 * number we've seen, reject.
472 */
473 #ifdef __HAVE_ATOMIC64_LOADSTORE
474 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
475 return EAUTH;
476 #endif
477
478 /*
479 * Otherwise, we need to take the lock to decide, so don't
480 * reject just yet. Caller must serialize a call to
481 * sliwin_update in this case.
482 */
483 return 0;
484 }
485
486 /*
487 * sliwin_update(W, S)
488 *
489 * Check the sliding window W to validate sequence number S, and
490 * if accepted, update it to reflect having observed S. Return 0
491 * on accept, nonzero error code on reject.
492 *
493 * May be called concurrently with other calls to
494 * sliwin_check_fast, but caller must exclude other calls to
495 * sliwin_update.
496 */
497 static int
498 sliwin_update(struct sliwin *W, uint64_t S)
499 {
500 unsigned word, bit;
501
502 /*
503 * If it's more than one window older than the highest sequence
504 * number we've seen, reject.
505 */
506 if (S + SLIWIN_NPKT < W->T)
507 return EAUTH;
508
509 /*
510 * If it's higher than the highest sequence number we've seen,
511 * advance the window.
512 */
513 if (S > W->T) {
514 uint64_t i = W->T / SLIWIN_BPW;
515 uint64_t j = S / SLIWIN_BPW;
516 unsigned k;
517
518 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
519 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
520 #ifdef __HAVE_ATOMIC64_LOADSTORE
521 atomic_store_relaxed(&W->T, S);
522 #else
523 W->T = S;
524 #endif
525 }
526
527 /* Test and set the bit -- if already set, reject. */
528 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
529 bit = S % SLIWIN_BPW;
530 if (W->B[word] & (1UL << bit))
531 return EAUTH;
532 W->B[word] |= 1U << bit;
533
534 /* Accept! */
535 return 0;
536 }
537
538 struct wg_session {
539 struct wg_peer *wgs_peer;
540 struct psref_target
541 wgs_psref;
542
543 volatile int wgs_state;
544 #define WGS_STATE_UNKNOWN 0
545 #define WGS_STATE_INIT_ACTIVE 1
546 #define WGS_STATE_INIT_PASSIVE 2
547 #define WGS_STATE_ESTABLISHED 3
548 #define WGS_STATE_DESTROYING 4
549
550 uint32_t wgs_time_established;
551 volatile uint32_t
552 wgs_time_last_data_sent;
553 volatile bool wgs_force_rekey;
554 bool wgs_is_initiator;
555
556 uint32_t wgs_local_index;
557 uint32_t wgs_remote_index;
558 #ifdef __HAVE_ATOMIC64_LOADSTORE
559 volatile uint64_t
560 wgs_send_counter;
561 #else
562 kmutex_t wgs_send_counter_lock;
563 uint64_t wgs_send_counter;
564 #endif
565
566 struct {
567 kmutex_t lock;
568 struct sliwin window;
569 } *wgs_recvwin;
570
571 uint8_t wgs_handshake_hash[WG_HASH_LEN];
572 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
573 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
574 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
575 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
576 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
577 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
578 };
579
580 struct wg_sockaddr {
581 union {
582 struct sockaddr_storage _ss;
583 struct sockaddr _sa;
584 struct sockaddr_in _sin;
585 struct sockaddr_in6 _sin6;
586 };
587 struct psref_target wgsa_psref;
588 };
589
590 #define wgsatoss(wgsa) (&(wgsa)->_ss)
591 #define wgsatosa(wgsa) (&(wgsa)->_sa)
592 #define wgsatosin(wgsa) (&(wgsa)->_sin)
593 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
594
595 #define wgsa_family(wgsa) (wgsatosa(wgsa)->sa_family)
596
597 struct wg_peer;
598 struct wg_allowedip {
599 struct radix_node wga_nodes[2];
600 struct wg_sockaddr _wga_sa_addr;
601 struct wg_sockaddr _wga_sa_mask;
602 #define wga_sa_addr _wga_sa_addr._sa
603 #define wga_sa_mask _wga_sa_mask._sa
604
605 int wga_family;
606 uint8_t wga_cidr;
607 union {
608 struct in_addr _ip4;
609 struct in6_addr _ip6;
610 } wga_addr;
611 #define wga_addr4 wga_addr._ip4
612 #define wga_addr6 wga_addr._ip6
613
614 struct wg_peer *wga_peer;
615 };
616
617 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
618
619 struct wg_ppsratecheck {
620 struct timeval wgprc_lasttime;
621 int wgprc_curpps;
622 };
623
624 struct wg_softc;
625 struct wg_peer {
626 struct wg_softc *wgp_sc;
627 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
628 struct pslist_entry wgp_peerlist_entry;
629 pserialize_t wgp_psz;
630 struct psref_target wgp_psref;
631 kmutex_t *wgp_lock;
632 kmutex_t *wgp_intr_lock;
633
634 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
635 struct wg_sockaddr *volatile wgp_endpoint;
636 struct wg_sockaddr *wgp_endpoint0;
637 volatile unsigned wgp_endpoint_changing;
638 volatile bool wgp_endpoint_available;
639
640 /* The preshared key (optional) */
641 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
642
643 struct wg_session *volatile wgp_session_stable;
644 struct wg_session *wgp_session_unstable;
645
646 /* first outgoing packet awaiting session initiation */
647 struct mbuf *volatile wgp_pending;
648
649 /* timestamp in big-endian */
650 wg_timestamp_t wgp_timestamp_latest_init;
651
652 struct timespec wgp_last_handshake_time;
653
654 callout_t wgp_handshake_timeout_timer;
655 callout_t wgp_session_dtor_timer;
656
657 time_t wgp_handshake_start_time;
658
659 int wgp_n_allowedips;
660 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
661
662 time_t wgp_latest_cookie_time;
663 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
664 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
665 bool wgp_last_sent_mac1_valid;
666 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
667 bool wgp_last_sent_cookie_valid;
668
669 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
670
671 time_t wgp_last_cookiesecret_time;
672 uint8_t wgp_cookiesecret[WG_COOKIESECRET_LEN];
673
674 struct wg_ppsratecheck wgp_ppsratecheck;
675
676 struct work wgp_work;
677 unsigned int wgp_tasks;
678 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
679 #define WGP_TASK_RETRY_HANDSHAKE __BIT(1)
680 #define WGP_TASK_ESTABLISH_SESSION __BIT(2)
681 #define WGP_TASK_ENDPOINT_CHANGED __BIT(3)
682 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(4)
683 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(5)
684 };
685
686 struct wg_ops;
687
688 struct wg_softc {
689 struct ifnet wg_if;
690 LIST_ENTRY(wg_softc) wg_list;
691 kmutex_t *wg_lock;
692 kmutex_t *wg_intr_lock;
693 krwlock_t *wg_rwlock;
694
695 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
696 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
697
698 int wg_npeers;
699 struct pslist_head wg_peers;
700 struct thmap *wg_peers_bypubkey;
701 struct thmap *wg_peers_byname;
702 struct thmap *wg_sessions_byindex;
703 uint16_t wg_listen_port;
704
705 struct threadpool *wg_threadpool;
706
707 struct threadpool_job wg_job;
708 int wg_upcalls;
709 #define WG_UPCALL_INET __BIT(0)
710 #define WG_UPCALL_INET6 __BIT(1)
711
712 #ifdef INET
713 struct socket *wg_so4;
714 struct radix_node_head *wg_rtable_ipv4;
715 #endif
716 #ifdef INET6
717 struct socket *wg_so6;
718 struct radix_node_head *wg_rtable_ipv6;
719 #endif
720
721 struct wg_ppsratecheck wg_ppsratecheck;
722
723 struct wg_ops *wg_ops;
724
725 #ifdef WG_RUMPKERNEL
726 struct wg_user *wg_user;
727 #endif
728 };
729
730 /* [W] 6.1 Preliminaries */
731 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
732 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
733 #define WG_REKEY_AFTER_TIME 120
734 #define WG_REJECT_AFTER_TIME 180
735 #define WG_REKEY_ATTEMPT_TIME 90
736 #define WG_REKEY_TIMEOUT 5
737 #define WG_KEEPALIVE_TIMEOUT 10
738
739 #define WG_COOKIE_TIME 120
740 #define WG_COOKIESECRET_TIME (2 * 60)
741
742 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
743 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
744 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
745 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
746 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
747 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
748 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
749
750 static struct mbuf *
751 wg_get_mbuf(size_t, size_t);
752
753 static void wg_send_data_msg(struct wg_peer *, struct wg_session *,
754 struct mbuf *);
755 static void wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
756 const uint32_t, const uint8_t[static WG_MAC_LEN],
757 const struct sockaddr *);
758 static void wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
759 struct wg_session *, const struct wg_msg_init *);
760 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
761
762 static struct wg_peer *
763 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
764 struct psref *);
765 static struct wg_peer *
766 wg_lookup_peer_by_pubkey(struct wg_softc *,
767 const uint8_t[static WG_STATIC_KEY_LEN], struct psref *);
768
769 static struct wg_session *
770 wg_lookup_session_by_index(struct wg_softc *,
771 const uint32_t, struct psref *);
772
773 static void wg_update_endpoint_if_necessary(struct wg_peer *,
774 const struct sockaddr *);
775
776 static void wg_schedule_session_dtor_timer(struct wg_peer *);
777
778 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
779 static void wg_calculate_keys(struct wg_session *, const bool);
780
781 static void wg_clear_states(struct wg_session *);
782
783 static void wg_get_peer(struct wg_peer *, struct psref *);
784 static void wg_put_peer(struct wg_peer *, struct psref *);
785
786 static int wg_send_so(struct wg_peer *, struct mbuf *);
787 static int wg_send_udp(struct wg_peer *, struct mbuf *);
788 static int wg_output(struct ifnet *, struct mbuf *,
789 const struct sockaddr *, const struct rtentry *);
790 static void wg_input(struct ifnet *, struct mbuf *, const int);
791 static int wg_ioctl(struct ifnet *, u_long, void *);
792 static int wg_bind_port(struct wg_softc *, const uint16_t);
793 static int wg_init(struct ifnet *);
794 #ifdef ALTQ
795 static void wg_start(struct ifnet *);
796 #endif
797 static void wg_stop(struct ifnet *, int);
798
799 static void wg_peer_work(struct work *, void *);
800 static void wg_job(struct threadpool_job *);
801 static void wgintr(void *);
802 static void wg_purge_pending_packets(struct wg_peer *);
803
804 static int wg_clone_create(struct if_clone *, int);
805 static int wg_clone_destroy(struct ifnet *);
806
807 struct wg_ops {
808 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
809 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
810 void (*input)(struct ifnet *, struct mbuf *, const int);
811 int (*bind_port)(struct wg_softc *, const uint16_t);
812 };
813
814 struct wg_ops wg_ops_rumpkernel = {
815 .send_hs_msg = wg_send_so,
816 .send_data_msg = wg_send_udp,
817 .input = wg_input,
818 .bind_port = wg_bind_port,
819 };
820
821 #ifdef WG_RUMPKERNEL
822 static bool wg_user_mode(struct wg_softc *);
823 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
824
825 static int wg_send_user(struct wg_peer *, struct mbuf *);
826 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
827 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
828
829 struct wg_ops wg_ops_rumpuser = {
830 .send_hs_msg = wg_send_user,
831 .send_data_msg = wg_send_user,
832 .input = wg_input_user,
833 .bind_port = wg_bind_port_user,
834 };
835 #endif
836
837 #define WG_PEER_READER_FOREACH(wgp, wg) \
838 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
839 wgp_peerlist_entry)
840 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
841 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
842 wgp_peerlist_entry)
843 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
844 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
845 #define WG_PEER_WRITER_REMOVE(wgp) \
846 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
847
848 struct wg_route {
849 struct radix_node wgr_nodes[2];
850 struct wg_peer *wgr_peer;
851 };
852
853 static struct radix_node_head *
854 wg_rnh(struct wg_softc *wg, const int family)
855 {
856
857 switch (family) {
858 #ifdef INET
859 case AF_INET:
860 return wg->wg_rtable_ipv4;
861 #endif
862 #ifdef INET6
863 case AF_INET6:
864 return wg->wg_rtable_ipv6;
865 #endif
866 default:
867 return NULL;
868 }
869 }
870
871
872 /*
873 * Global variables
874 */
875 static volatile unsigned wg_count __cacheline_aligned;
876
877 struct psref_class *wg_psref_class __read_mostly;
878
879 static struct if_clone wg_cloner =
880 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
881
882 static struct pktqueue *wg_pktq __read_mostly;
883 static struct workqueue *wg_wq __read_mostly;
884
885 void wgattach(int);
886 /* ARGSUSED */
887 void
888 wgattach(int count)
889 {
890 /*
891 * Nothing to do here, initialization is handled by the
892 * module initialization code in wginit() below).
893 */
894 }
895
896 static void
897 wginit(void)
898 {
899
900 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
901
902 if_clone_attach(&wg_cloner);
903 }
904
905 /*
906 * XXX Kludge: This should just happen in wginit, but workqueue_create
907 * cannot be run until after CPUs have been detected, and wginit runs
908 * before configure.
909 */
910 static int
911 wginitqueues(void)
912 {
913 int error __diagused;
914
915 wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
916 KASSERT(wg_pktq != NULL);
917
918 error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
919 PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
920 KASSERTMSG(error == 0, "error=%d", error);
921
922 return 0;
923 }
924
925 static void
926 wg_guarantee_initialized(void)
927 {
928 static ONCE_DECL(init);
929 int error __diagused;
930
931 error = RUN_ONCE(&init, wginitqueues);
932 KASSERTMSG(error == 0, "error=%d", error);
933 }
934
935 static int
936 wg_count_inc(void)
937 {
938 unsigned o, n;
939
940 do {
941 o = atomic_load_relaxed(&wg_count);
942 if (o == UINT_MAX)
943 return ENFILE;
944 n = o + 1;
945 } while (atomic_cas_uint(&wg_count, o, n) != o);
946
947 return 0;
948 }
949
950 static void
951 wg_count_dec(void)
952 {
953 unsigned c __diagused;
954
955 membar_release(); /* match atomic_load_acquire in wgdetach */
956 c = atomic_dec_uint_nv(&wg_count);
957 KASSERT(c != UINT_MAX);
958 }
959
960 static int
961 wgdetach(void)
962 {
963
964 /* Prevent new interface creation. */
965 if_clone_detach(&wg_cloner);
966
967 /*
968 * Check whether there are any existing interfaces. Matches
969 * membar_release and atomic_dec_uint_nv in wg_count_dec.
970 */
971 if (atomic_load_acquire(&wg_count)) {
972 /* Back out -- reattach the cloner. */
973 if_clone_attach(&wg_cloner);
974 return EBUSY;
975 }
976
977 /* No interfaces left. Nuke it. */
978 if (wg_wq)
979 workqueue_destroy(wg_wq);
980 if (wg_pktq)
981 pktq_destroy(wg_pktq);
982 psref_class_destroy(wg_psref_class);
983
984 return 0;
985 }
986
987 static void
988 wg_init_key_and_hash(uint8_t ckey[static WG_CHAINING_KEY_LEN],
989 uint8_t hash[static WG_HASH_LEN])
990 {
991 /* [W] 5.4: CONSTRUCTION */
992 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
993 /* [W] 5.4: IDENTIFIER */
994 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
995 struct blake2s state;
996
997 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
998 signature, strlen(signature));
999
1000 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
1001 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
1002
1003 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1004 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
1005 blake2s_update(&state, id, strlen(id));
1006 blake2s_final(&state, hash);
1007
1008 WG_DUMP_HASH("ckey", ckey);
1009 WG_DUMP_HASH("hash", hash);
1010 }
1011
1012 static void
1013 wg_algo_hash(uint8_t hash[static WG_HASH_LEN], const uint8_t input[],
1014 const size_t inputsize)
1015 {
1016 struct blake2s state;
1017
1018 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1019 blake2s_update(&state, hash, WG_HASH_LEN);
1020 blake2s_update(&state, input, inputsize);
1021 blake2s_final(&state, hash);
1022 }
1023
1024 static void
1025 wg_algo_mac(uint8_t out[], const size_t outsize,
1026 const uint8_t key[], const size_t keylen,
1027 const uint8_t input1[], const size_t input1len,
1028 const uint8_t input2[], const size_t input2len)
1029 {
1030 struct blake2s state;
1031
1032 blake2s_init(&state, outsize, key, keylen);
1033
1034 blake2s_update(&state, input1, input1len);
1035 if (input2 != NULL)
1036 blake2s_update(&state, input2, input2len);
1037 blake2s_final(&state, out);
1038 }
1039
1040 static void
1041 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
1042 const uint8_t input1[], const size_t input1len,
1043 const uint8_t input2[], const size_t input2len)
1044 {
1045 struct blake2s state;
1046 /* [W] 5.4: LABEL-MAC1 */
1047 const char *label = "mac1----";
1048 uint8_t key[WG_HASH_LEN];
1049
1050 blake2s_init(&state, sizeof(key), NULL, 0);
1051 blake2s_update(&state, label, strlen(label));
1052 blake2s_update(&state, input1, input1len);
1053 blake2s_final(&state, key);
1054
1055 blake2s_init(&state, outsize, key, sizeof(key));
1056 if (input2 != NULL)
1057 blake2s_update(&state, input2, input2len);
1058 blake2s_final(&state, out);
1059 }
1060
1061 static void
1062 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
1063 const uint8_t input1[], const size_t input1len)
1064 {
1065 struct blake2s state;
1066 /* [W] 5.4: LABEL-COOKIE */
1067 const char *label = "cookie--";
1068
1069 blake2s_init(&state, outsize, NULL, 0);
1070 blake2s_update(&state, label, strlen(label));
1071 blake2s_update(&state, input1, input1len);
1072 blake2s_final(&state, out);
1073 }
1074
1075 static void
1076 wg_algo_generate_keypair(uint8_t pubkey[static WG_EPHEMERAL_KEY_LEN],
1077 uint8_t privkey[static WG_EPHEMERAL_KEY_LEN])
1078 {
1079
1080 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1081
1082 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
1083 crypto_scalarmult_base(pubkey, privkey);
1084 }
1085
1086 static void
1087 wg_algo_dh(uint8_t out[static WG_DH_OUTPUT_LEN],
1088 const uint8_t privkey[static WG_STATIC_KEY_LEN],
1089 const uint8_t pubkey[static WG_STATIC_KEY_LEN])
1090 {
1091
1092 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1093
1094 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
1095 KASSERT(ret == 0);
1096 }
1097
1098 static void
1099 wg_algo_hmac(uint8_t out[], const size_t outlen,
1100 const uint8_t key[], const size_t keylen,
1101 const uint8_t in[], const size_t inlen)
1102 {
1103 #define IPAD 0x36
1104 #define OPAD 0x5c
1105 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
1106 uint8_t ipad[HMAC_BLOCK_LEN];
1107 uint8_t opad[HMAC_BLOCK_LEN];
1108 size_t i;
1109 struct blake2s state;
1110
1111 KASSERT(outlen == WG_HASH_LEN);
1112 KASSERT(keylen <= HMAC_BLOCK_LEN);
1113
1114 memcpy(hmackey, key, keylen);
1115
1116 for (i = 0; i < sizeof(hmackey); i++) {
1117 ipad[i] = hmackey[i] ^ IPAD;
1118 opad[i] = hmackey[i] ^ OPAD;
1119 }
1120
1121 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1122 blake2s_update(&state, ipad, sizeof(ipad));
1123 blake2s_update(&state, in, inlen);
1124 blake2s_final(&state, out);
1125
1126 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1127 blake2s_update(&state, opad, sizeof(opad));
1128 blake2s_update(&state, out, WG_HASH_LEN);
1129 blake2s_final(&state, out);
1130 #undef IPAD
1131 #undef OPAD
1132 }
1133
1134 static void
1135 wg_algo_kdf(uint8_t out1[static WG_KDF_OUTPUT_LEN],
1136 uint8_t out2[WG_KDF_OUTPUT_LEN],
1137 uint8_t out3[WG_KDF_OUTPUT_LEN],
1138 const uint8_t ckey[static WG_CHAINING_KEY_LEN],
1139 const uint8_t input[], const size_t inputlen)
1140 {
1141 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
1142 uint8_t one[1];
1143
1144 /*
1145 * [N] 4.3: "an input_key_material byte sequence with length
1146 * either zero bytes, 32 bytes, or DHLEN bytes."
1147 */
1148 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
1149
1150 WG_DUMP_HASH("ckey", ckey);
1151 if (input != NULL)
1152 WG_DUMP_HASH("input", input);
1153 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
1154 input, inputlen);
1155 WG_DUMP_HASH("tmp1", tmp1);
1156 one[0] = 1;
1157 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1158 one, sizeof(one));
1159 WG_DUMP_HASH("out1", out1);
1160 if (out2 == NULL)
1161 return;
1162 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
1163 tmp2[WG_KDF_OUTPUT_LEN] = 2;
1164 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1165 tmp2, sizeof(tmp2));
1166 WG_DUMP_HASH("out2", out2);
1167 if (out3 == NULL)
1168 return;
1169 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
1170 tmp2[WG_KDF_OUTPUT_LEN] = 3;
1171 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1172 tmp2, sizeof(tmp2));
1173 WG_DUMP_HASH("out3", out3);
1174 }
1175
1176 static void __noinline
1177 wg_algo_dh_kdf(uint8_t ckey[static WG_CHAINING_KEY_LEN],
1178 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1179 const uint8_t local_key[static WG_STATIC_KEY_LEN],
1180 const uint8_t remote_key[static WG_STATIC_KEY_LEN])
1181 {
1182 uint8_t dhout[WG_DH_OUTPUT_LEN];
1183
1184 wg_algo_dh(dhout, local_key, remote_key);
1185 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1186
1187 WG_DUMP_HASH("dhout", dhout);
1188 WG_DUMP_HASH("ckey", ckey);
1189 if (cipher_key != NULL)
1190 WG_DUMP_HASH("cipher_key", cipher_key);
1191 }
1192
1193 static void
1194 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize,
1195 const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
1196 const uint64_t counter,
1197 const uint8_t plain[], const size_t plainsize,
1198 const uint8_t auth[], size_t authlen)
1199 {
1200 uint8_t nonce[(32 + 64) / 8] = {0};
1201 long long unsigned int outsize;
1202 int error __diagused;
1203
1204 le64enc(&nonce[4], counter);
1205
1206 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1207 plainsize, auth, authlen, NULL, nonce, key);
1208 KASSERT(error == 0);
1209 KASSERT(outsize == expected_outsize);
1210 }
1211
1212 static int
1213 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize,
1214 const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
1215 const uint64_t counter,
1216 const uint8_t encrypted[], const size_t encryptedsize,
1217 const uint8_t auth[], size_t authlen)
1218 {
1219 uint8_t nonce[(32 + 64) / 8] = {0};
1220 long long unsigned int outsize;
1221 int error;
1222
1223 le64enc(&nonce[4], counter);
1224
1225 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1226 encrypted, encryptedsize, auth, authlen, nonce, key);
1227 if (error == 0)
1228 KASSERT(outsize == expected_outsize);
1229 return error;
1230 }
1231
1232 static void
1233 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1234 const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
1235 const uint8_t plain[], const size_t plainsize,
1236 const uint8_t auth[], size_t authlen,
1237 const uint8_t nonce[static WG_SALT_LEN])
1238 {
1239 long long unsigned int outsize;
1240 int error __diagused;
1241
1242 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1243 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1244 plain, plainsize, auth, authlen, NULL, nonce, key);
1245 KASSERT(error == 0);
1246 KASSERT(outsize == expected_outsize);
1247 }
1248
1249 static int
1250 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1251 const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
1252 const uint8_t encrypted[], const size_t encryptedsize,
1253 const uint8_t auth[], size_t authlen,
1254 const uint8_t nonce[static WG_SALT_LEN])
1255 {
1256 long long unsigned int outsize;
1257 int error;
1258
1259 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1260 encrypted, encryptedsize, auth, authlen, nonce, key);
1261 if (error == 0)
1262 KASSERT(outsize == expected_outsize);
1263 return error;
1264 }
1265
1266 static void
1267 wg_algo_tai64n(wg_timestamp_t timestamp)
1268 {
1269 struct timespec ts;
1270
1271 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1272 getnanotime(&ts);
1273 /* TAI64 label in external TAI64 format */
1274 be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
1275 /* second beginning from 1970 TAI */
1276 be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
1277 /* nanosecond in big-endian format */
1278 be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
1279 }
1280
1281 /*
1282 * wg_get_stable_session(wgp, psref)
1283 *
1284 * Get a passive reference to the current stable session, or
1285 * return NULL if there is no current stable session.
1286 *
1287 * The pointer is always there but the session is not necessarily
1288 * ESTABLISHED; if it is not ESTABLISHED, return NULL. However,
1289 * the session may transition from ESTABLISHED to DESTROYING while
1290 * holding the passive reference.
1291 */
1292 static struct wg_session *
1293 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1294 {
1295 int s;
1296 struct wg_session *wgs;
1297
1298 s = pserialize_read_enter();
1299 wgs = atomic_load_consume(&wgp->wgp_session_stable);
1300 if (__predict_false(atomic_load_relaxed(&wgs->wgs_state) !=
1301 WGS_STATE_ESTABLISHED))
1302 wgs = NULL;
1303 else
1304 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1305 pserialize_read_exit(s);
1306
1307 return wgs;
1308 }
1309
1310 static void
1311 wg_put_session(struct wg_session *wgs, struct psref *psref)
1312 {
1313
1314 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1315 }
1316
1317 static void
1318 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1319 {
1320 struct wg_peer *wgp = wgs->wgs_peer;
1321 struct wg_session *wgs0 __diagused;
1322 void *garbage;
1323
1324 KASSERT(mutex_owned(wgp->wgp_lock));
1325 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1326
1327 /* Remove the session from the table. */
1328 wgs0 = thmap_del(wg->wg_sessions_byindex,
1329 &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1330 KASSERT(wgs0 == wgs);
1331 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1332
1333 /* Wait for passive references to drain. */
1334 pserialize_perform(wgp->wgp_psz);
1335 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1336
1337 /*
1338 * Free memory, zero state, and transition to UNKNOWN. We have
1339 * exclusive access to the session now, so there is no need for
1340 * an atomic store.
1341 */
1342 thmap_gc(wg->wg_sessions_byindex, garbage);
1343 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_UNKNOWN\n",
1344 wgs->wgs_local_index, wgs->wgs_remote_index);
1345 wgs->wgs_local_index = 0;
1346 wgs->wgs_remote_index = 0;
1347 wg_clear_states(wgs);
1348 wgs->wgs_state = WGS_STATE_UNKNOWN;
1349 wgs->wgs_force_rekey = false;
1350 }
1351
1352 /*
1353 * wg_get_session_index(wg, wgs)
1354 *
1355 * Choose a session index for wgs->wgs_local_index, and store it
1356 * in wg's table of sessions by index.
1357 *
1358 * wgs must be the unstable session of its peer, and must be
1359 * transitioning out of the UNKNOWN state.
1360 */
1361 static void
1362 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1363 {
1364 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1365 struct wg_session *wgs0;
1366 uint32_t index;
1367
1368 KASSERT(mutex_owned(wgp->wgp_lock));
1369 KASSERT(wgs == wgp->wgp_session_unstable);
1370 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1371 wgs->wgs_state);
1372
1373 do {
1374 /* Pick a uniform random index. */
1375 index = cprng_strong32();
1376
1377 /* Try to take it. */
1378 wgs->wgs_local_index = index;
1379 wgs0 = thmap_put(wg->wg_sessions_byindex,
1380 &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1381
1382 /* If someone else beat us, start over. */
1383 } while (__predict_false(wgs0 != wgs));
1384 }
1385
1386 /*
1387 * wg_put_session_index(wg, wgs)
1388 *
1389 * Remove wgs from the table of sessions by index, wait for any
1390 * passive references to drain, and transition the session to the
1391 * UNKNOWN state.
1392 *
1393 * wgs must be the unstable session of its peer, and must not be
1394 * UNKNOWN or ESTABLISHED.
1395 */
1396 static void
1397 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1398 {
1399 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1400
1401 KASSERT(mutex_owned(wgp->wgp_lock));
1402 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1403 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1404
1405 wg_destroy_session(wg, wgs);
1406 psref_target_init(&wgs->wgs_psref, wg_psref_class);
1407 }
1408
1409 /*
1410 * Handshake patterns
1411 *
1412 * [W] 5: "These messages use the "IK" pattern from Noise"
1413 * [N] 7.5. Interactive handshake patterns (fundamental)
1414 * "The first character refers to the initiators static key:"
1415 * "I = Static key for initiator Immediately transmitted to responder,
1416 * despite reduced or absent identity hiding"
1417 * "The second character refers to the responders static key:"
1418 * "K = Static key for responder Known to initiator"
1419 * "IK:
1420 * <- s
1421 * ...
1422 * -> e, es, s, ss
1423 * <- e, ee, se"
1424 * [N] 9.4. Pattern modifiers
1425 * "IKpsk2:
1426 * <- s
1427 * ...
1428 * -> e, es, s, ss
1429 * <- e, ee, se, psk"
1430 */
1431 static void
1432 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1433 struct wg_session *wgs, struct wg_msg_init *wgmi)
1434 {
1435 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1436 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1437 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1438 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1439 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1440
1441 KASSERT(mutex_owned(wgp->wgp_lock));
1442 KASSERT(wgs == wgp->wgp_session_unstable);
1443 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
1444 wgs->wgs_state);
1445
1446 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1447 wgmi->wgmi_sender = wgs->wgs_local_index;
1448
1449 /* [W] 5.4.2: First Message: Initiator to Responder */
1450
1451 /* Ci := HASH(CONSTRUCTION) */
1452 /* Hi := HASH(Ci || IDENTIFIER) */
1453 wg_init_key_and_hash(ckey, hash);
1454 /* Hi := HASH(Hi || Sr^pub) */
1455 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1456
1457 WG_DUMP_HASH("hash", hash);
1458
1459 /* [N] 2.2: "e" */
1460 /* Ei^priv, Ei^pub := DH-GENERATE() */
1461 wg_algo_generate_keypair(pubkey, privkey);
1462 /* Ci := KDF1(Ci, Ei^pub) */
1463 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1464 /* msg.ephemeral := Ei^pub */
1465 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1466 /* Hi := HASH(Hi || msg.ephemeral) */
1467 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1468
1469 WG_DUMP_HASH("ckey", ckey);
1470 WG_DUMP_HASH("hash", hash);
1471
1472 /* [N] 2.2: "es" */
1473 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1474 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1475
1476 /* [N] 2.2: "s" */
1477 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1478 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1479 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1480 hash, sizeof(hash));
1481 /* Hi := HASH(Hi || msg.static) */
1482 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1483
1484 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1485
1486 /* [N] 2.2: "ss" */
1487 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1488 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1489
1490 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1491 wg_timestamp_t timestamp;
1492 wg_algo_tai64n(timestamp);
1493 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1494 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1495 /* Hi := HASH(Hi || msg.timestamp) */
1496 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1497
1498 /* [W] 5.4.4 Cookie MACs */
1499 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1500 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1501 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1502 /* Need mac1 to decrypt a cookie from a cookie message */
1503 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1504 sizeof(wgp->wgp_last_sent_mac1));
1505 wgp->wgp_last_sent_mac1_valid = true;
1506
1507 if (wgp->wgp_latest_cookie_time == 0 ||
1508 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1509 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1510 else {
1511 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1512 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1513 (const uint8_t *)wgmi,
1514 offsetof(struct wg_msg_init, wgmi_mac2),
1515 NULL, 0);
1516 }
1517
1518 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1519 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1520 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1521 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1522 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1523 }
1524
1525 /*
1526 * wg_initiator_priority(wg, wgp)
1527 *
1528 * Return true if we claim priority over peer wgp as initiator at
1529 * the moment, false if not. That is, if we and our peer are
1530 * trying to initiate a session, do we ignore the peer's attempt
1531 * and barge ahead with ours, or discard our attempt and accept
1532 * the peer's?
1533 *
1534 * We jointly flip a coin by computing
1535 *
1536 * H(pubkey A) ^ H(pubkey B) ^ H(posix minutes as le64),
1537 *
1538 * and taking the low-order bit. If our public key hash, as a
1539 * 256-bit integer in little-endian, is less than the peer's
1540 * public key hash, also as a 256-bit integer in little-endian, we
1541 * claim priority iff the bit is 0; otherwise we claim priority
1542 * iff the bit is 1.
1543 *
1544 * This way, it is essentially arbitrary who claims priority, and
1545 * it may change (by a coin toss) minute to minute, but both
1546 * parties agree at any given moment -- except possibly at the
1547 * boundary of a minute -- who will take priority.
1548 *
1549 * This is an extension to the WireGuard protocol -- as far as I
1550 * can tell, the protocol whitepaper has no resolution to this
1551 * deadlock scenario. According to the author, `the deadlock
1552 * doesn't happen because of some additional state machine logic,
1553 * and on very small chances that it does, it quickly undoes
1554 * itself.', but this additional state machine logic does not
1555 * appear to be anywhere in the whitepaper, and I don't see how it
1556 * can undo itself until both sides have given up and one side is
1557 * quicker to initiate the next time around.
1558 *
1559 * XXX It might be prudent to put a prefix in the hash input, so
1560 * we avoid accidentally colliding with any other uses of the same
1561 * hash on the same input. But it's best if any changes are
1562 * coordinated, so that peers generally agree on what coin is
1563 * being tossed, instead of tossing their own independent coins
1564 * (which will also converge to working but more slowly over more
1565 * handshake retries).
1566 */
1567 static bool
1568 wg_initiator_priority(struct wg_softc *wg, struct wg_peer *wgp)
1569 {
1570 const uint64_t now = time_second/60, now_le = htole64(now);
1571 uint8_t h_min;
1572 uint8_t h_local[BLAKE2S_MAX_DIGEST];
1573 uint8_t h_peer[BLAKE2S_MAX_DIGEST];
1574 int borrow;
1575 unsigned i;
1576
1577 blake2s(&h_min, 1, NULL, 0, &now_le, sizeof(now_le));
1578 blake2s(h_local, sizeof(h_local), NULL, 0,
1579 wg->wg_pubkey, sizeof(wg->wg_pubkey));
1580 blake2s(h_peer, sizeof(h_peer), NULL, 0,
1581 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1582
1583 for (borrow = 0, i = 0; i < BLAKE2S_MAX_DIGEST; i++)
1584 borrow = (h_local[i] - h_peer[i] + borrow) >> 8;
1585
1586 return 1 & (h_local[0] ^ h_peer[0] ^ h_min ^ borrow);
1587 }
1588
1589 static void __noinline
1590 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1591 const struct sockaddr *src)
1592 {
1593 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1594 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1595 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1596 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1597 struct wg_peer *wgp;
1598 struct wg_session *wgs;
1599 int error, ret;
1600 struct psref psref_peer;
1601 uint8_t mac1[WG_MAC_LEN];
1602
1603 WG_TRACE("init msg received");
1604
1605 wg_algo_mac_mac1(mac1, sizeof(mac1),
1606 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1607 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1608
1609 /*
1610 * [W] 5.3: Denial of Service Mitigation & Cookies
1611 * "the responder, ..., must always reject messages with an invalid
1612 * msg.mac1"
1613 */
1614 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1615 WG_DLOG("mac1 is invalid\n");
1616 return;
1617 }
1618
1619 /*
1620 * [W] 5.4.2: First Message: Initiator to Responder
1621 * "When the responder receives this message, it does the same
1622 * operations so that its final state variables are identical,
1623 * replacing the operands of the DH function to produce equivalent
1624 * values."
1625 * Note that the following comments of operations are just copies of
1626 * the initiator's ones.
1627 */
1628
1629 /* Ci := HASH(CONSTRUCTION) */
1630 /* Hi := HASH(Ci || IDENTIFIER) */
1631 wg_init_key_and_hash(ckey, hash);
1632 /* Hi := HASH(Hi || Sr^pub) */
1633 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1634
1635 /* [N] 2.2: "e" */
1636 /* Ci := KDF1(Ci, Ei^pub) */
1637 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1638 sizeof(wgmi->wgmi_ephemeral));
1639 /* Hi := HASH(Hi || msg.ephemeral) */
1640 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1641
1642 WG_DUMP_HASH("ckey", ckey);
1643
1644 /* [N] 2.2: "es" */
1645 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1646 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1647
1648 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1649
1650 /* [N] 2.2: "s" */
1651 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1652 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1653 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1654 if (error != 0) {
1655 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1656 "%s: wg_algo_aead_dec for secret key failed\n",
1657 if_name(&wg->wg_if));
1658 return;
1659 }
1660 /* Hi := HASH(Hi || msg.static) */
1661 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1662
1663 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1664 if (wgp == NULL) {
1665 WG_DLOG("peer not found\n");
1666 return;
1667 }
1668
1669 /*
1670 * Lock the peer to serialize access to cookie state.
1671 *
1672 * XXX Can we safely avoid holding the lock across DH? Take it
1673 * just to verify mac2 and then unlock/DH/lock?
1674 */
1675 mutex_enter(wgp->wgp_lock);
1676
1677 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1678 WG_TRACE("under load");
1679 /*
1680 * [W] 5.3: Denial of Service Mitigation & Cookies
1681 * "the responder, ..., and when under load may reject messages
1682 * with an invalid msg.mac2. If the responder receives a
1683 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1684 * and is under load, it may respond with a cookie reply
1685 * message"
1686 */
1687 uint8_t zero[WG_MAC_LEN] = {0};
1688 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1689 WG_TRACE("sending a cookie message: no cookie included");
1690 wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1691 wgmi->wgmi_mac1, src);
1692 goto out;
1693 }
1694 if (!wgp->wgp_last_sent_cookie_valid) {
1695 WG_TRACE("sending a cookie message: no cookie sent ever");
1696 wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1697 wgmi->wgmi_mac1, src);
1698 goto out;
1699 }
1700 uint8_t mac2[WG_MAC_LEN];
1701 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1702 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1703 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1704 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1705 WG_DLOG("mac2 is invalid\n");
1706 goto out;
1707 }
1708 WG_TRACE("under load, but continue to sending");
1709 }
1710
1711 /* [N] 2.2: "ss" */
1712 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1713 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1714
1715 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1716 wg_timestamp_t timestamp;
1717 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1718 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1719 hash, sizeof(hash));
1720 if (error != 0) {
1721 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1722 "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
1723 if_name(&wg->wg_if), wgp->wgp_name);
1724 goto out;
1725 }
1726 /* Hi := HASH(Hi || msg.timestamp) */
1727 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1728
1729 /*
1730 * [W] 5.1 "The responder keeps track of the greatest timestamp
1731 * received per peer and discards packets containing
1732 * timestamps less than or equal to it."
1733 */
1734 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1735 sizeof(timestamp));
1736 if (ret <= 0) {
1737 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1738 "%s: peer %s: invalid init msg: timestamp is old\n",
1739 if_name(&wg->wg_if), wgp->wgp_name);
1740 goto out;
1741 }
1742 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1743
1744 /*
1745 * Message is good -- we're committing to handle it now, unless
1746 * we were already initiating a session.
1747 */
1748 wgs = wgp->wgp_session_unstable;
1749 switch (wgs->wgs_state) {
1750 case WGS_STATE_UNKNOWN: /* new session initiated by peer */
1751 break;
1752 case WGS_STATE_INIT_ACTIVE: /* we're already initiating */
1753 if (wg_initiator_priority(wg, wgp)) {
1754 WG_TRACE("Session already initializing,"
1755 " ignoring the message");
1756 goto out;
1757 }
1758 WG_TRACE("Yielding session initiation to peer");
1759 wg_put_session_index(wg, wgs);
1760 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1761 wgs->wgs_state);
1762 break;
1763 case WGS_STATE_INIT_PASSIVE: /* peer is retrying, start over */
1764 WG_TRACE("Session already initializing, destroying old states");
1765 /*
1766 * XXX Avoid this -- just resend our response -- if the
1767 * INIT message is identical to the previous one.
1768 */
1769 wg_put_session_index(wg, wgs);
1770 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1771 wgs->wgs_state);
1772 break;
1773 case WGS_STATE_ESTABLISHED: /* can't happen */
1774 panic("unstable session can't be established");
1775 case WGS_STATE_DESTROYING: /* rekey initiated by peer */
1776 WG_TRACE("Session destroying, but force to clear");
1777 wg_put_session_index(wg, wgs);
1778 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1779 wgs->wgs_state);
1780 break;
1781 default:
1782 panic("invalid session state: %d", wgs->wgs_state);
1783 }
1784
1785 /*
1786 * Assign a fresh session index.
1787 */
1788 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1789 wgs->wgs_state);
1790 wg_get_session_index(wg, wgs);
1791
1792 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1793 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1794 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1795 sizeof(wgmi->wgmi_ephemeral));
1796
1797 /*
1798 * The packet is genuine. Update the peer's endpoint if the
1799 * source address changed.
1800 *
1801 * XXX How to prevent DoS by replaying genuine packets from the
1802 * wrong source address?
1803 */
1804 wg_update_endpoint_if_necessary(wgp, src);
1805
1806 /*
1807 * Even though we don't transition from INIT_PASSIVE to
1808 * ESTABLISHED until we receive the first data packet from the
1809 * initiator, we count the time of the INIT message as the time
1810 * of establishment -- this is used to decide when to erase
1811 * keys, and we want to start counting as soon as we have
1812 * generated keys.
1813 */
1814 wgs->wgs_time_established = time_uptime32;
1815 wg_schedule_session_dtor_timer(wgp);
1816
1817 /*
1818 * Respond to the initiator with our ephemeral public key.
1819 */
1820 wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1821
1822 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
1823 " calculate keys as responder\n",
1824 wgs->wgs_local_index, wgs->wgs_remote_index);
1825 wg_calculate_keys(wgs, false);
1826 wg_clear_states(wgs);
1827
1828 /*
1829 * Session is ready to receive data now that we have received
1830 * the peer initiator's ephemeral key pair, generated our
1831 * responder's ephemeral key pair, and derived a session key.
1832 *
1833 * Transition from UNKNOWN to INIT_PASSIVE to publish it to the
1834 * data rx path, wg_handle_msg_data, where the
1835 * atomic_load_acquire matching this atomic_store_release
1836 * happens.
1837 *
1838 * (Session is not, however, ready to send data until the peer
1839 * has acknowledged our response by sending its first data
1840 * packet. So don't swap the sessions yet.)
1841 */
1842 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_INIT_PASSIVE\n",
1843 wgs->wgs_local_index, wgs->wgs_remote_index);
1844 atomic_store_release(&wgs->wgs_state, WGS_STATE_INIT_PASSIVE);
1845 WG_TRACE("WGS_STATE_INIT_PASSIVE");
1846
1847 out:
1848 mutex_exit(wgp->wgp_lock);
1849 wg_put_peer(wgp, &psref_peer);
1850 }
1851
1852 static struct socket *
1853 wg_get_so_by_af(struct wg_softc *wg, const int af)
1854 {
1855
1856 switch (af) {
1857 #ifdef INET
1858 case AF_INET:
1859 return wg->wg_so4;
1860 #endif
1861 #ifdef INET6
1862 case AF_INET6:
1863 return wg->wg_so6;
1864 #endif
1865 default:
1866 panic("wg: no such af: %d", af);
1867 }
1868 }
1869
1870 static struct socket *
1871 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1872 {
1873
1874 return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
1875 }
1876
1877 static struct wg_sockaddr *
1878 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1879 {
1880 struct wg_sockaddr *wgsa;
1881 int s;
1882
1883 s = pserialize_read_enter();
1884 wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1885 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1886 pserialize_read_exit(s);
1887
1888 return wgsa;
1889 }
1890
1891 static void
1892 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1893 {
1894
1895 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1896 }
1897
1898 static int
1899 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1900 {
1901 int error;
1902 struct socket *so;
1903 struct psref psref;
1904 struct wg_sockaddr *wgsa;
1905
1906 wgsa = wg_get_endpoint_sa(wgp, &psref);
1907 so = wg_get_so_by_peer(wgp, wgsa);
1908 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1909 wg_put_sa(wgp, wgsa, &psref);
1910
1911 return error;
1912 }
1913
1914 static void
1915 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1916 {
1917 int error;
1918 struct mbuf *m;
1919 struct wg_msg_init *wgmi;
1920 struct wg_session *wgs;
1921
1922 KASSERT(mutex_owned(wgp->wgp_lock));
1923
1924 wgs = wgp->wgp_session_unstable;
1925 /* XXX pull dispatch out into wg_task_send_init_message */
1926 switch (wgs->wgs_state) {
1927 case WGS_STATE_UNKNOWN: /* new session initiated by us */
1928 break;
1929 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, stop */
1930 WG_TRACE("Session already initializing, skip starting new one");
1931 return;
1932 case WGS_STATE_INIT_PASSIVE: /* peer was trying -- XXX what now? */
1933 WG_TRACE("Session already initializing, waiting for peer");
1934 return;
1935 case WGS_STATE_ESTABLISHED: /* can't happen */
1936 panic("unstable session can't be established");
1937 case WGS_STATE_DESTROYING: /* rekey initiated by us too early */
1938 WG_TRACE("Session destroying");
1939 wg_put_session_index(wg, wgs);
1940 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1941 wgs->wgs_state);
1942 break;
1943 }
1944
1945 /*
1946 * Assign a fresh session index.
1947 */
1948 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1949 wgs->wgs_state);
1950 wg_get_session_index(wg, wgs);
1951
1952 /*
1953 * We have initiated a session. Transition to INIT_ACTIVE.
1954 * This doesn't publish it for use in the data rx path,
1955 * wg_handle_msg_data, or in the data tx path, wg_output -- we
1956 * have to wait for the peer to respond with their ephemeral
1957 * public key before we can derive a session key for tx/rx.
1958 * Hence only atomic_store_relaxed.
1959 */
1960 WG_DLOG("session[L=%"PRIx32" R=(unknown)] -> WGS_STATE_INIT_ACTIVE\n",
1961 wgs->wgs_local_index);
1962 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_INIT_ACTIVE);
1963
1964 m = m_gethdr(M_WAIT, MT_DATA);
1965 if (sizeof(*wgmi) > MHLEN) {
1966 m_clget(m, M_WAIT);
1967 CTASSERT(sizeof(*wgmi) <= MCLBYTES);
1968 }
1969 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1970 wgmi = mtod(m, struct wg_msg_init *);
1971 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1972
1973 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
1974 if (error) {
1975 /*
1976 * Sending out an initiation packet failed; give up on
1977 * this session and toss packet waiting for it if any.
1978 *
1979 * XXX Why don't we just let the periodic handshake
1980 * retry logic work in this case?
1981 */
1982 WG_DLOG("send_hs_msg failed, error=%d\n", error);
1983 wg_put_session_index(wg, wgs);
1984 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
1985 membar_acquire(); /* matches membar_release in wgintr */
1986 m_freem(m);
1987 return;
1988 }
1989
1990 WG_TRACE("init msg sent");
1991 if (wgp->wgp_handshake_start_time == 0)
1992 wgp->wgp_handshake_start_time = time_uptime;
1993 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1994 MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
1995 }
1996
1997 static void
1998 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1999 struct wg_session *wgs, struct wg_msg_resp *wgmr,
2000 const struct wg_msg_init *wgmi)
2001 {
2002 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
2003 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
2004 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
2005 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
2006 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
2007
2008 KASSERT(mutex_owned(wgp->wgp_lock));
2009 KASSERT(wgs == wgp->wgp_session_unstable);
2010 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
2011 wgs->wgs_state);
2012
2013 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
2014 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
2015
2016 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
2017 wgmr->wgmr_sender = wgs->wgs_local_index;
2018 wgmr->wgmr_receiver = wgmi->wgmi_sender;
2019
2020 /* [W] 5.4.3 Second Message: Responder to Initiator */
2021
2022 /* [N] 2.2: "e" */
2023 /* Er^priv, Er^pub := DH-GENERATE() */
2024 wg_algo_generate_keypair(pubkey, privkey);
2025 /* Cr := KDF1(Cr, Er^pub) */
2026 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
2027 /* msg.ephemeral := Er^pub */
2028 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
2029 /* Hr := HASH(Hr || msg.ephemeral) */
2030 wg_algo_hash(hash, pubkey, sizeof(pubkey));
2031
2032 WG_DUMP_HASH("ckey", ckey);
2033 WG_DUMP_HASH("hash", hash);
2034
2035 /* [N] 2.2: "ee" */
2036 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
2037 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
2038
2039 /* [N] 2.2: "se" */
2040 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
2041 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
2042
2043 /* [N] 9.2: "psk" */
2044 {
2045 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
2046 /* Cr, r, k := KDF3(Cr, Q) */
2047 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
2048 sizeof(wgp->wgp_psk));
2049 /* Hr := HASH(Hr || r) */
2050 wg_algo_hash(hash, kdfout, sizeof(kdfout));
2051 }
2052
2053 /* msg.empty := AEAD(k, 0, e, Hr) */
2054 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
2055 cipher_key, 0, NULL, 0, hash, sizeof(hash));
2056 /* Hr := HASH(Hr || msg.empty) */
2057 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
2058
2059 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
2060
2061 /* [W] 5.4.4: Cookie MACs */
2062 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
2063 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
2064 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
2065 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
2066 /* Need mac1 to decrypt a cookie from a cookie message */
2067 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
2068 sizeof(wgp->wgp_last_sent_mac1));
2069 wgp->wgp_last_sent_mac1_valid = true;
2070
2071 if (wgp->wgp_latest_cookie_time == 0 ||
2072 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
2073 /* msg.mac2 := 0^16 */
2074 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
2075 else {
2076 /* msg.mac2 := MAC(Lm, msg_b) */
2077 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
2078 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
2079 (const uint8_t *)wgmr,
2080 offsetof(struct wg_msg_resp, wgmr_mac2),
2081 NULL, 0);
2082 }
2083
2084 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
2085 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
2086 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
2087 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
2088 wgs->wgs_remote_index = wgmi->wgmi_sender;
2089 WG_DLOG("sender=%x\n", wgs->wgs_local_index);
2090 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
2091 }
2092
2093 /*
2094 * wg_swap_sessions(wg, wgp)
2095 *
2096 * Caller has just finished establishing the unstable session in
2097 * wg for peer wgp. Publish it as the stable session, send queued
2098 * packets or keepalives as necessary to kick off the session,
2099 * move the previously stable session to unstable, and begin
2100 * destroying it.
2101 */
2102 static void
2103 wg_swap_sessions(struct wg_softc *wg, struct wg_peer *wgp)
2104 {
2105 struct wg_session *wgs, *wgs_prev;
2106 struct mbuf *m;
2107
2108 KASSERT(mutex_owned(wgp->wgp_lock));
2109
2110 /*
2111 * Get the newly established session, to become the new
2112 * session. Caller must have transitioned from INIT_ACTIVE to
2113 * INIT_PASSIVE or to ESTABLISHED already. This will become
2114 * the stable session.
2115 */
2116 wgs = wgp->wgp_session_unstable;
2117 KASSERTMSG(wgs->wgs_state == WGS_STATE_ESTABLISHED, "state=%d",
2118 wgs->wgs_state);
2119
2120 /*
2121 * Get the stable session, which is either the previously
2122 * established session in the ESTABLISHED state, or has not
2123 * been established at all and is UNKNOWN. This will become
2124 * the unstable session.
2125 */
2126 wgs_prev = wgp->wgp_session_stable;
2127 KASSERTMSG((wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
2128 wgs_prev->wgs_state == WGS_STATE_UNKNOWN),
2129 "state=%d", wgs_prev->wgs_state);
2130
2131 /*
2132 * Publish the newly established session for the tx path to use
2133 * and make the other one the unstable session to handle
2134 * stragglers in the rx path and later be used for the next
2135 * session's handshake.
2136 */
2137 atomic_store_release(&wgp->wgp_session_stable, wgs);
2138 wgp->wgp_session_unstable = wgs_prev;
2139
2140 /*
2141 * Record the handshake time and reset the handshake state.
2142 */
2143 getnanotime(&wgp->wgp_last_handshake_time);
2144 wgp->wgp_handshake_start_time = 0;
2145 wgp->wgp_last_sent_mac1_valid = false;
2146 wgp->wgp_last_sent_cookie_valid = false;
2147
2148 /*
2149 * If we had a data packet queued up, send it.
2150 *
2151 * If not, but we're the initiator, send a keepalive message --
2152 * if we're the initiator we have to send something immediately
2153 * or else the responder will never answer.
2154 */
2155 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
2156 membar_acquire(); /* matches membar_release in wgintr */
2157 wg_send_data_msg(wgp, wgs, m); /* consumes m */
2158 m = NULL;
2159 } else if (wgs->wgs_is_initiator) {
2160 wg_send_keepalive_msg(wgp, wgs);
2161 }
2162
2163 /*
2164 * If the previous stable session was established, begin to
2165 * destroy it.
2166 */
2167 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2168 /*
2169 * Transition ESTABLISHED->DESTROYING. The session
2170 * will remain usable for the data rx path to process
2171 * packets still in flight to us, but we won't use it
2172 * for data tx.
2173 */
2174 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
2175 " -> WGS_STATE_DESTROYING\n",
2176 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
2177 atomic_store_relaxed(&wgs_prev->wgs_state,
2178 WGS_STATE_DESTROYING);
2179 } else {
2180 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2181 "state=%d", wgs_prev->wgs_state);
2182 wgs_prev->wgs_local_index = 0; /* paranoia */
2183 wgs_prev->wgs_remote_index = 0; /* paranoia */
2184 wg_clear_states(wgs_prev); /* paranoia */
2185 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
2186 }
2187 }
2188
2189 static void __noinline
2190 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
2191 const struct sockaddr *src)
2192 {
2193 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
2194 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
2195 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
2196 struct wg_peer *wgp;
2197 struct wg_session *wgs;
2198 struct psref psref;
2199 int error;
2200 uint8_t mac1[WG_MAC_LEN];
2201
2202 wg_algo_mac_mac1(mac1, sizeof(mac1),
2203 wg->wg_pubkey, sizeof(wg->wg_pubkey),
2204 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
2205
2206 /*
2207 * [W] 5.3: Denial of Service Mitigation & Cookies
2208 * "the responder, ..., must always reject messages with an invalid
2209 * msg.mac1"
2210 */
2211 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
2212 WG_DLOG("mac1 is invalid\n");
2213 return;
2214 }
2215
2216 WG_TRACE("resp msg received");
2217 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
2218 if (wgs == NULL) {
2219 WG_TRACE("No session found");
2220 return;
2221 }
2222
2223 wgp = wgs->wgs_peer;
2224
2225 mutex_enter(wgp->wgp_lock);
2226
2227 /* If we weren't waiting for a handshake response, drop it. */
2228 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
2229 WG_TRACE("peer sent spurious handshake response, ignoring");
2230 goto out;
2231 }
2232
2233 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
2234 WG_TRACE("under load");
2235 /*
2236 * [W] 5.3: Denial of Service Mitigation & Cookies
2237 * "the responder, ..., and when under load may reject messages
2238 * with an invalid msg.mac2. If the responder receives a
2239 * message with a valid msg.mac1 yet with an invalid msg.mac2,
2240 * and is under load, it may respond with a cookie reply
2241 * message"
2242 */
2243 uint8_t zero[WG_MAC_LEN] = {0};
2244 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
2245 WG_TRACE("sending a cookie message: no cookie included");
2246 wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2247 wgmr->wgmr_mac1, src);
2248 goto out;
2249 }
2250 if (!wgp->wgp_last_sent_cookie_valid) {
2251 WG_TRACE("sending a cookie message: no cookie sent ever");
2252 wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2253 wgmr->wgmr_mac1, src);
2254 goto out;
2255 }
2256 uint8_t mac2[WG_MAC_LEN];
2257 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
2258 WG_COOKIE_LEN, (const uint8_t *)wgmr,
2259 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
2260 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
2261 WG_DLOG("mac2 is invalid\n");
2262 goto out;
2263 }
2264 WG_TRACE("under load, but continue to sending");
2265 }
2266
2267 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
2268 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
2269
2270 /*
2271 * [W] 5.4.3 Second Message: Responder to Initiator
2272 * "When the initiator receives this message, it does the same
2273 * operations so that its final state variables are identical,
2274 * replacing the operands of the DH function to produce equivalent
2275 * values."
2276 * Note that the following comments of operations are just copies of
2277 * the initiator's ones.
2278 */
2279
2280 /* [N] 2.2: "e" */
2281 /* Cr := KDF1(Cr, Er^pub) */
2282 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
2283 sizeof(wgmr->wgmr_ephemeral));
2284 /* Hr := HASH(Hr || msg.ephemeral) */
2285 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
2286
2287 WG_DUMP_HASH("ckey", ckey);
2288 WG_DUMP_HASH("hash", hash);
2289
2290 /* [N] 2.2: "ee" */
2291 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
2292 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
2293 wgmr->wgmr_ephemeral);
2294
2295 /* [N] 2.2: "se" */
2296 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
2297 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
2298
2299 /* [N] 9.2: "psk" */
2300 {
2301 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
2302 /* Cr, r, k := KDF3(Cr, Q) */
2303 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
2304 sizeof(wgp->wgp_psk));
2305 /* Hr := HASH(Hr || r) */
2306 wg_algo_hash(hash, kdfout, sizeof(kdfout));
2307 }
2308
2309 {
2310 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
2311 /* msg.empty := AEAD(k, 0, e, Hr) */
2312 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
2313 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
2314 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
2315 if (error != 0) {
2316 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2317 "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
2318 if_name(&wg->wg_if), wgp->wgp_name);
2319 goto out;
2320 }
2321 /* Hr := HASH(Hr || msg.empty) */
2322 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
2323 }
2324
2325 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
2326 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
2327 wgs->wgs_remote_index = wgmr->wgmr_sender;
2328 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
2329
2330 /*
2331 * The packet is genuine. Update the peer's endpoint if the
2332 * source address changed.
2333 *
2334 * XXX How to prevent DoS by replaying genuine packets from the
2335 * wrong source address?
2336 */
2337 wg_update_endpoint_if_necessary(wgp, src);
2338
2339 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
2340 wgs->wgs_state);
2341 wgs->wgs_time_established = time_uptime32;
2342 wg_schedule_session_dtor_timer(wgp);
2343 wgs->wgs_time_last_data_sent = 0;
2344 wgs->wgs_is_initiator = true;
2345 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
2346 " calculate keys as initiator\n",
2347 wgs->wgs_local_index, wgs->wgs_remote_index);
2348 wg_calculate_keys(wgs, true);
2349 wg_clear_states(wgs);
2350
2351 /*
2352 * Session is ready to receive data now that we have received
2353 * the responder's response.
2354 *
2355 * Transition from INIT_ACTIVE to ESTABLISHED to publish it to
2356 * the data rx path, wg_handle_msg_data.
2357 */
2358 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32" -> WGS_STATE_ESTABLISHED\n",
2359 wgs->wgs_local_index, wgs->wgs_remote_index);
2360 atomic_store_release(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
2361 WG_TRACE("WGS_STATE_ESTABLISHED");
2362
2363 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
2364
2365 /*
2366 * Session is ready to send data now that we have received the
2367 * responder's response.
2368 *
2369 * Swap the sessions to publish the new one as the stable
2370 * session for the data tx path, wg_output.
2371 */
2372 wg_swap_sessions(wg, wgp);
2373 KASSERT(wgs == wgp->wgp_session_stable);
2374
2375 out:
2376 mutex_exit(wgp->wgp_lock);
2377 wg_put_session(wgs, &psref);
2378 }
2379
2380 static void
2381 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
2382 struct wg_session *wgs, const struct wg_msg_init *wgmi)
2383 {
2384 int error;
2385 struct mbuf *m;
2386 struct wg_msg_resp *wgmr;
2387
2388 KASSERT(mutex_owned(wgp->wgp_lock));
2389 KASSERT(wgs == wgp->wgp_session_unstable);
2390 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
2391 wgs->wgs_state);
2392
2393 m = m_gethdr(M_WAIT, MT_DATA);
2394 if (sizeof(*wgmr) > MHLEN) {
2395 m_clget(m, M_WAIT);
2396 CTASSERT(sizeof(*wgmr) <= MCLBYTES);
2397 }
2398 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
2399 wgmr = mtod(m, struct wg_msg_resp *);
2400 wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
2401
2402 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
2403 if (error) {
2404 WG_DLOG("send_hs_msg failed, error=%d\n", error);
2405 return;
2406 }
2407
2408 WG_TRACE("resp msg sent");
2409 }
2410
2411 static struct wg_peer *
2412 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
2413 const uint8_t pubkey[static WG_STATIC_KEY_LEN], struct psref *psref)
2414 {
2415 struct wg_peer *wgp;
2416
2417 int s = pserialize_read_enter();
2418 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
2419 if (wgp != NULL)
2420 wg_get_peer(wgp, psref);
2421 pserialize_read_exit(s);
2422
2423 return wgp;
2424 }
2425
2426 static void
2427 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
2428 struct wg_msg_cookie *wgmc, const uint32_t sender,
2429 const uint8_t mac1[static WG_MAC_LEN], const struct sockaddr *src)
2430 {
2431 uint8_t cookie[WG_COOKIE_LEN];
2432 uint8_t key[WG_HASH_LEN];
2433 uint8_t addr[sizeof(struct in6_addr)];
2434 size_t addrlen;
2435 uint16_t uh_sport; /* be */
2436
2437 KASSERT(mutex_owned(wgp->wgp_lock));
2438
2439 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
2440 wgmc->wgmc_receiver = sender;
2441 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
2442
2443 /*
2444 * [W] 5.4.7: Under Load: Cookie Reply Message
2445 * "The secret variable, Rm, changes every two minutes to a
2446 * random value"
2447 */
2448 if ((time_uptime - wgp->wgp_last_cookiesecret_time) >
2449 WG_COOKIESECRET_TIME) {
2450 cprng_strong(kern_cprng, wgp->wgp_cookiesecret,
2451 sizeof(wgp->wgp_cookiesecret), 0);
2452 wgp->wgp_last_cookiesecret_time = time_uptime;
2453 }
2454
2455 switch (src->sa_family) {
2456 #ifdef INET
2457 case AF_INET: {
2458 const struct sockaddr_in *sin = satocsin(src);
2459 addrlen = sizeof(sin->sin_addr);
2460 memcpy(addr, &sin->sin_addr, addrlen);
2461 uh_sport = sin->sin_port;
2462 break;
2463 }
2464 #endif
2465 #ifdef INET6
2466 case AF_INET6: {
2467 const struct sockaddr_in6 *sin6 = satocsin6(src);
2468 addrlen = sizeof(sin6->sin6_addr);
2469 memcpy(addr, &sin6->sin6_addr, addrlen);
2470 uh_sport = sin6->sin6_port;
2471 break;
2472 }
2473 #endif
2474 default:
2475 panic("invalid af=%d", src->sa_family);
2476 }
2477
2478 wg_algo_mac(cookie, sizeof(cookie),
2479 wgp->wgp_cookiesecret, sizeof(wgp->wgp_cookiesecret),
2480 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2481 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2482 sizeof(wg->wg_pubkey));
2483 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2484 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2485
2486 /* Need to store to calculate mac2 */
2487 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2488 wgp->wgp_last_sent_cookie_valid = true;
2489 }
2490
2491 static void
2492 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2493 const uint32_t sender, const uint8_t mac1[static WG_MAC_LEN],
2494 const struct sockaddr *src)
2495 {
2496 int error;
2497 struct mbuf *m;
2498 struct wg_msg_cookie *wgmc;
2499
2500 KASSERT(mutex_owned(wgp->wgp_lock));
2501
2502 m = m_gethdr(M_WAIT, MT_DATA);
2503 if (sizeof(*wgmc) > MHLEN) {
2504 m_clget(m, M_WAIT);
2505 CTASSERT(sizeof(*wgmc) <= MCLBYTES);
2506 }
2507 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2508 wgmc = mtod(m, struct wg_msg_cookie *);
2509 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2510
2511 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
2512 if (error) {
2513 WG_DLOG("send_hs_msg failed, error=%d\n", error);
2514 return;
2515 }
2516
2517 WG_TRACE("cookie msg sent");
2518 }
2519
2520 static bool
2521 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2522 {
2523 #ifdef WG_DEBUG_PARAMS
2524 if (wg_force_underload)
2525 return true;
2526 #endif
2527
2528 /*
2529 * XXX we don't have a means of a load estimation. The purpose of
2530 * the mechanism is a DoS mitigation, so we consider frequent handshake
2531 * messages as (a kind of) load; if a message of the same type comes
2532 * to a peer within 1 second, we consider we are under load.
2533 */
2534 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2535 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2536 return (time_uptime - last) == 0;
2537 }
2538
2539 static void
2540 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2541 {
2542
2543 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2544
2545 /*
2546 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2547 */
2548 if (initiator) {
2549 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2550 wgs->wgs_chaining_key, NULL, 0);
2551 } else {
2552 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2553 wgs->wgs_chaining_key, NULL, 0);
2554 }
2555 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2556 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2557 }
2558
2559 static uint64_t
2560 wg_session_get_send_counter(struct wg_session *wgs)
2561 {
2562 #ifdef __HAVE_ATOMIC64_LOADSTORE
2563 return atomic_load_relaxed(&wgs->wgs_send_counter);
2564 #else
2565 uint64_t send_counter;
2566
2567 mutex_enter(&wgs->wgs_send_counter_lock);
2568 send_counter = wgs->wgs_send_counter;
2569 mutex_exit(&wgs->wgs_send_counter_lock);
2570
2571 return send_counter;
2572 #endif
2573 }
2574
2575 static uint64_t
2576 wg_session_inc_send_counter(struct wg_session *wgs)
2577 {
2578 #ifdef __HAVE_ATOMIC64_LOADSTORE
2579 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2580 #else
2581 uint64_t send_counter;
2582
2583 mutex_enter(&wgs->wgs_send_counter_lock);
2584 send_counter = wgs->wgs_send_counter++;
2585 mutex_exit(&wgs->wgs_send_counter_lock);
2586
2587 return send_counter;
2588 #endif
2589 }
2590
2591 static void
2592 wg_clear_states(struct wg_session *wgs)
2593 {
2594
2595 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2596
2597 wgs->wgs_send_counter = 0;
2598 sliwin_reset(&wgs->wgs_recvwin->window);
2599
2600 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2601 wgs_clear(handshake_hash);
2602 wgs_clear(chaining_key);
2603 wgs_clear(ephemeral_key_pub);
2604 wgs_clear(ephemeral_key_priv);
2605 wgs_clear(ephemeral_key_peer);
2606 #undef wgs_clear
2607 }
2608
2609 static struct wg_session *
2610 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2611 struct psref *psref)
2612 {
2613 struct wg_session *wgs;
2614
2615 int s = pserialize_read_enter();
2616 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2617 if (wgs != NULL) {
2618 KASSERTMSG(index == wgs->wgs_local_index,
2619 "index=%"PRIx32" wgs->wgs_local_index=%"PRIx32,
2620 index, wgs->wgs_local_index);
2621 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2622 }
2623 pserialize_read_exit(s);
2624
2625 return wgs;
2626 }
2627
2628 static void
2629 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2630 {
2631 struct mbuf *m;
2632
2633 /*
2634 * [W] 6.5 Passive Keepalive
2635 * "A keepalive message is simply a transport data message with
2636 * a zero-length encapsulated encrypted inner-packet."
2637 */
2638 WG_TRACE("");
2639 m = m_gethdr(M_WAIT, MT_DATA);
2640 wg_send_data_msg(wgp, wgs, m);
2641 }
2642
2643 static bool
2644 wg_need_to_send_init_message(struct wg_session *wgs)
2645 {
2646 /*
2647 * [W] 6.2 Transport Message Limits
2648 * "if a peer is the initiator of a current secure session,
2649 * WireGuard will send a handshake initiation message to begin
2650 * a new secure session ... if after receiving a transport data
2651 * message, the current secure session is (REJECT-AFTER-TIME
2652 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2653 * not yet acted upon this event."
2654 */
2655 return wgs->wgs_is_initiator &&
2656 atomic_load_relaxed(&wgs->wgs_time_last_data_sent) == 0 &&
2657 (time_uptime32 - wgs->wgs_time_established >=
2658 (wg_reject_after_time - wg_keepalive_timeout -
2659 wg_rekey_timeout));
2660 }
2661
2662 static void
2663 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
2664 {
2665
2666 mutex_enter(wgp->wgp_intr_lock);
2667 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2668 if (wgp->wgp_tasks == 0)
2669 /*
2670 * XXX If the current CPU is already loaded -- e.g., if
2671 * there's already a bunch of handshakes queued up --
2672 * consider tossing this over to another CPU to
2673 * distribute the load.
2674 */
2675 workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
2676 wgp->wgp_tasks |= task;
2677 mutex_exit(wgp->wgp_intr_lock);
2678 }
2679
2680 static void
2681 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2682 {
2683 struct wg_sockaddr *wgsa_prev;
2684
2685 WG_TRACE("Changing endpoint");
2686
2687 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2688 wgsa_prev = wgp->wgp_endpoint;
2689 atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2690 wgp->wgp_endpoint0 = wgsa_prev;
2691 atomic_store_release(&wgp->wgp_endpoint_available, true);
2692
2693 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2694 }
2695
2696 static bool
2697 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2698 {
2699 uint16_t packet_len;
2700 const struct ip *ip;
2701
2702 if (__predict_false(decrypted_len < sizeof(*ip))) {
2703 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2704 sizeof(*ip));
2705 return false;
2706 }
2707
2708 ip = (const struct ip *)packet;
2709 if (ip->ip_v == 4)
2710 *af = AF_INET;
2711 else if (ip->ip_v == 6)
2712 *af = AF_INET6;
2713 else {
2714 WG_DLOG("ip_v=%d\n", ip->ip_v);
2715 return false;
2716 }
2717
2718 WG_DLOG("af=%d\n", *af);
2719
2720 switch (*af) {
2721 #ifdef INET
2722 case AF_INET:
2723 packet_len = ntohs(ip->ip_len);
2724 break;
2725 #endif
2726 #ifdef INET6
2727 case AF_INET6: {
2728 const struct ip6_hdr *ip6;
2729
2730 if (__predict_false(decrypted_len < sizeof(*ip6))) {
2731 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2732 sizeof(*ip6));
2733 return false;
2734 }
2735
2736 ip6 = (const struct ip6_hdr *)packet;
2737 packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
2738 break;
2739 }
2740 #endif
2741 default:
2742 return false;
2743 }
2744
2745 if (packet_len > decrypted_len) {
2746 WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
2747 decrypted_len);
2748 return false;
2749 }
2750
2751 return true;
2752 }
2753
2754 static bool
2755 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2756 int af, char *packet)
2757 {
2758 struct sockaddr_storage ss;
2759 struct sockaddr *sa;
2760 struct psref psref;
2761 struct wg_peer *wgp;
2762 bool ok;
2763
2764 /*
2765 * II CRYPTOKEY ROUTING
2766 * "it will only accept it if its source IP resolves in the
2767 * table to the public key used in the secure session for
2768 * decrypting it."
2769 */
2770
2771 switch (af) {
2772 #ifdef INET
2773 case AF_INET: {
2774 const struct ip *ip = (const struct ip *)packet;
2775 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2776 sockaddr_in_init(sin, &ip->ip_src, 0);
2777 sa = sintosa(sin);
2778 break;
2779 }
2780 #endif
2781 #ifdef INET6
2782 case AF_INET6: {
2783 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2784 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2785 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2786 sa = sin6tosa(sin6);
2787 break;
2788 }
2789 #endif
2790 default:
2791 __USE(ss);
2792 return false;
2793 }
2794
2795 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2796 ok = (wgp == wgp_expected);
2797 if (wgp != NULL)
2798 wg_put_peer(wgp, &psref);
2799
2800 return ok;
2801 }
2802
2803 static void
2804 wg_session_dtor_timer(void *arg)
2805 {
2806 struct wg_peer *wgp = arg;
2807
2808 WG_TRACE("enter");
2809
2810 wg_schedule_session_dtor_timer(wgp);
2811 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2812 }
2813
2814 static void
2815 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2816 {
2817
2818 /*
2819 * If the periodic session destructor is already pending to
2820 * handle the previous session, that's fine -- leave it in
2821 * place; it will be scheduled again.
2822 */
2823 if (callout_pending(&wgp->wgp_session_dtor_timer)) {
2824 WG_DLOG("session dtor already pending\n");
2825 return;
2826 }
2827
2828 WG_DLOG("scheduling session dtor in %u secs\n", wg_reject_after_time);
2829 callout_schedule(&wgp->wgp_session_dtor_timer,
2830 wg_reject_after_time*hz);
2831 }
2832
2833 static bool
2834 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2835 {
2836 if (sa1->sa_family != sa2->sa_family)
2837 return false;
2838
2839 switch (sa1->sa_family) {
2840 #ifdef INET
2841 case AF_INET:
2842 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2843 #endif
2844 #ifdef INET6
2845 case AF_INET6:
2846 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2847 #endif
2848 default:
2849 return false;
2850 }
2851 }
2852
2853 static void
2854 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2855 const struct sockaddr *src)
2856 {
2857 struct wg_sockaddr *wgsa;
2858 struct psref psref;
2859
2860 wgsa = wg_get_endpoint_sa(wgp, &psref);
2861
2862 #ifdef WG_DEBUG_LOG
2863 char oldaddr[128], newaddr[128];
2864 sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2865 sockaddr_format(src, newaddr, sizeof(newaddr));
2866 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2867 #endif
2868
2869 /*
2870 * III: "Since the packet has authenticated correctly, the source IP of
2871 * the outer UDP/IP packet is used to update the endpoint for peer..."
2872 */
2873 if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2874 !sockaddr_port_match(src, wgsatosa(wgsa)))) {
2875 /* XXX We can't change the endpoint twice in a short period */
2876 if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2877 wg_change_endpoint(wgp, src);
2878 }
2879 }
2880
2881 wg_put_sa(wgp, wgsa, &psref);
2882 }
2883
2884 static void __noinline
2885 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2886 const struct sockaddr *src)
2887 {
2888 struct wg_msg_data *wgmd;
2889 char *encrypted_buf = NULL, *decrypted_buf;
2890 size_t encrypted_len, decrypted_len;
2891 struct wg_session *wgs;
2892 struct wg_peer *wgp;
2893 int state;
2894 uint32_t age;
2895 size_t mlen;
2896 struct psref psref;
2897 int error, af;
2898 bool success, free_encrypted_buf = false, ok;
2899 struct mbuf *n;
2900
2901 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2902 wgmd = mtod(m, struct wg_msg_data *);
2903
2904 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2905 WG_TRACE("data");
2906
2907 /* Find the putative session, or drop. */
2908 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2909 if (wgs == NULL) {
2910 WG_TRACE("No session found");
2911 m_freem(m);
2912 return;
2913 }
2914
2915 /*
2916 * We are only ready to handle data when in INIT_PASSIVE,
2917 * ESTABLISHED, or DESTROYING. All transitions out of that
2918 * state dissociate the session index and drain psrefs.
2919 *
2920 * atomic_load_acquire matches atomic_store_release in either
2921 * wg_handle_msg_init or wg_handle_msg_resp. (The transition
2922 * INIT_PASSIVE to ESTABLISHED in wg_task_establish_session
2923 * doesn't make a difference for this rx path.)
2924 */
2925 state = atomic_load_acquire(&wgs->wgs_state);
2926 switch (state) {
2927 case WGS_STATE_UNKNOWN:
2928 case WGS_STATE_INIT_ACTIVE:
2929 WG_TRACE("not yet ready for data");
2930 goto out;
2931 case WGS_STATE_INIT_PASSIVE:
2932 case WGS_STATE_ESTABLISHED:
2933 case WGS_STATE_DESTROYING:
2934 break;
2935 }
2936
2937 /*
2938 * Reject if the session is too old.
2939 */
2940 age = time_uptime32 - wgs->wgs_time_established;
2941 if (__predict_false(age >= wg_reject_after_time)) {
2942 WG_DLOG("session %"PRIx32" too old, %"PRIu32" sec\n",
2943 wgmd->wgmd_receiver, age);
2944 goto out;
2945 }
2946
2947 /*
2948 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2949 * to update the endpoint if authentication succeeds.
2950 */
2951 wgp = wgs->wgs_peer;
2952
2953 /*
2954 * Reject outrageously wrong sequence numbers before doing any
2955 * crypto work or taking any locks.
2956 */
2957 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2958 le64toh(wgmd->wgmd_counter));
2959 if (error) {
2960 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2961 "%s: peer %s: out-of-window packet: %"PRIu64"\n",
2962 if_name(&wg->wg_if), wgp->wgp_name,
2963 le64toh(wgmd->wgmd_counter));
2964 goto out;
2965 }
2966
2967 /* Ensure the payload and authenticator are contiguous. */
2968 mlen = m_length(m);
2969 encrypted_len = mlen - sizeof(*wgmd);
2970 if (encrypted_len < WG_AUTHTAG_LEN) {
2971 WG_DLOG("Short encrypted_len: %zu\n", encrypted_len);
2972 goto out;
2973 }
2974 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2975 if (success) {
2976 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2977 } else {
2978 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2979 if (encrypted_buf == NULL) {
2980 WG_DLOG("failed to allocate encrypted_buf\n");
2981 goto out;
2982 }
2983 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2984 free_encrypted_buf = true;
2985 }
2986 /* m_ensure_contig may change m regardless of its result */
2987 KASSERT(m->m_len >= sizeof(*wgmd));
2988 wgmd = mtod(m, struct wg_msg_data *);
2989
2990 /*
2991 * Get a buffer for the plaintext. Add WG_AUTHTAG_LEN to avoid
2992 * a zero-length buffer (XXX). Drop if plaintext is longer
2993 * than MCLBYTES (XXX).
2994 */
2995 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2996 if (decrypted_len > MCLBYTES) {
2997 /* FIXME handle larger data than MCLBYTES */
2998 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2999 goto out;
3000 }
3001 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
3002 if (n == NULL) {
3003 WG_DLOG("wg_get_mbuf failed\n");
3004 goto out;
3005 }
3006 decrypted_buf = mtod(n, char *);
3007
3008 /* Decrypt and verify the packet. */
3009 WG_DLOG("mlen=%zu, encrypted_len=%zu\n", mlen, encrypted_len);
3010 error = wg_algo_aead_dec(decrypted_buf,
3011 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
3012 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
3013 encrypted_len, NULL, 0);
3014 if (error != 0) {
3015 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3016 "%s: peer %s: failed to wg_algo_aead_dec\n",
3017 if_name(&wg->wg_if), wgp->wgp_name);
3018 m_freem(n);
3019 goto out;
3020 }
3021 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
3022
3023 /* Packet is genuine. Reject it if a replay or just too old. */
3024 mutex_enter(&wgs->wgs_recvwin->lock);
3025 error = sliwin_update(&wgs->wgs_recvwin->window,
3026 le64toh(wgmd->wgmd_counter));
3027 mutex_exit(&wgs->wgs_recvwin->lock);
3028 if (error) {
3029 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3030 "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
3031 if_name(&wg->wg_if), wgp->wgp_name,
3032 le64toh(wgmd->wgmd_counter));
3033 m_freem(n);
3034 goto out;
3035 }
3036
3037 /* We're done with m now; free it and chuck the pointers. */
3038 m_freem(m);
3039 m = NULL;
3040 wgmd = NULL;
3041
3042 /*
3043 * The packet is genuine. Update the peer's endpoint if the
3044 * source address changed.
3045 *
3046 * XXX How to prevent DoS by replaying genuine packets from the
3047 * wrong source address?
3048 */
3049 wg_update_endpoint_if_necessary(wgp, src);
3050
3051 /*
3052 * Validate the encapsulated packet header and get the address
3053 * family, or drop.
3054 */
3055 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
3056 if (!ok) {
3057 m_freem(n);
3058 goto update_state;
3059 }
3060
3061 /* Submit it into our network stack if routable. */
3062 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
3063 if (ok) {
3064 wg->wg_ops->input(&wg->wg_if, n, af);
3065 } else {
3066 char addrstr[INET6_ADDRSTRLEN];
3067 memset(addrstr, 0, sizeof(addrstr));
3068 switch (af) {
3069 #ifdef INET
3070 case AF_INET: {
3071 const struct ip *ip = (const struct ip *)decrypted_buf;
3072 IN_PRINT(addrstr, &ip->ip_src);
3073 break;
3074 }
3075 #endif
3076 #ifdef INET6
3077 case AF_INET6: {
3078 const struct ip6_hdr *ip6 =
3079 (const struct ip6_hdr *)decrypted_buf;
3080 IN6_PRINT(addrstr, &ip6->ip6_src);
3081 break;
3082 }
3083 #endif
3084 default:
3085 panic("invalid af=%d", af);
3086 }
3087 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3088 "%s: peer %s: invalid source address (%s)\n",
3089 if_name(&wg->wg_if), wgp->wgp_name, addrstr);
3090 m_freem(n);
3091 /*
3092 * The inner address is invalid however the session is valid
3093 * so continue the session processing below.
3094 */
3095 }
3096 n = NULL;
3097
3098 update_state:
3099 /* Update the state machine if necessary. */
3100 if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
3101 /*
3102 * We were waiting for the initiator to send their
3103 * first data transport message, and that has happened.
3104 * Schedule a task to establish this session.
3105 */
3106 wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
3107 } else {
3108 if (__predict_false(wg_need_to_send_init_message(wgs))) {
3109 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3110 }
3111 /*
3112 * [W] 6.5 Passive Keepalive
3113 * "If a peer has received a validly-authenticated transport
3114 * data message (section 5.4.6), but does not have any packets
3115 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
3116 * a keepalive message."
3117 */
3118 const uint32_t now = time_uptime32;
3119 const uint32_t time_last_data_sent =
3120 atomic_load_relaxed(&wgs->wgs_time_last_data_sent);
3121 WG_DLOG("time_uptime32=%"PRIu32
3122 " wgs_time_last_data_sent=%"PRIu32"\n",
3123 now, time_last_data_sent);
3124 if ((now - time_last_data_sent) >= wg_keepalive_timeout) {
3125 WG_TRACE("Schedule sending keepalive message");
3126 /*
3127 * We can't send a keepalive message here to avoid
3128 * a deadlock; we already hold the solock of a socket
3129 * that is used to send the message.
3130 */
3131 wg_schedule_peer_task(wgp,
3132 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
3133 }
3134 }
3135 out:
3136 wg_put_session(wgs, &psref);
3137 m_freem(m);
3138 if (free_encrypted_buf)
3139 kmem_intr_free(encrypted_buf, encrypted_len);
3140 }
3141
3142 static void __noinline
3143 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
3144 {
3145 struct wg_session *wgs;
3146 struct wg_peer *wgp;
3147 struct psref psref;
3148 int error;
3149 uint8_t key[WG_HASH_LEN];
3150 uint8_t cookie[WG_COOKIE_LEN];
3151
3152 WG_TRACE("cookie msg received");
3153
3154 /* Find the putative session. */
3155 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
3156 if (wgs == NULL) {
3157 WG_TRACE("No session found");
3158 return;
3159 }
3160
3161 /* Lock the peer so we can update the cookie state. */
3162 wgp = wgs->wgs_peer;
3163 mutex_enter(wgp->wgp_lock);
3164
3165 if (!wgp->wgp_last_sent_mac1_valid) {
3166 WG_TRACE("No valid mac1 sent (or expired)");
3167 goto out;
3168 }
3169
3170 /*
3171 * wgp_last_sent_mac1_valid is only set to true when we are
3172 * transitioning to INIT_ACTIVE or INIT_PASSIVE, and always
3173 * cleared on transition out of them.
3174 */
3175 KASSERTMSG((wgs->wgs_state == WGS_STATE_INIT_ACTIVE ||
3176 wgs->wgs_state == WGS_STATE_INIT_PASSIVE),
3177 "state=%d", wgs->wgs_state);
3178
3179 /* Decrypt the cookie and store it for later handshake retry. */
3180 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
3181 sizeof(wgp->wgp_pubkey));
3182 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
3183 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
3184 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
3185 wgmc->wgmc_salt);
3186 if (error != 0) {
3187 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3188 "%s: peer %s: wg_algo_aead_dec for cookie failed: "
3189 "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
3190 goto out;
3191 }
3192 /*
3193 * [W] 6.6: Interaction with Cookie Reply System
3194 * "it should simply store the decrypted cookie value from the cookie
3195 * reply message, and wait for the expiration of the REKEY-TIMEOUT
3196 * timer for retrying a handshake initiation message."
3197 */
3198 wgp->wgp_latest_cookie_time = time_uptime;
3199 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
3200 out:
3201 mutex_exit(wgp->wgp_lock);
3202 wg_put_session(wgs, &psref);
3203 }
3204
3205 static struct mbuf *
3206 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
3207 {
3208 struct wg_msg wgm;
3209 size_t mbuflen;
3210 size_t msglen;
3211
3212 /*
3213 * Get the mbuf chain length. It is already guaranteed, by
3214 * wg_overudp_cb, to be large enough for a struct wg_msg.
3215 */
3216 mbuflen = m_length(m);
3217 KASSERT(mbuflen >= sizeof(struct wg_msg));
3218
3219 /*
3220 * Copy the message header (32-bit message type) out -- we'll
3221 * worry about contiguity and alignment later.
3222 */
3223 m_copydata(m, 0, sizeof(wgm), &wgm);
3224 switch (le32toh(wgm.wgm_type)) {
3225 case WG_MSG_TYPE_INIT:
3226 msglen = sizeof(struct wg_msg_init);
3227 break;
3228 case WG_MSG_TYPE_RESP:
3229 msglen = sizeof(struct wg_msg_resp);
3230 break;
3231 case WG_MSG_TYPE_COOKIE:
3232 msglen = sizeof(struct wg_msg_cookie);
3233 break;
3234 case WG_MSG_TYPE_DATA:
3235 msglen = sizeof(struct wg_msg_data);
3236 break;
3237 default:
3238 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
3239 "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
3240 le32toh(wgm.wgm_type));
3241 goto error;
3242 }
3243
3244 /* Verify the mbuf chain is long enough for this type of message. */
3245 if (__predict_false(mbuflen < msglen)) {
3246 WG_DLOG("Invalid msg size: mbuflen=%zu type=%u\n", mbuflen,
3247 le32toh(wgm.wgm_type));
3248 goto error;
3249 }
3250
3251 /* Make the message header contiguous if necessary. */
3252 if (__predict_false(m->m_len < msglen)) {
3253 m = m_pullup(m, msglen);
3254 if (m == NULL)
3255 return NULL;
3256 }
3257
3258 return m;
3259
3260 error:
3261 m_freem(m);
3262 return NULL;
3263 }
3264
3265 static void
3266 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
3267 const struct sockaddr *src)
3268 {
3269 struct wg_msg *wgm;
3270
3271 KASSERT(curlwp->l_pflag & LP_BOUND);
3272
3273 m = wg_validate_msg_header(wg, m);
3274 if (__predict_false(m == NULL))
3275 return;
3276
3277 KASSERT(m->m_len >= sizeof(struct wg_msg));
3278 wgm = mtod(m, struct wg_msg *);
3279 switch (le32toh(wgm->wgm_type)) {
3280 case WG_MSG_TYPE_INIT:
3281 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
3282 break;
3283 case WG_MSG_TYPE_RESP:
3284 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
3285 break;
3286 case WG_MSG_TYPE_COOKIE:
3287 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
3288 break;
3289 case WG_MSG_TYPE_DATA:
3290 wg_handle_msg_data(wg, m, src);
3291 /* wg_handle_msg_data frees m for us */
3292 return;
3293 default:
3294 panic("invalid message type: %d", le32toh(wgm->wgm_type));
3295 }
3296
3297 m_freem(m);
3298 }
3299
3300 static void
3301 wg_receive_packets(struct wg_softc *wg, const int af)
3302 {
3303
3304 for (;;) {
3305 int error, flags;
3306 struct socket *so;
3307 struct mbuf *m = NULL;
3308 struct uio dummy_uio;
3309 struct mbuf *paddr = NULL;
3310 struct sockaddr *src;
3311
3312 so = wg_get_so_by_af(wg, af);
3313 flags = MSG_DONTWAIT;
3314 dummy_uio.uio_resid = 1000000000;
3315
3316 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
3317 &flags);
3318 if (error || m == NULL) {
3319 //if (error == EWOULDBLOCK)
3320 return;
3321 }
3322
3323 KASSERT(paddr != NULL);
3324 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
3325 src = mtod(paddr, struct sockaddr *);
3326
3327 wg_handle_packet(wg, m, src);
3328 }
3329 }
3330
3331 static void
3332 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
3333 {
3334
3335 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
3336 }
3337
3338 static void
3339 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
3340 {
3341
3342 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
3343 }
3344
3345 static void
3346 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
3347 {
3348 struct wg_session *wgs;
3349
3350 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
3351
3352 KASSERT(mutex_owned(wgp->wgp_lock));
3353
3354 if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
3355 WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
3356 if_name(&wg->wg_if));
3357 /* XXX should do something? */
3358 return;
3359 }
3360
3361 /*
3362 * If we already have an established session, there's no need
3363 * to initiate a new one -- unless the rekey-after-time or
3364 * rekey-after-messages limits have passed.
3365 */
3366 wgs = wgp->wgp_session_stable;
3367 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3368 !atomic_load_relaxed(&wgs->wgs_force_rekey))
3369 return;
3370
3371 /*
3372 * Ensure we're initiating a new session. If the unstable
3373 * session is already INIT_ACTIVE or INIT_PASSIVE, this does
3374 * nothing.
3375 */
3376 wg_send_handshake_msg_init(wg, wgp);
3377 }
3378
3379 static void
3380 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
3381 {
3382 struct wg_session *wgs;
3383
3384 WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
3385
3386 KASSERT(mutex_owned(wgp->wgp_lock));
3387 KASSERT(wgp->wgp_handshake_start_time != 0);
3388
3389 wgs = wgp->wgp_session_unstable;
3390 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
3391 return;
3392
3393 /*
3394 * XXX no real need to assign a new index here, but we do need
3395 * to transition to UNKNOWN temporarily
3396 */
3397 wg_put_session_index(wg, wgs);
3398
3399 /* [W] 6.4 Handshake Initiation Retransmission */
3400 if ((time_uptime - wgp->wgp_handshake_start_time) >
3401 wg_rekey_attempt_time) {
3402 /* Give up handshaking */
3403 wgp->wgp_handshake_start_time = 0;
3404 WG_TRACE("give up");
3405
3406 /*
3407 * If a new data packet comes, handshaking will be retried
3408 * and a new session would be established at that time,
3409 * however we don't want to send pending packets then.
3410 */
3411 wg_purge_pending_packets(wgp);
3412 return;
3413 }
3414
3415 wg_task_send_init_message(wg, wgp);
3416 }
3417
3418 static void
3419 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
3420 {
3421 struct wg_session *wgs;
3422
3423 KASSERT(mutex_owned(wgp->wgp_lock));
3424
3425 wgs = wgp->wgp_session_unstable;
3426 if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
3427 /* XXX Can this happen? */
3428 return;
3429
3430 wgs->wgs_time_last_data_sent = 0;
3431 wgs->wgs_is_initiator = false;
3432
3433 /*
3434 * Session was already ready to receive data. Transition from
3435 * INIT_PASSIVE to ESTABLISHED just so we can swap the
3436 * sessions.
3437 *
3438 * atomic_store_relaxed because this doesn't affect the data rx
3439 * path, wg_handle_msg_data -- changing from INIT_PASSIVE to
3440 * ESTABLISHED makes no difference to the data rx path, and the
3441 * transition to INIT_PASSIVE with store-release already
3442 * published the state needed by the data rx path.
3443 */
3444 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_ESTABLISHED\n",
3445 wgs->wgs_local_index, wgs->wgs_remote_index);
3446 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
3447 WG_TRACE("WGS_STATE_ESTABLISHED");
3448
3449 /*
3450 * Session is ready to send data too now that we have received
3451 * the peer initiator's first data packet.
3452 *
3453 * Swap the sessions to publish the new one as the stable
3454 * session for the data tx path, wg_output.
3455 */
3456 wg_swap_sessions(wg, wgp);
3457 KASSERT(wgs == wgp->wgp_session_stable);
3458 }
3459
3460 static void
3461 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
3462 {
3463
3464 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
3465
3466 KASSERT(mutex_owned(wgp->wgp_lock));
3467
3468 if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
3469 pserialize_perform(wgp->wgp_psz);
3470 mutex_exit(wgp->wgp_lock);
3471 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
3472 wg_psref_class);
3473 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
3474 wg_psref_class);
3475 mutex_enter(wgp->wgp_lock);
3476 atomic_store_release(&wgp->wgp_endpoint_changing, 0);
3477 }
3478 }
3479
3480 static void
3481 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
3482 {
3483 struct wg_session *wgs;
3484
3485 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
3486
3487 KASSERT(mutex_owned(wgp->wgp_lock));
3488
3489 wgs = wgp->wgp_session_stable;
3490 if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
3491 return;
3492
3493 wg_send_keepalive_msg(wgp, wgs);
3494 }
3495
3496 static void
3497 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
3498 {
3499 struct wg_session *wgs;
3500 uint32_t age;
3501
3502 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
3503
3504 KASSERT(mutex_owned(wgp->wgp_lock));
3505
3506 /*
3507 * If theres's any previous unstable session, i.e., one that
3508 * was ESTABLISHED and is now DESTROYING, older than
3509 * reject-after-time, destroy it. Upcoming sessions are still
3510 * in INIT_ACTIVE or INIT_PASSIVE -- we don't touch those here.
3511 */
3512 wgs = wgp->wgp_session_unstable;
3513 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
3514 if (wgs->wgs_state == WGS_STATE_DESTROYING &&
3515 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3516 wg_reject_after_time)) {
3517 WG_DLOG("destroying past session %"PRIu32" sec old\n", age);
3518 wg_put_session_index(wg, wgs);
3519 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3520 wgs->wgs_state);
3521 }
3522
3523 /*
3524 * If theres's any ESTABLISHED stable session older than
3525 * reject-after-time, destroy it. (The stable session can also
3526 * be in UNKNOWN state -- nothing to do in that case)
3527 */
3528 wgs = wgp->wgp_session_stable;
3529 KASSERT(wgs->wgs_state != WGS_STATE_INIT_ACTIVE);
3530 KASSERT(wgs->wgs_state != WGS_STATE_INIT_PASSIVE);
3531 KASSERT(wgs->wgs_state != WGS_STATE_DESTROYING);
3532 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3533 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3534 wg_reject_after_time)) {
3535 WG_DLOG("destroying current session %"PRIu32" sec old\n", age);
3536 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_DESTROYING);
3537 wg_put_session_index(wg, wgs);
3538 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3539 wgs->wgs_state);
3540 }
3541
3542 /*
3543 * If there's no sessions left, no need to have the timer run
3544 * until the next time around -- halt it.
3545 *
3546 * It is only ever scheduled with wgp_lock held or in the
3547 * callout itself, and callout_halt prevents rescheudling
3548 * itself, so this never races with rescheduling.
3549 */
3550 if (wgp->wgp_session_unstable->wgs_state == WGS_STATE_UNKNOWN &&
3551 wgp->wgp_session_stable->wgs_state == WGS_STATE_UNKNOWN)
3552 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3553 }
3554
3555 static void
3556 wg_peer_work(struct work *wk, void *cookie)
3557 {
3558 struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
3559 struct wg_softc *wg = wgp->wgp_sc;
3560 unsigned int tasks;
3561
3562 mutex_enter(wgp->wgp_intr_lock);
3563 while ((tasks = wgp->wgp_tasks) != 0) {
3564 wgp->wgp_tasks = 0;
3565 mutex_exit(wgp->wgp_intr_lock);
3566
3567 mutex_enter(wgp->wgp_lock);
3568 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
3569 wg_task_send_init_message(wg, wgp);
3570 if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
3571 wg_task_retry_handshake(wg, wgp);
3572 if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
3573 wg_task_establish_session(wg, wgp);
3574 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
3575 wg_task_endpoint_changed(wg, wgp);
3576 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
3577 wg_task_send_keepalive_message(wg, wgp);
3578 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
3579 wg_task_destroy_prev_session(wg, wgp);
3580 mutex_exit(wgp->wgp_lock);
3581
3582 mutex_enter(wgp->wgp_intr_lock);
3583 }
3584 mutex_exit(wgp->wgp_intr_lock);
3585 }
3586
3587 static void
3588 wg_job(struct threadpool_job *job)
3589 {
3590 struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
3591 int bound, upcalls;
3592
3593 mutex_enter(wg->wg_intr_lock);
3594 while ((upcalls = wg->wg_upcalls) != 0) {
3595 wg->wg_upcalls = 0;
3596 mutex_exit(wg->wg_intr_lock);
3597 bound = curlwp_bind();
3598 if (ISSET(upcalls, WG_UPCALL_INET))
3599 wg_receive_packets(wg, AF_INET);
3600 if (ISSET(upcalls, WG_UPCALL_INET6))
3601 wg_receive_packets(wg, AF_INET6);
3602 curlwp_bindx(bound);
3603 mutex_enter(wg->wg_intr_lock);
3604 }
3605 threadpool_job_done(job);
3606 mutex_exit(wg->wg_intr_lock);
3607 }
3608
3609 static int
3610 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3611 {
3612 int error = 0;
3613 uint16_t old_port = wg->wg_listen_port;
3614
3615 if (port != 0 && old_port == port)
3616 return 0;
3617
3618 #ifdef INET
3619 struct sockaddr_in _sin, *sin = &_sin;
3620 sin->sin_len = sizeof(*sin);
3621 sin->sin_family = AF_INET;
3622 sin->sin_addr.s_addr = INADDR_ANY;
3623 sin->sin_port = htons(port);
3624
3625 error = sobind(wg->wg_so4, sintosa(sin), curlwp);
3626 if (error)
3627 return error;
3628 #endif
3629
3630 #ifdef INET6
3631 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3632 sin6->sin6_len = sizeof(*sin6);
3633 sin6->sin6_family = AF_INET6;
3634 sin6->sin6_addr = in6addr_any;
3635 sin6->sin6_port = htons(port);
3636
3637 error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
3638 if (error)
3639 return error;
3640 #endif
3641
3642 wg->wg_listen_port = port;
3643
3644 return error;
3645 }
3646
3647 static void
3648 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
3649 {
3650 struct wg_softc *wg = cookie;
3651 int reason;
3652
3653 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3654 WG_UPCALL_INET :
3655 WG_UPCALL_INET6;
3656
3657 mutex_enter(wg->wg_intr_lock);
3658 wg->wg_upcalls |= reason;
3659 threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
3660 mutex_exit(wg->wg_intr_lock);
3661 }
3662
3663 static int
3664 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3665 struct sockaddr *src, void *arg)
3666 {
3667 struct wg_softc *wg = arg;
3668 struct wg_msg wgm;
3669 struct mbuf *m = *mp;
3670
3671 WG_TRACE("enter");
3672
3673 /* Verify the mbuf chain is long enough to have a wg msg header. */
3674 KASSERT(offset <= m_length(m));
3675 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3676 /* drop on the floor */
3677 m_freem(m);
3678 return -1;
3679 }
3680
3681 /*
3682 * Copy the message header (32-bit message type) out -- we'll
3683 * worry about contiguity and alignment later.
3684 */
3685 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3686 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3687
3688 /*
3689 * Handle DATA packets promptly as they arrive, if they are in
3690 * an active session. Other packets may require expensive
3691 * public-key crypto and are not as sensitive to latency, so
3692 * defer them to the worker thread.
3693 */
3694 switch (le32toh(wgm.wgm_type)) {
3695 case WG_MSG_TYPE_DATA:
3696 /* handle immediately */
3697 m_adj(m, offset);
3698 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3699 m = m_pullup(m, sizeof(struct wg_msg_data));
3700 if (m == NULL)
3701 return -1;
3702 }
3703 wg_handle_msg_data(wg, m, src);
3704 *mp = NULL;
3705 return 1;
3706 case WG_MSG_TYPE_INIT:
3707 case WG_MSG_TYPE_RESP:
3708 case WG_MSG_TYPE_COOKIE:
3709 /* pass through to so_receive in wg_receive_packets */
3710 return 0;
3711 default:
3712 /* drop on the floor */
3713 m_freem(m);
3714 return -1;
3715 }
3716 }
3717
3718 static int
3719 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
3720 {
3721 int error;
3722 struct socket *so;
3723
3724 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3725 if (error != 0)
3726 return error;
3727
3728 solock(so);
3729 so->so_upcallarg = wg;
3730 so->so_upcall = wg_so_upcall;
3731 so->so_rcv.sb_flags |= SB_UPCALL;
3732 inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3733 sounlock(so);
3734
3735 *sop = so;
3736
3737 return 0;
3738 }
3739
3740 static bool
3741 wg_session_hit_limits(struct wg_session *wgs)
3742 {
3743
3744 /*
3745 * [W] 6.2: Transport Message Limits
3746 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3747 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3748 * comes first, WireGuard will refuse to send or receive any more
3749 * transport data messages using the current secure session, ..."
3750 */
3751 KASSERT(wgs->wgs_time_established != 0 || time_uptime > UINT32_MAX);
3752 if (time_uptime32 - wgs->wgs_time_established > wg_reject_after_time) {
3753 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3754 return true;
3755 } else if (wg_session_get_send_counter(wgs) >
3756 wg_reject_after_messages) {
3757 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3758 return true;
3759 }
3760
3761 return false;
3762 }
3763
3764 static void
3765 wgintr(void *cookie)
3766 {
3767 struct wg_peer *wgp;
3768 struct wg_session *wgs;
3769 struct mbuf *m;
3770 struct psref psref;
3771
3772 while ((m = pktq_dequeue(wg_pktq)) != NULL) {
3773 wgp = M_GETCTX(m, struct wg_peer *);
3774 if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3775 /*
3776 * No established session. If we're the first
3777 * to try sending data, schedule a handshake
3778 * and queue the packet for when the handshake
3779 * is done; otherwise just drop the packet and
3780 * let the ongoing handshake attempt continue.
3781 * We could queue more data packets but it's
3782 * not clear that's worthwhile.
3783 */
3784 WG_TRACE("no stable session");
3785 membar_release();
3786 if ((m = atomic_swap_ptr(&wgp->wgp_pending, m)) ==
3787 NULL) {
3788 WG_TRACE("queued first packet;"
3789 " init handshake");
3790 wg_schedule_peer_task(wgp,
3791 WGP_TASK_SEND_INIT_MESSAGE);
3792 } else {
3793 membar_acquire();
3794 WG_TRACE("first packet already queued,"
3795 " dropping");
3796 }
3797 goto next0;
3798 }
3799 if (__predict_false(wg_session_hit_limits(wgs))) {
3800 WG_TRACE("stable session hit limits");
3801 membar_release();
3802 if ((m = atomic_swap_ptr(&wgp->wgp_pending, m)) ==
3803 NULL) {
3804 WG_TRACE("queued first packet in a while;"
3805 " reinit handshake");
3806 atomic_store_relaxed(&wgs->wgs_force_rekey,
3807 true);
3808 wg_schedule_peer_task(wgp,
3809 WGP_TASK_SEND_INIT_MESSAGE);
3810 } else {
3811 membar_acquire();
3812 WG_TRACE("first packet in already queued,"
3813 " dropping");
3814 }
3815 goto next1;
3816 }
3817 wg_send_data_msg(wgp, wgs, m);
3818 m = NULL; /* consumed */
3819 next1: wg_put_session(wgs, &psref);
3820 next0: m_freem(m);
3821 /* XXX Yield to avoid userland starvation? */
3822 }
3823 }
3824
3825 static void
3826 wg_purge_pending_packets(struct wg_peer *wgp)
3827 {
3828 struct mbuf *m;
3829
3830 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
3831 membar_acquire(); /* matches membar_release in wgintr */
3832 m_freem(m);
3833 #ifdef ALTQ
3834 wg_start(&wgp->wgp_sc->wg_if);
3835 #endif
3836 pktq_barrier(wg_pktq);
3837 }
3838
3839 static void
3840 wg_handshake_timeout_timer(void *arg)
3841 {
3842 struct wg_peer *wgp = arg;
3843
3844 WG_TRACE("enter");
3845
3846 wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3847 }
3848
3849 static struct wg_peer *
3850 wg_alloc_peer(struct wg_softc *wg)
3851 {
3852 struct wg_peer *wgp;
3853
3854 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3855
3856 wgp->wgp_sc = wg;
3857 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3858 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3859 wg_handshake_timeout_timer, wgp);
3860 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3861 callout_setfunc(&wgp->wgp_session_dtor_timer,
3862 wg_session_dtor_timer, wgp);
3863 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3864 wgp->wgp_endpoint_changing = false;
3865 wgp->wgp_endpoint_available = false;
3866 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3867 wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3868 wgp->wgp_psz = pserialize_create();
3869 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3870
3871 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3872 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3873 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3874 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3875
3876 struct wg_session *wgs;
3877 wgp->wgp_session_stable =
3878 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3879 wgp->wgp_session_unstable =
3880 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3881 wgs = wgp->wgp_session_stable;
3882 wgs->wgs_peer = wgp;
3883 wgs->wgs_state = WGS_STATE_UNKNOWN;
3884 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3885 #ifndef __HAVE_ATOMIC64_LOADSTORE
3886 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3887 #endif
3888 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3889 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3890
3891 wgs = wgp->wgp_session_unstable;
3892 wgs->wgs_peer = wgp;
3893 wgs->wgs_state = WGS_STATE_UNKNOWN;
3894 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3895 #ifndef __HAVE_ATOMIC64_LOADSTORE
3896 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3897 #endif
3898 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3899 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3900
3901 return wgp;
3902 }
3903
3904 static void
3905 wg_destroy_peer(struct wg_peer *wgp)
3906 {
3907 struct wg_session *wgs;
3908 struct wg_softc *wg = wgp->wgp_sc;
3909
3910 /* Prevent new packets from this peer on any source address. */
3911 rw_enter(wg->wg_rwlock, RW_WRITER);
3912 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3913 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3914 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3915 struct radix_node *rn;
3916
3917 KASSERT(rnh != NULL);
3918 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3919 &wga->wga_sa_mask, rnh);
3920 if (rn == NULL) {
3921 char addrstr[128];
3922 sockaddr_format(&wga->wga_sa_addr, addrstr,
3923 sizeof(addrstr));
3924 WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
3925 if_name(&wg->wg_if), addrstr);
3926 }
3927 }
3928 rw_exit(wg->wg_rwlock);
3929
3930 /* Purge pending packets. */
3931 wg_purge_pending_packets(wgp);
3932
3933 /* Halt all packet processing and timeouts. */
3934 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3935 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3936
3937 /* Wait for any queued work to complete. */
3938 workqueue_wait(wg_wq, &wgp->wgp_work);
3939
3940 wgs = wgp->wgp_session_unstable;
3941 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3942 mutex_enter(wgp->wgp_lock);
3943 wg_destroy_session(wg, wgs);
3944 mutex_exit(wgp->wgp_lock);
3945 }
3946 mutex_destroy(&wgs->wgs_recvwin->lock);
3947 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3948 #ifndef __HAVE_ATOMIC64_LOADSTORE
3949 mutex_destroy(&wgs->wgs_send_counter_lock);
3950 #endif
3951 kmem_free(wgs, sizeof(*wgs));
3952
3953 wgs = wgp->wgp_session_stable;
3954 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3955 mutex_enter(wgp->wgp_lock);
3956 wg_destroy_session(wg, wgs);
3957 mutex_exit(wgp->wgp_lock);
3958 }
3959 mutex_destroy(&wgs->wgs_recvwin->lock);
3960 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3961 #ifndef __HAVE_ATOMIC64_LOADSTORE
3962 mutex_destroy(&wgs->wgs_send_counter_lock);
3963 #endif
3964 kmem_free(wgs, sizeof(*wgs));
3965
3966 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3967 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3968 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3969 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3970
3971 pserialize_destroy(wgp->wgp_psz);
3972 mutex_obj_free(wgp->wgp_intr_lock);
3973 mutex_obj_free(wgp->wgp_lock);
3974
3975 kmem_free(wgp, sizeof(*wgp));
3976 }
3977
3978 static void
3979 wg_destroy_all_peers(struct wg_softc *wg)
3980 {
3981 struct wg_peer *wgp, *wgp0 __diagused;
3982 void *garbage_byname, *garbage_bypubkey;
3983
3984 restart:
3985 garbage_byname = garbage_bypubkey = NULL;
3986 mutex_enter(wg->wg_lock);
3987 WG_PEER_WRITER_FOREACH(wgp, wg) {
3988 if (wgp->wgp_name[0]) {
3989 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3990 strlen(wgp->wgp_name));
3991 KASSERT(wgp0 == wgp);
3992 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3993 }
3994 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3995 sizeof(wgp->wgp_pubkey));
3996 KASSERT(wgp0 == wgp);
3997 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3998 WG_PEER_WRITER_REMOVE(wgp);
3999 wg->wg_npeers--;
4000 mutex_enter(wgp->wgp_lock);
4001 pserialize_perform(wgp->wgp_psz);
4002 mutex_exit(wgp->wgp_lock);
4003 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
4004 break;
4005 }
4006 mutex_exit(wg->wg_lock);
4007
4008 if (wgp == NULL)
4009 return;
4010
4011 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
4012
4013 wg_destroy_peer(wgp);
4014 thmap_gc(wg->wg_peers_byname, garbage_byname);
4015 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
4016
4017 goto restart;
4018 }
4019
4020 static int
4021 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
4022 {
4023 struct wg_peer *wgp, *wgp0 __diagused;
4024 void *garbage_byname, *garbage_bypubkey;
4025
4026 mutex_enter(wg->wg_lock);
4027 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
4028 if (wgp != NULL) {
4029 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4030 sizeof(wgp->wgp_pubkey));
4031 KASSERT(wgp0 == wgp);
4032 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
4033 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
4034 WG_PEER_WRITER_REMOVE(wgp);
4035 wg->wg_npeers--;
4036 if (wg->wg_npeers == 0)
4037 if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
4038 mutex_enter(wgp->wgp_lock);
4039 pserialize_perform(wgp->wgp_psz);
4040 mutex_exit(wgp->wgp_lock);
4041 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
4042 }
4043 mutex_exit(wg->wg_lock);
4044
4045 if (wgp == NULL)
4046 return ENOENT;
4047
4048 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
4049
4050 wg_destroy_peer(wgp);
4051 thmap_gc(wg->wg_peers_byname, garbage_byname);
4052 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
4053
4054 return 0;
4055 }
4056
4057 static int
4058 wg_if_attach(struct wg_softc *wg)
4059 {
4060
4061 wg->wg_if.if_addrlen = 0;
4062 wg->wg_if.if_mtu = WG_MTU;
4063 wg->wg_if.if_flags = IFF_MULTICAST;
4064 wg->wg_if.if_extflags = IFEF_MPSAFE;
4065 wg->wg_if.if_ioctl = wg_ioctl;
4066 wg->wg_if.if_output = wg_output;
4067 wg->wg_if.if_init = wg_init;
4068 #ifdef ALTQ
4069 wg->wg_if.if_start = wg_start;
4070 #endif
4071 wg->wg_if.if_stop = wg_stop;
4072 wg->wg_if.if_type = IFT_OTHER;
4073 wg->wg_if.if_dlt = DLT_NULL;
4074 wg->wg_if.if_softc = wg;
4075 #ifdef ALTQ
4076 IFQ_SET_READY(&wg->wg_if.if_snd);
4077 #endif
4078 if_initialize(&wg->wg_if);
4079
4080 wg->wg_if.if_link_state = LINK_STATE_DOWN;
4081 if_alloc_sadl(&wg->wg_if);
4082 if_register(&wg->wg_if);
4083
4084 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
4085
4086 return 0;
4087 }
4088
4089 static void
4090 wg_if_detach(struct wg_softc *wg)
4091 {
4092 struct ifnet *ifp = &wg->wg_if;
4093
4094 bpf_detach(ifp);
4095 if_detach(ifp);
4096 }
4097
4098 static int
4099 wg_clone_create(struct if_clone *ifc, int unit)
4100 {
4101 struct wg_softc *wg;
4102 int error;
4103
4104 wg_guarantee_initialized();
4105
4106 error = wg_count_inc();
4107 if (error)
4108 return error;
4109
4110 wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
4111
4112 if_initname(&wg->wg_if, ifc->ifc_name, unit);
4113
4114 PSLIST_INIT(&wg->wg_peers);
4115 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
4116 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
4117 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
4118 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
4119 wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
4120 wg->wg_rwlock = rw_obj_alloc();
4121 threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
4122 "%s", if_name(&wg->wg_if));
4123 wg->wg_ops = &wg_ops_rumpkernel;
4124
4125 error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
4126 if (error)
4127 goto fail0;
4128
4129 #ifdef INET
4130 error = wg_socreate(wg, AF_INET, &wg->wg_so4);
4131 if (error)
4132 goto fail1;
4133 rn_inithead((void **)&wg->wg_rtable_ipv4,
4134 offsetof(struct sockaddr_in, sin_addr) * NBBY);
4135 #endif
4136 #ifdef INET6
4137 error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
4138 if (error)
4139 goto fail2;
4140 rn_inithead((void **)&wg->wg_rtable_ipv6,
4141 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
4142 #endif
4143
4144 error = wg_if_attach(wg);
4145 if (error)
4146 goto fail3;
4147
4148 return 0;
4149
4150 fail4: __unused
4151 wg_destroy_all_peers(wg);
4152 wg_if_detach(wg);
4153 fail3:
4154 #ifdef INET6
4155 solock(wg->wg_so6);
4156 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4157 sounlock(wg->wg_so6);
4158 #endif
4159 #ifdef INET
4160 solock(wg->wg_so4);
4161 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4162 sounlock(wg->wg_so4);
4163 #endif
4164 mutex_enter(wg->wg_intr_lock);
4165 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4166 mutex_exit(wg->wg_intr_lock);
4167 #ifdef INET6
4168 if (wg->wg_rtable_ipv6 != NULL)
4169 free(wg->wg_rtable_ipv6, M_RTABLE);
4170 soclose(wg->wg_so6);
4171 fail2:
4172 #endif
4173 #ifdef INET
4174 if (wg->wg_rtable_ipv4 != NULL)
4175 free(wg->wg_rtable_ipv4, M_RTABLE);
4176 soclose(wg->wg_so4);
4177 fail1:
4178 #endif
4179 threadpool_put(wg->wg_threadpool, PRI_NONE);
4180 fail0: threadpool_job_destroy(&wg->wg_job);
4181 rw_obj_free(wg->wg_rwlock);
4182 mutex_obj_free(wg->wg_intr_lock);
4183 mutex_obj_free(wg->wg_lock);
4184 thmap_destroy(wg->wg_sessions_byindex);
4185 thmap_destroy(wg->wg_peers_byname);
4186 thmap_destroy(wg->wg_peers_bypubkey);
4187 PSLIST_DESTROY(&wg->wg_peers);
4188 kmem_free(wg, sizeof(*wg));
4189 wg_count_dec();
4190 return error;
4191 }
4192
4193 static int
4194 wg_clone_destroy(struct ifnet *ifp)
4195 {
4196 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
4197
4198 #ifdef WG_RUMPKERNEL
4199 if (wg_user_mode(wg)) {
4200 rumpuser_wg_destroy(wg->wg_user);
4201 wg->wg_user = NULL;
4202 }
4203 #endif
4204
4205 wg_destroy_all_peers(wg);
4206 wg_if_detach(wg);
4207 #ifdef INET6
4208 solock(wg->wg_so6);
4209 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4210 sounlock(wg->wg_so6);
4211 #endif
4212 #ifdef INET
4213 solock(wg->wg_so4);
4214 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4215 sounlock(wg->wg_so4);
4216 #endif
4217 mutex_enter(wg->wg_intr_lock);
4218 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4219 mutex_exit(wg->wg_intr_lock);
4220 #ifdef INET6
4221 if (wg->wg_rtable_ipv6 != NULL)
4222 free(wg->wg_rtable_ipv6, M_RTABLE);
4223 soclose(wg->wg_so6);
4224 #endif
4225 #ifdef INET
4226 if (wg->wg_rtable_ipv4 != NULL)
4227 free(wg->wg_rtable_ipv4, M_RTABLE);
4228 soclose(wg->wg_so4);
4229 #endif
4230 threadpool_put(wg->wg_threadpool, PRI_NONE);
4231 threadpool_job_destroy(&wg->wg_job);
4232 rw_obj_free(wg->wg_rwlock);
4233 mutex_obj_free(wg->wg_intr_lock);
4234 mutex_obj_free(wg->wg_lock);
4235 thmap_destroy(wg->wg_sessions_byindex);
4236 thmap_destroy(wg->wg_peers_byname);
4237 thmap_destroy(wg->wg_peers_bypubkey);
4238 PSLIST_DESTROY(&wg->wg_peers);
4239 kmem_free(wg, sizeof(*wg));
4240 wg_count_dec();
4241
4242 return 0;
4243 }
4244
4245 static struct wg_peer *
4246 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
4247 struct psref *psref)
4248 {
4249 struct radix_node_head *rnh;
4250 struct radix_node *rn;
4251 struct wg_peer *wgp = NULL;
4252 struct wg_allowedip *wga;
4253
4254 #ifdef WG_DEBUG_LOG
4255 char addrstr[128];
4256 sockaddr_format(sa, addrstr, sizeof(addrstr));
4257 WG_DLOG("sa=%s\n", addrstr);
4258 #endif
4259
4260 rw_enter(wg->wg_rwlock, RW_READER);
4261
4262 rnh = wg_rnh(wg, sa->sa_family);
4263 if (rnh == NULL)
4264 goto out;
4265
4266 rn = rnh->rnh_matchaddr(sa, rnh);
4267 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
4268 goto out;
4269
4270 WG_TRACE("success");
4271
4272 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
4273 wgp = wga->wga_peer;
4274 wg_get_peer(wgp, psref);
4275
4276 out:
4277 rw_exit(wg->wg_rwlock);
4278 return wgp;
4279 }
4280
4281 static void
4282 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
4283 struct wg_session *wgs, struct wg_msg_data *wgmd)
4284 {
4285
4286 memset(wgmd, 0, sizeof(*wgmd));
4287 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
4288 wgmd->wgmd_receiver = wgs->wgs_remote_index;
4289 /* [W] 5.4.6: msg.counter := Nm^send */
4290 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
4291 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
4292 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
4293 }
4294
4295 static int
4296 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
4297 const struct rtentry *rt)
4298 {
4299 struct wg_softc *wg = ifp->if_softc;
4300 struct wg_peer *wgp = NULL;
4301 struct psref wgp_psref;
4302 int bound;
4303 int error;
4304
4305 bound = curlwp_bind();
4306
4307 /* TODO make the nest limit configurable via sysctl */
4308 error = if_tunnel_check_nesting(ifp, m, 1);
4309 if (error) {
4310 WGLOG(LOG_ERR,
4311 "%s: tunneling loop detected and packet dropped\n",
4312 if_name(&wg->wg_if));
4313 goto out0;
4314 }
4315
4316 #ifdef ALTQ
4317 bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
4318 & ALTQF_ENABLED;
4319 if (altq)
4320 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
4321 #endif
4322
4323 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
4324
4325 m->m_flags &= ~(M_BCAST|M_MCAST);
4326
4327 wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
4328 if (wgp == NULL) {
4329 WG_TRACE("peer not found");
4330 error = EHOSTUNREACH;
4331 goto out0;
4332 }
4333
4334 /* Clear checksum-offload flags. */
4335 m->m_pkthdr.csum_flags = 0;
4336 m->m_pkthdr.csum_data = 0;
4337
4338 /* Toss it in the queue. */
4339 #ifdef ALTQ
4340 if (altq) {
4341 mutex_enter(ifp->if_snd.ifq_lock);
4342 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
4343 M_SETCTX(m, wgp);
4344 ALTQ_ENQUEUE(&ifp->if_snd, m, error);
4345 m = NULL; /* consume */
4346 }
4347 mutex_exit(ifp->if_snd.ifq_lock);
4348 if (m == NULL) {
4349 wg_start(ifp);
4350 goto out1;
4351 }
4352 }
4353 #endif
4354 kpreempt_disable();
4355 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
4356 M_SETCTX(m, wgp);
4357 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
4358 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
4359 if_name(&wg->wg_if));
4360 error = ENOBUFS;
4361 goto out2;
4362 }
4363 m = NULL; /* consumed */
4364 error = 0;
4365 out2: kpreempt_enable();
4366
4367 #ifdef ALTQ
4368 out1:
4369 #endif
4370 wg_put_peer(wgp, &wgp_psref);
4371 out0: m_freem(m);
4372 curlwp_bindx(bound);
4373 return error;
4374 }
4375
4376 static int
4377 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
4378 {
4379 struct psref psref;
4380 struct wg_sockaddr *wgsa;
4381 int error;
4382 struct socket *so;
4383
4384 wgsa = wg_get_endpoint_sa(wgp, &psref);
4385 so = wg_get_so_by_peer(wgp, wgsa);
4386 solock(so);
4387 switch (wgsatosa(wgsa)->sa_family) {
4388 #ifdef INET
4389 case AF_INET:
4390 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
4391 break;
4392 #endif
4393 #ifdef INET6
4394 case AF_INET6:
4395 error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
4396 NULL, curlwp);
4397 break;
4398 #endif
4399 default:
4400 m_freem(m);
4401 error = EPFNOSUPPORT;
4402 }
4403 sounlock(so);
4404 wg_put_sa(wgp, wgsa, &psref);
4405
4406 return error;
4407 }
4408
4409 /* Inspired by pppoe_get_mbuf */
4410 static struct mbuf *
4411 wg_get_mbuf(size_t leading_len, size_t len)
4412 {
4413 struct mbuf *m;
4414
4415 KASSERT(leading_len <= MCLBYTES);
4416 KASSERT(len <= MCLBYTES - leading_len);
4417
4418 m = m_gethdr(M_DONTWAIT, MT_DATA);
4419 if (m == NULL)
4420 return NULL;
4421 if (len + leading_len > MHLEN) {
4422 m_clget(m, M_DONTWAIT);
4423 if ((m->m_flags & M_EXT) == 0) {
4424 m_free(m);
4425 return NULL;
4426 }
4427 }
4428 m->m_data += leading_len;
4429 m->m_pkthdr.len = m->m_len = len;
4430
4431 return m;
4432 }
4433
4434 static void
4435 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs, struct mbuf *m)
4436 {
4437 struct wg_softc *wg = wgp->wgp_sc;
4438 int error;
4439 size_t inner_len, padded_len, encrypted_len;
4440 char *padded_buf = NULL;
4441 size_t mlen;
4442 struct wg_msg_data *wgmd;
4443 bool free_padded_buf = false;
4444 struct mbuf *n;
4445 size_t leading_len = max_hdr + sizeof(struct udphdr);
4446
4447 mlen = m_length(m);
4448 inner_len = mlen;
4449 padded_len = roundup(mlen, 16);
4450 encrypted_len = padded_len + WG_AUTHTAG_LEN;
4451 WG_DLOG("inner=%zu, padded=%zu, encrypted_len=%zu\n",
4452 inner_len, padded_len, encrypted_len);
4453 if (mlen != 0) {
4454 bool success;
4455 success = m_ensure_contig(&m, padded_len);
4456 if (success) {
4457 padded_buf = mtod(m, char *);
4458 } else {
4459 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
4460 if (padded_buf == NULL) {
4461 error = ENOBUFS;
4462 goto out;
4463 }
4464 free_padded_buf = true;
4465 m_copydata(m, 0, mlen, padded_buf);
4466 }
4467 memset(padded_buf + mlen, 0, padded_len - inner_len);
4468 }
4469
4470 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
4471 if (n == NULL) {
4472 error = ENOBUFS;
4473 goto out;
4474 }
4475 KASSERT(n->m_len >= sizeof(*wgmd));
4476 wgmd = mtod(n, struct wg_msg_data *);
4477 wg_fill_msg_data(wg, wgp, wgs, wgmd);
4478
4479 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
4480 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
4481 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4482 padded_buf, padded_len,
4483 NULL, 0);
4484
4485 error = wg->wg_ops->send_data_msg(wgp, n); /* consumes n */
4486 if (error) {
4487 WG_DLOG("send_data_msg failed, error=%d\n", error);
4488 goto out;
4489 }
4490
4491 /*
4492 * Packet was sent out -- count it in the interface statistics.
4493 */
4494 if_statadd(&wg->wg_if, if_obytes, mlen);
4495 if_statinc(&wg->wg_if, if_opackets);
4496
4497 /*
4498 * Record when we last sent data, for determining when we need
4499 * to send a passive keepalive.
4500 *
4501 * Other logic assumes that wgs_time_last_data_sent is zero iff
4502 * we have never sent data on this session. Early at boot, if
4503 * wg(4) starts operating within <1sec, or after 136 years of
4504 * uptime, we may observe time_uptime32 = 0. In that case,
4505 * pretend we observed 1 instead. That way, we correctly
4506 * indicate we have sent data on this session; the only logic
4507 * this might adversely affect is the keepalive timeout
4508 * detection, which might spuriously send a keepalive during
4509 * one second every 136 years. All of this is very silly, of
4510 * course, but the cost to guaranteeing wgs_time_last_data_sent
4511 * is nonzero is negligible here.
4512 */
4513 const uint32_t now = time_uptime32;
4514 atomic_store_relaxed(&wgs->wgs_time_last_data_sent, MAX(now, 1));
4515
4516 /*
4517 * Check rekey-after-time.
4518 */
4519 if (wgs->wgs_is_initiator &&
4520 now - wgs->wgs_time_established >= wg_rekey_after_time) {
4521 /*
4522 * [W] 6.2 Transport Message Limits
4523 * "if a peer is the initiator of a current secure
4524 * session, WireGuard will send a handshake initiation
4525 * message to begin a new secure session if, after
4526 * transmitting a transport data message, the current
4527 * secure session is REKEY-AFTER-TIME seconds old,"
4528 */
4529 WG_TRACE("rekey after time");
4530 atomic_store_relaxed(&wgs->wgs_force_rekey, true);
4531 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4532 }
4533
4534 /*
4535 * Check rekey-after-messages.
4536 */
4537 if (wg_session_get_send_counter(wgs) >= wg_rekey_after_messages) {
4538 /*
4539 * [W] 6.2 Transport Message Limits
4540 * "WireGuard will try to create a new session, by
4541 * sending a handshake initiation message (section
4542 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
4543 * transport data messages..."
4544 */
4545 WG_TRACE("rekey after messages");
4546 atomic_store_relaxed(&wgs->wgs_force_rekey, true);
4547 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4548 }
4549
4550 out: m_freem(m);
4551 if (free_padded_buf)
4552 kmem_intr_free(padded_buf, padded_len);
4553 }
4554
4555 static void
4556 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
4557 {
4558 pktqueue_t *pktq;
4559 size_t pktlen;
4560
4561 KASSERT(af == AF_INET || af == AF_INET6);
4562
4563 WG_TRACE("");
4564
4565 m_set_rcvif(m, ifp);
4566 pktlen = m->m_pkthdr.len;
4567
4568 bpf_mtap_af(ifp, af, m, BPF_D_IN);
4569
4570 switch (af) {
4571 #ifdef INET
4572 case AF_INET:
4573 pktq = ip_pktq;
4574 break;
4575 #endif
4576 #ifdef INET6
4577 case AF_INET6:
4578 pktq = ip6_pktq;
4579 break;
4580 #endif
4581 default:
4582 panic("invalid af=%d", af);
4583 }
4584
4585 kpreempt_disable();
4586 const u_int h = curcpu()->ci_index;
4587 if (__predict_true(pktq_enqueue(pktq, m, h))) {
4588 if_statadd(ifp, if_ibytes, pktlen);
4589 if_statinc(ifp, if_ipackets);
4590 } else {
4591 m_freem(m);
4592 }
4593 kpreempt_enable();
4594 }
4595
4596 static void
4597 wg_calc_pubkey(uint8_t pubkey[static WG_STATIC_KEY_LEN],
4598 const uint8_t privkey[static WG_STATIC_KEY_LEN])
4599 {
4600
4601 crypto_scalarmult_base(pubkey, privkey);
4602 }
4603
4604 static int
4605 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
4606 {
4607 struct radix_node_head *rnh;
4608 struct radix_node *rn;
4609 int error = 0;
4610
4611 rw_enter(wg->wg_rwlock, RW_WRITER);
4612 rnh = wg_rnh(wg, wga->wga_family);
4613 KASSERT(rnh != NULL);
4614 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
4615 wga->wga_nodes);
4616 rw_exit(wg->wg_rwlock);
4617
4618 if (rn == NULL)
4619 error = EEXIST;
4620
4621 return error;
4622 }
4623
4624 static int
4625 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
4626 struct wg_peer **wgpp)
4627 {
4628 int error = 0;
4629 const void *pubkey;
4630 size_t pubkey_len;
4631 const void *psk;
4632 size_t psk_len;
4633 const char *name = NULL;
4634
4635 if (prop_dictionary_get_string(peer, "name", &name)) {
4636 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
4637 error = EINVAL;
4638 goto out;
4639 }
4640 }
4641
4642 if (!prop_dictionary_get_data(peer, "public_key",
4643 &pubkey, &pubkey_len)) {
4644 error = EINVAL;
4645 goto out;
4646 }
4647 #ifdef WG_DEBUG_DUMP
4648 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4649 char *hex = gethexdump(pubkey, pubkey_len);
4650 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%zu\n%s\n",
4651 pubkey, pubkey_len, hex);
4652 puthexdump(hex, pubkey, pubkey_len);
4653 }
4654 #endif
4655
4656 struct wg_peer *wgp = wg_alloc_peer(wg);
4657 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4658 if (name != NULL)
4659 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4660
4661 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4662 if (psk_len != sizeof(wgp->wgp_psk)) {
4663 error = EINVAL;
4664 goto out;
4665 }
4666 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4667 }
4668
4669 const void *addr;
4670 size_t addr_len;
4671 struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4672
4673 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4674 goto skip_endpoint;
4675 if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4676 addr_len > sizeof(*wgsatoss(wgsa))) {
4677 error = EINVAL;
4678 goto out;
4679 }
4680 memcpy(wgsatoss(wgsa), addr, addr_len);
4681 switch (wgsa_family(wgsa)) {
4682 #ifdef INET
4683 case AF_INET:
4684 break;
4685 #endif
4686 #ifdef INET6
4687 case AF_INET6:
4688 break;
4689 #endif
4690 default:
4691 error = EPFNOSUPPORT;
4692 goto out;
4693 }
4694 if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4695 error = EINVAL;
4696 goto out;
4697 }
4698 {
4699 char addrstr[128];
4700 sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4701 WG_DLOG("addr=%s\n", addrstr);
4702 }
4703 wgp->wgp_endpoint_available = true;
4704
4705 prop_array_t allowedips;
4706 skip_endpoint:
4707 allowedips = prop_dictionary_get(peer, "allowedips");
4708 if (allowedips == NULL)
4709 goto skip;
4710
4711 prop_object_iterator_t _it = prop_array_iterator(allowedips);
4712 prop_dictionary_t prop_allowedip;
4713 int j = 0;
4714 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4715 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4716
4717 if (!prop_dictionary_get_int(prop_allowedip, "family",
4718 &wga->wga_family))
4719 continue;
4720 if (!prop_dictionary_get_data(prop_allowedip, "ip",
4721 &addr, &addr_len))
4722 continue;
4723 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4724 &wga->wga_cidr))
4725 continue;
4726
4727 switch (wga->wga_family) {
4728 #ifdef INET
4729 case AF_INET: {
4730 struct sockaddr_in sin;
4731 char addrstr[128];
4732 struct in_addr mask;
4733 struct sockaddr_in sin_mask;
4734
4735 if (addr_len != sizeof(struct in_addr))
4736 return EINVAL;
4737 memcpy(&wga->wga_addr4, addr, addr_len);
4738
4739 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4740 0);
4741 sockaddr_copy(&wga->wga_sa_addr,
4742 sizeof(sin), sintosa(&sin));
4743
4744 sockaddr_format(sintosa(&sin),
4745 addrstr, sizeof(addrstr));
4746 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4747
4748 in_len2mask(&mask, wga->wga_cidr);
4749 sockaddr_in_init(&sin_mask, &mask, 0);
4750 sockaddr_copy(&wga->wga_sa_mask,
4751 sizeof(sin_mask), sintosa(&sin_mask));
4752
4753 break;
4754 }
4755 #endif
4756 #ifdef INET6
4757 case AF_INET6: {
4758 struct sockaddr_in6 sin6;
4759 char addrstr[128];
4760 struct in6_addr mask;
4761 struct sockaddr_in6 sin6_mask;
4762
4763 if (addr_len != sizeof(struct in6_addr))
4764 return EINVAL;
4765 memcpy(&wga->wga_addr6, addr, addr_len);
4766
4767 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4768 0, 0, 0);
4769 sockaddr_copy(&wga->wga_sa_addr,
4770 sizeof(sin6), sin6tosa(&sin6));
4771
4772 sockaddr_format(sin6tosa(&sin6),
4773 addrstr, sizeof(addrstr));
4774 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4775
4776 in6_prefixlen2mask(&mask, wga->wga_cidr);
4777 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4778 sockaddr_copy(&wga->wga_sa_mask,
4779 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4780
4781 break;
4782 }
4783 #endif
4784 default:
4785 error = EINVAL;
4786 goto out;
4787 }
4788 wga->wga_peer = wgp;
4789
4790 error = wg_rtable_add_route(wg, wga);
4791 if (error != 0)
4792 goto out;
4793
4794 j++;
4795 }
4796 wgp->wgp_n_allowedips = j;
4797 skip:
4798 *wgpp = wgp;
4799 out:
4800 return error;
4801 }
4802
4803 static int
4804 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4805 {
4806 int error;
4807 char *buf;
4808
4809 WG_DLOG("buf=%p, len=%zu\n", ifd->ifd_data, ifd->ifd_len);
4810 if (ifd->ifd_len >= WG_MAX_PROPLEN)
4811 return E2BIG;
4812 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4813 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4814 if (error != 0)
4815 return error;
4816 buf[ifd->ifd_len] = '\0';
4817 #ifdef WG_DEBUG_DUMP
4818 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4819 log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
4820 (const char *)buf);
4821 }
4822 #endif
4823 *_buf = buf;
4824 return 0;
4825 }
4826
4827 static int
4828 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4829 {
4830 int error;
4831 prop_dictionary_t prop_dict;
4832 char *buf = NULL;
4833 const void *privkey;
4834 size_t privkey_len;
4835
4836 error = wg_alloc_prop_buf(&buf, ifd);
4837 if (error != 0)
4838 return error;
4839 error = EINVAL;
4840 prop_dict = prop_dictionary_internalize(buf);
4841 if (prop_dict == NULL)
4842 goto out;
4843 if (!prop_dictionary_get_data(prop_dict, "private_key",
4844 &privkey, &privkey_len))
4845 goto out;
4846 #ifdef WG_DEBUG_DUMP
4847 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4848 char *hex = gethexdump(privkey, privkey_len);
4849 log(LOG_DEBUG, "privkey=%p, privkey_len=%zu\n%s\n",
4850 privkey, privkey_len, hex);
4851 puthexdump(hex, privkey, privkey_len);
4852 }
4853 #endif
4854 if (privkey_len != WG_STATIC_KEY_LEN)
4855 goto out;
4856 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4857 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4858 error = 0;
4859
4860 out:
4861 kmem_free(buf, ifd->ifd_len + 1);
4862 return error;
4863 }
4864
4865 static int
4866 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4867 {
4868 int error;
4869 prop_dictionary_t prop_dict;
4870 char *buf = NULL;
4871 uint16_t port;
4872
4873 error = wg_alloc_prop_buf(&buf, ifd);
4874 if (error != 0)
4875 return error;
4876 error = EINVAL;
4877 prop_dict = prop_dictionary_internalize(buf);
4878 if (prop_dict == NULL)
4879 goto out;
4880 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4881 goto out;
4882
4883 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4884
4885 out:
4886 kmem_free(buf, ifd->ifd_len + 1);
4887 return error;
4888 }
4889
4890 static int
4891 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4892 {
4893 int error;
4894 prop_dictionary_t prop_dict;
4895 char *buf = NULL;
4896 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4897
4898 error = wg_alloc_prop_buf(&buf, ifd);
4899 if (error != 0)
4900 return error;
4901 error = EINVAL;
4902 prop_dict = prop_dictionary_internalize(buf);
4903 if (prop_dict == NULL)
4904 goto out;
4905
4906 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4907 if (error != 0)
4908 goto out;
4909
4910 mutex_enter(wg->wg_lock);
4911 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4912 sizeof(wgp->wgp_pubkey)) != NULL ||
4913 (wgp->wgp_name[0] &&
4914 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4915 strlen(wgp->wgp_name)) != NULL)) {
4916 mutex_exit(wg->wg_lock);
4917 wg_destroy_peer(wgp);
4918 error = EEXIST;
4919 goto out;
4920 }
4921 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4922 sizeof(wgp->wgp_pubkey), wgp);
4923 KASSERT(wgp0 == wgp);
4924 if (wgp->wgp_name[0]) {
4925 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4926 strlen(wgp->wgp_name), wgp);
4927 KASSERT(wgp0 == wgp);
4928 }
4929 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4930 wg->wg_npeers++;
4931 mutex_exit(wg->wg_lock);
4932
4933 if_link_state_change(&wg->wg_if, LINK_STATE_UP);
4934
4935 out:
4936 kmem_free(buf, ifd->ifd_len + 1);
4937 return error;
4938 }
4939
4940 static int
4941 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4942 {
4943 int error;
4944 prop_dictionary_t prop_dict;
4945 char *buf = NULL;
4946 const char *name;
4947
4948 error = wg_alloc_prop_buf(&buf, ifd);
4949 if (error != 0)
4950 return error;
4951 error = EINVAL;
4952 prop_dict = prop_dictionary_internalize(buf);
4953 if (prop_dict == NULL)
4954 goto out;
4955
4956 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4957 goto out;
4958 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4959 goto out;
4960
4961 error = wg_destroy_peer_name(wg, name);
4962 out:
4963 kmem_free(buf, ifd->ifd_len + 1);
4964 return error;
4965 }
4966
4967 static bool
4968 wg_is_authorized(struct wg_softc *wg, u_long cmd)
4969 {
4970 int au = cmd == SIOCGDRVSPEC ?
4971 KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
4972 KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
4973 return kauth_authorize_network(kauth_cred_get(),
4974 KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
4975 (void *)cmd, NULL) == 0;
4976 }
4977
4978 static int
4979 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4980 {
4981 int error = ENOMEM;
4982 prop_dictionary_t prop_dict;
4983 prop_array_t peers = NULL;
4984 char *buf;
4985 struct wg_peer *wgp;
4986 int s, i;
4987
4988 prop_dict = prop_dictionary_create();
4989 if (prop_dict == NULL)
4990 goto error;
4991
4992 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4993 if (!prop_dictionary_set_data(prop_dict, "private_key",
4994 wg->wg_privkey, WG_STATIC_KEY_LEN))
4995 goto error;
4996 }
4997
4998 if (wg->wg_listen_port != 0) {
4999 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
5000 wg->wg_listen_port))
5001 goto error;
5002 }
5003
5004 if (wg->wg_npeers == 0)
5005 goto skip_peers;
5006
5007 peers = prop_array_create();
5008 if (peers == NULL)
5009 goto error;
5010
5011 s = pserialize_read_enter();
5012 i = 0;
5013 WG_PEER_READER_FOREACH(wgp, wg) {
5014 struct wg_sockaddr *wgsa;
5015 struct psref wgp_psref, wgsa_psref;
5016 prop_dictionary_t prop_peer;
5017
5018 wg_get_peer(wgp, &wgp_psref);
5019 pserialize_read_exit(s);
5020
5021 prop_peer = prop_dictionary_create();
5022 if (prop_peer == NULL)
5023 goto next;
5024
5025 if (strlen(wgp->wgp_name) > 0) {
5026 if (!prop_dictionary_set_string(prop_peer, "name",
5027 wgp->wgp_name))
5028 goto next;
5029 }
5030
5031 if (!prop_dictionary_set_data(prop_peer, "public_key",
5032 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
5033 goto next;
5034
5035 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
5036 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
5037 sizeof(wgp->wgp_psk))) {
5038 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
5039 if (!prop_dictionary_set_data(prop_peer,
5040 "preshared_key",
5041 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
5042 goto next;
5043 }
5044 }
5045
5046 wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
5047 CTASSERT(AF_UNSPEC == 0);
5048 if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
5049 !prop_dictionary_set_data(prop_peer, "endpoint",
5050 wgsatoss(wgsa),
5051 sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
5052 wg_put_sa(wgp, wgsa, &wgsa_psref);
5053 goto next;
5054 }
5055 wg_put_sa(wgp, wgsa, &wgsa_psref);
5056
5057 const struct timespec *t = &wgp->wgp_last_handshake_time;
5058
5059 if (!prop_dictionary_set_uint64(prop_peer,
5060 "last_handshake_time_sec", (uint64_t)t->tv_sec))
5061 goto next;
5062 if (!prop_dictionary_set_uint32(prop_peer,
5063 "last_handshake_time_nsec", (uint32_t)t->tv_nsec))
5064 goto next;
5065
5066 if (wgp->wgp_n_allowedips == 0)
5067 goto skip_allowedips;
5068
5069 prop_array_t allowedips = prop_array_create();
5070 if (allowedips == NULL)
5071 goto next;
5072 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
5073 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
5074 prop_dictionary_t prop_allowedip;
5075
5076 prop_allowedip = prop_dictionary_create();
5077 if (prop_allowedip == NULL)
5078 break;
5079
5080 if (!prop_dictionary_set_int(prop_allowedip, "family",
5081 wga->wga_family))
5082 goto _next;
5083 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
5084 wga->wga_cidr))
5085 goto _next;
5086
5087 switch (wga->wga_family) {
5088 #ifdef INET
5089 case AF_INET:
5090 if (!prop_dictionary_set_data(prop_allowedip,
5091 "ip", &wga->wga_addr4,
5092 sizeof(wga->wga_addr4)))
5093 goto _next;
5094 break;
5095 #endif
5096 #ifdef INET6
5097 case AF_INET6:
5098 if (!prop_dictionary_set_data(prop_allowedip,
5099 "ip", &wga->wga_addr6,
5100 sizeof(wga->wga_addr6)))
5101 goto _next;
5102 break;
5103 #endif
5104 default:
5105 panic("invalid af=%d", wga->wga_family);
5106 }
5107 prop_array_set(allowedips, j, prop_allowedip);
5108 _next:
5109 prop_object_release(prop_allowedip);
5110 }
5111 prop_dictionary_set(prop_peer, "allowedips", allowedips);
5112 prop_object_release(allowedips);
5113
5114 skip_allowedips:
5115
5116 prop_array_set(peers, i, prop_peer);
5117 next:
5118 if (prop_peer)
5119 prop_object_release(prop_peer);
5120 i++;
5121
5122 s = pserialize_read_enter();
5123 wg_put_peer(wgp, &wgp_psref);
5124 }
5125 pserialize_read_exit(s);
5126
5127 prop_dictionary_set(prop_dict, "peers", peers);
5128 prop_object_release(peers);
5129 peers = NULL;
5130
5131 skip_peers:
5132 buf = prop_dictionary_externalize(prop_dict);
5133 if (buf == NULL)
5134 goto error;
5135 if (ifd->ifd_len < (strlen(buf) + 1)) {
5136 error = EINVAL;
5137 goto error;
5138 }
5139 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
5140
5141 free(buf, 0);
5142 error:
5143 if (peers != NULL)
5144 prop_object_release(peers);
5145 if (prop_dict != NULL)
5146 prop_object_release(prop_dict);
5147
5148 return error;
5149 }
5150
5151 static int
5152 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5153 {
5154 struct wg_softc *wg = ifp->if_softc;
5155 struct ifreq *ifr = data;
5156 struct ifaddr *ifa = data;
5157 struct ifdrv *ifd = data;
5158 int error = 0;
5159
5160 switch (cmd) {
5161 case SIOCINITIFADDR:
5162 if (ifa->ifa_addr->sa_family != AF_LINK &&
5163 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
5164 (IFF_UP | IFF_RUNNING)) {
5165 ifp->if_flags |= IFF_UP;
5166 error = if_init(ifp);
5167 }
5168 return error;
5169 case SIOCADDMULTI:
5170 case SIOCDELMULTI:
5171 switch (ifr->ifr_addr.sa_family) {
5172 #ifdef INET
5173 case AF_INET: /* IP supports Multicast */
5174 break;
5175 #endif
5176 #ifdef INET6
5177 case AF_INET6: /* IP6 supports Multicast */
5178 break;
5179 #endif
5180 default: /* Other protocols doesn't support Multicast */
5181 error = EAFNOSUPPORT;
5182 break;
5183 }
5184 return error;
5185 case SIOCSDRVSPEC:
5186 if (!wg_is_authorized(wg, cmd)) {
5187 return EPERM;
5188 }
5189 switch (ifd->ifd_cmd) {
5190 case WG_IOCTL_SET_PRIVATE_KEY:
5191 error = wg_ioctl_set_private_key(wg, ifd);
5192 break;
5193 case WG_IOCTL_SET_LISTEN_PORT:
5194 error = wg_ioctl_set_listen_port(wg, ifd);
5195 break;
5196 case WG_IOCTL_ADD_PEER:
5197 error = wg_ioctl_add_peer(wg, ifd);
5198 break;
5199 case WG_IOCTL_DELETE_PEER:
5200 error = wg_ioctl_delete_peer(wg, ifd);
5201 break;
5202 default:
5203 error = EINVAL;
5204 break;
5205 }
5206 return error;
5207 case SIOCGDRVSPEC:
5208 return wg_ioctl_get(wg, ifd);
5209 case SIOCSIFFLAGS:
5210 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5211 break;
5212 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5213 case IFF_RUNNING:
5214 /*
5215 * If interface is marked down and it is running,
5216 * then stop and disable it.
5217 */
5218 if_stop(ifp, 1);
5219 break;
5220 case IFF_UP:
5221 /*
5222 * If interface is marked up and it is stopped, then
5223 * start it.
5224 */
5225 error = if_init(ifp);
5226 break;
5227 default:
5228 break;
5229 }
5230 return error;
5231 #ifdef WG_RUMPKERNEL
5232 case SIOCSLINKSTR:
5233 error = wg_ioctl_linkstr(wg, ifd);
5234 if (error)
5235 return error;
5236 wg->wg_ops = &wg_ops_rumpuser;
5237 return 0;
5238 #endif
5239 default:
5240 break;
5241 }
5242
5243 error = ifioctl_common(ifp, cmd, data);
5244
5245 #ifdef WG_RUMPKERNEL
5246 if (!wg_user_mode(wg))
5247 return error;
5248
5249 /* Do the same to the corresponding tun device on the host */
5250 /*
5251 * XXX Actually the command has not been handled yet. It
5252 * will be handled via pr_ioctl form doifioctl later.
5253 */
5254 switch (cmd) {
5255 #ifdef INET
5256 case SIOCAIFADDR:
5257 case SIOCDIFADDR: {
5258 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
5259 struct in_aliasreq *ifra = &_ifra;
5260 KASSERT(error == ENOTTY);
5261 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5262 IFNAMSIZ);
5263 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
5264 if (error == 0)
5265 error = ENOTTY;
5266 break;
5267 }
5268 #endif
5269 #ifdef INET6
5270 case SIOCAIFADDR_IN6:
5271 case SIOCDIFADDR_IN6: {
5272 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
5273 struct in6_aliasreq *ifra = &_ifra;
5274 KASSERT(error == ENOTTY);
5275 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5276 IFNAMSIZ);
5277 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
5278 if (error == 0)
5279 error = ENOTTY;
5280 break;
5281 }
5282 #endif
5283 default:
5284 break;
5285 }
5286 #endif /* WG_RUMPKERNEL */
5287
5288 return error;
5289 }
5290
5291 static int
5292 wg_init(struct ifnet *ifp)
5293 {
5294
5295 ifp->if_flags |= IFF_RUNNING;
5296
5297 /* TODO flush pending packets. */
5298 return 0;
5299 }
5300
5301 #ifdef ALTQ
5302 static void
5303 wg_start(struct ifnet *ifp)
5304 {
5305 struct mbuf *m;
5306
5307 for (;;) {
5308 IFQ_DEQUEUE(&ifp->if_snd, m);
5309 if (m == NULL)
5310 break;
5311
5312 kpreempt_disable();
5313 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
5314 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
5315 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
5316 if_name(ifp));
5317 m_freem(m);
5318 }
5319 kpreempt_enable();
5320 }
5321 }
5322 #endif
5323
5324 static void
5325 wg_stop(struct ifnet *ifp, int disable)
5326 {
5327
5328 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
5329 ifp->if_flags &= ~IFF_RUNNING;
5330
5331 /* Need to do something? */
5332 }
5333
5334 #ifdef WG_DEBUG_PARAMS
5335 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
5336 {
5337 const struct sysctlnode *node = NULL;
5338
5339 sysctl_createv(clog, 0, NULL, &node,
5340 CTLFLAG_PERMANENT,
5341 CTLTYPE_NODE, "wg",
5342 SYSCTL_DESCR("wg(4)"),
5343 NULL, 0, NULL, 0,
5344 CTL_NET, CTL_CREATE, CTL_EOL);
5345 sysctl_createv(clog, 0, &node, NULL,
5346 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5347 CTLTYPE_QUAD, "rekey_after_messages",
5348 SYSCTL_DESCR("session liftime by messages"),
5349 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
5350 sysctl_createv(clog, 0, &node, NULL,
5351 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5352 CTLTYPE_INT, "rekey_after_time",
5353 SYSCTL_DESCR("session liftime"),
5354 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
5355 sysctl_createv(clog, 0, &node, NULL,
5356 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5357 CTLTYPE_INT, "rekey_timeout",
5358 SYSCTL_DESCR("session handshake retry time"),
5359 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
5360 sysctl_createv(clog, 0, &node, NULL,
5361 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5362 CTLTYPE_INT, "rekey_attempt_time",
5363 SYSCTL_DESCR("session handshake timeout"),
5364 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
5365 sysctl_createv(clog, 0, &node, NULL,
5366 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5367 CTLTYPE_INT, "keepalive_timeout",
5368 SYSCTL_DESCR("keepalive timeout"),
5369 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
5370 sysctl_createv(clog, 0, &node, NULL,
5371 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5372 CTLTYPE_BOOL, "force_underload",
5373 SYSCTL_DESCR("force to detemine under load"),
5374 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
5375 sysctl_createv(clog, 0, &node, NULL,
5376 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5377 CTLTYPE_INT, "debug",
5378 SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
5379 NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
5380 }
5381 #endif
5382
5383 #ifdef WG_RUMPKERNEL
5384 static bool
5385 wg_user_mode(struct wg_softc *wg)
5386 {
5387
5388 return wg->wg_user != NULL;
5389 }
5390
5391 static int
5392 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
5393 {
5394 struct ifnet *ifp = &wg->wg_if;
5395 int error;
5396
5397 if (ifp->if_flags & IFF_UP)
5398 return EBUSY;
5399
5400 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
5401 /* XXX do nothing */
5402 return 0;
5403 } else if (ifd->ifd_cmd != 0) {
5404 return EINVAL;
5405 } else if (wg->wg_user != NULL) {
5406 return EBUSY;
5407 }
5408
5409 /* Assume \0 included */
5410 if (ifd->ifd_len > IFNAMSIZ) {
5411 return E2BIG;
5412 } else if (ifd->ifd_len < 1) {
5413 return EINVAL;
5414 }
5415
5416 char tun_name[IFNAMSIZ];
5417 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
5418 if (error != 0)
5419 return error;
5420
5421 if (strncmp(tun_name, "tun", 3) != 0)
5422 return EINVAL;
5423
5424 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
5425
5426 return error;
5427 }
5428
5429 static int
5430 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
5431 {
5432 int error;
5433 struct psref psref;
5434 struct wg_sockaddr *wgsa;
5435 struct wg_softc *wg = wgp->wgp_sc;
5436 struct iovec iov[1];
5437
5438 wgsa = wg_get_endpoint_sa(wgp, &psref);
5439
5440 iov[0].iov_base = mtod(m, void *);
5441 iov[0].iov_len = m->m_len;
5442
5443 /* Send messages to a peer via an ordinary socket. */
5444 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
5445
5446 wg_put_sa(wgp, wgsa, &psref);
5447
5448 m_freem(m);
5449
5450 return error;
5451 }
5452
5453 static void
5454 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
5455 {
5456 struct wg_softc *wg = ifp->if_softc;
5457 struct iovec iov[2];
5458 struct sockaddr_storage ss;
5459
5460 KASSERT(af == AF_INET || af == AF_INET6);
5461
5462 WG_TRACE("");
5463
5464 switch (af) {
5465 #ifdef INET
5466 case AF_INET: {
5467 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
5468 struct ip *ip;
5469
5470 KASSERT(m->m_len >= sizeof(struct ip));
5471 ip = mtod(m, struct ip *);
5472 sockaddr_in_init(sin, &ip->ip_dst, 0);
5473 break;
5474 }
5475 #endif
5476 #ifdef INET6
5477 case AF_INET6: {
5478 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
5479 struct ip6_hdr *ip6;
5480
5481 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
5482 ip6 = mtod(m, struct ip6_hdr *);
5483 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
5484 break;
5485 }
5486 #endif
5487 default:
5488 goto out;
5489 }
5490
5491 iov[0].iov_base = &ss;
5492 iov[0].iov_len = ss.ss_len;
5493 iov[1].iov_base = mtod(m, void *);
5494 iov[1].iov_len = m->m_len;
5495
5496 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5497
5498 /* Send decrypted packets to users via a tun. */
5499 rumpuser_wg_send_user(wg->wg_user, iov, 2);
5500
5501 out: m_freem(m);
5502 }
5503
5504 static int
5505 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
5506 {
5507 int error;
5508 uint16_t old_port = wg->wg_listen_port;
5509
5510 if (port != 0 && old_port == port)
5511 return 0;
5512
5513 error = rumpuser_wg_sock_bind(wg->wg_user, port);
5514 if (error)
5515 return error;
5516
5517 wg->wg_listen_port = port;
5518 return 0;
5519 }
5520
5521 /*
5522 * Receive user packets.
5523 */
5524 void
5525 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5526 {
5527 struct ifnet *ifp = &wg->wg_if;
5528 struct mbuf *m;
5529 const struct sockaddr *dst;
5530 int error;
5531
5532 WG_TRACE("");
5533
5534 dst = iov[0].iov_base;
5535
5536 m = m_gethdr(M_DONTWAIT, MT_DATA);
5537 if (m == NULL)
5538 return;
5539 m->m_len = m->m_pkthdr.len = 0;
5540 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5541
5542 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5543 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5544
5545 error = wg_output(ifp, m, dst, NULL); /* consumes m */
5546 if (error)
5547 WG_DLOG("wg_output failed, error=%d\n", error);
5548 }
5549
5550 /*
5551 * Receive packets from a peer.
5552 */
5553 void
5554 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5555 {
5556 struct mbuf *m;
5557 const struct sockaddr *src;
5558 int bound;
5559
5560 WG_TRACE("");
5561
5562 src = iov[0].iov_base;
5563
5564 m = m_gethdr(M_DONTWAIT, MT_DATA);
5565 if (m == NULL)
5566 return;
5567 m->m_len = m->m_pkthdr.len = 0;
5568 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5569
5570 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5571 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5572
5573 bound = curlwp_bind();
5574 wg_handle_packet(wg, m, src);
5575 curlwp_bindx(bound);
5576 }
5577 #endif /* WG_RUMPKERNEL */
5578
5579 /*
5580 * Module infrastructure
5581 */
5582 #include "if_module.h"
5583
5584 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
5585