Home | History | Annotate | Line # | Download | only in net
if_wg.c revision 1.132
      1 /*	$NetBSD: if_wg.c,v 1.132 2024/10/08 02:29:40 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * This network interface aims to implement the WireGuard protocol.
     34  * The implementation is based on the paper of WireGuard as of
     35  * 2018-06-30 [1].  The paper is referred in the source code with label
     36  * [W].  Also the specification of the Noise protocol framework as of
     37  * 2018-07-11 [2] is referred with label [N].
     38  *
     39  * [1] https://www.wireguard.com/papers/wireguard.pdf
     40  *     https://web.archive.org/web/20180805103233/https://www.wireguard.com/papers/wireguard.pdf
     41  * [2] http://noiseprotocol.org/noise.pdf
     42  *     https://web.archive.org/web/20180727193154/https://noiseprotocol.org/noise.pdf
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.132 2024/10/08 02:29:40 riastradh Exp $");
     47 
     48 #ifdef _KERNEL_OPT
     49 #include "opt_altq_enabled.h"
     50 #include "opt_inet.h"
     51 #endif
     52 
     53 #include <sys/param.h>
     54 #include <sys/types.h>
     55 
     56 #include <sys/atomic.h>
     57 #include <sys/callout.h>
     58 #include <sys/cprng.h>
     59 #include <sys/cpu.h>
     60 #include <sys/device.h>
     61 #include <sys/domain.h>
     62 #include <sys/errno.h>
     63 #include <sys/intr.h>
     64 #include <sys/ioctl.h>
     65 #include <sys/kernel.h>
     66 #include <sys/kmem.h>
     67 #include <sys/mbuf.h>
     68 #include <sys/module.h>
     69 #include <sys/mutex.h>
     70 #include <sys/once.h>
     71 #include <sys/percpu.h>
     72 #include <sys/pserialize.h>
     73 #include <sys/psref.h>
     74 #include <sys/queue.h>
     75 #include <sys/rwlock.h>
     76 #include <sys/socket.h>
     77 #include <sys/socketvar.h>
     78 #include <sys/sockio.h>
     79 #include <sys/sysctl.h>
     80 #include <sys/syslog.h>
     81 #include <sys/systm.h>
     82 #include <sys/thmap.h>
     83 #include <sys/threadpool.h>
     84 #include <sys/time.h>
     85 #include <sys/timespec.h>
     86 #include <sys/workqueue.h>
     87 
     88 #include <lib/libkern/libkern.h>
     89 
     90 #include <net/bpf.h>
     91 #include <net/if.h>
     92 #include <net/if_types.h>
     93 #include <net/if_wg.h>
     94 #include <net/pktqueue.h>
     95 #include <net/route.h>
     96 
     97 #ifdef INET
     98 #include <netinet/in.h>
     99 #include <netinet/in_pcb.h>
    100 #include <netinet/in_var.h>
    101 #include <netinet/ip.h>
    102 #include <netinet/ip_var.h>
    103 #include <netinet/udp.h>
    104 #include <netinet/udp_var.h>
    105 #endif	/* INET */
    106 
    107 #ifdef INET6
    108 #include <netinet/ip6.h>
    109 #include <netinet6/in6_pcb.h>
    110 #include <netinet6/in6_var.h>
    111 #include <netinet6/ip6_var.h>
    112 #include <netinet6/udp6_var.h>
    113 #endif	/* INET6 */
    114 
    115 #include <prop/proplib.h>
    116 
    117 #include <crypto/blake2/blake2s.h>
    118 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
    119 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
    120 #include <crypto/sodium/crypto_scalarmult.h>
    121 
    122 #include "ioconf.h"
    123 
    124 #ifdef WG_RUMPKERNEL
    125 #include "wg_user.h"
    126 #endif
    127 
    128 #ifndef time_uptime32
    129 #define	time_uptime32	((uint32_t)time_uptime)
    130 #endif
    131 
    132 /*
    133  * Data structures
    134  * - struct wg_softc is an instance of wg interfaces
    135  *   - It has a list of peers (struct wg_peer)
    136  *   - It has a threadpool job that sends/receives handshake messages and
    137  *     runs event handlers
    138  *   - It has its own two routing tables: one is for IPv4 and the other IPv6
    139  * - struct wg_peer is a representative of a peer
    140  *   - It has a struct work to handle handshakes and timer tasks
    141  *   - It has a pair of session instances (struct wg_session)
    142  *   - It has a pair of endpoint instances (struct wg_sockaddr)
    143  *     - Normally one endpoint is used and the second one is used only on
    144  *       a peer migration (a change of peer's IP address)
    145  *   - It has a list of IP addresses and sub networks called allowedips
    146  *     (struct wg_allowedip)
    147  *     - A packets sent over a session is allowed if its destination matches
    148  *       any IP addresses or sub networks of the list
    149  * - struct wg_session represents a session of a secure tunnel with a peer
    150  *   - Two instances of sessions belong to a peer; a stable session and a
    151  *     unstable session
    152  *   - A handshake process of a session always starts with a unstable instance
    153  *   - Once a session is established, its instance becomes stable and the
    154  *     other becomes unstable instead
    155  *   - Data messages are always sent via a stable session
    156  *
    157  * Locking notes:
    158  * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
    159  *   - Changes to the peer list are serialized by wg_lock
    160  *   - The peer list may be read with pserialize(9) and psref(9)
    161  *   - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
    162  *     => XXX replace by pserialize when routing table is psz-safe
    163  * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
    164  *   only in thread context and serializes:
    165  *   - the stable and unstable session pointers
    166  *   - all unstable session state
    167  * - Packet processing may be done in softint context:
    168  *   - The stable session can be read under pserialize(9) or psref(9)
    169  *     - The stable session is always ESTABLISHED
    170  *     - On a session swap, we must wait for all readers to release a
    171  *       reference to a stable session before changing wgs_state and
    172  *       session states
    173  * - Lock order: wg_lock -> wgp_lock
    174  */
    175 
    176 
    177 #define WGLOG(level, fmt, args...)					      \
    178 	log(level, "%s: " fmt, __func__, ##args)
    179 
    180 #define WG_DEBUG
    181 
    182 /* Debug options */
    183 #ifdef WG_DEBUG
    184 /* Output debug logs */
    185 #ifndef WG_DEBUG_LOG
    186 #define WG_DEBUG_LOG
    187 #endif
    188 /* Output trace logs */
    189 #ifndef WG_DEBUG_TRACE
    190 #define WG_DEBUG_TRACE
    191 #endif
    192 /* Output hash values, etc. */
    193 #ifndef WG_DEBUG_DUMP
    194 #define WG_DEBUG_DUMP
    195 #endif
    196 /* Make some internal parameters configurable for testing and debugging */
    197 #ifndef WG_DEBUG_PARAMS
    198 #define WG_DEBUG_PARAMS
    199 #endif
    200 #endif /* WG_DEBUG */
    201 
    202 #ifndef WG_DEBUG
    203 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) ||		    \
    204 	defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS)
    205 #   define WG_DEBUG
    206 # endif
    207 #endif
    208 
    209 #ifdef WG_DEBUG
    210 int wg_debug;
    211 #define WG_DEBUG_FLAGS_LOG	1
    212 #define WG_DEBUG_FLAGS_TRACE	2
    213 #define WG_DEBUG_FLAGS_DUMP	4
    214 #endif
    215 
    216 #ifdef WG_DEBUG_TRACE
    217 #define WG_TRACE(msg)	 do {						\
    218 	if (wg_debug & WG_DEBUG_FLAGS_TRACE)				\
    219 	    log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg));	\
    220 } while (0)
    221 #else
    222 #define WG_TRACE(msg)	__nothing
    223 #endif
    224 
    225 #ifdef WG_DEBUG_LOG
    226 #define WG_DLOG(fmt, args...)	 do {					\
    227 	if (wg_debug & WG_DEBUG_FLAGS_LOG)				\
    228 	    log(LOG_DEBUG, "%s: " fmt, __func__, ##args);		\
    229 } while (0)
    230 #else
    231 #define WG_DLOG(fmt, args...)	__nothing
    232 #endif
    233 
    234 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...)	do {		\
    235 	if (ppsratecheck(&(wgprc)->wgprc_lasttime,			\
    236 	    &(wgprc)->wgprc_curpps, 1)) {				\
    237 		log(level, fmt, ##args);				\
    238 	}								\
    239 } while (0)
    240 
    241 #ifdef WG_DEBUG_PARAMS
    242 static bool wg_force_underload = false;
    243 #endif
    244 
    245 #ifdef WG_DEBUG_DUMP
    246 
    247 static char enomem[10] = "[enomem]";
    248 
    249 #define	MAX_HDUMP_LEN	10000	/* large enough */
    250 
    251 /*
    252  * gethexdump(p, n)
    253  *
    254  *	Allocate a string returning a hexdump of bytes p[0..n),
    255  *	truncated to MAX_HDUMP_LEN.  Must be freed with puthexdump.
    256  *
    257  *	We use this instead of libkern hexdump() because the result is
    258  *	logged with log(LOG_DEBUG, ...), which puts a priority tag on
    259  *	every message, so it can't be done incrementally.
    260  */
    261 static char *
    262 gethexdump(const void *vp, size_t n)
    263 {
    264 	char *buf;
    265 	const uint8_t *p = vp;
    266 	size_t i, alloc;
    267 
    268 	alloc = n;
    269 	if (n > MAX_HDUMP_LEN)
    270 		alloc = MAX_HDUMP_LEN;
    271 	buf = kmem_alloc(3*alloc + 5, KM_NOSLEEP);
    272 	if (buf == NULL)
    273 		return enomem;
    274 	for (i = 0; i < alloc; i++)
    275 		snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
    276 	if (alloc != n)
    277 		snprintf(buf + 3*i, 4 + 1, " ...");
    278 	return buf;
    279 }
    280 
    281 static void
    282 puthexdump(char *buf, const void *p, size_t n)
    283 {
    284 
    285 	if (buf == NULL || buf == enomem)
    286 		return;
    287 	if (n > MAX_HDUMP_LEN)
    288 		n = MAX_HDUMP_LEN;
    289 	kmem_free(buf, 3*n + 5);
    290 }
    291 
    292 #ifdef WG_RUMPKERNEL
    293 static void
    294 wg_dump_buf(const char *func, const char *buf, const size_t size)
    295 {
    296 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    297 		return;
    298 
    299 	char *hex = gethexdump(buf, size);
    300 
    301 	log(LOG_DEBUG, "%s: %s\n", func, hex);
    302 	puthexdump(hex, buf, size);
    303 }
    304 #endif
    305 
    306 static void
    307 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
    308     const size_t size)
    309 {
    310 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    311 		return;
    312 
    313 	char *hex = gethexdump(hash, size);
    314 
    315 	log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex);
    316 	puthexdump(hex, hash, size);
    317 }
    318 
    319 #define WG_DUMP_HASH(name, hash) \
    320 	wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
    321 #define WG_DUMP_HASH48(name, hash) \
    322 	wg_dump_hash(__func__, name, hash, 48)
    323 #define WG_DUMP_BUF(buf, size) \
    324 	wg_dump_buf(__func__, buf, size)
    325 #else
    326 #define WG_DUMP_HASH(name, hash)	__nothing
    327 #define WG_DUMP_HASH48(name, hash)	__nothing
    328 #define WG_DUMP_BUF(buf, size)	__nothing
    329 #endif /* WG_DEBUG_DUMP */
    330 
    331 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
    332 #define	WG_MAX_PROPLEN		32766
    333 
    334 #define WG_MTU			1420
    335 #define WG_ALLOWEDIPS		16
    336 
    337 #define CURVE25519_KEY_LEN	32
    338 #define TAI64N_LEN		(sizeof(uint32_t) * 3)
    339 #define POLY1305_AUTHTAG_LEN	16
    340 #define HMAC_BLOCK_LEN		64
    341 
    342 /* [N] 4.1: "DHLEN must be 32 or greater."  WireGuard chooses 32. */
    343 /* [N] 4.3: Hash functions */
    344 #define NOISE_DHLEN		32
    345 /* [N] 4.3: "Must be 32 or 64."  WireGuard chooses 32. */
    346 #define NOISE_HASHLEN		32
    347 #define NOISE_BLOCKLEN		64
    348 #define NOISE_HKDF_OUTPUT_LEN	NOISE_HASHLEN
    349 /* [N] 5.1: "k" */
    350 #define NOISE_CIPHER_KEY_LEN	32
    351 /*
    352  * [N] 9.2: "psk"
    353  *          "... psk is a 32-byte secret value provided by the application."
    354  */
    355 #define NOISE_PRESHARED_KEY_LEN	32
    356 
    357 #define WG_STATIC_KEY_LEN	CURVE25519_KEY_LEN
    358 #define WG_TIMESTAMP_LEN	TAI64N_LEN
    359 
    360 #define WG_PRESHARED_KEY_LEN	NOISE_PRESHARED_KEY_LEN
    361 
    362 #define WG_COOKIE_LEN		16
    363 #define WG_MAC_LEN		16
    364 #define WG_COOKIESECRET_LEN	32
    365 
    366 #define WG_EPHEMERAL_KEY_LEN	CURVE25519_KEY_LEN
    367 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
    368 #define WG_CHAINING_KEY_LEN	NOISE_HASHLEN
    369 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
    370 #define WG_HASH_LEN		NOISE_HASHLEN
    371 #define WG_CIPHER_KEY_LEN	NOISE_CIPHER_KEY_LEN
    372 #define WG_DH_OUTPUT_LEN	NOISE_DHLEN
    373 #define WG_KDF_OUTPUT_LEN	NOISE_HKDF_OUTPUT_LEN
    374 #define WG_AUTHTAG_LEN		POLY1305_AUTHTAG_LEN
    375 #define WG_DATA_KEY_LEN		32
    376 #define WG_SALT_LEN		24
    377 
    378 /*
    379  * The protocol messages
    380  */
    381 struct wg_msg {
    382 	uint32_t	wgm_type;
    383 } __packed;
    384 
    385 /* [W] 5.4.2 First Message: Initiator to Responder */
    386 struct wg_msg_init {
    387 	uint32_t	wgmi_type;
    388 	uint32_t	wgmi_sender;
    389 	uint8_t		wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
    390 	uint8_t		wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
    391 	uint8_t		wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
    392 	uint8_t		wgmi_mac1[WG_MAC_LEN];
    393 	uint8_t		wgmi_mac2[WG_MAC_LEN];
    394 } __packed;
    395 
    396 /* [W] 5.4.3 Second Message: Responder to Initiator */
    397 struct wg_msg_resp {
    398 	uint32_t	wgmr_type;
    399 	uint32_t	wgmr_sender;
    400 	uint32_t	wgmr_receiver;
    401 	uint8_t		wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
    402 	uint8_t		wgmr_empty[0 + WG_AUTHTAG_LEN];
    403 	uint8_t		wgmr_mac1[WG_MAC_LEN];
    404 	uint8_t		wgmr_mac2[WG_MAC_LEN];
    405 } __packed;
    406 
    407 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
    408 struct wg_msg_data {
    409 	uint32_t	wgmd_type;
    410 	uint32_t	wgmd_receiver;
    411 	uint64_t	wgmd_counter;
    412 	uint32_t	wgmd_packet[];
    413 } __packed;
    414 
    415 /* [W] 5.4.7 Under Load: Cookie Reply Message */
    416 struct wg_msg_cookie {
    417 	uint32_t	wgmc_type;
    418 	uint32_t	wgmc_receiver;
    419 	uint8_t		wgmc_salt[WG_SALT_LEN];
    420 	uint8_t		wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
    421 } __packed;
    422 
    423 #define WG_MSG_TYPE_INIT		1
    424 #define WG_MSG_TYPE_RESP		2
    425 #define WG_MSG_TYPE_COOKIE		3
    426 #define WG_MSG_TYPE_DATA		4
    427 #define WG_MSG_TYPE_MAX			WG_MSG_TYPE_DATA
    428 
    429 /* Sliding windows */
    430 
    431 #define	SLIWIN_BITS	2048u
    432 #define	SLIWIN_TYPE	uint32_t
    433 #define	SLIWIN_BPW	(NBBY*sizeof(SLIWIN_TYPE))
    434 #define	SLIWIN_WORDS	howmany(SLIWIN_BITS, SLIWIN_BPW)
    435 #define	SLIWIN_NPKT	(SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
    436 
    437 struct sliwin {
    438 	SLIWIN_TYPE	B[SLIWIN_WORDS];
    439 	uint64_t	T;
    440 };
    441 
    442 /*
    443  * sliwin_reset(W)
    444  *
    445  *	Reset sliding window state to a blank history with no observed
    446  *	sequence numbers.
    447  *
    448  *	Caller must have exclusive access to W.
    449  */
    450 static void
    451 sliwin_reset(struct sliwin *W)
    452 {
    453 
    454 	memset(W, 0, sizeof(*W));
    455 }
    456 
    457 /*
    458  * sliwin_check_fast(W, S)
    459  *
    460  *	Do a fast check of the sliding window W to validate sequence
    461  *	number S.  No state is recorded.  Return 0 on accept, nonzero
    462  *	error code on reject.
    463  *
    464  *	May be called concurrently with other calls to
    465  *	sliwin_check_fast and sliwin_update.
    466  */
    467 static int
    468 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
    469 {
    470 
    471 	/*
    472 	 * If it's more than one window older than the highest sequence
    473 	 * number we've seen, reject.
    474 	 */
    475 #ifdef __HAVE_ATOMIC64_LOADSTORE
    476 	if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
    477 		return EAUTH;
    478 #endif
    479 
    480 	/*
    481 	 * Otherwise, we need to take the lock to decide, so don't
    482 	 * reject just yet.  Caller must serialize a call to
    483 	 * sliwin_update in this case.
    484 	 */
    485 	return 0;
    486 }
    487 
    488 /*
    489  * sliwin_update(W, S)
    490  *
    491  *	Check the sliding window W to validate sequence number S, and
    492  *	if accepted, update it to reflect having observed S.  Return 0
    493  *	on accept, nonzero error code on reject.
    494  *
    495  *	May be called concurrently with other calls to
    496  *	sliwin_check_fast, but caller must exclude other calls to
    497  *	sliwin_update.
    498  */
    499 static int
    500 sliwin_update(struct sliwin *W, uint64_t S)
    501 {
    502 	unsigned word, bit;
    503 
    504 	/*
    505 	 * If it's more than one window older than the highest sequence
    506 	 * number we've seen, reject.
    507 	 */
    508 	if (S + SLIWIN_NPKT < W->T)
    509 		return EAUTH;
    510 
    511 	/*
    512 	 * If it's higher than the highest sequence number we've seen,
    513 	 * advance the window.
    514 	 */
    515 	if (S > W->T) {
    516 		uint64_t i = W->T / SLIWIN_BPW;
    517 		uint64_t j = S / SLIWIN_BPW;
    518 		unsigned k;
    519 
    520 		for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
    521 			W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
    522 #ifdef __HAVE_ATOMIC64_LOADSTORE
    523 		atomic_store_relaxed(&W->T, S);
    524 #else
    525 		W->T = S;
    526 #endif
    527 	}
    528 
    529 	/* Test and set the bit -- if already set, reject.  */
    530 	word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
    531 	bit = S % SLIWIN_BPW;
    532 	if (W->B[word] & (1UL << bit))
    533 		return EAUTH;
    534 	W->B[word] |= 1U << bit;
    535 
    536 	/* Accept!  */
    537 	return 0;
    538 }
    539 
    540 struct wg_session {
    541 	struct wg_peer	*wgs_peer;
    542 	struct psref_target
    543 			wgs_psref;
    544 
    545 	volatile int	wgs_state;
    546 #define WGS_STATE_UNKNOWN	0
    547 #define WGS_STATE_INIT_ACTIVE	1
    548 #define WGS_STATE_INIT_PASSIVE	2
    549 #define WGS_STATE_ESTABLISHED	3
    550 #define WGS_STATE_DESTROYING	4
    551 
    552 	uint32_t	wgs_time_established;
    553 	volatile uint32_t
    554 			wgs_time_last_data_sent;
    555 	volatile bool	wgs_force_rekey;
    556 	bool		wgs_is_initiator;
    557 
    558 	uint32_t	wgs_local_index;
    559 	uint32_t	wgs_remote_index;
    560 #ifdef __HAVE_ATOMIC64_LOADSTORE
    561 	volatile uint64_t
    562 			wgs_send_counter;
    563 #else
    564 	kmutex_t	wgs_send_counter_lock;
    565 	uint64_t	wgs_send_counter;
    566 #endif
    567 
    568 	struct {
    569 		kmutex_t	lock;
    570 		struct sliwin	window;
    571 	}		*wgs_recvwin;
    572 
    573 	uint8_t		wgs_handshake_hash[WG_HASH_LEN];
    574 	uint8_t		wgs_chaining_key[WG_CHAINING_KEY_LEN];
    575 	uint8_t		wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
    576 	uint8_t		wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
    577 	uint8_t		wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
    578 	uint8_t		wgs_tkey_send[WG_DATA_KEY_LEN];
    579 	uint8_t		wgs_tkey_recv[WG_DATA_KEY_LEN];
    580 };
    581 
    582 struct wg_sockaddr {
    583 	union {
    584 		struct sockaddr_storage _ss;
    585 		struct sockaddr _sa;
    586 		struct sockaddr_in _sin;
    587 		struct sockaddr_in6 _sin6;
    588 	};
    589 	struct psref_target	wgsa_psref;
    590 };
    591 
    592 #define wgsatoss(wgsa)		(&(wgsa)->_ss)
    593 #define wgsatosa(wgsa)		(&(wgsa)->_sa)
    594 #define wgsatosin(wgsa)		(&(wgsa)->_sin)
    595 #define wgsatosin6(wgsa)	(&(wgsa)->_sin6)
    596 
    597 #define	wgsa_family(wgsa)	(wgsatosa(wgsa)->sa_family)
    598 
    599 struct wg_peer;
    600 struct wg_allowedip {
    601 	struct radix_node	wga_nodes[2];
    602 	struct wg_sockaddr	_wga_sa_addr;
    603 	struct wg_sockaddr	_wga_sa_mask;
    604 #define wga_sa_addr		_wga_sa_addr._sa
    605 #define wga_sa_mask		_wga_sa_mask._sa
    606 
    607 	int			wga_family;
    608 	uint8_t			wga_cidr;
    609 	union {
    610 		struct in_addr _ip4;
    611 		struct in6_addr _ip6;
    612 	} wga_addr;
    613 #define wga_addr4	wga_addr._ip4
    614 #define wga_addr6	wga_addr._ip6
    615 
    616 	struct wg_peer		*wga_peer;
    617 };
    618 
    619 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
    620 
    621 struct wg_ppsratecheck {
    622 	struct timeval		wgprc_lasttime;
    623 	int			wgprc_curpps;
    624 };
    625 
    626 struct wg_softc;
    627 struct wg_peer {
    628 	struct wg_softc		*wgp_sc;
    629 	char			wgp_name[WG_PEER_NAME_MAXLEN + 1];
    630 	struct pslist_entry	wgp_peerlist_entry;
    631 	pserialize_t		wgp_psz;
    632 	struct psref_target	wgp_psref;
    633 	kmutex_t		*wgp_lock;
    634 	kmutex_t		*wgp_intr_lock;
    635 
    636 	uint8_t	wgp_pubkey[WG_STATIC_KEY_LEN];
    637 	struct wg_sockaddr	*volatile wgp_endpoint;
    638 	struct wg_sockaddr	*wgp_endpoint0;
    639 	volatile unsigned	wgp_endpoint_changing;
    640 	volatile bool		wgp_endpoint_available;
    641 
    642 			/* The preshared key (optional) */
    643 	uint8_t		wgp_psk[WG_PRESHARED_KEY_LEN];
    644 
    645 	struct wg_session	*volatile wgp_session_stable;
    646 	struct wg_session	*wgp_session_unstable;
    647 
    648 	/* first outgoing packet awaiting session initiation */
    649 	struct mbuf		*volatile wgp_pending;
    650 
    651 	/* timestamp in big-endian */
    652 	wg_timestamp_t	wgp_timestamp_latest_init;
    653 
    654 	struct timespec		wgp_last_handshake_time;
    655 
    656 	callout_t		wgp_handshake_timeout_timer;
    657 	callout_t		wgp_session_dtor_timer;
    658 
    659 	time_t			wgp_handshake_start_time;
    660 
    661 	int			wgp_n_allowedips;
    662 	struct wg_allowedip	wgp_allowedips[WG_ALLOWEDIPS];
    663 
    664 	time_t			wgp_latest_cookie_time;
    665 	uint8_t			wgp_latest_cookie[WG_COOKIE_LEN];
    666 	uint8_t			wgp_last_sent_mac1[WG_MAC_LEN];
    667 	bool			wgp_last_sent_mac1_valid;
    668 	uint8_t			wgp_last_sent_cookie[WG_COOKIE_LEN];
    669 	bool			wgp_last_sent_cookie_valid;
    670 
    671 	time_t			wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
    672 
    673 	time_t			wgp_last_cookiesecret_time;
    674 	uint8_t			wgp_cookiesecret[WG_COOKIESECRET_LEN];
    675 
    676 	struct wg_ppsratecheck	wgp_ppsratecheck;
    677 
    678 	struct work		wgp_work;
    679 	unsigned int		wgp_tasks;
    680 #define WGP_TASK_SEND_INIT_MESSAGE		__BIT(0)
    681 #define WGP_TASK_RETRY_HANDSHAKE		__BIT(1)
    682 #define WGP_TASK_ESTABLISH_SESSION		__BIT(2)
    683 #define WGP_TASK_ENDPOINT_CHANGED		__BIT(3)
    684 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE		__BIT(4)
    685 #define WGP_TASK_DESTROY_PREV_SESSION		__BIT(5)
    686 };
    687 
    688 struct wg_ops;
    689 
    690 struct wg_softc {
    691 	struct ifnet	wg_if;
    692 	LIST_ENTRY(wg_softc) wg_list;
    693 	kmutex_t	*wg_lock;
    694 	kmutex_t	*wg_intr_lock;
    695 	krwlock_t	*wg_rwlock;
    696 
    697 	uint8_t		wg_privkey[WG_STATIC_KEY_LEN];
    698 	uint8_t		wg_pubkey[WG_STATIC_KEY_LEN];
    699 
    700 	int		wg_npeers;
    701 	struct pslist_head	wg_peers;
    702 	struct thmap	*wg_peers_bypubkey;
    703 	struct thmap	*wg_peers_byname;
    704 	struct thmap	*wg_sessions_byindex;
    705 	uint16_t	wg_listen_port;
    706 
    707 	struct threadpool	*wg_threadpool;
    708 
    709 	struct threadpool_job	wg_job;
    710 	int			wg_upcalls;
    711 #define	WG_UPCALL_INET	__BIT(0)
    712 #define	WG_UPCALL_INET6	__BIT(1)
    713 
    714 #ifdef INET
    715 	struct socket		*wg_so4;
    716 	struct radix_node_head	*wg_rtable_ipv4;
    717 #endif
    718 #ifdef INET6
    719 	struct socket		*wg_so6;
    720 	struct radix_node_head	*wg_rtable_ipv6;
    721 #endif
    722 
    723 	struct wg_ppsratecheck	wg_ppsratecheck;
    724 
    725 	struct wg_ops		*wg_ops;
    726 
    727 #ifdef WG_RUMPKERNEL
    728 	struct wg_user		*wg_user;
    729 #endif
    730 };
    731 
    732 /* [W] 6.1 Preliminaries */
    733 #define WG_REKEY_AFTER_MESSAGES		(1ULL << 60)
    734 #define WG_REJECT_AFTER_MESSAGES	(UINT64_MAX - (1 << 13))
    735 #define WG_REKEY_AFTER_TIME		120
    736 #define WG_REJECT_AFTER_TIME		180
    737 #define WG_REKEY_ATTEMPT_TIME		 90
    738 #define WG_REKEY_TIMEOUT		  5
    739 #define WG_KEEPALIVE_TIMEOUT		 10
    740 
    741 #define WG_COOKIE_TIME			120
    742 #define WG_COOKIESECRET_TIME		(2 * 60)
    743 
    744 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
    745 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
    746 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
    747 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
    748 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
    749 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
    750 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
    751 
    752 static struct mbuf *
    753 		wg_get_mbuf(size_t, size_t);
    754 
    755 static void	wg_send_data_msg(struct wg_peer *, struct wg_session *,
    756 		    struct mbuf *);
    757 static void	wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
    758 		    const uint32_t, const uint8_t[static WG_MAC_LEN],
    759 		    const struct sockaddr *);
    760 static void	wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
    761 		    struct wg_session *, const struct wg_msg_init *);
    762 static void	wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
    763 
    764 static struct wg_peer *
    765 		wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
    766 		    struct psref *);
    767 static struct wg_peer *
    768 		wg_lookup_peer_by_pubkey(struct wg_softc *,
    769 		    const uint8_t[static WG_STATIC_KEY_LEN], struct psref *);
    770 
    771 static struct wg_session *
    772 		wg_lookup_session_by_index(struct wg_softc *,
    773 		    const uint32_t, struct psref *);
    774 
    775 static void	wg_update_endpoint_if_necessary(struct wg_peer *,
    776 		    const struct sockaddr *);
    777 
    778 static void	wg_schedule_session_dtor_timer(struct wg_peer *);
    779 
    780 static bool	wg_is_underload(struct wg_softc *, struct wg_peer *, int);
    781 static void	wg_calculate_keys(struct wg_session *, const bool);
    782 
    783 static void	wg_clear_states(struct wg_session *);
    784 
    785 static void	wg_get_peer(struct wg_peer *, struct psref *);
    786 static void	wg_put_peer(struct wg_peer *, struct psref *);
    787 
    788 static int	wg_send_so(struct wg_peer *, struct mbuf *);
    789 static int	wg_send_udp(struct wg_peer *, struct mbuf *);
    790 static int	wg_output(struct ifnet *, struct mbuf *,
    791 			   const struct sockaddr *, const struct rtentry *);
    792 static void	wg_input(struct ifnet *, struct mbuf *, const int);
    793 static int	wg_ioctl(struct ifnet *, u_long, void *);
    794 static int	wg_bind_port(struct wg_softc *, const uint16_t);
    795 static int	wg_init(struct ifnet *);
    796 #ifdef ALTQ
    797 static void	wg_start(struct ifnet *);
    798 #endif
    799 static void	wg_stop(struct ifnet *, int);
    800 
    801 static void	wg_peer_work(struct work *, void *);
    802 static void	wg_job(struct threadpool_job *);
    803 static void	wgintr(void *);
    804 static void	wg_purge_pending_packets(struct wg_peer *);
    805 
    806 static int	wg_clone_create(struct if_clone *, int);
    807 static int	wg_clone_destroy(struct ifnet *);
    808 
    809 struct wg_ops {
    810 	int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
    811 	int (*send_data_msg)(struct wg_peer *, struct mbuf *);
    812 	void (*input)(struct ifnet *, struct mbuf *, const int);
    813 	int (*bind_port)(struct wg_softc *, const uint16_t);
    814 };
    815 
    816 struct wg_ops wg_ops_rumpkernel = {
    817 	.send_hs_msg	= wg_send_so,
    818 	.send_data_msg	= wg_send_udp,
    819 	.input		= wg_input,
    820 	.bind_port	= wg_bind_port,
    821 };
    822 
    823 #ifdef WG_RUMPKERNEL
    824 static bool	wg_user_mode(struct wg_softc *);
    825 static int	wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
    826 
    827 static int	wg_send_user(struct wg_peer *, struct mbuf *);
    828 static void	wg_input_user(struct ifnet *, struct mbuf *, const int);
    829 static int	wg_bind_port_user(struct wg_softc *, const uint16_t);
    830 
    831 struct wg_ops wg_ops_rumpuser = {
    832 	.send_hs_msg	= wg_send_user,
    833 	.send_data_msg	= wg_send_user,
    834 	.input		= wg_input_user,
    835 	.bind_port	= wg_bind_port_user,
    836 };
    837 #endif
    838 
    839 #define WG_PEER_READER_FOREACH(wgp, wg)					\
    840 	PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    841 	    wgp_peerlist_entry)
    842 #define WG_PEER_WRITER_FOREACH(wgp, wg)					\
    843 	PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    844 	    wgp_peerlist_entry)
    845 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg)				\
    846 	PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
    847 #define WG_PEER_WRITER_REMOVE(wgp)					\
    848 	PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
    849 
    850 struct wg_route {
    851 	struct radix_node	wgr_nodes[2];
    852 	struct wg_peer		*wgr_peer;
    853 };
    854 
    855 static struct radix_node_head *
    856 wg_rnh(struct wg_softc *wg, const int family)
    857 {
    858 
    859 	switch (family) {
    860 #ifdef INET
    861 		case AF_INET:
    862 			return wg->wg_rtable_ipv4;
    863 #endif
    864 #ifdef INET6
    865 		case AF_INET6:
    866 			return wg->wg_rtable_ipv6;
    867 #endif
    868 		default:
    869 			return NULL;
    870 	}
    871 }
    872 
    873 
    874 /*
    875  * Global variables
    876  */
    877 static volatile unsigned wg_count __cacheline_aligned;
    878 
    879 struct psref_class *wg_psref_class __read_mostly;
    880 
    881 static struct if_clone wg_cloner =
    882     IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
    883 
    884 static struct pktqueue *wg_pktq __read_mostly;
    885 static struct workqueue *wg_wq __read_mostly;
    886 
    887 void wgattach(int);
    888 /* ARGSUSED */
    889 void
    890 wgattach(int count)
    891 {
    892 	/*
    893 	 * Nothing to do here, initialization is handled by the
    894 	 * module initialization code in wginit() below).
    895 	 */
    896 }
    897 
    898 static void
    899 wginit(void)
    900 {
    901 
    902 	wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
    903 
    904 	if_clone_attach(&wg_cloner);
    905 }
    906 
    907 /*
    908  * XXX Kludge: This should just happen in wginit, but workqueue_create
    909  * cannot be run until after CPUs have been detected, and wginit runs
    910  * before configure.
    911  */
    912 static int
    913 wginitqueues(void)
    914 {
    915 	int error __diagused;
    916 
    917 	wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
    918 	KASSERT(wg_pktq != NULL);
    919 
    920 	error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
    921 	    PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
    922 	KASSERTMSG(error == 0, "error=%d", error);
    923 
    924 	return 0;
    925 }
    926 
    927 static void
    928 wg_guarantee_initialized(void)
    929 {
    930 	static ONCE_DECL(init);
    931 	int error __diagused;
    932 
    933 	error = RUN_ONCE(&init, wginitqueues);
    934 	KASSERTMSG(error == 0, "error=%d", error);
    935 }
    936 
    937 static int
    938 wg_count_inc(void)
    939 {
    940 	unsigned o, n;
    941 
    942 	do {
    943 		o = atomic_load_relaxed(&wg_count);
    944 		if (o == UINT_MAX)
    945 			return ENFILE;
    946 		n = o + 1;
    947 	} while (atomic_cas_uint(&wg_count, o, n) != o);
    948 
    949 	return 0;
    950 }
    951 
    952 static void
    953 wg_count_dec(void)
    954 {
    955 	unsigned c __diagused;
    956 
    957 	membar_release();	/* match atomic_load_acquire in wgdetach */
    958 	c = atomic_dec_uint_nv(&wg_count);
    959 	KASSERT(c != UINT_MAX);
    960 }
    961 
    962 static int
    963 wgdetach(void)
    964 {
    965 
    966 	/* Prevent new interface creation.  */
    967 	if_clone_detach(&wg_cloner);
    968 
    969 	/*
    970 	 * Check whether there are any existing interfaces.  Matches
    971 	 * membar_release and atomic_dec_uint_nv in wg_count_dec.
    972 	 */
    973 	if (atomic_load_acquire(&wg_count)) {
    974 		/* Back out -- reattach the cloner.  */
    975 		if_clone_attach(&wg_cloner);
    976 		return EBUSY;
    977 	}
    978 
    979 	/* No interfaces left.  Nuke it.  */
    980 	if (wg_wq)
    981 		workqueue_destroy(wg_wq);
    982 	if (wg_pktq)
    983 		pktq_destroy(wg_pktq);
    984 	psref_class_destroy(wg_psref_class);
    985 
    986 	return 0;
    987 }
    988 
    989 static void
    990 wg_init_key_and_hash(uint8_t ckey[static WG_CHAINING_KEY_LEN],
    991     uint8_t hash[static WG_HASH_LEN])
    992 {
    993 	/* [W] 5.4: CONSTRUCTION */
    994 	const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
    995 	/* [W] 5.4: IDENTIFIER */
    996 	const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
    997 	struct blake2s state;
    998 
    999 	blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
   1000 	    signature, strlen(signature));
   1001 
   1002 	CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
   1003 	memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
   1004 
   1005 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1006 	blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
   1007 	blake2s_update(&state, id, strlen(id));
   1008 	blake2s_final(&state, hash);
   1009 
   1010 	WG_DUMP_HASH("ckey", ckey);
   1011 	WG_DUMP_HASH("hash", hash);
   1012 }
   1013 
   1014 static void
   1015 wg_algo_hash(uint8_t hash[static WG_HASH_LEN], const uint8_t input[],
   1016     const size_t inputsize)
   1017 {
   1018 	struct blake2s state;
   1019 
   1020 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1021 	blake2s_update(&state, hash, WG_HASH_LEN);
   1022 	blake2s_update(&state, input, inputsize);
   1023 	blake2s_final(&state, hash);
   1024 }
   1025 
   1026 static void
   1027 wg_algo_mac(uint8_t out[], const size_t outsize,
   1028     const uint8_t key[], const size_t keylen,
   1029     const uint8_t input1[], const size_t input1len,
   1030     const uint8_t input2[], const size_t input2len)
   1031 {
   1032 	struct blake2s state;
   1033 
   1034 	blake2s_init(&state, outsize, key, keylen);
   1035 
   1036 	blake2s_update(&state, input1, input1len);
   1037 	if (input2 != NULL)
   1038 		blake2s_update(&state, input2, input2len);
   1039 	blake2s_final(&state, out);
   1040 }
   1041 
   1042 static void
   1043 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
   1044     const uint8_t input1[], const size_t input1len,
   1045     const uint8_t input2[], const size_t input2len)
   1046 {
   1047 	struct blake2s state;
   1048 	/* [W] 5.4: LABEL-MAC1 */
   1049 	const char *label = "mac1----";
   1050 	uint8_t key[WG_HASH_LEN];
   1051 
   1052 	blake2s_init(&state, sizeof(key), NULL, 0);
   1053 	blake2s_update(&state, label, strlen(label));
   1054 	blake2s_update(&state, input1, input1len);
   1055 	blake2s_final(&state, key);
   1056 
   1057 	blake2s_init(&state, outsize, key, sizeof(key));
   1058 	if (input2 != NULL)
   1059 		blake2s_update(&state, input2, input2len);
   1060 	blake2s_final(&state, out);
   1061 }
   1062 
   1063 static void
   1064 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
   1065     const uint8_t input1[], const size_t input1len)
   1066 {
   1067 	struct blake2s state;
   1068 	/* [W] 5.4: LABEL-COOKIE */
   1069 	const char *label = "cookie--";
   1070 
   1071 	blake2s_init(&state, outsize, NULL, 0);
   1072 	blake2s_update(&state, label, strlen(label));
   1073 	blake2s_update(&state, input1, input1len);
   1074 	blake2s_final(&state, out);
   1075 }
   1076 
   1077 static void
   1078 wg_algo_generate_keypair(uint8_t pubkey[static WG_EPHEMERAL_KEY_LEN],
   1079     uint8_t privkey[static WG_EPHEMERAL_KEY_LEN])
   1080 {
   1081 
   1082 	CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1083 
   1084 	cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
   1085 	crypto_scalarmult_base(pubkey, privkey);
   1086 }
   1087 
   1088 static void
   1089 wg_algo_dh(uint8_t out[static WG_DH_OUTPUT_LEN],
   1090     const uint8_t privkey[static WG_STATIC_KEY_LEN],
   1091     const uint8_t pubkey[static WG_STATIC_KEY_LEN])
   1092 {
   1093 
   1094 	CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1095 
   1096 	int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
   1097 	KASSERT(ret == 0);
   1098 }
   1099 
   1100 static void
   1101 wg_algo_hmac(uint8_t out[], const size_t outlen,
   1102     const uint8_t key[], const size_t keylen,
   1103     const uint8_t in[], const size_t inlen)
   1104 {
   1105 #define IPAD	0x36
   1106 #define OPAD	0x5c
   1107 	uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
   1108 	uint8_t ipad[HMAC_BLOCK_LEN];
   1109 	uint8_t opad[HMAC_BLOCK_LEN];
   1110 	size_t i;
   1111 	struct blake2s state;
   1112 
   1113 	KASSERT(outlen == WG_HASH_LEN);
   1114 	KASSERT(keylen <= HMAC_BLOCK_LEN);
   1115 
   1116 	memcpy(hmackey, key, keylen);
   1117 
   1118 	for (i = 0; i < sizeof(hmackey); i++) {
   1119 		ipad[i] = hmackey[i] ^ IPAD;
   1120 		opad[i] = hmackey[i] ^ OPAD;
   1121 	}
   1122 
   1123 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1124 	blake2s_update(&state, ipad, sizeof(ipad));
   1125 	blake2s_update(&state, in, inlen);
   1126 	blake2s_final(&state, out);
   1127 
   1128 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1129 	blake2s_update(&state, opad, sizeof(opad));
   1130 	blake2s_update(&state, out, WG_HASH_LEN);
   1131 	blake2s_final(&state, out);
   1132 #undef IPAD
   1133 #undef OPAD
   1134 }
   1135 
   1136 static void
   1137 wg_algo_kdf(uint8_t out1[static WG_KDF_OUTPUT_LEN],
   1138     uint8_t out2[WG_KDF_OUTPUT_LEN],
   1139     uint8_t out3[WG_KDF_OUTPUT_LEN],
   1140     const uint8_t ckey[static WG_CHAINING_KEY_LEN],
   1141     const uint8_t input[], const size_t inputlen)
   1142 {
   1143 	uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
   1144 	uint8_t one[1];
   1145 
   1146 	/*
   1147 	 * [N] 4.3: "an input_key_material byte sequence with length
   1148 	 * either zero bytes, 32 bytes, or DHLEN bytes."
   1149 	 */
   1150 	KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
   1151 
   1152 	WG_DUMP_HASH("ckey", ckey);
   1153 	if (input != NULL)
   1154 		WG_DUMP_HASH("input", input);
   1155 	wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
   1156 	    input, inputlen);
   1157 	WG_DUMP_HASH("tmp1", tmp1);
   1158 	one[0] = 1;
   1159 	wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1160 	    one, sizeof(one));
   1161 	WG_DUMP_HASH("out1", out1);
   1162 	if (out2 == NULL)
   1163 		return;
   1164 	memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
   1165 	tmp2[WG_KDF_OUTPUT_LEN] = 2;
   1166 	wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1167 	    tmp2, sizeof(tmp2));
   1168 	WG_DUMP_HASH("out2", out2);
   1169 	if (out3 == NULL)
   1170 		return;
   1171 	memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
   1172 	tmp2[WG_KDF_OUTPUT_LEN] = 3;
   1173 	wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1174 	    tmp2, sizeof(tmp2));
   1175 	WG_DUMP_HASH("out3", out3);
   1176 }
   1177 
   1178 static void __noinline
   1179 wg_algo_dh_kdf(uint8_t ckey[static WG_CHAINING_KEY_LEN],
   1180     uint8_t cipher_key[WG_CIPHER_KEY_LEN],
   1181     const uint8_t local_key[static WG_STATIC_KEY_LEN],
   1182     const uint8_t remote_key[static WG_STATIC_KEY_LEN])
   1183 {
   1184 	uint8_t dhout[WG_DH_OUTPUT_LEN];
   1185 
   1186 	wg_algo_dh(dhout, local_key, remote_key);
   1187 	wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
   1188 
   1189 	WG_DUMP_HASH("dhout", dhout);
   1190 	WG_DUMP_HASH("ckey", ckey);
   1191 	if (cipher_key != NULL)
   1192 		WG_DUMP_HASH("cipher_key", cipher_key);
   1193 }
   1194 
   1195 static void
   1196 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize,
   1197     const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
   1198     const uint64_t counter,
   1199     const uint8_t plain[], const size_t plainsize,
   1200     const uint8_t auth[], size_t authlen)
   1201 {
   1202 	uint8_t nonce[(32 + 64) / 8] = {0};
   1203 	long long unsigned int outsize;
   1204 	int error __diagused;
   1205 
   1206 	le64enc(&nonce[4], counter);
   1207 
   1208 	error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
   1209 	    plainsize, auth, authlen, NULL, nonce, key);
   1210 	KASSERT(error == 0);
   1211 	KASSERT(outsize == expected_outsize);
   1212 }
   1213 
   1214 static int
   1215 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize,
   1216     const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
   1217     const uint64_t counter,
   1218     const uint8_t encrypted[], const size_t encryptedsize,
   1219     const uint8_t auth[], size_t authlen)
   1220 {
   1221 	uint8_t nonce[(32 + 64) / 8] = {0};
   1222 	long long unsigned int outsize;
   1223 	int error;
   1224 
   1225 	le64enc(&nonce[4], counter);
   1226 
   1227 	error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1228 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1229 	if (error == 0)
   1230 		KASSERT(outsize == expected_outsize);
   1231 	return error;
   1232 }
   1233 
   1234 static void
   1235 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
   1236     const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
   1237     const uint8_t plain[], const size_t plainsize,
   1238     const uint8_t auth[], size_t authlen,
   1239     const uint8_t nonce[static WG_SALT_LEN])
   1240 {
   1241 	long long unsigned int outsize;
   1242 	int error __diagused;
   1243 
   1244 	CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
   1245 	error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
   1246 	    plain, plainsize, auth, authlen, NULL, nonce, key);
   1247 	KASSERT(error == 0);
   1248 	KASSERT(outsize == expected_outsize);
   1249 }
   1250 
   1251 static int
   1252 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
   1253     const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
   1254     const uint8_t encrypted[], const size_t encryptedsize,
   1255     const uint8_t auth[], size_t authlen,
   1256     const uint8_t nonce[static WG_SALT_LEN])
   1257 {
   1258 	long long unsigned int outsize;
   1259 	int error;
   1260 
   1261 	error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1262 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1263 	if (error == 0)
   1264 		KASSERT(outsize == expected_outsize);
   1265 	return error;
   1266 }
   1267 
   1268 static void
   1269 wg_algo_tai64n(wg_timestamp_t timestamp)
   1270 {
   1271 	struct timespec ts;
   1272 
   1273 	/* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
   1274 	getnanotime(&ts);
   1275 	/* TAI64 label in external TAI64 format */
   1276 	be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
   1277 	/* second beginning from 1970 TAI */
   1278 	be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
   1279 	/* nanosecond in big-endian format */
   1280 	be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
   1281 }
   1282 
   1283 /*
   1284  * wg_get_stable_session(wgp, psref)
   1285  *
   1286  *	Get a passive reference to the current stable session, or
   1287  *	return NULL if there is no current stable session.
   1288  *
   1289  *	The pointer is always there but the session is not necessarily
   1290  *	ESTABLISHED; if it is not ESTABLISHED, return NULL.  However,
   1291  *	the session may transition from ESTABLISHED to DESTROYING while
   1292  *	holding the passive reference.
   1293  */
   1294 static struct wg_session *
   1295 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
   1296 {
   1297 	int s;
   1298 	struct wg_session *wgs;
   1299 
   1300 	s = pserialize_read_enter();
   1301 	wgs = atomic_load_consume(&wgp->wgp_session_stable);
   1302 	if (__predict_false(atomic_load_relaxed(&wgs->wgs_state) !=
   1303 		WGS_STATE_ESTABLISHED))
   1304 		wgs = NULL;
   1305 	else
   1306 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   1307 	pserialize_read_exit(s);
   1308 
   1309 	return wgs;
   1310 }
   1311 
   1312 static void
   1313 wg_put_session(struct wg_session *wgs, struct psref *psref)
   1314 {
   1315 
   1316 	psref_release(psref, &wgs->wgs_psref, wg_psref_class);
   1317 }
   1318 
   1319 static void
   1320 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
   1321 {
   1322 	struct wg_peer *wgp = wgs->wgs_peer;
   1323 	struct wg_session *wgs0 __diagused;
   1324 	void *garbage;
   1325 
   1326 	KASSERT(mutex_owned(wgp->wgp_lock));
   1327 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1328 
   1329 	/* Remove the session from the table.  */
   1330 	wgs0 = thmap_del(wg->wg_sessions_byindex,
   1331 	    &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
   1332 	KASSERT(wgs0 == wgs);
   1333 	garbage = thmap_stage_gc(wg->wg_sessions_byindex);
   1334 
   1335 	/* Wait for passive references to drain.  */
   1336 	pserialize_perform(wgp->wgp_psz);
   1337 	psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
   1338 
   1339 	/*
   1340 	 * Free memory, zero state, and transition to UNKNOWN.  We have
   1341 	 * exclusive access to the session now, so there is no need for
   1342 	 * an atomic store.
   1343 	 */
   1344 	thmap_gc(wg->wg_sessions_byindex, garbage);
   1345 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_UNKNOWN\n",
   1346 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   1347 	wgs->wgs_local_index = 0;
   1348 	wgs->wgs_remote_index = 0;
   1349 	wg_clear_states(wgs);
   1350 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   1351 	wgs->wgs_force_rekey = false;
   1352 }
   1353 
   1354 /*
   1355  * wg_get_session_index(wg, wgs)
   1356  *
   1357  *	Choose a session index for wgs->wgs_local_index, and store it
   1358  *	in wg's table of sessions by index.
   1359  *
   1360  *	wgs must be the unstable session of its peer, and must be
   1361  *	transitioning out of the UNKNOWN state.
   1362  */
   1363 static void
   1364 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1365 {
   1366 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1367 	struct wg_session *wgs0;
   1368 	uint32_t index;
   1369 
   1370 	KASSERT(mutex_owned(wgp->wgp_lock));
   1371 	KASSERT(wgs == wgp->wgp_session_unstable);
   1372 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1373 	    wgs->wgs_state);
   1374 
   1375 	do {
   1376 		/* Pick a uniform random index.  */
   1377 		index = cprng_strong32();
   1378 
   1379 		/* Try to take it.  */
   1380 		wgs->wgs_local_index = index;
   1381 		wgs0 = thmap_put(wg->wg_sessions_byindex,
   1382 		    &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
   1383 
   1384 		/* If someone else beat us, start over.  */
   1385 	} while (__predict_false(wgs0 != wgs));
   1386 }
   1387 
   1388 /*
   1389  * wg_put_session_index(wg, wgs)
   1390  *
   1391  *	Remove wgs from the table of sessions by index, wait for any
   1392  *	passive references to drain, and transition the session to the
   1393  *	UNKNOWN state.
   1394  *
   1395  *	wgs must be the unstable session of its peer, and must not be
   1396  *	UNKNOWN or ESTABLISHED.
   1397  */
   1398 static void
   1399 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1400 {
   1401 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1402 
   1403 	KASSERT(mutex_owned(wgp->wgp_lock));
   1404 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1405 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
   1406 
   1407 	wg_destroy_session(wg, wgs);
   1408 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   1409 }
   1410 
   1411 /*
   1412  * Handshake patterns
   1413  *
   1414  * [W] 5: "These messages use the "IK" pattern from Noise"
   1415  * [N] 7.5. Interactive handshake patterns (fundamental)
   1416  *     "The first character refers to the initiators static key:"
   1417  *     "I = Static key for initiator Immediately transmitted to responder,
   1418  *          despite reduced or absent identity hiding"
   1419  *     "The second character refers to the responders static key:"
   1420  *     "K = Static key for responder Known to initiator"
   1421  *     "IK:
   1422  *        <- s
   1423  *        ...
   1424  *        -> e, es, s, ss
   1425  *        <- e, ee, se"
   1426  * [N] 9.4. Pattern modifiers
   1427  *     "IKpsk2:
   1428  *        <- s
   1429  *        ...
   1430  *        -> e, es, s, ss
   1431  *        <- e, ee, se, psk"
   1432  */
   1433 static void
   1434 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
   1435     struct wg_session *wgs, struct wg_msg_init *wgmi)
   1436 {
   1437 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1438 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1439 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1440 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1441 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1442 
   1443 	KASSERT(mutex_owned(wgp->wgp_lock));
   1444 	KASSERT(wgs == wgp->wgp_session_unstable);
   1445 	KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
   1446 	    wgs->wgs_state);
   1447 
   1448 	wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
   1449 	wgmi->wgmi_sender = wgs->wgs_local_index;
   1450 
   1451 	/* [W] 5.4.2: First Message: Initiator to Responder */
   1452 
   1453 	/* Ci := HASH(CONSTRUCTION) */
   1454 	/* Hi := HASH(Ci || IDENTIFIER) */
   1455 	wg_init_key_and_hash(ckey, hash);
   1456 	/* Hi := HASH(Hi || Sr^pub) */
   1457 	wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
   1458 
   1459 	WG_DUMP_HASH("hash", hash);
   1460 
   1461 	/* [N] 2.2: "e" */
   1462 	/* Ei^priv, Ei^pub := DH-GENERATE() */
   1463 	wg_algo_generate_keypair(pubkey, privkey);
   1464 	/* Ci := KDF1(Ci, Ei^pub) */
   1465 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1466 	/* msg.ephemeral := Ei^pub */
   1467 	memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
   1468 	/* Hi := HASH(Hi || msg.ephemeral) */
   1469 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1470 
   1471 	WG_DUMP_HASH("ckey", ckey);
   1472 	WG_DUMP_HASH("hash", hash);
   1473 
   1474 	/* [N] 2.2: "es" */
   1475 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1476 	wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
   1477 
   1478 	/* [N] 2.2: "s" */
   1479 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1480 	wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
   1481 	    cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1482 	    hash, sizeof(hash));
   1483 	/* Hi := HASH(Hi || msg.static) */
   1484 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1485 
   1486 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1487 
   1488 	/* [N] 2.2: "ss" */
   1489 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1490 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1491 
   1492 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1493 	wg_timestamp_t timestamp;
   1494 	wg_algo_tai64n(timestamp);
   1495 	wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1496 	    cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
   1497 	/* Hi := HASH(Hi || msg.timestamp) */
   1498 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1499 
   1500 	/* [W] 5.4.4 Cookie MACs */
   1501 	wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
   1502 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1503 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1504 	/* Need mac1 to decrypt a cookie from a cookie message */
   1505 	memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
   1506 	    sizeof(wgp->wgp_last_sent_mac1));
   1507 	wgp->wgp_last_sent_mac1_valid = true;
   1508 
   1509 	if (wgp->wgp_latest_cookie_time == 0 ||
   1510 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1511 		memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
   1512 	else {
   1513 		wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
   1514 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1515 		    (const uint8_t *)wgmi,
   1516 		    offsetof(struct wg_msg_init, wgmi_mac2),
   1517 		    NULL, 0);
   1518 	}
   1519 
   1520 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1521 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1522 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1523 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1524 	WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
   1525 }
   1526 
   1527 /*
   1528  * wg_initiator_priority(wg, wgp)
   1529  *
   1530  *	Return true if we claim priority over peer wgp as initiator at
   1531  *	the moment, false if not.  That is, if we and our peer are
   1532  *	trying to initiate a session, do we ignore the peer's attempt
   1533  *	and barge ahead with ours, or discard our attempt and accept
   1534  *	the peer's?
   1535  *
   1536  *	We jointly flip a coin by computing
   1537  *
   1538  *		H(pubkey A) ^ H(pubkey B) ^ H(posix minutes as le64),
   1539  *
   1540  *	and taking the low-order bit.  If our public key hash, as a
   1541  *	256-bit integer in little-endian, is less than the peer's
   1542  *	public key hash, also as a 256-bit integer in little-endian, we
   1543  *	claim priority iff the bit is 0; otherwise we claim priority
   1544  *	iff the bit is 1.
   1545  *
   1546  *	This way, it is essentially arbitrary who claims priority, and
   1547  *	it may change (by a coin toss) minute to minute, but both
   1548  *	parties agree at any given moment -- except possibly at the
   1549  *	boundary of a minute -- who will take priority.
   1550  *
   1551  *	This is an extension to the WireGuard protocol -- as far as I
   1552  *	can tell, the protocol whitepaper has no resolution to this
   1553  *	deadlock scenario.  According to the author, `the deadlock
   1554  *	doesn't happen because of some additional state machine logic,
   1555  *	and on very small chances that it does, it quickly undoes
   1556  *	itself.', but this additional state machine logic does not
   1557  *	appear to be anywhere in the whitepaper, and I don't see how it
   1558  *	can undo itself until both sides have given up and one side is
   1559  *	quicker to initiate the next time around.
   1560  *
   1561  *	XXX It might be prudent to put a prefix in the hash input, so
   1562  *	we avoid accidentally colliding with any other uses of the same
   1563  *	hash on the same input.  But it's best if any changes are
   1564  *	coordinated, so that peers generally agree on what coin is
   1565  *	being tossed, instead of tossing their own independent coins
   1566  *	(which will also converge to working but more slowly over more
   1567  *	handshake retries).
   1568  */
   1569 static bool
   1570 wg_initiator_priority(struct wg_softc *wg, struct wg_peer *wgp)
   1571 {
   1572 	const uint64_t now = time_second/60, now_le = htole64(now);
   1573 	uint8_t h_min;
   1574 	uint8_t h_local[BLAKE2S_MAX_DIGEST];
   1575 	uint8_t h_peer[BLAKE2S_MAX_DIGEST];
   1576 	int borrow;
   1577 	unsigned i;
   1578 
   1579 	blake2s(&h_min, 1, NULL, 0, &now_le, sizeof(now_le));
   1580 	blake2s(h_local, sizeof(h_local), NULL, 0,
   1581 	    wg->wg_pubkey, sizeof(wg->wg_pubkey));
   1582 	blake2s(h_peer, sizeof(h_peer), NULL, 0,
   1583 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
   1584 
   1585 	for (borrow = 0, i = 0; i < BLAKE2S_MAX_DIGEST; i++)
   1586 		borrow = (h_local[i] - h_peer[i] + borrow) >> 8;
   1587 
   1588 	return 1 & (h_local[0] ^ h_peer[0] ^ h_min ^ borrow);
   1589 }
   1590 
   1591 static void __noinline
   1592 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
   1593     const struct sockaddr *src)
   1594 {
   1595 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1596 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1597 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1598 	uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
   1599 	struct wg_peer *wgp;
   1600 	struct wg_session *wgs;
   1601 	int error, ret;
   1602 	struct psref psref_peer;
   1603 	uint8_t mac1[WG_MAC_LEN];
   1604 
   1605 	WG_TRACE("init msg received");
   1606 
   1607 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1608 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1609 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1610 
   1611 	/*
   1612 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1613 	 * "the responder, ..., must always reject messages with an invalid
   1614 	 *  msg.mac1"
   1615 	 */
   1616 	if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
   1617 		WG_DLOG("mac1 is invalid\n");
   1618 		return;
   1619 	}
   1620 
   1621 	/*
   1622 	 * [W] 5.4.2: First Message: Initiator to Responder
   1623 	 * "When the responder receives this message, it does the same
   1624 	 *  operations so that its final state variables are identical,
   1625 	 *  replacing the operands of the DH function to produce equivalent
   1626 	 *  values."
   1627 	 *  Note that the following comments of operations are just copies of
   1628 	 *  the initiator's ones.
   1629 	 */
   1630 
   1631 	/* Ci := HASH(CONSTRUCTION) */
   1632 	/* Hi := HASH(Ci || IDENTIFIER) */
   1633 	wg_init_key_and_hash(ckey, hash);
   1634 	/* Hi := HASH(Hi || Sr^pub) */
   1635 	wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
   1636 
   1637 	/* [N] 2.2: "e" */
   1638 	/* Ci := KDF1(Ci, Ei^pub) */
   1639 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
   1640 	    sizeof(wgmi->wgmi_ephemeral));
   1641 	/* Hi := HASH(Hi || msg.ephemeral) */
   1642 	wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
   1643 
   1644 	WG_DUMP_HASH("ckey", ckey);
   1645 
   1646 	/* [N] 2.2: "es" */
   1647 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1648 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
   1649 
   1650 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1651 
   1652 	/* [N] 2.2: "s" */
   1653 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1654 	error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
   1655 	    wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
   1656 	if (error != 0) {
   1657 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   1658 		    "%s: wg_algo_aead_dec for secret key failed\n",
   1659 		    if_name(&wg->wg_if));
   1660 		return;
   1661 	}
   1662 	/* Hi := HASH(Hi || msg.static) */
   1663 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1664 
   1665 	wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
   1666 	if (wgp == NULL) {
   1667 		WG_DLOG("peer not found\n");
   1668 		return;
   1669 	}
   1670 
   1671 	/*
   1672 	 * Lock the peer to serialize access to cookie state.
   1673 	 *
   1674 	 * XXX Can we safely avoid holding the lock across DH?  Take it
   1675 	 * just to verify mac2 and then unlock/DH/lock?
   1676 	 */
   1677 	mutex_enter(wgp->wgp_lock);
   1678 
   1679 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
   1680 		WG_TRACE("under load");
   1681 		/*
   1682 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1683 		 * "the responder, ..., and when under load may reject messages
   1684 		 *  with an invalid msg.mac2.  If the responder receives a
   1685 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1686 		 *  and is under load, it may respond with a cookie reply
   1687 		 *  message"
   1688 		 */
   1689 		uint8_t zero[WG_MAC_LEN] = {0};
   1690 		if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
   1691 			WG_TRACE("sending a cookie message: no cookie included");
   1692 			wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1693 			    wgmi->wgmi_mac1, src);
   1694 			goto out;
   1695 		}
   1696 		if (!wgp->wgp_last_sent_cookie_valid) {
   1697 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1698 			wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1699 			    wgmi->wgmi_mac1, src);
   1700 			goto out;
   1701 		}
   1702 		uint8_t mac2[WG_MAC_LEN];
   1703 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1704 		    WG_COOKIE_LEN, (const uint8_t *)wgmi,
   1705 		    offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
   1706 		if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
   1707 			WG_DLOG("mac2 is invalid\n");
   1708 			goto out;
   1709 		}
   1710 		WG_TRACE("under load, but continue to sending");
   1711 	}
   1712 
   1713 	/* [N] 2.2: "ss" */
   1714 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1715 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1716 
   1717 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1718 	wg_timestamp_t timestamp;
   1719 	error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
   1720 	    wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1721 	    hash, sizeof(hash));
   1722 	if (error != 0) {
   1723 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1724 		    "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
   1725 		    if_name(&wg->wg_if), wgp->wgp_name);
   1726 		goto out;
   1727 	}
   1728 	/* Hi := HASH(Hi || msg.timestamp) */
   1729 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1730 
   1731 	/*
   1732 	 * [W] 5.1 "The responder keeps track of the greatest timestamp
   1733 	 *      received per peer and discards packets containing
   1734 	 *      timestamps less than or equal to it."
   1735 	 */
   1736 	ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
   1737 	    sizeof(timestamp));
   1738 	if (ret <= 0) {
   1739 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1740 		    "%s: peer %s: invalid init msg: timestamp is old\n",
   1741 		    if_name(&wg->wg_if), wgp->wgp_name);
   1742 		goto out;
   1743 	}
   1744 	memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
   1745 
   1746 	/*
   1747 	 * Message is good -- we're committing to handle it now, unless
   1748 	 * we were already initiating a session.
   1749 	 */
   1750 	wgs = wgp->wgp_session_unstable;
   1751 	switch (wgs->wgs_state) {
   1752 	case WGS_STATE_UNKNOWN:		/* new session initiated by peer */
   1753 		break;
   1754 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating */
   1755 		if (wg_initiator_priority(wg, wgp)) {
   1756 			WG_TRACE("Session already initializing,"
   1757 			    " ignoring the message");
   1758 			goto out;
   1759 		}
   1760 		WG_TRACE("Yielding session initiation to peer");
   1761 		wg_put_session_index(wg, wgs);
   1762 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1763 		    wgs->wgs_state);
   1764 		break;
   1765 	case WGS_STATE_INIT_PASSIVE:	/* peer is retrying, start over */
   1766 		WG_TRACE("Session already initializing, destroying old states");
   1767 		/*
   1768 		 * XXX Avoid this -- just resend our response -- if the
   1769 		 * INIT message is identical to the previous one.
   1770 		 */
   1771 		wg_put_session_index(wg, wgs);
   1772 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1773 		    wgs->wgs_state);
   1774 		break;
   1775 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1776 		panic("unstable session can't be established");
   1777 	case WGS_STATE_DESTROYING:	/* rekey initiated by peer */
   1778 		WG_TRACE("Session destroying, but force to clear");
   1779 		wg_put_session_index(wg, wgs);
   1780 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1781 		    wgs->wgs_state);
   1782 		break;
   1783 	default:
   1784 		panic("invalid session state: %d", wgs->wgs_state);
   1785 	}
   1786 
   1787 	/*
   1788 	 * Assign a fresh session index.
   1789 	 */
   1790 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1791 	    wgs->wgs_state);
   1792 	wg_get_session_index(wg, wgs);
   1793 
   1794 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1795 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1796 	memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
   1797 	    sizeof(wgmi->wgmi_ephemeral));
   1798 
   1799 	/*
   1800 	 * The packet is genuine.  Update the peer's endpoint if the
   1801 	 * source address changed.
   1802 	 *
   1803 	 * XXX How to prevent DoS by replaying genuine packets from the
   1804 	 * wrong source address?
   1805 	 */
   1806 	wg_update_endpoint_if_necessary(wgp, src);
   1807 
   1808 	/*
   1809 	 * Even though we don't transition from INIT_PASSIVE to
   1810 	 * ESTABLISHED until we receive the first data packet from the
   1811 	 * initiator, we count the time of the INIT message as the time
   1812 	 * of establishment -- this is used to decide when to erase
   1813 	 * keys, and we want to start counting as soon as we have
   1814 	 * generated keys.
   1815 	 */
   1816 	wgs->wgs_time_established = time_uptime32;
   1817 	wg_schedule_session_dtor_timer(wgp);
   1818 
   1819 	/*
   1820 	 * Respond to the initiator with our ephemeral public key.
   1821 	 */
   1822 	wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
   1823 
   1824 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
   1825 	    " calculate keys as responder\n",
   1826 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   1827 	wg_calculate_keys(wgs, false);
   1828 	wg_clear_states(wgs);
   1829 
   1830 	/*
   1831 	 * Session is ready to receive data now that we have received
   1832 	 * the peer initiator's ephemeral key pair, generated our
   1833 	 * responder's ephemeral key pair, and derived a session key.
   1834 	 *
   1835 	 * Transition from UNKNOWN to INIT_PASSIVE to publish it to the
   1836 	 * data rx path, wg_handle_msg_data, where the
   1837 	 * atomic_load_acquire matching this atomic_store_release
   1838 	 * happens.
   1839 	 *
   1840 	 * (Session is not, however, ready to send data until the peer
   1841 	 * has acknowledged our response by sending its first data
   1842 	 * packet.  So don't swap the sessions yet.)
   1843 	 */
   1844 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_INIT_PASSIVE\n",
   1845 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   1846 	atomic_store_release(&wgs->wgs_state, WGS_STATE_INIT_PASSIVE);
   1847 	WG_TRACE("WGS_STATE_INIT_PASSIVE");
   1848 
   1849 out:
   1850 	mutex_exit(wgp->wgp_lock);
   1851 	wg_put_peer(wgp, &psref_peer);
   1852 }
   1853 
   1854 static struct socket *
   1855 wg_get_so_by_af(struct wg_softc *wg, const int af)
   1856 {
   1857 
   1858 	switch (af) {
   1859 #ifdef INET
   1860 	case AF_INET:
   1861 		return wg->wg_so4;
   1862 #endif
   1863 #ifdef INET6
   1864 	case AF_INET6:
   1865 		return wg->wg_so6;
   1866 #endif
   1867 	default:
   1868 		panic("wg: no such af: %d", af);
   1869 	}
   1870 }
   1871 
   1872 static struct socket *
   1873 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
   1874 {
   1875 
   1876 	return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
   1877 }
   1878 
   1879 static struct wg_sockaddr *
   1880 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
   1881 {
   1882 	struct wg_sockaddr *wgsa;
   1883 	int s;
   1884 
   1885 	s = pserialize_read_enter();
   1886 	wgsa = atomic_load_consume(&wgp->wgp_endpoint);
   1887 	psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
   1888 	pserialize_read_exit(s);
   1889 
   1890 	return wgsa;
   1891 }
   1892 
   1893 static void
   1894 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
   1895 {
   1896 
   1897 	psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
   1898 }
   1899 
   1900 static int
   1901 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
   1902 {
   1903 	int error;
   1904 	struct socket *so;
   1905 	struct psref psref;
   1906 	struct wg_sockaddr *wgsa;
   1907 
   1908 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   1909 	so = wg_get_so_by_peer(wgp, wgsa);
   1910 	error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
   1911 	wg_put_sa(wgp, wgsa, &psref);
   1912 
   1913 	return error;
   1914 }
   1915 
   1916 static void
   1917 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
   1918 {
   1919 	int error;
   1920 	struct mbuf *m;
   1921 	struct wg_msg_init *wgmi;
   1922 	struct wg_session *wgs;
   1923 
   1924 	KASSERT(mutex_owned(wgp->wgp_lock));
   1925 
   1926 	wgs = wgp->wgp_session_unstable;
   1927 	/* XXX pull dispatch out into wg_task_send_init_message */
   1928 	switch (wgs->wgs_state) {
   1929 	case WGS_STATE_UNKNOWN:		/* new session initiated by us */
   1930 		break;
   1931 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, stop */
   1932 		WG_TRACE("Session already initializing, skip starting new one");
   1933 		return;
   1934 	case WGS_STATE_INIT_PASSIVE:	/* peer was trying -- XXX what now? */
   1935 		WG_TRACE("Session already initializing, waiting for peer");
   1936 		return;
   1937 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1938 		panic("unstable session can't be established");
   1939 	case WGS_STATE_DESTROYING:	/* rekey initiated by us too early */
   1940 		WG_TRACE("Session destroying");
   1941 		wg_put_session_index(wg, wgs);
   1942 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1943 		    wgs->wgs_state);
   1944 		break;
   1945 	}
   1946 
   1947 	/*
   1948 	 * Assign a fresh session index.
   1949 	 */
   1950 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1951 	    wgs->wgs_state);
   1952 	wg_get_session_index(wg, wgs);
   1953 
   1954 	/*
   1955 	 * We have initiated a session.  Transition to INIT_ACTIVE.
   1956 	 * This doesn't publish it for use in the data rx path,
   1957 	 * wg_handle_msg_data, or in the data tx path, wg_output -- we
   1958 	 * have to wait for the peer to respond with their ephemeral
   1959 	 * public key before we can derive a session key for tx/rx.
   1960 	 * Hence only atomic_store_relaxed.
   1961 	 */
   1962 	WG_DLOG("session[L=%"PRIx32" R=(unknown)] -> WGS_STATE_INIT_ACTIVE\n",
   1963 	    wgs->wgs_local_index);
   1964 	atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_INIT_ACTIVE);
   1965 
   1966 	m = m_gethdr(M_WAIT, MT_DATA);
   1967 	if (sizeof(*wgmi) > MHLEN) {
   1968 		m_clget(m, M_WAIT);
   1969 		CTASSERT(sizeof(*wgmi) <= MCLBYTES);
   1970 	}
   1971 	m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
   1972 	wgmi = mtod(m, struct wg_msg_init *);
   1973 	wg_fill_msg_init(wg, wgp, wgs, wgmi);
   1974 
   1975 	error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
   1976 	if (error) {
   1977 		/*
   1978 		 * Sending out an initiation packet failed; give up on
   1979 		 * this session and toss packet waiting for it if any.
   1980 		 *
   1981 		 * XXX Why don't we just let the periodic handshake
   1982 		 * retry logic work in this case?
   1983 		 */
   1984 		WG_DLOG("send_hs_msg failed, error=%d\n", error);
   1985 		wg_put_session_index(wg, wgs);
   1986 		m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   1987 		membar_acquire(); /* matches membar_release in wgintr */
   1988 		m_freem(m);
   1989 		return;
   1990 	}
   1991 
   1992 	WG_TRACE("init msg sent");
   1993 	if (wgp->wgp_handshake_start_time == 0)
   1994 		wgp->wgp_handshake_start_time = time_uptime;
   1995 	callout_schedule(&wgp->wgp_handshake_timeout_timer,
   1996 	    MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
   1997 }
   1998 
   1999 static void
   2000 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   2001     struct wg_session *wgs, struct wg_msg_resp *wgmr,
   2002     const struct wg_msg_init *wgmi)
   2003 {
   2004 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   2005 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
   2006 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   2007 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   2008 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   2009 
   2010 	KASSERT(mutex_owned(wgp->wgp_lock));
   2011 	KASSERT(wgs == wgp->wgp_session_unstable);
   2012 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   2013 	    wgs->wgs_state);
   2014 
   2015 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   2016 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   2017 
   2018 	wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
   2019 	wgmr->wgmr_sender = wgs->wgs_local_index;
   2020 	wgmr->wgmr_receiver = wgmi->wgmi_sender;
   2021 
   2022 	/* [W] 5.4.3 Second Message: Responder to Initiator */
   2023 
   2024 	/* [N] 2.2: "e" */
   2025 	/* Er^priv, Er^pub := DH-GENERATE() */
   2026 	wg_algo_generate_keypair(pubkey, privkey);
   2027 	/* Cr := KDF1(Cr, Er^pub) */
   2028 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   2029 	/* msg.ephemeral := Er^pub */
   2030 	memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
   2031 	/* Hr := HASH(Hr || msg.ephemeral) */
   2032 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   2033 
   2034 	WG_DUMP_HASH("ckey", ckey);
   2035 	WG_DUMP_HASH("hash", hash);
   2036 
   2037 	/* [N] 2.2: "ee" */
   2038 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   2039 	wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
   2040 
   2041 	/* [N] 2.2: "se" */
   2042 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   2043 	wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
   2044 
   2045 	/* [N] 9.2: "psk" */
   2046     {
   2047 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   2048 	/* Cr, r, k := KDF3(Cr, Q) */
   2049 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   2050 	    sizeof(wgp->wgp_psk));
   2051 	/* Hr := HASH(Hr || r) */
   2052 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   2053     }
   2054 
   2055 	/* msg.empty := AEAD(k, 0, e, Hr) */
   2056 	wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
   2057 	    cipher_key, 0, NULL, 0, hash, sizeof(hash));
   2058 	/* Hr := HASH(Hr || msg.empty) */
   2059 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   2060 
   2061 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   2062 
   2063 	/* [W] 5.4.4: Cookie MACs */
   2064 	/* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
   2065 	wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
   2066 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   2067 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   2068 	/* Need mac1 to decrypt a cookie from a cookie message */
   2069 	memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
   2070 	    sizeof(wgp->wgp_last_sent_mac1));
   2071 	wgp->wgp_last_sent_mac1_valid = true;
   2072 
   2073 	if (wgp->wgp_latest_cookie_time == 0 ||
   2074 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   2075 		/* msg.mac2 := 0^16 */
   2076 		memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
   2077 	else {
   2078 		/* msg.mac2 := MAC(Lm, msg_b) */
   2079 		wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
   2080 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   2081 		    (const uint8_t *)wgmr,
   2082 		    offsetof(struct wg_msg_resp, wgmr_mac2),
   2083 		    NULL, 0);
   2084 	}
   2085 
   2086 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   2087 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   2088 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   2089 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   2090 	wgs->wgs_remote_index = wgmi->wgmi_sender;
   2091 	WG_DLOG("sender=%x\n", wgs->wgs_local_index);
   2092 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   2093 }
   2094 
   2095 /*
   2096  * wg_swap_sessions(wg, wgp)
   2097  *
   2098  *	Caller has just finished establishing the unstable session in
   2099  *	wg for peer wgp.  Publish it as the stable session, send queued
   2100  *	packets or keepalives as necessary to kick off the session,
   2101  *	move the previously stable session to unstable, and begin
   2102  *	destroying it.
   2103  */
   2104 static void
   2105 wg_swap_sessions(struct wg_softc *wg, struct wg_peer *wgp)
   2106 {
   2107 	struct wg_session *wgs, *wgs_prev;
   2108 	struct mbuf *m;
   2109 
   2110 	KASSERT(mutex_owned(wgp->wgp_lock));
   2111 
   2112 	/*
   2113 	 * Get the newly established session, to become the new
   2114 	 * session.  Caller must have transitioned from INIT_ACTIVE to
   2115 	 * INIT_PASSIVE or to ESTABLISHED already.  This will become
   2116 	 * the stable session.
   2117 	 */
   2118 	wgs = wgp->wgp_session_unstable;
   2119 	KASSERTMSG(wgs->wgs_state == WGS_STATE_ESTABLISHED, "state=%d",
   2120 	    wgs->wgs_state);
   2121 
   2122 	/*
   2123 	 * Get the stable session, which is either the previously
   2124 	 * established session in the ESTABLISHED state, or has not
   2125 	 * been established at all and is UNKNOWN.  This will become
   2126 	 * the unstable session.
   2127 	 */
   2128 	wgs_prev = wgp->wgp_session_stable;
   2129 	KASSERTMSG((wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
   2130 		wgs_prev->wgs_state == WGS_STATE_UNKNOWN),
   2131 	    "state=%d", wgs_prev->wgs_state);
   2132 
   2133 	/*
   2134 	 * Publish the newly established session for the tx path to use
   2135 	 * and make the other one the unstable session to handle
   2136 	 * stragglers in the rx path and later be used for the next
   2137 	 * session's handshake.
   2138 	 */
   2139 	atomic_store_release(&wgp->wgp_session_stable, wgs);
   2140 	wgp->wgp_session_unstable = wgs_prev;
   2141 
   2142 	/*
   2143 	 * Record the handshake time and reset the handshake state.
   2144 	 */
   2145 	getnanotime(&wgp->wgp_last_handshake_time);
   2146 	wgp->wgp_handshake_start_time = 0;
   2147 	wgp->wgp_last_sent_mac1_valid = false;
   2148 	wgp->wgp_last_sent_cookie_valid = false;
   2149 
   2150 	/*
   2151 	 * If we had a data packet queued up, send it.
   2152 	 *
   2153 	 * If not, but we're the initiator, send a keepalive message --
   2154 	 * if we're the initiator we have to send something immediately
   2155 	 * or else the responder will never answer.
   2156 	 */
   2157 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   2158 		membar_acquire(); /* matches membar_release in wgintr */
   2159 		wg_send_data_msg(wgp, wgs, m); /* consumes m */
   2160 		m = NULL;
   2161 	} else if (wgs->wgs_is_initiator) {
   2162 		wg_send_keepalive_msg(wgp, wgs);
   2163 	}
   2164 
   2165 	/*
   2166 	 * If the previous stable session was established, begin to
   2167 	 * destroy it.
   2168 	 */
   2169 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   2170 		/*
   2171 		 * Transition ESTABLISHED->DESTROYING.  The session
   2172 		 * will remain usable for the data rx path to process
   2173 		 * packets still in flight to us, but we won't use it
   2174 		 * for data tx.
   2175 		 */
   2176 		WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
   2177 		    " -> WGS_STATE_DESTROYING\n",
   2178 		    wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
   2179 		atomic_store_relaxed(&wgs_prev->wgs_state,
   2180 		    WGS_STATE_DESTROYING);
   2181 	} else {
   2182 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   2183 		    "state=%d", wgs_prev->wgs_state);
   2184 		wgs_prev->wgs_local_index = 0; /* paranoia */
   2185 		wgs_prev->wgs_remote_index = 0; /* paranoia */
   2186 		wg_clear_states(wgs_prev); /* paranoia */
   2187 		wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
   2188 	}
   2189 }
   2190 
   2191 static void __noinline
   2192 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
   2193     const struct sockaddr *src)
   2194 {
   2195 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   2196 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
   2197 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   2198 	struct wg_peer *wgp;
   2199 	struct wg_session *wgs;
   2200 	struct psref psref;
   2201 	int error;
   2202 	uint8_t mac1[WG_MAC_LEN];
   2203 
   2204 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   2205 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   2206 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   2207 
   2208 	/*
   2209 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   2210 	 * "the responder, ..., must always reject messages with an invalid
   2211 	 *  msg.mac1"
   2212 	 */
   2213 	if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
   2214 		WG_DLOG("mac1 is invalid\n");
   2215 		return;
   2216 	}
   2217 
   2218 	WG_TRACE("resp msg received");
   2219 	wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
   2220 	if (wgs == NULL) {
   2221 		WG_TRACE("No session found");
   2222 		return;
   2223 	}
   2224 
   2225 	wgp = wgs->wgs_peer;
   2226 
   2227 	mutex_enter(wgp->wgp_lock);
   2228 
   2229 	/* If we weren't waiting for a handshake response, drop it.  */
   2230 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
   2231 		WG_TRACE("peer sent spurious handshake response, ignoring");
   2232 		goto out;
   2233 	}
   2234 
   2235 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
   2236 		WG_TRACE("under load");
   2237 		/*
   2238 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   2239 		 * "the responder, ..., and when under load may reject messages
   2240 		 *  with an invalid msg.mac2.  If the responder receives a
   2241 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   2242 		 *  and is under load, it may respond with a cookie reply
   2243 		 *  message"
   2244 		 */
   2245 		uint8_t zero[WG_MAC_LEN] = {0};
   2246 		if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
   2247 			WG_TRACE("sending a cookie message: no cookie included");
   2248 			wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   2249 			    wgmr->wgmr_mac1, src);
   2250 			goto out;
   2251 		}
   2252 		if (!wgp->wgp_last_sent_cookie_valid) {
   2253 			WG_TRACE("sending a cookie message: no cookie sent ever");
   2254 			wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   2255 			    wgmr->wgmr_mac1, src);
   2256 			goto out;
   2257 		}
   2258 		uint8_t mac2[WG_MAC_LEN];
   2259 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   2260 		    WG_COOKIE_LEN, (const uint8_t *)wgmr,
   2261 		    offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
   2262 		if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
   2263 			WG_DLOG("mac2 is invalid\n");
   2264 			goto out;
   2265 		}
   2266 		WG_TRACE("under load, but continue to sending");
   2267 	}
   2268 
   2269 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   2270 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   2271 
   2272 	/*
   2273 	 * [W] 5.4.3 Second Message: Responder to Initiator
   2274 	 * "When the initiator receives this message, it does the same
   2275 	 *  operations so that its final state variables are identical,
   2276 	 *  replacing the operands of the DH function to produce equivalent
   2277 	 *  values."
   2278 	 *  Note that the following comments of operations are just copies of
   2279 	 *  the initiator's ones.
   2280 	 */
   2281 
   2282 	/* [N] 2.2: "e" */
   2283 	/* Cr := KDF1(Cr, Er^pub) */
   2284 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
   2285 	    sizeof(wgmr->wgmr_ephemeral));
   2286 	/* Hr := HASH(Hr || msg.ephemeral) */
   2287 	wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
   2288 
   2289 	WG_DUMP_HASH("ckey", ckey);
   2290 	WG_DUMP_HASH("hash", hash);
   2291 
   2292 	/* [N] 2.2: "ee" */
   2293 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   2294 	wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
   2295 	    wgmr->wgmr_ephemeral);
   2296 
   2297 	/* [N] 2.2: "se" */
   2298 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   2299 	wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
   2300 
   2301 	/* [N] 9.2: "psk" */
   2302     {
   2303 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   2304 	/* Cr, r, k := KDF3(Cr, Q) */
   2305 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   2306 	    sizeof(wgp->wgp_psk));
   2307 	/* Hr := HASH(Hr || r) */
   2308 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   2309     }
   2310 
   2311     {
   2312 	uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
   2313 	/* msg.empty := AEAD(k, 0, e, Hr) */
   2314 	error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
   2315 	    sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
   2316 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   2317 	if (error != 0) {
   2318 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2319 		    "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
   2320 		    if_name(&wg->wg_if), wgp->wgp_name);
   2321 		goto out;
   2322 	}
   2323 	/* Hr := HASH(Hr || msg.empty) */
   2324 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   2325     }
   2326 
   2327 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
   2328 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
   2329 	wgs->wgs_remote_index = wgmr->wgmr_sender;
   2330 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   2331 
   2332 	/*
   2333 	 * The packet is genuine.  Update the peer's endpoint if the
   2334 	 * source address changed.
   2335 	 *
   2336 	 * XXX How to prevent DoS by replaying genuine packets from the
   2337 	 * wrong source address?
   2338 	 */
   2339 	wg_update_endpoint_if_necessary(wgp, src);
   2340 
   2341 	KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
   2342 	    wgs->wgs_state);
   2343 	wgs->wgs_time_established = time_uptime32;
   2344 	wg_schedule_session_dtor_timer(wgp);
   2345 	wgs->wgs_time_last_data_sent = 0;
   2346 	wgs->wgs_is_initiator = true;
   2347 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
   2348 	    " calculate keys as initiator\n",
   2349 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   2350 	wg_calculate_keys(wgs, true);
   2351 	wg_clear_states(wgs);
   2352 
   2353 	/*
   2354 	 * Session is ready to receive data now that we have received
   2355 	 * the responder's response.
   2356 	 *
   2357 	 * Transition from INIT_ACTIVE to ESTABLISHED to publish it to
   2358 	 * the data rx path, wg_handle_msg_data.
   2359 	 */
   2360 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32" -> WGS_STATE_ESTABLISHED\n",
   2361 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   2362 	atomic_store_release(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
   2363 	WG_TRACE("WGS_STATE_ESTABLISHED");
   2364 
   2365 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
   2366 
   2367 	/*
   2368 	 * Session is ready to send data now that we have received the
   2369 	 * responder's response.
   2370 	 *
   2371 	 * Swap the sessions to publish the new one as the stable
   2372 	 * session for the data tx path, wg_output.
   2373 	 */
   2374 	wg_swap_sessions(wg, wgp);
   2375 	KASSERT(wgs == wgp->wgp_session_stable);
   2376 
   2377 out:
   2378 	mutex_exit(wgp->wgp_lock);
   2379 	wg_put_session(wgs, &psref);
   2380 }
   2381 
   2382 static void
   2383 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   2384     struct wg_session *wgs, const struct wg_msg_init *wgmi)
   2385 {
   2386 	int error;
   2387 	struct mbuf *m;
   2388 	struct wg_msg_resp *wgmr;
   2389 
   2390 	KASSERT(mutex_owned(wgp->wgp_lock));
   2391 	KASSERT(wgs == wgp->wgp_session_unstable);
   2392 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   2393 	    wgs->wgs_state);
   2394 
   2395 	m = m_gethdr(M_WAIT, MT_DATA);
   2396 	if (sizeof(*wgmr) > MHLEN) {
   2397 		m_clget(m, M_WAIT);
   2398 		CTASSERT(sizeof(*wgmr) <= MCLBYTES);
   2399 	}
   2400 	m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
   2401 	wgmr = mtod(m, struct wg_msg_resp *);
   2402 	wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
   2403 
   2404 	error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
   2405 	if (error) {
   2406 		WG_DLOG("send_hs_msg failed, error=%d\n", error);
   2407 		return;
   2408 	}
   2409 
   2410 	WG_TRACE("resp msg sent");
   2411 }
   2412 
   2413 static struct wg_peer *
   2414 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
   2415     const uint8_t pubkey[static WG_STATIC_KEY_LEN], struct psref *psref)
   2416 {
   2417 	struct wg_peer *wgp;
   2418 
   2419 	int s = pserialize_read_enter();
   2420 	wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
   2421 	if (wgp != NULL)
   2422 		wg_get_peer(wgp, psref);
   2423 	pserialize_read_exit(s);
   2424 
   2425 	return wgp;
   2426 }
   2427 
   2428 static void
   2429 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
   2430     struct wg_msg_cookie *wgmc, const uint32_t sender,
   2431     const uint8_t mac1[static WG_MAC_LEN], const struct sockaddr *src)
   2432 {
   2433 	uint8_t cookie[WG_COOKIE_LEN];
   2434 	uint8_t key[WG_HASH_LEN];
   2435 	uint8_t addr[sizeof(struct in6_addr)];
   2436 	size_t addrlen;
   2437 	uint16_t uh_sport; /* be */
   2438 
   2439 	KASSERT(mutex_owned(wgp->wgp_lock));
   2440 
   2441 	wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
   2442 	wgmc->wgmc_receiver = sender;
   2443 	cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
   2444 
   2445 	/*
   2446 	 * [W] 5.4.7: Under Load: Cookie Reply Message
   2447 	 * "The secret variable, Rm, changes every two minutes to a
   2448 	 * random value"
   2449 	 */
   2450 	if ((time_uptime - wgp->wgp_last_cookiesecret_time) >
   2451 	    WG_COOKIESECRET_TIME) {
   2452 		cprng_strong(kern_cprng, wgp->wgp_cookiesecret,
   2453 		    sizeof(wgp->wgp_cookiesecret), 0);
   2454 		wgp->wgp_last_cookiesecret_time = time_uptime;
   2455 	}
   2456 
   2457 	switch (src->sa_family) {
   2458 #ifdef INET
   2459 	case AF_INET: {
   2460 		const struct sockaddr_in *sin = satocsin(src);
   2461 		addrlen = sizeof(sin->sin_addr);
   2462 		memcpy(addr, &sin->sin_addr, addrlen);
   2463 		uh_sport = sin->sin_port;
   2464 		break;
   2465 	    }
   2466 #endif
   2467 #ifdef INET6
   2468 	case AF_INET6: {
   2469 		const struct sockaddr_in6 *sin6 = satocsin6(src);
   2470 		addrlen = sizeof(sin6->sin6_addr);
   2471 		memcpy(addr, &sin6->sin6_addr, addrlen);
   2472 		uh_sport = sin6->sin6_port;
   2473 		break;
   2474 	    }
   2475 #endif
   2476 	default:
   2477 		panic("invalid af=%d", src->sa_family);
   2478 	}
   2479 
   2480 	wg_algo_mac(cookie, sizeof(cookie),
   2481 	    wgp->wgp_cookiesecret, sizeof(wgp->wgp_cookiesecret),
   2482 	    addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
   2483 	wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
   2484 	    sizeof(wg->wg_pubkey));
   2485 	wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
   2486 	    cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
   2487 
   2488 	/* Need to store to calculate mac2 */
   2489 	memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
   2490 	wgp->wgp_last_sent_cookie_valid = true;
   2491 }
   2492 
   2493 static void
   2494 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
   2495     const uint32_t sender, const uint8_t mac1[static WG_MAC_LEN],
   2496     const struct sockaddr *src)
   2497 {
   2498 	int error;
   2499 	struct mbuf *m;
   2500 	struct wg_msg_cookie *wgmc;
   2501 
   2502 	KASSERT(mutex_owned(wgp->wgp_lock));
   2503 
   2504 	m = m_gethdr(M_WAIT, MT_DATA);
   2505 	if (sizeof(*wgmc) > MHLEN) {
   2506 		m_clget(m, M_WAIT);
   2507 		CTASSERT(sizeof(*wgmc) <= MCLBYTES);
   2508 	}
   2509 	m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
   2510 	wgmc = mtod(m, struct wg_msg_cookie *);
   2511 	wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
   2512 
   2513 	error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
   2514 	if (error) {
   2515 		WG_DLOG("send_hs_msg failed, error=%d\n", error);
   2516 		return;
   2517 	}
   2518 
   2519 	WG_TRACE("cookie msg sent");
   2520 }
   2521 
   2522 static bool
   2523 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
   2524 {
   2525 #ifdef WG_DEBUG_PARAMS
   2526 	if (wg_force_underload)
   2527 		return true;
   2528 #endif
   2529 
   2530 	/*
   2531 	 * XXX we don't have a means of a load estimation.  The purpose of
   2532 	 * the mechanism is a DoS mitigation, so we consider frequent handshake
   2533 	 * messages as (a kind of) load; if a message of the same type comes
   2534 	 * to a peer within 1 second, we consider we are under load.
   2535 	 */
   2536 	time_t last = wgp->wgp_last_msg_received_time[msgtype];
   2537 	wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
   2538 	return (time_uptime - last) == 0;
   2539 }
   2540 
   2541 static void
   2542 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
   2543 {
   2544 
   2545 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2546 
   2547 	/*
   2548 	 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
   2549 	 */
   2550 	if (initiator) {
   2551 		wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
   2552 		    wgs->wgs_chaining_key, NULL, 0);
   2553 	} else {
   2554 		wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
   2555 		    wgs->wgs_chaining_key, NULL, 0);
   2556 	}
   2557 	WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
   2558 	WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
   2559 }
   2560 
   2561 static uint64_t
   2562 wg_session_get_send_counter(struct wg_session *wgs)
   2563 {
   2564 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2565 	return atomic_load_relaxed(&wgs->wgs_send_counter);
   2566 #else
   2567 	uint64_t send_counter;
   2568 
   2569 	mutex_enter(&wgs->wgs_send_counter_lock);
   2570 	send_counter = wgs->wgs_send_counter;
   2571 	mutex_exit(&wgs->wgs_send_counter_lock);
   2572 
   2573 	return send_counter;
   2574 #endif
   2575 }
   2576 
   2577 static uint64_t
   2578 wg_session_inc_send_counter(struct wg_session *wgs)
   2579 {
   2580 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2581 	return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
   2582 #else
   2583 	uint64_t send_counter;
   2584 
   2585 	mutex_enter(&wgs->wgs_send_counter_lock);
   2586 	send_counter = wgs->wgs_send_counter++;
   2587 	mutex_exit(&wgs->wgs_send_counter_lock);
   2588 
   2589 	return send_counter;
   2590 #endif
   2591 }
   2592 
   2593 static void
   2594 wg_clear_states(struct wg_session *wgs)
   2595 {
   2596 
   2597 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2598 
   2599 	wgs->wgs_send_counter = 0;
   2600 	sliwin_reset(&wgs->wgs_recvwin->window);
   2601 
   2602 #define wgs_clear(v)	explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
   2603 	wgs_clear(handshake_hash);
   2604 	wgs_clear(chaining_key);
   2605 	wgs_clear(ephemeral_key_pub);
   2606 	wgs_clear(ephemeral_key_priv);
   2607 	wgs_clear(ephemeral_key_peer);
   2608 #undef wgs_clear
   2609 }
   2610 
   2611 static struct wg_session *
   2612 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
   2613     struct psref *psref)
   2614 {
   2615 	struct wg_session *wgs;
   2616 
   2617 	int s = pserialize_read_enter();
   2618 	wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
   2619 	if (wgs != NULL) {
   2620 		KASSERTMSG(index == wgs->wgs_local_index,
   2621 		    "index=%"PRIx32" wgs->wgs_local_index=%"PRIx32,
   2622 		    index, wgs->wgs_local_index);
   2623 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   2624 	}
   2625 	pserialize_read_exit(s);
   2626 
   2627 	return wgs;
   2628 }
   2629 
   2630 static void
   2631 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
   2632 {
   2633 	struct mbuf *m;
   2634 
   2635 	/*
   2636 	 * [W] 6.5 Passive Keepalive
   2637 	 * "A keepalive message is simply a transport data message with
   2638 	 *  a zero-length encapsulated encrypted inner-packet."
   2639 	 */
   2640 	WG_TRACE("");
   2641 	m = m_gethdr(M_WAIT, MT_DATA);
   2642 	wg_send_data_msg(wgp, wgs, m);
   2643 }
   2644 
   2645 static bool
   2646 wg_need_to_send_init_message(struct wg_session *wgs)
   2647 {
   2648 	/*
   2649 	 * [W] 6.2 Transport Message Limits
   2650 	 * "if a peer is the initiator of a current secure session,
   2651 	 *  WireGuard will send a handshake initiation message to begin
   2652 	 *  a new secure session ... if after receiving a transport data
   2653 	 *  message, the current secure session is (REJECT-AFTER-TIME 
   2654 	 *  KEEPALIVE-TIMEOUT  REKEY-TIMEOUT) seconds old and it has
   2655 	 *  not yet acted upon this event."
   2656 	 */
   2657 	return wgs->wgs_is_initiator &&
   2658 	    atomic_load_relaxed(&wgs->wgs_time_last_data_sent) == 0 &&
   2659 	    (time_uptime32 - wgs->wgs_time_established >=
   2660 		(wg_reject_after_time - wg_keepalive_timeout -
   2661 		    wg_rekey_timeout));
   2662 }
   2663 
   2664 static void
   2665 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
   2666 {
   2667 
   2668 	mutex_enter(wgp->wgp_intr_lock);
   2669 	WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
   2670 	if (wgp->wgp_tasks == 0)
   2671 		/*
   2672 		 * XXX If the current CPU is already loaded -- e.g., if
   2673 		 * there's already a bunch of handshakes queued up --
   2674 		 * consider tossing this over to another CPU to
   2675 		 * distribute the load.
   2676 		 */
   2677 		workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
   2678 	wgp->wgp_tasks |= task;
   2679 	mutex_exit(wgp->wgp_intr_lock);
   2680 }
   2681 
   2682 static void
   2683 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
   2684 {
   2685 	struct wg_sockaddr *wgsa_prev;
   2686 
   2687 	WG_TRACE("Changing endpoint");
   2688 
   2689 	memcpy(wgp->wgp_endpoint0, new, new->sa_len);
   2690 	wgsa_prev = wgp->wgp_endpoint;
   2691 	atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
   2692 	wgp->wgp_endpoint0 = wgsa_prev;
   2693 	atomic_store_release(&wgp->wgp_endpoint_available, true);
   2694 
   2695 	wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
   2696 }
   2697 
   2698 static bool
   2699 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
   2700 {
   2701 	uint16_t packet_len;
   2702 	const struct ip *ip;
   2703 
   2704 	if (__predict_false(decrypted_len < sizeof(*ip))) {
   2705 		WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2706 		    sizeof(*ip));
   2707 		return false;
   2708 	}
   2709 
   2710 	ip = (const struct ip *)packet;
   2711 	if (ip->ip_v == 4)
   2712 		*af = AF_INET;
   2713 	else if (ip->ip_v == 6)
   2714 		*af = AF_INET6;
   2715 	else {
   2716 		WG_DLOG("ip_v=%d\n", ip->ip_v);
   2717 		return false;
   2718 	}
   2719 
   2720 	WG_DLOG("af=%d\n", *af);
   2721 
   2722 	switch (*af) {
   2723 #ifdef INET
   2724 	case AF_INET:
   2725 		packet_len = ntohs(ip->ip_len);
   2726 		break;
   2727 #endif
   2728 #ifdef INET6
   2729 	case AF_INET6: {
   2730 		const struct ip6_hdr *ip6;
   2731 
   2732 		if (__predict_false(decrypted_len < sizeof(*ip6))) {
   2733 			WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2734 			    sizeof(*ip6));
   2735 			return false;
   2736 		}
   2737 
   2738 		ip6 = (const struct ip6_hdr *)packet;
   2739 		packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
   2740 		break;
   2741 	}
   2742 #endif
   2743 	default:
   2744 		return false;
   2745 	}
   2746 
   2747 	if (packet_len > decrypted_len) {
   2748 		WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
   2749 		    decrypted_len);
   2750 		return false;
   2751 	}
   2752 
   2753 	return true;
   2754 }
   2755 
   2756 static bool
   2757 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
   2758     int af, char *packet)
   2759 {
   2760 	struct sockaddr_storage ss;
   2761 	struct sockaddr *sa;
   2762 	struct psref psref;
   2763 	struct wg_peer *wgp;
   2764 	bool ok;
   2765 
   2766 	/*
   2767 	 * II CRYPTOKEY ROUTING
   2768 	 * "it will only accept it if its source IP resolves in the
   2769 	 *  table to the public key used in the secure session for
   2770 	 *  decrypting it."
   2771 	 */
   2772 
   2773 	switch (af) {
   2774 #ifdef INET
   2775 	case AF_INET: {
   2776 		const struct ip *ip = (const struct ip *)packet;
   2777 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   2778 		sockaddr_in_init(sin, &ip->ip_src, 0);
   2779 		sa = sintosa(sin);
   2780 		break;
   2781 	}
   2782 #endif
   2783 #ifdef INET6
   2784 	case AF_INET6: {
   2785 		const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
   2786 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   2787 		sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
   2788 		sa = sin6tosa(sin6);
   2789 		break;
   2790 	}
   2791 #endif
   2792 	default:
   2793 		__USE(ss);
   2794 		return false;
   2795 	}
   2796 
   2797 	wgp = wg_pick_peer_by_sa(wg, sa, &psref);
   2798 	ok = (wgp == wgp_expected);
   2799 	if (wgp != NULL)
   2800 		wg_put_peer(wgp, &psref);
   2801 
   2802 	return ok;
   2803 }
   2804 
   2805 static void
   2806 wg_session_dtor_timer(void *arg)
   2807 {
   2808 	struct wg_peer *wgp = arg;
   2809 
   2810 	WG_TRACE("enter");
   2811 
   2812 	wg_schedule_session_dtor_timer(wgp);
   2813 	wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
   2814 }
   2815 
   2816 static void
   2817 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
   2818 {
   2819 
   2820 	/*
   2821 	 * If the periodic session destructor is already pending to
   2822 	 * handle the previous session, that's fine -- leave it in
   2823 	 * place; it will be scheduled again.
   2824 	 */
   2825 	if (callout_pending(&wgp->wgp_session_dtor_timer)) {
   2826 		WG_DLOG("session dtor already pending\n");
   2827 		return;
   2828 	}
   2829 
   2830 	WG_DLOG("scheduling session dtor in %u secs\n", wg_reject_after_time);
   2831 	callout_schedule(&wgp->wgp_session_dtor_timer,
   2832 	    wg_reject_after_time*hz);
   2833 }
   2834 
   2835 static bool
   2836 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
   2837 {
   2838 	if (sa1->sa_family != sa2->sa_family)
   2839 		return false;
   2840 
   2841 	switch (sa1->sa_family) {
   2842 #ifdef INET
   2843 	case AF_INET:
   2844 		return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
   2845 #endif
   2846 #ifdef INET6
   2847 	case AF_INET6:
   2848 		return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
   2849 #endif
   2850 	default:
   2851 		return false;
   2852 	}
   2853 }
   2854 
   2855 static void
   2856 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
   2857     const struct sockaddr *src)
   2858 {
   2859 	struct wg_sockaddr *wgsa;
   2860 	struct psref psref;
   2861 
   2862 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   2863 
   2864 #ifdef WG_DEBUG_LOG
   2865 	char oldaddr[128], newaddr[128];
   2866 	sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
   2867 	sockaddr_format(src, newaddr, sizeof(newaddr));
   2868 	WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
   2869 #endif
   2870 
   2871 	/*
   2872 	 * III: "Since the packet has authenticated correctly, the source IP of
   2873 	 * the outer UDP/IP packet is used to update the endpoint for peer..."
   2874 	 */
   2875 	if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
   2876 		!sockaddr_port_match(src, wgsatosa(wgsa)))) {
   2877 		/* XXX We can't change the endpoint twice in a short period */
   2878 		if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
   2879 			wg_change_endpoint(wgp, src);
   2880 		}
   2881 	}
   2882 
   2883 	wg_put_sa(wgp, wgsa, &psref);
   2884 }
   2885 
   2886 static void __noinline
   2887 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
   2888     const struct sockaddr *src)
   2889 {
   2890 	struct wg_msg_data *wgmd;
   2891 	char *encrypted_buf = NULL, *decrypted_buf;
   2892 	size_t encrypted_len, decrypted_len;
   2893 	struct wg_session *wgs;
   2894 	struct wg_peer *wgp;
   2895 	int state;
   2896 	uint32_t age;
   2897 	size_t mlen;
   2898 	struct psref psref;
   2899 	int error, af;
   2900 	bool success, free_encrypted_buf = false, ok;
   2901 	struct mbuf *n;
   2902 
   2903 	KASSERT(m->m_len >= sizeof(struct wg_msg_data));
   2904 	wgmd = mtod(m, struct wg_msg_data *);
   2905 
   2906 	KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
   2907 	WG_TRACE("data");
   2908 
   2909 	/* Find the putative session, or drop.  */
   2910 	wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
   2911 	if (wgs == NULL) {
   2912 		WG_TRACE("No session found");
   2913 		m_freem(m);
   2914 		return;
   2915 	}
   2916 
   2917 	/*
   2918 	 * We are only ready to handle data when in INIT_PASSIVE,
   2919 	 * ESTABLISHED, or DESTROYING.  All transitions out of that
   2920 	 * state dissociate the session index and drain psrefs.
   2921 	 *
   2922 	 * atomic_load_acquire matches atomic_store_release in either
   2923 	 * wg_handle_msg_init or wg_handle_msg_resp.  (The transition
   2924 	 * INIT_PASSIVE to ESTABLISHED in wg_task_establish_session
   2925 	 * doesn't make a difference for this rx path.)
   2926 	 */
   2927 	state = atomic_load_acquire(&wgs->wgs_state);
   2928 	switch (state) {
   2929 	case WGS_STATE_UNKNOWN:
   2930 	case WGS_STATE_INIT_ACTIVE:
   2931 		WG_TRACE("not yet ready for data");
   2932 		goto out;
   2933 	case WGS_STATE_INIT_PASSIVE:
   2934 	case WGS_STATE_ESTABLISHED:
   2935 	case WGS_STATE_DESTROYING:
   2936 		break;
   2937 	}
   2938 
   2939 	/*
   2940 	 * Reject if the session is too old.
   2941 	 */
   2942 	age = time_uptime32 - wgs->wgs_time_established;
   2943 	if (__predict_false(age >= wg_reject_after_time)) {
   2944 		WG_DLOG("session %"PRIx32" too old, %"PRIu32" sec\n",
   2945 		    wgmd->wgmd_receiver, age);
   2946 	       goto out;
   2947 	}
   2948 
   2949 	/*
   2950 	 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
   2951 	 * to update the endpoint if authentication succeeds.
   2952 	 */
   2953 	wgp = wgs->wgs_peer;
   2954 
   2955 	/*
   2956 	 * Reject outrageously wrong sequence numbers before doing any
   2957 	 * crypto work or taking any locks.
   2958 	 */
   2959 	error = sliwin_check_fast(&wgs->wgs_recvwin->window,
   2960 	    le64toh(wgmd->wgmd_counter));
   2961 	if (error) {
   2962 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2963 		    "%s: peer %s: out-of-window packet: %"PRIu64"\n",
   2964 		    if_name(&wg->wg_if), wgp->wgp_name,
   2965 		    le64toh(wgmd->wgmd_counter));
   2966 		goto out;
   2967 	}
   2968 
   2969 	/* Ensure the payload and authenticator are contiguous.  */
   2970 	mlen = m_length(m);
   2971 	encrypted_len = mlen - sizeof(*wgmd);
   2972 	if (encrypted_len < WG_AUTHTAG_LEN) {
   2973 		WG_DLOG("Short encrypted_len: %zu\n", encrypted_len);
   2974 		goto out;
   2975 	}
   2976 	success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
   2977 	if (success) {
   2978 		encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
   2979 	} else {
   2980 		encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
   2981 		if (encrypted_buf == NULL) {
   2982 			WG_DLOG("failed to allocate encrypted_buf\n");
   2983 			goto out;
   2984 		}
   2985 		m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
   2986 		free_encrypted_buf = true;
   2987 	}
   2988 	/* m_ensure_contig may change m regardless of its result */
   2989 	KASSERT(m->m_len >= sizeof(*wgmd));
   2990 	wgmd = mtod(m, struct wg_msg_data *);
   2991 
   2992 	/*
   2993 	 * Get a buffer for the plaintext.  Add WG_AUTHTAG_LEN to avoid
   2994 	 * a zero-length buffer (XXX).  Drop if plaintext is longer
   2995 	 * than MCLBYTES (XXX).
   2996 	 */
   2997 	decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
   2998 	if (decrypted_len > MCLBYTES) {
   2999 		/* FIXME handle larger data than MCLBYTES */
   3000 		WG_DLOG("couldn't handle larger data than MCLBYTES\n");
   3001 		goto out;
   3002 	}
   3003 	n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
   3004 	if (n == NULL) {
   3005 		WG_DLOG("wg_get_mbuf failed\n");
   3006 		goto out;
   3007 	}
   3008 	decrypted_buf = mtod(n, char *);
   3009 
   3010 	/* Decrypt and verify the packet.  */
   3011 	WG_DLOG("mlen=%zu, encrypted_len=%zu\n", mlen, encrypted_len);
   3012 	error = wg_algo_aead_dec(decrypted_buf,
   3013 	    encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
   3014 	    wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
   3015 	    encrypted_len, NULL, 0);
   3016 	if (error != 0) {
   3017 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   3018 		    "%s: peer %s: failed to wg_algo_aead_dec\n",
   3019 		    if_name(&wg->wg_if), wgp->wgp_name);
   3020 		m_freem(n);
   3021 		goto out;
   3022 	}
   3023 	WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
   3024 
   3025 	/* Packet is genuine.  Reject it if a replay or just too old.  */
   3026 	mutex_enter(&wgs->wgs_recvwin->lock);
   3027 	error = sliwin_update(&wgs->wgs_recvwin->window,
   3028 	    le64toh(wgmd->wgmd_counter));
   3029 	mutex_exit(&wgs->wgs_recvwin->lock);
   3030 	if (error) {
   3031 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   3032 		    "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
   3033 		    if_name(&wg->wg_if), wgp->wgp_name,
   3034 		    le64toh(wgmd->wgmd_counter));
   3035 		m_freem(n);
   3036 		goto out;
   3037 	}
   3038 
   3039 	/* We're done with m now; free it and chuck the pointers.  */
   3040 	m_freem(m);
   3041 	m = NULL;
   3042 	wgmd = NULL;
   3043 
   3044 	/*
   3045 	 * The packet is genuine.  Update the peer's endpoint if the
   3046 	 * source address changed.
   3047 	 *
   3048 	 * XXX How to prevent DoS by replaying genuine packets from the
   3049 	 * wrong source address?
   3050 	 */
   3051 	wg_update_endpoint_if_necessary(wgp, src);
   3052 
   3053 	/*
   3054 	 * Validate the encapsulated packet header and get the address
   3055 	 * family, or drop.
   3056 	 */
   3057 	ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
   3058 	if (!ok) {
   3059 		m_freem(n);
   3060 		goto update_state;
   3061 	}
   3062 
   3063 	/* Submit it into our network stack if routable.  */
   3064 	ok = wg_validate_route(wg, wgp, af, decrypted_buf);
   3065 	if (ok) {
   3066 		wg->wg_ops->input(&wg->wg_if, n, af);
   3067 	} else {
   3068 		char addrstr[INET6_ADDRSTRLEN];
   3069 		memset(addrstr, 0, sizeof(addrstr));
   3070 		switch (af) {
   3071 #ifdef INET
   3072 		case AF_INET: {
   3073 			const struct ip *ip = (const struct ip *)decrypted_buf;
   3074 			IN_PRINT(addrstr, &ip->ip_src);
   3075 			break;
   3076 		}
   3077 #endif
   3078 #ifdef INET6
   3079 		case AF_INET6: {
   3080 			const struct ip6_hdr *ip6 =
   3081 			    (const struct ip6_hdr *)decrypted_buf;
   3082 			IN6_PRINT(addrstr, &ip6->ip6_src);
   3083 			break;
   3084 		}
   3085 #endif
   3086 		default:
   3087 			panic("invalid af=%d", af);
   3088 		}
   3089 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   3090 		    "%s: peer %s: invalid source address (%s)\n",
   3091 		    if_name(&wg->wg_if), wgp->wgp_name, addrstr);
   3092 		m_freem(n);
   3093 		/*
   3094 		 * The inner address is invalid however the session is valid
   3095 		 * so continue the session processing below.
   3096 		 */
   3097 	}
   3098 	n = NULL;
   3099 
   3100 update_state:
   3101 	/* Update the state machine if necessary.  */
   3102 	if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
   3103 		/*
   3104 		 * We were waiting for the initiator to send their
   3105 		 * first data transport message, and that has happened.
   3106 		 * Schedule a task to establish this session.
   3107 		 */
   3108 		wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
   3109 	} else {
   3110 		if (__predict_false(wg_need_to_send_init_message(wgs))) {
   3111 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3112 		}
   3113 		/*
   3114 		 * [W] 6.5 Passive Keepalive
   3115 		 * "If a peer has received a validly-authenticated transport
   3116 		 *  data message (section 5.4.6), but does not have any packets
   3117 		 *  itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
   3118 		 *  a keepalive message."
   3119 		 */
   3120 		const uint32_t now = time_uptime32;
   3121 		const uint32_t time_last_data_sent =
   3122 		    atomic_load_relaxed(&wgs->wgs_time_last_data_sent);
   3123 		WG_DLOG("time_uptime32=%"PRIu32
   3124 		    " wgs_time_last_data_sent=%"PRIu32"\n",
   3125 		    now, time_last_data_sent);
   3126 		if ((now - time_last_data_sent) >= wg_keepalive_timeout) {
   3127 			WG_TRACE("Schedule sending keepalive message");
   3128 			/*
   3129 			 * We can't send a keepalive message here to avoid
   3130 			 * a deadlock;  we already hold the solock of a socket
   3131 			 * that is used to send the message.
   3132 			 */
   3133 			wg_schedule_peer_task(wgp,
   3134 			    WGP_TASK_SEND_KEEPALIVE_MESSAGE);
   3135 		}
   3136 	}
   3137 out:
   3138 	wg_put_session(wgs, &psref);
   3139 	m_freem(m);
   3140 	if (free_encrypted_buf)
   3141 		kmem_intr_free(encrypted_buf, encrypted_len);
   3142 }
   3143 
   3144 static void __noinline
   3145 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
   3146 {
   3147 	struct wg_session *wgs;
   3148 	struct wg_peer *wgp;
   3149 	struct psref psref;
   3150 	int error;
   3151 	uint8_t key[WG_HASH_LEN];
   3152 	uint8_t cookie[WG_COOKIE_LEN];
   3153 
   3154 	WG_TRACE("cookie msg received");
   3155 
   3156 	/* Find the putative session.  */
   3157 	wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
   3158 	if (wgs == NULL) {
   3159 		WG_TRACE("No session found");
   3160 		return;
   3161 	}
   3162 
   3163 	/* Lock the peer so we can update the cookie state.  */
   3164 	wgp = wgs->wgs_peer;
   3165 	mutex_enter(wgp->wgp_lock);
   3166 
   3167 	if (!wgp->wgp_last_sent_mac1_valid) {
   3168 		WG_TRACE("No valid mac1 sent (or expired)");
   3169 		goto out;
   3170 	}
   3171 
   3172 	/*
   3173 	 * wgp_last_sent_mac1_valid is only set to true when we are
   3174 	 * transitioning to INIT_ACTIVE or INIT_PASSIVE, and always
   3175 	 * cleared on transition out of them.
   3176 	 */
   3177 	KASSERTMSG((wgs->wgs_state == WGS_STATE_INIT_ACTIVE ||
   3178 		wgs->wgs_state == WGS_STATE_INIT_PASSIVE),
   3179 	    "state=%d", wgs->wgs_state);
   3180 
   3181 	/* Decrypt the cookie and store it for later handshake retry.  */
   3182 	wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
   3183 	    sizeof(wgp->wgp_pubkey));
   3184 	error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
   3185 	    wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
   3186 	    wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
   3187 	    wgmc->wgmc_salt);
   3188 	if (error != 0) {
   3189 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   3190 		    "%s: peer %s: wg_algo_aead_dec for cookie failed: "
   3191 		    "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
   3192 		goto out;
   3193 	}
   3194 	/*
   3195 	 * [W] 6.6: Interaction with Cookie Reply System
   3196 	 * "it should simply store the decrypted cookie value from the cookie
   3197 	 *  reply message, and wait for the expiration of the REKEY-TIMEOUT
   3198 	 *  timer for retrying a handshake initiation message."
   3199 	 */
   3200 	wgp->wgp_latest_cookie_time = time_uptime;
   3201 	memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
   3202 out:
   3203 	mutex_exit(wgp->wgp_lock);
   3204 	wg_put_session(wgs, &psref);
   3205 }
   3206 
   3207 static struct mbuf *
   3208 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
   3209 {
   3210 	struct wg_msg wgm;
   3211 	size_t mbuflen;
   3212 	size_t msglen;
   3213 
   3214 	/*
   3215 	 * Get the mbuf chain length.  It is already guaranteed, by
   3216 	 * wg_overudp_cb, to be large enough for a struct wg_msg.
   3217 	 */
   3218 	mbuflen = m_length(m);
   3219 	KASSERT(mbuflen >= sizeof(struct wg_msg));
   3220 
   3221 	/*
   3222 	 * Copy the message header (32-bit message type) out -- we'll
   3223 	 * worry about contiguity and alignment later.
   3224 	 */
   3225 	m_copydata(m, 0, sizeof(wgm), &wgm);
   3226 	switch (le32toh(wgm.wgm_type)) {
   3227 	case WG_MSG_TYPE_INIT:
   3228 		msglen = sizeof(struct wg_msg_init);
   3229 		break;
   3230 	case WG_MSG_TYPE_RESP:
   3231 		msglen = sizeof(struct wg_msg_resp);
   3232 		break;
   3233 	case WG_MSG_TYPE_COOKIE:
   3234 		msglen = sizeof(struct wg_msg_cookie);
   3235 		break;
   3236 	case WG_MSG_TYPE_DATA:
   3237 		msglen = sizeof(struct wg_msg_data);
   3238 		break;
   3239 	default:
   3240 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   3241 		    "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
   3242 		    le32toh(wgm.wgm_type));
   3243 		goto error;
   3244 	}
   3245 
   3246 	/* Verify the mbuf chain is long enough for this type of message.  */
   3247 	if (__predict_false(mbuflen < msglen)) {
   3248 		WG_DLOG("Invalid msg size: mbuflen=%zu type=%u\n", mbuflen,
   3249 		    le32toh(wgm.wgm_type));
   3250 		goto error;
   3251 	}
   3252 
   3253 	/* Make the message header contiguous if necessary.  */
   3254 	if (__predict_false(m->m_len < msglen)) {
   3255 		m = m_pullup(m, msglen);
   3256 		if (m == NULL)
   3257 			return NULL;
   3258 	}
   3259 
   3260 	return m;
   3261 
   3262 error:
   3263 	m_freem(m);
   3264 	return NULL;
   3265 }
   3266 
   3267 static void
   3268 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
   3269     const struct sockaddr *src)
   3270 {
   3271 	struct wg_msg *wgm;
   3272 
   3273 	KASSERT(curlwp->l_pflag & LP_BOUND);
   3274 
   3275 	m = wg_validate_msg_header(wg, m);
   3276 	if (__predict_false(m == NULL))
   3277 		return;
   3278 
   3279 	KASSERT(m->m_len >= sizeof(struct wg_msg));
   3280 	wgm = mtod(m, struct wg_msg *);
   3281 	switch (le32toh(wgm->wgm_type)) {
   3282 	case WG_MSG_TYPE_INIT:
   3283 		wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
   3284 		break;
   3285 	case WG_MSG_TYPE_RESP:
   3286 		wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
   3287 		break;
   3288 	case WG_MSG_TYPE_COOKIE:
   3289 		wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
   3290 		break;
   3291 	case WG_MSG_TYPE_DATA:
   3292 		wg_handle_msg_data(wg, m, src);
   3293 		/* wg_handle_msg_data frees m for us */
   3294 		return;
   3295 	default:
   3296 		panic("invalid message type: %d", le32toh(wgm->wgm_type));
   3297 	}
   3298 
   3299 	m_freem(m);
   3300 }
   3301 
   3302 static void
   3303 wg_receive_packets(struct wg_softc *wg, const int af)
   3304 {
   3305 
   3306 	for (;;) {
   3307 		int error, flags;
   3308 		struct socket *so;
   3309 		struct mbuf *m = NULL;
   3310 		struct uio dummy_uio;
   3311 		struct mbuf *paddr = NULL;
   3312 		struct sockaddr *src;
   3313 
   3314 		so = wg_get_so_by_af(wg, af);
   3315 		flags = MSG_DONTWAIT;
   3316 		dummy_uio.uio_resid = 1000000000;
   3317 
   3318 		error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
   3319 		    &flags);
   3320 		if (error || m == NULL) {
   3321 			//if (error == EWOULDBLOCK)
   3322 			return;
   3323 		}
   3324 
   3325 		KASSERT(paddr != NULL);
   3326 		KASSERT(paddr->m_len >= sizeof(struct sockaddr));
   3327 		src = mtod(paddr, struct sockaddr *);
   3328 
   3329 		wg_handle_packet(wg, m, src);
   3330 	}
   3331 }
   3332 
   3333 static void
   3334 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
   3335 {
   3336 
   3337 	psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
   3338 }
   3339 
   3340 static void
   3341 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
   3342 {
   3343 
   3344 	psref_release(psref, &wgp->wgp_psref, wg_psref_class);
   3345 }
   3346 
   3347 static void
   3348 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
   3349 {
   3350 	struct wg_session *wgs;
   3351 
   3352 	WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
   3353 
   3354 	KASSERT(mutex_owned(wgp->wgp_lock));
   3355 
   3356 	if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
   3357 		WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
   3358 		    if_name(&wg->wg_if));
   3359 		/* XXX should do something? */
   3360 		return;
   3361 	}
   3362 
   3363 	/*
   3364 	 * If we already have an established session, there's no need
   3365 	 * to initiate a new one -- unless the rekey-after-time or
   3366 	 * rekey-after-messages limits have passed.
   3367 	 */
   3368 	wgs = wgp->wgp_session_stable;
   3369 	if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
   3370 	    !atomic_load_relaxed(&wgs->wgs_force_rekey))
   3371 		return;
   3372 
   3373 	/*
   3374 	 * Ensure we're initiating a new session.  If the unstable
   3375 	 * session is already INIT_ACTIVE or INIT_PASSIVE, this does
   3376 	 * nothing.
   3377 	 */
   3378 	wg_send_handshake_msg_init(wg, wgp);
   3379 }
   3380 
   3381 static void
   3382 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
   3383 {
   3384 	struct wg_session *wgs;
   3385 
   3386 	WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
   3387 
   3388 	KASSERT(mutex_owned(wgp->wgp_lock));
   3389 	KASSERT(wgp->wgp_handshake_start_time != 0);
   3390 
   3391 	wgs = wgp->wgp_session_unstable;
   3392 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   3393 		return;
   3394 
   3395 	/*
   3396 	 * XXX no real need to assign a new index here, but we do need
   3397 	 * to transition to UNKNOWN temporarily
   3398 	 */
   3399 	wg_put_session_index(wg, wgs);
   3400 
   3401 	/* [W] 6.4 Handshake Initiation Retransmission */
   3402 	if ((time_uptime - wgp->wgp_handshake_start_time) >
   3403 	    wg_rekey_attempt_time) {
   3404 		/* Give up handshaking */
   3405 		wgp->wgp_handshake_start_time = 0;
   3406 		WG_TRACE("give up");
   3407 
   3408 		/*
   3409 		 * If a new data packet comes, handshaking will be retried
   3410 		 * and a new session would be established at that time,
   3411 		 * however we don't want to send pending packets then.
   3412 		 */
   3413 		wg_purge_pending_packets(wgp);
   3414 		return;
   3415 	}
   3416 
   3417 	wg_task_send_init_message(wg, wgp);
   3418 }
   3419 
   3420 static void
   3421 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
   3422 {
   3423 	struct wg_session *wgs;
   3424 
   3425 	KASSERT(mutex_owned(wgp->wgp_lock));
   3426 
   3427 	wgs = wgp->wgp_session_unstable;
   3428 	if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
   3429 		/* XXX Can this happen?  */
   3430 		return;
   3431 
   3432 	wgs->wgs_time_last_data_sent = 0;
   3433 	wgs->wgs_is_initiator = false;
   3434 
   3435 	/*
   3436 	 * Session was already ready to receive data.  Transition from
   3437 	 * INIT_PASSIVE to ESTABLISHED just so we can swap the
   3438 	 * sessions.
   3439 	 *
   3440 	 * atomic_store_relaxed because this doesn't affect the data rx
   3441 	 * path, wg_handle_msg_data -- changing from INIT_PASSIVE to
   3442 	 * ESTABLISHED makes no difference to the data rx path, and the
   3443 	 * transition to INIT_PASSIVE with store-release already
   3444 	 * published the state needed by the data rx path.
   3445 	 */
   3446 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_ESTABLISHED\n",
   3447 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   3448 	atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
   3449 	WG_TRACE("WGS_STATE_ESTABLISHED");
   3450 
   3451 	/*
   3452 	 * Session is ready to send data too now that we have received
   3453 	 * the peer initiator's first data packet.
   3454 	 *
   3455 	 * Swap the sessions to publish the new one as the stable
   3456 	 * session for the data tx path, wg_output.
   3457 	 */
   3458 	wg_swap_sessions(wg, wgp);
   3459 	KASSERT(wgs == wgp->wgp_session_stable);
   3460 }
   3461 
   3462 static void
   3463 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
   3464 {
   3465 
   3466 	WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
   3467 
   3468 	KASSERT(mutex_owned(wgp->wgp_lock));
   3469 
   3470 	if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
   3471 		pserialize_perform(wgp->wgp_psz);
   3472 		mutex_exit(wgp->wgp_lock);
   3473 		psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
   3474 		    wg_psref_class);
   3475 		psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
   3476 		    wg_psref_class);
   3477 		mutex_enter(wgp->wgp_lock);
   3478 		atomic_store_release(&wgp->wgp_endpoint_changing, 0);
   3479 	}
   3480 }
   3481 
   3482 static void
   3483 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
   3484 {
   3485 	struct wg_session *wgs;
   3486 
   3487 	WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
   3488 
   3489 	KASSERT(mutex_owned(wgp->wgp_lock));
   3490 
   3491 	wgs = wgp->wgp_session_stable;
   3492 	if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
   3493 		return;
   3494 
   3495 	wg_send_keepalive_msg(wgp, wgs);
   3496 }
   3497 
   3498 static void
   3499 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
   3500 {
   3501 	struct wg_session *wgs;
   3502 	uint32_t age;
   3503 
   3504 	WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
   3505 
   3506 	KASSERT(mutex_owned(wgp->wgp_lock));
   3507 
   3508 	/*
   3509 	 * If theres's any previous unstable session, i.e., one that
   3510 	 * was ESTABLISHED and is now DESTROYING, older than
   3511 	 * reject-after-time, destroy it.  Upcoming sessions are still
   3512 	 * in INIT_ACTIVE or INIT_PASSIVE -- we don't touch those here.
   3513 	 */
   3514 	wgs = wgp->wgp_session_unstable;
   3515 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
   3516 	if (wgs->wgs_state == WGS_STATE_DESTROYING &&
   3517 	    ((age = (time_uptime32 - wgs->wgs_time_established)) >=
   3518 		wg_reject_after_time)) {
   3519 		WG_DLOG("destroying past session %"PRIu32" sec old\n", age);
   3520 		wg_put_session_index(wg, wgs);
   3521 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   3522 		    wgs->wgs_state);
   3523 	}
   3524 
   3525 	/*
   3526 	 * If theres's any ESTABLISHED stable session older than
   3527 	 * reject-after-time, destroy it.  (The stable session can also
   3528 	 * be in UNKNOWN state -- nothing to do in that case)
   3529 	 */
   3530 	wgs = wgp->wgp_session_stable;
   3531 	KASSERT(wgs->wgs_state != WGS_STATE_INIT_ACTIVE);
   3532 	KASSERT(wgs->wgs_state != WGS_STATE_INIT_PASSIVE);
   3533 	KASSERT(wgs->wgs_state != WGS_STATE_DESTROYING);
   3534 	if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
   3535 	    ((age = (time_uptime32 - wgs->wgs_time_established)) >=
   3536 		wg_reject_after_time)) {
   3537 		WG_DLOG("destroying current session %"PRIu32" sec old\n", age);
   3538 		atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_DESTROYING);
   3539 		wg_put_session_index(wg, wgs);
   3540 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   3541 		    wgs->wgs_state);
   3542 	}
   3543 
   3544 	/*
   3545 	 * If there's no sessions left, no need to have the timer run
   3546 	 * until the next time around -- halt it.
   3547 	 *
   3548 	 * It is only ever scheduled with wgp_lock held or in the
   3549 	 * callout itself, and callout_halt prevents rescheudling
   3550 	 * itself, so this never races with rescheduling.
   3551 	 */
   3552 	if (wgp->wgp_session_unstable->wgs_state == WGS_STATE_UNKNOWN &&
   3553 	    wgp->wgp_session_stable->wgs_state == WGS_STATE_UNKNOWN)
   3554 		callout_halt(&wgp->wgp_session_dtor_timer, NULL);
   3555 }
   3556 
   3557 static void
   3558 wg_peer_work(struct work *wk, void *cookie)
   3559 {
   3560 	struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
   3561 	struct wg_softc *wg = wgp->wgp_sc;
   3562 	unsigned int tasks;
   3563 
   3564 	mutex_enter(wgp->wgp_intr_lock);
   3565 	while ((tasks = wgp->wgp_tasks) != 0) {
   3566 		wgp->wgp_tasks = 0;
   3567 		mutex_exit(wgp->wgp_intr_lock);
   3568 
   3569 		mutex_enter(wgp->wgp_lock);
   3570 		if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
   3571 			wg_task_send_init_message(wg, wgp);
   3572 		if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
   3573 			wg_task_retry_handshake(wg, wgp);
   3574 		if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
   3575 			wg_task_establish_session(wg, wgp);
   3576 		if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
   3577 			wg_task_endpoint_changed(wg, wgp);
   3578 		if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
   3579 			wg_task_send_keepalive_message(wg, wgp);
   3580 		if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
   3581 			wg_task_destroy_prev_session(wg, wgp);
   3582 		mutex_exit(wgp->wgp_lock);
   3583 
   3584 		mutex_enter(wgp->wgp_intr_lock);
   3585 	}
   3586 	mutex_exit(wgp->wgp_intr_lock);
   3587 }
   3588 
   3589 static void
   3590 wg_job(struct threadpool_job *job)
   3591 {
   3592 	struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
   3593 	int bound, upcalls;
   3594 
   3595 	mutex_enter(wg->wg_intr_lock);
   3596 	while ((upcalls = wg->wg_upcalls) != 0) {
   3597 		wg->wg_upcalls = 0;
   3598 		mutex_exit(wg->wg_intr_lock);
   3599 		bound = curlwp_bind();
   3600 		if (ISSET(upcalls, WG_UPCALL_INET))
   3601 			wg_receive_packets(wg, AF_INET);
   3602 		if (ISSET(upcalls, WG_UPCALL_INET6))
   3603 			wg_receive_packets(wg, AF_INET6);
   3604 		curlwp_bindx(bound);
   3605 		mutex_enter(wg->wg_intr_lock);
   3606 	}
   3607 	threadpool_job_done(job);
   3608 	mutex_exit(wg->wg_intr_lock);
   3609 }
   3610 
   3611 static int
   3612 wg_bind_port(struct wg_softc *wg, const uint16_t port)
   3613 {
   3614 	int error = 0;
   3615 	uint16_t old_port = wg->wg_listen_port;
   3616 
   3617 	if (port != 0 && old_port == port)
   3618 		return 0;
   3619 
   3620 #ifdef INET
   3621 	struct sockaddr_in _sin, *sin = &_sin;
   3622 	sin->sin_len = sizeof(*sin);
   3623 	sin->sin_family = AF_INET;
   3624 	sin->sin_addr.s_addr = INADDR_ANY;
   3625 	sin->sin_port = htons(port);
   3626 
   3627 	error = sobind(wg->wg_so4, sintosa(sin), curlwp);
   3628 	if (error)
   3629 		return error;
   3630 #endif
   3631 
   3632 #ifdef INET6
   3633 	struct sockaddr_in6 _sin6, *sin6 = &_sin6;
   3634 	sin6->sin6_len = sizeof(*sin6);
   3635 	sin6->sin6_family = AF_INET6;
   3636 	sin6->sin6_addr = in6addr_any;
   3637 	sin6->sin6_port = htons(port);
   3638 
   3639 	error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
   3640 	if (error)
   3641 		return error;
   3642 #endif
   3643 
   3644 	wg->wg_listen_port = port;
   3645 
   3646 	return error;
   3647 }
   3648 
   3649 static void
   3650 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
   3651 {
   3652 	struct wg_softc *wg = cookie;
   3653 	int reason;
   3654 
   3655 	reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
   3656 	    WG_UPCALL_INET :
   3657 	    WG_UPCALL_INET6;
   3658 
   3659 	mutex_enter(wg->wg_intr_lock);
   3660 	wg->wg_upcalls |= reason;
   3661 	threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
   3662 	mutex_exit(wg->wg_intr_lock);
   3663 }
   3664 
   3665 /*
   3666  * wg_overudp_cb(&m, offset, so, src, arg)
   3667  *
   3668  *	Callback for incoming UDP packets in high-priority
   3669  *	packet-processing path.
   3670  *
   3671  *	Three cases:
   3672  *
   3673  *	- Data packet.  Consumed here for high-priority handling.
   3674  *	  => Returns 1 and takes ownership of m.
   3675  *
   3676  *	- Handshake packet.  Defer to thread context via so_receive in
   3677  *	  wg_receive_packets.
   3678  *	  => Returns 0 and leaves caller with ownership of m.
   3679  *
   3680  *	- Invalid.  Dropped on the floor and freed.
   3681  *	  => Returns -1 and takes ownership of m (frees m).
   3682  */
   3683 static int
   3684 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
   3685     struct sockaddr *src, void *arg)
   3686 {
   3687 	struct wg_softc *wg = arg;
   3688 	struct wg_msg wgm;
   3689 	struct mbuf *m = *mp;
   3690 
   3691 	WG_TRACE("enter");
   3692 
   3693 	/* Verify the mbuf chain is long enough to have a wg msg header.  */
   3694 	KASSERT(offset <= m_length(m));
   3695 	if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
   3696 		/* drop on the floor */
   3697 		m_freem(m);
   3698 		*mp = NULL;
   3699 		return -1;	/* dropped */
   3700 	}
   3701 
   3702 	/*
   3703 	 * Copy the message header (32-bit message type) out -- we'll
   3704 	 * worry about contiguity and alignment later.
   3705 	 */
   3706 	m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
   3707 	WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
   3708 
   3709 	/*
   3710 	 * Handle DATA packets promptly as they arrive, if they are in
   3711 	 * an active session.  Other packets may require expensive
   3712 	 * public-key crypto and are not as sensitive to latency, so
   3713 	 * defer them to the worker thread.
   3714 	 */
   3715 	switch (le32toh(wgm.wgm_type)) {
   3716 	case WG_MSG_TYPE_DATA:
   3717 		/* handle immediately */
   3718 		m_adj(m, offset);
   3719 		if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
   3720 			m = m_pullup(m, sizeof(struct wg_msg_data));
   3721 			if (m == NULL) {
   3722 				*mp = NULL;
   3723 				return -1; /* dropped */
   3724 			}
   3725 		}
   3726 		wg_handle_msg_data(wg, m, src);
   3727 		*mp = NULL;
   3728 		return 1;	/* consumed */
   3729 	case WG_MSG_TYPE_INIT:
   3730 	case WG_MSG_TYPE_RESP:
   3731 	case WG_MSG_TYPE_COOKIE:
   3732 		/* pass through to so_receive in wg_receive_packets */
   3733 		return 0;	/* passthrough */
   3734 	default:
   3735 		/* drop on the floor */
   3736 		m_freem(m);
   3737 		*mp = NULL;
   3738 		return -1;	/* dropped */
   3739 	}
   3740 }
   3741 
   3742 static int
   3743 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
   3744 {
   3745 	int error;
   3746 	struct socket *so;
   3747 
   3748 	error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
   3749 	if (error != 0)
   3750 		return error;
   3751 
   3752 	solock(so);
   3753 	so->so_upcallarg = wg;
   3754 	so->so_upcall = wg_so_upcall;
   3755 	so->so_rcv.sb_flags |= SB_UPCALL;
   3756 	inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
   3757 	sounlock(so);
   3758 
   3759 	*sop = so;
   3760 
   3761 	return 0;
   3762 }
   3763 
   3764 static bool
   3765 wg_session_hit_limits(struct wg_session *wgs)
   3766 {
   3767 
   3768 	/*
   3769 	 * [W] 6.2: Transport Message Limits
   3770 	 * "After REJECT-AFTER-MESSAGES transport data messages or after the
   3771 	 *  current secure session is REJECT-AFTER-TIME seconds old, whichever
   3772 	 *  comes first, WireGuard will refuse to send or receive any more
   3773 	 *  transport data messages using the current secure session, ..."
   3774 	 */
   3775 	KASSERT(wgs->wgs_time_established != 0 || time_uptime > UINT32_MAX);
   3776 	if (time_uptime32 - wgs->wgs_time_established > wg_reject_after_time) {
   3777 		WG_DLOG("The session hits REJECT_AFTER_TIME\n");
   3778 		return true;
   3779 	} else if (wg_session_get_send_counter(wgs) >
   3780 	    wg_reject_after_messages) {
   3781 		WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
   3782 		return true;
   3783 	}
   3784 
   3785 	return false;
   3786 }
   3787 
   3788 static void
   3789 wgintr(void *cookie)
   3790 {
   3791 	struct wg_peer *wgp;
   3792 	struct wg_session *wgs;
   3793 	struct mbuf *m;
   3794 	struct psref psref;
   3795 
   3796 	while ((m = pktq_dequeue(wg_pktq)) != NULL) {
   3797 		wgp = M_GETCTX(m, struct wg_peer *);
   3798 		if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
   3799 			/*
   3800 			 * No established session.  If we're the first
   3801 			 * to try sending data, schedule a handshake
   3802 			 * and queue the packet for when the handshake
   3803 			 * is done; otherwise just drop the packet and
   3804 			 * let the ongoing handshake attempt continue.
   3805 			 * We could queue more data packets but it's
   3806 			 * not clear that's worthwhile.
   3807 			 */
   3808 			WG_TRACE("no stable session");
   3809 			membar_release();
   3810 			if ((m = atomic_swap_ptr(&wgp->wgp_pending, m)) ==
   3811 			    NULL) {
   3812 				WG_TRACE("queued first packet;"
   3813 				    " init handshake");
   3814 				wg_schedule_peer_task(wgp,
   3815 				    WGP_TASK_SEND_INIT_MESSAGE);
   3816 			} else {
   3817 				membar_acquire();
   3818 				WG_TRACE("first packet already queued,"
   3819 				    " dropping");
   3820 			}
   3821 			goto next0;
   3822 		}
   3823 		if (__predict_false(wg_session_hit_limits(wgs))) {
   3824 			WG_TRACE("stable session hit limits");
   3825 			membar_release();
   3826 			if ((m = atomic_swap_ptr(&wgp->wgp_pending, m)) ==
   3827 			    NULL) {
   3828 				WG_TRACE("queued first packet in a while;"
   3829 				    " reinit handshake");
   3830 				atomic_store_relaxed(&wgs->wgs_force_rekey,
   3831 				    true);
   3832 				wg_schedule_peer_task(wgp,
   3833 				    WGP_TASK_SEND_INIT_MESSAGE);
   3834 			} else {
   3835 				membar_acquire();
   3836 				WG_TRACE("first packet in already queued,"
   3837 				    " dropping");
   3838 			}
   3839 			goto next1;
   3840 		}
   3841 		wg_send_data_msg(wgp, wgs, m);
   3842 		m = NULL;	/* consumed */
   3843 next1:		wg_put_session(wgs, &psref);
   3844 next0:		m_freem(m);
   3845 		/* XXX Yield to avoid userland starvation?  */
   3846 	}
   3847 }
   3848 
   3849 static void
   3850 wg_purge_pending_packets(struct wg_peer *wgp)
   3851 {
   3852 	struct mbuf *m;
   3853 
   3854 	m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   3855 	membar_acquire();     /* matches membar_release in wgintr */
   3856 	m_freem(m);
   3857 #ifdef ALTQ
   3858 	wg_start(&wgp->wgp_sc->wg_if);
   3859 #endif
   3860 	pktq_barrier(wg_pktq);
   3861 }
   3862 
   3863 static void
   3864 wg_handshake_timeout_timer(void *arg)
   3865 {
   3866 	struct wg_peer *wgp = arg;
   3867 
   3868 	WG_TRACE("enter");
   3869 
   3870 	wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
   3871 }
   3872 
   3873 static struct wg_peer *
   3874 wg_alloc_peer(struct wg_softc *wg)
   3875 {
   3876 	struct wg_peer *wgp;
   3877 
   3878 	wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
   3879 
   3880 	wgp->wgp_sc = wg;
   3881 	callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
   3882 	callout_setfunc(&wgp->wgp_handshake_timeout_timer,
   3883 	    wg_handshake_timeout_timer, wgp);
   3884 	callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
   3885 	callout_setfunc(&wgp->wgp_session_dtor_timer,
   3886 	    wg_session_dtor_timer, wgp);
   3887 	PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
   3888 	wgp->wgp_endpoint_changing = false;
   3889 	wgp->wgp_endpoint_available = false;
   3890 	wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3891 	wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3892 	wgp->wgp_psz = pserialize_create();
   3893 	psref_target_init(&wgp->wgp_psref, wg_psref_class);
   3894 
   3895 	wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
   3896 	wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
   3897 	psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3898 	psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3899 
   3900 	struct wg_session *wgs;
   3901 	wgp->wgp_session_stable =
   3902 	    kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
   3903 	wgp->wgp_session_unstable =
   3904 	    kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
   3905 	wgs = wgp->wgp_session_stable;
   3906 	wgs->wgs_peer = wgp;
   3907 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3908 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3909 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3910 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3911 #endif
   3912 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3913 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3914 
   3915 	wgs = wgp->wgp_session_unstable;
   3916 	wgs->wgs_peer = wgp;
   3917 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3918 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3919 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3920 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3921 #endif
   3922 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3923 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3924 
   3925 	return wgp;
   3926 }
   3927 
   3928 static void
   3929 wg_destroy_peer(struct wg_peer *wgp)
   3930 {
   3931 	struct wg_session *wgs;
   3932 	struct wg_softc *wg = wgp->wgp_sc;
   3933 
   3934 	/* Prevent new packets from this peer on any source address.  */
   3935 	rw_enter(wg->wg_rwlock, RW_WRITER);
   3936 	for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
   3937 		struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
   3938 		struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
   3939 		struct radix_node *rn;
   3940 
   3941 		KASSERT(rnh != NULL);
   3942 		rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
   3943 		    &wga->wga_sa_mask, rnh);
   3944 		if (rn == NULL) {
   3945 			char addrstr[128];
   3946 			sockaddr_format(&wga->wga_sa_addr, addrstr,
   3947 			    sizeof(addrstr));
   3948 			WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
   3949 			    if_name(&wg->wg_if), addrstr);
   3950 		}
   3951 	}
   3952 	rw_exit(wg->wg_rwlock);
   3953 
   3954 	/* Purge pending packets.  */
   3955 	wg_purge_pending_packets(wgp);
   3956 
   3957 	/* Halt all packet processing and timeouts.  */
   3958 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
   3959 	callout_halt(&wgp->wgp_session_dtor_timer, NULL);
   3960 
   3961 	/* Wait for any queued work to complete.  */
   3962 	workqueue_wait(wg_wq, &wgp->wgp_work);
   3963 
   3964 	wgs = wgp->wgp_session_unstable;
   3965 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3966 		mutex_enter(wgp->wgp_lock);
   3967 		wg_destroy_session(wg, wgs);
   3968 		mutex_exit(wgp->wgp_lock);
   3969 	}
   3970 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3971 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3972 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3973 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3974 #endif
   3975 	kmem_free(wgs, sizeof(*wgs));
   3976 
   3977 	wgs = wgp->wgp_session_stable;
   3978 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3979 		mutex_enter(wgp->wgp_lock);
   3980 		wg_destroy_session(wg, wgs);
   3981 		mutex_exit(wgp->wgp_lock);
   3982 	}
   3983 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3984 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3985 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3986 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3987 #endif
   3988 	kmem_free(wgs, sizeof(*wgs));
   3989 
   3990 	psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3991 	psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3992 	kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
   3993 	kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
   3994 
   3995 	pserialize_destroy(wgp->wgp_psz);
   3996 	mutex_obj_free(wgp->wgp_intr_lock);
   3997 	mutex_obj_free(wgp->wgp_lock);
   3998 
   3999 	kmem_free(wgp, sizeof(*wgp));
   4000 }
   4001 
   4002 static void
   4003 wg_destroy_all_peers(struct wg_softc *wg)
   4004 {
   4005 	struct wg_peer *wgp, *wgp0 __diagused;
   4006 	void *garbage_byname, *garbage_bypubkey;
   4007 
   4008 restart:
   4009 	garbage_byname = garbage_bypubkey = NULL;
   4010 	mutex_enter(wg->wg_lock);
   4011 	WG_PEER_WRITER_FOREACH(wgp, wg) {
   4012 		if (wgp->wgp_name[0]) {
   4013 			wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
   4014 			    strlen(wgp->wgp_name));
   4015 			KASSERT(wgp0 == wgp);
   4016 			garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   4017 		}
   4018 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4019 		    sizeof(wgp->wgp_pubkey));
   4020 		KASSERT(wgp0 == wgp);
   4021 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   4022 		WG_PEER_WRITER_REMOVE(wgp);
   4023 		wg->wg_npeers--;
   4024 		mutex_enter(wgp->wgp_lock);
   4025 		pserialize_perform(wgp->wgp_psz);
   4026 		mutex_exit(wgp->wgp_lock);
   4027 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   4028 		break;
   4029 	}
   4030 	mutex_exit(wg->wg_lock);
   4031 
   4032 	if (wgp == NULL)
   4033 		return;
   4034 
   4035 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   4036 
   4037 	wg_destroy_peer(wgp);
   4038 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   4039 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   4040 
   4041 	goto restart;
   4042 }
   4043 
   4044 static int
   4045 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
   4046 {
   4047 	struct wg_peer *wgp, *wgp0 __diagused;
   4048 	void *garbage_byname, *garbage_bypubkey;
   4049 
   4050 	mutex_enter(wg->wg_lock);
   4051 	wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
   4052 	if (wgp != NULL) {
   4053 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4054 		    sizeof(wgp->wgp_pubkey));
   4055 		KASSERT(wgp0 == wgp);
   4056 		garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   4057 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   4058 		WG_PEER_WRITER_REMOVE(wgp);
   4059 		wg->wg_npeers--;
   4060 		if (wg->wg_npeers == 0)
   4061 			if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
   4062 		mutex_enter(wgp->wgp_lock);
   4063 		pserialize_perform(wgp->wgp_psz);
   4064 		mutex_exit(wgp->wgp_lock);
   4065 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   4066 	}
   4067 	mutex_exit(wg->wg_lock);
   4068 
   4069 	if (wgp == NULL)
   4070 		return ENOENT;
   4071 
   4072 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   4073 
   4074 	wg_destroy_peer(wgp);
   4075 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   4076 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   4077 
   4078 	return 0;
   4079 }
   4080 
   4081 static int
   4082 wg_if_attach(struct wg_softc *wg)
   4083 {
   4084 
   4085 	wg->wg_if.if_addrlen = 0;
   4086 	wg->wg_if.if_mtu = WG_MTU;
   4087 	wg->wg_if.if_flags = IFF_MULTICAST;
   4088 	wg->wg_if.if_extflags = IFEF_MPSAFE;
   4089 	wg->wg_if.if_ioctl = wg_ioctl;
   4090 	wg->wg_if.if_output = wg_output;
   4091 	wg->wg_if.if_init = wg_init;
   4092 #ifdef ALTQ
   4093 	wg->wg_if.if_start = wg_start;
   4094 #endif
   4095 	wg->wg_if.if_stop = wg_stop;
   4096 	wg->wg_if.if_type = IFT_OTHER;
   4097 	wg->wg_if.if_dlt = DLT_NULL;
   4098 	wg->wg_if.if_softc = wg;
   4099 #ifdef ALTQ
   4100 	IFQ_SET_READY(&wg->wg_if.if_snd);
   4101 #endif
   4102 	if_initialize(&wg->wg_if);
   4103 
   4104 	wg->wg_if.if_link_state = LINK_STATE_DOWN;
   4105 	if_alloc_sadl(&wg->wg_if);
   4106 	if_register(&wg->wg_if);
   4107 
   4108 	bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
   4109 
   4110 	return 0;
   4111 }
   4112 
   4113 static void
   4114 wg_if_detach(struct wg_softc *wg)
   4115 {
   4116 	struct ifnet *ifp = &wg->wg_if;
   4117 
   4118 	bpf_detach(ifp);
   4119 	if_detach(ifp);
   4120 }
   4121 
   4122 static int
   4123 wg_clone_create(struct if_clone *ifc, int unit)
   4124 {
   4125 	struct wg_softc *wg;
   4126 	int error;
   4127 
   4128 	wg_guarantee_initialized();
   4129 
   4130 	error = wg_count_inc();
   4131 	if (error)
   4132 		return error;
   4133 
   4134 	wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
   4135 
   4136 	if_initname(&wg->wg_if, ifc->ifc_name, unit);
   4137 
   4138 	PSLIST_INIT(&wg->wg_peers);
   4139 	wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
   4140 	wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
   4141 	wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
   4142 	wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   4143 	wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   4144 	wg->wg_rwlock = rw_obj_alloc();
   4145 	threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
   4146 	    "%s", if_name(&wg->wg_if));
   4147 	wg->wg_ops = &wg_ops_rumpkernel;
   4148 
   4149 	error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
   4150 	if (error)
   4151 		goto fail0;
   4152 
   4153 #ifdef INET
   4154 	error = wg_socreate(wg, AF_INET, &wg->wg_so4);
   4155 	if (error)
   4156 		goto fail1;
   4157 	rn_inithead((void **)&wg->wg_rtable_ipv4,
   4158 	    offsetof(struct sockaddr_in, sin_addr) * NBBY);
   4159 #endif
   4160 #ifdef INET6
   4161 	error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
   4162 	if (error)
   4163 		goto fail2;
   4164 	rn_inithead((void **)&wg->wg_rtable_ipv6,
   4165 	    offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
   4166 #endif
   4167 
   4168 	error = wg_if_attach(wg);
   4169 	if (error)
   4170 		goto fail3;
   4171 
   4172 	return 0;
   4173 
   4174 fail4: __unused
   4175 	wg_destroy_all_peers(wg);
   4176 	wg_if_detach(wg);
   4177 fail3:
   4178 #ifdef INET6
   4179 	solock(wg->wg_so6);
   4180 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   4181 	sounlock(wg->wg_so6);
   4182 #endif
   4183 #ifdef INET
   4184 	solock(wg->wg_so4);
   4185 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   4186 	sounlock(wg->wg_so4);
   4187 #endif
   4188 	mutex_enter(wg->wg_intr_lock);
   4189 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   4190 	mutex_exit(wg->wg_intr_lock);
   4191 #ifdef INET6
   4192 	if (wg->wg_rtable_ipv6 != NULL)
   4193 		free(wg->wg_rtable_ipv6, M_RTABLE);
   4194 	soclose(wg->wg_so6);
   4195 fail2:
   4196 #endif
   4197 #ifdef INET
   4198 	if (wg->wg_rtable_ipv4 != NULL)
   4199 		free(wg->wg_rtable_ipv4, M_RTABLE);
   4200 	soclose(wg->wg_so4);
   4201 fail1:
   4202 #endif
   4203 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   4204 fail0:	threadpool_job_destroy(&wg->wg_job);
   4205 	rw_obj_free(wg->wg_rwlock);
   4206 	mutex_obj_free(wg->wg_intr_lock);
   4207 	mutex_obj_free(wg->wg_lock);
   4208 	thmap_destroy(wg->wg_sessions_byindex);
   4209 	thmap_destroy(wg->wg_peers_byname);
   4210 	thmap_destroy(wg->wg_peers_bypubkey);
   4211 	PSLIST_DESTROY(&wg->wg_peers);
   4212 	kmem_free(wg, sizeof(*wg));
   4213 	wg_count_dec();
   4214 	return error;
   4215 }
   4216 
   4217 static int
   4218 wg_clone_destroy(struct ifnet *ifp)
   4219 {
   4220 	struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
   4221 
   4222 #ifdef WG_RUMPKERNEL
   4223 	if (wg_user_mode(wg)) {
   4224 		rumpuser_wg_destroy(wg->wg_user);
   4225 		wg->wg_user = NULL;
   4226 	}
   4227 #endif
   4228 
   4229 	wg_destroy_all_peers(wg);
   4230 	wg_if_detach(wg);
   4231 #ifdef INET6
   4232 	solock(wg->wg_so6);
   4233 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   4234 	sounlock(wg->wg_so6);
   4235 #endif
   4236 #ifdef INET
   4237 	solock(wg->wg_so4);
   4238 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   4239 	sounlock(wg->wg_so4);
   4240 #endif
   4241 	mutex_enter(wg->wg_intr_lock);
   4242 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   4243 	mutex_exit(wg->wg_intr_lock);
   4244 #ifdef INET6
   4245 	if (wg->wg_rtable_ipv6 != NULL)
   4246 		free(wg->wg_rtable_ipv6, M_RTABLE);
   4247 	soclose(wg->wg_so6);
   4248 #endif
   4249 #ifdef INET
   4250 	if (wg->wg_rtable_ipv4 != NULL)
   4251 		free(wg->wg_rtable_ipv4, M_RTABLE);
   4252 	soclose(wg->wg_so4);
   4253 #endif
   4254 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   4255 	threadpool_job_destroy(&wg->wg_job);
   4256 	rw_obj_free(wg->wg_rwlock);
   4257 	mutex_obj_free(wg->wg_intr_lock);
   4258 	mutex_obj_free(wg->wg_lock);
   4259 	thmap_destroy(wg->wg_sessions_byindex);
   4260 	thmap_destroy(wg->wg_peers_byname);
   4261 	thmap_destroy(wg->wg_peers_bypubkey);
   4262 	PSLIST_DESTROY(&wg->wg_peers);
   4263 	kmem_free(wg, sizeof(*wg));
   4264 	wg_count_dec();
   4265 
   4266 	return 0;
   4267 }
   4268 
   4269 static struct wg_peer *
   4270 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
   4271     struct psref *psref)
   4272 {
   4273 	struct radix_node_head *rnh;
   4274 	struct radix_node *rn;
   4275 	struct wg_peer *wgp = NULL;
   4276 	struct wg_allowedip *wga;
   4277 
   4278 #ifdef WG_DEBUG_LOG
   4279 	char addrstr[128];
   4280 	sockaddr_format(sa, addrstr, sizeof(addrstr));
   4281 	WG_DLOG("sa=%s\n", addrstr);
   4282 #endif
   4283 
   4284 	rw_enter(wg->wg_rwlock, RW_READER);
   4285 
   4286 	rnh = wg_rnh(wg, sa->sa_family);
   4287 	if (rnh == NULL)
   4288 		goto out;
   4289 
   4290 	rn = rnh->rnh_matchaddr(sa, rnh);
   4291 	if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
   4292 		goto out;
   4293 
   4294 	WG_TRACE("success");
   4295 
   4296 	wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
   4297 	wgp = wga->wga_peer;
   4298 	wg_get_peer(wgp, psref);
   4299 
   4300 out:
   4301 	rw_exit(wg->wg_rwlock);
   4302 	return wgp;
   4303 }
   4304 
   4305 static void
   4306 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
   4307     struct wg_session *wgs, struct wg_msg_data *wgmd)
   4308 {
   4309 
   4310 	memset(wgmd, 0, sizeof(*wgmd));
   4311 	wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
   4312 	wgmd->wgmd_receiver = wgs->wgs_remote_index;
   4313 	/* [W] 5.4.6: msg.counter := Nm^send */
   4314 	/* [W] 5.4.6: Nm^send := Nm^send + 1 */
   4315 	wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
   4316 	WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
   4317 }
   4318 
   4319 static int
   4320 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
   4321     const struct rtentry *rt)
   4322 {
   4323 	struct wg_softc *wg = ifp->if_softc;
   4324 	struct wg_peer *wgp = NULL;
   4325 	struct psref wgp_psref;
   4326 	int bound;
   4327 	int error;
   4328 
   4329 	bound = curlwp_bind();
   4330 
   4331 	/* TODO make the nest limit configurable via sysctl */
   4332 	error = if_tunnel_check_nesting(ifp, m, 1);
   4333 	if (error) {
   4334 		WGLOG(LOG_ERR,
   4335 		    "%s: tunneling loop detected and packet dropped\n",
   4336 		    if_name(&wg->wg_if));
   4337 		goto out0;
   4338 	}
   4339 
   4340 #ifdef ALTQ
   4341 	bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
   4342 	    & ALTQF_ENABLED;
   4343 	if (altq)
   4344 		IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
   4345 #endif
   4346 
   4347 	bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
   4348 
   4349 	m->m_flags &= ~(M_BCAST|M_MCAST);
   4350 
   4351 	wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
   4352 	if (wgp == NULL) {
   4353 		WG_TRACE("peer not found");
   4354 		error = EHOSTUNREACH;
   4355 		goto out0;
   4356 	}
   4357 
   4358 	/* Clear checksum-offload flags. */
   4359 	m->m_pkthdr.csum_flags = 0;
   4360 	m->m_pkthdr.csum_data = 0;
   4361 
   4362 	/* Toss it in the queue.  */
   4363 #ifdef ALTQ
   4364 	if (altq) {
   4365 		mutex_enter(ifp->if_snd.ifq_lock);
   4366 		if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   4367 			M_SETCTX(m, wgp);
   4368 			ALTQ_ENQUEUE(&ifp->if_snd, m, error);
   4369 			m = NULL; /* consume */
   4370 		}
   4371 		mutex_exit(ifp->if_snd.ifq_lock);
   4372 		if (m == NULL) {
   4373 			wg_start(ifp);
   4374 			goto out1;
   4375 		}
   4376 	}
   4377 #endif
   4378 	kpreempt_disable();
   4379 	const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   4380 	M_SETCTX(m, wgp);
   4381 	if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   4382 		WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   4383 		    if_name(&wg->wg_if));
   4384 		error = ENOBUFS;
   4385 		goto out2;
   4386 	}
   4387 	m = NULL;		/* consumed */
   4388 	error = 0;
   4389 out2:	kpreempt_enable();
   4390 
   4391 #ifdef ALTQ
   4392 out1:
   4393 #endif
   4394 	wg_put_peer(wgp, &wgp_psref);
   4395 out0:	m_freem(m);
   4396 	curlwp_bindx(bound);
   4397 	return error;
   4398 }
   4399 
   4400 static int
   4401 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
   4402 {
   4403 	struct psref psref;
   4404 	struct wg_sockaddr *wgsa;
   4405 	int error;
   4406 	struct socket *so;
   4407 
   4408 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   4409 	so = wg_get_so_by_peer(wgp, wgsa);
   4410 	solock(so);
   4411 	switch (wgsatosa(wgsa)->sa_family) {
   4412 #ifdef INET
   4413 	case AF_INET:
   4414 		error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
   4415 		break;
   4416 #endif
   4417 #ifdef INET6
   4418 	case AF_INET6:
   4419 		error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
   4420 		    NULL, curlwp);
   4421 		break;
   4422 #endif
   4423 	default:
   4424 		m_freem(m);
   4425 		error = EPFNOSUPPORT;
   4426 	}
   4427 	sounlock(so);
   4428 	wg_put_sa(wgp, wgsa, &psref);
   4429 
   4430 	return error;
   4431 }
   4432 
   4433 /* Inspired by pppoe_get_mbuf */
   4434 static struct mbuf *
   4435 wg_get_mbuf(size_t leading_len, size_t len)
   4436 {
   4437 	struct mbuf *m;
   4438 
   4439 	KASSERT(leading_len <= MCLBYTES);
   4440 	KASSERT(len <= MCLBYTES - leading_len);
   4441 
   4442 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   4443 	if (m == NULL)
   4444 		return NULL;
   4445 	if (len + leading_len > MHLEN) {
   4446 		m_clget(m, M_DONTWAIT);
   4447 		if ((m->m_flags & M_EXT) == 0) {
   4448 			m_free(m);
   4449 			return NULL;
   4450 		}
   4451 	}
   4452 	m->m_data += leading_len;
   4453 	m->m_pkthdr.len = m->m_len = len;
   4454 
   4455 	return m;
   4456 }
   4457 
   4458 static void
   4459 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs, struct mbuf *m)
   4460 {
   4461 	struct wg_softc *wg = wgp->wgp_sc;
   4462 	int error;
   4463 	size_t inner_len, padded_len, encrypted_len;
   4464 	char *padded_buf = NULL;
   4465 	size_t mlen;
   4466 	struct wg_msg_data *wgmd;
   4467 	bool free_padded_buf = false;
   4468 	struct mbuf *n;
   4469 	size_t leading_len = max_hdr + sizeof(struct udphdr);
   4470 
   4471 	mlen = m_length(m);
   4472 	inner_len = mlen;
   4473 	padded_len = roundup(mlen, 16);
   4474 	encrypted_len = padded_len + WG_AUTHTAG_LEN;
   4475 	WG_DLOG("inner=%zu, padded=%zu, encrypted_len=%zu\n",
   4476 	    inner_len, padded_len, encrypted_len);
   4477 	if (mlen != 0) {
   4478 		bool success;
   4479 		success = m_ensure_contig(&m, padded_len);
   4480 		if (success) {
   4481 			padded_buf = mtod(m, char *);
   4482 		} else {
   4483 			padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
   4484 			if (padded_buf == NULL) {
   4485 				error = ENOBUFS;
   4486 				goto out;
   4487 			}
   4488 			free_padded_buf = true;
   4489 			m_copydata(m, 0, mlen, padded_buf);
   4490 		}
   4491 		memset(padded_buf + mlen, 0, padded_len - inner_len);
   4492 	}
   4493 
   4494 	n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
   4495 	if (n == NULL) {
   4496 		error = ENOBUFS;
   4497 		goto out;
   4498 	}
   4499 	KASSERT(n->m_len >= sizeof(*wgmd));
   4500 	wgmd = mtod(n, struct wg_msg_data *);
   4501 	wg_fill_msg_data(wg, wgp, wgs, wgmd);
   4502 
   4503 	/* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
   4504 	wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
   4505 	    wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
   4506 	    padded_buf, padded_len,
   4507 	    NULL, 0);
   4508 
   4509 	error = wg->wg_ops->send_data_msg(wgp, n); /* consumes n */
   4510 	if (error) {
   4511 		WG_DLOG("send_data_msg failed, error=%d\n", error);
   4512 		goto out;
   4513 	}
   4514 
   4515 	/*
   4516 	 * Packet was sent out -- count it in the interface statistics.
   4517 	 */
   4518 	if_statadd(&wg->wg_if, if_obytes, mlen);
   4519 	if_statinc(&wg->wg_if, if_opackets);
   4520 
   4521 	/*
   4522 	 * Record when we last sent data, for determining when we need
   4523 	 * to send a passive keepalive.
   4524 	 *
   4525 	 * Other logic assumes that wgs_time_last_data_sent is zero iff
   4526 	 * we have never sent data on this session.  Early at boot, if
   4527 	 * wg(4) starts operating within <1sec, or after 136 years of
   4528 	 * uptime, we may observe time_uptime32 = 0.  In that case,
   4529 	 * pretend we observed 1 instead.  That way, we correctly
   4530 	 * indicate we have sent data on this session; the only logic
   4531 	 * this might adversely affect is the keepalive timeout
   4532 	 * detection, which might spuriously send a keepalive during
   4533 	 * one second every 136 years.  All of this is very silly, of
   4534 	 * course, but the cost to guaranteeing wgs_time_last_data_sent
   4535 	 * is nonzero is negligible here.
   4536 	 */
   4537 	const uint32_t now = time_uptime32;
   4538 	atomic_store_relaxed(&wgs->wgs_time_last_data_sent, MAX(now, 1));
   4539 
   4540 	/*
   4541 	 * Check rekey-after-time.
   4542 	 */
   4543 	if (wgs->wgs_is_initiator &&
   4544 	    now - wgs->wgs_time_established >= wg_rekey_after_time) {
   4545 		/*
   4546 		 * [W] 6.2 Transport Message Limits
   4547 		 * "if a peer is the initiator of a current secure
   4548 		 *  session, WireGuard will send a handshake initiation
   4549 		 *  message to begin a new secure session if, after
   4550 		 *  transmitting a transport data message, the current
   4551 		 *  secure session is REKEY-AFTER-TIME seconds old,"
   4552 		 */
   4553 		WG_TRACE("rekey after time");
   4554 		atomic_store_relaxed(&wgs->wgs_force_rekey, true);
   4555 		wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   4556 	}
   4557 
   4558 	/*
   4559 	 * Check rekey-after-messages.
   4560 	 */
   4561 	if (wg_session_get_send_counter(wgs) >= wg_rekey_after_messages) {
   4562 		/*
   4563 		 * [W] 6.2 Transport Message Limits
   4564 		 * "WireGuard will try to create a new session, by
   4565 		 *  sending a handshake initiation message (section
   4566 		 *  5.4.2), after it has sent REKEY-AFTER-MESSAGES
   4567 		 *  transport data messages..."
   4568 		 */
   4569 		WG_TRACE("rekey after messages");
   4570 		atomic_store_relaxed(&wgs->wgs_force_rekey, true);
   4571 		wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   4572 	}
   4573 
   4574 out:	m_freem(m);
   4575 	if (free_padded_buf)
   4576 		kmem_intr_free(padded_buf, padded_len);
   4577 }
   4578 
   4579 static void
   4580 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
   4581 {
   4582 	pktqueue_t *pktq;
   4583 	size_t pktlen;
   4584 
   4585 	KASSERT(af == AF_INET || af == AF_INET6);
   4586 
   4587 	WG_TRACE("");
   4588 
   4589 	m_set_rcvif(m, ifp);
   4590 	pktlen = m->m_pkthdr.len;
   4591 
   4592 	bpf_mtap_af(ifp, af, m, BPF_D_IN);
   4593 
   4594 	switch (af) {
   4595 #ifdef INET
   4596 	case AF_INET:
   4597 		pktq = ip_pktq;
   4598 		break;
   4599 #endif
   4600 #ifdef INET6
   4601 	case AF_INET6:
   4602 		pktq = ip6_pktq;
   4603 		break;
   4604 #endif
   4605 	default:
   4606 		panic("invalid af=%d", af);
   4607 	}
   4608 
   4609 	kpreempt_disable();
   4610 	const u_int h = curcpu()->ci_index;
   4611 	if (__predict_true(pktq_enqueue(pktq, m, h))) {
   4612 		if_statadd(ifp, if_ibytes, pktlen);
   4613 		if_statinc(ifp, if_ipackets);
   4614 	} else {
   4615 		m_freem(m);
   4616 	}
   4617 	kpreempt_enable();
   4618 }
   4619 
   4620 static void
   4621 wg_calc_pubkey(uint8_t pubkey[static WG_STATIC_KEY_LEN],
   4622     const uint8_t privkey[static WG_STATIC_KEY_LEN])
   4623 {
   4624 
   4625 	crypto_scalarmult_base(pubkey, privkey);
   4626 }
   4627 
   4628 static int
   4629 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
   4630 {
   4631 	struct radix_node_head *rnh;
   4632 	struct radix_node *rn;
   4633 	int error = 0;
   4634 
   4635 	rw_enter(wg->wg_rwlock, RW_WRITER);
   4636 	rnh = wg_rnh(wg, wga->wga_family);
   4637 	KASSERT(rnh != NULL);
   4638 	rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
   4639 	    wga->wga_nodes);
   4640 	rw_exit(wg->wg_rwlock);
   4641 
   4642 	if (rn == NULL)
   4643 		error = EEXIST;
   4644 
   4645 	return error;
   4646 }
   4647 
   4648 static int
   4649 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
   4650     struct wg_peer **wgpp)
   4651 {
   4652 	int error = 0;
   4653 	const void *pubkey;
   4654 	size_t pubkey_len;
   4655 	const void *psk;
   4656 	size_t psk_len;
   4657 	const char *name = NULL;
   4658 
   4659 	if (prop_dictionary_get_string(peer, "name", &name)) {
   4660 		if (strlen(name) > WG_PEER_NAME_MAXLEN) {
   4661 			error = EINVAL;
   4662 			goto out;
   4663 		}
   4664 	}
   4665 
   4666 	if (!prop_dictionary_get_data(peer, "public_key",
   4667 		&pubkey, &pubkey_len)) {
   4668 		error = EINVAL;
   4669 		goto out;
   4670 	}
   4671 #ifdef WG_DEBUG_DUMP
   4672         if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4673 		char *hex = gethexdump(pubkey, pubkey_len);
   4674 		log(LOG_DEBUG, "pubkey=%p, pubkey_len=%zu\n%s\n",
   4675 		    pubkey, pubkey_len, hex);
   4676 		puthexdump(hex, pubkey, pubkey_len);
   4677 	}
   4678 #endif
   4679 
   4680 	struct wg_peer *wgp = wg_alloc_peer(wg);
   4681 	memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
   4682 	if (name != NULL)
   4683 		strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
   4684 
   4685 	if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
   4686 		if (psk_len != sizeof(wgp->wgp_psk)) {
   4687 			error = EINVAL;
   4688 			goto out;
   4689 		}
   4690 		memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
   4691 	}
   4692 
   4693 	const void *addr;
   4694 	size_t addr_len;
   4695 	struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
   4696 
   4697 	if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
   4698 		goto skip_endpoint;
   4699 	if (addr_len < sizeof(*wgsatosa(wgsa)) ||
   4700 	    addr_len > sizeof(*wgsatoss(wgsa))) {
   4701 		error = EINVAL;
   4702 		goto out;
   4703 	}
   4704 	memcpy(wgsatoss(wgsa), addr, addr_len);
   4705 	switch (wgsa_family(wgsa)) {
   4706 #ifdef INET
   4707 	case AF_INET:
   4708 		break;
   4709 #endif
   4710 #ifdef INET6
   4711 	case AF_INET6:
   4712 		break;
   4713 #endif
   4714 	default:
   4715 		error = EPFNOSUPPORT;
   4716 		goto out;
   4717 	}
   4718 	if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
   4719 		error = EINVAL;
   4720 		goto out;
   4721 	}
   4722     {
   4723 	char addrstr[128];
   4724 	sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
   4725 	WG_DLOG("addr=%s\n", addrstr);
   4726     }
   4727 	wgp->wgp_endpoint_available = true;
   4728 
   4729 	prop_array_t allowedips;
   4730 skip_endpoint:
   4731 	allowedips = prop_dictionary_get(peer, "allowedips");
   4732 	if (allowedips == NULL)
   4733 		goto skip;
   4734 
   4735 	prop_object_iterator_t _it = prop_array_iterator(allowedips);
   4736 	prop_dictionary_t prop_allowedip;
   4737 	int j = 0;
   4738 	while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
   4739 		struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4740 
   4741 		if (!prop_dictionary_get_int(prop_allowedip, "family",
   4742 			&wga->wga_family))
   4743 			continue;
   4744 		if (!prop_dictionary_get_data(prop_allowedip, "ip",
   4745 			&addr, &addr_len))
   4746 			continue;
   4747 		if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
   4748 			&wga->wga_cidr))
   4749 			continue;
   4750 
   4751 		switch (wga->wga_family) {
   4752 #ifdef INET
   4753 		case AF_INET: {
   4754 			struct sockaddr_in sin;
   4755 			char addrstr[128];
   4756 			struct in_addr mask;
   4757 			struct sockaddr_in sin_mask;
   4758 
   4759 			if (addr_len != sizeof(struct in_addr))
   4760 				return EINVAL;
   4761 			memcpy(&wga->wga_addr4, addr, addr_len);
   4762 
   4763 			sockaddr_in_init(&sin, (const struct in_addr *)addr,
   4764 			    0);
   4765 			sockaddr_copy(&wga->wga_sa_addr,
   4766 			    sizeof(sin), sintosa(&sin));
   4767 
   4768 			sockaddr_format(sintosa(&sin),
   4769 			    addrstr, sizeof(addrstr));
   4770 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4771 
   4772 			in_len2mask(&mask, wga->wga_cidr);
   4773 			sockaddr_in_init(&sin_mask, &mask, 0);
   4774 			sockaddr_copy(&wga->wga_sa_mask,
   4775 			    sizeof(sin_mask), sintosa(&sin_mask));
   4776 
   4777 			break;
   4778 		    }
   4779 #endif
   4780 #ifdef INET6
   4781 		case AF_INET6: {
   4782 			struct sockaddr_in6 sin6;
   4783 			char addrstr[128];
   4784 			struct in6_addr mask;
   4785 			struct sockaddr_in6 sin6_mask;
   4786 
   4787 			if (addr_len != sizeof(struct in6_addr))
   4788 				return EINVAL;
   4789 			memcpy(&wga->wga_addr6, addr, addr_len);
   4790 
   4791 			sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
   4792 			    0, 0, 0);
   4793 			sockaddr_copy(&wga->wga_sa_addr,
   4794 			    sizeof(sin6), sin6tosa(&sin6));
   4795 
   4796 			sockaddr_format(sin6tosa(&sin6),
   4797 			    addrstr, sizeof(addrstr));
   4798 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4799 
   4800 			in6_prefixlen2mask(&mask, wga->wga_cidr);
   4801 			sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
   4802 			sockaddr_copy(&wga->wga_sa_mask,
   4803 			    sizeof(sin6_mask), sin6tosa(&sin6_mask));
   4804 
   4805 			break;
   4806 		    }
   4807 #endif
   4808 		default:
   4809 			error = EINVAL;
   4810 			goto out;
   4811 		}
   4812 		wga->wga_peer = wgp;
   4813 
   4814 		error = wg_rtable_add_route(wg, wga);
   4815 		if (error != 0)
   4816 			goto out;
   4817 
   4818 		j++;
   4819 	}
   4820 	wgp->wgp_n_allowedips = j;
   4821 skip:
   4822 	*wgpp = wgp;
   4823 out:
   4824 	return error;
   4825 }
   4826 
   4827 static int
   4828 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
   4829 {
   4830 	int error;
   4831 	char *buf;
   4832 
   4833 	WG_DLOG("buf=%p, len=%zu\n", ifd->ifd_data, ifd->ifd_len);
   4834 	if (ifd->ifd_len >= WG_MAX_PROPLEN)
   4835 		return E2BIG;
   4836 	buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
   4837 	error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
   4838 	if (error != 0)
   4839 		return error;
   4840 	buf[ifd->ifd_len] = '\0';
   4841 #ifdef WG_DEBUG_DUMP
   4842 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4843 		log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
   4844 		    (const char *)buf);
   4845 	}
   4846 #endif
   4847 	*_buf = buf;
   4848 	return 0;
   4849 }
   4850 
   4851 static int
   4852 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
   4853 {
   4854 	int error;
   4855 	prop_dictionary_t prop_dict;
   4856 	char *buf = NULL;
   4857 	const void *privkey;
   4858 	size_t privkey_len;
   4859 
   4860 	error = wg_alloc_prop_buf(&buf, ifd);
   4861 	if (error != 0)
   4862 		return error;
   4863 	error = EINVAL;
   4864 	prop_dict = prop_dictionary_internalize(buf);
   4865 	if (prop_dict == NULL)
   4866 		goto out;
   4867 	if (!prop_dictionary_get_data(prop_dict, "private_key",
   4868 		&privkey, &privkey_len))
   4869 		goto out;
   4870 #ifdef WG_DEBUG_DUMP
   4871 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4872 		char *hex = gethexdump(privkey, privkey_len);
   4873 		log(LOG_DEBUG, "privkey=%p, privkey_len=%zu\n%s\n",
   4874 		    privkey, privkey_len, hex);
   4875 		puthexdump(hex, privkey, privkey_len);
   4876 	}
   4877 #endif
   4878 	if (privkey_len != WG_STATIC_KEY_LEN)
   4879 		goto out;
   4880 	memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
   4881 	wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
   4882 	error = 0;
   4883 
   4884 out:
   4885 	kmem_free(buf, ifd->ifd_len + 1);
   4886 	return error;
   4887 }
   4888 
   4889 static int
   4890 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
   4891 {
   4892 	int error;
   4893 	prop_dictionary_t prop_dict;
   4894 	char *buf = NULL;
   4895 	uint16_t port;
   4896 
   4897 	error = wg_alloc_prop_buf(&buf, ifd);
   4898 	if (error != 0)
   4899 		return error;
   4900 	error = EINVAL;
   4901 	prop_dict = prop_dictionary_internalize(buf);
   4902 	if (prop_dict == NULL)
   4903 		goto out;
   4904 	if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
   4905 		goto out;
   4906 
   4907 	error = wg->wg_ops->bind_port(wg, (uint16_t)port);
   4908 
   4909 out:
   4910 	kmem_free(buf, ifd->ifd_len + 1);
   4911 	return error;
   4912 }
   4913 
   4914 static int
   4915 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4916 {
   4917 	int error;
   4918 	prop_dictionary_t prop_dict;
   4919 	char *buf = NULL;
   4920 	struct wg_peer *wgp = NULL, *wgp0 __diagused;
   4921 
   4922 	error = wg_alloc_prop_buf(&buf, ifd);
   4923 	if (error != 0)
   4924 		return error;
   4925 	error = EINVAL;
   4926 	prop_dict = prop_dictionary_internalize(buf);
   4927 	if (prop_dict == NULL)
   4928 		goto out;
   4929 
   4930 	error = wg_handle_prop_peer(wg, prop_dict, &wgp);
   4931 	if (error != 0)
   4932 		goto out;
   4933 
   4934 	mutex_enter(wg->wg_lock);
   4935 	if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4936 		sizeof(wgp->wgp_pubkey)) != NULL ||
   4937 	    (wgp->wgp_name[0] &&
   4938 		thmap_get(wg->wg_peers_byname, wgp->wgp_name,
   4939 		    strlen(wgp->wgp_name)) != NULL)) {
   4940 		mutex_exit(wg->wg_lock);
   4941 		wg_destroy_peer(wgp);
   4942 		error = EEXIST;
   4943 		goto out;
   4944 	}
   4945 	wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4946 	    sizeof(wgp->wgp_pubkey), wgp);
   4947 	KASSERT(wgp0 == wgp);
   4948 	if (wgp->wgp_name[0]) {
   4949 		wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
   4950 		    strlen(wgp->wgp_name), wgp);
   4951 		KASSERT(wgp0 == wgp);
   4952 	}
   4953 	WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
   4954 	wg->wg_npeers++;
   4955 	mutex_exit(wg->wg_lock);
   4956 
   4957 	if_link_state_change(&wg->wg_if, LINK_STATE_UP);
   4958 
   4959 out:
   4960 	kmem_free(buf, ifd->ifd_len + 1);
   4961 	return error;
   4962 }
   4963 
   4964 static int
   4965 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4966 {
   4967 	int error;
   4968 	prop_dictionary_t prop_dict;
   4969 	char *buf = NULL;
   4970 	const char *name;
   4971 
   4972 	error = wg_alloc_prop_buf(&buf, ifd);
   4973 	if (error != 0)
   4974 		return error;
   4975 	error = EINVAL;
   4976 	prop_dict = prop_dictionary_internalize(buf);
   4977 	if (prop_dict == NULL)
   4978 		goto out;
   4979 
   4980 	if (!prop_dictionary_get_string(prop_dict, "name", &name))
   4981 		goto out;
   4982 	if (strlen(name) > WG_PEER_NAME_MAXLEN)
   4983 		goto out;
   4984 
   4985 	error = wg_destroy_peer_name(wg, name);
   4986 out:
   4987 	kmem_free(buf, ifd->ifd_len + 1);
   4988 	return error;
   4989 }
   4990 
   4991 static bool
   4992 wg_is_authorized(struct wg_softc *wg, u_long cmd)
   4993 {
   4994 	int au = cmd == SIOCGDRVSPEC ?
   4995 	    KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
   4996 	    KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
   4997 	return kauth_authorize_network(kauth_cred_get(),
   4998 	    KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
   4999 	    (void *)cmd, NULL) == 0;
   5000 }
   5001 
   5002 static int
   5003 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
   5004 {
   5005 	int error = ENOMEM;
   5006 	prop_dictionary_t prop_dict;
   5007 	prop_array_t peers = NULL;
   5008 	char *buf;
   5009 	struct wg_peer *wgp;
   5010 	int s, i;
   5011 
   5012 	prop_dict = prop_dictionary_create();
   5013 	if (prop_dict == NULL)
   5014 		goto error;
   5015 
   5016 	if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   5017 		if (!prop_dictionary_set_data(prop_dict, "private_key",
   5018 			wg->wg_privkey, WG_STATIC_KEY_LEN))
   5019 			goto error;
   5020 	}
   5021 
   5022 	if (wg->wg_listen_port != 0) {
   5023 		if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
   5024 			wg->wg_listen_port))
   5025 			goto error;
   5026 	}
   5027 
   5028 	if (wg->wg_npeers == 0)
   5029 		goto skip_peers;
   5030 
   5031 	peers = prop_array_create();
   5032 	if (peers == NULL)
   5033 		goto error;
   5034 
   5035 	s = pserialize_read_enter();
   5036 	i = 0;
   5037 	WG_PEER_READER_FOREACH(wgp, wg) {
   5038 		struct wg_sockaddr *wgsa;
   5039 		struct psref wgp_psref, wgsa_psref;
   5040 		prop_dictionary_t prop_peer;
   5041 
   5042 		wg_get_peer(wgp, &wgp_psref);
   5043 		pserialize_read_exit(s);
   5044 
   5045 		prop_peer = prop_dictionary_create();
   5046 		if (prop_peer == NULL)
   5047 			goto next;
   5048 
   5049 		if (strlen(wgp->wgp_name) > 0) {
   5050 			if (!prop_dictionary_set_string(prop_peer, "name",
   5051 				wgp->wgp_name))
   5052 				goto next;
   5053 		}
   5054 
   5055 		if (!prop_dictionary_set_data(prop_peer, "public_key",
   5056 			wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
   5057 			goto next;
   5058 
   5059 		uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
   5060 		if (!consttime_memequal(wgp->wgp_psk, psk_zero,
   5061 			sizeof(wgp->wgp_psk))) {
   5062 			if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   5063 				if (!prop_dictionary_set_data(prop_peer,
   5064 					"preshared_key",
   5065 					wgp->wgp_psk, sizeof(wgp->wgp_psk)))
   5066 					goto next;
   5067 			}
   5068 		}
   5069 
   5070 		wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
   5071 		CTASSERT(AF_UNSPEC == 0);
   5072 		if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
   5073 		    !prop_dictionary_set_data(prop_peer, "endpoint",
   5074 			wgsatoss(wgsa),
   5075 			sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
   5076 			wg_put_sa(wgp, wgsa, &wgsa_psref);
   5077 			goto next;
   5078 		}
   5079 		wg_put_sa(wgp, wgsa, &wgsa_psref);
   5080 
   5081 		const struct timespec *t = &wgp->wgp_last_handshake_time;
   5082 
   5083 		if (!prop_dictionary_set_uint64(prop_peer,
   5084 			"last_handshake_time_sec", (uint64_t)t->tv_sec))
   5085 			goto next;
   5086 		if (!prop_dictionary_set_uint32(prop_peer,
   5087 			"last_handshake_time_nsec", (uint32_t)t->tv_nsec))
   5088 			goto next;
   5089 
   5090 		if (wgp->wgp_n_allowedips == 0)
   5091 			goto skip_allowedips;
   5092 
   5093 		prop_array_t allowedips = prop_array_create();
   5094 		if (allowedips == NULL)
   5095 			goto next;
   5096 		for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
   5097 			struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   5098 			prop_dictionary_t prop_allowedip;
   5099 
   5100 			prop_allowedip = prop_dictionary_create();
   5101 			if (prop_allowedip == NULL)
   5102 				break;
   5103 
   5104 			if (!prop_dictionary_set_int(prop_allowedip, "family",
   5105 				wga->wga_family))
   5106 				goto _next;
   5107 			if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
   5108 				wga->wga_cidr))
   5109 				goto _next;
   5110 
   5111 			switch (wga->wga_family) {
   5112 #ifdef INET
   5113 			case AF_INET:
   5114 				if (!prop_dictionary_set_data(prop_allowedip,
   5115 					"ip", &wga->wga_addr4,
   5116 					sizeof(wga->wga_addr4)))
   5117 					goto _next;
   5118 				break;
   5119 #endif
   5120 #ifdef INET6
   5121 			case AF_INET6:
   5122 				if (!prop_dictionary_set_data(prop_allowedip,
   5123 					"ip", &wga->wga_addr6,
   5124 					sizeof(wga->wga_addr6)))
   5125 					goto _next;
   5126 				break;
   5127 #endif
   5128 			default:
   5129 				panic("invalid af=%d", wga->wga_family);
   5130 			}
   5131 			prop_array_set(allowedips, j, prop_allowedip);
   5132 		_next:
   5133 			prop_object_release(prop_allowedip);
   5134 		}
   5135 		prop_dictionary_set(prop_peer, "allowedips", allowedips);
   5136 		prop_object_release(allowedips);
   5137 
   5138 	skip_allowedips:
   5139 
   5140 		prop_array_set(peers, i, prop_peer);
   5141 	next:
   5142 		if (prop_peer)
   5143 			prop_object_release(prop_peer);
   5144 		i++;
   5145 
   5146 		s = pserialize_read_enter();
   5147 		wg_put_peer(wgp, &wgp_psref);
   5148 	}
   5149 	pserialize_read_exit(s);
   5150 
   5151 	prop_dictionary_set(prop_dict, "peers", peers);
   5152 	prop_object_release(peers);
   5153 	peers = NULL;
   5154 
   5155 skip_peers:
   5156 	buf = prop_dictionary_externalize(prop_dict);
   5157 	if (buf == NULL)
   5158 		goto error;
   5159 	if (ifd->ifd_len < (strlen(buf) + 1)) {
   5160 		error = EINVAL;
   5161 		goto error;
   5162 	}
   5163 	error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
   5164 
   5165 	free(buf, 0);
   5166 error:
   5167 	if (peers != NULL)
   5168 		prop_object_release(peers);
   5169 	if (prop_dict != NULL)
   5170 		prop_object_release(prop_dict);
   5171 
   5172 	return error;
   5173 }
   5174 
   5175 static int
   5176 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5177 {
   5178 	struct wg_softc *wg = ifp->if_softc;
   5179 	struct ifreq *ifr = data;
   5180 	struct ifaddr *ifa = data;
   5181 	struct ifdrv *ifd = data;
   5182 	int error = 0;
   5183 
   5184 	switch (cmd) {
   5185 	case SIOCINITIFADDR:
   5186 		if (ifa->ifa_addr->sa_family != AF_LINK &&
   5187 		    (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   5188 		    (IFF_UP | IFF_RUNNING)) {
   5189 			ifp->if_flags |= IFF_UP;
   5190 			error = if_init(ifp);
   5191 		}
   5192 		return error;
   5193 	case SIOCADDMULTI:
   5194 	case SIOCDELMULTI:
   5195 		switch (ifr->ifr_addr.sa_family) {
   5196 #ifdef INET
   5197 		case AF_INET:	/* IP supports Multicast */
   5198 			break;
   5199 #endif
   5200 #ifdef INET6
   5201 		case AF_INET6:	/* IP6 supports Multicast */
   5202 			break;
   5203 #endif
   5204 		default:  /* Other protocols doesn't support Multicast */
   5205 			error = EAFNOSUPPORT;
   5206 			break;
   5207 		}
   5208 		return error;
   5209 	case SIOCSDRVSPEC:
   5210 		if (!wg_is_authorized(wg, cmd)) {
   5211 			return EPERM;
   5212 		}
   5213 		switch (ifd->ifd_cmd) {
   5214 		case WG_IOCTL_SET_PRIVATE_KEY:
   5215 			error = wg_ioctl_set_private_key(wg, ifd);
   5216 			break;
   5217 		case WG_IOCTL_SET_LISTEN_PORT:
   5218 			error = wg_ioctl_set_listen_port(wg, ifd);
   5219 			break;
   5220 		case WG_IOCTL_ADD_PEER:
   5221 			error = wg_ioctl_add_peer(wg, ifd);
   5222 			break;
   5223 		case WG_IOCTL_DELETE_PEER:
   5224 			error = wg_ioctl_delete_peer(wg, ifd);
   5225 			break;
   5226 		default:
   5227 			error = EINVAL;
   5228 			break;
   5229 		}
   5230 		return error;
   5231 	case SIOCGDRVSPEC:
   5232 		return wg_ioctl_get(wg, ifd);
   5233 	case SIOCSIFFLAGS:
   5234 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   5235 			break;
   5236 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   5237 		case IFF_RUNNING:
   5238 			/*
   5239 			 * If interface is marked down and it is running,
   5240 			 * then stop and disable it.
   5241 			 */
   5242 			if_stop(ifp, 1);
   5243 			break;
   5244 		case IFF_UP:
   5245 			/*
   5246 			 * If interface is marked up and it is stopped, then
   5247 			 * start it.
   5248 			 */
   5249 			error = if_init(ifp);
   5250 			break;
   5251 		default:
   5252 			break;
   5253 		}
   5254 		return error;
   5255 #ifdef WG_RUMPKERNEL
   5256 	case SIOCSLINKSTR:
   5257 		error = wg_ioctl_linkstr(wg, ifd);
   5258 		if (error)
   5259 			return error;
   5260 		wg->wg_ops = &wg_ops_rumpuser;
   5261 		return 0;
   5262 #endif
   5263 	default:
   5264 		break;
   5265 	}
   5266 
   5267 	error = ifioctl_common(ifp, cmd, data);
   5268 
   5269 #ifdef WG_RUMPKERNEL
   5270 	if (!wg_user_mode(wg))
   5271 		return error;
   5272 
   5273 	/* Do the same to the corresponding tun device on the host */
   5274 	/*
   5275 	 * XXX Actually the command has not been handled yet.  It
   5276 	 *     will be handled via pr_ioctl form doifioctl later.
   5277 	 */
   5278 	switch (cmd) {
   5279 #ifdef INET
   5280 	case SIOCAIFADDR:
   5281 	case SIOCDIFADDR: {
   5282 		struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
   5283 		struct in_aliasreq *ifra = &_ifra;
   5284 		KASSERT(error == ENOTTY);
   5285 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   5286 		    IFNAMSIZ);
   5287 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
   5288 		if (error == 0)
   5289 			error = ENOTTY;
   5290 		break;
   5291 	}
   5292 #endif
   5293 #ifdef INET6
   5294 	case SIOCAIFADDR_IN6:
   5295 	case SIOCDIFADDR_IN6: {
   5296 		struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
   5297 		struct in6_aliasreq *ifra = &_ifra;
   5298 		KASSERT(error == ENOTTY);
   5299 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   5300 		    IFNAMSIZ);
   5301 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
   5302 		if (error == 0)
   5303 			error = ENOTTY;
   5304 		break;
   5305 	}
   5306 #endif
   5307 	default:
   5308 		break;
   5309 	}
   5310 #endif /* WG_RUMPKERNEL */
   5311 
   5312 	return error;
   5313 }
   5314 
   5315 static int
   5316 wg_init(struct ifnet *ifp)
   5317 {
   5318 
   5319 	ifp->if_flags |= IFF_RUNNING;
   5320 
   5321 	/* TODO flush pending packets. */
   5322 	return 0;
   5323 }
   5324 
   5325 #ifdef ALTQ
   5326 static void
   5327 wg_start(struct ifnet *ifp)
   5328 {
   5329 	struct mbuf *m;
   5330 
   5331 	for (;;) {
   5332 		IFQ_DEQUEUE(&ifp->if_snd, m);
   5333 		if (m == NULL)
   5334 			break;
   5335 
   5336 		kpreempt_disable();
   5337 		const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   5338 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   5339 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   5340 			    if_name(ifp));
   5341 			m_freem(m);
   5342 		}
   5343 		kpreempt_enable();
   5344 	}
   5345 }
   5346 #endif
   5347 
   5348 static void
   5349 wg_stop(struct ifnet *ifp, int disable)
   5350 {
   5351 
   5352 	KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
   5353 	ifp->if_flags &= ~IFF_RUNNING;
   5354 
   5355 	/* Need to do something? */
   5356 }
   5357 
   5358 #ifdef WG_DEBUG_PARAMS
   5359 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
   5360 {
   5361 	const struct sysctlnode *node = NULL;
   5362 
   5363 	sysctl_createv(clog, 0, NULL, &node,
   5364 	    CTLFLAG_PERMANENT,
   5365 	    CTLTYPE_NODE, "wg",
   5366 	    SYSCTL_DESCR("wg(4)"),
   5367 	    NULL, 0, NULL, 0,
   5368 	    CTL_NET, CTL_CREATE, CTL_EOL);
   5369 	sysctl_createv(clog, 0, &node, NULL,
   5370 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5371 	    CTLTYPE_QUAD, "rekey_after_messages",
   5372 	    SYSCTL_DESCR("session liftime by messages"),
   5373 	    NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
   5374 	sysctl_createv(clog, 0, &node, NULL,
   5375 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5376 	    CTLTYPE_INT, "rekey_after_time",
   5377 	    SYSCTL_DESCR("session liftime"),
   5378 	    NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
   5379 	sysctl_createv(clog, 0, &node, NULL,
   5380 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5381 	    CTLTYPE_INT, "rekey_timeout",
   5382 	    SYSCTL_DESCR("session handshake retry time"),
   5383 	    NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
   5384 	sysctl_createv(clog, 0, &node, NULL,
   5385 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5386 	    CTLTYPE_INT, "rekey_attempt_time",
   5387 	    SYSCTL_DESCR("session handshake timeout"),
   5388 	    NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
   5389 	sysctl_createv(clog, 0, &node, NULL,
   5390 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5391 	    CTLTYPE_INT, "keepalive_timeout",
   5392 	    SYSCTL_DESCR("keepalive timeout"),
   5393 	    NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
   5394 	sysctl_createv(clog, 0, &node, NULL,
   5395 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5396 	    CTLTYPE_BOOL, "force_underload",
   5397 	    SYSCTL_DESCR("force to detemine under load"),
   5398 	    NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
   5399 	sysctl_createv(clog, 0, &node, NULL,
   5400 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5401 	    CTLTYPE_INT, "debug",
   5402 	    SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
   5403 	    NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
   5404 }
   5405 #endif
   5406 
   5407 #ifdef WG_RUMPKERNEL
   5408 static bool
   5409 wg_user_mode(struct wg_softc *wg)
   5410 {
   5411 
   5412 	return wg->wg_user != NULL;
   5413 }
   5414 
   5415 static int
   5416 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
   5417 {
   5418 	struct ifnet *ifp = &wg->wg_if;
   5419 	int error;
   5420 
   5421 	if (ifp->if_flags & IFF_UP)
   5422 		return EBUSY;
   5423 
   5424 	if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
   5425 		/* XXX do nothing */
   5426 		return 0;
   5427 	} else if (ifd->ifd_cmd != 0) {
   5428 		return EINVAL;
   5429 	} else if (wg->wg_user != NULL) {
   5430 		return EBUSY;
   5431 	}
   5432 
   5433 	/* Assume \0 included */
   5434 	if (ifd->ifd_len > IFNAMSIZ) {
   5435 		return E2BIG;
   5436 	} else if (ifd->ifd_len < 1) {
   5437 		return EINVAL;
   5438 	}
   5439 
   5440 	char tun_name[IFNAMSIZ];
   5441 	error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
   5442 	if (error != 0)
   5443 		return error;
   5444 
   5445 	if (strncmp(tun_name, "tun", 3) != 0)
   5446 		return EINVAL;
   5447 
   5448 	error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
   5449 
   5450 	return error;
   5451 }
   5452 
   5453 static int
   5454 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
   5455 {
   5456 	int error;
   5457 	struct psref psref;
   5458 	struct wg_sockaddr *wgsa;
   5459 	struct wg_softc *wg = wgp->wgp_sc;
   5460 	struct iovec iov[1];
   5461 
   5462 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   5463 
   5464 	iov[0].iov_base = mtod(m, void *);
   5465 	iov[0].iov_len = m->m_len;
   5466 
   5467 	/* Send messages to a peer via an ordinary socket. */
   5468 	error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
   5469 
   5470 	wg_put_sa(wgp, wgsa, &psref);
   5471 
   5472 	m_freem(m);
   5473 
   5474 	return error;
   5475 }
   5476 
   5477 static void
   5478 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
   5479 {
   5480 	struct wg_softc *wg = ifp->if_softc;
   5481 	struct iovec iov[2];
   5482 	struct sockaddr_storage ss;
   5483 
   5484 	KASSERT(af == AF_INET || af == AF_INET6);
   5485 
   5486 	WG_TRACE("");
   5487 
   5488 	switch (af) {
   5489 #ifdef INET
   5490 	case AF_INET: {
   5491 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   5492 		struct ip *ip;
   5493 
   5494 		KASSERT(m->m_len >= sizeof(struct ip));
   5495 		ip = mtod(m, struct ip *);
   5496 		sockaddr_in_init(sin, &ip->ip_dst, 0);
   5497 		break;
   5498 	}
   5499 #endif
   5500 #ifdef INET6
   5501 	case AF_INET6: {
   5502 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   5503 		struct ip6_hdr *ip6;
   5504 
   5505 		KASSERT(m->m_len >= sizeof(struct ip6_hdr));
   5506 		ip6 = mtod(m, struct ip6_hdr *);
   5507 		sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
   5508 		break;
   5509 	}
   5510 #endif
   5511 	default:
   5512 		goto out;
   5513 	}
   5514 
   5515 	iov[0].iov_base = &ss;
   5516 	iov[0].iov_len = ss.ss_len;
   5517 	iov[1].iov_base = mtod(m, void *);
   5518 	iov[1].iov_len = m->m_len;
   5519 
   5520 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5521 
   5522 	/* Send decrypted packets to users via a tun. */
   5523 	rumpuser_wg_send_user(wg->wg_user, iov, 2);
   5524 
   5525 out:	m_freem(m);
   5526 }
   5527 
   5528 static int
   5529 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
   5530 {
   5531 	int error;
   5532 	uint16_t old_port = wg->wg_listen_port;
   5533 
   5534 	if (port != 0 && old_port == port)
   5535 		return 0;
   5536 
   5537 	error = rumpuser_wg_sock_bind(wg->wg_user, port);
   5538 	if (error)
   5539 		return error;
   5540 
   5541 	wg->wg_listen_port = port;
   5542 	return 0;
   5543 }
   5544 
   5545 /*
   5546  * Receive user packets.
   5547  */
   5548 void
   5549 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5550 {
   5551 	struct ifnet *ifp = &wg->wg_if;
   5552 	struct mbuf *m;
   5553 	const struct sockaddr *dst;
   5554 	int error;
   5555 
   5556 	WG_TRACE("");
   5557 
   5558 	dst = iov[0].iov_base;
   5559 
   5560 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5561 	if (m == NULL)
   5562 		return;
   5563 	m->m_len = m->m_pkthdr.len = 0;
   5564 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5565 
   5566 	WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
   5567 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5568 
   5569 	error = wg_output(ifp, m, dst, NULL); /* consumes m */
   5570 	if (error)
   5571 		WG_DLOG("wg_output failed, error=%d\n", error);
   5572 }
   5573 
   5574 /*
   5575  * Receive packets from a peer.
   5576  */
   5577 void
   5578 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5579 {
   5580 	struct mbuf *m;
   5581 	const struct sockaddr *src;
   5582 	int bound;
   5583 
   5584 	WG_TRACE("");
   5585 
   5586 	src = iov[0].iov_base;
   5587 
   5588 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5589 	if (m == NULL)
   5590 		return;
   5591 	m->m_len = m->m_pkthdr.len = 0;
   5592 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5593 
   5594 	WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
   5595 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5596 
   5597 	bound = curlwp_bind();
   5598 	wg_handle_packet(wg, m, src);
   5599 	curlwp_bindx(bound);
   5600 }
   5601 #endif /* WG_RUMPKERNEL */
   5602 
   5603 /*
   5604  * Module infrastructure
   5605  */
   5606 #include "if_module.h"
   5607 
   5608 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
   5609