if_wg.c revision 1.134 1 /* $NetBSD: if_wg.c,v 1.134 2024/12/27 15:55:19 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * https://web.archive.org/web/20180805103233/https://www.wireguard.com/papers/wireguard.pdf
41 * [2] http://noiseprotocol.org/noise.pdf
42 * https://web.archive.org/web/20180727193154/https://noiseprotocol.org/noise.pdf
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.134 2024/12/27 15:55:19 riastradh Exp $");
47
48 #ifdef _KERNEL_OPT
49 #include "opt_altq_enabled.h"
50 #include "opt_inet.h"
51 #endif
52
53 #include <sys/param.h>
54 #include <sys/types.h>
55
56 #include <sys/atomic.h>
57 #include <sys/callout.h>
58 #include <sys/cprng.h>
59 #include <sys/cpu.h>
60 #include <sys/device.h>
61 #include <sys/domain.h>
62 #include <sys/errno.h>
63 #include <sys/intr.h>
64 #include <sys/ioctl.h>
65 #include <sys/kernel.h>
66 #include <sys/kmem.h>
67 #include <sys/mbuf.h>
68 #include <sys/module.h>
69 #include <sys/mutex.h>
70 #include <sys/once.h>
71 #include <sys/percpu.h>
72 #include <sys/pserialize.h>
73 #include <sys/psref.h>
74 #include <sys/queue.h>
75 #include <sys/rwlock.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/sockio.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/systm.h>
82 #include <sys/thmap.h>
83 #include <sys/threadpool.h>
84 #include <sys/time.h>
85 #include <sys/timespec.h>
86 #include <sys/workqueue.h>
87
88 #include <lib/libkern/libkern.h>
89
90 #include <net/bpf.h>
91 #include <net/if.h>
92 #include <net/if_types.h>
93 #include <net/if_wg.h>
94 #include <net/pktqueue.h>
95 #include <net/route.h>
96
97 #ifdef INET
98 #include <netinet/in.h>
99 #include <netinet/in_pcb.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/ip_var.h>
103 #include <netinet/udp.h>
104 #include <netinet/udp_var.h>
105 #endif /* INET */
106
107 #ifdef INET6
108 #include <netinet/ip6.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet6/in6_var.h>
111 #include <netinet6/ip6_var.h>
112 #include <netinet6/udp6_var.h>
113 #endif /* INET6 */
114
115 #include <prop/proplib.h>
116
117 #include <crypto/blake2/blake2s.h>
118 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
119 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
120 #include <crypto/sodium/crypto_scalarmult.h>
121
122 #include "ioconf.h"
123
124 #ifdef WG_RUMPKERNEL
125 #include "wg_user.h"
126 #endif
127
128 #ifndef time_uptime32
129 #define time_uptime32 ((uint32_t)time_uptime)
130 #endif
131
132 /*
133 * Data structures
134 * - struct wg_softc is an instance of wg interfaces
135 * - It has a list of peers (struct wg_peer)
136 * - It has a threadpool job that sends/receives handshake messages and
137 * runs event handlers
138 * - It has its own two routing tables: one is for IPv4 and the other IPv6
139 * - struct wg_peer is a representative of a peer
140 * - It has a struct work to handle handshakes and timer tasks
141 * - It has a pair of session instances (struct wg_session)
142 * - It has a pair of endpoint instances (struct wg_sockaddr)
143 * - Normally one endpoint is used and the second one is used only on
144 * a peer migration (a change of peer's IP address)
145 * - It has a list of IP addresses and sub networks called allowedips
146 * (struct wg_allowedip)
147 * - A packets sent over a session is allowed if its destination matches
148 * any IP addresses or sub networks of the list
149 * - struct wg_session represents a session of a secure tunnel with a peer
150 * - Two instances of sessions belong to a peer; a stable session and a
151 * unstable session
152 * - A handshake process of a session always starts with a unstable instance
153 * - Once a session is established, its instance becomes stable and the
154 * other becomes unstable instead
155 * - Data messages are always sent via a stable session
156 *
157 * Locking notes:
158 * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
159 * - Changes to the peer list are serialized by wg_lock
160 * - The peer list may be read with pserialize(9) and psref(9)
161 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
162 * => XXX replace by pserialize when routing table is psz-safe
163 * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
164 * only in thread context and serializes:
165 * - the stable and unstable session pointers
166 * - all unstable session state
167 * - Packet processing may be done in softint context:
168 * - The stable session can be read under pserialize(9) or psref(9)
169 * - The stable session is always ESTABLISHED
170 * - On a session swap, we must wait for all readers to release a
171 * reference to a stable session before changing wgs_state and
172 * session states
173 * - Lock order: wg_lock -> wgp_lock
174 */
175
176
177 #define WGLOG(level, fmt, args...) \
178 log(level, "%s: " fmt, __func__, ##args)
179
180 #define WG_DEBUG
181
182 /* Debug options */
183 #ifdef WG_DEBUG
184 /* Output debug logs */
185 #ifndef WG_DEBUG_LOG
186 #define WG_DEBUG_LOG
187 #endif
188 /* Output trace logs */
189 #ifndef WG_DEBUG_TRACE
190 #define WG_DEBUG_TRACE
191 #endif
192 /* Output hash values, etc. */
193 #ifndef WG_DEBUG_DUMP
194 #define WG_DEBUG_DUMP
195 #endif
196 /* Make some internal parameters configurable for testing and debugging */
197 #ifndef WG_DEBUG_PARAMS
198 #define WG_DEBUG_PARAMS
199 #endif
200 #endif /* WG_DEBUG */
201
202 #ifndef WG_DEBUG
203 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) || \
204 defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS)
205 # define WG_DEBUG
206 # endif
207 #endif
208
209 #ifdef WG_DEBUG
210 int wg_debug;
211 #define WG_DEBUG_FLAGS_LOG 1
212 #define WG_DEBUG_FLAGS_TRACE 2
213 #define WG_DEBUG_FLAGS_DUMP 4
214 #endif
215
216 #ifdef WG_DEBUG_TRACE
217 #define WG_TRACE(msg) do { \
218 if (wg_debug & WG_DEBUG_FLAGS_TRACE) \
219 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg)); \
220 } while (0)
221 #else
222 #define WG_TRACE(msg) __nothing
223 #endif
224
225 #ifdef WG_DEBUG_LOG
226 #define WG_DLOG(fmt, args...) do { \
227 if (wg_debug & WG_DEBUG_FLAGS_LOG) \
228 log(LOG_DEBUG, "%s: " fmt, __func__, ##args); \
229 } while (0)
230 #else
231 #define WG_DLOG(fmt, args...) __nothing
232 #endif
233
234 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
235 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
236 &(wgprc)->wgprc_curpps, 1)) { \
237 log(level, fmt, ##args); \
238 } \
239 } while (0)
240
241 #ifdef WG_DEBUG_PARAMS
242 static bool wg_force_underload = false;
243 #endif
244
245 #ifdef WG_DEBUG_DUMP
246
247 static char enomem[10] = "[enomem]";
248
249 #define MAX_HDUMP_LEN 10000 /* large enough */
250
251 /*
252 * gethexdump(p, n)
253 *
254 * Allocate a string returning a hexdump of bytes p[0..n),
255 * truncated to MAX_HDUMP_LEN. Must be freed with puthexdump.
256 *
257 * We use this instead of libkern hexdump() because the result is
258 * logged with log(LOG_DEBUG, ...), which puts a priority tag on
259 * every message, so it can't be done incrementally.
260 */
261 static char *
262 gethexdump(const void *vp, size_t n)
263 {
264 char *buf;
265 const uint8_t *p = vp;
266 size_t i, alloc;
267
268 alloc = n;
269 if (n > MAX_HDUMP_LEN)
270 alloc = MAX_HDUMP_LEN;
271 buf = kmem_alloc(3*alloc + 5, KM_NOSLEEP);
272 if (buf == NULL)
273 return enomem;
274 for (i = 0; i < alloc; i++)
275 snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
276 if (alloc != n)
277 snprintf(buf + 3*i, 4 + 1, " ...");
278 return buf;
279 }
280
281 static void
282 puthexdump(char *buf, const void *p, size_t n)
283 {
284
285 if (buf == NULL || buf == enomem)
286 return;
287 if (n > MAX_HDUMP_LEN)
288 n = MAX_HDUMP_LEN;
289 kmem_free(buf, 3*n + 5);
290 }
291
292 #ifdef WG_RUMPKERNEL
293 static void
294 wg_dump_buf(const char *func, const char *buf, const size_t size)
295 {
296 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
297 return;
298
299 char *hex = gethexdump(buf, size);
300
301 log(LOG_DEBUG, "%s: %s\n", func, hex);
302 puthexdump(hex, buf, size);
303 }
304 #endif
305
306 static void
307 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
308 const size_t size)
309 {
310 if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
311 return;
312
313 char *hex = gethexdump(hash, size);
314
315 log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex);
316 puthexdump(hex, hash, size);
317 }
318
319 #define WG_DUMP_HASH(name, hash) \
320 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
321 #define WG_DUMP_HASH48(name, hash) \
322 wg_dump_hash(__func__, name, hash, 48)
323 #define WG_DUMP_BUF(buf, size) \
324 wg_dump_buf(__func__, buf, size)
325 #else
326 #define WG_DUMP_HASH(name, hash) __nothing
327 #define WG_DUMP_HASH48(name, hash) __nothing
328 #define WG_DUMP_BUF(buf, size) __nothing
329 #endif /* WG_DEBUG_DUMP */
330
331 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
332 #define WG_MAX_PROPLEN 32766
333
334 #define WG_MTU 1420
335 #define WG_ALLOWEDIPS 16
336
337 #define CURVE25519_KEY_LEN 32
338 #define TAI64N_LEN (sizeof(uint32_t) * 3)
339 #define POLY1305_AUTHTAG_LEN 16
340 #define HMAC_BLOCK_LEN 64
341
342 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
343 /* [N] 4.3: Hash functions */
344 #define NOISE_DHLEN 32
345 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
346 #define NOISE_HASHLEN 32
347 #define NOISE_BLOCKLEN 64
348 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
349 /* [N] 5.1: "k" */
350 #define NOISE_CIPHER_KEY_LEN 32
351 /*
352 * [N] 9.2: "psk"
353 * "... psk is a 32-byte secret value provided by the application."
354 */
355 #define NOISE_PRESHARED_KEY_LEN 32
356
357 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
358 #define WG_TIMESTAMP_LEN TAI64N_LEN
359
360 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
361
362 #define WG_COOKIE_LEN 16
363 #define WG_MAC_LEN 16
364 #define WG_COOKIESECRET_LEN 32
365
366 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
367 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
368 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
369 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
370 #define WG_HASH_LEN NOISE_HASHLEN
371 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
372 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
373 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
374 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
375 #define WG_DATA_KEY_LEN 32
376 #define WG_SALT_LEN 24
377
378 /*
379 * The protocol messages
380 */
381 struct wg_msg {
382 uint32_t wgm_type;
383 } __packed;
384
385 /* [W] 5.4.2 First Message: Initiator to Responder */
386 struct wg_msg_init {
387 uint32_t wgmi_type;
388 uint32_t wgmi_sender;
389 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
390 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
391 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
392 uint8_t wgmi_mac1[WG_MAC_LEN];
393 uint8_t wgmi_mac2[WG_MAC_LEN];
394 } __packed;
395
396 /* [W] 5.4.3 Second Message: Responder to Initiator */
397 struct wg_msg_resp {
398 uint32_t wgmr_type;
399 uint32_t wgmr_sender;
400 uint32_t wgmr_receiver;
401 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
402 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
403 uint8_t wgmr_mac1[WG_MAC_LEN];
404 uint8_t wgmr_mac2[WG_MAC_LEN];
405 } __packed;
406
407 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
408 struct wg_msg_data {
409 uint32_t wgmd_type;
410 uint32_t wgmd_receiver;
411 uint64_t wgmd_counter;
412 uint32_t wgmd_packet[];
413 } __packed;
414
415 /* [W] 5.4.7 Under Load: Cookie Reply Message */
416 struct wg_msg_cookie {
417 uint32_t wgmc_type;
418 uint32_t wgmc_receiver;
419 uint8_t wgmc_salt[WG_SALT_LEN];
420 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
421 } __packed;
422
423 #define WG_MSG_TYPE_INIT 1
424 #define WG_MSG_TYPE_RESP 2
425 #define WG_MSG_TYPE_COOKIE 3
426 #define WG_MSG_TYPE_DATA 4
427 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
428
429 /* Sliding windows */
430
431 #define SLIWIN_BITS 2048u
432 #define SLIWIN_TYPE uint32_t
433 #define SLIWIN_BPW (NBBY*sizeof(SLIWIN_TYPE))
434 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
435 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
436
437 struct sliwin {
438 SLIWIN_TYPE B[SLIWIN_WORDS];
439 uint64_t T;
440 };
441
442 /*
443 * sliwin_reset(W)
444 *
445 * Reset sliding window state to a blank history with no observed
446 * sequence numbers.
447 *
448 * Caller must have exclusive access to W.
449 */
450 static void
451 sliwin_reset(struct sliwin *W)
452 {
453
454 memset(W, 0, sizeof(*W));
455 }
456
457 /*
458 * sliwin_check_fast(W, S)
459 *
460 * Do a fast check of the sliding window W to validate sequence
461 * number S. No state is recorded. Return 0 on accept, nonzero
462 * error code on reject.
463 *
464 * May be called concurrently with other calls to
465 * sliwin_check_fast and sliwin_update.
466 */
467 static int
468 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
469 {
470
471 /*
472 * If it's more than one window older than the highest sequence
473 * number we've seen, reject.
474 */
475 #ifdef __HAVE_ATOMIC64_LOADSTORE
476 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
477 return EAUTH;
478 #endif
479
480 /*
481 * Otherwise, we need to take the lock to decide, so don't
482 * reject just yet. Caller must serialize a call to
483 * sliwin_update in this case.
484 */
485 return 0;
486 }
487
488 /*
489 * sliwin_update(W, S)
490 *
491 * Check the sliding window W to validate sequence number S, and
492 * if accepted, update it to reflect having observed S. Return 0
493 * on accept, nonzero error code on reject.
494 *
495 * May be called concurrently with other calls to
496 * sliwin_check_fast, but caller must exclude other calls to
497 * sliwin_update.
498 */
499 static int
500 sliwin_update(struct sliwin *W, uint64_t S)
501 {
502 unsigned word, bit;
503
504 /*
505 * If it's more than one window older than the highest sequence
506 * number we've seen, reject.
507 */
508 if (S + SLIWIN_NPKT < W->T)
509 return EAUTH;
510
511 /*
512 * If it's higher than the highest sequence number we've seen,
513 * advance the window.
514 */
515 if (S > W->T) {
516 uint64_t i = W->T / SLIWIN_BPW;
517 uint64_t j = S / SLIWIN_BPW;
518 unsigned k;
519
520 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
521 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
522 #ifdef __HAVE_ATOMIC64_LOADSTORE
523 atomic_store_relaxed(&W->T, S);
524 #else
525 W->T = S;
526 #endif
527 }
528
529 /* Test and set the bit -- if already set, reject. */
530 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
531 bit = S % SLIWIN_BPW;
532 if (W->B[word] & (1UL << bit))
533 return EAUTH;
534 W->B[word] |= 1U << bit;
535
536 /* Accept! */
537 return 0;
538 }
539
540 struct wg_session {
541 struct wg_peer *wgs_peer;
542 struct psref_target
543 wgs_psref;
544
545 volatile int wgs_state;
546 #define WGS_STATE_UNKNOWN 0
547 #define WGS_STATE_INIT_ACTIVE 1
548 #define WGS_STATE_INIT_PASSIVE 2
549 #define WGS_STATE_ESTABLISHED 3
550 #define WGS_STATE_DESTROYING 4
551
552 uint32_t wgs_time_established;
553 volatile uint32_t
554 wgs_time_last_data_sent;
555 volatile bool wgs_force_rekey;
556 bool wgs_is_initiator;
557
558 uint32_t wgs_local_index;
559 uint32_t wgs_remote_index;
560 #ifdef __HAVE_ATOMIC64_LOADSTORE
561 volatile uint64_t
562 wgs_send_counter;
563 #else
564 kmutex_t wgs_send_counter_lock;
565 uint64_t wgs_send_counter;
566 #endif
567
568 struct {
569 kmutex_t lock;
570 struct sliwin window;
571 } *wgs_recvwin;
572
573 uint8_t wgs_handshake_hash[WG_HASH_LEN];
574 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
575 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
576 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
577 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
578 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
579 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
580 };
581
582 struct wg_sockaddr {
583 union {
584 struct sockaddr_storage _ss;
585 struct sockaddr _sa;
586 struct sockaddr_in _sin;
587 struct sockaddr_in6 _sin6;
588 };
589 struct psref_target wgsa_psref;
590 };
591
592 #define wgsatoss(wgsa) (&(wgsa)->_ss)
593 #define wgsatosa(wgsa) (&(wgsa)->_sa)
594 #define wgsatosin(wgsa) (&(wgsa)->_sin)
595 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
596
597 #define wgsa_family(wgsa) (wgsatosa(wgsa)->sa_family)
598
599 struct wg_peer;
600 struct wg_allowedip {
601 struct radix_node wga_nodes[2];
602 struct wg_sockaddr _wga_sa_addr;
603 struct wg_sockaddr _wga_sa_mask;
604 #define wga_sa_addr _wga_sa_addr._sa
605 #define wga_sa_mask _wga_sa_mask._sa
606
607 int wga_family;
608 uint8_t wga_cidr;
609 union {
610 struct in_addr _ip4;
611 struct in6_addr _ip6;
612 } wga_addr;
613 #define wga_addr4 wga_addr._ip4
614 #define wga_addr6 wga_addr._ip6
615
616 struct wg_peer *wga_peer;
617 };
618
619 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
620
621 struct wg_ppsratecheck {
622 struct timeval wgprc_lasttime;
623 int wgprc_curpps;
624 };
625
626 struct wg_softc;
627 struct wg_peer {
628 struct wg_softc *wgp_sc;
629 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
630 struct pslist_entry wgp_peerlist_entry;
631 pserialize_t wgp_psz;
632 struct psref_target wgp_psref;
633 kmutex_t *wgp_lock;
634 kmutex_t *wgp_intr_lock;
635
636 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
637 struct wg_sockaddr *volatile wgp_endpoint;
638 struct wg_sockaddr *wgp_endpoint0;
639 volatile unsigned wgp_endpoint_changing;
640 volatile bool wgp_endpoint_available;
641
642 /* The preshared key (optional) */
643 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
644
645 struct wg_session *volatile wgp_session_stable;
646 struct wg_session *wgp_session_unstable;
647
648 /* first outgoing packet awaiting session initiation */
649 struct mbuf *volatile wgp_pending;
650
651 /* timestamp in big-endian */
652 wg_timestamp_t wgp_timestamp_latest_init;
653
654 struct timespec wgp_last_handshake_time;
655
656 callout_t wgp_handshake_timeout_timer;
657 callout_t wgp_session_dtor_timer;
658
659 time_t wgp_handshake_start_time;
660
661 int wgp_n_allowedips;
662 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
663
664 time_t wgp_latest_cookie_time;
665 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
666 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
667 bool wgp_last_sent_mac1_valid;
668 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
669 bool wgp_last_sent_cookie_valid;
670
671 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
672
673 time_t wgp_last_cookiesecret_time;
674 uint8_t wgp_cookiesecret[WG_COOKIESECRET_LEN];
675
676 struct wg_ppsratecheck wgp_ppsratecheck;
677
678 struct work wgp_work;
679 unsigned int wgp_tasks;
680 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
681 #define WGP_TASK_RETRY_HANDSHAKE __BIT(1)
682 #define WGP_TASK_ESTABLISH_SESSION __BIT(2)
683 #define WGP_TASK_ENDPOINT_CHANGED __BIT(3)
684 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(4)
685 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(5)
686 };
687
688 struct wg_ops;
689
690 struct wg_softc {
691 struct ifnet wg_if;
692 LIST_ENTRY(wg_softc) wg_list;
693 kmutex_t *wg_lock;
694 kmutex_t *wg_intr_lock;
695 krwlock_t *wg_rwlock;
696
697 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
698 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
699
700 int wg_npeers;
701 struct pslist_head wg_peers;
702 struct thmap *wg_peers_bypubkey;
703 struct thmap *wg_peers_byname;
704 struct thmap *wg_sessions_byindex;
705 uint16_t wg_listen_port;
706
707 struct threadpool *wg_threadpool;
708
709 struct threadpool_job wg_job;
710 int wg_upcalls;
711 #define WG_UPCALL_INET __BIT(0)
712 #define WG_UPCALL_INET6 __BIT(1)
713
714 #ifdef INET
715 struct socket *wg_so4;
716 struct radix_node_head *wg_rtable_ipv4;
717 #endif
718 #ifdef INET6
719 struct socket *wg_so6;
720 struct radix_node_head *wg_rtable_ipv6;
721 #endif
722
723 struct wg_ppsratecheck wg_ppsratecheck;
724
725 struct wg_ops *wg_ops;
726
727 #ifdef WG_RUMPKERNEL
728 struct wg_user *wg_user;
729 #endif
730 };
731
732 /* [W] 6.1 Preliminaries */
733 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
734 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
735 #define WG_REKEY_AFTER_TIME 120
736 #define WG_REJECT_AFTER_TIME 180
737 #define WG_REKEY_ATTEMPT_TIME 90
738 #define WG_REKEY_TIMEOUT 5
739 #define WG_KEEPALIVE_TIMEOUT 10
740
741 #define WG_COOKIE_TIME 120
742 #define WG_COOKIESECRET_TIME (2 * 60)
743
744 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
745 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
746 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
747 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
748 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
749 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
750 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
751
752 static struct mbuf *
753 wg_get_mbuf(size_t, size_t);
754
755 static void wg_send_data_msg(struct wg_peer *, struct wg_session *,
756 struct mbuf *);
757 static void wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
758 const uint32_t, const uint8_t[static WG_MAC_LEN],
759 const struct sockaddr *);
760 static void wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
761 struct wg_session *, const struct wg_msg_init *);
762 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
763
764 static struct wg_peer *
765 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
766 struct psref *);
767 static struct wg_peer *
768 wg_lookup_peer_by_pubkey(struct wg_softc *,
769 const uint8_t[static WG_STATIC_KEY_LEN], struct psref *);
770
771 static struct wg_session *
772 wg_lookup_session_by_index(struct wg_softc *,
773 const uint32_t, struct psref *);
774
775 static void wg_update_endpoint_if_necessary(struct wg_peer *,
776 const struct sockaddr *);
777
778 static void wg_schedule_session_dtor_timer(struct wg_peer *);
779
780 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
781 static void wg_calculate_keys(struct wg_session *, const bool);
782
783 static void wg_clear_states(struct wg_session *);
784
785 static void wg_get_peer(struct wg_peer *, struct psref *);
786 static void wg_put_peer(struct wg_peer *, struct psref *);
787
788 static int wg_send_hs(struct wg_peer *, struct mbuf *);
789 static int wg_send_data(struct wg_peer *, struct mbuf *);
790 static int wg_output(struct ifnet *, struct mbuf *,
791 const struct sockaddr *, const struct rtentry *);
792 static void wg_input(struct ifnet *, struct mbuf *, const int);
793 static int wg_ioctl(struct ifnet *, u_long, void *);
794 static int wg_bind_port(struct wg_softc *, const uint16_t);
795 static int wg_init(struct ifnet *);
796 #ifdef ALTQ
797 static void wg_start(struct ifnet *);
798 #endif
799 static void wg_stop(struct ifnet *, int);
800
801 static void wg_peer_work(struct work *, void *);
802 static void wg_job(struct threadpool_job *);
803 static void wgintr(void *);
804 static void wg_purge_pending_packets(struct wg_peer *);
805
806 static int wg_clone_create(struct if_clone *, int);
807 static int wg_clone_destroy(struct ifnet *);
808
809 struct wg_ops {
810 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
811 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
812 void (*input)(struct ifnet *, struct mbuf *, const int);
813 int (*bind_port)(struct wg_softc *, const uint16_t);
814 };
815
816 struct wg_ops wg_ops_rumpkernel = {
817 .send_hs_msg = wg_send_hs,
818 .send_data_msg = wg_send_data,
819 .input = wg_input,
820 .bind_port = wg_bind_port,
821 };
822
823 #ifdef WG_RUMPKERNEL
824 static bool wg_user_mode(struct wg_softc *);
825 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
826
827 static int wg_send_hs_user(struct wg_peer *, struct mbuf *);
828 static int wg_send_data_user(struct wg_peer *, struct mbuf *);
829 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
830 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
831
832 struct wg_ops wg_ops_rumpuser = {
833 .send_hs_msg = wg_send_hs_user,
834 .send_data_msg = wg_send_data_user,
835 .input = wg_input_user,
836 .bind_port = wg_bind_port_user,
837 };
838 #endif
839
840 #define WG_PEER_READER_FOREACH(wgp, wg) \
841 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
842 wgp_peerlist_entry)
843 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
844 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
845 wgp_peerlist_entry)
846 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
847 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
848 #define WG_PEER_WRITER_REMOVE(wgp) \
849 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
850
851 struct wg_route {
852 struct radix_node wgr_nodes[2];
853 struct wg_peer *wgr_peer;
854 };
855
856 static struct radix_node_head *
857 wg_rnh(struct wg_softc *wg, const int family)
858 {
859
860 switch (family) {
861 #ifdef INET
862 case AF_INET:
863 return wg->wg_rtable_ipv4;
864 #endif
865 #ifdef INET6
866 case AF_INET6:
867 return wg->wg_rtable_ipv6;
868 #endif
869 default:
870 return NULL;
871 }
872 }
873
874
875 /*
876 * Global variables
877 */
878 static volatile unsigned wg_count __cacheline_aligned;
879
880 struct psref_class *wg_psref_class __read_mostly;
881
882 static struct if_clone wg_cloner =
883 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
884
885 static struct pktqueue *wg_pktq __read_mostly;
886 static struct workqueue *wg_wq __read_mostly;
887
888 void wgattach(int);
889 /* ARGSUSED */
890 void
891 wgattach(int count)
892 {
893 /*
894 * Nothing to do here, initialization is handled by the
895 * module initialization code in wginit() below).
896 */
897 }
898
899 static void
900 wginit(void)
901 {
902
903 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
904
905 if_clone_attach(&wg_cloner);
906 }
907
908 /*
909 * XXX Kludge: This should just happen in wginit, but workqueue_create
910 * cannot be run until after CPUs have been detected, and wginit runs
911 * before configure.
912 */
913 static int
914 wginitqueues(void)
915 {
916 int error __diagused;
917
918 wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
919 KASSERT(wg_pktq != NULL);
920
921 error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
922 PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
923 KASSERTMSG(error == 0, "error=%d", error);
924
925 return 0;
926 }
927
928 static void
929 wg_guarantee_initialized(void)
930 {
931 static ONCE_DECL(init);
932 int error __diagused;
933
934 error = RUN_ONCE(&init, wginitqueues);
935 KASSERTMSG(error == 0, "error=%d", error);
936 }
937
938 static int
939 wg_count_inc(void)
940 {
941 unsigned o, n;
942
943 do {
944 o = atomic_load_relaxed(&wg_count);
945 if (o == UINT_MAX)
946 return ENFILE;
947 n = o + 1;
948 } while (atomic_cas_uint(&wg_count, o, n) != o);
949
950 return 0;
951 }
952
953 static void
954 wg_count_dec(void)
955 {
956 unsigned c __diagused;
957
958 membar_release(); /* match atomic_load_acquire in wgdetach */
959 c = atomic_dec_uint_nv(&wg_count);
960 KASSERT(c != UINT_MAX);
961 }
962
963 static int
964 wgdetach(void)
965 {
966
967 /* Prevent new interface creation. */
968 if_clone_detach(&wg_cloner);
969
970 /*
971 * Check whether there are any existing interfaces. Matches
972 * membar_release and atomic_dec_uint_nv in wg_count_dec.
973 */
974 if (atomic_load_acquire(&wg_count)) {
975 /* Back out -- reattach the cloner. */
976 if_clone_attach(&wg_cloner);
977 return EBUSY;
978 }
979
980 /* No interfaces left. Nuke it. */
981 if (wg_wq)
982 workqueue_destroy(wg_wq);
983 if (wg_pktq)
984 pktq_destroy(wg_pktq);
985 psref_class_destroy(wg_psref_class);
986
987 return 0;
988 }
989
990 static void
991 wg_init_key_and_hash(uint8_t ckey[static WG_CHAINING_KEY_LEN],
992 uint8_t hash[static WG_HASH_LEN])
993 {
994 /* [W] 5.4: CONSTRUCTION */
995 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
996 /* [W] 5.4: IDENTIFIER */
997 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
998 struct blake2s state;
999
1000 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
1001 signature, strlen(signature));
1002
1003 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
1004 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
1005
1006 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1007 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
1008 blake2s_update(&state, id, strlen(id));
1009 blake2s_final(&state, hash);
1010
1011 WG_DUMP_HASH("ckey", ckey);
1012 WG_DUMP_HASH("hash", hash);
1013 }
1014
1015 static void
1016 wg_algo_hash(uint8_t hash[static WG_HASH_LEN], const uint8_t input[],
1017 const size_t inputsize)
1018 {
1019 struct blake2s state;
1020
1021 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1022 blake2s_update(&state, hash, WG_HASH_LEN);
1023 blake2s_update(&state, input, inputsize);
1024 blake2s_final(&state, hash);
1025 }
1026
1027 static void
1028 wg_algo_mac(uint8_t out[], const size_t outsize,
1029 const uint8_t key[], const size_t keylen,
1030 const uint8_t input1[], const size_t input1len,
1031 const uint8_t input2[], const size_t input2len)
1032 {
1033 struct blake2s state;
1034
1035 blake2s_init(&state, outsize, key, keylen);
1036
1037 blake2s_update(&state, input1, input1len);
1038 if (input2 != NULL)
1039 blake2s_update(&state, input2, input2len);
1040 blake2s_final(&state, out);
1041 }
1042
1043 static void
1044 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
1045 const uint8_t input1[], const size_t input1len,
1046 const uint8_t input2[], const size_t input2len)
1047 {
1048 struct blake2s state;
1049 /* [W] 5.4: LABEL-MAC1 */
1050 const char *label = "mac1----";
1051 uint8_t key[WG_HASH_LEN];
1052
1053 blake2s_init(&state, sizeof(key), NULL, 0);
1054 blake2s_update(&state, label, strlen(label));
1055 blake2s_update(&state, input1, input1len);
1056 blake2s_final(&state, key);
1057
1058 blake2s_init(&state, outsize, key, sizeof(key));
1059 if (input2 != NULL)
1060 blake2s_update(&state, input2, input2len);
1061 blake2s_final(&state, out);
1062 }
1063
1064 static void
1065 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
1066 const uint8_t input1[], const size_t input1len)
1067 {
1068 struct blake2s state;
1069 /* [W] 5.4: LABEL-COOKIE */
1070 const char *label = "cookie--";
1071
1072 blake2s_init(&state, outsize, NULL, 0);
1073 blake2s_update(&state, label, strlen(label));
1074 blake2s_update(&state, input1, input1len);
1075 blake2s_final(&state, out);
1076 }
1077
1078 static void
1079 wg_algo_generate_keypair(uint8_t pubkey[static WG_EPHEMERAL_KEY_LEN],
1080 uint8_t privkey[static WG_EPHEMERAL_KEY_LEN])
1081 {
1082
1083 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1084
1085 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
1086 crypto_scalarmult_base(pubkey, privkey);
1087 }
1088
1089 static void
1090 wg_algo_dh(uint8_t out[static WG_DH_OUTPUT_LEN],
1091 const uint8_t privkey[static WG_STATIC_KEY_LEN],
1092 const uint8_t pubkey[static WG_STATIC_KEY_LEN])
1093 {
1094
1095 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1096
1097 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
1098 KASSERT(ret == 0);
1099 }
1100
1101 static void
1102 wg_algo_hmac(uint8_t out[], const size_t outlen,
1103 const uint8_t key[], const size_t keylen,
1104 const uint8_t in[], const size_t inlen)
1105 {
1106 #define IPAD 0x36
1107 #define OPAD 0x5c
1108 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
1109 uint8_t ipad[HMAC_BLOCK_LEN];
1110 uint8_t opad[HMAC_BLOCK_LEN];
1111 size_t i;
1112 struct blake2s state;
1113
1114 KASSERT(outlen == WG_HASH_LEN);
1115 KASSERT(keylen <= HMAC_BLOCK_LEN);
1116
1117 memcpy(hmackey, key, keylen);
1118
1119 for (i = 0; i < sizeof(hmackey); i++) {
1120 ipad[i] = hmackey[i] ^ IPAD;
1121 opad[i] = hmackey[i] ^ OPAD;
1122 }
1123
1124 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1125 blake2s_update(&state, ipad, sizeof(ipad));
1126 blake2s_update(&state, in, inlen);
1127 blake2s_final(&state, out);
1128
1129 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1130 blake2s_update(&state, opad, sizeof(opad));
1131 blake2s_update(&state, out, WG_HASH_LEN);
1132 blake2s_final(&state, out);
1133 #undef IPAD
1134 #undef OPAD
1135 }
1136
1137 static void
1138 wg_algo_kdf(uint8_t out1[static WG_KDF_OUTPUT_LEN],
1139 uint8_t out2[WG_KDF_OUTPUT_LEN],
1140 uint8_t out3[WG_KDF_OUTPUT_LEN],
1141 const uint8_t ckey[static WG_CHAINING_KEY_LEN],
1142 const uint8_t input[], const size_t inputlen)
1143 {
1144 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
1145 uint8_t one[1];
1146
1147 /*
1148 * [N] 4.3: "an input_key_material byte sequence with length
1149 * either zero bytes, 32 bytes, or DHLEN bytes."
1150 */
1151 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
1152
1153 WG_DUMP_HASH("ckey", ckey);
1154 if (input != NULL)
1155 WG_DUMP_HASH("input", input);
1156 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
1157 input, inputlen);
1158 WG_DUMP_HASH("tmp1", tmp1);
1159 one[0] = 1;
1160 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1161 one, sizeof(one));
1162 WG_DUMP_HASH("out1", out1);
1163 if (out2 == NULL)
1164 return;
1165 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
1166 tmp2[WG_KDF_OUTPUT_LEN] = 2;
1167 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1168 tmp2, sizeof(tmp2));
1169 WG_DUMP_HASH("out2", out2);
1170 if (out3 == NULL)
1171 return;
1172 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
1173 tmp2[WG_KDF_OUTPUT_LEN] = 3;
1174 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1175 tmp2, sizeof(tmp2));
1176 WG_DUMP_HASH("out3", out3);
1177 }
1178
1179 static void __noinline
1180 wg_algo_dh_kdf(uint8_t ckey[static WG_CHAINING_KEY_LEN],
1181 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1182 const uint8_t local_key[static WG_STATIC_KEY_LEN],
1183 const uint8_t remote_key[static WG_STATIC_KEY_LEN])
1184 {
1185 uint8_t dhout[WG_DH_OUTPUT_LEN];
1186
1187 wg_algo_dh(dhout, local_key, remote_key);
1188 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1189
1190 WG_DUMP_HASH("dhout", dhout);
1191 WG_DUMP_HASH("ckey", ckey);
1192 if (cipher_key != NULL)
1193 WG_DUMP_HASH("cipher_key", cipher_key);
1194 }
1195
1196 static void
1197 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize,
1198 const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
1199 const uint64_t counter,
1200 const uint8_t plain[], const size_t plainsize,
1201 const uint8_t auth[], size_t authlen)
1202 {
1203 uint8_t nonce[(32 + 64) / 8] = {0};
1204 long long unsigned int outsize;
1205 int error __diagused;
1206
1207 le64enc(&nonce[4], counter);
1208
1209 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1210 plainsize, auth, authlen, NULL, nonce, key);
1211 KASSERT(error == 0);
1212 KASSERT(outsize == expected_outsize);
1213 }
1214
1215 static int
1216 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize,
1217 const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
1218 const uint64_t counter,
1219 const uint8_t encrypted[], const size_t encryptedsize,
1220 const uint8_t auth[], size_t authlen)
1221 {
1222 uint8_t nonce[(32 + 64) / 8] = {0};
1223 long long unsigned int outsize;
1224 int error;
1225
1226 le64enc(&nonce[4], counter);
1227
1228 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1229 encrypted, encryptedsize, auth, authlen, nonce, key);
1230 if (error == 0)
1231 KASSERT(outsize == expected_outsize);
1232 return error;
1233 }
1234
1235 static void
1236 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1237 const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
1238 const uint8_t plain[], const size_t plainsize,
1239 const uint8_t auth[], size_t authlen,
1240 const uint8_t nonce[static WG_SALT_LEN])
1241 {
1242 long long unsigned int outsize;
1243 int error __diagused;
1244
1245 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1246 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1247 plain, plainsize, auth, authlen, NULL, nonce, key);
1248 KASSERT(error == 0);
1249 KASSERT(outsize == expected_outsize);
1250 }
1251
1252 static int
1253 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1254 const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
1255 const uint8_t encrypted[], const size_t encryptedsize,
1256 const uint8_t auth[], size_t authlen,
1257 const uint8_t nonce[static WG_SALT_LEN])
1258 {
1259 long long unsigned int outsize;
1260 int error;
1261
1262 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1263 encrypted, encryptedsize, auth, authlen, nonce, key);
1264 if (error == 0)
1265 KASSERT(outsize == expected_outsize);
1266 return error;
1267 }
1268
1269 static void
1270 wg_algo_tai64n(wg_timestamp_t timestamp)
1271 {
1272 struct timespec ts;
1273
1274 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1275 getnanotime(&ts);
1276 /* TAI64 label in external TAI64 format */
1277 be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
1278 /* second beginning from 1970 TAI */
1279 be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
1280 /* nanosecond in big-endian format */
1281 be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
1282 }
1283
1284 /*
1285 * wg_get_stable_session(wgp, psref)
1286 *
1287 * Get a passive reference to the current stable session, or
1288 * return NULL if there is no current stable session.
1289 *
1290 * The pointer is always there but the session is not necessarily
1291 * ESTABLISHED; if it is not ESTABLISHED, return NULL. However,
1292 * the session may transition from ESTABLISHED to DESTROYING while
1293 * holding the passive reference.
1294 */
1295 static struct wg_session *
1296 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1297 {
1298 int s;
1299 struct wg_session *wgs;
1300
1301 s = pserialize_read_enter();
1302 wgs = atomic_load_consume(&wgp->wgp_session_stable);
1303 if (__predict_false(atomic_load_relaxed(&wgs->wgs_state) !=
1304 WGS_STATE_ESTABLISHED))
1305 wgs = NULL;
1306 else
1307 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1308 pserialize_read_exit(s);
1309
1310 return wgs;
1311 }
1312
1313 static void
1314 wg_put_session(struct wg_session *wgs, struct psref *psref)
1315 {
1316
1317 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1318 }
1319
1320 static void
1321 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1322 {
1323 struct wg_peer *wgp = wgs->wgs_peer;
1324 struct wg_session *wgs0 __diagused;
1325 void *garbage;
1326
1327 KASSERT(mutex_owned(wgp->wgp_lock));
1328 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1329
1330 /* Remove the session from the table. */
1331 wgs0 = thmap_del(wg->wg_sessions_byindex,
1332 &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1333 KASSERT(wgs0 == wgs);
1334 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1335
1336 /* Wait for passive references to drain. */
1337 pserialize_perform(wgp->wgp_psz);
1338 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1339
1340 /*
1341 * Free memory, zero state, and transition to UNKNOWN. We have
1342 * exclusive access to the session now, so there is no need for
1343 * an atomic store.
1344 */
1345 thmap_gc(wg->wg_sessions_byindex, garbage);
1346 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_UNKNOWN\n",
1347 wgs->wgs_local_index, wgs->wgs_remote_index);
1348 wgs->wgs_local_index = 0;
1349 wgs->wgs_remote_index = 0;
1350 wg_clear_states(wgs);
1351 wgs->wgs_state = WGS_STATE_UNKNOWN;
1352 wgs->wgs_force_rekey = false;
1353 }
1354
1355 /*
1356 * wg_get_session_index(wg, wgs)
1357 *
1358 * Choose a session index for wgs->wgs_local_index, and store it
1359 * in wg's table of sessions by index.
1360 *
1361 * wgs must be the unstable session of its peer, and must be
1362 * transitioning out of the UNKNOWN state.
1363 */
1364 static void
1365 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1366 {
1367 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1368 struct wg_session *wgs0;
1369 uint32_t index;
1370
1371 KASSERT(mutex_owned(wgp->wgp_lock));
1372 KASSERT(wgs == wgp->wgp_session_unstable);
1373 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1374 wgs->wgs_state);
1375
1376 do {
1377 /* Pick a uniform random index. */
1378 index = cprng_strong32();
1379
1380 /* Try to take it. */
1381 wgs->wgs_local_index = index;
1382 wgs0 = thmap_put(wg->wg_sessions_byindex,
1383 &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1384
1385 /* If someone else beat us, start over. */
1386 } while (__predict_false(wgs0 != wgs));
1387 }
1388
1389 /*
1390 * wg_put_session_index(wg, wgs)
1391 *
1392 * Remove wgs from the table of sessions by index, wait for any
1393 * passive references to drain, and transition the session to the
1394 * UNKNOWN state.
1395 *
1396 * wgs must be the unstable session of its peer, and must not be
1397 * UNKNOWN or ESTABLISHED.
1398 */
1399 static void
1400 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1401 {
1402 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1403
1404 KASSERT(mutex_owned(wgp->wgp_lock));
1405 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1406 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1407
1408 wg_destroy_session(wg, wgs);
1409 psref_target_init(&wgs->wgs_psref, wg_psref_class);
1410 }
1411
1412 /*
1413 * Handshake patterns
1414 *
1415 * [W] 5: "These messages use the "IK" pattern from Noise"
1416 * [N] 7.5. Interactive handshake patterns (fundamental)
1417 * "The first character refers to the initiators static key:"
1418 * "I = Static key for initiator Immediately transmitted to responder,
1419 * despite reduced or absent identity hiding"
1420 * "The second character refers to the responders static key:"
1421 * "K = Static key for responder Known to initiator"
1422 * "IK:
1423 * <- s
1424 * ...
1425 * -> e, es, s, ss
1426 * <- e, ee, se"
1427 * [N] 9.4. Pattern modifiers
1428 * "IKpsk2:
1429 * <- s
1430 * ...
1431 * -> e, es, s, ss
1432 * <- e, ee, se, psk"
1433 */
1434 static void
1435 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1436 struct wg_session *wgs, struct wg_msg_init *wgmi)
1437 {
1438 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1439 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1440 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1441 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1442 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1443
1444 KASSERT(mutex_owned(wgp->wgp_lock));
1445 KASSERT(wgs == wgp->wgp_session_unstable);
1446 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
1447 wgs->wgs_state);
1448
1449 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1450 wgmi->wgmi_sender = wgs->wgs_local_index;
1451
1452 /* [W] 5.4.2: First Message: Initiator to Responder */
1453
1454 /* Ci := HASH(CONSTRUCTION) */
1455 /* Hi := HASH(Ci || IDENTIFIER) */
1456 wg_init_key_and_hash(ckey, hash);
1457 /* Hi := HASH(Hi || Sr^pub) */
1458 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1459
1460 WG_DUMP_HASH("hash", hash);
1461
1462 /* [N] 2.2: "e" */
1463 /* Ei^priv, Ei^pub := DH-GENERATE() */
1464 wg_algo_generate_keypair(pubkey, privkey);
1465 /* Ci := KDF1(Ci, Ei^pub) */
1466 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1467 /* msg.ephemeral := Ei^pub */
1468 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1469 /* Hi := HASH(Hi || msg.ephemeral) */
1470 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1471
1472 WG_DUMP_HASH("ckey", ckey);
1473 WG_DUMP_HASH("hash", hash);
1474
1475 /* [N] 2.2: "es" */
1476 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1477 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1478
1479 /* [N] 2.2: "s" */
1480 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1481 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1482 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1483 hash, sizeof(hash));
1484 /* Hi := HASH(Hi || msg.static) */
1485 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1486
1487 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1488
1489 /* [N] 2.2: "ss" */
1490 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1491 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1492
1493 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1494 wg_timestamp_t timestamp;
1495 wg_algo_tai64n(timestamp);
1496 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1497 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1498 /* Hi := HASH(Hi || msg.timestamp) */
1499 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1500
1501 /* [W] 5.4.4 Cookie MACs */
1502 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1503 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1504 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1505 /* Need mac1 to decrypt a cookie from a cookie message */
1506 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1507 sizeof(wgp->wgp_last_sent_mac1));
1508 wgp->wgp_last_sent_mac1_valid = true;
1509
1510 if (wgp->wgp_latest_cookie_time == 0 ||
1511 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1512 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1513 else {
1514 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1515 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1516 (const uint8_t *)wgmi,
1517 offsetof(struct wg_msg_init, wgmi_mac2),
1518 NULL, 0);
1519 }
1520
1521 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1522 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1523 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1524 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1525 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1526 }
1527
1528 /*
1529 * wg_initiator_priority(wg, wgp)
1530 *
1531 * Return true if we claim priority over peer wgp as initiator at
1532 * the moment, false if not. That is, if we and our peer are
1533 * trying to initiate a session, do we ignore the peer's attempt
1534 * and barge ahead with ours, or discard our attempt and accept
1535 * the peer's?
1536 *
1537 * We jointly flip a coin by computing
1538 *
1539 * H(pubkey A) ^ H(pubkey B) ^ H(posix minutes as le64),
1540 *
1541 * and taking the low-order bit. If our public key hash, as a
1542 * 256-bit integer in little-endian, is less than the peer's
1543 * public key hash, also as a 256-bit integer in little-endian, we
1544 * claim priority iff the bit is 0; otherwise we claim priority
1545 * iff the bit is 1.
1546 *
1547 * This way, it is essentially arbitrary who claims priority, and
1548 * it may change (by a coin toss) minute to minute, but both
1549 * parties agree at any given moment -- except possibly at the
1550 * boundary of a minute -- who will take priority.
1551 *
1552 * This is an extension to the WireGuard protocol -- as far as I
1553 * can tell, the protocol whitepaper has no resolution to this
1554 * deadlock scenario. According to the author, `the deadlock
1555 * doesn't happen because of some additional state machine logic,
1556 * and on very small chances that it does, it quickly undoes
1557 * itself.', but this additional state machine logic does not
1558 * appear to be anywhere in the whitepaper, and I don't see how it
1559 * can undo itself until both sides have given up and one side is
1560 * quicker to initiate the next time around.
1561 *
1562 * XXX It might be prudent to put a prefix in the hash input, so
1563 * we avoid accidentally colliding with any other uses of the same
1564 * hash on the same input. But it's best if any changes are
1565 * coordinated, so that peers generally agree on what coin is
1566 * being tossed, instead of tossing their own independent coins
1567 * (which will also converge to working but more slowly over more
1568 * handshake retries).
1569 */
1570 static bool
1571 wg_initiator_priority(struct wg_softc *wg, struct wg_peer *wgp)
1572 {
1573 const uint64_t now = time_second/60, now_le = htole64(now);
1574 uint8_t h_min;
1575 uint8_t h_local[BLAKE2S_MAX_DIGEST];
1576 uint8_t h_peer[BLAKE2S_MAX_DIGEST];
1577 int borrow;
1578 unsigned i;
1579
1580 blake2s(&h_min, 1, NULL, 0, &now_le, sizeof(now_le));
1581 blake2s(h_local, sizeof(h_local), NULL, 0,
1582 wg->wg_pubkey, sizeof(wg->wg_pubkey));
1583 blake2s(h_peer, sizeof(h_peer), NULL, 0,
1584 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1585
1586 for (borrow = 0, i = 0; i < BLAKE2S_MAX_DIGEST; i++)
1587 borrow = (h_local[i] - h_peer[i] + borrow) >> 8;
1588
1589 return 1 & (h_local[0] ^ h_peer[0] ^ h_min ^ borrow);
1590 }
1591
1592 static void __noinline
1593 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1594 const struct sockaddr *src)
1595 {
1596 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1597 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1598 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1599 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1600 struct wg_peer *wgp;
1601 struct wg_session *wgs;
1602 int error, ret;
1603 struct psref psref_peer;
1604 uint8_t mac1[WG_MAC_LEN];
1605
1606 WG_TRACE("init msg received");
1607
1608 wg_algo_mac_mac1(mac1, sizeof(mac1),
1609 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1610 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1611
1612 /*
1613 * [W] 5.3: Denial of Service Mitigation & Cookies
1614 * "the responder, ..., must always reject messages with an invalid
1615 * msg.mac1"
1616 */
1617 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1618 WG_DLOG("mac1 is invalid\n");
1619 return;
1620 }
1621
1622 /*
1623 * [W] 5.4.2: First Message: Initiator to Responder
1624 * "When the responder receives this message, it does the same
1625 * operations so that its final state variables are identical,
1626 * replacing the operands of the DH function to produce equivalent
1627 * values."
1628 * Note that the following comments of operations are just copies of
1629 * the initiator's ones.
1630 */
1631
1632 /* Ci := HASH(CONSTRUCTION) */
1633 /* Hi := HASH(Ci || IDENTIFIER) */
1634 wg_init_key_and_hash(ckey, hash);
1635 /* Hi := HASH(Hi || Sr^pub) */
1636 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1637
1638 /* [N] 2.2: "e" */
1639 /* Ci := KDF1(Ci, Ei^pub) */
1640 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1641 sizeof(wgmi->wgmi_ephemeral));
1642 /* Hi := HASH(Hi || msg.ephemeral) */
1643 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1644
1645 WG_DUMP_HASH("ckey", ckey);
1646
1647 /* [N] 2.2: "es" */
1648 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1649 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1650
1651 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1652
1653 /* [N] 2.2: "s" */
1654 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1655 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1656 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1657 if (error != 0) {
1658 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1659 "%s: wg_algo_aead_dec for secret key failed\n",
1660 if_name(&wg->wg_if));
1661 return;
1662 }
1663 /* Hi := HASH(Hi || msg.static) */
1664 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1665
1666 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1667 if (wgp == NULL) {
1668 WG_DLOG("peer not found\n");
1669 return;
1670 }
1671
1672 /*
1673 * Lock the peer to serialize access to cookie state.
1674 *
1675 * XXX Can we safely avoid holding the lock across DH? Take it
1676 * just to verify mac2 and then unlock/DH/lock?
1677 */
1678 mutex_enter(wgp->wgp_lock);
1679
1680 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1681 WG_TRACE("under load");
1682 /*
1683 * [W] 5.3: Denial of Service Mitigation & Cookies
1684 * "the responder, ..., and when under load may reject messages
1685 * with an invalid msg.mac2. If the responder receives a
1686 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1687 * and is under load, it may respond with a cookie reply
1688 * message"
1689 */
1690 uint8_t zero[WG_MAC_LEN] = {0};
1691 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1692 WG_TRACE("sending a cookie message: no cookie included");
1693 wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1694 wgmi->wgmi_mac1, src);
1695 goto out;
1696 }
1697 if (!wgp->wgp_last_sent_cookie_valid) {
1698 WG_TRACE("sending a cookie message: no cookie sent ever");
1699 wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1700 wgmi->wgmi_mac1, src);
1701 goto out;
1702 }
1703 uint8_t mac2[WG_MAC_LEN];
1704 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1705 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1706 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1707 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1708 WG_DLOG("mac2 is invalid\n");
1709 goto out;
1710 }
1711 WG_TRACE("under load, but continue to sending");
1712 }
1713
1714 /* [N] 2.2: "ss" */
1715 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1716 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1717
1718 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1719 wg_timestamp_t timestamp;
1720 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1721 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1722 hash, sizeof(hash));
1723 if (error != 0) {
1724 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1725 "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
1726 if_name(&wg->wg_if), wgp->wgp_name);
1727 goto out;
1728 }
1729 /* Hi := HASH(Hi || msg.timestamp) */
1730 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1731
1732 /*
1733 * [W] 5.1 "The responder keeps track of the greatest timestamp
1734 * received per peer and discards packets containing
1735 * timestamps less than or equal to it."
1736 */
1737 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1738 sizeof(timestamp));
1739 if (ret <= 0) {
1740 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1741 "%s: peer %s: invalid init msg: timestamp is old\n",
1742 if_name(&wg->wg_if), wgp->wgp_name);
1743 goto out;
1744 }
1745 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1746
1747 /*
1748 * Message is good -- we're committing to handle it now, unless
1749 * we were already initiating a session.
1750 */
1751 wgs = wgp->wgp_session_unstable;
1752 switch (wgs->wgs_state) {
1753 case WGS_STATE_UNKNOWN: /* new session initiated by peer */
1754 break;
1755 case WGS_STATE_INIT_ACTIVE: /* we're already initiating */
1756 if (wg_initiator_priority(wg, wgp)) {
1757 WG_TRACE("Session already initializing,"
1758 " ignoring the message");
1759 goto out;
1760 }
1761 WG_TRACE("Yielding session initiation to peer");
1762 wg_put_session_index(wg, wgs);
1763 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1764 wgs->wgs_state);
1765 break;
1766 case WGS_STATE_INIT_PASSIVE: /* peer is retrying, start over */
1767 WG_TRACE("Session already initializing, destroying old states");
1768 /*
1769 * XXX Avoid this -- just resend our response -- if the
1770 * INIT message is identical to the previous one.
1771 */
1772 wg_put_session_index(wg, wgs);
1773 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1774 wgs->wgs_state);
1775 break;
1776 case WGS_STATE_ESTABLISHED: /* can't happen */
1777 panic("unstable session can't be established");
1778 case WGS_STATE_DESTROYING: /* rekey initiated by peer */
1779 WG_TRACE("Session destroying, but force to clear");
1780 wg_put_session_index(wg, wgs);
1781 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1782 wgs->wgs_state);
1783 break;
1784 default:
1785 panic("invalid session state: %d", wgs->wgs_state);
1786 }
1787
1788 /*
1789 * Assign a fresh session index.
1790 */
1791 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1792 wgs->wgs_state);
1793 wg_get_session_index(wg, wgs);
1794
1795 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1796 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1797 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1798 sizeof(wgmi->wgmi_ephemeral));
1799
1800 /*
1801 * The packet is genuine. Update the peer's endpoint if the
1802 * source address changed.
1803 *
1804 * XXX How to prevent DoS by replaying genuine packets from the
1805 * wrong source address?
1806 */
1807 wg_update_endpoint_if_necessary(wgp, src);
1808
1809 /*
1810 * Even though we don't transition from INIT_PASSIVE to
1811 * ESTABLISHED until we receive the first data packet from the
1812 * initiator, we count the time of the INIT message as the time
1813 * of establishment -- this is used to decide when to erase
1814 * keys, and we want to start counting as soon as we have
1815 * generated keys.
1816 */
1817 wgs->wgs_time_established = time_uptime32;
1818 wg_schedule_session_dtor_timer(wgp);
1819
1820 /*
1821 * Respond to the initiator with our ephemeral public key.
1822 */
1823 wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1824
1825 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
1826 " calculate keys as responder\n",
1827 wgs->wgs_local_index, wgs->wgs_remote_index);
1828 wg_calculate_keys(wgs, false);
1829 wg_clear_states(wgs);
1830
1831 /*
1832 * Session is ready to receive data now that we have received
1833 * the peer initiator's ephemeral key pair, generated our
1834 * responder's ephemeral key pair, and derived a session key.
1835 *
1836 * Transition from UNKNOWN to INIT_PASSIVE to publish it to the
1837 * data rx path, wg_handle_msg_data, where the
1838 * atomic_load_acquire matching this atomic_store_release
1839 * happens.
1840 *
1841 * (Session is not, however, ready to send data until the peer
1842 * has acknowledged our response by sending its first data
1843 * packet. So don't swap the sessions yet.)
1844 */
1845 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_INIT_PASSIVE\n",
1846 wgs->wgs_local_index, wgs->wgs_remote_index);
1847 atomic_store_release(&wgs->wgs_state, WGS_STATE_INIT_PASSIVE);
1848 WG_TRACE("WGS_STATE_INIT_PASSIVE");
1849
1850 out:
1851 mutex_exit(wgp->wgp_lock);
1852 wg_put_peer(wgp, &psref_peer);
1853 }
1854
1855 static struct socket *
1856 wg_get_so_by_af(struct wg_softc *wg, const int af)
1857 {
1858
1859 switch (af) {
1860 #ifdef INET
1861 case AF_INET:
1862 return wg->wg_so4;
1863 #endif
1864 #ifdef INET6
1865 case AF_INET6:
1866 return wg->wg_so6;
1867 #endif
1868 default:
1869 panic("wg: no such af: %d", af);
1870 }
1871 }
1872
1873 static struct socket *
1874 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1875 {
1876
1877 return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
1878 }
1879
1880 static struct wg_sockaddr *
1881 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1882 {
1883 struct wg_sockaddr *wgsa;
1884 int s;
1885
1886 s = pserialize_read_enter();
1887 wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1888 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1889 pserialize_read_exit(s);
1890
1891 return wgsa;
1892 }
1893
1894 static void
1895 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1896 {
1897
1898 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1899 }
1900
1901 static int
1902 wg_send_hs(struct wg_peer *wgp, struct mbuf *m)
1903 {
1904 int error;
1905 struct socket *so;
1906 struct psref psref;
1907 struct wg_sockaddr *wgsa;
1908
1909 wgsa = wg_get_endpoint_sa(wgp, &psref);
1910 #ifdef WG_DEBUG_LOG
1911 char addr[128];
1912 sockaddr_format(wgsatosa(wgsa), addr, sizeof(addr));
1913 WG_DLOG("send handshake msg to %s\n", addr);
1914 #endif
1915 so = wg_get_so_by_peer(wgp, wgsa);
1916 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1917 wg_put_sa(wgp, wgsa, &psref);
1918
1919 return error;
1920 }
1921
1922 static void
1923 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1924 {
1925 int error;
1926 struct mbuf *m;
1927 struct wg_msg_init *wgmi;
1928 struct wg_session *wgs;
1929
1930 KASSERT(mutex_owned(wgp->wgp_lock));
1931
1932 wgs = wgp->wgp_session_unstable;
1933 /* XXX pull dispatch out into wg_task_send_init_message */
1934 switch (wgs->wgs_state) {
1935 case WGS_STATE_UNKNOWN: /* new session initiated by us */
1936 break;
1937 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, stop */
1938 WG_TRACE("Session already initializing, skip starting new one");
1939 return;
1940 case WGS_STATE_INIT_PASSIVE: /* peer was trying -- XXX what now? */
1941 WG_TRACE("Session already initializing, waiting for peer");
1942 return;
1943 case WGS_STATE_ESTABLISHED: /* can't happen */
1944 panic("unstable session can't be established");
1945 case WGS_STATE_DESTROYING: /* rekey initiated by us too early */
1946 WG_TRACE("Session destroying");
1947 wg_put_session_index(wg, wgs);
1948 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1949 wgs->wgs_state);
1950 break;
1951 }
1952
1953 /*
1954 * Assign a fresh session index.
1955 */
1956 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
1957 wgs->wgs_state);
1958 wg_get_session_index(wg, wgs);
1959
1960 /*
1961 * We have initiated a session. Transition to INIT_ACTIVE.
1962 * This doesn't publish it for use in the data rx path,
1963 * wg_handle_msg_data, or in the data tx path, wg_output -- we
1964 * have to wait for the peer to respond with their ephemeral
1965 * public key before we can derive a session key for tx/rx.
1966 * Hence only atomic_store_relaxed.
1967 */
1968 WG_DLOG("session[L=%"PRIx32" R=(unknown)] -> WGS_STATE_INIT_ACTIVE\n",
1969 wgs->wgs_local_index);
1970 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_INIT_ACTIVE);
1971
1972 m = m_gethdr(M_WAIT, MT_DATA);
1973 if (sizeof(*wgmi) > MHLEN) {
1974 m_clget(m, M_WAIT);
1975 CTASSERT(sizeof(*wgmi) <= MCLBYTES);
1976 }
1977 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1978 wgmi = mtod(m, struct wg_msg_init *);
1979 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1980
1981 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
1982 if (error) {
1983 /*
1984 * Sending out an initiation packet failed; give up on
1985 * this session and toss packet waiting for it if any.
1986 *
1987 * XXX Why don't we just let the periodic handshake
1988 * retry logic work in this case?
1989 */
1990 WG_DLOG("send_hs_msg failed, error=%d\n", error);
1991 wg_put_session_index(wg, wgs);
1992 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
1993 membar_acquire(); /* matches membar_release in wgintr */
1994 m_freem(m);
1995 return;
1996 }
1997
1998 WG_TRACE("init msg sent");
1999 if (wgp->wgp_handshake_start_time == 0)
2000 wgp->wgp_handshake_start_time = time_uptime;
2001 callout_schedule(&wgp->wgp_handshake_timeout_timer,
2002 MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
2003 }
2004
2005 static void
2006 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
2007 struct wg_session *wgs, struct wg_msg_resp *wgmr,
2008 const struct wg_msg_init *wgmi)
2009 {
2010 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
2011 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
2012 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
2013 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
2014 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
2015
2016 KASSERT(mutex_owned(wgp->wgp_lock));
2017 KASSERT(wgs == wgp->wgp_session_unstable);
2018 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
2019 wgs->wgs_state);
2020
2021 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
2022 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
2023
2024 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
2025 wgmr->wgmr_sender = wgs->wgs_local_index;
2026 wgmr->wgmr_receiver = wgmi->wgmi_sender;
2027
2028 /* [W] 5.4.3 Second Message: Responder to Initiator */
2029
2030 /* [N] 2.2: "e" */
2031 /* Er^priv, Er^pub := DH-GENERATE() */
2032 wg_algo_generate_keypair(pubkey, privkey);
2033 /* Cr := KDF1(Cr, Er^pub) */
2034 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
2035 /* msg.ephemeral := Er^pub */
2036 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
2037 /* Hr := HASH(Hr || msg.ephemeral) */
2038 wg_algo_hash(hash, pubkey, sizeof(pubkey));
2039
2040 WG_DUMP_HASH("ckey", ckey);
2041 WG_DUMP_HASH("hash", hash);
2042
2043 /* [N] 2.2: "ee" */
2044 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
2045 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
2046
2047 /* [N] 2.2: "se" */
2048 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
2049 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
2050
2051 /* [N] 9.2: "psk" */
2052 {
2053 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
2054 /* Cr, r, k := KDF3(Cr, Q) */
2055 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
2056 sizeof(wgp->wgp_psk));
2057 /* Hr := HASH(Hr || r) */
2058 wg_algo_hash(hash, kdfout, sizeof(kdfout));
2059 }
2060
2061 /* msg.empty := AEAD(k, 0, e, Hr) */
2062 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
2063 cipher_key, 0, NULL, 0, hash, sizeof(hash));
2064 /* Hr := HASH(Hr || msg.empty) */
2065 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
2066
2067 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
2068
2069 /* [W] 5.4.4: Cookie MACs */
2070 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
2071 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
2072 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
2073 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
2074 /* Need mac1 to decrypt a cookie from a cookie message */
2075 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
2076 sizeof(wgp->wgp_last_sent_mac1));
2077 wgp->wgp_last_sent_mac1_valid = true;
2078
2079 if (wgp->wgp_latest_cookie_time == 0 ||
2080 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
2081 /* msg.mac2 := 0^16 */
2082 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
2083 else {
2084 /* msg.mac2 := MAC(Lm, msg_b) */
2085 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
2086 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
2087 (const uint8_t *)wgmr,
2088 offsetof(struct wg_msg_resp, wgmr_mac2),
2089 NULL, 0);
2090 }
2091
2092 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
2093 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
2094 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
2095 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
2096 wgs->wgs_remote_index = wgmi->wgmi_sender;
2097 WG_DLOG("sender=%x\n", wgs->wgs_local_index);
2098 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
2099 }
2100
2101 /*
2102 * wg_swap_sessions(wg, wgp)
2103 *
2104 * Caller has just finished establishing the unstable session in
2105 * wg for peer wgp. Publish it as the stable session, send queued
2106 * packets or keepalives as necessary to kick off the session,
2107 * move the previously stable session to unstable, and begin
2108 * destroying it.
2109 */
2110 static void
2111 wg_swap_sessions(struct wg_softc *wg, struct wg_peer *wgp)
2112 {
2113 struct wg_session *wgs, *wgs_prev;
2114 struct mbuf *m;
2115
2116 KASSERT(mutex_owned(wgp->wgp_lock));
2117
2118 /*
2119 * Get the newly established session, to become the new
2120 * session. Caller must have transitioned from INIT_ACTIVE to
2121 * INIT_PASSIVE or to ESTABLISHED already. This will become
2122 * the stable session.
2123 */
2124 wgs = wgp->wgp_session_unstable;
2125 KASSERTMSG(wgs->wgs_state == WGS_STATE_ESTABLISHED, "state=%d",
2126 wgs->wgs_state);
2127
2128 /*
2129 * Get the stable session, which is either the previously
2130 * established session in the ESTABLISHED state, or has not
2131 * been established at all and is UNKNOWN. This will become
2132 * the unstable session.
2133 */
2134 wgs_prev = wgp->wgp_session_stable;
2135 KASSERTMSG((wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
2136 wgs_prev->wgs_state == WGS_STATE_UNKNOWN),
2137 "state=%d", wgs_prev->wgs_state);
2138
2139 /*
2140 * Publish the newly established session for the tx path to use
2141 * and make the other one the unstable session to handle
2142 * stragglers in the rx path and later be used for the next
2143 * session's handshake.
2144 */
2145 atomic_store_release(&wgp->wgp_session_stable, wgs);
2146 wgp->wgp_session_unstable = wgs_prev;
2147
2148 /*
2149 * Record the handshake time and reset the handshake state.
2150 */
2151 getnanotime(&wgp->wgp_last_handshake_time);
2152 wgp->wgp_handshake_start_time = 0;
2153 wgp->wgp_last_sent_mac1_valid = false;
2154 wgp->wgp_last_sent_cookie_valid = false;
2155
2156 /*
2157 * If we had a data packet queued up, send it.
2158 *
2159 * If not, but we're the initiator, send a keepalive message --
2160 * if we're the initiator we have to send something immediately
2161 * or else the responder will never answer.
2162 */
2163 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
2164 membar_acquire(); /* matches membar_release in wgintr */
2165 wg_send_data_msg(wgp, wgs, m); /* consumes m */
2166 m = NULL;
2167 } else if (wgs->wgs_is_initiator) {
2168 wg_send_keepalive_msg(wgp, wgs);
2169 }
2170
2171 /*
2172 * If the previous stable session was established, begin to
2173 * destroy it.
2174 */
2175 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2176 /*
2177 * Transition ESTABLISHED->DESTROYING. The session
2178 * will remain usable for the data rx path to process
2179 * packets still in flight to us, but we won't use it
2180 * for data tx.
2181 */
2182 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
2183 " -> WGS_STATE_DESTROYING\n",
2184 wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
2185 atomic_store_relaxed(&wgs_prev->wgs_state,
2186 WGS_STATE_DESTROYING);
2187 } else {
2188 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2189 "state=%d", wgs_prev->wgs_state);
2190 wgs_prev->wgs_local_index = 0; /* paranoia */
2191 wgs_prev->wgs_remote_index = 0; /* paranoia */
2192 wg_clear_states(wgs_prev); /* paranoia */
2193 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
2194 }
2195 }
2196
2197 static void __noinline
2198 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
2199 const struct sockaddr *src)
2200 {
2201 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
2202 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
2203 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
2204 struct wg_peer *wgp;
2205 struct wg_session *wgs;
2206 struct psref psref;
2207 int error;
2208 uint8_t mac1[WG_MAC_LEN];
2209
2210 wg_algo_mac_mac1(mac1, sizeof(mac1),
2211 wg->wg_pubkey, sizeof(wg->wg_pubkey),
2212 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
2213
2214 /*
2215 * [W] 5.3: Denial of Service Mitigation & Cookies
2216 * "the responder, ..., must always reject messages with an invalid
2217 * msg.mac1"
2218 */
2219 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
2220 WG_DLOG("mac1 is invalid\n");
2221 return;
2222 }
2223
2224 WG_TRACE("resp msg received");
2225 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
2226 if (wgs == NULL) {
2227 WG_TRACE("No session found");
2228 return;
2229 }
2230
2231 wgp = wgs->wgs_peer;
2232
2233 mutex_enter(wgp->wgp_lock);
2234
2235 /* If we weren't waiting for a handshake response, drop it. */
2236 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
2237 WG_TRACE("peer sent spurious handshake response, ignoring");
2238 goto out;
2239 }
2240
2241 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
2242 WG_TRACE("under load");
2243 /*
2244 * [W] 5.3: Denial of Service Mitigation & Cookies
2245 * "the responder, ..., and when under load may reject messages
2246 * with an invalid msg.mac2. If the responder receives a
2247 * message with a valid msg.mac1 yet with an invalid msg.mac2,
2248 * and is under load, it may respond with a cookie reply
2249 * message"
2250 */
2251 uint8_t zero[WG_MAC_LEN] = {0};
2252 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
2253 WG_TRACE("sending a cookie message: no cookie included");
2254 wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2255 wgmr->wgmr_mac1, src);
2256 goto out;
2257 }
2258 if (!wgp->wgp_last_sent_cookie_valid) {
2259 WG_TRACE("sending a cookie message: no cookie sent ever");
2260 wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
2261 wgmr->wgmr_mac1, src);
2262 goto out;
2263 }
2264 uint8_t mac2[WG_MAC_LEN];
2265 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
2266 WG_COOKIE_LEN, (const uint8_t *)wgmr,
2267 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
2268 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
2269 WG_DLOG("mac2 is invalid\n");
2270 goto out;
2271 }
2272 WG_TRACE("under load, but continue to sending");
2273 }
2274
2275 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
2276 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
2277
2278 /*
2279 * [W] 5.4.3 Second Message: Responder to Initiator
2280 * "When the initiator receives this message, it does the same
2281 * operations so that its final state variables are identical,
2282 * replacing the operands of the DH function to produce equivalent
2283 * values."
2284 * Note that the following comments of operations are just copies of
2285 * the initiator's ones.
2286 */
2287
2288 /* [N] 2.2: "e" */
2289 /* Cr := KDF1(Cr, Er^pub) */
2290 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
2291 sizeof(wgmr->wgmr_ephemeral));
2292 /* Hr := HASH(Hr || msg.ephemeral) */
2293 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
2294
2295 WG_DUMP_HASH("ckey", ckey);
2296 WG_DUMP_HASH("hash", hash);
2297
2298 /* [N] 2.2: "ee" */
2299 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
2300 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
2301 wgmr->wgmr_ephemeral);
2302
2303 /* [N] 2.2: "se" */
2304 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
2305 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
2306
2307 /* [N] 9.2: "psk" */
2308 {
2309 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
2310 /* Cr, r, k := KDF3(Cr, Q) */
2311 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
2312 sizeof(wgp->wgp_psk));
2313 /* Hr := HASH(Hr || r) */
2314 wg_algo_hash(hash, kdfout, sizeof(kdfout));
2315 }
2316
2317 {
2318 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
2319 /* msg.empty := AEAD(k, 0, e, Hr) */
2320 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
2321 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
2322 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
2323 if (error != 0) {
2324 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2325 "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
2326 if_name(&wg->wg_if), wgp->wgp_name);
2327 goto out;
2328 }
2329 /* Hr := HASH(Hr || msg.empty) */
2330 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
2331 }
2332
2333 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
2334 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
2335 wgs->wgs_remote_index = wgmr->wgmr_sender;
2336 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
2337
2338 /*
2339 * The packet is genuine. Update the peer's endpoint if the
2340 * source address changed.
2341 *
2342 * XXX How to prevent DoS by replaying genuine packets from the
2343 * wrong source address?
2344 */
2345 wg_update_endpoint_if_necessary(wgp, src);
2346
2347 KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
2348 wgs->wgs_state);
2349 wgs->wgs_time_established = time_uptime32;
2350 wg_schedule_session_dtor_timer(wgp);
2351 wgs->wgs_time_last_data_sent = 0;
2352 wgs->wgs_is_initiator = true;
2353 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
2354 " calculate keys as initiator\n",
2355 wgs->wgs_local_index, wgs->wgs_remote_index);
2356 wg_calculate_keys(wgs, true);
2357 wg_clear_states(wgs);
2358
2359 /*
2360 * Session is ready to receive data now that we have received
2361 * the responder's response.
2362 *
2363 * Transition from INIT_ACTIVE to ESTABLISHED to publish it to
2364 * the data rx path, wg_handle_msg_data.
2365 */
2366 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32" -> WGS_STATE_ESTABLISHED\n",
2367 wgs->wgs_local_index, wgs->wgs_remote_index);
2368 atomic_store_release(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
2369 WG_TRACE("WGS_STATE_ESTABLISHED");
2370
2371 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
2372
2373 /*
2374 * Session is ready to send data now that we have received the
2375 * responder's response.
2376 *
2377 * Swap the sessions to publish the new one as the stable
2378 * session for the data tx path, wg_output.
2379 */
2380 wg_swap_sessions(wg, wgp);
2381 KASSERT(wgs == wgp->wgp_session_stable);
2382
2383 out:
2384 mutex_exit(wgp->wgp_lock);
2385 wg_put_session(wgs, &psref);
2386 }
2387
2388 static void
2389 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
2390 struct wg_session *wgs, const struct wg_msg_init *wgmi)
2391 {
2392 int error;
2393 struct mbuf *m;
2394 struct wg_msg_resp *wgmr;
2395
2396 KASSERT(mutex_owned(wgp->wgp_lock));
2397 KASSERT(wgs == wgp->wgp_session_unstable);
2398 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
2399 wgs->wgs_state);
2400
2401 m = m_gethdr(M_WAIT, MT_DATA);
2402 if (sizeof(*wgmr) > MHLEN) {
2403 m_clget(m, M_WAIT);
2404 CTASSERT(sizeof(*wgmr) <= MCLBYTES);
2405 }
2406 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
2407 wgmr = mtod(m, struct wg_msg_resp *);
2408 wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
2409
2410 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
2411 if (error) {
2412 WG_DLOG("send_hs_msg failed, error=%d\n", error);
2413 return;
2414 }
2415
2416 WG_TRACE("resp msg sent");
2417 }
2418
2419 static struct wg_peer *
2420 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
2421 const uint8_t pubkey[static WG_STATIC_KEY_LEN], struct psref *psref)
2422 {
2423 struct wg_peer *wgp;
2424
2425 int s = pserialize_read_enter();
2426 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
2427 if (wgp != NULL)
2428 wg_get_peer(wgp, psref);
2429 pserialize_read_exit(s);
2430
2431 return wgp;
2432 }
2433
2434 static void
2435 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
2436 struct wg_msg_cookie *wgmc, const uint32_t sender,
2437 const uint8_t mac1[static WG_MAC_LEN], const struct sockaddr *src)
2438 {
2439 uint8_t cookie[WG_COOKIE_LEN];
2440 uint8_t key[WG_HASH_LEN];
2441 uint8_t addr[sizeof(struct in6_addr)];
2442 size_t addrlen;
2443 uint16_t uh_sport; /* be */
2444
2445 KASSERT(mutex_owned(wgp->wgp_lock));
2446
2447 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
2448 wgmc->wgmc_receiver = sender;
2449 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
2450
2451 /*
2452 * [W] 5.4.7: Under Load: Cookie Reply Message
2453 * "The secret variable, Rm, changes every two minutes to a
2454 * random value"
2455 */
2456 if ((time_uptime - wgp->wgp_last_cookiesecret_time) >
2457 WG_COOKIESECRET_TIME) {
2458 cprng_strong(kern_cprng, wgp->wgp_cookiesecret,
2459 sizeof(wgp->wgp_cookiesecret), 0);
2460 wgp->wgp_last_cookiesecret_time = time_uptime;
2461 }
2462
2463 switch (src->sa_family) {
2464 #ifdef INET
2465 case AF_INET: {
2466 const struct sockaddr_in *sin = satocsin(src);
2467 addrlen = sizeof(sin->sin_addr);
2468 memcpy(addr, &sin->sin_addr, addrlen);
2469 uh_sport = sin->sin_port;
2470 break;
2471 }
2472 #endif
2473 #ifdef INET6
2474 case AF_INET6: {
2475 const struct sockaddr_in6 *sin6 = satocsin6(src);
2476 addrlen = sizeof(sin6->sin6_addr);
2477 memcpy(addr, &sin6->sin6_addr, addrlen);
2478 uh_sport = sin6->sin6_port;
2479 break;
2480 }
2481 #endif
2482 default:
2483 panic("invalid af=%d", src->sa_family);
2484 }
2485
2486 wg_algo_mac(cookie, sizeof(cookie),
2487 wgp->wgp_cookiesecret, sizeof(wgp->wgp_cookiesecret),
2488 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2489 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2490 sizeof(wg->wg_pubkey));
2491 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2492 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2493
2494 /* Need to store to calculate mac2 */
2495 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2496 wgp->wgp_last_sent_cookie_valid = true;
2497 }
2498
2499 static void
2500 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2501 const uint32_t sender, const uint8_t mac1[static WG_MAC_LEN],
2502 const struct sockaddr *src)
2503 {
2504 int error;
2505 struct mbuf *m;
2506 struct wg_msg_cookie *wgmc;
2507
2508 KASSERT(mutex_owned(wgp->wgp_lock));
2509
2510 m = m_gethdr(M_WAIT, MT_DATA);
2511 if (sizeof(*wgmc) > MHLEN) {
2512 m_clget(m, M_WAIT);
2513 CTASSERT(sizeof(*wgmc) <= MCLBYTES);
2514 }
2515 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2516 wgmc = mtod(m, struct wg_msg_cookie *);
2517 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2518
2519 error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
2520 if (error) {
2521 WG_DLOG("send_hs_msg failed, error=%d\n", error);
2522 return;
2523 }
2524
2525 WG_TRACE("cookie msg sent");
2526 }
2527
2528 static bool
2529 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2530 {
2531 #ifdef WG_DEBUG_PARAMS
2532 if (wg_force_underload)
2533 return true;
2534 #endif
2535
2536 /*
2537 * XXX we don't have a means of a load estimation. The purpose of
2538 * the mechanism is a DoS mitigation, so we consider frequent handshake
2539 * messages as (a kind of) load; if a message of the same type comes
2540 * to a peer within 1 second, we consider we are under load.
2541 */
2542 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2543 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2544 return (time_uptime - last) == 0;
2545 }
2546
2547 static void
2548 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2549 {
2550
2551 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2552
2553 /*
2554 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2555 */
2556 if (initiator) {
2557 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2558 wgs->wgs_chaining_key, NULL, 0);
2559 } else {
2560 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2561 wgs->wgs_chaining_key, NULL, 0);
2562 }
2563 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2564 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2565 }
2566
2567 static uint64_t
2568 wg_session_get_send_counter(struct wg_session *wgs)
2569 {
2570 #ifdef __HAVE_ATOMIC64_LOADSTORE
2571 return atomic_load_relaxed(&wgs->wgs_send_counter);
2572 #else
2573 uint64_t send_counter;
2574
2575 mutex_enter(&wgs->wgs_send_counter_lock);
2576 send_counter = wgs->wgs_send_counter;
2577 mutex_exit(&wgs->wgs_send_counter_lock);
2578
2579 return send_counter;
2580 #endif
2581 }
2582
2583 static uint64_t
2584 wg_session_inc_send_counter(struct wg_session *wgs)
2585 {
2586 #ifdef __HAVE_ATOMIC64_LOADSTORE
2587 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2588 #else
2589 uint64_t send_counter;
2590
2591 mutex_enter(&wgs->wgs_send_counter_lock);
2592 send_counter = wgs->wgs_send_counter++;
2593 mutex_exit(&wgs->wgs_send_counter_lock);
2594
2595 return send_counter;
2596 #endif
2597 }
2598
2599 static void
2600 wg_clear_states(struct wg_session *wgs)
2601 {
2602
2603 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2604
2605 wgs->wgs_send_counter = 0;
2606 sliwin_reset(&wgs->wgs_recvwin->window);
2607
2608 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2609 wgs_clear(handshake_hash);
2610 wgs_clear(chaining_key);
2611 wgs_clear(ephemeral_key_pub);
2612 wgs_clear(ephemeral_key_priv);
2613 wgs_clear(ephemeral_key_peer);
2614 #undef wgs_clear
2615 }
2616
2617 static struct wg_session *
2618 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2619 struct psref *psref)
2620 {
2621 struct wg_session *wgs;
2622
2623 int s = pserialize_read_enter();
2624 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2625 if (wgs != NULL) {
2626 KASSERTMSG(index == wgs->wgs_local_index,
2627 "index=%"PRIx32" wgs->wgs_local_index=%"PRIx32,
2628 index, wgs->wgs_local_index);
2629 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2630 }
2631 pserialize_read_exit(s);
2632
2633 return wgs;
2634 }
2635
2636 static void
2637 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2638 {
2639 struct mbuf *m;
2640
2641 /*
2642 * [W] 6.5 Passive Keepalive
2643 * "A keepalive message is simply a transport data message with
2644 * a zero-length encapsulated encrypted inner-packet."
2645 */
2646 WG_TRACE("");
2647 m = m_gethdr(M_WAIT, MT_DATA);
2648 wg_send_data_msg(wgp, wgs, m);
2649 }
2650
2651 static bool
2652 wg_need_to_send_init_message(struct wg_session *wgs)
2653 {
2654 /*
2655 * [W] 6.2 Transport Message Limits
2656 * "if a peer is the initiator of a current secure session,
2657 * WireGuard will send a handshake initiation message to begin
2658 * a new secure session ... if after receiving a transport data
2659 * message, the current secure session is (REJECT-AFTER-TIME
2660 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2661 * not yet acted upon this event."
2662 */
2663 return wgs->wgs_is_initiator &&
2664 atomic_load_relaxed(&wgs->wgs_time_last_data_sent) == 0 &&
2665 (time_uptime32 - wgs->wgs_time_established >=
2666 (wg_reject_after_time - wg_keepalive_timeout -
2667 wg_rekey_timeout));
2668 }
2669
2670 static void
2671 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
2672 {
2673
2674 mutex_enter(wgp->wgp_intr_lock);
2675 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2676 if (wgp->wgp_tasks == 0)
2677 /*
2678 * XXX If the current CPU is already loaded -- e.g., if
2679 * there's already a bunch of handshakes queued up --
2680 * consider tossing this over to another CPU to
2681 * distribute the load.
2682 */
2683 workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
2684 wgp->wgp_tasks |= task;
2685 mutex_exit(wgp->wgp_intr_lock);
2686 }
2687
2688 static void
2689 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2690 {
2691 struct wg_sockaddr *wgsa_prev;
2692
2693 WG_TRACE("Changing endpoint");
2694
2695 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2696 wgsa_prev = wgp->wgp_endpoint;
2697 atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2698 wgp->wgp_endpoint0 = wgsa_prev;
2699 atomic_store_release(&wgp->wgp_endpoint_available, true);
2700
2701 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2702 }
2703
2704 static bool
2705 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2706 {
2707 uint16_t packet_len;
2708 const struct ip *ip;
2709
2710 if (__predict_false(decrypted_len < sizeof(*ip))) {
2711 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2712 sizeof(*ip));
2713 return false;
2714 }
2715
2716 ip = (const struct ip *)packet;
2717 if (ip->ip_v == 4)
2718 *af = AF_INET;
2719 else if (ip->ip_v == 6)
2720 *af = AF_INET6;
2721 else {
2722 WG_DLOG("ip_v=%d\n", ip->ip_v);
2723 return false;
2724 }
2725
2726 WG_DLOG("af=%d\n", *af);
2727
2728 switch (*af) {
2729 #ifdef INET
2730 case AF_INET:
2731 packet_len = ntohs(ip->ip_len);
2732 break;
2733 #endif
2734 #ifdef INET6
2735 case AF_INET6: {
2736 const struct ip6_hdr *ip6;
2737
2738 if (__predict_false(decrypted_len < sizeof(*ip6))) {
2739 WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
2740 sizeof(*ip6));
2741 return false;
2742 }
2743
2744 ip6 = (const struct ip6_hdr *)packet;
2745 packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
2746 break;
2747 }
2748 #endif
2749 default:
2750 return false;
2751 }
2752
2753 if (packet_len > decrypted_len) {
2754 WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
2755 decrypted_len);
2756 return false;
2757 }
2758
2759 return true;
2760 }
2761
2762 static bool
2763 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2764 int af, char *packet)
2765 {
2766 struct sockaddr_storage ss;
2767 struct sockaddr *sa;
2768 struct psref psref;
2769 struct wg_peer *wgp;
2770 bool ok;
2771
2772 /*
2773 * II CRYPTOKEY ROUTING
2774 * "it will only accept it if its source IP resolves in the
2775 * table to the public key used in the secure session for
2776 * decrypting it."
2777 */
2778
2779 switch (af) {
2780 #ifdef INET
2781 case AF_INET: {
2782 const struct ip *ip = (const struct ip *)packet;
2783 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2784 sockaddr_in_init(sin, &ip->ip_src, 0);
2785 sa = sintosa(sin);
2786 break;
2787 }
2788 #endif
2789 #ifdef INET6
2790 case AF_INET6: {
2791 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2792 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2793 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2794 sa = sin6tosa(sin6);
2795 break;
2796 }
2797 #endif
2798 default:
2799 __USE(ss);
2800 return false;
2801 }
2802
2803 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2804 ok = (wgp == wgp_expected);
2805 if (wgp != NULL)
2806 wg_put_peer(wgp, &psref);
2807
2808 return ok;
2809 }
2810
2811 static void
2812 wg_session_dtor_timer(void *arg)
2813 {
2814 struct wg_peer *wgp = arg;
2815
2816 WG_TRACE("enter");
2817
2818 wg_schedule_session_dtor_timer(wgp);
2819 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2820 }
2821
2822 static void
2823 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2824 {
2825
2826 /*
2827 * If the periodic session destructor is already pending to
2828 * handle the previous session, that's fine -- leave it in
2829 * place; it will be scheduled again.
2830 */
2831 if (callout_pending(&wgp->wgp_session_dtor_timer)) {
2832 WG_DLOG("session dtor already pending\n");
2833 return;
2834 }
2835
2836 WG_DLOG("scheduling session dtor in %u secs\n", wg_reject_after_time);
2837 callout_schedule(&wgp->wgp_session_dtor_timer,
2838 wg_reject_after_time*hz);
2839 }
2840
2841 static bool
2842 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2843 {
2844 if (sa1->sa_family != sa2->sa_family)
2845 return false;
2846
2847 switch (sa1->sa_family) {
2848 #ifdef INET
2849 case AF_INET:
2850 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2851 #endif
2852 #ifdef INET6
2853 case AF_INET6:
2854 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2855 #endif
2856 default:
2857 return false;
2858 }
2859 }
2860
2861 static void
2862 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2863 const struct sockaddr *src)
2864 {
2865 struct wg_sockaddr *wgsa;
2866 struct psref psref;
2867
2868 wgsa = wg_get_endpoint_sa(wgp, &psref);
2869
2870 #ifdef WG_DEBUG_LOG
2871 char oldaddr[128], newaddr[128];
2872 sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2873 sockaddr_format(src, newaddr, sizeof(newaddr));
2874 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2875 #endif
2876
2877 /*
2878 * III: "Since the packet has authenticated correctly, the source IP of
2879 * the outer UDP/IP packet is used to update the endpoint for peer..."
2880 */
2881 if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2882 !sockaddr_port_match(src, wgsatosa(wgsa)))) {
2883 /* XXX We can't change the endpoint twice in a short period */
2884 if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2885 wg_change_endpoint(wgp, src);
2886 }
2887 }
2888
2889 wg_put_sa(wgp, wgsa, &psref);
2890 }
2891
2892 static void __noinline
2893 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2894 const struct sockaddr *src)
2895 {
2896 struct wg_msg_data *wgmd;
2897 char *encrypted_buf = NULL, *decrypted_buf;
2898 size_t encrypted_len, decrypted_len;
2899 struct wg_session *wgs;
2900 struct wg_peer *wgp;
2901 int state;
2902 uint32_t age;
2903 size_t mlen;
2904 struct psref psref;
2905 int error, af;
2906 bool success, free_encrypted_buf = false, ok;
2907 struct mbuf *n;
2908
2909 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2910 wgmd = mtod(m, struct wg_msg_data *);
2911
2912 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2913 WG_TRACE("data");
2914
2915 /* Find the putative session, or drop. */
2916 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2917 if (wgs == NULL) {
2918 WG_TRACE("No session found");
2919 m_freem(m);
2920 return;
2921 }
2922
2923 /*
2924 * We are only ready to handle data when in INIT_PASSIVE,
2925 * ESTABLISHED, or DESTROYING. All transitions out of that
2926 * state dissociate the session index and drain psrefs.
2927 *
2928 * atomic_load_acquire matches atomic_store_release in either
2929 * wg_handle_msg_init or wg_handle_msg_resp. (The transition
2930 * INIT_PASSIVE to ESTABLISHED in wg_task_establish_session
2931 * doesn't make a difference for this rx path.)
2932 */
2933 state = atomic_load_acquire(&wgs->wgs_state);
2934 switch (state) {
2935 case WGS_STATE_UNKNOWN:
2936 case WGS_STATE_INIT_ACTIVE:
2937 WG_TRACE("not yet ready for data");
2938 goto out;
2939 case WGS_STATE_INIT_PASSIVE:
2940 case WGS_STATE_ESTABLISHED:
2941 case WGS_STATE_DESTROYING:
2942 break;
2943 }
2944
2945 /*
2946 * Reject if the session is too old.
2947 */
2948 age = time_uptime32 - wgs->wgs_time_established;
2949 if (__predict_false(age >= wg_reject_after_time)) {
2950 WG_DLOG("session %"PRIx32" too old, %"PRIu32" sec\n",
2951 wgmd->wgmd_receiver, age);
2952 goto out;
2953 }
2954
2955 /*
2956 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2957 * to update the endpoint if authentication succeeds.
2958 */
2959 wgp = wgs->wgs_peer;
2960
2961 /*
2962 * Reject outrageously wrong sequence numbers before doing any
2963 * crypto work or taking any locks.
2964 */
2965 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2966 le64toh(wgmd->wgmd_counter));
2967 if (error) {
2968 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2969 "%s: peer %s: out-of-window packet: %"PRIu64"\n",
2970 if_name(&wg->wg_if), wgp->wgp_name,
2971 le64toh(wgmd->wgmd_counter));
2972 goto out;
2973 }
2974
2975 /* Ensure the payload and authenticator are contiguous. */
2976 mlen = m_length(m);
2977 encrypted_len = mlen - sizeof(*wgmd);
2978 if (encrypted_len < WG_AUTHTAG_LEN) {
2979 WG_DLOG("Short encrypted_len: %zu\n", encrypted_len);
2980 goto out;
2981 }
2982 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2983 if (success) {
2984 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2985 } else {
2986 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2987 if (encrypted_buf == NULL) {
2988 WG_DLOG("failed to allocate encrypted_buf\n");
2989 goto out;
2990 }
2991 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2992 free_encrypted_buf = true;
2993 }
2994 /* m_ensure_contig may change m regardless of its result */
2995 KASSERT(m->m_len >= sizeof(*wgmd));
2996 wgmd = mtod(m, struct wg_msg_data *);
2997
2998 /*
2999 * Get a buffer for the plaintext. Add WG_AUTHTAG_LEN to avoid
3000 * a zero-length buffer (XXX). Drop if plaintext is longer
3001 * than MCLBYTES (XXX).
3002 */
3003 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
3004 if (decrypted_len > MCLBYTES) {
3005 /* FIXME handle larger data than MCLBYTES */
3006 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
3007 goto out;
3008 }
3009 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
3010 if (n == NULL) {
3011 WG_DLOG("wg_get_mbuf failed\n");
3012 goto out;
3013 }
3014 decrypted_buf = mtod(n, char *);
3015
3016 /* Decrypt and verify the packet. */
3017 WG_DLOG("mlen=%zu, encrypted_len=%zu\n", mlen, encrypted_len);
3018 error = wg_algo_aead_dec(decrypted_buf,
3019 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
3020 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
3021 encrypted_len, NULL, 0);
3022 if (error != 0) {
3023 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3024 "%s: peer %s: failed to wg_algo_aead_dec\n",
3025 if_name(&wg->wg_if), wgp->wgp_name);
3026 m_freem(n);
3027 goto out;
3028 }
3029 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
3030
3031 /* Packet is genuine. Reject it if a replay or just too old. */
3032 mutex_enter(&wgs->wgs_recvwin->lock);
3033 error = sliwin_update(&wgs->wgs_recvwin->window,
3034 le64toh(wgmd->wgmd_counter));
3035 mutex_exit(&wgs->wgs_recvwin->lock);
3036 if (error) {
3037 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3038 "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
3039 if_name(&wg->wg_if), wgp->wgp_name,
3040 le64toh(wgmd->wgmd_counter));
3041 m_freem(n);
3042 goto out;
3043 }
3044
3045 /* We're done with m now; free it and chuck the pointers. */
3046 m_freem(m);
3047 m = NULL;
3048 wgmd = NULL;
3049
3050 /*
3051 * The packet is genuine. Update the peer's endpoint if the
3052 * source address changed.
3053 *
3054 * XXX How to prevent DoS by replaying genuine packets from the
3055 * wrong source address?
3056 */
3057 wg_update_endpoint_if_necessary(wgp, src);
3058
3059 /*
3060 * Validate the encapsulated packet header and get the address
3061 * family, or drop.
3062 */
3063 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
3064 if (!ok) {
3065 m_freem(n);
3066 goto update_state;
3067 }
3068
3069 /* Submit it into our network stack if routable. */
3070 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
3071 if (ok) {
3072 wg->wg_ops->input(&wg->wg_if, n, af);
3073 } else {
3074 char addrstr[INET6_ADDRSTRLEN];
3075 memset(addrstr, 0, sizeof(addrstr));
3076 switch (af) {
3077 #ifdef INET
3078 case AF_INET: {
3079 const struct ip *ip = (const struct ip *)decrypted_buf;
3080 IN_PRINT(addrstr, &ip->ip_src);
3081 break;
3082 }
3083 #endif
3084 #ifdef INET6
3085 case AF_INET6: {
3086 const struct ip6_hdr *ip6 =
3087 (const struct ip6_hdr *)decrypted_buf;
3088 IN6_PRINT(addrstr, &ip6->ip6_src);
3089 break;
3090 }
3091 #endif
3092 default:
3093 panic("invalid af=%d", af);
3094 }
3095 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3096 "%s: peer %s: invalid source address (%s)\n",
3097 if_name(&wg->wg_if), wgp->wgp_name, addrstr);
3098 m_freem(n);
3099 /*
3100 * The inner address is invalid however the session is valid
3101 * so continue the session processing below.
3102 */
3103 }
3104 n = NULL;
3105
3106 update_state:
3107 /* Update the state machine if necessary. */
3108 if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
3109 /*
3110 * We were waiting for the initiator to send their
3111 * first data transport message, and that has happened.
3112 * Schedule a task to establish this session.
3113 */
3114 wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
3115 } else {
3116 if (__predict_false(wg_need_to_send_init_message(wgs))) {
3117 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3118 }
3119 /*
3120 * [W] 6.5 Passive Keepalive
3121 * "If a peer has received a validly-authenticated transport
3122 * data message (section 5.4.6), but does not have any packets
3123 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
3124 * a keepalive message."
3125 */
3126 const uint32_t now = time_uptime32;
3127 const uint32_t time_last_data_sent =
3128 atomic_load_relaxed(&wgs->wgs_time_last_data_sent);
3129 WG_DLOG("time_uptime32=%"PRIu32
3130 " wgs_time_last_data_sent=%"PRIu32"\n",
3131 now, time_last_data_sent);
3132 if ((now - time_last_data_sent) >= wg_keepalive_timeout) {
3133 WG_TRACE("Schedule sending keepalive message");
3134 /*
3135 * We can't send a keepalive message here to avoid
3136 * a deadlock; we already hold the solock of a socket
3137 * that is used to send the message.
3138 */
3139 wg_schedule_peer_task(wgp,
3140 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
3141 }
3142 }
3143 out:
3144 wg_put_session(wgs, &psref);
3145 m_freem(m);
3146 if (free_encrypted_buf)
3147 kmem_intr_free(encrypted_buf, encrypted_len);
3148 }
3149
3150 static void __noinline
3151 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
3152 {
3153 struct wg_session *wgs;
3154 struct wg_peer *wgp;
3155 struct psref psref;
3156 int error;
3157 uint8_t key[WG_HASH_LEN];
3158 uint8_t cookie[WG_COOKIE_LEN];
3159
3160 WG_TRACE("cookie msg received");
3161
3162 /* Find the putative session. */
3163 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
3164 if (wgs == NULL) {
3165 WG_TRACE("No session found");
3166 return;
3167 }
3168
3169 /* Lock the peer so we can update the cookie state. */
3170 wgp = wgs->wgs_peer;
3171 mutex_enter(wgp->wgp_lock);
3172
3173 if (!wgp->wgp_last_sent_mac1_valid) {
3174 WG_TRACE("No valid mac1 sent (or expired)");
3175 goto out;
3176 }
3177
3178 /*
3179 * wgp_last_sent_mac1_valid is only set to true when we are
3180 * transitioning to INIT_ACTIVE or INIT_PASSIVE, and always
3181 * cleared on transition out of them.
3182 */
3183 KASSERTMSG((wgs->wgs_state == WGS_STATE_INIT_ACTIVE ||
3184 wgs->wgs_state == WGS_STATE_INIT_PASSIVE),
3185 "state=%d", wgs->wgs_state);
3186
3187 /* Decrypt the cookie and store it for later handshake retry. */
3188 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
3189 sizeof(wgp->wgp_pubkey));
3190 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
3191 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
3192 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
3193 wgmc->wgmc_salt);
3194 if (error != 0) {
3195 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
3196 "%s: peer %s: wg_algo_aead_dec for cookie failed: "
3197 "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
3198 goto out;
3199 }
3200 /*
3201 * [W] 6.6: Interaction with Cookie Reply System
3202 * "it should simply store the decrypted cookie value from the cookie
3203 * reply message, and wait for the expiration of the REKEY-TIMEOUT
3204 * timer for retrying a handshake initiation message."
3205 */
3206 wgp->wgp_latest_cookie_time = time_uptime;
3207 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
3208 out:
3209 mutex_exit(wgp->wgp_lock);
3210 wg_put_session(wgs, &psref);
3211 }
3212
3213 static struct mbuf *
3214 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
3215 {
3216 struct wg_msg wgm;
3217 size_t mbuflen;
3218 size_t msglen;
3219
3220 /*
3221 * Get the mbuf chain length. It is already guaranteed, by
3222 * wg_overudp_cb, to be large enough for a struct wg_msg.
3223 */
3224 mbuflen = m_length(m);
3225 KASSERT(mbuflen >= sizeof(struct wg_msg));
3226
3227 /*
3228 * Copy the message header (32-bit message type) out -- we'll
3229 * worry about contiguity and alignment later.
3230 */
3231 m_copydata(m, 0, sizeof(wgm), &wgm);
3232 switch (le32toh(wgm.wgm_type)) {
3233 case WG_MSG_TYPE_INIT:
3234 msglen = sizeof(struct wg_msg_init);
3235 break;
3236 case WG_MSG_TYPE_RESP:
3237 msglen = sizeof(struct wg_msg_resp);
3238 break;
3239 case WG_MSG_TYPE_COOKIE:
3240 msglen = sizeof(struct wg_msg_cookie);
3241 break;
3242 case WG_MSG_TYPE_DATA:
3243 msglen = sizeof(struct wg_msg_data);
3244 break;
3245 default:
3246 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
3247 "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
3248 le32toh(wgm.wgm_type));
3249 goto error;
3250 }
3251
3252 /* Verify the mbuf chain is long enough for this type of message. */
3253 if (__predict_false(mbuflen < msglen)) {
3254 WG_DLOG("Invalid msg size: mbuflen=%zu type=%u\n", mbuflen,
3255 le32toh(wgm.wgm_type));
3256 goto error;
3257 }
3258
3259 /* Make the message header contiguous if necessary. */
3260 if (__predict_false(m->m_len < msglen)) {
3261 m = m_pullup(m, msglen);
3262 if (m == NULL)
3263 return NULL;
3264 }
3265
3266 return m;
3267
3268 error:
3269 m_freem(m);
3270 return NULL;
3271 }
3272
3273 static void
3274 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
3275 const struct sockaddr *src)
3276 {
3277 struct wg_msg *wgm;
3278
3279 KASSERT(curlwp->l_pflag & LP_BOUND);
3280
3281 m = wg_validate_msg_header(wg, m);
3282 if (__predict_false(m == NULL))
3283 return;
3284
3285 KASSERT(m->m_len >= sizeof(struct wg_msg));
3286 wgm = mtod(m, struct wg_msg *);
3287 switch (le32toh(wgm->wgm_type)) {
3288 case WG_MSG_TYPE_INIT:
3289 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
3290 break;
3291 case WG_MSG_TYPE_RESP:
3292 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
3293 break;
3294 case WG_MSG_TYPE_COOKIE:
3295 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
3296 break;
3297 case WG_MSG_TYPE_DATA:
3298 wg_handle_msg_data(wg, m, src);
3299 /* wg_handle_msg_data frees m for us */
3300 return;
3301 default:
3302 panic("invalid message type: %d", le32toh(wgm->wgm_type));
3303 }
3304
3305 m_freem(m);
3306 }
3307
3308 static void
3309 wg_receive_packets(struct wg_softc *wg, const int af)
3310 {
3311
3312 for (;;) {
3313 int error, flags;
3314 struct socket *so;
3315 struct mbuf *m = NULL;
3316 struct uio dummy_uio;
3317 struct mbuf *paddr = NULL;
3318 struct sockaddr *src;
3319
3320 so = wg_get_so_by_af(wg, af);
3321 flags = MSG_DONTWAIT;
3322 dummy_uio.uio_resid = 1000000000;
3323
3324 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
3325 &flags);
3326 if (error || m == NULL) {
3327 //if (error == EWOULDBLOCK)
3328 return;
3329 }
3330
3331 KASSERT(paddr != NULL);
3332 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
3333 src = mtod(paddr, struct sockaddr *);
3334
3335 wg_handle_packet(wg, m, src);
3336 }
3337 }
3338
3339 static void
3340 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
3341 {
3342
3343 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
3344 }
3345
3346 static void
3347 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
3348 {
3349
3350 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
3351 }
3352
3353 static void
3354 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
3355 {
3356 struct wg_session *wgs;
3357
3358 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
3359
3360 KASSERT(mutex_owned(wgp->wgp_lock));
3361
3362 if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
3363 WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
3364 if_name(&wg->wg_if));
3365 /* XXX should do something? */
3366 return;
3367 }
3368
3369 /*
3370 * If we already have an established session, there's no need
3371 * to initiate a new one -- unless the rekey-after-time or
3372 * rekey-after-messages limits have passed.
3373 */
3374 wgs = wgp->wgp_session_stable;
3375 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3376 !atomic_load_relaxed(&wgs->wgs_force_rekey))
3377 return;
3378
3379 /*
3380 * Ensure we're initiating a new session. If the unstable
3381 * session is already INIT_ACTIVE or INIT_PASSIVE, this does
3382 * nothing.
3383 */
3384 wg_send_handshake_msg_init(wg, wgp);
3385 }
3386
3387 static void
3388 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
3389 {
3390 struct wg_session *wgs;
3391
3392 WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
3393
3394 KASSERT(mutex_owned(wgp->wgp_lock));
3395
3396 wgs = wgp->wgp_session_unstable;
3397 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
3398 return;
3399
3400 KASSERT(wgp->wgp_handshake_start_time != 0);
3401
3402 /*
3403 * XXX no real need to assign a new index here, but we do need
3404 * to transition to UNKNOWN temporarily
3405 */
3406 wg_put_session_index(wg, wgs);
3407
3408 /* [W] 6.4 Handshake Initiation Retransmission */
3409 if ((time_uptime - wgp->wgp_handshake_start_time) >
3410 wg_rekey_attempt_time) {
3411 /* Give up handshaking */
3412 wgp->wgp_handshake_start_time = 0;
3413 WG_TRACE("give up");
3414
3415 /*
3416 * If a new data packet comes, handshaking will be retried
3417 * and a new session would be established at that time,
3418 * however we don't want to send pending packets then.
3419 */
3420 wg_purge_pending_packets(wgp);
3421 return;
3422 }
3423
3424 wg_task_send_init_message(wg, wgp);
3425 }
3426
3427 static void
3428 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
3429 {
3430 struct wg_session *wgs;
3431
3432 KASSERT(mutex_owned(wgp->wgp_lock));
3433
3434 wgs = wgp->wgp_session_unstable;
3435 if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
3436 /* XXX Can this happen? */
3437 return;
3438
3439 wgs->wgs_time_last_data_sent = 0;
3440 wgs->wgs_is_initiator = false;
3441
3442 /*
3443 * Session was already ready to receive data. Transition from
3444 * INIT_PASSIVE to ESTABLISHED just so we can swap the
3445 * sessions.
3446 *
3447 * atomic_store_relaxed because this doesn't affect the data rx
3448 * path, wg_handle_msg_data -- changing from INIT_PASSIVE to
3449 * ESTABLISHED makes no difference to the data rx path, and the
3450 * transition to INIT_PASSIVE with store-release already
3451 * published the state needed by the data rx path.
3452 */
3453 WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_ESTABLISHED\n",
3454 wgs->wgs_local_index, wgs->wgs_remote_index);
3455 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
3456 WG_TRACE("WGS_STATE_ESTABLISHED");
3457
3458 /*
3459 * Session is ready to send data too now that we have received
3460 * the peer initiator's first data packet.
3461 *
3462 * Swap the sessions to publish the new one as the stable
3463 * session for the data tx path, wg_output.
3464 */
3465 wg_swap_sessions(wg, wgp);
3466 KASSERT(wgs == wgp->wgp_session_stable);
3467 }
3468
3469 static void
3470 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
3471 {
3472
3473 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
3474
3475 KASSERT(mutex_owned(wgp->wgp_lock));
3476
3477 if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
3478 pserialize_perform(wgp->wgp_psz);
3479 mutex_exit(wgp->wgp_lock);
3480 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
3481 wg_psref_class);
3482 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
3483 wg_psref_class);
3484 mutex_enter(wgp->wgp_lock);
3485 atomic_store_release(&wgp->wgp_endpoint_changing, 0);
3486 }
3487 }
3488
3489 static void
3490 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
3491 {
3492 struct wg_session *wgs;
3493
3494 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
3495
3496 KASSERT(mutex_owned(wgp->wgp_lock));
3497
3498 wgs = wgp->wgp_session_stable;
3499 if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
3500 return;
3501
3502 wg_send_keepalive_msg(wgp, wgs);
3503 }
3504
3505 static void
3506 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
3507 {
3508 struct wg_session *wgs;
3509 uint32_t age;
3510
3511 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
3512
3513 KASSERT(mutex_owned(wgp->wgp_lock));
3514
3515 /*
3516 * If theres's any previous unstable session, i.e., one that
3517 * was ESTABLISHED and is now DESTROYING, older than
3518 * reject-after-time, destroy it. Upcoming sessions are still
3519 * in INIT_ACTIVE or INIT_PASSIVE -- we don't touch those here.
3520 */
3521 wgs = wgp->wgp_session_unstable;
3522 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
3523 if (wgs->wgs_state == WGS_STATE_DESTROYING &&
3524 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3525 wg_reject_after_time)) {
3526 WG_DLOG("destroying past session %"PRIu32" sec old\n", age);
3527 wg_put_session_index(wg, wgs);
3528 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3529 wgs->wgs_state);
3530 }
3531
3532 /*
3533 * If theres's any ESTABLISHED stable session older than
3534 * reject-after-time, destroy it. (The stable session can also
3535 * be in UNKNOWN state -- nothing to do in that case)
3536 */
3537 wgs = wgp->wgp_session_stable;
3538 KASSERT(wgs->wgs_state != WGS_STATE_INIT_ACTIVE);
3539 KASSERT(wgs->wgs_state != WGS_STATE_INIT_PASSIVE);
3540 KASSERT(wgs->wgs_state != WGS_STATE_DESTROYING);
3541 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3542 ((age = (time_uptime32 - wgs->wgs_time_established)) >=
3543 wg_reject_after_time)) {
3544 WG_DLOG("destroying current session %"PRIu32" sec old\n", age);
3545 atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_DESTROYING);
3546 wg_put_session_index(wg, wgs);
3547 KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
3548 wgs->wgs_state);
3549 }
3550
3551 /*
3552 * If there's no sessions left, no need to have the timer run
3553 * until the next time around -- halt it.
3554 *
3555 * It is only ever scheduled with wgp_lock held or in the
3556 * callout itself, and callout_halt prevents rescheudling
3557 * itself, so this never races with rescheduling.
3558 */
3559 if (wgp->wgp_session_unstable->wgs_state == WGS_STATE_UNKNOWN &&
3560 wgp->wgp_session_stable->wgs_state == WGS_STATE_UNKNOWN)
3561 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3562 }
3563
3564 static void
3565 wg_peer_work(struct work *wk, void *cookie)
3566 {
3567 struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
3568 struct wg_softc *wg = wgp->wgp_sc;
3569 unsigned int tasks;
3570
3571 mutex_enter(wgp->wgp_intr_lock);
3572 while ((tasks = wgp->wgp_tasks) != 0) {
3573 wgp->wgp_tasks = 0;
3574 mutex_exit(wgp->wgp_intr_lock);
3575
3576 mutex_enter(wgp->wgp_lock);
3577 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
3578 wg_task_send_init_message(wg, wgp);
3579 if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
3580 wg_task_retry_handshake(wg, wgp);
3581 if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
3582 wg_task_establish_session(wg, wgp);
3583 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
3584 wg_task_endpoint_changed(wg, wgp);
3585 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
3586 wg_task_send_keepalive_message(wg, wgp);
3587 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
3588 wg_task_destroy_prev_session(wg, wgp);
3589 mutex_exit(wgp->wgp_lock);
3590
3591 mutex_enter(wgp->wgp_intr_lock);
3592 }
3593 mutex_exit(wgp->wgp_intr_lock);
3594 }
3595
3596 static void
3597 wg_job(struct threadpool_job *job)
3598 {
3599 struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
3600 int bound, upcalls;
3601
3602 mutex_enter(wg->wg_intr_lock);
3603 while ((upcalls = wg->wg_upcalls) != 0) {
3604 wg->wg_upcalls = 0;
3605 mutex_exit(wg->wg_intr_lock);
3606 bound = curlwp_bind();
3607 if (ISSET(upcalls, WG_UPCALL_INET))
3608 wg_receive_packets(wg, AF_INET);
3609 if (ISSET(upcalls, WG_UPCALL_INET6))
3610 wg_receive_packets(wg, AF_INET6);
3611 curlwp_bindx(bound);
3612 mutex_enter(wg->wg_intr_lock);
3613 }
3614 threadpool_job_done(job);
3615 mutex_exit(wg->wg_intr_lock);
3616 }
3617
3618 static int
3619 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3620 {
3621 int error = 0;
3622 uint16_t old_port = wg->wg_listen_port;
3623
3624 if (port != 0 && old_port == port)
3625 return 0;
3626
3627 #ifdef INET
3628 struct sockaddr_in _sin, *sin = &_sin;
3629 sin->sin_len = sizeof(*sin);
3630 sin->sin_family = AF_INET;
3631 sin->sin_addr.s_addr = INADDR_ANY;
3632 sin->sin_port = htons(port);
3633
3634 error = sobind(wg->wg_so4, sintosa(sin), curlwp);
3635 if (error)
3636 return error;
3637 #endif
3638
3639 #ifdef INET6
3640 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3641 sin6->sin6_len = sizeof(*sin6);
3642 sin6->sin6_family = AF_INET6;
3643 sin6->sin6_addr = in6addr_any;
3644 sin6->sin6_port = htons(port);
3645
3646 error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
3647 if (error)
3648 return error;
3649 #endif
3650
3651 wg->wg_listen_port = port;
3652
3653 return error;
3654 }
3655
3656 static void
3657 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
3658 {
3659 struct wg_softc *wg = cookie;
3660 int reason;
3661
3662 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3663 WG_UPCALL_INET :
3664 WG_UPCALL_INET6;
3665
3666 mutex_enter(wg->wg_intr_lock);
3667 wg->wg_upcalls |= reason;
3668 threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
3669 mutex_exit(wg->wg_intr_lock);
3670 }
3671
3672 /*
3673 * wg_overudp_cb(&m, offset, so, src, arg)
3674 *
3675 * Callback for incoming UDP packets in high-priority
3676 * packet-processing path.
3677 *
3678 * Three cases:
3679 *
3680 * - Data packet. Consumed here for high-priority handling.
3681 * => Returns 1 and takes ownership of m.
3682 *
3683 * - Handshake packet. Defer to thread context via so_receive in
3684 * wg_receive_packets.
3685 * => Returns 0 and leaves caller with ownership of m.
3686 *
3687 * - Invalid. Dropped on the floor and freed.
3688 * => Returns -1 and takes ownership of m (frees m).
3689 */
3690 static int
3691 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3692 struct sockaddr *src, void *arg)
3693 {
3694 struct wg_softc *wg = arg;
3695 struct wg_msg wgm;
3696 struct mbuf *m = *mp;
3697
3698 WG_TRACE("enter");
3699
3700 /* Verify the mbuf chain is long enough to have a wg msg header. */
3701 KASSERT(offset <= m_length(m));
3702 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3703 /* drop on the floor */
3704 m_freem(m);
3705 *mp = NULL;
3706 return -1; /* dropped */
3707 }
3708
3709 /*
3710 * Copy the message header (32-bit message type) out -- we'll
3711 * worry about contiguity and alignment later.
3712 */
3713 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3714 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3715
3716 /*
3717 * Handle DATA packets promptly as they arrive, if they are in
3718 * an active session. Other packets may require expensive
3719 * public-key crypto and are not as sensitive to latency, so
3720 * defer them to the worker thread.
3721 */
3722 switch (le32toh(wgm.wgm_type)) {
3723 case WG_MSG_TYPE_DATA:
3724 /* handle immediately */
3725 m_adj(m, offset);
3726 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3727 m = m_pullup(m, sizeof(struct wg_msg_data));
3728 if (m == NULL) {
3729 *mp = NULL;
3730 return -1; /* dropped */
3731 }
3732 }
3733 wg_handle_msg_data(wg, m, src);
3734 *mp = NULL;
3735 return 1; /* consumed */
3736 case WG_MSG_TYPE_INIT:
3737 case WG_MSG_TYPE_RESP:
3738 case WG_MSG_TYPE_COOKIE:
3739 /* pass through to so_receive in wg_receive_packets */
3740 return 0; /* passthrough */
3741 default:
3742 /* drop on the floor */
3743 m_freem(m);
3744 *mp = NULL;
3745 return -1; /* dropped */
3746 }
3747 }
3748
3749 static int
3750 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
3751 {
3752 int error;
3753 struct socket *so;
3754
3755 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3756 if (error != 0)
3757 return error;
3758
3759 solock(so);
3760 so->so_upcallarg = wg;
3761 so->so_upcall = wg_so_upcall;
3762 so->so_rcv.sb_flags |= SB_UPCALL;
3763 inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3764 sounlock(so);
3765
3766 *sop = so;
3767
3768 return 0;
3769 }
3770
3771 static bool
3772 wg_session_hit_limits(struct wg_session *wgs)
3773 {
3774
3775 /*
3776 * [W] 6.2: Transport Message Limits
3777 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3778 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3779 * comes first, WireGuard will refuse to send or receive any more
3780 * transport data messages using the current secure session, ..."
3781 */
3782 KASSERT(wgs->wgs_time_established != 0 || time_uptime > UINT32_MAX);
3783 if (time_uptime32 - wgs->wgs_time_established > wg_reject_after_time) {
3784 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3785 return true;
3786 } else if (wg_session_get_send_counter(wgs) >
3787 wg_reject_after_messages) {
3788 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3789 return true;
3790 }
3791
3792 return false;
3793 }
3794
3795 static void
3796 wgintr(void *cookie)
3797 {
3798 struct wg_peer *wgp;
3799 struct wg_session *wgs;
3800 struct mbuf *m;
3801 struct psref psref;
3802
3803 while ((m = pktq_dequeue(wg_pktq)) != NULL) {
3804 wgp = M_GETCTX(m, struct wg_peer *);
3805 if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3806 /*
3807 * No established session. If we're the first
3808 * to try sending data, schedule a handshake
3809 * and queue the packet for when the handshake
3810 * is done; otherwise just drop the packet and
3811 * let the ongoing handshake attempt continue.
3812 * We could queue more data packets but it's
3813 * not clear that's worthwhile.
3814 */
3815 WG_TRACE("no stable session");
3816 membar_release();
3817 if ((m = atomic_swap_ptr(&wgp->wgp_pending, m)) ==
3818 NULL) {
3819 WG_TRACE("queued first packet;"
3820 " init handshake");
3821 wg_schedule_peer_task(wgp,
3822 WGP_TASK_SEND_INIT_MESSAGE);
3823 } else {
3824 membar_acquire();
3825 WG_TRACE("first packet already queued,"
3826 " dropping");
3827 }
3828 goto next0;
3829 }
3830 if (__predict_false(wg_session_hit_limits(wgs))) {
3831 WG_TRACE("stable session hit limits");
3832 membar_release();
3833 if ((m = atomic_swap_ptr(&wgp->wgp_pending, m)) ==
3834 NULL) {
3835 WG_TRACE("queued first packet in a while;"
3836 " reinit handshake");
3837 atomic_store_relaxed(&wgs->wgs_force_rekey,
3838 true);
3839 wg_schedule_peer_task(wgp,
3840 WGP_TASK_SEND_INIT_MESSAGE);
3841 } else {
3842 membar_acquire();
3843 WG_TRACE("first packet in already queued,"
3844 " dropping");
3845 }
3846 goto next1;
3847 }
3848 wg_send_data_msg(wgp, wgs, m);
3849 m = NULL; /* consumed */
3850 next1: wg_put_session(wgs, &psref);
3851 next0: m_freem(m);
3852 /* XXX Yield to avoid userland starvation? */
3853 }
3854 }
3855
3856 static void
3857 wg_purge_pending_packets(struct wg_peer *wgp)
3858 {
3859 struct mbuf *m;
3860
3861 m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
3862 membar_acquire(); /* matches membar_release in wgintr */
3863 m_freem(m);
3864 #ifdef ALTQ
3865 wg_start(&wgp->wgp_sc->wg_if);
3866 #endif
3867 pktq_barrier(wg_pktq);
3868 }
3869
3870 static void
3871 wg_handshake_timeout_timer(void *arg)
3872 {
3873 struct wg_peer *wgp = arg;
3874
3875 WG_TRACE("enter");
3876
3877 wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3878 }
3879
3880 static struct wg_peer *
3881 wg_alloc_peer(struct wg_softc *wg)
3882 {
3883 struct wg_peer *wgp;
3884
3885 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3886
3887 wgp->wgp_sc = wg;
3888 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3889 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3890 wg_handshake_timeout_timer, wgp);
3891 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3892 callout_setfunc(&wgp->wgp_session_dtor_timer,
3893 wg_session_dtor_timer, wgp);
3894 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3895 wgp->wgp_endpoint_changing = false;
3896 wgp->wgp_endpoint_available = false;
3897 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3898 wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3899 wgp->wgp_psz = pserialize_create();
3900 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3901
3902 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3903 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3904 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3905 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3906
3907 struct wg_session *wgs;
3908 wgp->wgp_session_stable =
3909 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3910 wgp->wgp_session_unstable =
3911 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3912 wgs = wgp->wgp_session_stable;
3913 wgs->wgs_peer = wgp;
3914 wgs->wgs_state = WGS_STATE_UNKNOWN;
3915 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3916 #ifndef __HAVE_ATOMIC64_LOADSTORE
3917 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3918 #endif
3919 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3920 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3921
3922 wgs = wgp->wgp_session_unstable;
3923 wgs->wgs_peer = wgp;
3924 wgs->wgs_state = WGS_STATE_UNKNOWN;
3925 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3926 #ifndef __HAVE_ATOMIC64_LOADSTORE
3927 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3928 #endif
3929 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3930 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3931
3932 return wgp;
3933 }
3934
3935 static void
3936 wg_destroy_peer(struct wg_peer *wgp)
3937 {
3938 struct wg_session *wgs;
3939 struct wg_softc *wg = wgp->wgp_sc;
3940
3941 /* Prevent new packets from this peer on any source address. */
3942 rw_enter(wg->wg_rwlock, RW_WRITER);
3943 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3944 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3945 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3946 struct radix_node *rn;
3947
3948 KASSERT(rnh != NULL);
3949 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3950 &wga->wga_sa_mask, rnh);
3951 if (rn == NULL) {
3952 char addrstr[128];
3953 sockaddr_format(&wga->wga_sa_addr, addrstr,
3954 sizeof(addrstr));
3955 WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
3956 if_name(&wg->wg_if), addrstr);
3957 }
3958 }
3959 rw_exit(wg->wg_rwlock);
3960
3961 /* Purge pending packets. */
3962 wg_purge_pending_packets(wgp);
3963
3964 /* Halt all packet processing and timeouts. */
3965 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3966 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3967
3968 /* Wait for any queued work to complete. */
3969 workqueue_wait(wg_wq, &wgp->wgp_work);
3970
3971 wgs = wgp->wgp_session_unstable;
3972 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3973 mutex_enter(wgp->wgp_lock);
3974 wg_destroy_session(wg, wgs);
3975 mutex_exit(wgp->wgp_lock);
3976 }
3977 mutex_destroy(&wgs->wgs_recvwin->lock);
3978 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3979 #ifndef __HAVE_ATOMIC64_LOADSTORE
3980 mutex_destroy(&wgs->wgs_send_counter_lock);
3981 #endif
3982 kmem_free(wgs, sizeof(*wgs));
3983
3984 wgs = wgp->wgp_session_stable;
3985 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3986 mutex_enter(wgp->wgp_lock);
3987 wg_destroy_session(wg, wgs);
3988 mutex_exit(wgp->wgp_lock);
3989 }
3990 mutex_destroy(&wgs->wgs_recvwin->lock);
3991 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3992 #ifndef __HAVE_ATOMIC64_LOADSTORE
3993 mutex_destroy(&wgs->wgs_send_counter_lock);
3994 #endif
3995 kmem_free(wgs, sizeof(*wgs));
3996
3997 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3998 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3999 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
4000 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
4001
4002 pserialize_destroy(wgp->wgp_psz);
4003 mutex_obj_free(wgp->wgp_intr_lock);
4004 mutex_obj_free(wgp->wgp_lock);
4005
4006 kmem_free(wgp, sizeof(*wgp));
4007 }
4008
4009 static void
4010 wg_destroy_all_peers(struct wg_softc *wg)
4011 {
4012 struct wg_peer *wgp, *wgp0 __diagused;
4013 void *garbage_byname, *garbage_bypubkey;
4014
4015 restart:
4016 garbage_byname = garbage_bypubkey = NULL;
4017 mutex_enter(wg->wg_lock);
4018 WG_PEER_WRITER_FOREACH(wgp, wg) {
4019 if (wgp->wgp_name[0]) {
4020 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
4021 strlen(wgp->wgp_name));
4022 KASSERT(wgp0 == wgp);
4023 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
4024 }
4025 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4026 sizeof(wgp->wgp_pubkey));
4027 KASSERT(wgp0 == wgp);
4028 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
4029 WG_PEER_WRITER_REMOVE(wgp);
4030 wg->wg_npeers--;
4031 mutex_enter(wgp->wgp_lock);
4032 pserialize_perform(wgp->wgp_psz);
4033 mutex_exit(wgp->wgp_lock);
4034 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
4035 break;
4036 }
4037 mutex_exit(wg->wg_lock);
4038
4039 if (wgp == NULL)
4040 return;
4041
4042 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
4043
4044 wg_destroy_peer(wgp);
4045 thmap_gc(wg->wg_peers_byname, garbage_byname);
4046 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
4047
4048 goto restart;
4049 }
4050
4051 static int
4052 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
4053 {
4054 struct wg_peer *wgp, *wgp0 __diagused;
4055 void *garbage_byname, *garbage_bypubkey;
4056
4057 mutex_enter(wg->wg_lock);
4058 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
4059 if (wgp != NULL) {
4060 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4061 sizeof(wgp->wgp_pubkey));
4062 KASSERT(wgp0 == wgp);
4063 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
4064 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
4065 WG_PEER_WRITER_REMOVE(wgp);
4066 wg->wg_npeers--;
4067 if (wg->wg_npeers == 0)
4068 if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
4069 mutex_enter(wgp->wgp_lock);
4070 pserialize_perform(wgp->wgp_psz);
4071 mutex_exit(wgp->wgp_lock);
4072 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
4073 }
4074 mutex_exit(wg->wg_lock);
4075
4076 if (wgp == NULL)
4077 return ENOENT;
4078
4079 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
4080
4081 wg_destroy_peer(wgp);
4082 thmap_gc(wg->wg_peers_byname, garbage_byname);
4083 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
4084
4085 return 0;
4086 }
4087
4088 static int
4089 wg_if_attach(struct wg_softc *wg)
4090 {
4091
4092 wg->wg_if.if_addrlen = 0;
4093 wg->wg_if.if_mtu = WG_MTU;
4094 wg->wg_if.if_flags = IFF_MULTICAST;
4095 wg->wg_if.if_extflags = IFEF_MPSAFE;
4096 wg->wg_if.if_ioctl = wg_ioctl;
4097 wg->wg_if.if_output = wg_output;
4098 wg->wg_if.if_init = wg_init;
4099 #ifdef ALTQ
4100 wg->wg_if.if_start = wg_start;
4101 #endif
4102 wg->wg_if.if_stop = wg_stop;
4103 wg->wg_if.if_type = IFT_OTHER;
4104 wg->wg_if.if_dlt = DLT_NULL;
4105 wg->wg_if.if_softc = wg;
4106 #ifdef ALTQ
4107 IFQ_SET_READY(&wg->wg_if.if_snd);
4108 #endif
4109 if_initialize(&wg->wg_if);
4110
4111 wg->wg_if.if_link_state = LINK_STATE_DOWN;
4112 if_alloc_sadl(&wg->wg_if);
4113 if_register(&wg->wg_if);
4114
4115 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
4116
4117 return 0;
4118 }
4119
4120 static void
4121 wg_if_detach(struct wg_softc *wg)
4122 {
4123 struct ifnet *ifp = &wg->wg_if;
4124
4125 bpf_detach(ifp);
4126 if_detach(ifp);
4127 }
4128
4129 static int
4130 wg_clone_create(struct if_clone *ifc, int unit)
4131 {
4132 struct wg_softc *wg;
4133 int error;
4134
4135 wg_guarantee_initialized();
4136
4137 error = wg_count_inc();
4138 if (error)
4139 return error;
4140
4141 wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
4142
4143 if_initname(&wg->wg_if, ifc->ifc_name, unit);
4144
4145 PSLIST_INIT(&wg->wg_peers);
4146 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
4147 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
4148 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
4149 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
4150 wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
4151 wg->wg_rwlock = rw_obj_alloc();
4152 threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
4153 "%s", if_name(&wg->wg_if));
4154 wg->wg_ops = &wg_ops_rumpkernel;
4155
4156 error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
4157 if (error)
4158 goto fail0;
4159
4160 #ifdef INET
4161 error = wg_socreate(wg, AF_INET, &wg->wg_so4);
4162 if (error)
4163 goto fail1;
4164 rn_inithead((void **)&wg->wg_rtable_ipv4,
4165 offsetof(struct sockaddr_in, sin_addr) * NBBY);
4166 #endif
4167 #ifdef INET6
4168 error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
4169 if (error)
4170 goto fail2;
4171 rn_inithead((void **)&wg->wg_rtable_ipv6,
4172 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
4173 #endif
4174
4175 error = wg_if_attach(wg);
4176 if (error)
4177 goto fail3;
4178
4179 return 0;
4180
4181 fail4: __unused
4182 wg_destroy_all_peers(wg);
4183 wg_if_detach(wg);
4184 fail3:
4185 #ifdef INET6
4186 solock(wg->wg_so6);
4187 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4188 sounlock(wg->wg_so6);
4189 #endif
4190 #ifdef INET
4191 solock(wg->wg_so4);
4192 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4193 sounlock(wg->wg_so4);
4194 #endif
4195 mutex_enter(wg->wg_intr_lock);
4196 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4197 mutex_exit(wg->wg_intr_lock);
4198 #ifdef INET6
4199 if (wg->wg_rtable_ipv6 != NULL)
4200 free(wg->wg_rtable_ipv6, M_RTABLE);
4201 soclose(wg->wg_so6);
4202 fail2:
4203 #endif
4204 #ifdef INET
4205 if (wg->wg_rtable_ipv4 != NULL)
4206 free(wg->wg_rtable_ipv4, M_RTABLE);
4207 soclose(wg->wg_so4);
4208 fail1:
4209 #endif
4210 threadpool_put(wg->wg_threadpool, PRI_NONE);
4211 fail0: threadpool_job_destroy(&wg->wg_job);
4212 rw_obj_free(wg->wg_rwlock);
4213 mutex_obj_free(wg->wg_intr_lock);
4214 mutex_obj_free(wg->wg_lock);
4215 thmap_destroy(wg->wg_sessions_byindex);
4216 thmap_destroy(wg->wg_peers_byname);
4217 thmap_destroy(wg->wg_peers_bypubkey);
4218 PSLIST_DESTROY(&wg->wg_peers);
4219 kmem_free(wg, sizeof(*wg));
4220 wg_count_dec();
4221 return error;
4222 }
4223
4224 static int
4225 wg_clone_destroy(struct ifnet *ifp)
4226 {
4227 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
4228
4229 #ifdef WG_RUMPKERNEL
4230 if (wg_user_mode(wg)) {
4231 rumpuser_wg_destroy(wg->wg_user);
4232 wg->wg_user = NULL;
4233 }
4234 #endif
4235
4236 wg_destroy_all_peers(wg);
4237 wg_if_detach(wg);
4238 #ifdef INET6
4239 solock(wg->wg_so6);
4240 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
4241 sounlock(wg->wg_so6);
4242 #endif
4243 #ifdef INET
4244 solock(wg->wg_so4);
4245 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
4246 sounlock(wg->wg_so4);
4247 #endif
4248 mutex_enter(wg->wg_intr_lock);
4249 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
4250 mutex_exit(wg->wg_intr_lock);
4251 #ifdef INET6
4252 if (wg->wg_rtable_ipv6 != NULL)
4253 free(wg->wg_rtable_ipv6, M_RTABLE);
4254 soclose(wg->wg_so6);
4255 #endif
4256 #ifdef INET
4257 if (wg->wg_rtable_ipv4 != NULL)
4258 free(wg->wg_rtable_ipv4, M_RTABLE);
4259 soclose(wg->wg_so4);
4260 #endif
4261 threadpool_put(wg->wg_threadpool, PRI_NONE);
4262 threadpool_job_destroy(&wg->wg_job);
4263 rw_obj_free(wg->wg_rwlock);
4264 mutex_obj_free(wg->wg_intr_lock);
4265 mutex_obj_free(wg->wg_lock);
4266 thmap_destroy(wg->wg_sessions_byindex);
4267 thmap_destroy(wg->wg_peers_byname);
4268 thmap_destroy(wg->wg_peers_bypubkey);
4269 PSLIST_DESTROY(&wg->wg_peers);
4270 kmem_free(wg, sizeof(*wg));
4271 wg_count_dec();
4272
4273 return 0;
4274 }
4275
4276 static struct wg_peer *
4277 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
4278 struct psref *psref)
4279 {
4280 struct radix_node_head *rnh;
4281 struct radix_node *rn;
4282 struct wg_peer *wgp = NULL;
4283 struct wg_allowedip *wga;
4284
4285 #ifdef WG_DEBUG_LOG
4286 char addrstr[128];
4287 sockaddr_format(sa, addrstr, sizeof(addrstr));
4288 WG_DLOG("sa=%s\n", addrstr);
4289 #endif
4290
4291 rw_enter(wg->wg_rwlock, RW_READER);
4292
4293 rnh = wg_rnh(wg, sa->sa_family);
4294 if (rnh == NULL)
4295 goto out;
4296
4297 rn = rnh->rnh_matchaddr(sa, rnh);
4298 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
4299 goto out;
4300
4301 WG_TRACE("success");
4302
4303 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
4304 wgp = wga->wga_peer;
4305 wg_get_peer(wgp, psref);
4306
4307 out:
4308 rw_exit(wg->wg_rwlock);
4309 return wgp;
4310 }
4311
4312 static void
4313 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
4314 struct wg_session *wgs, struct wg_msg_data *wgmd)
4315 {
4316
4317 memset(wgmd, 0, sizeof(*wgmd));
4318 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
4319 wgmd->wgmd_receiver = wgs->wgs_remote_index;
4320 /* [W] 5.4.6: msg.counter := Nm^send */
4321 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
4322 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
4323 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
4324 }
4325
4326 static int
4327 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
4328 const struct rtentry *rt)
4329 {
4330 struct wg_softc *wg = ifp->if_softc;
4331 struct wg_peer *wgp = NULL;
4332 struct psref wgp_psref;
4333 int bound;
4334 int error;
4335
4336 bound = curlwp_bind();
4337
4338 /* TODO make the nest limit configurable via sysctl */
4339 error = if_tunnel_check_nesting(ifp, m, 1);
4340 if (error) {
4341 WGLOG(LOG_ERR,
4342 "%s: tunneling loop detected and packet dropped\n",
4343 if_name(&wg->wg_if));
4344 goto out0;
4345 }
4346
4347 #ifdef ALTQ
4348 bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
4349 & ALTQF_ENABLED;
4350 if (altq)
4351 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
4352 #endif
4353
4354 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
4355
4356 m->m_flags &= ~(M_BCAST|M_MCAST);
4357
4358 wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
4359 if (wgp == NULL) {
4360 WG_TRACE("peer not found");
4361 error = EHOSTUNREACH;
4362 goto out0;
4363 }
4364
4365 /* Clear checksum-offload flags. */
4366 m->m_pkthdr.csum_flags = 0;
4367 m->m_pkthdr.csum_data = 0;
4368
4369 /* Toss it in the queue. */
4370 #ifdef ALTQ
4371 if (altq) {
4372 mutex_enter(ifp->if_snd.ifq_lock);
4373 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
4374 M_SETCTX(m, wgp);
4375 ALTQ_ENQUEUE(&ifp->if_snd, m, error);
4376 m = NULL; /* consume */
4377 }
4378 mutex_exit(ifp->if_snd.ifq_lock);
4379 if (m == NULL) {
4380 wg_start(ifp);
4381 goto out1;
4382 }
4383 }
4384 #endif
4385 kpreempt_disable();
4386 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
4387 M_SETCTX(m, wgp);
4388 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
4389 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
4390 if_name(&wg->wg_if));
4391 error = ENOBUFS;
4392 goto out2;
4393 }
4394 m = NULL; /* consumed */
4395 error = 0;
4396 out2: kpreempt_enable();
4397
4398 #ifdef ALTQ
4399 out1:
4400 #endif
4401 wg_put_peer(wgp, &wgp_psref);
4402 out0: m_freem(m);
4403 curlwp_bindx(bound);
4404 return error;
4405 }
4406
4407 static int
4408 wg_send_data(struct wg_peer *wgp, struct mbuf *m)
4409 {
4410 struct psref psref;
4411 struct wg_sockaddr *wgsa;
4412 int error;
4413 struct socket *so;
4414
4415 wgsa = wg_get_endpoint_sa(wgp, &psref);
4416 so = wg_get_so_by_peer(wgp, wgsa);
4417 solock(so);
4418 switch (wgsatosa(wgsa)->sa_family) {
4419 #ifdef INET
4420 case AF_INET:
4421 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
4422 break;
4423 #endif
4424 #ifdef INET6
4425 case AF_INET6:
4426 error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
4427 NULL, curlwp);
4428 break;
4429 #endif
4430 default:
4431 m_freem(m);
4432 error = EPFNOSUPPORT;
4433 }
4434 sounlock(so);
4435 wg_put_sa(wgp, wgsa, &psref);
4436
4437 return error;
4438 }
4439
4440 /* Inspired by pppoe_get_mbuf */
4441 static struct mbuf *
4442 wg_get_mbuf(size_t leading_len, size_t len)
4443 {
4444 struct mbuf *m;
4445
4446 KASSERT(leading_len <= MCLBYTES);
4447 KASSERT(len <= MCLBYTES - leading_len);
4448
4449 m = m_gethdr(M_DONTWAIT, MT_DATA);
4450 if (m == NULL)
4451 return NULL;
4452 if (len + leading_len > MHLEN) {
4453 m_clget(m, M_DONTWAIT);
4454 if ((m->m_flags & M_EXT) == 0) {
4455 m_free(m);
4456 return NULL;
4457 }
4458 }
4459 m->m_data += leading_len;
4460 m->m_pkthdr.len = m->m_len = len;
4461
4462 return m;
4463 }
4464
4465 static void
4466 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs, struct mbuf *m)
4467 {
4468 struct wg_softc *wg = wgp->wgp_sc;
4469 int error;
4470 size_t inner_len, padded_len, encrypted_len;
4471 char *padded_buf = NULL;
4472 size_t mlen;
4473 struct wg_msg_data *wgmd;
4474 bool free_padded_buf = false;
4475 struct mbuf *n;
4476 size_t leading_len = max_hdr + sizeof(struct udphdr);
4477
4478 mlen = m_length(m);
4479 inner_len = mlen;
4480 padded_len = roundup(mlen, 16);
4481 encrypted_len = padded_len + WG_AUTHTAG_LEN;
4482 WG_DLOG("inner=%zu, padded=%zu, encrypted_len=%zu\n",
4483 inner_len, padded_len, encrypted_len);
4484 if (mlen != 0) {
4485 bool success;
4486 success = m_ensure_contig(&m, padded_len);
4487 if (success) {
4488 padded_buf = mtod(m, char *);
4489 } else {
4490 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
4491 if (padded_buf == NULL) {
4492 error = ENOBUFS;
4493 goto out;
4494 }
4495 free_padded_buf = true;
4496 m_copydata(m, 0, mlen, padded_buf);
4497 }
4498 memset(padded_buf + mlen, 0, padded_len - inner_len);
4499 }
4500
4501 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
4502 if (n == NULL) {
4503 error = ENOBUFS;
4504 goto out;
4505 }
4506 KASSERT(n->m_len >= sizeof(*wgmd));
4507 wgmd = mtod(n, struct wg_msg_data *);
4508 wg_fill_msg_data(wg, wgp, wgs, wgmd);
4509
4510 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
4511 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
4512 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4513 padded_buf, padded_len,
4514 NULL, 0);
4515
4516 error = wg->wg_ops->send_data_msg(wgp, n); /* consumes n */
4517 if (error) {
4518 WG_DLOG("send_data_msg failed, error=%d\n", error);
4519 goto out;
4520 }
4521
4522 /*
4523 * Packet was sent out -- count it in the interface statistics.
4524 */
4525 if_statadd(&wg->wg_if, if_obytes, mlen);
4526 if_statinc(&wg->wg_if, if_opackets);
4527
4528 /*
4529 * Record when we last sent data, for determining when we need
4530 * to send a passive keepalive.
4531 *
4532 * Other logic assumes that wgs_time_last_data_sent is zero iff
4533 * we have never sent data on this session. Early at boot, if
4534 * wg(4) starts operating within <1sec, or after 136 years of
4535 * uptime, we may observe time_uptime32 = 0. In that case,
4536 * pretend we observed 1 instead. That way, we correctly
4537 * indicate we have sent data on this session; the only logic
4538 * this might adversely affect is the keepalive timeout
4539 * detection, which might spuriously send a keepalive during
4540 * one second every 136 years. All of this is very silly, of
4541 * course, but the cost to guaranteeing wgs_time_last_data_sent
4542 * is nonzero is negligible here.
4543 */
4544 const uint32_t now = time_uptime32;
4545 atomic_store_relaxed(&wgs->wgs_time_last_data_sent, MAX(now, 1));
4546
4547 /*
4548 * Check rekey-after-time.
4549 */
4550 if (wgs->wgs_is_initiator &&
4551 now - wgs->wgs_time_established >= wg_rekey_after_time) {
4552 /*
4553 * [W] 6.2 Transport Message Limits
4554 * "if a peer is the initiator of a current secure
4555 * session, WireGuard will send a handshake initiation
4556 * message to begin a new secure session if, after
4557 * transmitting a transport data message, the current
4558 * secure session is REKEY-AFTER-TIME seconds old,"
4559 */
4560 WG_TRACE("rekey after time");
4561 atomic_store_relaxed(&wgs->wgs_force_rekey, true);
4562 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4563 }
4564
4565 /*
4566 * Check rekey-after-messages.
4567 */
4568 if (wg_session_get_send_counter(wgs) >= wg_rekey_after_messages) {
4569 /*
4570 * [W] 6.2 Transport Message Limits
4571 * "WireGuard will try to create a new session, by
4572 * sending a handshake initiation message (section
4573 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
4574 * transport data messages..."
4575 */
4576 WG_TRACE("rekey after messages");
4577 atomic_store_relaxed(&wgs->wgs_force_rekey, true);
4578 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4579 }
4580
4581 out: m_freem(m);
4582 if (free_padded_buf)
4583 kmem_intr_free(padded_buf, padded_len);
4584 }
4585
4586 static void
4587 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
4588 {
4589 pktqueue_t *pktq;
4590 size_t pktlen;
4591
4592 KASSERT(af == AF_INET || af == AF_INET6);
4593
4594 WG_TRACE("");
4595
4596 m_set_rcvif(m, ifp);
4597 pktlen = m->m_pkthdr.len;
4598
4599 bpf_mtap_af(ifp, af, m, BPF_D_IN);
4600
4601 switch (af) {
4602 #ifdef INET
4603 case AF_INET:
4604 pktq = ip_pktq;
4605 break;
4606 #endif
4607 #ifdef INET6
4608 case AF_INET6:
4609 pktq = ip6_pktq;
4610 break;
4611 #endif
4612 default:
4613 panic("invalid af=%d", af);
4614 }
4615
4616 kpreempt_disable();
4617 const u_int h = curcpu()->ci_index;
4618 if (__predict_true(pktq_enqueue(pktq, m, h))) {
4619 if_statadd(ifp, if_ibytes, pktlen);
4620 if_statinc(ifp, if_ipackets);
4621 } else {
4622 m_freem(m);
4623 }
4624 kpreempt_enable();
4625 }
4626
4627 static void
4628 wg_calc_pubkey(uint8_t pubkey[static WG_STATIC_KEY_LEN],
4629 const uint8_t privkey[static WG_STATIC_KEY_LEN])
4630 {
4631
4632 crypto_scalarmult_base(pubkey, privkey);
4633 }
4634
4635 static int
4636 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
4637 {
4638 struct radix_node_head *rnh;
4639 struct radix_node *rn;
4640 int error = 0;
4641
4642 rw_enter(wg->wg_rwlock, RW_WRITER);
4643 rnh = wg_rnh(wg, wga->wga_family);
4644 KASSERT(rnh != NULL);
4645 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
4646 wga->wga_nodes);
4647 rw_exit(wg->wg_rwlock);
4648
4649 if (rn == NULL)
4650 error = EEXIST;
4651
4652 return error;
4653 }
4654
4655 static int
4656 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
4657 struct wg_peer **wgpp)
4658 {
4659 int error = 0;
4660 const void *pubkey;
4661 size_t pubkey_len;
4662 const void *psk;
4663 size_t psk_len;
4664 const char *name = NULL;
4665
4666 if (prop_dictionary_get_string(peer, "name", &name)) {
4667 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
4668 error = EINVAL;
4669 goto out;
4670 }
4671 }
4672
4673 if (!prop_dictionary_get_data(peer, "public_key",
4674 &pubkey, &pubkey_len)) {
4675 error = EINVAL;
4676 goto out;
4677 }
4678 #ifdef WG_DEBUG_DUMP
4679 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4680 char *hex = gethexdump(pubkey, pubkey_len);
4681 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%zu\n%s\n",
4682 pubkey, pubkey_len, hex);
4683 puthexdump(hex, pubkey, pubkey_len);
4684 }
4685 #endif
4686
4687 struct wg_peer *wgp = wg_alloc_peer(wg);
4688 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4689 if (name != NULL)
4690 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4691
4692 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4693 if (psk_len != sizeof(wgp->wgp_psk)) {
4694 error = EINVAL;
4695 goto out;
4696 }
4697 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4698 }
4699
4700 const void *addr;
4701 size_t addr_len;
4702 struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4703
4704 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4705 goto skip_endpoint;
4706 if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4707 addr_len > sizeof(*wgsatoss(wgsa))) {
4708 error = EINVAL;
4709 goto out;
4710 }
4711 memcpy(wgsatoss(wgsa), addr, addr_len);
4712 switch (wgsa_family(wgsa)) {
4713 #ifdef INET
4714 case AF_INET:
4715 break;
4716 #endif
4717 #ifdef INET6
4718 case AF_INET6:
4719 break;
4720 #endif
4721 default:
4722 error = EPFNOSUPPORT;
4723 goto out;
4724 }
4725 if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4726 error = EINVAL;
4727 goto out;
4728 }
4729 {
4730 char addrstr[128];
4731 sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4732 WG_DLOG("addr=%s\n", addrstr);
4733 }
4734 wgp->wgp_endpoint_available = true;
4735
4736 prop_array_t allowedips;
4737 skip_endpoint:
4738 allowedips = prop_dictionary_get(peer, "allowedips");
4739 if (allowedips == NULL)
4740 goto skip;
4741
4742 prop_object_iterator_t _it = prop_array_iterator(allowedips);
4743 prop_dictionary_t prop_allowedip;
4744 int j = 0;
4745 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4746 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4747
4748 if (!prop_dictionary_get_int(prop_allowedip, "family",
4749 &wga->wga_family))
4750 continue;
4751 if (!prop_dictionary_get_data(prop_allowedip, "ip",
4752 &addr, &addr_len))
4753 continue;
4754 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4755 &wga->wga_cidr))
4756 continue;
4757
4758 switch (wga->wga_family) {
4759 #ifdef INET
4760 case AF_INET: {
4761 struct sockaddr_in sin;
4762 char addrstr[128];
4763 struct in_addr mask;
4764 struct sockaddr_in sin_mask;
4765
4766 if (addr_len != sizeof(struct in_addr))
4767 return EINVAL;
4768 memcpy(&wga->wga_addr4, addr, addr_len);
4769
4770 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4771 0);
4772 sockaddr_copy(&wga->wga_sa_addr,
4773 sizeof(sin), sintosa(&sin));
4774
4775 sockaddr_format(sintosa(&sin),
4776 addrstr, sizeof(addrstr));
4777 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4778
4779 in_len2mask(&mask, wga->wga_cidr);
4780 sockaddr_in_init(&sin_mask, &mask, 0);
4781 sockaddr_copy(&wga->wga_sa_mask,
4782 sizeof(sin_mask), sintosa(&sin_mask));
4783
4784 break;
4785 }
4786 #endif
4787 #ifdef INET6
4788 case AF_INET6: {
4789 struct sockaddr_in6 sin6;
4790 char addrstr[128];
4791 struct in6_addr mask;
4792 struct sockaddr_in6 sin6_mask;
4793
4794 if (addr_len != sizeof(struct in6_addr))
4795 return EINVAL;
4796 memcpy(&wga->wga_addr6, addr, addr_len);
4797
4798 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4799 0, 0, 0);
4800 sockaddr_copy(&wga->wga_sa_addr,
4801 sizeof(sin6), sin6tosa(&sin6));
4802
4803 sockaddr_format(sin6tosa(&sin6),
4804 addrstr, sizeof(addrstr));
4805 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4806
4807 in6_prefixlen2mask(&mask, wga->wga_cidr);
4808 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4809 sockaddr_copy(&wga->wga_sa_mask,
4810 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4811
4812 break;
4813 }
4814 #endif
4815 default:
4816 error = EINVAL;
4817 goto out;
4818 }
4819 wga->wga_peer = wgp;
4820
4821 error = wg_rtable_add_route(wg, wga);
4822 if (error != 0)
4823 goto out;
4824
4825 j++;
4826 }
4827 wgp->wgp_n_allowedips = j;
4828 skip:
4829 *wgpp = wgp;
4830 out:
4831 return error;
4832 }
4833
4834 static int
4835 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4836 {
4837 int error;
4838 char *buf;
4839
4840 WG_DLOG("buf=%p, len=%zu\n", ifd->ifd_data, ifd->ifd_len);
4841 if (ifd->ifd_len >= WG_MAX_PROPLEN)
4842 return E2BIG;
4843 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4844 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4845 if (error != 0)
4846 return error;
4847 buf[ifd->ifd_len] = '\0';
4848 #ifdef WG_DEBUG_DUMP
4849 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4850 log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
4851 (const char *)buf);
4852 }
4853 #endif
4854 *_buf = buf;
4855 return 0;
4856 }
4857
4858 static int
4859 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4860 {
4861 int error;
4862 prop_dictionary_t prop_dict;
4863 char *buf = NULL;
4864 const void *privkey;
4865 size_t privkey_len;
4866
4867 error = wg_alloc_prop_buf(&buf, ifd);
4868 if (error != 0)
4869 return error;
4870 error = EINVAL;
4871 prop_dict = prop_dictionary_internalize(buf);
4872 if (prop_dict == NULL)
4873 goto out;
4874 if (!prop_dictionary_get_data(prop_dict, "private_key",
4875 &privkey, &privkey_len))
4876 goto out;
4877 #ifdef WG_DEBUG_DUMP
4878 if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
4879 char *hex = gethexdump(privkey, privkey_len);
4880 log(LOG_DEBUG, "privkey=%p, privkey_len=%zu\n%s\n",
4881 privkey, privkey_len, hex);
4882 puthexdump(hex, privkey, privkey_len);
4883 }
4884 #endif
4885 if (privkey_len != WG_STATIC_KEY_LEN)
4886 goto out;
4887 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4888 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4889 error = 0;
4890
4891 out:
4892 kmem_free(buf, ifd->ifd_len + 1);
4893 return error;
4894 }
4895
4896 static int
4897 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4898 {
4899 int error;
4900 prop_dictionary_t prop_dict;
4901 char *buf = NULL;
4902 uint16_t port;
4903
4904 error = wg_alloc_prop_buf(&buf, ifd);
4905 if (error != 0)
4906 return error;
4907 error = EINVAL;
4908 prop_dict = prop_dictionary_internalize(buf);
4909 if (prop_dict == NULL)
4910 goto out;
4911 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4912 goto out;
4913
4914 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4915
4916 out:
4917 kmem_free(buf, ifd->ifd_len + 1);
4918 return error;
4919 }
4920
4921 static int
4922 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4923 {
4924 int error;
4925 prop_dictionary_t prop_dict;
4926 char *buf = NULL;
4927 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4928
4929 error = wg_alloc_prop_buf(&buf, ifd);
4930 if (error != 0)
4931 return error;
4932 error = EINVAL;
4933 prop_dict = prop_dictionary_internalize(buf);
4934 if (prop_dict == NULL)
4935 goto out;
4936
4937 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4938 if (error != 0)
4939 goto out;
4940
4941 mutex_enter(wg->wg_lock);
4942 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4943 sizeof(wgp->wgp_pubkey)) != NULL ||
4944 (wgp->wgp_name[0] &&
4945 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4946 strlen(wgp->wgp_name)) != NULL)) {
4947 mutex_exit(wg->wg_lock);
4948 wg_destroy_peer(wgp);
4949 error = EEXIST;
4950 goto out;
4951 }
4952 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4953 sizeof(wgp->wgp_pubkey), wgp);
4954 KASSERT(wgp0 == wgp);
4955 if (wgp->wgp_name[0]) {
4956 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4957 strlen(wgp->wgp_name), wgp);
4958 KASSERT(wgp0 == wgp);
4959 }
4960 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4961 wg->wg_npeers++;
4962 mutex_exit(wg->wg_lock);
4963
4964 if_link_state_change(&wg->wg_if, LINK_STATE_UP);
4965
4966 out:
4967 kmem_free(buf, ifd->ifd_len + 1);
4968 return error;
4969 }
4970
4971 static int
4972 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4973 {
4974 int error;
4975 prop_dictionary_t prop_dict;
4976 char *buf = NULL;
4977 const char *name;
4978
4979 error = wg_alloc_prop_buf(&buf, ifd);
4980 if (error != 0)
4981 return error;
4982 error = EINVAL;
4983 prop_dict = prop_dictionary_internalize(buf);
4984 if (prop_dict == NULL)
4985 goto out;
4986
4987 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4988 goto out;
4989 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4990 goto out;
4991
4992 error = wg_destroy_peer_name(wg, name);
4993 out:
4994 kmem_free(buf, ifd->ifd_len + 1);
4995 return error;
4996 }
4997
4998 static bool
4999 wg_is_authorized(struct wg_softc *wg, u_long cmd)
5000 {
5001 int au = cmd == SIOCGDRVSPEC ?
5002 KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
5003 KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
5004 return kauth_authorize_network(kauth_cred_get(),
5005 KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
5006 (void *)cmd, NULL) == 0;
5007 }
5008
5009 static int
5010 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
5011 {
5012 int error = ENOMEM;
5013 prop_dictionary_t prop_dict;
5014 prop_array_t peers = NULL;
5015 char *buf;
5016 struct wg_peer *wgp;
5017 int s, i;
5018
5019 prop_dict = prop_dictionary_create();
5020 if (prop_dict == NULL)
5021 goto error;
5022
5023 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
5024 if (!prop_dictionary_set_data(prop_dict, "private_key",
5025 wg->wg_privkey, WG_STATIC_KEY_LEN))
5026 goto error;
5027 }
5028
5029 if (wg->wg_listen_port != 0) {
5030 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
5031 wg->wg_listen_port))
5032 goto error;
5033 }
5034
5035 if (wg->wg_npeers == 0)
5036 goto skip_peers;
5037
5038 peers = prop_array_create();
5039 if (peers == NULL)
5040 goto error;
5041
5042 s = pserialize_read_enter();
5043 i = 0;
5044 WG_PEER_READER_FOREACH(wgp, wg) {
5045 struct wg_sockaddr *wgsa;
5046 struct psref wgp_psref, wgsa_psref;
5047 prop_dictionary_t prop_peer;
5048
5049 wg_get_peer(wgp, &wgp_psref);
5050 pserialize_read_exit(s);
5051
5052 prop_peer = prop_dictionary_create();
5053 if (prop_peer == NULL)
5054 goto next;
5055
5056 if (strlen(wgp->wgp_name) > 0) {
5057 if (!prop_dictionary_set_string(prop_peer, "name",
5058 wgp->wgp_name))
5059 goto next;
5060 }
5061
5062 if (!prop_dictionary_set_data(prop_peer, "public_key",
5063 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
5064 goto next;
5065
5066 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
5067 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
5068 sizeof(wgp->wgp_psk))) {
5069 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
5070 if (!prop_dictionary_set_data(prop_peer,
5071 "preshared_key",
5072 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
5073 goto next;
5074 }
5075 }
5076
5077 wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
5078 CTASSERT(AF_UNSPEC == 0);
5079 if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
5080 !prop_dictionary_set_data(prop_peer, "endpoint",
5081 wgsatoss(wgsa),
5082 sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
5083 wg_put_sa(wgp, wgsa, &wgsa_psref);
5084 goto next;
5085 }
5086 wg_put_sa(wgp, wgsa, &wgsa_psref);
5087
5088 const struct timespec *t = &wgp->wgp_last_handshake_time;
5089
5090 if (!prop_dictionary_set_uint64(prop_peer,
5091 "last_handshake_time_sec", (uint64_t)t->tv_sec))
5092 goto next;
5093 if (!prop_dictionary_set_uint32(prop_peer,
5094 "last_handshake_time_nsec", (uint32_t)t->tv_nsec))
5095 goto next;
5096
5097 if (wgp->wgp_n_allowedips == 0)
5098 goto skip_allowedips;
5099
5100 prop_array_t allowedips = prop_array_create();
5101 if (allowedips == NULL)
5102 goto next;
5103 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
5104 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
5105 prop_dictionary_t prop_allowedip;
5106
5107 prop_allowedip = prop_dictionary_create();
5108 if (prop_allowedip == NULL)
5109 break;
5110
5111 if (!prop_dictionary_set_int(prop_allowedip, "family",
5112 wga->wga_family))
5113 goto _next;
5114 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
5115 wga->wga_cidr))
5116 goto _next;
5117
5118 switch (wga->wga_family) {
5119 #ifdef INET
5120 case AF_INET:
5121 if (!prop_dictionary_set_data(prop_allowedip,
5122 "ip", &wga->wga_addr4,
5123 sizeof(wga->wga_addr4)))
5124 goto _next;
5125 break;
5126 #endif
5127 #ifdef INET6
5128 case AF_INET6:
5129 if (!prop_dictionary_set_data(prop_allowedip,
5130 "ip", &wga->wga_addr6,
5131 sizeof(wga->wga_addr6)))
5132 goto _next;
5133 break;
5134 #endif
5135 default:
5136 panic("invalid af=%d", wga->wga_family);
5137 }
5138 prop_array_set(allowedips, j, prop_allowedip);
5139 _next:
5140 prop_object_release(prop_allowedip);
5141 }
5142 prop_dictionary_set(prop_peer, "allowedips", allowedips);
5143 prop_object_release(allowedips);
5144
5145 skip_allowedips:
5146
5147 prop_array_set(peers, i, prop_peer);
5148 next:
5149 if (prop_peer)
5150 prop_object_release(prop_peer);
5151 i++;
5152
5153 s = pserialize_read_enter();
5154 wg_put_peer(wgp, &wgp_psref);
5155 }
5156 pserialize_read_exit(s);
5157
5158 prop_dictionary_set(prop_dict, "peers", peers);
5159 prop_object_release(peers);
5160 peers = NULL;
5161
5162 skip_peers:
5163 buf = prop_dictionary_externalize(prop_dict);
5164 if (buf == NULL)
5165 goto error;
5166 if (ifd->ifd_len < (strlen(buf) + 1)) {
5167 error = EINVAL;
5168 goto error;
5169 }
5170 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
5171
5172 free(buf, 0);
5173 error:
5174 if (peers != NULL)
5175 prop_object_release(peers);
5176 if (prop_dict != NULL)
5177 prop_object_release(prop_dict);
5178
5179 return error;
5180 }
5181
5182 static int
5183 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5184 {
5185 struct wg_softc *wg = ifp->if_softc;
5186 struct ifreq *ifr = data;
5187 struct ifaddr *ifa = data;
5188 struct ifdrv *ifd = data;
5189 int error = 0;
5190
5191 switch (cmd) {
5192 case SIOCINITIFADDR:
5193 if (ifa->ifa_addr->sa_family != AF_LINK &&
5194 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
5195 (IFF_UP | IFF_RUNNING)) {
5196 ifp->if_flags |= IFF_UP;
5197 error = if_init(ifp);
5198 }
5199 return error;
5200 case SIOCADDMULTI:
5201 case SIOCDELMULTI:
5202 switch (ifr->ifr_addr.sa_family) {
5203 #ifdef INET
5204 case AF_INET: /* IP supports Multicast */
5205 break;
5206 #endif
5207 #ifdef INET6
5208 case AF_INET6: /* IP6 supports Multicast */
5209 break;
5210 #endif
5211 default: /* Other protocols doesn't support Multicast */
5212 error = EAFNOSUPPORT;
5213 break;
5214 }
5215 return error;
5216 case SIOCSDRVSPEC:
5217 if (!wg_is_authorized(wg, cmd)) {
5218 return EPERM;
5219 }
5220 switch (ifd->ifd_cmd) {
5221 case WG_IOCTL_SET_PRIVATE_KEY:
5222 error = wg_ioctl_set_private_key(wg, ifd);
5223 break;
5224 case WG_IOCTL_SET_LISTEN_PORT:
5225 error = wg_ioctl_set_listen_port(wg, ifd);
5226 break;
5227 case WG_IOCTL_ADD_PEER:
5228 error = wg_ioctl_add_peer(wg, ifd);
5229 break;
5230 case WG_IOCTL_DELETE_PEER:
5231 error = wg_ioctl_delete_peer(wg, ifd);
5232 break;
5233 default:
5234 error = EINVAL;
5235 break;
5236 }
5237 return error;
5238 case SIOCGDRVSPEC:
5239 return wg_ioctl_get(wg, ifd);
5240 case SIOCSIFFLAGS:
5241 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5242 break;
5243 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5244 case IFF_RUNNING:
5245 /*
5246 * If interface is marked down and it is running,
5247 * then stop and disable it.
5248 */
5249 if_stop(ifp, 1);
5250 break;
5251 case IFF_UP:
5252 /*
5253 * If interface is marked up and it is stopped, then
5254 * start it.
5255 */
5256 error = if_init(ifp);
5257 break;
5258 default:
5259 break;
5260 }
5261 return error;
5262 #ifdef WG_RUMPKERNEL
5263 case SIOCSLINKSTR:
5264 error = wg_ioctl_linkstr(wg, ifd);
5265 if (error)
5266 return error;
5267 wg->wg_ops = &wg_ops_rumpuser;
5268 return 0;
5269 #endif
5270 default:
5271 break;
5272 }
5273
5274 error = ifioctl_common(ifp, cmd, data);
5275
5276 #ifdef WG_RUMPKERNEL
5277 if (!wg_user_mode(wg))
5278 return error;
5279
5280 /* Do the same to the corresponding tun device on the host */
5281 /*
5282 * XXX Actually the command has not been handled yet. It
5283 * will be handled via pr_ioctl form doifioctl later.
5284 */
5285 switch (cmd) {
5286 #ifdef INET
5287 case SIOCAIFADDR:
5288 case SIOCDIFADDR: {
5289 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
5290 struct in_aliasreq *ifra = &_ifra;
5291 KASSERT(error == ENOTTY);
5292 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5293 IFNAMSIZ);
5294 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
5295 if (error == 0)
5296 error = ENOTTY;
5297 break;
5298 }
5299 #endif
5300 #ifdef INET6
5301 case SIOCAIFADDR_IN6:
5302 case SIOCDIFADDR_IN6: {
5303 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
5304 struct in6_aliasreq *ifra = &_ifra;
5305 KASSERT(error == ENOTTY);
5306 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
5307 IFNAMSIZ);
5308 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
5309 if (error == 0)
5310 error = ENOTTY;
5311 break;
5312 }
5313 #endif
5314 default:
5315 break;
5316 }
5317 #endif /* WG_RUMPKERNEL */
5318
5319 return error;
5320 }
5321
5322 static int
5323 wg_init(struct ifnet *ifp)
5324 {
5325
5326 ifp->if_flags |= IFF_RUNNING;
5327
5328 /* TODO flush pending packets. */
5329 return 0;
5330 }
5331
5332 #ifdef ALTQ
5333 static void
5334 wg_start(struct ifnet *ifp)
5335 {
5336 struct mbuf *m;
5337
5338 for (;;) {
5339 IFQ_DEQUEUE(&ifp->if_snd, m);
5340 if (m == NULL)
5341 break;
5342
5343 kpreempt_disable();
5344 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
5345 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
5346 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
5347 if_name(ifp));
5348 m_freem(m);
5349 }
5350 kpreempt_enable();
5351 }
5352 }
5353 #endif
5354
5355 static void
5356 wg_stop(struct ifnet *ifp, int disable)
5357 {
5358
5359 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
5360 ifp->if_flags &= ~IFF_RUNNING;
5361
5362 /* Need to do something? */
5363 }
5364
5365 #ifdef WG_DEBUG_PARAMS
5366 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
5367 {
5368 const struct sysctlnode *node = NULL;
5369
5370 sysctl_createv(clog, 0, NULL, &node,
5371 CTLFLAG_PERMANENT,
5372 CTLTYPE_NODE, "wg",
5373 SYSCTL_DESCR("wg(4)"),
5374 NULL, 0, NULL, 0,
5375 CTL_NET, CTL_CREATE, CTL_EOL);
5376 sysctl_createv(clog, 0, &node, NULL,
5377 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5378 CTLTYPE_QUAD, "rekey_after_messages",
5379 SYSCTL_DESCR("session liftime by messages"),
5380 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
5381 sysctl_createv(clog, 0, &node, NULL,
5382 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5383 CTLTYPE_INT, "rekey_after_time",
5384 SYSCTL_DESCR("session liftime"),
5385 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
5386 sysctl_createv(clog, 0, &node, NULL,
5387 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5388 CTLTYPE_INT, "rekey_timeout",
5389 SYSCTL_DESCR("session handshake retry time"),
5390 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
5391 sysctl_createv(clog, 0, &node, NULL,
5392 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5393 CTLTYPE_INT, "rekey_attempt_time",
5394 SYSCTL_DESCR("session handshake timeout"),
5395 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
5396 sysctl_createv(clog, 0, &node, NULL,
5397 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5398 CTLTYPE_INT, "keepalive_timeout",
5399 SYSCTL_DESCR("keepalive timeout"),
5400 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
5401 sysctl_createv(clog, 0, &node, NULL,
5402 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5403 CTLTYPE_BOOL, "force_underload",
5404 SYSCTL_DESCR("force to detemine under load"),
5405 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
5406 sysctl_createv(clog, 0, &node, NULL,
5407 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
5408 CTLTYPE_INT, "debug",
5409 SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
5410 NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
5411 }
5412 #endif
5413
5414 #ifdef WG_RUMPKERNEL
5415 static bool
5416 wg_user_mode(struct wg_softc *wg)
5417 {
5418
5419 return wg->wg_user != NULL;
5420 }
5421
5422 static int
5423 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
5424 {
5425 struct ifnet *ifp = &wg->wg_if;
5426 int error;
5427
5428 if (ifp->if_flags & IFF_UP)
5429 return EBUSY;
5430
5431 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
5432 /* XXX do nothing */
5433 return 0;
5434 } else if (ifd->ifd_cmd != 0) {
5435 return EINVAL;
5436 } else if (wg->wg_user != NULL) {
5437 return EBUSY;
5438 }
5439
5440 /* Assume \0 included */
5441 if (ifd->ifd_len > IFNAMSIZ) {
5442 return E2BIG;
5443 } else if (ifd->ifd_len < 1) {
5444 return EINVAL;
5445 }
5446
5447 char tun_name[IFNAMSIZ];
5448 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
5449 if (error != 0)
5450 return error;
5451
5452 if (strncmp(tun_name, "tun", 3) != 0)
5453 return EINVAL;
5454
5455 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
5456
5457 return error;
5458 }
5459
5460 static int
5461 wg_send_user(struct wg_peer *wgp, struct mbuf *m, bool handshake)
5462 {
5463 int error;
5464 struct psref psref;
5465 struct wg_sockaddr *wgsa;
5466 struct wg_softc *wg = wgp->wgp_sc;
5467 struct iovec iov[1];
5468
5469 wgsa = wg_get_endpoint_sa(wgp, &psref);
5470
5471 #ifdef WG_DEBUG_LOG
5472 if (handshake) {
5473 char addr[128];
5474 sockaddr_format(wgsatosa(wgsa), addr, sizeof(addr));
5475 WG_DLOG("send handshake msg to %s\n", addr);
5476 }
5477 #endif
5478
5479 iov[0].iov_base = mtod(m, void *);
5480 iov[0].iov_len = m->m_len;
5481
5482 /* Send messages to a peer via an ordinary socket. */
5483 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
5484
5485 wg_put_sa(wgp, wgsa, &psref);
5486
5487 m_freem(m);
5488
5489 return error;
5490 }
5491
5492 static int
5493 wg_send_hs_user(struct wg_peer *wgp, struct mbuf *m)
5494 {
5495
5496 return wg_send_user(wgp, m, /*handshake*/true);
5497 }
5498
5499 static int
5500 wg_send_hs_data(struct wg_peer *wgp, struct mbuf *m)
5501 {
5502
5503 return wg_send_user(wgp, m, /*handshake*/false);
5504 }
5505
5506 static void
5507 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
5508 {
5509 struct wg_softc *wg = ifp->if_softc;
5510 struct iovec iov[2];
5511 struct sockaddr_storage ss;
5512
5513 KASSERT(af == AF_INET || af == AF_INET6);
5514
5515 WG_TRACE("");
5516
5517 switch (af) {
5518 #ifdef INET
5519 case AF_INET: {
5520 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
5521 struct ip *ip;
5522
5523 KASSERT(m->m_len >= sizeof(struct ip));
5524 ip = mtod(m, struct ip *);
5525 sockaddr_in_init(sin, &ip->ip_dst, 0);
5526 break;
5527 }
5528 #endif
5529 #ifdef INET6
5530 case AF_INET6: {
5531 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
5532 struct ip6_hdr *ip6;
5533
5534 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
5535 ip6 = mtod(m, struct ip6_hdr *);
5536 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
5537 break;
5538 }
5539 #endif
5540 default:
5541 goto out;
5542 }
5543
5544 iov[0].iov_base = &ss;
5545 iov[0].iov_len = ss.ss_len;
5546 iov[1].iov_base = mtod(m, void *);
5547 iov[1].iov_len = m->m_len;
5548
5549 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5550
5551 /* Send decrypted packets to users via a tun. */
5552 rumpuser_wg_send_user(wg->wg_user, iov, 2);
5553
5554 out: m_freem(m);
5555 }
5556
5557 static int
5558 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
5559 {
5560 int error;
5561 uint16_t old_port = wg->wg_listen_port;
5562
5563 if (port != 0 && old_port == port)
5564 return 0;
5565
5566 error = rumpuser_wg_sock_bind(wg->wg_user, port);
5567 if (error)
5568 return error;
5569
5570 wg->wg_listen_port = port;
5571 return 0;
5572 }
5573
5574 /*
5575 * Receive user packets.
5576 */
5577 void
5578 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5579 {
5580 struct ifnet *ifp = &wg->wg_if;
5581 struct mbuf *m;
5582 const struct sockaddr *dst;
5583 int error;
5584
5585 WG_TRACE("");
5586
5587 dst = iov[0].iov_base;
5588
5589 m = m_gethdr(M_DONTWAIT, MT_DATA);
5590 if (m == NULL)
5591 return;
5592 m->m_len = m->m_pkthdr.len = 0;
5593 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5594
5595 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5596 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5597
5598 error = wg_output(ifp, m, dst, NULL); /* consumes m */
5599 if (error)
5600 WG_DLOG("wg_output failed, error=%d\n", error);
5601 }
5602
5603 /*
5604 * Receive packets from a peer.
5605 */
5606 void
5607 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5608 {
5609 struct mbuf *m;
5610 const struct sockaddr *src;
5611 int bound;
5612
5613 WG_TRACE("");
5614
5615 src = iov[0].iov_base;
5616
5617 m = m_gethdr(M_DONTWAIT, MT_DATA);
5618 if (m == NULL)
5619 return;
5620 m->m_len = m->m_pkthdr.len = 0;
5621 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5622
5623 WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
5624 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5625
5626 bound = curlwp_bind();
5627 wg_handle_packet(wg, m, src);
5628 curlwp_bindx(bound);
5629 }
5630 #endif /* WG_RUMPKERNEL */
5631
5632 /*
5633 * Module infrastructure
5634 */
5635 #include "if_module.h"
5636
5637 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
5638