if_wg.c revision 1.16 1 /* $NetBSD: if_wg.c,v 1.16 2020/08/20 21:35:24 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This is an implementation of WireGuard, a fast, modern, secure VPN protocol,
34 * for the NetBSD kernel and rump kernels.
35 *
36 * The implementation is based on the paper of WireGuard as of 2018-06-30 [1].
37 * The paper is referred in the source code with label [W]. Also the
38 * specification of the Noise protocol framework as of 2018-07-11 [2] is
39 * referred with label [N].
40 *
41 * [1] https://www.wireguard.com/papers/wireguard.pdf
42 * [2] http://noiseprotocol.org/noise.pdf
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.16 2020/08/20 21:35:24 riastradh Exp $");
47
48 #ifdef _KERNEL_OPT
49 #include "opt_inet.h"
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/socket.h>
57 #include <sys/sockio.h>
58 #include <sys/errno.h>
59 #include <sys/ioctl.h>
60 #include <sys/time.h>
61 #include <sys/timespec.h>
62 #include <sys/socketvar.h>
63 #include <sys/syslog.h>
64 #include <sys/cpu.h>
65 #include <sys/intr.h>
66 #include <sys/kmem.h>
67 #include <sys/device.h>
68 #include <sys/module.h>
69 #include <sys/mutex.h>
70 #include <sys/rwlock.h>
71 #include <sys/pserialize.h>
72 #include <sys/psref.h>
73 #include <sys/kthread.h>
74 #include <sys/cprng.h>
75 #include <sys/atomic.h>
76 #include <sys/sysctl.h>
77 #include <sys/domain.h>
78 #include <sys/pcq.h>
79 #include <sys/queue.h>
80 #include <sys/percpu.h>
81 #include <sys/callout.h>
82
83 #include <net/bpf.h>
84 #include <net/if.h>
85 #include <net/if_types.h>
86 #include <net/route.h>
87
88 #include <netinet/in.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/udp.h>
92 #include <netinet/udp_var.h>
93 #include <netinet/in_var.h>
94 #include <netinet/in_pcb.h>
95
96 #ifdef INET6
97 #include <netinet6/in6_var.h>
98 #include <netinet/ip6.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/in6_pcb.h>
101 #include <netinet6/udp6_var.h>
102 #endif /* INET6 */
103
104 #include <net/if_wg.h>
105
106 #include <prop/proplib.h>
107
108 #include <crypto/blake2/blake2s.h>
109 #include <crypto/sodium/crypto_scalarmult.h>
110 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
111 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
112
113 #include "ioconf.h"
114
115 #ifdef WG_RUMPKERNEL
116 #include "wg_user.h"
117 #endif
118
119 /*
120 * Data structures
121 * - struct wg_softc is an instance of wg interfaces
122 * - It has a list of peers (struct wg_peer)
123 * - It has a kthread that sends/receives WireGuard handshake messages and
124 * runs event handlers
125 * - It has its own two routing tables: one is for IPv4 and the other IPv6
126 * - struct wg_peer is a representative of a peer
127 * - It has a softint that is used to send packets over an wg interface
128 * to a peer
129 * - It has a pair of session instances (struct wg_session)
130 * - It has a pair of endpoint instances (struct wg_sockaddr)
131 * - Normally one endpoint is used and the second one is used only on
132 * a peer migration (a change of peer's IP address)
133 * - It has a list of IP addresses and sub networks called allowedips
134 * (struct wg_allowedip)
135 * - A packets sent over a session is allowed if its destination matches
136 * any IP addresses or sub networks of the list
137 * - struct wg_session represents a session of a secure tunnel with a peer
138 * - Two instances of sessions belong to a peer; a stable session and a
139 * unstable session
140 * - A handshake process of a session always starts with a unstable instace
141 * - Once a session is established, its instance becomes stable and the
142 * other becomes unstable instead
143 * - Data messages are always sent via a stable session
144 *
145 * Locking notes:
146 * - wg interfaces (struct wg_softc, wg) is listed in wg_softcs.list and
147 * protected by wg_softcs.lock
148 * - Each wg has a mutex(9) and a rwlock(9)
149 * - The mutex (wg_lock) protects its peer list (wg_peers)
150 * - A peer on the list is also protected by pserialize(9) or psref(9)
151 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
152 * - Each peer (struct wg_peer, wgp) has a mutex
153 * - The mutex (wgp_lock) protects wgp_session_unstable and wgp_state
154 * - Each session (struct wg_session, wgs) has a mutex
155 * - The mutex (wgs_lock) protects its state (wgs_state) and its handshake
156 * states
157 * - wgs_state of a unstable session can be changed while it never be
158 * changed on a stable session, so once get a session instace via
159 * wgp_session_stable we can safely access wgs_state without
160 * holding wgs_lock
161 * - A session is protected by pserialize or psref like wgp
162 * - On a session swap, we must wait for all readers to release a
163 * reference to a stable session before changing wgs_state and
164 * session states
165 */
166
167
168 #define WGLOG(level, fmt, args...) \
169 log(level, "%s: " fmt, __func__, ##args)
170
171 /* Debug options */
172 #ifdef WG_DEBUG
173 /* Output debug logs */
174 #ifndef WG_DEBUG_LOG
175 #define WG_DEBUG_LOG
176 #endif
177 /* Output trace logs */
178 #ifndef WG_DEBUG_TRACE
179 #define WG_DEBUG_TRACE
180 #endif
181 /* Output hash values, etc. */
182 #ifndef WG_DEBUG_DUMP
183 #define WG_DEBUG_DUMP
184 #endif
185 /* Make some internal parameters configurable for testing and debugging */
186 #ifndef WG_DEBUG_PARAMS
187 #define WG_DEBUG_PARAMS
188 #endif
189 #endif
190
191 #ifdef WG_DEBUG_TRACE
192 #define WG_TRACE(msg) \
193 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
194 #else
195 #define WG_TRACE(msg) __nothing
196 #endif
197
198 #ifdef WG_DEBUG_LOG
199 #define WG_DLOG(fmt, args...) log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
200 #else
201 #define WG_DLOG(fmt, args...) __nothing
202 #endif
203
204 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
205 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
206 &(wgprc)->wgprc_curpps, 1)) { \
207 log(level, fmt, ##args); \
208 } \
209 } while (0)
210
211 #ifdef WG_DEBUG_PARAMS
212 static bool wg_force_underload = false;
213 #endif
214
215 #ifdef WG_DEBUG_DUMP
216
217 #ifdef WG_RUMPKERNEL
218 static void
219 wg_dump_buf(const char *func, const char *buf, const size_t size)
220 {
221
222 log(LOG_DEBUG, "%s: ", func);
223 for (int i = 0; i < size; i++)
224 log(LOG_DEBUG, "%02x ", (int)(0xff & buf[i]));
225 log(LOG_DEBUG, "\n");
226 }
227 #endif
228
229 static void
230 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
231 const size_t size)
232 {
233
234 log(LOG_DEBUG, "%s: %s: ", func, name);
235 for (int i = 0; i < size; i++)
236 log(LOG_DEBUG, "%02x ", (int)(0xff & hash[i]));
237 log(LOG_DEBUG, "\n");
238 }
239
240 #define WG_DUMP_HASH(name, hash) \
241 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
242 #define WG_DUMP_HASH48(name, hash) \
243 wg_dump_hash(__func__, name, hash, 48)
244 #define WG_DUMP_BUF(buf, size) \
245 wg_dump_buf(__func__, buf, size)
246 #else
247 #define WG_DUMP_HASH(name, hash) __nothing
248 #define WG_DUMP_HASH48(name, hash) __nothing
249 #define WG_DUMP_BUF(buf, size) __nothing
250 #endif /* WG_DEBUG_DUMP */
251
252 #define WG_MTU 1420
253 #define WG_ALLOWEDIPS 16
254
255 #define CURVE25519_KEY_LEN 32
256 #define TAI64N_LEN sizeof(uint32_t) * 3
257 #define POLY1305_AUTHTAG_LEN 16
258 #define HMAC_BLOCK_LEN 64
259
260 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
261 /* [N] 4.3: Hash functions */
262 #define NOISE_DHLEN 32
263 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
264 #define NOISE_HASHLEN 32
265 #define NOISE_BLOCKLEN 64
266 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
267 /* [N] 5.1: "k" */
268 #define NOISE_CIPHER_KEY_LEN 32
269 /*
270 * [N] 9.2: "psk"
271 * "... psk is a 32-byte secret value provided by the application."
272 */
273 #define NOISE_PRESHARED_KEY_LEN 32
274
275 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
276 #define WG_TIMESTAMP_LEN TAI64N_LEN
277
278 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
279
280 #define WG_COOKIE_LEN 16
281 #define WG_MAC_LEN 16
282 #define WG_RANDVAL_LEN 24
283
284 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
285 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
286 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
287 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
288 #define WG_HASH_LEN NOISE_HASHLEN
289 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
290 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
291 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
292 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
293 #define WG_DATA_KEY_LEN 32
294 #define WG_SALT_LEN 24
295
296 /*
297 * The protocol messages
298 */
299 struct wg_msg {
300 uint32_t wgm_type;
301 } __packed;
302
303 /* [W] 5.4.2 First Message: Initiator to Responder */
304 struct wg_msg_init {
305 uint32_t wgmi_type;
306 uint32_t wgmi_sender;
307 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
308 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
309 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
310 uint8_t wgmi_mac1[WG_MAC_LEN];
311 uint8_t wgmi_mac2[WG_MAC_LEN];
312 } __packed;
313
314 /* [W] 5.4.3 Second Message: Responder to Initiator */
315 struct wg_msg_resp {
316 uint32_t wgmr_type;
317 uint32_t wgmr_sender;
318 uint32_t wgmr_receiver;
319 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
320 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
321 uint8_t wgmr_mac1[WG_MAC_LEN];
322 uint8_t wgmr_mac2[WG_MAC_LEN];
323 } __packed;
324
325 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
326 struct wg_msg_data {
327 uint32_t wgmd_type;
328 uint32_t wgmd_receiver;
329 uint64_t wgmd_counter;
330 uint32_t wgmd_packet[0];
331 } __packed;
332
333 /* [W] 5.4.7 Under Load: Cookie Reply Message */
334 struct wg_msg_cookie {
335 uint32_t wgmc_type;
336 uint32_t wgmc_receiver;
337 uint8_t wgmc_salt[WG_SALT_LEN];
338 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
339 } __packed;
340
341 #define WG_MSG_TYPE_INIT 1
342 #define WG_MSG_TYPE_RESP 2
343 #define WG_MSG_TYPE_COOKIE 3
344 #define WG_MSG_TYPE_DATA 4
345 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
346
347 /* Sliding windows */
348
349 #define SLIWIN_BITS 2048u
350 #define SLIWIN_TYPE uint32_t
351 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
352 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
353 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
354
355 struct sliwin {
356 SLIWIN_TYPE B[SLIWIN_WORDS];
357 uint64_t T;
358 };
359
360 static void
361 sliwin_reset(struct sliwin *W)
362 {
363
364 memset(W, 0, sizeof(*W));
365 }
366
367 static int
368 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
369 {
370
371 /*
372 * If it's more than one window older than the highest sequence
373 * number we've seen, reject.
374 */
375 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
376 return EAUTH;
377
378 /*
379 * Otherwise, we need to take the lock to decide, so don't
380 * reject just yet. Caller must serialize a call to
381 * sliwin_update in this case.
382 */
383 return 0;
384 }
385
386 static int
387 sliwin_update(struct sliwin *W, uint64_t S)
388 {
389 unsigned word, bit;
390
391 /*
392 * If it's more than one window older than the highest sequence
393 * number we've seen, reject.
394 */
395 if (S + SLIWIN_NPKT < W->T)
396 return EAUTH;
397
398 /*
399 * If it's higher than the highest sequence number we've seen,
400 * advance the window.
401 */
402 if (S > W->T) {
403 uint64_t i = W->T / SLIWIN_BPW;
404 uint64_t j = S / SLIWIN_BPW;
405 unsigned k;
406
407 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
408 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
409 atomic_store_relaxed(&W->T, S);
410 }
411
412 /* Test and set the bit -- if already set, reject. */
413 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
414 bit = S % SLIWIN_BPW;
415 if (W->B[word] & (1UL << bit))
416 return EAUTH;
417 W->B[word] |= 1UL << bit;
418
419 /* Accept! */
420 return 0;
421 }
422
423 struct wg_worker {
424 kmutex_t wgw_lock;
425 kcondvar_t wgw_cv;
426 bool wgw_todie;
427 struct socket *wgw_so4;
428 struct socket *wgw_so6;
429 int wgw_wakeup_reasons;
430 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 __BIT(0)
431 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6 __BIT(1)
432 #define WG_WAKEUP_REASON_PEER __BIT(2)
433 };
434
435 struct wg_session {
436 struct wg_peer *wgs_peer;
437 struct psref_target
438 wgs_psref;
439 kmutex_t *wgs_lock;
440
441 int wgs_state;
442 #define WGS_STATE_UNKNOWN 0
443 #define WGS_STATE_INIT_ACTIVE 1
444 #define WGS_STATE_INIT_PASSIVE 2
445 #define WGS_STATE_ESTABLISHED 3
446 #define WGS_STATE_DESTROYING 4
447
448 time_t wgs_time_established;
449 time_t wgs_time_last_data_sent;
450 bool wgs_is_initiator;
451
452 uint32_t wgs_sender_index;
453 uint32_t wgs_receiver_index;
454 volatile uint64_t
455 wgs_send_counter;
456
457 struct {
458 kmutex_t lock;
459 struct sliwin window;
460 } *wgs_recvwin;
461
462 uint8_t wgs_handshake_hash[WG_HASH_LEN];
463 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
464 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
465 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
466 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
467 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
468 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
469 };
470
471 struct wg_sockaddr {
472 union {
473 struct sockaddr_storage _ss;
474 struct sockaddr _sa;
475 struct sockaddr_in _sin;
476 struct sockaddr_in6 _sin6;
477 };
478 struct psref_target wgsa_psref;
479 };
480
481 #define wgsatosa(wgsa) (&(wgsa)->_sa)
482 #define wgsatosin(wgsa) (&(wgsa)->_sin)
483 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
484
485 struct wg_peer;
486 struct wg_allowedip {
487 struct radix_node wga_nodes[2];
488 struct wg_sockaddr _wga_sa_addr;
489 struct wg_sockaddr _wga_sa_mask;
490 #define wga_sa_addr _wga_sa_addr._sa
491 #define wga_sa_mask _wga_sa_mask._sa
492
493 int wga_family;
494 uint8_t wga_cidr;
495 union {
496 struct in_addr _ip4;
497 struct in6_addr _ip6;
498 } wga_addr;
499 #define wga_addr4 wga_addr._ip4
500 #define wga_addr6 wga_addr._ip6
501
502 struct wg_peer *wga_peer;
503 };
504
505 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
506
507 struct wg_ppsratecheck {
508 struct timeval wgprc_lasttime;
509 int wgprc_curpps;
510 };
511
512 struct wg_softc;
513 struct wg_peer {
514 struct wg_softc *wgp_sc;
515 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
516 struct pslist_entry wgp_peerlist_entry;
517 pserialize_t wgp_psz;
518 struct psref_target wgp_psref;
519 kmutex_t *wgp_lock;
520
521 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
522 struct wg_sockaddr *wgp_endpoint;
523 #define wgp_ss wgp_endpoint->_ss
524 #define wgp_sa wgp_endpoint->_sa
525 #define wgp_sin wgp_endpoint->_sin
526 #define wgp_sin6 wgp_endpoint->_sin6
527 struct wg_sockaddr *wgp_endpoint0;
528 bool wgp_endpoint_changing;
529 bool wgp_endpoint_available;
530
531 /* The preshared key (optional) */
532 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
533
534 int wgp_state;
535 #define WGP_STATE_INIT 0
536 #define WGP_STATE_ESTABLISHED 1
537 #define WGP_STATE_GIVEUP 2
538 #define WGP_STATE_DESTROYING 3
539
540 void *wgp_si;
541 pcq_t *wgp_q;
542
543 struct wg_session *wgp_session_stable;
544 struct wg_session *wgp_session_unstable;
545
546 /* timestamp in big-endian */
547 wg_timestamp_t wgp_timestamp_latest_init;
548
549 struct timespec wgp_last_handshake_time;
550
551 callout_t wgp_rekey_timer;
552 callout_t wgp_handshake_timeout_timer;
553 callout_t wgp_session_dtor_timer;
554
555 time_t wgp_handshake_start_time;
556
557 int wgp_n_allowedips;
558 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
559
560 time_t wgp_latest_cookie_time;
561 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
562 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
563 bool wgp_last_sent_mac1_valid;
564 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
565 bool wgp_last_sent_cookie_valid;
566
567 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
568
569 time_t wgp_last_genrandval_time;
570 uint32_t wgp_randval;
571
572 struct wg_ppsratecheck wgp_ppsratecheck;
573
574 volatile unsigned int wgp_tasks;
575 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
576 #define WGP_TASK_ENDPOINT_CHANGED __BIT(1)
577 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(2)
578 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(3)
579 };
580
581 struct wg_ops;
582
583 struct wg_softc {
584 struct ifnet wg_if;
585 LIST_ENTRY(wg_softc) wg_list;
586 kmutex_t *wg_lock;
587 krwlock_t *wg_rwlock;
588
589 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
590 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
591
592 int wg_npeers;
593 struct pslist_head wg_peers;
594 uint16_t wg_listen_port;
595
596 struct wg_worker *wg_worker;
597 lwp_t *wg_worker_lwp;
598
599 struct radix_node_head *wg_rtable_ipv4;
600 struct radix_node_head *wg_rtable_ipv6;
601
602 struct wg_ppsratecheck wg_ppsratecheck;
603
604 struct wg_ops *wg_ops;
605
606 #ifdef WG_RUMPKERNEL
607 struct wg_user *wg_user;
608 #endif
609 };
610
611
612 #define WG_REKEY_AFTER_MESSAGES (ULONG_MAX - (1 << 16) - 1)
613 #define WG_REJECT_AFTER_MESSAGES (ULONG_MAX - (1 << 4) - 1)
614 #define WG_REKEY_AFTER_TIME 120
615 #define WG_REJECT_AFTER_TIME 180
616 #define WG_REKEY_ATTEMPT_TIME 90
617 #define WG_REKEY_TIMEOUT 5
618 #define WG_KEEPALIVE_TIMEOUT 10
619
620 #define WG_COOKIE_TIME 120
621 #define WG_RANDVAL_TIME (2 * 60)
622
623 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
624 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
625 static time_t wg_rekey_after_time = WG_REKEY_AFTER_TIME;
626 static time_t wg_reject_after_time = WG_REJECT_AFTER_TIME;
627 static time_t wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
628 static time_t wg_rekey_timeout = WG_REKEY_TIMEOUT;
629 static time_t wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
630
631 static struct mbuf *
632 wg_get_mbuf(size_t, size_t);
633
634 static void wg_wakeup_worker(struct wg_worker *, int);
635
636 static int wg_send_data_msg(struct wg_peer *, struct wg_session *,
637 struct mbuf *);
638 static int wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
639 const uint32_t, const uint8_t [], const struct sockaddr *);
640 static int wg_send_handshake_msg_resp(struct wg_softc *,
641 struct wg_peer *, const struct wg_msg_init *);
642 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
643
644 static struct wg_peer *
645 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
646 struct psref *);
647 static struct wg_peer *
648 wg_lookup_peer_by_pubkey(struct wg_softc *,
649 const uint8_t [], struct psref *);
650
651 static struct wg_session *
652 wg_lookup_session_by_index(struct wg_softc *,
653 const uint32_t, struct psref *);
654
655 static void wg_update_endpoint_if_necessary(struct wg_peer *,
656 const struct sockaddr *);
657
658 static void wg_schedule_rekey_timer(struct wg_peer *);
659 static void wg_schedule_session_dtor_timer(struct wg_peer *);
660 static void wg_stop_session_dtor_timer(struct wg_peer *);
661
662 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
663 static void wg_calculate_keys(struct wg_session *, const bool);
664
665 static void wg_clear_states(struct wg_session *);
666
667 static void wg_get_peer(struct wg_peer *, struct psref *);
668 static void wg_put_peer(struct wg_peer *, struct psref *);
669
670 static int wg_send_so(struct wg_peer *, struct mbuf *);
671 static int wg_send_udp(struct wg_peer *, struct mbuf *);
672 static int wg_output(struct ifnet *, struct mbuf *,
673 const struct sockaddr *, const struct rtentry *);
674 static void wg_input(struct ifnet *, struct mbuf *, const int);
675 static int wg_ioctl(struct ifnet *, u_long, void *);
676 static int wg_bind_port(struct wg_softc *, const uint16_t);
677 static int wg_init(struct ifnet *);
678 static void wg_stop(struct ifnet *, int);
679
680 static int wg_clone_create(struct if_clone *, int);
681 static int wg_clone_destroy(struct ifnet *);
682
683 struct wg_ops {
684 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
685 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
686 void (*input)(struct ifnet *, struct mbuf *, const int);
687 int (*bind_port)(struct wg_softc *, const uint16_t);
688 };
689
690 struct wg_ops wg_ops_rumpkernel = {
691 .send_hs_msg = wg_send_so,
692 .send_data_msg = wg_send_udp,
693 .input = wg_input,
694 .bind_port = wg_bind_port,
695 };
696
697 #ifdef WG_RUMPKERNEL
698 static bool wg_user_mode(struct wg_softc *);
699 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
700
701 static int wg_send_user(struct wg_peer *, struct mbuf *);
702 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
703 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
704
705 struct wg_ops wg_ops_rumpuser = {
706 .send_hs_msg = wg_send_user,
707 .send_data_msg = wg_send_user,
708 .input = wg_input_user,
709 .bind_port = wg_bind_port_user,
710 };
711 #endif
712
713 #define WG_PEER_READER_FOREACH(wgp, wg) \
714 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
715 wgp_peerlist_entry)
716 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
717 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
718 wgp_peerlist_entry)
719 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
720 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
721 #define WG_PEER_WRITER_REMOVE(wgp) \
722 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
723
724 struct wg_route {
725 struct radix_node wgr_nodes[2];
726 struct wg_peer *wgr_peer;
727 };
728
729 static struct radix_node_head *
730 wg_rnh(struct wg_softc *wg, const int family)
731 {
732
733 switch (family) {
734 case AF_INET:
735 return wg->wg_rtable_ipv4;
736 #ifdef INET6
737 case AF_INET6:
738 return wg->wg_rtable_ipv6;
739 #endif
740 default:
741 return NULL;
742 }
743 }
744
745
746 /*
747 * Global variables
748 */
749 LIST_HEAD(wg_sclist, wg_softc);
750 static struct {
751 struct wg_sclist list;
752 kmutex_t lock;
753 } wg_softcs __cacheline_aligned;
754
755 struct psref_class *wg_psref_class __read_mostly;
756
757 static struct if_clone wg_cloner =
758 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
759
760
761 void wgattach(int);
762 /* ARGSUSED */
763 void
764 wgattach(int count)
765 {
766 /*
767 * Nothing to do here, initialization is handled by the
768 * module initialization code in wginit() below).
769 */
770 }
771
772 static void
773 wginit(void)
774 {
775
776 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
777
778 mutex_init(&wg_softcs.lock, MUTEX_DEFAULT, IPL_NONE);
779 LIST_INIT(&wg_softcs.list);
780 if_clone_attach(&wg_cloner);
781 }
782
783 static int
784 wgdetach(void)
785 {
786 int error = 0;
787
788 mutex_enter(&wg_softcs.lock);
789 if (!LIST_EMPTY(&wg_softcs.list)) {
790 mutex_exit(&wg_softcs.lock);
791 error = EBUSY;
792 }
793
794 if (error == 0) {
795 psref_class_destroy(wg_psref_class);
796
797 if_clone_detach(&wg_cloner);
798 }
799
800 return error;
801 }
802
803 static void
804 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
805 uint8_t hash[WG_HASH_LEN])
806 {
807 /* [W] 5.4: CONSTRUCTION */
808 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
809 /* [W] 5.4: IDENTIFIER */
810 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
811 struct blake2s state;
812
813 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
814 signature, strlen(signature));
815
816 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
817 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
818
819 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
820 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
821 blake2s_update(&state, id, strlen(id));
822 blake2s_final(&state, hash);
823
824 WG_DUMP_HASH("ckey", ckey);
825 WG_DUMP_HASH("hash", hash);
826 }
827
828 static void
829 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
830 const size_t inputsize)
831 {
832 struct blake2s state;
833
834 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
835 blake2s_update(&state, hash, WG_HASH_LEN);
836 blake2s_update(&state, input, inputsize);
837 blake2s_final(&state, hash);
838 }
839
840 static void
841 wg_algo_mac(uint8_t out[], const size_t outsize,
842 const uint8_t key[], const size_t keylen,
843 const uint8_t input1[], const size_t input1len,
844 const uint8_t input2[], const size_t input2len)
845 {
846 struct blake2s state;
847
848 blake2s_init(&state, outsize, key, keylen);
849
850 blake2s_update(&state, input1, input1len);
851 if (input2 != NULL)
852 blake2s_update(&state, input2, input2len);
853 blake2s_final(&state, out);
854 }
855
856 static void
857 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
858 const uint8_t input1[], const size_t input1len,
859 const uint8_t input2[], const size_t input2len)
860 {
861 struct blake2s state;
862 /* [W] 5.4: LABEL-MAC1 */
863 const char *label = "mac1----";
864 uint8_t key[WG_HASH_LEN];
865
866 blake2s_init(&state, sizeof(key), NULL, 0);
867 blake2s_update(&state, label, strlen(label));
868 blake2s_update(&state, input1, input1len);
869 blake2s_final(&state, key);
870
871 blake2s_init(&state, outsize, key, sizeof(key));
872 if (input2 != NULL)
873 blake2s_update(&state, input2, input2len);
874 blake2s_final(&state, out);
875 }
876
877 static void
878 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
879 const uint8_t input1[], const size_t input1len)
880 {
881 struct blake2s state;
882 /* [W] 5.4: LABEL-COOKIE */
883 const char *label = "cookie--";
884
885 blake2s_init(&state, outsize, NULL, 0);
886 blake2s_update(&state, label, strlen(label));
887 blake2s_update(&state, input1, input1len);
888 blake2s_final(&state, out);
889 }
890
891 static void
892 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
893 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
894 {
895
896 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
897
898 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
899 crypto_scalarmult_base(pubkey, privkey);
900 }
901
902 static void
903 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
904 const uint8_t privkey[WG_STATIC_KEY_LEN],
905 const uint8_t pubkey[WG_STATIC_KEY_LEN])
906 {
907
908 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
909
910 int ret = crypto_scalarmult(out, privkey, pubkey);
911 KASSERT(ret == 0);
912 }
913
914 static void
915 wg_algo_hmac(uint8_t out[], const size_t outlen,
916 const uint8_t key[], const size_t keylen,
917 const uint8_t in[], const size_t inlen)
918 {
919 #define IPAD 0x36
920 #define OPAD 0x5c
921 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
922 uint8_t ipad[HMAC_BLOCK_LEN];
923 uint8_t opad[HMAC_BLOCK_LEN];
924 int i;
925 struct blake2s state;
926
927 KASSERT(outlen == WG_HASH_LEN);
928 KASSERT(keylen <= HMAC_BLOCK_LEN);
929
930 memcpy(hmackey, key, keylen);
931
932 for (i = 0; i < sizeof(hmackey); i++) {
933 ipad[i] = hmackey[i] ^ IPAD;
934 opad[i] = hmackey[i] ^ OPAD;
935 }
936
937 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
938 blake2s_update(&state, ipad, sizeof(ipad));
939 blake2s_update(&state, in, inlen);
940 blake2s_final(&state, out);
941
942 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
943 blake2s_update(&state, opad, sizeof(opad));
944 blake2s_update(&state, out, WG_HASH_LEN);
945 blake2s_final(&state, out);
946 #undef IPAD
947 #undef OPAD
948 }
949
950 static void
951 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
952 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
953 const uint8_t input[], const size_t inputlen)
954 {
955 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
956 uint8_t one[1];
957
958 /*
959 * [N] 4.3: "an input_key_material byte sequence with length
960 * either zero bytes, 32 bytes, or DHLEN bytes."
961 */
962 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
963
964 WG_DUMP_HASH("ckey", ckey);
965 if (input != NULL)
966 WG_DUMP_HASH("input", input);
967 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
968 input, inputlen);
969 WG_DUMP_HASH("tmp1", tmp1);
970 one[0] = 1;
971 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
972 one, sizeof(one));
973 WG_DUMP_HASH("out1", out1);
974 if (out2 == NULL)
975 return;
976 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
977 tmp2[WG_KDF_OUTPUT_LEN] = 2;
978 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
979 tmp2, sizeof(tmp2));
980 WG_DUMP_HASH("out2", out2);
981 if (out3 == NULL)
982 return;
983 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
984 tmp2[WG_KDF_OUTPUT_LEN] = 3;
985 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
986 tmp2, sizeof(tmp2));
987 WG_DUMP_HASH("out3", out3);
988 }
989
990 static void
991 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
992 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
993 const uint8_t local_key[WG_STATIC_KEY_LEN],
994 const uint8_t remote_key[WG_STATIC_KEY_LEN])
995 {
996 uint8_t dhout[WG_DH_OUTPUT_LEN];
997
998 wg_algo_dh(dhout, local_key, remote_key);
999 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1000
1001 WG_DUMP_HASH("dhout", dhout);
1002 WG_DUMP_HASH("ckey", ckey);
1003 if (cipher_key != NULL)
1004 WG_DUMP_HASH("cipher_key", cipher_key);
1005 }
1006
1007 static void
1008 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1009 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1010 const uint8_t auth[], size_t authlen)
1011 {
1012 uint8_t nonce[(32 + 64) / 8] = {0};
1013 long long unsigned int outsize;
1014 int error __diagused;
1015
1016 memcpy(&nonce[4], &counter, sizeof(counter));
1017
1018 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1019 plainsize, auth, authlen, NULL, nonce, key);
1020 KASSERT(error == 0);
1021 KASSERT(outsize == expected_outsize);
1022 }
1023
1024 static int
1025 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1026 const uint64_t counter, const uint8_t encrypted[],
1027 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1028 {
1029 uint8_t nonce[(32 + 64) / 8] = {0};
1030 long long unsigned int outsize;
1031 int error;
1032
1033 memcpy(&nonce[4], &counter, sizeof(counter));
1034
1035 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1036 encrypted, encryptedsize, auth, authlen, nonce, key);
1037 if (error == 0)
1038 KASSERT(outsize == expected_outsize);
1039 return error;
1040 }
1041
1042 static void
1043 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1044 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1045 const uint8_t auth[], size_t authlen,
1046 const uint8_t nonce[WG_SALT_LEN])
1047 {
1048 long long unsigned int outsize;
1049 int error __diagused;
1050
1051 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1052 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1053 plain, plainsize, auth, authlen, NULL, nonce, key);
1054 KASSERT(error == 0);
1055 KASSERT(outsize == expected_outsize);
1056 }
1057
1058 static int
1059 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1060 const uint8_t key[], const uint64_t counter,
1061 const uint8_t encrypted[], const size_t encryptedsize,
1062 const uint8_t auth[], size_t authlen,
1063 const uint8_t nonce[WG_SALT_LEN])
1064 {
1065 long long unsigned int outsize;
1066 int error;
1067
1068 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1069 encrypted, encryptedsize, auth, authlen, nonce, key);
1070 if (error == 0)
1071 KASSERT(outsize == expected_outsize);
1072 return error;
1073 }
1074
1075 static void
1076 wg_algo_tai64n(wg_timestamp_t timestamp)
1077 {
1078 struct timespec ts;
1079
1080 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1081 getnanotime(&ts);
1082 /* TAI64 label in external TAI64 format */
1083 be32enc(timestamp, 0x40000000UL + (ts.tv_sec >> 32));
1084 /* second beginning from 1970 TAI */
1085 be32enc(timestamp + 4, ts.tv_sec & 0xffffffffU);
1086 /* nanosecond in big-endian format */
1087 be32enc(timestamp + 8, ts.tv_nsec);
1088 }
1089
1090 static struct wg_session *
1091 wg_get_unstable_session(struct wg_peer *wgp, struct psref *psref)
1092 {
1093 int s;
1094 struct wg_session *wgs;
1095
1096 s = pserialize_read_enter();
1097 wgs = wgp->wgp_session_unstable;
1098 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1099 pserialize_read_exit(s);
1100 return wgs;
1101 }
1102
1103 static struct wg_session *
1104 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1105 {
1106 int s;
1107 struct wg_session *wgs;
1108
1109 s = pserialize_read_enter();
1110 wgs = wgp->wgp_session_stable;
1111 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1112 pserialize_read_exit(s);
1113 return wgs;
1114 }
1115
1116 static void
1117 wg_get_session(struct wg_session *wgs, struct psref *psref)
1118 {
1119
1120 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1121 }
1122
1123 static void
1124 wg_put_session(struct wg_session *wgs, struct psref *psref)
1125 {
1126
1127 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1128 }
1129
1130 static struct wg_session *
1131 wg_lock_unstable_session(struct wg_peer *wgp)
1132 {
1133 struct wg_session *wgs;
1134
1135 mutex_enter(wgp->wgp_lock);
1136 wgs = wgp->wgp_session_unstable;
1137 mutex_enter(wgs->wgs_lock);
1138 mutex_exit(wgp->wgp_lock);
1139 return wgs;
1140 }
1141
1142 #if 0
1143 static void
1144 wg_unlock_session(struct wg_peer *wgp, struct wg_session *wgs)
1145 {
1146
1147 mutex_exit(wgs->wgs_lock);
1148 }
1149 #endif
1150
1151 /*
1152 * Handshake patterns
1153 *
1154 * [W] 5: "These messages use the "IK" pattern from Noise"
1155 * [N] 7.5. Interactive handshake patterns (fundamental)
1156 * "The first character refers to the initiators static key:"
1157 * "I = Static key for initiator Immediately transmitted to responder,
1158 * despite reduced or absent identity hiding"
1159 * "The second character refers to the responders static key:"
1160 * "K = Static key for responder Known to initiator"
1161 * "IK:
1162 * <- s
1163 * ...
1164 * -> e, es, s, ss
1165 * <- e, ee, se"
1166 * [N] 9.4. Pattern modifiers
1167 * "IKpsk2:
1168 * <- s
1169 * ...
1170 * -> e, es, s, ss
1171 * <- e, ee, se, psk"
1172 */
1173 static void
1174 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1175 struct wg_session *wgs, struct wg_msg_init *wgmi)
1176 {
1177 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1178 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1179 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1180 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1181 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1182
1183 wgmi->wgmi_type = WG_MSG_TYPE_INIT;
1184 wgmi->wgmi_sender = cprng_strong32();
1185
1186 /* [W] 5.4.2: First Message: Initiator to Responder */
1187
1188 /* Ci := HASH(CONSTRUCTION) */
1189 /* Hi := HASH(Ci || IDENTIFIER) */
1190 wg_init_key_and_hash(ckey, hash);
1191 /* Hi := HASH(Hi || Sr^pub) */
1192 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1193
1194 WG_DUMP_HASH("hash", hash);
1195
1196 /* [N] 2.2: "e" */
1197 /* Ei^priv, Ei^pub := DH-GENERATE() */
1198 wg_algo_generate_keypair(pubkey, privkey);
1199 /* Ci := KDF1(Ci, Ei^pub) */
1200 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1201 /* msg.ephemeral := Ei^pub */
1202 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1203 /* Hi := HASH(Hi || msg.ephemeral) */
1204 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1205
1206 WG_DUMP_HASH("ckey", ckey);
1207 WG_DUMP_HASH("hash", hash);
1208
1209 /* [N] 2.2: "es" */
1210 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1211 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1212
1213 /* [N] 2.2: "s" */
1214 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1215 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1216 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1217 hash, sizeof(hash));
1218 /* Hi := HASH(Hi || msg.static) */
1219 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1220
1221 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1222
1223 /* [N] 2.2: "ss" */
1224 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1225 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1226
1227 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1228 wg_timestamp_t timestamp;
1229 wg_algo_tai64n(timestamp);
1230 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1231 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1232 /* Hi := HASH(Hi || msg.timestamp) */
1233 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1234
1235 /* [W] 5.4.4 Cookie MACs */
1236 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1237 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1238 (uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1239 /* Need mac1 to decrypt a cookie from a cookie message */
1240 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1241 sizeof(wgp->wgp_last_sent_mac1));
1242 wgp->wgp_last_sent_mac1_valid = true;
1243
1244 if (wgp->wgp_latest_cookie_time == 0 ||
1245 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1246 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1247 else {
1248 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1249 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1250 (uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac2),
1251 NULL, 0);
1252 }
1253
1254 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1255 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1256 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1257 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1258 wgs->wgs_sender_index = wgmi->wgmi_sender;
1259 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_sender_index);
1260 }
1261
1262 static void
1263 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1264 const struct sockaddr *src)
1265 {
1266 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1267 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1268 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1269 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1270 struct wg_peer *wgp;
1271 struct wg_session *wgs;
1272 bool reset_state_on_error = false;
1273 int error, ret;
1274 struct psref psref_peer;
1275 struct psref psref_session;
1276 uint8_t mac1[WG_MAC_LEN];
1277
1278 WG_TRACE("init msg received");
1279
1280 /*
1281 * [W] 5.4.2: First Message: Initiator to Responder
1282 * "When the responder receives this message, it does the same
1283 * operations so that its final state variables are identical,
1284 * replacing the operands of the DH function to produce equivalent
1285 * values."
1286 * Note that the following comments of operations are just copies of
1287 * the initiator's ones.
1288 */
1289
1290 /* Ci := HASH(CONSTRUCTION) */
1291 /* Hi := HASH(Ci || IDENTIFIER) */
1292 wg_init_key_and_hash(ckey, hash);
1293 /* Hi := HASH(Hi || Sr^pub) */
1294 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1295
1296 /* [N] 2.2: "e" */
1297 /* Ci := KDF1(Ci, Ei^pub) */
1298 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1299 sizeof(wgmi->wgmi_ephemeral));
1300 /* Hi := HASH(Hi || msg.ephemeral) */
1301 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1302
1303 WG_DUMP_HASH("ckey", ckey);
1304
1305 /* [N] 2.2: "es" */
1306 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1307 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1308
1309 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1310
1311 /* [N] 2.2: "s" */
1312 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1313 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1314 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1315 if (error != 0) {
1316 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1317 "wg_algo_aead_dec for secret key failed\n");
1318 return;
1319 }
1320 /* Hi := HASH(Hi || msg.static) */
1321 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1322
1323 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1324 if (wgp == NULL) {
1325 WG_DLOG("peer not found\n");
1326 return;
1327 }
1328
1329 wgs = wg_lock_unstable_session(wgp);
1330 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
1331 /*
1332 * We can assume that the peer doesn't have an established
1333 * session, so clear it now.
1334 */
1335 WG_TRACE("Session destroying, but force to clear");
1336 wg_stop_session_dtor_timer(wgp);
1337 wg_clear_states(wgs);
1338 wgs->wgs_state = WGS_STATE_UNKNOWN;
1339 }
1340 if (wgs->wgs_state == WGS_STATE_INIT_ACTIVE) {
1341 WG_TRACE("Sesssion already initializing, ignoring the message");
1342 mutex_exit(wgs->wgs_lock);
1343 goto out_wgp;
1344 }
1345 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
1346 WG_TRACE("Sesssion already initializing, destroying old states");
1347 wg_clear_states(wgs);
1348 }
1349 wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
1350 reset_state_on_error = true;
1351 wg_get_session(wgs, &psref_session);
1352 mutex_exit(wgs->wgs_lock);
1353
1354 wg_algo_mac_mac1(mac1, sizeof(mac1),
1355 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1356 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1357
1358 /*
1359 * [W] 5.3: Denial of Service Mitigation & Cookies
1360 * "the responder, ..., must always reject messages with an invalid
1361 * msg.mac1"
1362 */
1363 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1364 WG_DLOG("mac1 is invalid\n");
1365 goto out;
1366 }
1367
1368 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1369 WG_TRACE("under load");
1370 /*
1371 * [W] 5.3: Denial of Service Mitigation & Cookies
1372 * "the responder, ..., and when under load may reject messages
1373 * with an invalid msg.mac2. If the responder receives a
1374 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1375 * and is under load, it may respond with a cookie reply
1376 * message"
1377 */
1378 uint8_t zero[WG_MAC_LEN] = {0};
1379 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1380 WG_TRACE("sending a cookie message: no cookie included");
1381 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1382 wgmi->wgmi_mac1, src);
1383 goto out;
1384 }
1385 if (!wgp->wgp_last_sent_cookie_valid) {
1386 WG_TRACE("sending a cookie message: no cookie sent ever");
1387 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1388 wgmi->wgmi_mac1, src);
1389 goto out;
1390 }
1391 uint8_t mac2[WG_MAC_LEN];
1392 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1393 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1394 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1395 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1396 WG_DLOG("mac2 is invalid\n");
1397 goto out;
1398 }
1399 WG_TRACE("under load, but continue to sending");
1400 }
1401
1402 /* [N] 2.2: "ss" */
1403 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1404 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1405
1406 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1407 wg_timestamp_t timestamp;
1408 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1409 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1410 hash, sizeof(hash));
1411 if (error != 0) {
1412 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1413 "wg_algo_aead_dec for timestamp failed\n");
1414 goto out;
1415 }
1416 /* Hi := HASH(Hi || msg.timestamp) */
1417 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1418
1419 /*
1420 * [W] 5.1 "The responder keeps track of the greatest timestamp
1421 * received per peer and discards packets containing
1422 * timestamps less than or equal to it."
1423 */
1424 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1425 sizeof(timestamp));
1426 if (ret <= 0) {
1427 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1428 "invalid init msg: timestamp is old\n");
1429 goto out;
1430 }
1431 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1432
1433 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1434 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1435 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1436 sizeof(wgmi->wgmi_ephemeral));
1437
1438 wg_update_endpoint_if_necessary(wgp, src);
1439
1440 (void)wg_send_handshake_msg_resp(wg, wgp, wgmi);
1441
1442 wg_calculate_keys(wgs, false);
1443 wg_clear_states(wgs);
1444
1445 wg_put_session(wgs, &psref_session);
1446 wg_put_peer(wgp, &psref_peer);
1447 return;
1448
1449 out:
1450 if (reset_state_on_error) {
1451 mutex_enter(wgs->wgs_lock);
1452 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1453 wgs->wgs_state = WGS_STATE_UNKNOWN;
1454 mutex_exit(wgs->wgs_lock);
1455 }
1456 wg_put_session(wgs, &psref_session);
1457 out_wgp:
1458 wg_put_peer(wgp, &psref_peer);
1459 }
1460
1461 static void
1462 wg_schedule_handshake_timeout_timer(struct wg_peer *wgp)
1463 {
1464
1465 mutex_enter(wgp->wgp_lock);
1466 if (__predict_true(wgp->wgp_state != WGP_STATE_DESTROYING)) {
1467 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1468 wg_rekey_timeout * hz);
1469 }
1470 mutex_exit(wgp->wgp_lock);
1471 }
1472
1473 static void
1474 wg_stop_handshake_timeout_timer(struct wg_peer *wgp)
1475 {
1476
1477 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
1478 }
1479
1480 static struct socket *
1481 wg_get_so_by_af(struct wg_worker *wgw, const int af)
1482 {
1483
1484 return (af == AF_INET) ? wgw->wgw_so4 : wgw->wgw_so6;
1485 }
1486
1487 static struct socket *
1488 wg_get_so_by_peer(struct wg_peer *wgp)
1489 {
1490
1491 return wg_get_so_by_af(wgp->wgp_sc->wg_worker, wgp->wgp_sa.sa_family);
1492 }
1493
1494 static struct wg_sockaddr *
1495 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1496 {
1497 struct wg_sockaddr *wgsa;
1498 int s;
1499
1500 s = pserialize_read_enter();
1501 wgsa = wgp->wgp_endpoint;
1502 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1503 pserialize_read_exit(s);
1504
1505 return wgsa;
1506 }
1507
1508 static void
1509 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1510 {
1511
1512 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1513 }
1514
1515 static int
1516 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1517 {
1518 int error;
1519 struct socket *so;
1520 struct psref psref;
1521 struct wg_sockaddr *wgsa;
1522
1523 so = wg_get_so_by_peer(wgp);
1524 wgsa = wg_get_endpoint_sa(wgp, &psref);
1525 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1526 wg_put_sa(wgp, wgsa, &psref);
1527
1528 return error;
1529 }
1530
1531 static int
1532 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1533 {
1534 int error;
1535 struct mbuf *m;
1536 struct wg_msg_init *wgmi;
1537 struct wg_session *wgs;
1538 struct psref psref;
1539
1540 wgs = wg_lock_unstable_session(wgp);
1541 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
1542 WG_TRACE("Session destroying");
1543 mutex_exit(wgs->wgs_lock);
1544 /* XXX should wait? */
1545 return EBUSY;
1546 }
1547 if (wgs->wgs_state == WGS_STATE_INIT_ACTIVE) {
1548 WG_TRACE("Sesssion already initializing, skip starting a new one");
1549 mutex_exit(wgs->wgs_lock);
1550 return EBUSY;
1551 }
1552 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
1553 WG_TRACE("Sesssion already initializing, destroying old states");
1554 wg_clear_states(wgs);
1555 }
1556 wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
1557 wg_get_session(wgs, &psref);
1558 mutex_exit(wgs->wgs_lock);
1559
1560 m = m_gethdr(M_WAIT, MT_DATA);
1561 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1562 wgmi = mtod(m, struct wg_msg_init *);
1563
1564 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1565
1566 error = wg->wg_ops->send_hs_msg(wgp, m);
1567 if (error == 0) {
1568 WG_TRACE("init msg sent");
1569
1570 if (wgp->wgp_handshake_start_time == 0)
1571 wgp->wgp_handshake_start_time = time_uptime;
1572 wg_schedule_handshake_timeout_timer(wgp);
1573 } else {
1574 mutex_enter(wgs->wgs_lock);
1575 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1576 wgs->wgs_state = WGS_STATE_UNKNOWN;
1577 mutex_exit(wgs->wgs_lock);
1578 }
1579 wg_put_session(wgs, &psref);
1580
1581 return error;
1582 }
1583
1584 static void
1585 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1586 struct wg_msg_resp *wgmr, const struct wg_msg_init *wgmi)
1587 {
1588 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1589 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1590 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1591 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1592 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1593 struct wg_session *wgs;
1594 struct psref psref;
1595
1596 wgs = wg_get_unstable_session(wgp, &psref);
1597 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1598 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1599
1600 wgmr->wgmr_type = WG_MSG_TYPE_RESP;
1601 wgmr->wgmr_sender = cprng_strong32();
1602 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1603
1604 /* [W] 5.4.3 Second Message: Responder to Initiator */
1605
1606 /* [N] 2.2: "e" */
1607 /* Er^priv, Er^pub := DH-GENERATE() */
1608 wg_algo_generate_keypair(pubkey, privkey);
1609 /* Cr := KDF1(Cr, Er^pub) */
1610 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1611 /* msg.ephemeral := Er^pub */
1612 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1613 /* Hr := HASH(Hr || msg.ephemeral) */
1614 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1615
1616 WG_DUMP_HASH("ckey", ckey);
1617 WG_DUMP_HASH("hash", hash);
1618
1619 /* [N] 2.2: "ee" */
1620 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1621 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1622
1623 /* [N] 2.2: "se" */
1624 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1625 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1626
1627 /* [N] 9.2: "psk" */
1628 {
1629 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1630 /* Cr, r, k := KDF3(Cr, Q) */
1631 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1632 sizeof(wgp->wgp_psk));
1633 /* Hr := HASH(Hr || r) */
1634 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1635 }
1636
1637 /* msg.empty := AEAD(k, 0, e, Hr) */
1638 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1639 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1640 /* Hr := HASH(Hr || msg.empty) */
1641 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1642
1643 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1644
1645 /* [W] 5.4.4: Cookie MACs */
1646 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1647 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1648 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1649 (uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1650 /* Need mac1 to decrypt a cookie from a cookie message */
1651 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1652 sizeof(wgp->wgp_last_sent_mac1));
1653 wgp->wgp_last_sent_mac1_valid = true;
1654
1655 if (wgp->wgp_latest_cookie_time == 0 ||
1656 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1657 /* msg.mac2 := 0^16 */
1658 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1659 else {
1660 /* msg.mac2 := MAC(Lm, msg_b) */
1661 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1662 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1663 (uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac2),
1664 NULL, 0);
1665 }
1666
1667 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1668 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1669 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1670 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1671 wgs->wgs_sender_index = wgmr->wgmr_sender;
1672 wgs->wgs_receiver_index = wgmi->wgmi_sender;
1673 WG_DLOG("sender=%x\n", wgs->wgs_sender_index);
1674 WG_DLOG("receiver=%x\n", wgs->wgs_receiver_index);
1675 wg_put_session(wgs, &psref);
1676 }
1677
1678 static void
1679 wg_swap_sessions(struct wg_peer *wgp)
1680 {
1681
1682 KASSERT(mutex_owned(wgp->wgp_lock));
1683
1684 wgp->wgp_session_unstable = atomic_swap_ptr(&wgp->wgp_session_stable,
1685 wgp->wgp_session_unstable);
1686 KASSERT(wgp->wgp_session_stable->wgs_state == WGS_STATE_ESTABLISHED);
1687 }
1688
1689 static void
1690 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1691 const struct sockaddr *src)
1692 {
1693 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1694 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1695 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1696 struct wg_peer *wgp;
1697 struct wg_session *wgs;
1698 struct psref psref;
1699 int error;
1700 uint8_t mac1[WG_MAC_LEN];
1701 struct wg_session *wgs_prev;
1702
1703 WG_TRACE("resp msg received");
1704 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
1705 if (wgs == NULL) {
1706 WG_TRACE("No session found");
1707 return;
1708 }
1709
1710 wgp = wgs->wgs_peer;
1711
1712 wg_algo_mac_mac1(mac1, sizeof(mac1),
1713 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1714 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1715
1716 /*
1717 * [W] 5.3: Denial of Service Mitigation & Cookies
1718 * "the responder, ..., must always reject messages with an invalid
1719 * msg.mac1"
1720 */
1721 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
1722 WG_DLOG("mac1 is invalid\n");
1723 goto out;
1724 }
1725
1726 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
1727 WG_TRACE("under load");
1728 /*
1729 * [W] 5.3: Denial of Service Mitigation & Cookies
1730 * "the responder, ..., and when under load may reject messages
1731 * with an invalid msg.mac2. If the responder receives a
1732 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1733 * and is under load, it may respond with a cookie reply
1734 * message"
1735 */
1736 uint8_t zero[WG_MAC_LEN] = {0};
1737 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
1738 WG_TRACE("sending a cookie message: no cookie included");
1739 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1740 wgmr->wgmr_mac1, src);
1741 goto out;
1742 }
1743 if (!wgp->wgp_last_sent_cookie_valid) {
1744 WG_TRACE("sending a cookie message: no cookie sent ever");
1745 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1746 wgmr->wgmr_mac1, src);
1747 goto out;
1748 }
1749 uint8_t mac2[WG_MAC_LEN];
1750 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1751 WG_COOKIE_LEN, (const uint8_t *)wgmr,
1752 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
1753 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
1754 WG_DLOG("mac2 is invalid\n");
1755 goto out;
1756 }
1757 WG_TRACE("under load, but continue to sending");
1758 }
1759
1760 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1761 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1762
1763 /*
1764 * [W] 5.4.3 Second Message: Responder to Initiator
1765 * "When the initiator receives this message, it does the same
1766 * operations so that its final state variables are identical,
1767 * replacing the operands of the DH function to produce equivalent
1768 * values."
1769 * Note that the following comments of operations are just copies of
1770 * the initiator's ones.
1771 */
1772
1773 /* [N] 2.2: "e" */
1774 /* Cr := KDF1(Cr, Er^pub) */
1775 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
1776 sizeof(wgmr->wgmr_ephemeral));
1777 /* Hr := HASH(Hr || msg.ephemeral) */
1778 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
1779
1780 WG_DUMP_HASH("ckey", ckey);
1781 WG_DUMP_HASH("hash", hash);
1782
1783 /* [N] 2.2: "ee" */
1784 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1785 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
1786 wgmr->wgmr_ephemeral);
1787
1788 /* [N] 2.2: "se" */
1789 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1790 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
1791
1792 /* [N] 9.2: "psk" */
1793 {
1794 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1795 /* Cr, r, k := KDF3(Cr, Q) */
1796 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1797 sizeof(wgp->wgp_psk));
1798 /* Hr := HASH(Hr || r) */
1799 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1800 }
1801
1802 {
1803 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
1804 /* msg.empty := AEAD(k, 0, e, Hr) */
1805 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
1806 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
1807 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1808 if (error != 0) {
1809 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1810 "wg_algo_aead_dec for empty message failed\n");
1811 goto out;
1812 }
1813 /* Hr := HASH(Hr || msg.empty) */
1814 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1815 }
1816
1817 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
1818 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
1819 wgs->wgs_receiver_index = wgmr->wgmr_sender;
1820 WG_DLOG("receiver=%x\n", wgs->wgs_receiver_index);
1821
1822 wgs->wgs_state = WGS_STATE_ESTABLISHED;
1823 wgs->wgs_time_established = time_uptime;
1824 wgs->wgs_time_last_data_sent = 0;
1825 wgs->wgs_is_initiator = true;
1826 wg_calculate_keys(wgs, true);
1827 wg_clear_states(wgs);
1828 WG_TRACE("WGS_STATE_ESTABLISHED");
1829
1830 mutex_enter(wgp->wgp_lock);
1831 wg_swap_sessions(wgp);
1832 wgs_prev = wgp->wgp_session_unstable;
1833 mutex_enter(wgs_prev->wgs_lock);
1834
1835 getnanotime(&wgp->wgp_last_handshake_time);
1836 wg_stop_handshake_timeout_timer(wgp);
1837 wgp->wgp_handshake_start_time = 0;
1838 wgp->wgp_last_sent_mac1_valid = false;
1839 wgp->wgp_last_sent_cookie_valid = false;
1840 mutex_exit(wgp->wgp_lock);
1841
1842 wg_schedule_rekey_timer(wgp);
1843
1844 wg_update_endpoint_if_necessary(wgp, src);
1845
1846 /*
1847 * Send something immediately (same as the official implementation)
1848 * XXX if there are pending data packets, we don't need to send
1849 * a keepalive message.
1850 */
1851 wg_send_keepalive_msg(wgp, wgs);
1852
1853 /* Anyway run a softint to flush pending packets */
1854 kpreempt_disable();
1855 softint_schedule(wgp->wgp_si);
1856 kpreempt_enable();
1857 WG_TRACE("softint scheduled");
1858
1859 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
1860 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
1861 /* We can't destroy the old session immediately */
1862 wg_schedule_session_dtor_timer(wgp);
1863 }
1864 mutex_exit(wgs_prev->wgs_lock);
1865
1866 out:
1867 wg_put_session(wgs, &psref);
1868 }
1869
1870 static int
1871 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1872 const struct wg_msg_init *wgmi)
1873 {
1874 int error;
1875 struct mbuf *m;
1876 struct wg_msg_resp *wgmr;
1877
1878 m = m_gethdr(M_WAIT, MT_DATA);
1879 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
1880 wgmr = mtod(m, struct wg_msg_resp *);
1881 wg_fill_msg_resp(wg, wgp, wgmr, wgmi);
1882
1883 error = wg->wg_ops->send_hs_msg(wgp, m);
1884 if (error == 0)
1885 WG_TRACE("resp msg sent");
1886 return error;
1887 }
1888
1889 static struct wg_peer *
1890 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
1891 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
1892 {
1893 struct wg_peer *wgp;
1894
1895 int s = pserialize_read_enter();
1896 /* XXX O(n) */
1897 WG_PEER_READER_FOREACH(wgp, wg) {
1898 if (consttime_memequal(wgp->wgp_pubkey, pubkey,
1899 sizeof(wgp->wgp_pubkey)))
1900 break;
1901 }
1902 if (wgp != NULL)
1903 wg_get_peer(wgp, psref);
1904 pserialize_read_exit(s);
1905
1906 return wgp;
1907 }
1908
1909 static void
1910 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
1911 struct wg_msg_cookie *wgmc, const uint32_t sender,
1912 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
1913 {
1914 uint8_t cookie[WG_COOKIE_LEN];
1915 uint8_t key[WG_HASH_LEN];
1916 uint8_t addr[sizeof(struct in6_addr)];
1917 size_t addrlen;
1918 uint16_t uh_sport; /* be */
1919
1920 wgmc->wgmc_type = WG_MSG_TYPE_COOKIE;
1921 wgmc->wgmc_receiver = sender;
1922 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
1923
1924 /*
1925 * [W] 5.4.7: Under Load: Cookie Reply Message
1926 * "The secret variable, Rm, changes every two minutes to a
1927 * random value"
1928 */
1929 if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
1930 wgp->wgp_randval = cprng_strong32();
1931 wgp->wgp_last_genrandval_time = time_uptime;
1932 }
1933
1934 switch (src->sa_family) {
1935 case AF_INET: {
1936 const struct sockaddr_in *sin = satocsin(src);
1937 addrlen = sizeof(sin->sin_addr);
1938 memcpy(addr, &sin->sin_addr, addrlen);
1939 uh_sport = sin->sin_port;
1940 break;
1941 }
1942 #ifdef INET6
1943 case AF_INET6: {
1944 const struct sockaddr_in6 *sin6 = satocsin6(src);
1945 addrlen = sizeof(sin6->sin6_addr);
1946 memcpy(addr, &sin6->sin6_addr, addrlen);
1947 uh_sport = sin6->sin6_port;
1948 break;
1949 }
1950 #endif
1951 default:
1952 panic("invalid af=%d", wgp->wgp_sa.sa_family);
1953 }
1954
1955 wg_algo_mac(cookie, sizeof(cookie),
1956 (uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
1957 addr, addrlen, (uint8_t *)&uh_sport, sizeof(uh_sport));
1958 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
1959 sizeof(wg->wg_pubkey));
1960 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
1961 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
1962
1963 /* Need to store to calculate mac2 */
1964 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
1965 wgp->wgp_last_sent_cookie_valid = true;
1966 }
1967
1968 static int
1969 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
1970 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
1971 const struct sockaddr *src)
1972 {
1973 int error;
1974 struct mbuf *m;
1975 struct wg_msg_cookie *wgmc;
1976
1977 m = m_gethdr(M_WAIT, MT_DATA);
1978 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
1979 wgmc = mtod(m, struct wg_msg_cookie *);
1980 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
1981
1982 error = wg->wg_ops->send_hs_msg(wgp, m);
1983 if (error == 0)
1984 WG_TRACE("cookie msg sent");
1985 return error;
1986 }
1987
1988 static bool
1989 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
1990 {
1991 #ifdef WG_DEBUG_PARAMS
1992 if (wg_force_underload)
1993 return true;
1994 #endif
1995
1996 /*
1997 * XXX we don't have a means of a load estimation. The purpose of
1998 * the mechanism is a DoS mitigation, so we consider frequent handshake
1999 * messages as (a kind of) load; if a message of the same type comes
2000 * to a peer within 1 second, we consider we are under load.
2001 */
2002 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2003 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2004 return (time_uptime - last) == 0;
2005 }
2006
2007 static void
2008 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2009 {
2010
2011 /*
2012 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2013 */
2014 if (initiator) {
2015 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2016 wgs->wgs_chaining_key, NULL, 0);
2017 } else {
2018 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2019 wgs->wgs_chaining_key, NULL, 0);
2020 }
2021 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2022 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2023 }
2024
2025 static void
2026 wg_clear_states(struct wg_session *wgs)
2027 {
2028
2029 wgs->wgs_send_counter = 0;
2030 sliwin_reset(&wgs->wgs_recvwin->window);
2031
2032 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2033 wgs_clear(handshake_hash);
2034 wgs_clear(chaining_key);
2035 wgs_clear(ephemeral_key_pub);
2036 wgs_clear(ephemeral_key_priv);
2037 wgs_clear(ephemeral_key_peer);
2038 #undef wgs_clear
2039 }
2040
2041 static struct wg_session *
2042 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2043 struct psref *psref)
2044 {
2045 struct wg_peer *wgp;
2046 struct wg_session *wgs;
2047
2048 int s = pserialize_read_enter();
2049 /* XXX O(n) */
2050 WG_PEER_READER_FOREACH(wgp, wg) {
2051 wgs = wgp->wgp_session_stable;
2052 WG_DLOG("index=%x wgs_sender_index=%x\n",
2053 index, wgs->wgs_sender_index);
2054 if (wgs->wgs_sender_index == index)
2055 break;
2056 wgs = wgp->wgp_session_unstable;
2057 WG_DLOG("index=%x wgs_sender_index=%x\n",
2058 index, wgs->wgs_sender_index);
2059 if (wgs->wgs_sender_index == index)
2060 break;
2061 wgs = NULL;
2062 }
2063 if (wgs != NULL)
2064 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2065 pserialize_read_exit(s);
2066
2067 return wgs;
2068 }
2069
2070 static void
2071 wg_schedule_rekey_timer(struct wg_peer *wgp)
2072 {
2073 int timeout = wg_rekey_after_time;
2074
2075 callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
2076 }
2077
2078 static void
2079 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2080 {
2081 struct mbuf *m;
2082
2083 /*
2084 * [W] 6.5 Passive Keepalive
2085 * "A keepalive message is simply a transport data message with
2086 * a zero-length encapsulated encrypted inner-packet."
2087 */
2088 m = m_gethdr(M_WAIT, MT_DATA);
2089 wg_send_data_msg(wgp, wgs, m);
2090 }
2091
2092 static bool
2093 wg_need_to_send_init_message(struct wg_session *wgs)
2094 {
2095 /*
2096 * [W] 6.2 Transport Message Limits
2097 * "if a peer is the initiator of a current secure session,
2098 * WireGuard will send a handshake initiation message to begin
2099 * a new secure session ... if after receiving a transport data
2100 * message, the current secure session is (REJECT-AFTER-TIME
2101 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2102 * not yet acted upon this event."
2103 */
2104 return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
2105 (time_uptime - wgs->wgs_time_established) >=
2106 (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
2107 }
2108
2109 static void
2110 wg_schedule_peer_task(struct wg_peer *wgp, int task)
2111 {
2112
2113 atomic_or_uint(&wgp->wgp_tasks, task);
2114 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2115 wg_wakeup_worker(wgp->wgp_sc->wg_worker, WG_WAKEUP_REASON_PEER);
2116 }
2117
2118 static void
2119 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2120 {
2121
2122 KASSERT(mutex_owned(wgp->wgp_lock));
2123
2124 WG_TRACE("Changing endpoint");
2125
2126 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2127 wgp->wgp_endpoint0 = atomic_swap_ptr(&wgp->wgp_endpoint,
2128 wgp->wgp_endpoint0);
2129 if (!wgp->wgp_endpoint_available)
2130 wgp->wgp_endpoint_available = true;
2131 wgp->wgp_endpoint_changing = true;
2132 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2133 }
2134
2135 static bool
2136 wg_validate_inner_packet(char *packet, size_t decrypted_len, int *af)
2137 {
2138 uint16_t packet_len;
2139 struct ip *ip;
2140
2141 if (__predict_false(decrypted_len < sizeof(struct ip)))
2142 return false;
2143
2144 ip = (struct ip *)packet;
2145 if (ip->ip_v == 4)
2146 *af = AF_INET;
2147 else if (ip->ip_v == 6)
2148 *af = AF_INET6;
2149 else
2150 return false;
2151
2152 WG_DLOG("af=%d\n", *af);
2153
2154 if (*af == AF_INET) {
2155 packet_len = ntohs(ip->ip_len);
2156 } else {
2157 struct ip6_hdr *ip6;
2158
2159 if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
2160 return false;
2161
2162 ip6 = (struct ip6_hdr *)packet;
2163 packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2164 }
2165
2166 WG_DLOG("packet_len=%u\n", packet_len);
2167 if (packet_len > decrypted_len)
2168 return false;
2169
2170 return true;
2171 }
2172
2173 static bool
2174 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2175 int af, char *packet)
2176 {
2177 struct sockaddr_storage ss;
2178 struct sockaddr *sa;
2179 struct psref psref;
2180 struct wg_peer *wgp;
2181 bool ok;
2182
2183 /*
2184 * II CRYPTOKEY ROUTING
2185 * "it will only accept it if its source IP resolves in the
2186 * table to the public key used in the secure session for
2187 * decrypting it."
2188 */
2189
2190 if (af == AF_INET) {
2191 struct ip *ip = (struct ip *)packet;
2192 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2193 sockaddr_in_init(sin, &ip->ip_src, 0);
2194 sa = sintosa(sin);
2195 #ifdef INET6
2196 } else {
2197 struct ip6_hdr *ip6 = (struct ip6_hdr *)packet;
2198 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2199 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2200 sa = sin6tosa(sin6);
2201 #endif
2202 }
2203
2204 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2205 ok = (wgp == wgp_expected);
2206 if (wgp != NULL)
2207 wg_put_peer(wgp, &psref);
2208
2209 return ok;
2210 }
2211
2212 static void
2213 wg_session_dtor_timer(void *arg)
2214 {
2215 struct wg_peer *wgp = arg;
2216
2217 WG_TRACE("enter");
2218
2219 mutex_enter(wgp->wgp_lock);
2220 if (__predict_false(wgp->wgp_state == WGP_STATE_DESTROYING)) {
2221 mutex_exit(wgp->wgp_lock);
2222 return;
2223 }
2224 mutex_exit(wgp->wgp_lock);
2225
2226 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2227 }
2228
2229 static void
2230 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2231 {
2232
2233 /* 1 second grace period */
2234 callout_schedule(&wgp->wgp_session_dtor_timer, hz);
2235 }
2236
2237 static void
2238 wg_stop_session_dtor_timer(struct wg_peer *wgp)
2239 {
2240
2241 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
2242 }
2243
2244 static bool
2245 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2246 {
2247 if (sa1->sa_family != sa2->sa_family)
2248 return false;
2249
2250 switch (sa1->sa_family) {
2251 case AF_INET:
2252 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2253 case AF_INET6:
2254 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2255 default:
2256 return true;
2257 }
2258 }
2259
2260 static void
2261 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2262 const struct sockaddr *src)
2263 {
2264
2265 #ifdef WG_DEBUG_LOG
2266 char oldaddr[128], newaddr[128];
2267 sockaddr_format(&wgp->wgp_sa, oldaddr, sizeof(oldaddr));
2268 sockaddr_format(src, newaddr, sizeof(newaddr));
2269 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2270 #endif
2271
2272 /*
2273 * III: "Since the packet has authenticated correctly, the source IP of
2274 * the outer UDP/IP packet is used to update the endpoint for peer..."
2275 */
2276 if (__predict_false(sockaddr_cmp(src, &wgp->wgp_sa) != 0 ||
2277 !sockaddr_port_match(src, &wgp->wgp_sa))) {
2278 mutex_enter(wgp->wgp_lock);
2279 /* XXX We can't change the endpoint twice in a short period */
2280 if (!wgp->wgp_endpoint_changing) {
2281 wg_change_endpoint(wgp, src);
2282 }
2283 mutex_exit(wgp->wgp_lock);
2284 }
2285 }
2286
2287 static void
2288 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2289 const struct sockaddr *src)
2290 {
2291 struct wg_msg_data *wgmd;
2292 char *encrypted_buf = NULL, *decrypted_buf;
2293 size_t encrypted_len, decrypted_len;
2294 struct wg_session *wgs;
2295 struct wg_peer *wgp;
2296 size_t mlen;
2297 struct psref psref;
2298 int error, af;
2299 bool success, free_encrypted_buf = false, ok;
2300 struct mbuf *n;
2301
2302 if (m->m_len < sizeof(struct wg_msg_data)) {
2303 m = m_pullup(m, sizeof(struct wg_msg_data));
2304 if (m == NULL)
2305 return;
2306 }
2307 wgmd = mtod(m, struct wg_msg_data *);
2308
2309 KASSERT(wgmd->wgmd_type == WG_MSG_TYPE_DATA);
2310 WG_TRACE("data");
2311
2312 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2313 if (wgs == NULL) {
2314 WG_TRACE("No session found");
2315 m_freem(m);
2316 return;
2317 }
2318 wgp = wgs->wgs_peer;
2319
2320 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2321 wgmd->wgmd_counter);
2322 if (error) {
2323 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2324 "out-of-window packet: %"PRIu64"\n",
2325 wgmd->wgmd_counter);
2326 goto out;
2327 }
2328
2329 mlen = m_length(m);
2330 encrypted_len = mlen - sizeof(*wgmd);
2331
2332 if (encrypted_len < WG_AUTHTAG_LEN) {
2333 WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
2334 goto out;
2335 }
2336
2337 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2338 if (success) {
2339 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2340 } else {
2341 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2342 if (encrypted_buf == NULL) {
2343 WG_DLOG("failed to allocate encrypted_buf\n");
2344 goto out;
2345 }
2346 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2347 free_encrypted_buf = true;
2348 }
2349 /* m_ensure_contig may change m regardless of its result */
2350 wgmd = mtod(m, struct wg_msg_data *);
2351
2352 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2353 if (decrypted_len > MCLBYTES) {
2354 /* FIXME handle larger data than MCLBYTES */
2355 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2356 goto out;
2357 }
2358
2359 /* To avoid zero length */
2360 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2361 if (n == NULL) {
2362 WG_DLOG("wg_get_mbuf failed\n");
2363 goto out;
2364 }
2365 decrypted_buf = mtod(n, char *);
2366
2367 WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
2368 error = wg_algo_aead_dec(decrypted_buf,
2369 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2370 wgs->wgs_tkey_recv, wgmd->wgmd_counter, encrypted_buf,
2371 encrypted_len, NULL, 0);
2372 if (error != 0) {
2373 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2374 "failed to wg_algo_aead_dec\n");
2375 m_freem(n);
2376 goto out;
2377 }
2378 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2379
2380 mutex_enter(&wgs->wgs_recvwin->lock);
2381 error = sliwin_update(&wgs->wgs_recvwin->window,
2382 wgmd->wgmd_counter);
2383 mutex_exit(&wgs->wgs_recvwin->lock);
2384 if (error) {
2385 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2386 "replay or out-of-window packet: %"PRIu64"\n",
2387 wgmd->wgmd_counter);
2388 m_freem(n);
2389 goto out;
2390 }
2391
2392 m_freem(m);
2393 m = NULL;
2394 wgmd = NULL;
2395
2396 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2397 if (!ok) {
2398 /* something wrong... */
2399 m_freem(n);
2400 goto out;
2401 }
2402
2403 wg_update_endpoint_if_necessary(wgp, src);
2404
2405 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2406 if (ok) {
2407 wg->wg_ops->input(&wg->wg_if, n, af);
2408 } else {
2409 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2410 "invalid source address\n");
2411 m_freem(n);
2412 /*
2413 * The inner address is invalid however the session is valid
2414 * so continue the session processing below.
2415 */
2416 }
2417 n = NULL;
2418
2419 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
2420 struct wg_session *wgs_prev;
2421
2422 KASSERT(wgs == wgp->wgp_session_unstable);
2423 wgs->wgs_state = WGS_STATE_ESTABLISHED;
2424 wgs->wgs_time_established = time_uptime;
2425 wgs->wgs_time_last_data_sent = 0;
2426 wgs->wgs_is_initiator = false;
2427 WG_TRACE("WGS_STATE_ESTABLISHED");
2428
2429 mutex_enter(wgp->wgp_lock);
2430 wg_swap_sessions(wgp);
2431 wgs_prev = wgp->wgp_session_unstable;
2432 mutex_enter(wgs_prev->wgs_lock);
2433 getnanotime(&wgp->wgp_last_handshake_time);
2434 wgp->wgp_handshake_start_time = 0;
2435 wgp->wgp_last_sent_mac1_valid = false;
2436 wgp->wgp_last_sent_cookie_valid = false;
2437 mutex_exit(wgp->wgp_lock);
2438
2439 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2440 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
2441 /* We can't destroy the old session immediately */
2442 wg_schedule_session_dtor_timer(wgp);
2443 } else {
2444 wg_clear_states(wgs_prev);
2445 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
2446 }
2447 mutex_exit(wgs_prev->wgs_lock);
2448
2449 /* Anyway run a softint to flush pending packets */
2450 kpreempt_disable();
2451 softint_schedule(wgp->wgp_si);
2452 kpreempt_enable();
2453 } else {
2454 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2455 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2456 }
2457 /*
2458 * [W] 6.5 Passive Keepalive
2459 * "If a peer has received a validly-authenticated transport
2460 * data message (section 5.4.6), but does not have any packets
2461 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2462 * a keepalive message."
2463 */
2464 WG_DLOG("time_uptime=%lu wgs_time_last_data_sent=%lu\n",
2465 time_uptime, wgs->wgs_time_last_data_sent);
2466 if ((time_uptime - wgs->wgs_time_last_data_sent) >=
2467 wg_keepalive_timeout) {
2468 WG_TRACE("Schedule sending keepalive message");
2469 /*
2470 * We can't send a keepalive message here to avoid
2471 * a deadlock; we already hold the solock of a socket
2472 * that is used to send the message.
2473 */
2474 wg_schedule_peer_task(wgp,
2475 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2476 }
2477 }
2478 out:
2479 wg_put_session(wgs, &psref);
2480 if (m != NULL)
2481 m_freem(m);
2482 if (free_encrypted_buf)
2483 kmem_intr_free(encrypted_buf, encrypted_len);
2484 }
2485
2486 static void
2487 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2488 {
2489 struct wg_session *wgs;
2490 struct wg_peer *wgp;
2491 struct psref psref;
2492 int error;
2493 uint8_t key[WG_HASH_LEN];
2494 uint8_t cookie[WG_COOKIE_LEN];
2495
2496 WG_TRACE("cookie msg received");
2497 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2498 if (wgs == NULL) {
2499 WG_TRACE("No session found");
2500 return;
2501 }
2502 wgp = wgs->wgs_peer;
2503
2504 if (!wgp->wgp_last_sent_mac1_valid) {
2505 WG_TRACE("No valid mac1 sent (or expired)");
2506 goto out;
2507 }
2508
2509 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
2510 sizeof(wgp->wgp_pubkey));
2511 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key, 0,
2512 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
2513 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
2514 wgmc->wgmc_salt);
2515 if (error != 0) {
2516 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2517 "wg_algo_aead_dec for cookie failed: error=%d\n", error);
2518 goto out;
2519 }
2520 /*
2521 * [W] 6.6: Interaction with Cookie Reply System
2522 * "it should simply store the decrypted cookie value from the cookie
2523 * reply message, and wait for the expiration of the REKEY-TIMEOUT
2524 * timer for retrying a handshake initiation message."
2525 */
2526 wgp->wgp_latest_cookie_time = time_uptime;
2527 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
2528 out:
2529 wg_put_session(wgs, &psref);
2530 }
2531
2532 static bool
2533 wg_validate_msg_length(struct wg_softc *wg, const struct mbuf *m)
2534 {
2535 struct wg_msg *wgm;
2536 size_t mlen;
2537
2538 mlen = m_length(m);
2539 if (__predict_false(mlen < sizeof(struct wg_msg)))
2540 return false;
2541
2542 wgm = mtod(m, struct wg_msg *);
2543 switch (wgm->wgm_type) {
2544 case WG_MSG_TYPE_INIT:
2545 if (__predict_true(mlen >= sizeof(struct wg_msg_init)))
2546 return true;
2547 break;
2548 case WG_MSG_TYPE_RESP:
2549 if (__predict_true(mlen >= sizeof(struct wg_msg_resp)))
2550 return true;
2551 break;
2552 case WG_MSG_TYPE_COOKIE:
2553 if (__predict_true(mlen >= sizeof(struct wg_msg_cookie)))
2554 return true;
2555 break;
2556 case WG_MSG_TYPE_DATA:
2557 if (__predict_true(mlen >= sizeof(struct wg_msg_data)))
2558 return true;
2559 break;
2560 default:
2561 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
2562 "Unexpected msg type: %u\n", wgm->wgm_type);
2563 return false;
2564 }
2565 WG_DLOG("Invalid msg size: mlen=%lu type=%u\n", mlen, wgm->wgm_type);
2566
2567 return false;
2568 }
2569
2570 static void
2571 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
2572 const struct sockaddr *src)
2573 {
2574 struct wg_msg *wgm;
2575 bool valid;
2576
2577 valid = wg_validate_msg_length(wg, m);
2578 if (!valid) {
2579 m_freem(m);
2580 return;
2581 }
2582
2583 wgm = mtod(m, struct wg_msg *);
2584 switch (wgm->wgm_type) {
2585 case WG_MSG_TYPE_INIT:
2586 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
2587 break;
2588 case WG_MSG_TYPE_RESP:
2589 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
2590 break;
2591 case WG_MSG_TYPE_COOKIE:
2592 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
2593 break;
2594 case WG_MSG_TYPE_DATA:
2595 wg_handle_msg_data(wg, m, src);
2596 break;
2597 default:
2598 /* wg_validate_msg_length should already reject this case */
2599 break;
2600 }
2601 }
2602
2603 static void
2604 wg_receive_packets(struct wg_softc *wg, const int af)
2605 {
2606
2607 for (;;) {
2608 int error, flags;
2609 struct socket *so;
2610 struct mbuf *m = NULL;
2611 struct uio dummy_uio;
2612 struct mbuf *paddr = NULL;
2613 struct sockaddr *src;
2614
2615 so = wg_get_so_by_af(wg->wg_worker, af);
2616 flags = MSG_DONTWAIT;
2617 dummy_uio.uio_resid = 1000000000;
2618
2619 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
2620 &flags);
2621 if (error || m == NULL) {
2622 //if (error == EWOULDBLOCK)
2623 return;
2624 }
2625
2626 KASSERT(paddr != NULL);
2627 src = mtod(paddr, struct sockaddr *);
2628
2629 wg_handle_packet(wg, m, src);
2630 }
2631 }
2632
2633 static void
2634 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
2635 {
2636
2637 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
2638 }
2639
2640 static void
2641 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
2642 {
2643
2644 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
2645 }
2646
2647 static void
2648 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
2649 {
2650 struct psref psref;
2651 struct wg_session *wgs;
2652
2653 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
2654
2655 if (!wgp->wgp_endpoint_available) {
2656 WGLOG(LOG_DEBUG, "No endpoint available\n");
2657 /* XXX should do something? */
2658 return;
2659 }
2660
2661 wgs = wg_get_stable_session(wgp, &psref);
2662 if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
2663 wg_put_session(wgs, &psref);
2664 wg_send_handshake_msg_init(wg, wgp);
2665 } else {
2666 wg_put_session(wgs, &psref);
2667 /* rekey */
2668 wgs = wg_get_unstable_session(wgp, &psref);
2669 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2670 wg_send_handshake_msg_init(wg, wgp);
2671 wg_put_session(wgs, &psref);
2672 }
2673 }
2674
2675 static void
2676 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
2677 {
2678
2679 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
2680
2681 mutex_enter(wgp->wgp_lock);
2682 if (wgp->wgp_endpoint_changing) {
2683 pserialize_perform(wgp->wgp_psz);
2684 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
2685 wg_psref_class);
2686 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
2687 wg_psref_class);
2688 wgp->wgp_endpoint_changing = false;
2689 }
2690 mutex_exit(wgp->wgp_lock);
2691 }
2692
2693 static void
2694 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
2695 {
2696 struct psref psref;
2697 struct wg_session *wgs;
2698
2699 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
2700
2701 wgs = wg_get_stable_session(wgp, &psref);
2702 wg_send_keepalive_msg(wgp, wgs);
2703 wg_put_session(wgs, &psref);
2704 }
2705
2706 static void
2707 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
2708 {
2709 struct wg_session *wgs;
2710
2711 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
2712
2713 mutex_enter(wgp->wgp_lock);
2714 wgs = wgp->wgp_session_unstable;
2715 mutex_enter(wgs->wgs_lock);
2716 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
2717 pserialize_perform(wgp->wgp_psz);
2718 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
2719 psref_target_init(&wgs->wgs_psref, wg_psref_class);
2720 wg_clear_states(wgs);
2721 wgs->wgs_state = WGS_STATE_UNKNOWN;
2722 }
2723 mutex_exit(wgs->wgs_lock);
2724 mutex_exit(wgp->wgp_lock);
2725 }
2726
2727 static void
2728 wg_process_peer_tasks(struct wg_softc *wg)
2729 {
2730 struct wg_peer *wgp;
2731 int s;
2732
2733 /* XXX should avoid checking all peers */
2734 s = pserialize_read_enter();
2735 WG_PEER_READER_FOREACH(wgp, wg) {
2736 struct psref psref;
2737 unsigned int tasks;
2738
2739 if (wgp->wgp_tasks == 0)
2740 continue;
2741
2742 wg_get_peer(wgp, &psref);
2743 pserialize_read_exit(s);
2744
2745 restart:
2746 tasks = atomic_swap_uint(&wgp->wgp_tasks, 0);
2747 KASSERT(tasks != 0);
2748
2749 WG_DLOG("tasks=%x\n", tasks);
2750
2751 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
2752 wg_task_send_init_message(wg, wgp);
2753 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
2754 wg_task_endpoint_changed(wg, wgp);
2755 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
2756 wg_task_send_keepalive_message(wg, wgp);
2757 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
2758 wg_task_destroy_prev_session(wg, wgp);
2759
2760 /* New tasks may be scheduled during processing tasks */
2761 WG_DLOG("wgp_tasks=%d\n", wgp->wgp_tasks);
2762 if (wgp->wgp_tasks != 0)
2763 goto restart;
2764
2765 s = pserialize_read_enter();
2766 wg_put_peer(wgp, &psref);
2767 }
2768 pserialize_read_exit(s);
2769 }
2770
2771 static void
2772 wg_worker(void *arg)
2773 {
2774 struct wg_softc *wg = arg;
2775 struct wg_worker *wgw = wg->wg_worker;
2776 bool todie = false;
2777
2778 KASSERT(wg != NULL);
2779 KASSERT(wgw != NULL);
2780
2781 while (!todie) {
2782 int reasons;
2783 int bound;
2784
2785 mutex_enter(&wgw->wgw_lock);
2786 /* New tasks may come during task handling */
2787 while ((reasons = wgw->wgw_wakeup_reasons) == 0 &&
2788 !(todie = wgw->wgw_todie))
2789 cv_wait(&wgw->wgw_cv, &wgw->wgw_lock);
2790 wgw->wgw_wakeup_reasons = 0;
2791 mutex_exit(&wgw->wgw_lock);
2792
2793 bound = curlwp_bind();
2794 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4))
2795 wg_receive_packets(wg, AF_INET);
2796 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6))
2797 wg_receive_packets(wg, AF_INET6);
2798 if (ISSET(reasons, WG_WAKEUP_REASON_PEER))
2799 wg_process_peer_tasks(wg);
2800 curlwp_bindx(bound);
2801 }
2802 kthread_exit(0);
2803 }
2804
2805 static void
2806 wg_wakeup_worker(struct wg_worker *wgw, const int reason)
2807 {
2808
2809 mutex_enter(&wgw->wgw_lock);
2810 wgw->wgw_wakeup_reasons |= reason;
2811 cv_broadcast(&wgw->wgw_cv);
2812 mutex_exit(&wgw->wgw_lock);
2813 }
2814
2815 static int
2816 wg_bind_port(struct wg_softc *wg, const uint16_t port)
2817 {
2818 int error;
2819 struct wg_worker *wgw = wg->wg_worker;
2820 uint16_t old_port = wg->wg_listen_port;
2821
2822 if (port != 0 && old_port == port)
2823 return 0;
2824
2825 struct sockaddr_in _sin, *sin = &_sin;
2826 sin->sin_len = sizeof(*sin);
2827 sin->sin_family = AF_INET;
2828 sin->sin_addr.s_addr = INADDR_ANY;
2829 sin->sin_port = htons(port);
2830
2831 error = sobind(wgw->wgw_so4, sintosa(sin), curlwp);
2832 if (error != 0)
2833 return error;
2834
2835 #ifdef INET6
2836 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
2837 sin6->sin6_len = sizeof(*sin6);
2838 sin6->sin6_family = AF_INET6;
2839 sin6->sin6_addr = in6addr_any;
2840 sin6->sin6_port = htons(port);
2841
2842 error = sobind(wgw->wgw_so6, sin6tosa(sin6), curlwp);
2843 if (error != 0)
2844 return error;
2845 #endif
2846
2847 wg->wg_listen_port = port;
2848
2849 return 0;
2850 }
2851
2852 static void
2853 wg_so_upcall(struct socket *so, void *arg, int events, int waitflag)
2854 {
2855 struct wg_worker *wgw = arg;
2856 int reason;
2857
2858 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
2859 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 :
2860 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6;
2861 wg_wakeup_worker(wgw, reason);
2862 }
2863
2864 static int
2865 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
2866 struct sockaddr *src, void *arg)
2867 {
2868 struct wg_softc *wg = arg;
2869 struct wg_msg wgm;
2870 struct mbuf *m = *mp;
2871
2872 WG_TRACE("enter");
2873
2874 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
2875 WG_DLOG("type=%d\n", wgm.wgm_type);
2876
2877 switch (wgm.wgm_type) {
2878 case WG_MSG_TYPE_DATA:
2879 m_adj(m, offset);
2880 wg_handle_msg_data(wg, m, src);
2881 *mp = NULL;
2882 return 1;
2883 default:
2884 break;
2885 }
2886
2887 return 0;
2888 }
2889
2890 static int
2891 wg_worker_socreate(struct wg_softc *wg, struct wg_worker *wgw, const int af,
2892 struct socket **sop)
2893 {
2894 int error;
2895 struct socket *so;
2896
2897 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
2898 if (error != 0)
2899 return error;
2900
2901 solock(so);
2902 so->so_upcallarg = wgw;
2903 so->so_upcall = wg_so_upcall;
2904 so->so_rcv.sb_flags |= SB_UPCALL;
2905 if (af == AF_INET)
2906 in_pcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
2907 #if INET6
2908 else
2909 in6_pcb_register_overudp_cb(sotoin6pcb(so), wg_overudp_cb, wg);
2910 #endif
2911 sounlock(so);
2912
2913 *sop = so;
2914
2915 return 0;
2916 }
2917
2918 static int
2919 wg_worker_init(struct wg_softc *wg)
2920 {
2921 int error;
2922 struct wg_worker *wgw;
2923 const char *ifname = wg->wg_if.if_xname;
2924 struct socket *so;
2925
2926 wgw = kmem_zalloc(sizeof(struct wg_worker), KM_SLEEP);
2927
2928 mutex_init(&wgw->wgw_lock, MUTEX_DEFAULT, IPL_NONE);
2929 cv_init(&wgw->wgw_cv, ifname);
2930 wgw->wgw_todie = false;
2931 wgw->wgw_wakeup_reasons = 0;
2932
2933 error = wg_worker_socreate(wg, wgw, AF_INET, &so);
2934 if (error != 0)
2935 goto error;
2936 wgw->wgw_so4 = so;
2937 #ifdef INET6
2938 error = wg_worker_socreate(wg, wgw, AF_INET6, &so);
2939 if (error != 0)
2940 goto error;
2941 wgw->wgw_so6 = so;
2942 #endif
2943
2944 wg->wg_worker = wgw;
2945
2946 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE | KTHREAD_MUSTJOIN,
2947 NULL, wg_worker, wg, &wg->wg_worker_lwp, "%s", ifname);
2948 if (error != 0)
2949 goto error;
2950
2951 return 0;
2952
2953 error:
2954 #ifdef INET6
2955 if (wgw->wgw_so6 != NULL)
2956 soclose(wgw->wgw_so6);
2957 #endif
2958 if (wgw->wgw_so4 != NULL)
2959 soclose(wgw->wgw_so4);
2960 cv_destroy(&wgw->wgw_cv);
2961 mutex_destroy(&wgw->wgw_lock);
2962
2963 return error;
2964 }
2965
2966 static void
2967 wg_worker_destroy(struct wg_softc *wg)
2968 {
2969 struct wg_worker *wgw = wg->wg_worker;
2970
2971 mutex_enter(&wgw->wgw_lock);
2972 wgw->wgw_todie = true;
2973 wgw->wgw_wakeup_reasons = 0;
2974 cv_broadcast(&wgw->wgw_cv);
2975 mutex_exit(&wgw->wgw_lock);
2976
2977 kthread_join(wg->wg_worker_lwp);
2978
2979 #ifdef INET6
2980 soclose(wgw->wgw_so6);
2981 #endif
2982 soclose(wgw->wgw_so4);
2983 cv_destroy(&wgw->wgw_cv);
2984 mutex_destroy(&wgw->wgw_lock);
2985 kmem_free(wg->wg_worker, sizeof(struct wg_worker));
2986 wg->wg_worker = NULL;
2987 }
2988
2989 static bool
2990 wg_session_hit_limits(struct wg_session *wgs)
2991 {
2992
2993 /*
2994 * [W] 6.2: Transport Message Limits
2995 * "After REJECT-AFTER-MESSAGES transport data messages or after the
2996 * current secure session is REJECT-AFTER-TIME seconds old, whichever
2997 * comes first, WireGuard will refuse to send any more transport data
2998 * messages using the current secure session, ..."
2999 */
3000 KASSERT(wgs->wgs_time_established != 0);
3001 if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
3002 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3003 return true;
3004 } else if (wgs->wgs_send_counter > wg_reject_after_messages) {
3005 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3006 return true;
3007 }
3008
3009 return false;
3010 }
3011
3012 static void
3013 wg_peer_softint(void *arg)
3014 {
3015 struct wg_peer *wgp = arg;
3016 struct wg_session *wgs;
3017 struct mbuf *m;
3018 struct psref psref;
3019
3020 wgs = wg_get_stable_session(wgp, &psref);
3021 if (wgs->wgs_state != WGS_STATE_ESTABLISHED) {
3022 /* XXX how to treat? */
3023 WG_TRACE("skipped");
3024 goto out;
3025 }
3026 if (wg_session_hit_limits(wgs)) {
3027 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3028 goto out;
3029 }
3030 WG_TRACE("running");
3031
3032 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3033 wg_send_data_msg(wgp, wgs, m);
3034 }
3035 out:
3036 wg_put_session(wgs, &psref);
3037 }
3038
3039 static void
3040 wg_rekey_timer(void *arg)
3041 {
3042 struct wg_peer *wgp = arg;
3043
3044 mutex_enter(wgp->wgp_lock);
3045 if (__predict_true(wgp->wgp_state != WGP_STATE_DESTROYING)) {
3046 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3047 }
3048 mutex_exit(wgp->wgp_lock);
3049 }
3050
3051 static void
3052 wg_purge_pending_packets(struct wg_peer *wgp)
3053 {
3054 struct mbuf *m;
3055
3056 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3057 m_freem(m);
3058 }
3059 }
3060
3061 static void
3062 wg_handshake_timeout_timer(void *arg)
3063 {
3064 struct wg_peer *wgp = arg;
3065 struct wg_session *wgs;
3066 struct psref psref;
3067
3068 WG_TRACE("enter");
3069
3070 mutex_enter(wgp->wgp_lock);
3071 if (__predict_false(wgp->wgp_state == WGP_STATE_DESTROYING)) {
3072 mutex_exit(wgp->wgp_lock);
3073 return;
3074 }
3075 mutex_exit(wgp->wgp_lock);
3076
3077 KASSERT(wgp->wgp_handshake_start_time != 0);
3078 wgs = wg_get_unstable_session(wgp, &psref);
3079 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
3080
3081 /* [W] 6.4 Handshake Initiation Retransmission */
3082 if ((time_uptime - wgp->wgp_handshake_start_time) >
3083 wg_rekey_attempt_time) {
3084 /* Give up handshaking */
3085 wgs->wgs_state = WGS_STATE_UNKNOWN;
3086 wg_clear_states(wgs);
3087 wgp->wgp_state = WGP_STATE_GIVEUP;
3088 wgp->wgp_handshake_start_time = 0;
3089 wg_put_session(wgs, &psref);
3090 WG_TRACE("give up");
3091 /*
3092 * If a new data packet comes, handshaking will be retried
3093 * and a new session would be established at that time,
3094 * however we don't want to send pending packets then.
3095 */
3096 wg_purge_pending_packets(wgp);
3097 return;
3098 }
3099
3100 /* No response for an initiation message sent, retry handshaking */
3101 wgs->wgs_state = WGS_STATE_UNKNOWN;
3102 wg_clear_states(wgs);
3103 wg_put_session(wgs, &psref);
3104
3105 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3106 }
3107
3108 static struct wg_peer *
3109 wg_alloc_peer(struct wg_softc *wg)
3110 {
3111 struct wg_peer *wgp;
3112
3113 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3114
3115 wgp->wgp_sc = wg;
3116 wgp->wgp_state = WGP_STATE_INIT;
3117 wgp->wgp_q = pcq_create(1024, KM_SLEEP);
3118 wgp->wgp_si = softint_establish(SOFTINT_NET, wg_peer_softint, wgp);
3119 callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
3120 callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
3121 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3122 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3123 wg_handshake_timeout_timer, wgp);
3124 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3125 callout_setfunc(&wgp->wgp_session_dtor_timer,
3126 wg_session_dtor_timer, wgp);
3127 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3128 wgp->wgp_endpoint_changing = false;
3129 wgp->wgp_endpoint_available = false;
3130 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3131 wgp->wgp_psz = pserialize_create();
3132 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3133
3134 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3135 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3136 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3137 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3138
3139 struct wg_session *wgs;
3140 wgp->wgp_session_stable =
3141 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3142 wgp->wgp_session_unstable =
3143 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3144 wgs = wgp->wgp_session_stable;
3145 wgs->wgs_peer = wgp;
3146 wgs->wgs_state = WGS_STATE_UNKNOWN;
3147 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3148 wgs->wgs_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3149 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3150 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_NONE);
3151
3152 wgs = wgp->wgp_session_unstable;
3153 wgs->wgs_peer = wgp;
3154 wgs->wgs_state = WGS_STATE_UNKNOWN;
3155 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3156 wgs->wgs_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3157 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3158 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_NONE);
3159
3160 return wgp;
3161 }
3162
3163 static void
3164 wg_destroy_peer(struct wg_peer *wgp)
3165 {
3166 struct wg_session *wgs;
3167 struct wg_softc *wg = wgp->wgp_sc;
3168
3169 rw_enter(wg->wg_rwlock, RW_WRITER);
3170 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3171 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3172 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3173 struct radix_node *rn;
3174
3175 KASSERT(rnh != NULL);
3176 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3177 &wga->wga_sa_mask, rnh);
3178 if (rn == NULL) {
3179 char addrstr[128];
3180 sockaddr_format(&wga->wga_sa_addr, addrstr,
3181 sizeof(addrstr));
3182 WGLOG(LOG_WARNING, "Couldn't delete %s", addrstr);
3183 }
3184 }
3185 rw_exit(wg->wg_rwlock);
3186
3187 softint_disestablish(wgp->wgp_si);
3188 callout_halt(&wgp->wgp_rekey_timer, NULL);
3189 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3190 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3191
3192 wgs = wgp->wgp_session_unstable;
3193 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
3194 mutex_obj_free(wgs->wgs_lock);
3195 mutex_destroy(&wgs->wgs_recvwin->lock);
3196 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3197 kmem_free(wgs, sizeof(*wgs));
3198 wgs = wgp->wgp_session_stable;
3199 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
3200 mutex_obj_free(wgs->wgs_lock);
3201 mutex_destroy(&wgs->wgs_recvwin->lock);
3202 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3203 kmem_free(wgs, sizeof(*wgs));
3204
3205 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3206 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3207 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3208 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3209
3210 pserialize_destroy(wgp->wgp_psz);
3211 pcq_destroy(wgp->wgp_q);
3212 mutex_obj_free(wgp->wgp_lock);
3213
3214 kmem_free(wgp, sizeof(*wgp));
3215 }
3216
3217 static void
3218 wg_destroy_all_peers(struct wg_softc *wg)
3219 {
3220 struct wg_peer *wgp;
3221
3222 restart:
3223 mutex_enter(wg->wg_lock);
3224 WG_PEER_WRITER_FOREACH(wgp, wg) {
3225 WG_PEER_WRITER_REMOVE(wgp);
3226 mutex_enter(wgp->wgp_lock);
3227 wgp->wgp_state = WGP_STATE_DESTROYING;
3228 pserialize_perform(wgp->wgp_psz);
3229 mutex_exit(wgp->wgp_lock);
3230 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3231 break;
3232 }
3233 mutex_exit(wg->wg_lock);
3234
3235 if (wgp == NULL)
3236 return;
3237
3238 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3239
3240 wg_destroy_peer(wgp);
3241
3242 goto restart;
3243 }
3244
3245 static int
3246 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3247 {
3248 struct wg_peer *wgp;
3249
3250 mutex_enter(wg->wg_lock);
3251 WG_PEER_WRITER_FOREACH(wgp, wg) {
3252 if (strcmp(wgp->wgp_name, name) == 0)
3253 break;
3254 }
3255 if (wgp != NULL) {
3256 WG_PEER_WRITER_REMOVE(wgp);
3257 wg->wg_npeers--;
3258 mutex_enter(wgp->wgp_lock);
3259 wgp->wgp_state = WGP_STATE_DESTROYING;
3260 pserialize_perform(wgp->wgp_psz);
3261 mutex_exit(wgp->wgp_lock);
3262 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3263 }
3264 mutex_exit(wg->wg_lock);
3265
3266 if (wgp == NULL)
3267 return ENOENT;
3268
3269 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3270
3271 wg_destroy_peer(wgp);
3272
3273 return 0;
3274 }
3275
3276 static int
3277 wg_if_attach(struct wg_softc *wg)
3278 {
3279 int error;
3280
3281 wg->wg_if.if_addrlen = 0;
3282 wg->wg_if.if_mtu = WG_MTU;
3283 wg->wg_if.if_flags = IFF_POINTOPOINT;
3284 wg->wg_if.if_extflags = IFEF_NO_LINK_STATE_CHANGE;
3285 wg->wg_if.if_extflags |= IFEF_MPSAFE;
3286 wg->wg_if.if_ioctl = wg_ioctl;
3287 wg->wg_if.if_output = wg_output;
3288 wg->wg_if.if_init = wg_init;
3289 wg->wg_if.if_stop = wg_stop;
3290 wg->wg_if.if_type = IFT_WIREGUARD;
3291 wg->wg_if.if_dlt = DLT_NULL;
3292 wg->wg_if.if_softc = wg;
3293 IFQ_SET_READY(&wg->wg_if.if_snd);
3294
3295 error = if_initialize(&wg->wg_if);
3296 if (error != 0)
3297 return error;
3298
3299 if_alloc_sadl(&wg->wg_if);
3300 if_register(&wg->wg_if);
3301
3302 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3303
3304 return 0;
3305 }
3306
3307 static int
3308 wg_clone_create(struct if_clone *ifc, int unit)
3309 {
3310 struct wg_softc *wg;
3311 int error;
3312
3313 wg = kmem_zalloc(sizeof(struct wg_softc), KM_SLEEP);
3314
3315 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3316
3317 error = wg_worker_init(wg);
3318 if (error != 0) {
3319 kmem_free(wg, sizeof(struct wg_softc));
3320 return error;
3321 }
3322
3323 rn_inithead((void **)&wg->wg_rtable_ipv4,
3324 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3325 #ifdef INET6
3326 rn_inithead((void **)&wg->wg_rtable_ipv6,
3327 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3328 #endif
3329
3330 PSLIST_INIT(&wg->wg_peers);
3331 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3332 wg->wg_rwlock = rw_obj_alloc();
3333 wg->wg_ops = &wg_ops_rumpkernel;
3334
3335 error = wg_if_attach(wg);
3336 if (error != 0) {
3337 wg_worker_destroy(wg);
3338 if (wg->wg_rtable_ipv4 != NULL)
3339 free(wg->wg_rtable_ipv4, M_RTABLE);
3340 if (wg->wg_rtable_ipv6 != NULL)
3341 free(wg->wg_rtable_ipv6, M_RTABLE);
3342 PSLIST_DESTROY(&wg->wg_peers);
3343 mutex_obj_free(wg->wg_lock);
3344 kmem_free(wg, sizeof(struct wg_softc));
3345 return error;
3346 }
3347
3348 mutex_enter(&wg_softcs.lock);
3349 LIST_INSERT_HEAD(&wg_softcs.list, wg, wg_list);
3350 mutex_exit(&wg_softcs.lock);
3351
3352 return 0;
3353 }
3354
3355 static int
3356 wg_clone_destroy(struct ifnet *ifp)
3357 {
3358 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
3359
3360 mutex_enter(&wg_softcs.lock);
3361 LIST_REMOVE(wg, wg_list);
3362 mutex_exit(&wg_softcs.lock);
3363
3364 #ifdef WG_RUMPKERNEL
3365 if (wg_user_mode(wg)) {
3366 rumpuser_wg_destroy(wg->wg_user);
3367 wg->wg_user = NULL;
3368 }
3369 #endif
3370
3371 bpf_detach(ifp);
3372 if_detach(ifp);
3373 wg_worker_destroy(wg);
3374 wg_destroy_all_peers(wg);
3375 if (wg->wg_rtable_ipv4 != NULL)
3376 free(wg->wg_rtable_ipv4, M_RTABLE);
3377 if (wg->wg_rtable_ipv6 != NULL)
3378 free(wg->wg_rtable_ipv6, M_RTABLE);
3379
3380 PSLIST_DESTROY(&wg->wg_peers);
3381 mutex_obj_free(wg->wg_lock);
3382 rw_obj_free(wg->wg_rwlock);
3383
3384 kmem_free(wg, sizeof(struct wg_softc));
3385
3386 return 0;
3387 }
3388
3389 static struct wg_peer *
3390 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
3391 struct psref *psref)
3392 {
3393 struct radix_node_head *rnh;
3394 struct radix_node *rn;
3395 struct wg_peer *wgp = NULL;
3396 struct wg_allowedip *wga;
3397
3398 #ifdef WG_DEBUG_LOG
3399 char addrstr[128];
3400 sockaddr_format(sa, addrstr, sizeof(addrstr));
3401 WG_DLOG("sa=%s\n", addrstr);
3402 #endif
3403
3404 rw_enter(wg->wg_rwlock, RW_READER);
3405
3406 rnh = wg_rnh(wg, sa->sa_family);
3407 if (rnh == NULL)
3408 goto out;
3409
3410 rn = rnh->rnh_matchaddr(sa, rnh);
3411 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
3412 goto out;
3413
3414 WG_TRACE("success");
3415
3416 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
3417 wgp = wga->wga_peer;
3418 wg_get_peer(wgp, psref);
3419
3420 out:
3421 rw_exit(wg->wg_rwlock);
3422 return wgp;
3423 }
3424
3425 static void
3426 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
3427 struct wg_session *wgs, struct wg_msg_data *wgmd)
3428 {
3429
3430 memset(wgmd, 0, sizeof(*wgmd));
3431 wgmd->wgmd_type = WG_MSG_TYPE_DATA;
3432 wgmd->wgmd_receiver = wgs->wgs_receiver_index;
3433 /* [W] 5.4.6: msg.counter := Nm^send */
3434 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
3435 wgmd->wgmd_counter = atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
3436 WG_DLOG("counter=%"PRIu64"\n", wgmd->wgmd_counter);
3437 }
3438
3439 static int
3440 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
3441 const struct rtentry *rt)
3442 {
3443 struct wg_softc *wg = ifp->if_softc;
3444 int error = 0;
3445 int bound;
3446 struct psref psref;
3447
3448 /* TODO make the nest limit configurable via sysctl */
3449 error = if_tunnel_check_nesting(ifp, m, 1);
3450 if (error != 0) {
3451 m_freem(m);
3452 WGLOG(LOG_ERR, "tunneling loop detected and packet dropped\n");
3453 return error;
3454 }
3455
3456 bound = curlwp_bind();
3457
3458 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
3459
3460 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
3461
3462 m->m_flags &= ~(M_BCAST|M_MCAST);
3463
3464 struct wg_peer *wgp = wg_pick_peer_by_sa(wg, dst, &psref);
3465 if (wgp == NULL) {
3466 WG_TRACE("peer not found");
3467 error = EHOSTUNREACH;
3468 goto error;
3469 }
3470
3471 /* Clear checksum-offload flags. */
3472 m->m_pkthdr.csum_flags = 0;
3473 m->m_pkthdr.csum_data = 0;
3474
3475 if (!pcq_put(wgp->wgp_q, m)) {
3476 error = ENOBUFS;
3477 goto error;
3478 }
3479
3480 struct psref psref_wgs;
3481 struct wg_session *wgs;
3482 wgs = wg_get_stable_session(wgp, &psref_wgs);
3483 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3484 !wg_session_hit_limits(wgs)) {
3485 kpreempt_disable();
3486 softint_schedule(wgp->wgp_si);
3487 kpreempt_enable();
3488 WG_TRACE("softint scheduled");
3489 } else {
3490 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3491 WG_TRACE("softint NOT scheduled");
3492 }
3493 wg_put_session(wgs, &psref_wgs);
3494 wg_put_peer(wgp, &psref);
3495
3496 return 0;
3497
3498 error:
3499 if (wgp != NULL)
3500 wg_put_peer(wgp, &psref);
3501 if (m != NULL)
3502 m_freem(m);
3503 curlwp_bindx(bound);
3504 return error;
3505 }
3506
3507 static int
3508 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
3509 {
3510 struct psref psref;
3511 struct wg_sockaddr *wgsa;
3512 int error;
3513 struct socket *so = wg_get_so_by_peer(wgp);
3514
3515 solock(so);
3516 wgsa = wg_get_endpoint_sa(wgp, &psref);
3517 if (wgsatosa(wgsa)->sa_family == AF_INET) {
3518 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
3519 } else {
3520 #ifdef INET6
3521 error = udp6_output(sotoin6pcb(so), m, wgsatosin6(wgsa),
3522 NULL, curlwp);
3523 #else
3524 error = EPROTONOSUPPORT;
3525 #endif
3526 }
3527 wg_put_sa(wgp, wgsa, &psref);
3528 sounlock(so);
3529
3530 return error;
3531 }
3532
3533 /* Inspired by pppoe_get_mbuf */
3534 static struct mbuf *
3535 wg_get_mbuf(size_t leading_len, size_t len)
3536 {
3537 struct mbuf *m;
3538
3539 m = m_gethdr(M_DONTWAIT, MT_DATA);
3540 if (m == NULL)
3541 return NULL;
3542 if (len + leading_len > MHLEN) {
3543 m_clget(m, M_DONTWAIT);
3544 if ((m->m_flags & M_EXT) == 0) {
3545 m_free(m);
3546 return NULL;
3547 }
3548 }
3549 m->m_data += leading_len;
3550 m->m_pkthdr.len = m->m_len = len;
3551
3552 return m;
3553 }
3554
3555 static int
3556 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
3557 struct mbuf *m)
3558 {
3559 struct wg_softc *wg = wgp->wgp_sc;
3560 int error;
3561 size_t inner_len, padded_len, encrypted_len;
3562 char *padded_buf = NULL;
3563 size_t mlen;
3564 struct wg_msg_data *wgmd;
3565 bool free_padded_buf = false;
3566 struct mbuf *n;
3567 size_t leading_len = max_linkhdr + sizeof(struct ip6_hdr) +
3568 sizeof(struct udphdr);
3569
3570 mlen = m_length(m);
3571 inner_len = mlen;
3572 padded_len = roundup(mlen, 16);
3573 encrypted_len = padded_len + WG_AUTHTAG_LEN;
3574 WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
3575 inner_len, padded_len, encrypted_len);
3576 if (mlen != 0) {
3577 bool success;
3578 success = m_ensure_contig(&m, padded_len);
3579 if (success) {
3580 padded_buf = mtod(m, char *);
3581 } else {
3582 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
3583 if (padded_buf == NULL) {
3584 error = ENOBUFS;
3585 goto end;
3586 }
3587 free_padded_buf = true;
3588 m_copydata(m, 0, mlen, padded_buf);
3589 }
3590 memset(padded_buf + mlen, 0, padded_len - inner_len);
3591 }
3592
3593 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
3594 if (n == NULL) {
3595 error = ENOBUFS;
3596 goto end;
3597 }
3598 wgmd = mtod(n, struct wg_msg_data *);
3599 wg_fill_msg_data(wg, wgp, wgs, wgmd);
3600 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
3601 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
3602 wgs->wgs_tkey_send, wgmd->wgmd_counter, padded_buf, padded_len,
3603 NULL, 0);
3604
3605 error = wg->wg_ops->send_data_msg(wgp, n);
3606 if (error == 0) {
3607 struct ifnet *ifp = &wg->wg_if;
3608 if_statadd(ifp, if_obytes, mlen);
3609 if_statinc(ifp, if_opackets);
3610 if (wgs->wgs_is_initiator &&
3611 wgs->wgs_time_last_data_sent == 0) {
3612 /*
3613 * [W] 6.2 Transport Message Limits
3614 * "if a peer is the initiator of a current secure
3615 * session, WireGuard will send a handshake initiation
3616 * message to begin a new secure session if, after
3617 * transmitting a transport data message, the current
3618 * secure session is REKEY-AFTER-TIME seconds old,"
3619 */
3620 wg_schedule_rekey_timer(wgp);
3621 }
3622 wgs->wgs_time_last_data_sent = time_uptime;
3623 if (wgs->wgs_send_counter >= wg_rekey_after_messages) {
3624 /*
3625 * [W] 6.2 Transport Message Limits
3626 * "WireGuard will try to create a new session, by
3627 * sending a handshake initiation message (section
3628 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
3629 * transport data messages..."
3630 */
3631 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3632 }
3633 }
3634 end:
3635 m_freem(m);
3636 if (free_padded_buf)
3637 kmem_intr_free(padded_buf, padded_len);
3638 return error;
3639 }
3640
3641 static void
3642 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
3643 {
3644 pktqueue_t *pktq;
3645 size_t pktlen;
3646
3647 KASSERT(af == AF_INET || af == AF_INET6);
3648
3649 WG_TRACE("");
3650
3651 m_set_rcvif(m, ifp);
3652 pktlen = m->m_pkthdr.len;
3653
3654 bpf_mtap_af(ifp, af, m, BPF_D_IN);
3655
3656 switch (af) {
3657 case AF_INET:
3658 pktq = ip_pktq;
3659 break;
3660 #ifdef INET6
3661 case AF_INET6:
3662 pktq = ip6_pktq;
3663 break;
3664 #endif
3665 default:
3666 panic("invalid af=%d", af);
3667 }
3668
3669 const u_int h = curcpu()->ci_index;
3670 if (__predict_true(pktq_enqueue(pktq, m, h))) {
3671 if_statadd(ifp, if_ibytes, pktlen);
3672 if_statinc(ifp, if_ipackets);
3673 } else {
3674 m_freem(m);
3675 }
3676 }
3677
3678 static void
3679 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
3680 const uint8_t privkey[WG_STATIC_KEY_LEN])
3681 {
3682
3683 crypto_scalarmult_base(pubkey, privkey);
3684 }
3685
3686 static int
3687 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
3688 {
3689 struct radix_node_head *rnh;
3690 struct radix_node *rn;
3691 int error = 0;
3692
3693 rw_enter(wg->wg_rwlock, RW_WRITER);
3694 rnh = wg_rnh(wg, wga->wga_family);
3695 KASSERT(rnh != NULL);
3696 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
3697 wga->wga_nodes);
3698 rw_exit(wg->wg_rwlock);
3699
3700 if (rn == NULL)
3701 error = EEXIST;
3702
3703 return error;
3704 }
3705
3706 static int
3707 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
3708 struct wg_peer **wgpp)
3709 {
3710 int error = 0;
3711 const void *pubkey;
3712 size_t pubkey_len;
3713 const void *psk;
3714 size_t psk_len;
3715 const char *name = NULL;
3716
3717 if (prop_dictionary_get_string(peer, "name", &name)) {
3718 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
3719 error = EINVAL;
3720 goto out;
3721 }
3722 }
3723
3724 if (!prop_dictionary_get_data(peer, "public_key",
3725 &pubkey, &pubkey_len)) {
3726 error = EINVAL;
3727 goto out;
3728 }
3729 #ifdef WG_DEBUG_DUMP
3730 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n", pubkey, pubkey_len);
3731 for (int _i = 0; _i < pubkey_len; _i++)
3732 log(LOG_DEBUG, "%c", ((const char *)pubkey)[_i]);
3733 log(LOG_DEBUG, "\n");
3734 #endif
3735
3736 struct wg_peer *wgp = wg_alloc_peer(wg);
3737 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
3738 if (name != NULL)
3739 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
3740
3741 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
3742 if (psk_len != sizeof(wgp->wgp_psk)) {
3743 error = EINVAL;
3744 goto out;
3745 }
3746 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
3747 }
3748
3749 struct sockaddr_storage sockaddr;
3750 const void *addr;
3751 size_t addr_len;
3752
3753 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
3754 goto skip_endpoint;
3755 memcpy(&sockaddr, addr, addr_len);
3756 switch (sockaddr.ss_family) {
3757 case AF_INET: {
3758 struct sockaddr_in sin;
3759 sockaddr_copy(sintosa(&sin), sizeof(sin),
3760 (struct sockaddr *)&sockaddr);
3761 sockaddr_copy(sintosa(&wgp->wgp_sin),
3762 sizeof(wgp->wgp_sin), (struct sockaddr *)&sockaddr);
3763 char addrstr[128];
3764 sockaddr_format(sintosa(&sin), addrstr, sizeof(addrstr));
3765 WG_DLOG("addr=%s\n", addrstr);
3766 break;
3767 }
3768 #ifdef INET6
3769 case AF_INET6: {
3770 struct sockaddr_in6 sin6;
3771 char addrstr[128];
3772 sockaddr_copy(sintosa(&sin6), sizeof(sin6),
3773 (struct sockaddr *)&sockaddr);
3774 sockaddr_format(sintosa(&sin6), addrstr, sizeof(addrstr));
3775 WG_DLOG("addr=%s\n", addrstr);
3776 sockaddr_copy(sin6tosa(&wgp->wgp_sin6),
3777 sizeof(wgp->wgp_sin6), (struct sockaddr *)&sockaddr);
3778 break;
3779 }
3780 #endif
3781 default:
3782 break;
3783 }
3784 wgp->wgp_endpoint_available = true;
3785
3786 prop_array_t allowedips;
3787 skip_endpoint:
3788 allowedips = prop_dictionary_get(peer, "allowedips");
3789 if (allowedips == NULL)
3790 goto skip;
3791
3792 prop_object_iterator_t _it = prop_array_iterator(allowedips);
3793 prop_dictionary_t prop_allowedip;
3794 int j = 0;
3795 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
3796 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
3797
3798 if (!prop_dictionary_get_int(prop_allowedip, "family",
3799 &wga->wga_family))
3800 continue;
3801 if (!prop_dictionary_get_data(prop_allowedip, "ip",
3802 &addr, &addr_len))
3803 continue;
3804 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
3805 &wga->wga_cidr))
3806 continue;
3807
3808 switch (wga->wga_family) {
3809 case AF_INET: {
3810 struct sockaddr_in sin;
3811 char addrstr[128];
3812 struct in_addr mask;
3813 struct sockaddr_in sin_mask;
3814
3815 if (addr_len != sizeof(struct in_addr))
3816 return EINVAL;
3817 memcpy(&wga->wga_addr4, addr, addr_len);
3818
3819 sockaddr_in_init(&sin, (const struct in_addr *)addr,
3820 0);
3821 sockaddr_copy(&wga->wga_sa_addr,
3822 sizeof(sin), sintosa(&sin));
3823
3824 sockaddr_format(sintosa(&sin),
3825 addrstr, sizeof(addrstr));
3826 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
3827
3828 in_len2mask(&mask, wga->wga_cidr);
3829 sockaddr_in_init(&sin_mask, &mask, 0);
3830 sockaddr_copy(&wga->wga_sa_mask,
3831 sizeof(sin_mask), sintosa(&sin_mask));
3832
3833 break;
3834 }
3835 #ifdef INET6
3836 case AF_INET6: {
3837 struct sockaddr_in6 sin6;
3838 char addrstr[128];
3839 struct in6_addr mask;
3840 struct sockaddr_in6 sin6_mask;
3841
3842 if (addr_len != sizeof(struct in6_addr))
3843 return EINVAL;
3844 memcpy(&wga->wga_addr6, addr, addr_len);
3845
3846 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
3847 0, 0, 0);
3848 sockaddr_copy(&wga->wga_sa_addr,
3849 sizeof(sin6), sin6tosa(&sin6));
3850
3851 sockaddr_format(sin6tosa(&sin6),
3852 addrstr, sizeof(addrstr));
3853 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
3854
3855 in6_prefixlen2mask(&mask, wga->wga_cidr);
3856 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
3857 sockaddr_copy(&wga->wga_sa_mask,
3858 sizeof(sin6_mask), sin6tosa(&sin6_mask));
3859
3860 break;
3861 }
3862 #endif
3863 default:
3864 error = EINVAL;
3865 goto out;
3866 }
3867 wga->wga_peer = wgp;
3868
3869 error = wg_rtable_add_route(wg, wga);
3870 if (error != 0)
3871 goto out;
3872
3873 j++;
3874 }
3875 wgp->wgp_n_allowedips = j;
3876 skip:
3877 *wgpp = wgp;
3878 out:
3879 return error;
3880 }
3881
3882 static int
3883 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
3884 {
3885 int error;
3886 char *buf;
3887
3888 WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
3889 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
3890 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
3891 if (error != 0)
3892 return error;
3893 buf[ifd->ifd_len] = '\0';
3894 #ifdef WG_DEBUG_DUMP
3895 for (int i = 0; i < ifd->ifd_len; i++)
3896 log(LOG_DEBUG, "%c", buf[i]);
3897 log(LOG_DEBUG, "\n");
3898 #endif
3899 *_buf = buf;
3900 return 0;
3901 }
3902
3903 static int
3904 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
3905 {
3906 int error;
3907 prop_dictionary_t prop_dict;
3908 char *buf = NULL;
3909 const void *privkey;
3910 size_t privkey_len;
3911
3912 error = wg_alloc_prop_buf(&buf, ifd);
3913 if (error != 0)
3914 return error;
3915 error = EINVAL;
3916 prop_dict = prop_dictionary_internalize(buf);
3917 if (prop_dict == NULL)
3918 goto out;
3919 if (!prop_dictionary_get_data(prop_dict, "private_key",
3920 &privkey, &privkey_len))
3921 goto out;
3922 #ifdef WG_DEBUG_DUMP
3923 log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n", privkey, privkey_len);
3924 for (int i = 0; i < privkey_len; i++)
3925 log(LOG_DEBUG, "%c", ((const char *)privkey)[i]);
3926 log(LOG_DEBUG, "\n");
3927 #endif
3928 if (privkey_len != WG_STATIC_KEY_LEN)
3929 goto out;
3930 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
3931 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
3932 error = 0;
3933
3934 out:
3935 kmem_free(buf, ifd->ifd_len + 1);
3936 return error;
3937 }
3938
3939 static int
3940 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
3941 {
3942 int error;
3943 prop_dictionary_t prop_dict;
3944 char *buf = NULL;
3945 uint16_t port;
3946
3947 error = wg_alloc_prop_buf(&buf, ifd);
3948 if (error != 0)
3949 return error;
3950 error = EINVAL;
3951 prop_dict = prop_dictionary_internalize(buf);
3952 if (prop_dict == NULL)
3953 goto out;
3954 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
3955 goto out;
3956
3957 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
3958
3959 out:
3960 kmem_free(buf, ifd->ifd_len + 1);
3961 return error;
3962 }
3963
3964 static int
3965 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
3966 {
3967 int error;
3968 prop_dictionary_t prop_dict;
3969 char *buf = NULL;
3970 struct wg_peer *wgp = NULL;
3971
3972 error = wg_alloc_prop_buf(&buf, ifd);
3973 if (error != 0)
3974 return error;
3975 error = EINVAL;
3976 prop_dict = prop_dictionary_internalize(buf);
3977 if (prop_dict == NULL)
3978 goto out;
3979
3980 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
3981 if (error != 0)
3982 goto out;
3983
3984 mutex_enter(wg->wg_lock);
3985 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
3986 wg->wg_npeers++;
3987 mutex_exit(wg->wg_lock);
3988
3989 out:
3990 kmem_free(buf, ifd->ifd_len + 1);
3991 return error;
3992 }
3993
3994 static int
3995 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
3996 {
3997 int error;
3998 prop_dictionary_t prop_dict;
3999 char *buf = NULL;
4000 const char *name;
4001
4002 error = wg_alloc_prop_buf(&buf, ifd);
4003 if (error != 0)
4004 return error;
4005 error = EINVAL;
4006 prop_dict = prop_dictionary_internalize(buf);
4007 if (prop_dict == NULL)
4008 goto out;
4009
4010 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4011 goto out;
4012 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4013 goto out;
4014
4015 error = wg_destroy_peer_name(wg, name);
4016 out:
4017 kmem_free(buf, ifd->ifd_len + 1);
4018 return error;
4019 }
4020
4021 static int
4022 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4023 {
4024 int error = ENOMEM;
4025 prop_dictionary_t prop_dict;
4026 prop_array_t peers;
4027 char *buf;
4028 struct wg_peer *wgp;
4029 int s, i;
4030
4031 prop_dict = prop_dictionary_create();
4032 if (prop_dict == NULL)
4033 goto error;
4034
4035 if (!prop_dictionary_set_data(prop_dict, "private_key", wg->wg_privkey,
4036 WG_STATIC_KEY_LEN))
4037 goto error;
4038
4039 if (wg->wg_listen_port != 0) {
4040 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4041 wg->wg_listen_port))
4042 goto error;
4043 }
4044
4045 if (wg->wg_npeers == 0)
4046 goto skip_peers;
4047
4048 peers = prop_array_create();
4049 if (peers == NULL)
4050 goto error;
4051
4052 s = pserialize_read_enter();
4053 i = 0;
4054 WG_PEER_READER_FOREACH(wgp, wg) {
4055 struct psref psref;
4056 prop_dictionary_t prop_peer;
4057
4058 wg_get_peer(wgp, &psref);
4059 pserialize_read_exit(s);
4060
4061 prop_peer = prop_dictionary_create();
4062 if (prop_peer == NULL)
4063 goto next;
4064
4065 if (strlen(wgp->wgp_name) > 0) {
4066 if (!prop_dictionary_set_string(prop_peer, "name",
4067 wgp->wgp_name))
4068 goto next;
4069 }
4070
4071 if (!prop_dictionary_set_data(prop_peer, "public_key",
4072 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4073 goto next;
4074
4075 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4076 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4077 sizeof(wgp->wgp_psk))) {
4078 if (!prop_dictionary_set_data(prop_peer,
4079 "preshared_key",
4080 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4081 goto next;
4082 }
4083
4084 switch (wgp->wgp_sa.sa_family) {
4085 case AF_INET:
4086 if (!prop_dictionary_set_data(prop_peer, "endpoint",
4087 &wgp->wgp_sin, sizeof(wgp->wgp_sin)))
4088 goto next;
4089 break;
4090 #ifdef INET6
4091 case AF_INET6:
4092 if (!prop_dictionary_set_data(prop_peer, "endpoint",
4093 &wgp->wgp_sin6, sizeof(wgp->wgp_sin6)))
4094 goto next;
4095 break;
4096 #endif
4097 }
4098
4099 const struct timespec *t = &wgp->wgp_last_handshake_time;
4100
4101 if (!prop_dictionary_set_uint64(prop_peer,
4102 "last_handshake_time_sec", t->tv_sec))
4103 goto next;
4104 if (!prop_dictionary_set_uint32(prop_peer,
4105 "last_handshake_time_nsec", t->tv_nsec))
4106 goto next;
4107
4108 if (wgp->wgp_n_allowedips == 0)
4109 goto skip_allowedips;
4110
4111 prop_array_t allowedips = prop_array_create();
4112 if (allowedips == NULL)
4113 goto next;
4114 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4115 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4116 prop_dictionary_t prop_allowedip;
4117
4118 prop_allowedip = prop_dictionary_create();
4119 if (prop_allowedip == NULL)
4120 break;
4121
4122 if (!prop_dictionary_set_int(prop_allowedip, "family",
4123 wga->wga_family))
4124 goto _next;
4125 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4126 wga->wga_cidr))
4127 goto _next;
4128
4129 switch (wga->wga_family) {
4130 case AF_INET:
4131 if (!prop_dictionary_set_data(prop_allowedip,
4132 "ip", &wga->wga_addr4,
4133 sizeof(wga->wga_addr4)))
4134 goto _next;
4135 break;
4136 #ifdef INET6
4137 case AF_INET6:
4138 if (!prop_dictionary_set_data(prop_allowedip,
4139 "ip", &wga->wga_addr6,
4140 sizeof(wga->wga_addr6)))
4141 goto _next;
4142 break;
4143 #endif
4144 default:
4145 break;
4146 }
4147 prop_array_set(allowedips, j, prop_allowedip);
4148 _next:
4149 prop_object_release(prop_allowedip);
4150 }
4151 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4152 prop_object_release(allowedips);
4153
4154 skip_allowedips:
4155
4156 prop_array_set(peers, i, prop_peer);
4157 next:
4158 if (prop_peer)
4159 prop_object_release(prop_peer);
4160 i++;
4161
4162 s = pserialize_read_enter();
4163 wg_put_peer(wgp, &psref);
4164 }
4165 pserialize_read_exit(s);
4166
4167 prop_dictionary_set(prop_dict, "peers", peers);
4168 prop_object_release(peers);
4169 peers = NULL;
4170
4171 skip_peers:
4172 buf = prop_dictionary_externalize(prop_dict);
4173 if (buf == NULL)
4174 goto error;
4175 if (ifd->ifd_len < (strlen(buf) + 1)) {
4176 error = EINVAL;
4177 goto error;
4178 }
4179 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4180
4181 free(buf, 0);
4182 error:
4183 if (peers != NULL)
4184 prop_object_release(peers);
4185 if (prop_dict != NULL)
4186 prop_object_release(prop_dict);
4187
4188 return error;
4189 }
4190
4191 static int
4192 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4193 {
4194 struct wg_softc *wg = ifp->if_softc;
4195 struct ifreq *ifr = data;
4196 struct ifaddr *ifa = data;
4197 struct ifdrv *ifd = data;
4198 int error = 0;
4199
4200 switch (cmd) {
4201 case SIOCINITIFADDR:
4202 if (ifa->ifa_addr->sa_family != AF_LINK &&
4203 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
4204 (IFF_UP | IFF_RUNNING)) {
4205 ifp->if_flags |= IFF_UP;
4206 error = ifp->if_init(ifp);
4207 }
4208 return error;
4209 case SIOCADDMULTI:
4210 case SIOCDELMULTI:
4211 switch (ifr->ifr_addr.sa_family) {
4212 case AF_INET: /* IP supports Multicast */
4213 break;
4214 #ifdef INET6
4215 case AF_INET6: /* IP6 supports Multicast */
4216 break;
4217 #endif
4218 default: /* Other protocols doesn't support Multicast */
4219 error = EAFNOSUPPORT;
4220 break;
4221 }
4222 return error;
4223 case SIOCSDRVSPEC:
4224 switch (ifd->ifd_cmd) {
4225 case WG_IOCTL_SET_PRIVATE_KEY:
4226 error = wg_ioctl_set_private_key(wg, ifd);
4227 break;
4228 case WG_IOCTL_SET_LISTEN_PORT:
4229 error = wg_ioctl_set_listen_port(wg, ifd);
4230 break;
4231 case WG_IOCTL_ADD_PEER:
4232 error = wg_ioctl_add_peer(wg, ifd);
4233 break;
4234 case WG_IOCTL_DELETE_PEER:
4235 error = wg_ioctl_delete_peer(wg, ifd);
4236 break;
4237 default:
4238 error = EINVAL;
4239 break;
4240 }
4241 return error;
4242 case SIOCGDRVSPEC:
4243 return wg_ioctl_get(wg, ifd);
4244 case SIOCSIFFLAGS:
4245 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
4246 break;
4247 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4248 case IFF_RUNNING:
4249 /*
4250 * If interface is marked down and it is running,
4251 * then stop and disable it.
4252 */
4253 (*ifp->if_stop)(ifp, 1);
4254 break;
4255 case IFF_UP:
4256 /*
4257 * If interface is marked up and it is stopped, then
4258 * start it.
4259 */
4260 error = (*ifp->if_init)(ifp);
4261 break;
4262 default:
4263 break;
4264 }
4265 return error;
4266 #ifdef WG_RUMPKERNEL
4267 case SIOCSLINKSTR:
4268 error = wg_ioctl_linkstr(wg, ifd);
4269 if (error == 0)
4270 wg->wg_ops = &wg_ops_rumpuser;
4271 return error;
4272 #endif
4273 default:
4274 break;
4275 }
4276
4277 error = ifioctl_common(ifp, cmd, data);
4278
4279 #ifdef WG_RUMPKERNEL
4280 if (!wg_user_mode(wg))
4281 return error;
4282
4283 /* Do the same to the corresponding tun device on the host */
4284 /*
4285 * XXX Actually the command has not been handled yet. It
4286 * will be handled via pr_ioctl form doifioctl later.
4287 */
4288 switch (cmd) {
4289 case SIOCAIFADDR:
4290 case SIOCDIFADDR: {
4291 struct in_aliasreq _ifra = *(struct in_aliasreq *)data;
4292 struct in_aliasreq *ifra = &_ifra;
4293 KASSERT(error == ENOTTY);
4294 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4295 IFNAMSIZ);
4296 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
4297 if (error == 0)
4298 error = ENOTTY;
4299 break;
4300 }
4301 #ifdef INET6
4302 case SIOCAIFADDR_IN6:
4303 case SIOCDIFADDR_IN6: {
4304 struct in6_aliasreq _ifra = *(struct in6_aliasreq *)data;
4305 struct in6_aliasreq *ifra = &_ifra;
4306 KASSERT(error == ENOTTY);
4307 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4308 IFNAMSIZ);
4309 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
4310 if (error == 0)
4311 error = ENOTTY;
4312 break;
4313 }
4314 #endif
4315 }
4316 #endif /* WG_RUMPKERNEL */
4317
4318 return error;
4319 }
4320
4321 static int
4322 wg_init(struct ifnet *ifp)
4323 {
4324
4325 ifp->if_flags |= IFF_RUNNING;
4326
4327 /* TODO flush pending packets. */
4328 return 0;
4329 }
4330
4331 static void
4332 wg_stop(struct ifnet *ifp, int disable)
4333 {
4334
4335 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
4336 ifp->if_flags &= ~IFF_RUNNING;
4337
4338 /* Need to do something? */
4339 }
4340
4341 #ifdef WG_DEBUG_PARAMS
4342 SYSCTL_SETUP(sysctl_net_wireguard_setup, "sysctl net.wireguard setup")
4343 {
4344 const struct sysctlnode *node = NULL;
4345
4346 sysctl_createv(clog, 0, NULL, &node,
4347 CTLFLAG_PERMANENT,
4348 CTLTYPE_NODE, "wireguard",
4349 SYSCTL_DESCR("WireGuard"),
4350 NULL, 0, NULL, 0,
4351 CTL_NET, CTL_CREATE, CTL_EOL);
4352 sysctl_createv(clog, 0, &node, NULL,
4353 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4354 CTLTYPE_LONG, "rekey_after_messages",
4355 SYSCTL_DESCR("session liftime by messages"),
4356 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
4357 sysctl_createv(clog, 0, &node, NULL,
4358 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4359 CTLTYPE_LONG, "rekey_after_time",
4360 SYSCTL_DESCR("session liftime"),
4361 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
4362 sysctl_createv(clog, 0, &node, NULL,
4363 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4364 CTLTYPE_LONG, "rekey_timeout",
4365 SYSCTL_DESCR("session handshake retry time"),
4366 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
4367 sysctl_createv(clog, 0, &node, NULL,
4368 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4369 CTLTYPE_LONG, "rekey_attempt_time",
4370 SYSCTL_DESCR("session handshake timeout"),
4371 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
4372 sysctl_createv(clog, 0, &node, NULL,
4373 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4374 CTLTYPE_LONG, "keepalive_timeout",
4375 SYSCTL_DESCR("keepalive timeout"),
4376 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
4377 sysctl_createv(clog, 0, &node, NULL,
4378 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4379 CTLTYPE_BOOL, "force_underload",
4380 SYSCTL_DESCR("force to detemine under load"),
4381 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
4382 }
4383 #endif
4384
4385 #ifdef WG_RUMPKERNEL
4386 static bool
4387 wg_user_mode(struct wg_softc *wg)
4388 {
4389
4390 return wg->wg_user != NULL;
4391 }
4392
4393 static int
4394 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
4395 {
4396 struct ifnet *ifp = &wg->wg_if;
4397 int error;
4398
4399 if (ifp->if_flags & IFF_UP)
4400 return EBUSY;
4401
4402 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
4403 /* XXX do nothing */
4404 return 0;
4405 } else if (ifd->ifd_cmd != 0) {
4406 return EINVAL;
4407 } else if (wg->wg_user != NULL) {
4408 return EBUSY;
4409 }
4410
4411 /* Assume \0 included */
4412 if (ifd->ifd_len > IFNAMSIZ) {
4413 return E2BIG;
4414 } else if (ifd->ifd_len < 1) {
4415 return EINVAL;
4416 }
4417
4418 char tun_name[IFNAMSIZ];
4419 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
4420 if (error != 0)
4421 return error;
4422
4423 if (strncmp(tun_name, "tun", 3) != 0)
4424 return EINVAL;
4425
4426 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
4427
4428 return error;
4429 }
4430
4431 static int
4432 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
4433 {
4434 int error;
4435 struct psref psref;
4436 struct wg_sockaddr *wgsa;
4437 struct wg_softc *wg = wgp->wgp_sc;
4438 struct iovec iov[1];
4439
4440 wgsa = wg_get_endpoint_sa(wgp, &psref);
4441
4442 iov[0].iov_base = mtod(m, void *);
4443 iov[0].iov_len = m->m_len;
4444
4445 /* Send messages to a peer via an ordinary socket. */
4446 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
4447
4448 wg_put_sa(wgp, wgsa, &psref);
4449
4450 return error;
4451 }
4452
4453 static void
4454 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
4455 {
4456 struct wg_softc *wg = ifp->if_softc;
4457 struct iovec iov[2];
4458 struct sockaddr_storage ss;
4459
4460 KASSERT(af == AF_INET || af == AF_INET6);
4461
4462 WG_TRACE("");
4463
4464 if (af == AF_INET) {
4465 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
4466 struct ip *ip;
4467 ip = mtod(m, struct ip *);
4468 sockaddr_in_init(sin, &ip->ip_dst, 0);
4469 } else {
4470 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
4471 struct ip6_hdr *ip6;
4472 ip6 = mtod(m, struct ip6_hdr *);
4473 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
4474 }
4475
4476 iov[0].iov_base = &ss;
4477 iov[0].iov_len = ss.ss_len;
4478 iov[1].iov_base = mtod(m, void *);
4479 iov[1].iov_len = m->m_len;
4480
4481 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4482
4483 /* Send decrypted packets to users via a tun. */
4484 rumpuser_wg_send_user(wg->wg_user, iov, 2);
4485 }
4486
4487 static int
4488 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
4489 {
4490 int error;
4491 uint16_t old_port = wg->wg_listen_port;
4492
4493 if (port != 0 && old_port == port)
4494 return 0;
4495
4496 error = rumpuser_wg_sock_bind(wg->wg_user, port);
4497 if (error == 0)
4498 wg->wg_listen_port = port;
4499 return error;
4500 }
4501
4502 /*
4503 * Receive user packets.
4504 */
4505 void
4506 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4507 {
4508 struct ifnet *ifp = &wg->wg_if;
4509 struct mbuf *m;
4510 const struct sockaddr *dst;
4511
4512 WG_TRACE("");
4513
4514 dst = iov[0].iov_base;
4515
4516 m = m_gethdr(M_NOWAIT, MT_DATA);
4517 if (m == NULL)
4518 return;
4519 m->m_len = m->m_pkthdr.len = 0;
4520 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4521
4522 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4523 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4524
4525 (void)wg_output(ifp, m, dst, NULL);
4526 }
4527
4528 /*
4529 * Receive packets from a peer.
4530 */
4531 void
4532 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4533 {
4534 struct mbuf *m;
4535 const struct sockaddr *src;
4536
4537 WG_TRACE("");
4538
4539 src = iov[0].iov_base;
4540
4541 m = m_gethdr(M_NOWAIT, MT_DATA);
4542 if (m == NULL)
4543 return;
4544 m->m_len = m->m_pkthdr.len = 0;
4545 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4546
4547 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4548 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4549
4550 wg_handle_packet(wg, m, src);
4551 }
4552 #endif /* WG_RUMPKERNEL */
4553
4554 /*
4555 * Module infrastructure
4556 */
4557 #include "if_module.h"
4558
4559 IF_MODULE(MODULE_CLASS_DRIVER, wg, "")
4560