if_wg.c revision 1.21 1 /* $NetBSD: if_wg.c,v 1.21 2020/08/21 15:48:13 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This is an implementation of WireGuard, a fast, modern, secure VPN protocol,
34 * for the NetBSD kernel and rump kernels.
35 *
36 * The implementation is based on the paper of WireGuard as of 2018-06-30 [1].
37 * The paper is referred in the source code with label [W]. Also the
38 * specification of the Noise protocol framework as of 2018-07-11 [2] is
39 * referred with label [N].
40 *
41 * [1] https://www.wireguard.com/papers/wireguard.pdf
42 * [2] http://noiseprotocol.org/noise.pdf
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.21 2020/08/21 15:48:13 riastradh Exp $");
47
48 #ifdef _KERNEL_OPT
49 #include "opt_inet.h"
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/socket.h>
57 #include <sys/sockio.h>
58 #include <sys/errno.h>
59 #include <sys/ioctl.h>
60 #include <sys/time.h>
61 #include <sys/timespec.h>
62 #include <sys/socketvar.h>
63 #include <sys/syslog.h>
64 #include <sys/cpu.h>
65 #include <sys/intr.h>
66 #include <sys/kmem.h>
67 #include <sys/device.h>
68 #include <sys/module.h>
69 #include <sys/mutex.h>
70 #include <sys/rwlock.h>
71 #include <sys/pserialize.h>
72 #include <sys/psref.h>
73 #include <sys/kthread.h>
74 #include <sys/cprng.h>
75 #include <sys/atomic.h>
76 #include <sys/sysctl.h>
77 #include <sys/domain.h>
78 #include <sys/pcq.h>
79 #include <sys/queue.h>
80 #include <sys/percpu.h>
81 #include <sys/callout.h>
82
83 #include <net/bpf.h>
84 #include <net/if.h>
85 #include <net/if_types.h>
86 #include <net/route.h>
87
88 #include <netinet/in.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/udp.h>
92 #include <netinet/udp_var.h>
93 #include <netinet/in_var.h>
94 #include <netinet/in_pcb.h>
95
96 #ifdef INET6
97 #include <netinet6/in6_var.h>
98 #include <netinet/ip6.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/in6_pcb.h>
101 #include <netinet6/udp6_var.h>
102 #endif /* INET6 */
103
104 #include <net/if_wg.h>
105
106 #include <prop/proplib.h>
107
108 #include <crypto/blake2/blake2s.h>
109 #include <crypto/sodium/crypto_scalarmult.h>
110 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
111 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
112
113 #include "ioconf.h"
114
115 #ifdef WG_RUMPKERNEL
116 #include "wg_user.h"
117 #endif
118
119 /*
120 * Data structures
121 * - struct wg_softc is an instance of wg interfaces
122 * - It has a list of peers (struct wg_peer)
123 * - It has a kthread that sends/receives WireGuard handshake messages and
124 * runs event handlers
125 * - It has its own two routing tables: one is for IPv4 and the other IPv6
126 * - struct wg_peer is a representative of a peer
127 * - It has a softint that is used to send packets over an wg interface
128 * to a peer
129 * - It has a pair of session instances (struct wg_session)
130 * - It has a pair of endpoint instances (struct wg_sockaddr)
131 * - Normally one endpoint is used and the second one is used only on
132 * a peer migration (a change of peer's IP address)
133 * - It has a list of IP addresses and sub networks called allowedips
134 * (struct wg_allowedip)
135 * - A packets sent over a session is allowed if its destination matches
136 * any IP addresses or sub networks of the list
137 * - struct wg_session represents a session of a secure tunnel with a peer
138 * - Two instances of sessions belong to a peer; a stable session and a
139 * unstable session
140 * - A handshake process of a session always starts with a unstable instace
141 * - Once a session is established, its instance becomes stable and the
142 * other becomes unstable instead
143 * - Data messages are always sent via a stable session
144 *
145 * Locking notes:
146 * - wg interfaces (struct wg_softc, wg) is listed in wg_softcs.list and
147 * protected by wg_softcs.lock
148 * - Each wg has a mutex(9) and a rwlock(9)
149 * - The mutex (wg_lock) protects its peer list (wg_peers)
150 * - A peer on the list is also protected by pserialize(9) or psref(9)
151 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
152 * - Each peer (struct wg_peer, wgp) has a mutex
153 * - The mutex (wgp_lock) protects wgp_session_unstable and wgp_state
154 * - Each session (struct wg_session, wgs) has a mutex
155 * - The mutex (wgs_lock) protects its state (wgs_state) and its handshake
156 * states
157 * - wgs_state of a unstable session can be changed while it never be
158 * changed on a stable session, so once get a session instace via
159 * wgp_session_stable we can safely access wgs_state without
160 * holding wgs_lock
161 * - A session is protected by pserialize or psref like wgp
162 * - On a session swap, we must wait for all readers to release a
163 * reference to a stable session before changing wgs_state and
164 * session states
165 */
166
167
168 #define WGLOG(level, fmt, args...) \
169 log(level, "%s: " fmt, __func__, ##args)
170
171 /* Debug options */
172 #ifdef WG_DEBUG
173 /* Output debug logs */
174 #ifndef WG_DEBUG_LOG
175 #define WG_DEBUG_LOG
176 #endif
177 /* Output trace logs */
178 #ifndef WG_DEBUG_TRACE
179 #define WG_DEBUG_TRACE
180 #endif
181 /* Output hash values, etc. */
182 #ifndef WG_DEBUG_DUMP
183 #define WG_DEBUG_DUMP
184 #endif
185 /* Make some internal parameters configurable for testing and debugging */
186 #ifndef WG_DEBUG_PARAMS
187 #define WG_DEBUG_PARAMS
188 #endif
189 #endif
190
191 #ifdef WG_DEBUG_TRACE
192 #define WG_TRACE(msg) \
193 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
194 #else
195 #define WG_TRACE(msg) __nothing
196 #endif
197
198 #ifdef WG_DEBUG_LOG
199 #define WG_DLOG(fmt, args...) log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
200 #else
201 #define WG_DLOG(fmt, args...) __nothing
202 #endif
203
204 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
205 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
206 &(wgprc)->wgprc_curpps, 1)) { \
207 log(level, fmt, ##args); \
208 } \
209 } while (0)
210
211 #ifdef WG_DEBUG_PARAMS
212 static bool wg_force_underload = false;
213 #endif
214
215 #ifdef WG_DEBUG_DUMP
216
217 #ifdef WG_RUMPKERNEL
218 static void
219 wg_dump_buf(const char *func, const char *buf, const size_t size)
220 {
221
222 log(LOG_DEBUG, "%s: ", func);
223 for (int i = 0; i < size; i++)
224 log(LOG_DEBUG, "%02x ", (int)(0xff & buf[i]));
225 log(LOG_DEBUG, "\n");
226 }
227 #endif
228
229 static void
230 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
231 const size_t size)
232 {
233
234 log(LOG_DEBUG, "%s: %s: ", func, name);
235 for (int i = 0; i < size; i++)
236 log(LOG_DEBUG, "%02x ", (int)(0xff & hash[i]));
237 log(LOG_DEBUG, "\n");
238 }
239
240 #define WG_DUMP_HASH(name, hash) \
241 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
242 #define WG_DUMP_HASH48(name, hash) \
243 wg_dump_hash(__func__, name, hash, 48)
244 #define WG_DUMP_BUF(buf, size) \
245 wg_dump_buf(__func__, buf, size)
246 #else
247 #define WG_DUMP_HASH(name, hash) __nothing
248 #define WG_DUMP_HASH48(name, hash) __nothing
249 #define WG_DUMP_BUF(buf, size) __nothing
250 #endif /* WG_DEBUG_DUMP */
251
252 #define WG_MTU 1420
253 #define WG_ALLOWEDIPS 16
254
255 #define CURVE25519_KEY_LEN 32
256 #define TAI64N_LEN sizeof(uint32_t) * 3
257 #define POLY1305_AUTHTAG_LEN 16
258 #define HMAC_BLOCK_LEN 64
259
260 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
261 /* [N] 4.3: Hash functions */
262 #define NOISE_DHLEN 32
263 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
264 #define NOISE_HASHLEN 32
265 #define NOISE_BLOCKLEN 64
266 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
267 /* [N] 5.1: "k" */
268 #define NOISE_CIPHER_KEY_LEN 32
269 /*
270 * [N] 9.2: "psk"
271 * "... psk is a 32-byte secret value provided by the application."
272 */
273 #define NOISE_PRESHARED_KEY_LEN 32
274
275 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
276 #define WG_TIMESTAMP_LEN TAI64N_LEN
277
278 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
279
280 #define WG_COOKIE_LEN 16
281 #define WG_MAC_LEN 16
282 #define WG_RANDVAL_LEN 24
283
284 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
285 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
286 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
287 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
288 #define WG_HASH_LEN NOISE_HASHLEN
289 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
290 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
291 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
292 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
293 #define WG_DATA_KEY_LEN 32
294 #define WG_SALT_LEN 24
295
296 /*
297 * The protocol messages
298 */
299 struct wg_msg {
300 uint32_t wgm_type;
301 } __packed;
302
303 /* [W] 5.4.2 First Message: Initiator to Responder */
304 struct wg_msg_init {
305 uint32_t wgmi_type;
306 uint32_t wgmi_sender;
307 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
308 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
309 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
310 uint8_t wgmi_mac1[WG_MAC_LEN];
311 uint8_t wgmi_mac2[WG_MAC_LEN];
312 } __packed;
313
314 /* [W] 5.4.3 Second Message: Responder to Initiator */
315 struct wg_msg_resp {
316 uint32_t wgmr_type;
317 uint32_t wgmr_sender;
318 uint32_t wgmr_receiver;
319 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
320 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
321 uint8_t wgmr_mac1[WG_MAC_LEN];
322 uint8_t wgmr_mac2[WG_MAC_LEN];
323 } __packed;
324
325 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
326 struct wg_msg_data {
327 uint32_t wgmd_type;
328 uint32_t wgmd_receiver;
329 uint64_t wgmd_counter;
330 uint32_t wgmd_packet[0];
331 } __packed;
332
333 /* [W] 5.4.7 Under Load: Cookie Reply Message */
334 struct wg_msg_cookie {
335 uint32_t wgmc_type;
336 uint32_t wgmc_receiver;
337 uint8_t wgmc_salt[WG_SALT_LEN];
338 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
339 } __packed;
340
341 #define WG_MSG_TYPE_INIT 1
342 #define WG_MSG_TYPE_RESP 2
343 #define WG_MSG_TYPE_COOKIE 3
344 #define WG_MSG_TYPE_DATA 4
345 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
346
347 /* Sliding windows */
348
349 #define SLIWIN_BITS 2048u
350 #define SLIWIN_TYPE uint32_t
351 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
352 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
353 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
354
355 struct sliwin {
356 SLIWIN_TYPE B[SLIWIN_WORDS];
357 uint64_t T;
358 };
359
360 static void
361 sliwin_reset(struct sliwin *W)
362 {
363
364 memset(W, 0, sizeof(*W));
365 }
366
367 static int
368 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
369 {
370
371 /*
372 * If it's more than one window older than the highest sequence
373 * number we've seen, reject.
374 */
375 #ifdef __HAVE_ATOMIC64_LOADSTORE
376 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
377 return EAUTH;
378 #endif
379
380 /*
381 * Otherwise, we need to take the lock to decide, so don't
382 * reject just yet. Caller must serialize a call to
383 * sliwin_update in this case.
384 */
385 return 0;
386 }
387
388 static int
389 sliwin_update(struct sliwin *W, uint64_t S)
390 {
391 unsigned word, bit;
392
393 /*
394 * If it's more than one window older than the highest sequence
395 * number we've seen, reject.
396 */
397 if (S + SLIWIN_NPKT < W->T)
398 return EAUTH;
399
400 /*
401 * If it's higher than the highest sequence number we've seen,
402 * advance the window.
403 */
404 if (S > W->T) {
405 uint64_t i = W->T / SLIWIN_BPW;
406 uint64_t j = S / SLIWIN_BPW;
407 unsigned k;
408
409 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
410 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
411 #ifdef __HAVE_ATOMIC64_LOADSTORE
412 atomic_store_relaxed(&W->T, S);
413 #else
414 W->T = S;
415 #endif
416 }
417
418 /* Test and set the bit -- if already set, reject. */
419 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
420 bit = S % SLIWIN_BPW;
421 if (W->B[word] & (1UL << bit))
422 return EAUTH;
423 W->B[word] |= 1UL << bit;
424
425 /* Accept! */
426 return 0;
427 }
428
429 struct wg_worker {
430 kmutex_t wgw_lock;
431 kcondvar_t wgw_cv;
432 bool wgw_todie;
433 struct socket *wgw_so4;
434 struct socket *wgw_so6;
435 int wgw_wakeup_reasons;
436 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 __BIT(0)
437 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6 __BIT(1)
438 #define WG_WAKEUP_REASON_PEER __BIT(2)
439 };
440
441 struct wg_session {
442 struct wg_peer *wgs_peer;
443 struct psref_target
444 wgs_psref;
445 kmutex_t *wgs_lock;
446
447 int wgs_state;
448 #define WGS_STATE_UNKNOWN 0
449 #define WGS_STATE_INIT_ACTIVE 1
450 #define WGS_STATE_INIT_PASSIVE 2
451 #define WGS_STATE_ESTABLISHED 3
452 #define WGS_STATE_DESTROYING 4
453
454 time_t wgs_time_established;
455 time_t wgs_time_last_data_sent;
456 bool wgs_is_initiator;
457
458 uint32_t wgs_sender_index;
459 uint32_t wgs_receiver_index;
460 volatile uint64_t
461 wgs_send_counter;
462
463 struct {
464 kmutex_t lock;
465 struct sliwin window;
466 } *wgs_recvwin;
467
468 uint8_t wgs_handshake_hash[WG_HASH_LEN];
469 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
470 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
471 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
472 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
473 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
474 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
475 };
476
477 struct wg_sockaddr {
478 union {
479 struct sockaddr_storage _ss;
480 struct sockaddr _sa;
481 struct sockaddr_in _sin;
482 struct sockaddr_in6 _sin6;
483 };
484 struct psref_target wgsa_psref;
485 };
486
487 #define wgsatosa(wgsa) (&(wgsa)->_sa)
488 #define wgsatosin(wgsa) (&(wgsa)->_sin)
489 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
490
491 struct wg_peer;
492 struct wg_allowedip {
493 struct radix_node wga_nodes[2];
494 struct wg_sockaddr _wga_sa_addr;
495 struct wg_sockaddr _wga_sa_mask;
496 #define wga_sa_addr _wga_sa_addr._sa
497 #define wga_sa_mask _wga_sa_mask._sa
498
499 int wga_family;
500 uint8_t wga_cidr;
501 union {
502 struct in_addr _ip4;
503 struct in6_addr _ip6;
504 } wga_addr;
505 #define wga_addr4 wga_addr._ip4
506 #define wga_addr6 wga_addr._ip6
507
508 struct wg_peer *wga_peer;
509 };
510
511 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
512
513 struct wg_ppsratecheck {
514 struct timeval wgprc_lasttime;
515 int wgprc_curpps;
516 };
517
518 struct wg_softc;
519 struct wg_peer {
520 struct wg_softc *wgp_sc;
521 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
522 struct pslist_entry wgp_peerlist_entry;
523 pserialize_t wgp_psz;
524 struct psref_target wgp_psref;
525 kmutex_t *wgp_lock;
526
527 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
528 struct wg_sockaddr *wgp_endpoint;
529 #define wgp_ss wgp_endpoint->_ss
530 #define wgp_sa wgp_endpoint->_sa
531 #define wgp_sin wgp_endpoint->_sin
532 #define wgp_sin6 wgp_endpoint->_sin6
533 struct wg_sockaddr *wgp_endpoint0;
534 bool wgp_endpoint_changing;
535 bool wgp_endpoint_available;
536
537 /* The preshared key (optional) */
538 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
539
540 int wgp_state;
541 #define WGP_STATE_INIT 0
542 #define WGP_STATE_ESTABLISHED 1
543 #define WGP_STATE_GIVEUP 2
544 #define WGP_STATE_DESTROYING 3
545
546 void *wgp_si;
547 pcq_t *wgp_q;
548
549 struct wg_session *wgp_session_stable;
550 struct wg_session *wgp_session_unstable;
551
552 /* timestamp in big-endian */
553 wg_timestamp_t wgp_timestamp_latest_init;
554
555 struct timespec wgp_last_handshake_time;
556
557 callout_t wgp_rekey_timer;
558 callout_t wgp_handshake_timeout_timer;
559 callout_t wgp_session_dtor_timer;
560
561 time_t wgp_handshake_start_time;
562
563 int wgp_n_allowedips;
564 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
565
566 time_t wgp_latest_cookie_time;
567 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
568 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
569 bool wgp_last_sent_mac1_valid;
570 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
571 bool wgp_last_sent_cookie_valid;
572
573 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
574
575 time_t wgp_last_genrandval_time;
576 uint32_t wgp_randval;
577
578 struct wg_ppsratecheck wgp_ppsratecheck;
579
580 volatile unsigned int wgp_tasks;
581 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
582 #define WGP_TASK_ENDPOINT_CHANGED __BIT(1)
583 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(2)
584 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(3)
585 };
586
587 struct wg_ops;
588
589 struct wg_softc {
590 struct ifnet wg_if;
591 LIST_ENTRY(wg_softc) wg_list;
592 kmutex_t *wg_lock;
593 krwlock_t *wg_rwlock;
594
595 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
596 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
597
598 int wg_npeers;
599 struct pslist_head wg_peers;
600 uint16_t wg_listen_port;
601
602 struct wg_worker *wg_worker;
603 lwp_t *wg_worker_lwp;
604
605 struct radix_node_head *wg_rtable_ipv4;
606 struct radix_node_head *wg_rtable_ipv6;
607
608 struct wg_ppsratecheck wg_ppsratecheck;
609
610 struct wg_ops *wg_ops;
611
612 #ifdef WG_RUMPKERNEL
613 struct wg_user *wg_user;
614 #endif
615 };
616
617 /* [W] 6.1 Preliminaries */
618 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
619 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
620 #define WG_REKEY_AFTER_TIME 120
621 #define WG_REJECT_AFTER_TIME 180
622 #define WG_REKEY_ATTEMPT_TIME 90
623 #define WG_REKEY_TIMEOUT 5
624 #define WG_KEEPALIVE_TIMEOUT 10
625
626 #define WG_COOKIE_TIME 120
627 #define WG_RANDVAL_TIME (2 * 60)
628
629 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
630 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
631 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
632 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
633 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
634 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
635 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
636
637 static struct mbuf *
638 wg_get_mbuf(size_t, size_t);
639
640 static void wg_wakeup_worker(struct wg_worker *, int);
641
642 static int wg_send_data_msg(struct wg_peer *, struct wg_session *,
643 struct mbuf *);
644 static int wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
645 const uint32_t, const uint8_t [], const struct sockaddr *);
646 static int wg_send_handshake_msg_resp(struct wg_softc *,
647 struct wg_peer *, const struct wg_msg_init *);
648 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
649
650 static struct wg_peer *
651 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
652 struct psref *);
653 static struct wg_peer *
654 wg_lookup_peer_by_pubkey(struct wg_softc *,
655 const uint8_t [], struct psref *);
656
657 static struct wg_session *
658 wg_lookup_session_by_index(struct wg_softc *,
659 const uint32_t, struct psref *);
660
661 static void wg_update_endpoint_if_necessary(struct wg_peer *,
662 const struct sockaddr *);
663
664 static void wg_schedule_rekey_timer(struct wg_peer *);
665 static void wg_schedule_session_dtor_timer(struct wg_peer *);
666 static void wg_stop_session_dtor_timer(struct wg_peer *);
667
668 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
669 static void wg_calculate_keys(struct wg_session *, const bool);
670
671 static void wg_clear_states(struct wg_session *);
672
673 static void wg_get_peer(struct wg_peer *, struct psref *);
674 static void wg_put_peer(struct wg_peer *, struct psref *);
675
676 static int wg_send_so(struct wg_peer *, struct mbuf *);
677 static int wg_send_udp(struct wg_peer *, struct mbuf *);
678 static int wg_output(struct ifnet *, struct mbuf *,
679 const struct sockaddr *, const struct rtentry *);
680 static void wg_input(struct ifnet *, struct mbuf *, const int);
681 static int wg_ioctl(struct ifnet *, u_long, void *);
682 static int wg_bind_port(struct wg_softc *, const uint16_t);
683 static int wg_init(struct ifnet *);
684 static void wg_stop(struct ifnet *, int);
685
686 static int wg_clone_create(struct if_clone *, int);
687 static int wg_clone_destroy(struct ifnet *);
688
689 struct wg_ops {
690 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
691 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
692 void (*input)(struct ifnet *, struct mbuf *, const int);
693 int (*bind_port)(struct wg_softc *, const uint16_t);
694 };
695
696 struct wg_ops wg_ops_rumpkernel = {
697 .send_hs_msg = wg_send_so,
698 .send_data_msg = wg_send_udp,
699 .input = wg_input,
700 .bind_port = wg_bind_port,
701 };
702
703 #ifdef WG_RUMPKERNEL
704 static bool wg_user_mode(struct wg_softc *);
705 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
706
707 static int wg_send_user(struct wg_peer *, struct mbuf *);
708 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
709 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
710
711 struct wg_ops wg_ops_rumpuser = {
712 .send_hs_msg = wg_send_user,
713 .send_data_msg = wg_send_user,
714 .input = wg_input_user,
715 .bind_port = wg_bind_port_user,
716 };
717 #endif
718
719 #define WG_PEER_READER_FOREACH(wgp, wg) \
720 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
721 wgp_peerlist_entry)
722 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
723 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
724 wgp_peerlist_entry)
725 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
726 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
727 #define WG_PEER_WRITER_REMOVE(wgp) \
728 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
729
730 struct wg_route {
731 struct radix_node wgr_nodes[2];
732 struct wg_peer *wgr_peer;
733 };
734
735 static struct radix_node_head *
736 wg_rnh(struct wg_softc *wg, const int family)
737 {
738
739 switch (family) {
740 case AF_INET:
741 return wg->wg_rtable_ipv4;
742 #ifdef INET6
743 case AF_INET6:
744 return wg->wg_rtable_ipv6;
745 #endif
746 default:
747 return NULL;
748 }
749 }
750
751
752 /*
753 * Global variables
754 */
755 LIST_HEAD(wg_sclist, wg_softc);
756 static struct {
757 struct wg_sclist list;
758 kmutex_t lock;
759 } wg_softcs __cacheline_aligned;
760
761 struct psref_class *wg_psref_class __read_mostly;
762
763 static struct if_clone wg_cloner =
764 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
765
766
767 void wgattach(int);
768 /* ARGSUSED */
769 void
770 wgattach(int count)
771 {
772 /*
773 * Nothing to do here, initialization is handled by the
774 * module initialization code in wginit() below).
775 */
776 }
777
778 static void
779 wginit(void)
780 {
781
782 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
783
784 mutex_init(&wg_softcs.lock, MUTEX_DEFAULT, IPL_NONE);
785 LIST_INIT(&wg_softcs.list);
786 if_clone_attach(&wg_cloner);
787 }
788
789 static int
790 wgdetach(void)
791 {
792 int error = 0;
793
794 mutex_enter(&wg_softcs.lock);
795 if (!LIST_EMPTY(&wg_softcs.list)) {
796 mutex_exit(&wg_softcs.lock);
797 error = EBUSY;
798 }
799
800 if (error == 0) {
801 psref_class_destroy(wg_psref_class);
802
803 if_clone_detach(&wg_cloner);
804 }
805
806 return error;
807 }
808
809 static void
810 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
811 uint8_t hash[WG_HASH_LEN])
812 {
813 /* [W] 5.4: CONSTRUCTION */
814 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
815 /* [W] 5.4: IDENTIFIER */
816 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
817 struct blake2s state;
818
819 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
820 signature, strlen(signature));
821
822 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
823 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
824
825 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
826 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
827 blake2s_update(&state, id, strlen(id));
828 blake2s_final(&state, hash);
829
830 WG_DUMP_HASH("ckey", ckey);
831 WG_DUMP_HASH("hash", hash);
832 }
833
834 static void
835 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
836 const size_t inputsize)
837 {
838 struct blake2s state;
839
840 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
841 blake2s_update(&state, hash, WG_HASH_LEN);
842 blake2s_update(&state, input, inputsize);
843 blake2s_final(&state, hash);
844 }
845
846 static void
847 wg_algo_mac(uint8_t out[], const size_t outsize,
848 const uint8_t key[], const size_t keylen,
849 const uint8_t input1[], const size_t input1len,
850 const uint8_t input2[], const size_t input2len)
851 {
852 struct blake2s state;
853
854 blake2s_init(&state, outsize, key, keylen);
855
856 blake2s_update(&state, input1, input1len);
857 if (input2 != NULL)
858 blake2s_update(&state, input2, input2len);
859 blake2s_final(&state, out);
860 }
861
862 static void
863 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
864 const uint8_t input1[], const size_t input1len,
865 const uint8_t input2[], const size_t input2len)
866 {
867 struct blake2s state;
868 /* [W] 5.4: LABEL-MAC1 */
869 const char *label = "mac1----";
870 uint8_t key[WG_HASH_LEN];
871
872 blake2s_init(&state, sizeof(key), NULL, 0);
873 blake2s_update(&state, label, strlen(label));
874 blake2s_update(&state, input1, input1len);
875 blake2s_final(&state, key);
876
877 blake2s_init(&state, outsize, key, sizeof(key));
878 if (input2 != NULL)
879 blake2s_update(&state, input2, input2len);
880 blake2s_final(&state, out);
881 }
882
883 static void
884 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
885 const uint8_t input1[], const size_t input1len)
886 {
887 struct blake2s state;
888 /* [W] 5.4: LABEL-COOKIE */
889 const char *label = "cookie--";
890
891 blake2s_init(&state, outsize, NULL, 0);
892 blake2s_update(&state, label, strlen(label));
893 blake2s_update(&state, input1, input1len);
894 blake2s_final(&state, out);
895 }
896
897 static void
898 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
899 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
900 {
901
902 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
903
904 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
905 crypto_scalarmult_base(pubkey, privkey);
906 }
907
908 static void
909 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
910 const uint8_t privkey[WG_STATIC_KEY_LEN],
911 const uint8_t pubkey[WG_STATIC_KEY_LEN])
912 {
913
914 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
915
916 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
917 KASSERT(ret == 0);
918 }
919
920 static void
921 wg_algo_hmac(uint8_t out[], const size_t outlen,
922 const uint8_t key[], const size_t keylen,
923 const uint8_t in[], const size_t inlen)
924 {
925 #define IPAD 0x36
926 #define OPAD 0x5c
927 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
928 uint8_t ipad[HMAC_BLOCK_LEN];
929 uint8_t opad[HMAC_BLOCK_LEN];
930 int i;
931 struct blake2s state;
932
933 KASSERT(outlen == WG_HASH_LEN);
934 KASSERT(keylen <= HMAC_BLOCK_LEN);
935
936 memcpy(hmackey, key, keylen);
937
938 for (i = 0; i < sizeof(hmackey); i++) {
939 ipad[i] = hmackey[i] ^ IPAD;
940 opad[i] = hmackey[i] ^ OPAD;
941 }
942
943 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
944 blake2s_update(&state, ipad, sizeof(ipad));
945 blake2s_update(&state, in, inlen);
946 blake2s_final(&state, out);
947
948 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
949 blake2s_update(&state, opad, sizeof(opad));
950 blake2s_update(&state, out, WG_HASH_LEN);
951 blake2s_final(&state, out);
952 #undef IPAD
953 #undef OPAD
954 }
955
956 static void
957 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
958 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
959 const uint8_t input[], const size_t inputlen)
960 {
961 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
962 uint8_t one[1];
963
964 /*
965 * [N] 4.3: "an input_key_material byte sequence with length
966 * either zero bytes, 32 bytes, or DHLEN bytes."
967 */
968 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
969
970 WG_DUMP_HASH("ckey", ckey);
971 if (input != NULL)
972 WG_DUMP_HASH("input", input);
973 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
974 input, inputlen);
975 WG_DUMP_HASH("tmp1", tmp1);
976 one[0] = 1;
977 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
978 one, sizeof(one));
979 WG_DUMP_HASH("out1", out1);
980 if (out2 == NULL)
981 return;
982 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
983 tmp2[WG_KDF_OUTPUT_LEN] = 2;
984 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
985 tmp2, sizeof(tmp2));
986 WG_DUMP_HASH("out2", out2);
987 if (out3 == NULL)
988 return;
989 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
990 tmp2[WG_KDF_OUTPUT_LEN] = 3;
991 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
992 tmp2, sizeof(tmp2));
993 WG_DUMP_HASH("out3", out3);
994 }
995
996 static void
997 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
998 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
999 const uint8_t local_key[WG_STATIC_KEY_LEN],
1000 const uint8_t remote_key[WG_STATIC_KEY_LEN])
1001 {
1002 uint8_t dhout[WG_DH_OUTPUT_LEN];
1003
1004 wg_algo_dh(dhout, local_key, remote_key);
1005 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1006
1007 WG_DUMP_HASH("dhout", dhout);
1008 WG_DUMP_HASH("ckey", ckey);
1009 if (cipher_key != NULL)
1010 WG_DUMP_HASH("cipher_key", cipher_key);
1011 }
1012
1013 static void
1014 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1015 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1016 const uint8_t auth[], size_t authlen)
1017 {
1018 uint8_t nonce[(32 + 64) / 8] = {0};
1019 long long unsigned int outsize;
1020 int error __diagused;
1021
1022 memcpy(&nonce[4], &counter, sizeof(counter));
1023
1024 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1025 plainsize, auth, authlen, NULL, nonce, key);
1026 KASSERT(error == 0);
1027 KASSERT(outsize == expected_outsize);
1028 }
1029
1030 static int
1031 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1032 const uint64_t counter, const uint8_t encrypted[],
1033 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1034 {
1035 uint8_t nonce[(32 + 64) / 8] = {0};
1036 long long unsigned int outsize;
1037 int error;
1038
1039 memcpy(&nonce[4], &counter, sizeof(counter));
1040
1041 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1042 encrypted, encryptedsize, auth, authlen, nonce, key);
1043 if (error == 0)
1044 KASSERT(outsize == expected_outsize);
1045 return error;
1046 }
1047
1048 static void
1049 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1050 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1051 const uint8_t auth[], size_t authlen,
1052 const uint8_t nonce[WG_SALT_LEN])
1053 {
1054 long long unsigned int outsize;
1055 int error __diagused;
1056
1057 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1058 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1059 plain, plainsize, auth, authlen, NULL, nonce, key);
1060 KASSERT(error == 0);
1061 KASSERT(outsize == expected_outsize);
1062 }
1063
1064 static int
1065 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1066 const uint8_t key[], const uint64_t counter,
1067 const uint8_t encrypted[], const size_t encryptedsize,
1068 const uint8_t auth[], size_t authlen,
1069 const uint8_t nonce[WG_SALT_LEN])
1070 {
1071 long long unsigned int outsize;
1072 int error;
1073
1074 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1075 encrypted, encryptedsize, auth, authlen, nonce, key);
1076 if (error == 0)
1077 KASSERT(outsize == expected_outsize);
1078 return error;
1079 }
1080
1081 static void
1082 wg_algo_tai64n(wg_timestamp_t timestamp)
1083 {
1084 struct timespec ts;
1085
1086 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1087 getnanotime(&ts);
1088 /* TAI64 label in external TAI64 format */
1089 be32enc(timestamp, 0x40000000UL + (ts.tv_sec >> 32));
1090 /* second beginning from 1970 TAI */
1091 be32enc(timestamp + 4, ts.tv_sec & 0xffffffffU);
1092 /* nanosecond in big-endian format */
1093 be32enc(timestamp + 8, ts.tv_nsec);
1094 }
1095
1096 static struct wg_session *
1097 wg_get_unstable_session(struct wg_peer *wgp, struct psref *psref)
1098 {
1099 int s;
1100 struct wg_session *wgs;
1101
1102 s = pserialize_read_enter();
1103 wgs = wgp->wgp_session_unstable;
1104 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1105 pserialize_read_exit(s);
1106 return wgs;
1107 }
1108
1109 static struct wg_session *
1110 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1111 {
1112 int s;
1113 struct wg_session *wgs;
1114
1115 s = pserialize_read_enter();
1116 wgs = wgp->wgp_session_stable;
1117 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1118 pserialize_read_exit(s);
1119 return wgs;
1120 }
1121
1122 static void
1123 wg_get_session(struct wg_session *wgs, struct psref *psref)
1124 {
1125
1126 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1127 }
1128
1129 static void
1130 wg_put_session(struct wg_session *wgs, struct psref *psref)
1131 {
1132
1133 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1134 }
1135
1136 static struct wg_session *
1137 wg_lock_unstable_session(struct wg_peer *wgp)
1138 {
1139 struct wg_session *wgs;
1140
1141 mutex_enter(wgp->wgp_lock);
1142 wgs = wgp->wgp_session_unstable;
1143 mutex_enter(wgs->wgs_lock);
1144 mutex_exit(wgp->wgp_lock);
1145 return wgs;
1146 }
1147
1148 #if 0
1149 static void
1150 wg_unlock_session(struct wg_peer *wgp, struct wg_session *wgs)
1151 {
1152
1153 mutex_exit(wgs->wgs_lock);
1154 }
1155 #endif
1156
1157 /*
1158 * Handshake patterns
1159 *
1160 * [W] 5: "These messages use the "IK" pattern from Noise"
1161 * [N] 7.5. Interactive handshake patterns (fundamental)
1162 * "The first character refers to the initiators static key:"
1163 * "I = Static key for initiator Immediately transmitted to responder,
1164 * despite reduced or absent identity hiding"
1165 * "The second character refers to the responders static key:"
1166 * "K = Static key for responder Known to initiator"
1167 * "IK:
1168 * <- s
1169 * ...
1170 * -> e, es, s, ss
1171 * <- e, ee, se"
1172 * [N] 9.4. Pattern modifiers
1173 * "IKpsk2:
1174 * <- s
1175 * ...
1176 * -> e, es, s, ss
1177 * <- e, ee, se, psk"
1178 */
1179 static void
1180 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1181 struct wg_session *wgs, struct wg_msg_init *wgmi)
1182 {
1183 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1184 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1185 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1186 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1187 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1188
1189 wgmi->wgmi_type = WG_MSG_TYPE_INIT;
1190 wgmi->wgmi_sender = cprng_strong32();
1191
1192 /* [W] 5.4.2: First Message: Initiator to Responder */
1193
1194 /* Ci := HASH(CONSTRUCTION) */
1195 /* Hi := HASH(Ci || IDENTIFIER) */
1196 wg_init_key_and_hash(ckey, hash);
1197 /* Hi := HASH(Hi || Sr^pub) */
1198 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1199
1200 WG_DUMP_HASH("hash", hash);
1201
1202 /* [N] 2.2: "e" */
1203 /* Ei^priv, Ei^pub := DH-GENERATE() */
1204 wg_algo_generate_keypair(pubkey, privkey);
1205 /* Ci := KDF1(Ci, Ei^pub) */
1206 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1207 /* msg.ephemeral := Ei^pub */
1208 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1209 /* Hi := HASH(Hi || msg.ephemeral) */
1210 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1211
1212 WG_DUMP_HASH("ckey", ckey);
1213 WG_DUMP_HASH("hash", hash);
1214
1215 /* [N] 2.2: "es" */
1216 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1217 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1218
1219 /* [N] 2.2: "s" */
1220 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1221 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1222 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1223 hash, sizeof(hash));
1224 /* Hi := HASH(Hi || msg.static) */
1225 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1226
1227 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1228
1229 /* [N] 2.2: "ss" */
1230 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1231 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1232
1233 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1234 wg_timestamp_t timestamp;
1235 wg_algo_tai64n(timestamp);
1236 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1237 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1238 /* Hi := HASH(Hi || msg.timestamp) */
1239 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1240
1241 /* [W] 5.4.4 Cookie MACs */
1242 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1243 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1244 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1245 /* Need mac1 to decrypt a cookie from a cookie message */
1246 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1247 sizeof(wgp->wgp_last_sent_mac1));
1248 wgp->wgp_last_sent_mac1_valid = true;
1249
1250 if (wgp->wgp_latest_cookie_time == 0 ||
1251 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1252 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1253 else {
1254 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1255 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1256 (const uint8_t *)wgmi,
1257 offsetof(struct wg_msg_init, wgmi_mac2),
1258 NULL, 0);
1259 }
1260
1261 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1262 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1263 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1264 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1265 wgs->wgs_sender_index = wgmi->wgmi_sender;
1266 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_sender_index);
1267 }
1268
1269 static void
1270 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1271 const struct sockaddr *src)
1272 {
1273 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1274 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1275 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1276 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1277 struct wg_peer *wgp;
1278 struct wg_session *wgs;
1279 bool reset_state_on_error = false;
1280 int error, ret;
1281 struct psref psref_peer;
1282 struct psref psref_session;
1283 uint8_t mac1[WG_MAC_LEN];
1284
1285 WG_TRACE("init msg received");
1286
1287 /*
1288 * [W] 5.4.2: First Message: Initiator to Responder
1289 * "When the responder receives this message, it does the same
1290 * operations so that its final state variables are identical,
1291 * replacing the operands of the DH function to produce equivalent
1292 * values."
1293 * Note that the following comments of operations are just copies of
1294 * the initiator's ones.
1295 */
1296
1297 /* Ci := HASH(CONSTRUCTION) */
1298 /* Hi := HASH(Ci || IDENTIFIER) */
1299 wg_init_key_and_hash(ckey, hash);
1300 /* Hi := HASH(Hi || Sr^pub) */
1301 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1302
1303 /* [N] 2.2: "e" */
1304 /* Ci := KDF1(Ci, Ei^pub) */
1305 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1306 sizeof(wgmi->wgmi_ephemeral));
1307 /* Hi := HASH(Hi || msg.ephemeral) */
1308 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1309
1310 WG_DUMP_HASH("ckey", ckey);
1311
1312 /* [N] 2.2: "es" */
1313 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1314 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1315
1316 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1317
1318 /* [N] 2.2: "s" */
1319 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1320 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1321 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1322 if (error != 0) {
1323 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1324 "wg_algo_aead_dec for secret key failed\n");
1325 return;
1326 }
1327 /* Hi := HASH(Hi || msg.static) */
1328 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1329
1330 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1331 if (wgp == NULL) {
1332 WG_DLOG("peer not found\n");
1333 return;
1334 }
1335
1336 wgs = wg_lock_unstable_session(wgp);
1337 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
1338 /*
1339 * We can assume that the peer doesn't have an established
1340 * session, so clear it now.
1341 */
1342 WG_TRACE("Session destroying, but force to clear");
1343 wg_stop_session_dtor_timer(wgp);
1344 wg_clear_states(wgs);
1345 wgs->wgs_state = WGS_STATE_UNKNOWN;
1346 }
1347 if (wgs->wgs_state == WGS_STATE_INIT_ACTIVE) {
1348 WG_TRACE("Sesssion already initializing, ignoring the message");
1349 mutex_exit(wgs->wgs_lock);
1350 goto out_wgp;
1351 }
1352 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
1353 WG_TRACE("Sesssion already initializing, destroying old states");
1354 wg_clear_states(wgs);
1355 }
1356 wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
1357 reset_state_on_error = true;
1358 wg_get_session(wgs, &psref_session);
1359 mutex_exit(wgs->wgs_lock);
1360
1361 wg_algo_mac_mac1(mac1, sizeof(mac1),
1362 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1363 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1364
1365 /*
1366 * [W] 5.3: Denial of Service Mitigation & Cookies
1367 * "the responder, ..., must always reject messages with an invalid
1368 * msg.mac1"
1369 */
1370 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1371 WG_DLOG("mac1 is invalid\n");
1372 goto out;
1373 }
1374
1375 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1376 WG_TRACE("under load");
1377 /*
1378 * [W] 5.3: Denial of Service Mitigation & Cookies
1379 * "the responder, ..., and when under load may reject messages
1380 * with an invalid msg.mac2. If the responder receives a
1381 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1382 * and is under load, it may respond with a cookie reply
1383 * message"
1384 */
1385 uint8_t zero[WG_MAC_LEN] = {0};
1386 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1387 WG_TRACE("sending a cookie message: no cookie included");
1388 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1389 wgmi->wgmi_mac1, src);
1390 goto out;
1391 }
1392 if (!wgp->wgp_last_sent_cookie_valid) {
1393 WG_TRACE("sending a cookie message: no cookie sent ever");
1394 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1395 wgmi->wgmi_mac1, src);
1396 goto out;
1397 }
1398 uint8_t mac2[WG_MAC_LEN];
1399 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1400 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1401 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1402 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1403 WG_DLOG("mac2 is invalid\n");
1404 goto out;
1405 }
1406 WG_TRACE("under load, but continue to sending");
1407 }
1408
1409 /* [N] 2.2: "ss" */
1410 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1411 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1412
1413 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1414 wg_timestamp_t timestamp;
1415 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1416 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1417 hash, sizeof(hash));
1418 if (error != 0) {
1419 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1420 "wg_algo_aead_dec for timestamp failed\n");
1421 goto out;
1422 }
1423 /* Hi := HASH(Hi || msg.timestamp) */
1424 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1425
1426 /*
1427 * [W] 5.1 "The responder keeps track of the greatest timestamp
1428 * received per peer and discards packets containing
1429 * timestamps less than or equal to it."
1430 */
1431 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1432 sizeof(timestamp));
1433 if (ret <= 0) {
1434 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1435 "invalid init msg: timestamp is old\n");
1436 goto out;
1437 }
1438 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1439
1440 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1441 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1442 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1443 sizeof(wgmi->wgmi_ephemeral));
1444
1445 wg_update_endpoint_if_necessary(wgp, src);
1446
1447 (void)wg_send_handshake_msg_resp(wg, wgp, wgmi);
1448
1449 wg_calculate_keys(wgs, false);
1450 wg_clear_states(wgs);
1451
1452 wg_put_session(wgs, &psref_session);
1453 wg_put_peer(wgp, &psref_peer);
1454 return;
1455
1456 out:
1457 if (reset_state_on_error) {
1458 mutex_enter(wgs->wgs_lock);
1459 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1460 wgs->wgs_state = WGS_STATE_UNKNOWN;
1461 mutex_exit(wgs->wgs_lock);
1462 }
1463 wg_put_session(wgs, &psref_session);
1464 out_wgp:
1465 wg_put_peer(wgp, &psref_peer);
1466 }
1467
1468 static void
1469 wg_schedule_handshake_timeout_timer(struct wg_peer *wgp)
1470 {
1471
1472 mutex_enter(wgp->wgp_lock);
1473 if (__predict_true(wgp->wgp_state != WGP_STATE_DESTROYING)) {
1474 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1475 MIN(wg_rekey_timeout, INT_MAX/hz) * hz);
1476 }
1477 mutex_exit(wgp->wgp_lock);
1478 }
1479
1480 static void
1481 wg_stop_handshake_timeout_timer(struct wg_peer *wgp)
1482 {
1483
1484 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
1485 }
1486
1487 static struct socket *
1488 wg_get_so_by_af(struct wg_worker *wgw, const int af)
1489 {
1490
1491 return (af == AF_INET) ? wgw->wgw_so4 : wgw->wgw_so6;
1492 }
1493
1494 static struct socket *
1495 wg_get_so_by_peer(struct wg_peer *wgp)
1496 {
1497
1498 return wg_get_so_by_af(wgp->wgp_sc->wg_worker, wgp->wgp_sa.sa_family);
1499 }
1500
1501 static struct wg_sockaddr *
1502 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1503 {
1504 struct wg_sockaddr *wgsa;
1505 int s;
1506
1507 s = pserialize_read_enter();
1508 wgsa = wgp->wgp_endpoint;
1509 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1510 pserialize_read_exit(s);
1511
1512 return wgsa;
1513 }
1514
1515 static void
1516 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1517 {
1518
1519 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1520 }
1521
1522 static int
1523 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1524 {
1525 int error;
1526 struct socket *so;
1527 struct psref psref;
1528 struct wg_sockaddr *wgsa;
1529
1530 so = wg_get_so_by_peer(wgp);
1531 wgsa = wg_get_endpoint_sa(wgp, &psref);
1532 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1533 wg_put_sa(wgp, wgsa, &psref);
1534
1535 return error;
1536 }
1537
1538 static int
1539 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1540 {
1541 int error;
1542 struct mbuf *m;
1543 struct wg_msg_init *wgmi;
1544 struct wg_session *wgs;
1545 struct psref psref;
1546
1547 wgs = wg_lock_unstable_session(wgp);
1548 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
1549 WG_TRACE("Session destroying");
1550 mutex_exit(wgs->wgs_lock);
1551 /* XXX should wait? */
1552 return EBUSY;
1553 }
1554 if (wgs->wgs_state == WGS_STATE_INIT_ACTIVE) {
1555 WG_TRACE("Sesssion already initializing, skip starting a new one");
1556 mutex_exit(wgs->wgs_lock);
1557 return EBUSY;
1558 }
1559 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
1560 WG_TRACE("Sesssion already initializing, destroying old states");
1561 wg_clear_states(wgs);
1562 }
1563 wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
1564 wg_get_session(wgs, &psref);
1565 mutex_exit(wgs->wgs_lock);
1566
1567 m = m_gethdr(M_WAIT, MT_DATA);
1568 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1569 wgmi = mtod(m, struct wg_msg_init *);
1570
1571 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1572
1573 error = wg->wg_ops->send_hs_msg(wgp, m);
1574 if (error == 0) {
1575 WG_TRACE("init msg sent");
1576
1577 if (wgp->wgp_handshake_start_time == 0)
1578 wgp->wgp_handshake_start_time = time_uptime;
1579 wg_schedule_handshake_timeout_timer(wgp);
1580 } else {
1581 mutex_enter(wgs->wgs_lock);
1582 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1583 wgs->wgs_state = WGS_STATE_UNKNOWN;
1584 mutex_exit(wgs->wgs_lock);
1585 }
1586 wg_put_session(wgs, &psref);
1587
1588 return error;
1589 }
1590
1591 static void
1592 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1593 struct wg_msg_resp *wgmr, const struct wg_msg_init *wgmi)
1594 {
1595 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1596 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1597 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1598 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1599 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1600 struct wg_session *wgs;
1601 struct psref psref;
1602
1603 wgs = wg_get_unstable_session(wgp, &psref);
1604 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1605 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1606
1607 wgmr->wgmr_type = WG_MSG_TYPE_RESP;
1608 wgmr->wgmr_sender = cprng_strong32();
1609 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1610
1611 /* [W] 5.4.3 Second Message: Responder to Initiator */
1612
1613 /* [N] 2.2: "e" */
1614 /* Er^priv, Er^pub := DH-GENERATE() */
1615 wg_algo_generate_keypair(pubkey, privkey);
1616 /* Cr := KDF1(Cr, Er^pub) */
1617 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1618 /* msg.ephemeral := Er^pub */
1619 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1620 /* Hr := HASH(Hr || msg.ephemeral) */
1621 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1622
1623 WG_DUMP_HASH("ckey", ckey);
1624 WG_DUMP_HASH("hash", hash);
1625
1626 /* [N] 2.2: "ee" */
1627 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1628 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1629
1630 /* [N] 2.2: "se" */
1631 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1632 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1633
1634 /* [N] 9.2: "psk" */
1635 {
1636 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1637 /* Cr, r, k := KDF3(Cr, Q) */
1638 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1639 sizeof(wgp->wgp_psk));
1640 /* Hr := HASH(Hr || r) */
1641 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1642 }
1643
1644 /* msg.empty := AEAD(k, 0, e, Hr) */
1645 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1646 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1647 /* Hr := HASH(Hr || msg.empty) */
1648 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1649
1650 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1651
1652 /* [W] 5.4.4: Cookie MACs */
1653 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1654 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1655 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1656 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1657 /* Need mac1 to decrypt a cookie from a cookie message */
1658 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1659 sizeof(wgp->wgp_last_sent_mac1));
1660 wgp->wgp_last_sent_mac1_valid = true;
1661
1662 if (wgp->wgp_latest_cookie_time == 0 ||
1663 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1664 /* msg.mac2 := 0^16 */
1665 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1666 else {
1667 /* msg.mac2 := MAC(Lm, msg_b) */
1668 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1669 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1670 (const uint8_t *)wgmr,
1671 offsetof(struct wg_msg_resp, wgmr_mac2),
1672 NULL, 0);
1673 }
1674
1675 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1676 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1677 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1678 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1679 wgs->wgs_sender_index = wgmr->wgmr_sender;
1680 wgs->wgs_receiver_index = wgmi->wgmi_sender;
1681 WG_DLOG("sender=%x\n", wgs->wgs_sender_index);
1682 WG_DLOG("receiver=%x\n", wgs->wgs_receiver_index);
1683 wg_put_session(wgs, &psref);
1684 }
1685
1686 static void
1687 wg_swap_sessions(struct wg_peer *wgp)
1688 {
1689
1690 KASSERT(mutex_owned(wgp->wgp_lock));
1691
1692 wgp->wgp_session_unstable = atomic_swap_ptr(&wgp->wgp_session_stable,
1693 wgp->wgp_session_unstable);
1694 KASSERT(wgp->wgp_session_stable->wgs_state == WGS_STATE_ESTABLISHED);
1695 }
1696
1697 static void
1698 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1699 const struct sockaddr *src)
1700 {
1701 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1702 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1703 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1704 struct wg_peer *wgp;
1705 struct wg_session *wgs;
1706 struct psref psref;
1707 int error;
1708 uint8_t mac1[WG_MAC_LEN];
1709 struct wg_session *wgs_prev;
1710
1711 WG_TRACE("resp msg received");
1712 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
1713 if (wgs == NULL) {
1714 WG_TRACE("No session found");
1715 return;
1716 }
1717
1718 wgp = wgs->wgs_peer;
1719
1720 wg_algo_mac_mac1(mac1, sizeof(mac1),
1721 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1722 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1723
1724 /*
1725 * [W] 5.3: Denial of Service Mitigation & Cookies
1726 * "the responder, ..., must always reject messages with an invalid
1727 * msg.mac1"
1728 */
1729 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
1730 WG_DLOG("mac1 is invalid\n");
1731 goto out;
1732 }
1733
1734 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
1735 WG_TRACE("under load");
1736 /*
1737 * [W] 5.3: Denial of Service Mitigation & Cookies
1738 * "the responder, ..., and when under load may reject messages
1739 * with an invalid msg.mac2. If the responder receives a
1740 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1741 * and is under load, it may respond with a cookie reply
1742 * message"
1743 */
1744 uint8_t zero[WG_MAC_LEN] = {0};
1745 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
1746 WG_TRACE("sending a cookie message: no cookie included");
1747 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1748 wgmr->wgmr_mac1, src);
1749 goto out;
1750 }
1751 if (!wgp->wgp_last_sent_cookie_valid) {
1752 WG_TRACE("sending a cookie message: no cookie sent ever");
1753 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1754 wgmr->wgmr_mac1, src);
1755 goto out;
1756 }
1757 uint8_t mac2[WG_MAC_LEN];
1758 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1759 WG_COOKIE_LEN, (const uint8_t *)wgmr,
1760 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
1761 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
1762 WG_DLOG("mac2 is invalid\n");
1763 goto out;
1764 }
1765 WG_TRACE("under load, but continue to sending");
1766 }
1767
1768 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1769 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1770
1771 /*
1772 * [W] 5.4.3 Second Message: Responder to Initiator
1773 * "When the initiator receives this message, it does the same
1774 * operations so that its final state variables are identical,
1775 * replacing the operands of the DH function to produce equivalent
1776 * values."
1777 * Note that the following comments of operations are just copies of
1778 * the initiator's ones.
1779 */
1780
1781 /* [N] 2.2: "e" */
1782 /* Cr := KDF1(Cr, Er^pub) */
1783 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
1784 sizeof(wgmr->wgmr_ephemeral));
1785 /* Hr := HASH(Hr || msg.ephemeral) */
1786 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
1787
1788 WG_DUMP_HASH("ckey", ckey);
1789 WG_DUMP_HASH("hash", hash);
1790
1791 /* [N] 2.2: "ee" */
1792 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1793 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
1794 wgmr->wgmr_ephemeral);
1795
1796 /* [N] 2.2: "se" */
1797 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1798 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
1799
1800 /* [N] 9.2: "psk" */
1801 {
1802 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1803 /* Cr, r, k := KDF3(Cr, Q) */
1804 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1805 sizeof(wgp->wgp_psk));
1806 /* Hr := HASH(Hr || r) */
1807 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1808 }
1809
1810 {
1811 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
1812 /* msg.empty := AEAD(k, 0, e, Hr) */
1813 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
1814 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
1815 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1816 if (error != 0) {
1817 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1818 "wg_algo_aead_dec for empty message failed\n");
1819 goto out;
1820 }
1821 /* Hr := HASH(Hr || msg.empty) */
1822 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1823 }
1824
1825 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
1826 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
1827 wgs->wgs_receiver_index = wgmr->wgmr_sender;
1828 WG_DLOG("receiver=%x\n", wgs->wgs_receiver_index);
1829
1830 wgs->wgs_state = WGS_STATE_ESTABLISHED;
1831 wgs->wgs_time_established = time_uptime;
1832 wgs->wgs_time_last_data_sent = 0;
1833 wgs->wgs_is_initiator = true;
1834 wg_calculate_keys(wgs, true);
1835 wg_clear_states(wgs);
1836 WG_TRACE("WGS_STATE_ESTABLISHED");
1837
1838 wg_stop_handshake_timeout_timer(wgp);
1839
1840 mutex_enter(wgp->wgp_lock);
1841 wg_swap_sessions(wgp);
1842 wgs_prev = wgp->wgp_session_unstable;
1843 mutex_enter(wgs_prev->wgs_lock);
1844
1845 getnanotime(&wgp->wgp_last_handshake_time);
1846 wgp->wgp_handshake_start_time = 0;
1847 wgp->wgp_last_sent_mac1_valid = false;
1848 wgp->wgp_last_sent_cookie_valid = false;
1849 mutex_exit(wgp->wgp_lock);
1850
1851 wg_schedule_rekey_timer(wgp);
1852
1853 wg_update_endpoint_if_necessary(wgp, src);
1854
1855 /*
1856 * Send something immediately (same as the official implementation)
1857 * XXX if there are pending data packets, we don't need to send
1858 * a keepalive message.
1859 */
1860 wg_send_keepalive_msg(wgp, wgs);
1861
1862 /* Anyway run a softint to flush pending packets */
1863 kpreempt_disable();
1864 softint_schedule(wgp->wgp_si);
1865 kpreempt_enable();
1866 WG_TRACE("softint scheduled");
1867
1868 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
1869 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
1870 /* We can't destroy the old session immediately */
1871 wg_schedule_session_dtor_timer(wgp);
1872 }
1873 mutex_exit(wgs_prev->wgs_lock);
1874
1875 out:
1876 wg_put_session(wgs, &psref);
1877 }
1878
1879 static int
1880 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1881 const struct wg_msg_init *wgmi)
1882 {
1883 int error;
1884 struct mbuf *m;
1885 struct wg_msg_resp *wgmr;
1886
1887 m = m_gethdr(M_WAIT, MT_DATA);
1888 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
1889 wgmr = mtod(m, struct wg_msg_resp *);
1890 wg_fill_msg_resp(wg, wgp, wgmr, wgmi);
1891
1892 error = wg->wg_ops->send_hs_msg(wgp, m);
1893 if (error == 0)
1894 WG_TRACE("resp msg sent");
1895 return error;
1896 }
1897
1898 static struct wg_peer *
1899 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
1900 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
1901 {
1902 struct wg_peer *wgp;
1903
1904 int s = pserialize_read_enter();
1905 /* XXX O(n) */
1906 WG_PEER_READER_FOREACH(wgp, wg) {
1907 if (consttime_memequal(wgp->wgp_pubkey, pubkey,
1908 sizeof(wgp->wgp_pubkey)))
1909 break;
1910 }
1911 if (wgp != NULL)
1912 wg_get_peer(wgp, psref);
1913 pserialize_read_exit(s);
1914
1915 return wgp;
1916 }
1917
1918 static void
1919 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
1920 struct wg_msg_cookie *wgmc, const uint32_t sender,
1921 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
1922 {
1923 uint8_t cookie[WG_COOKIE_LEN];
1924 uint8_t key[WG_HASH_LEN];
1925 uint8_t addr[sizeof(struct in6_addr)];
1926 size_t addrlen;
1927 uint16_t uh_sport; /* be */
1928
1929 wgmc->wgmc_type = WG_MSG_TYPE_COOKIE;
1930 wgmc->wgmc_receiver = sender;
1931 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
1932
1933 /*
1934 * [W] 5.4.7: Under Load: Cookie Reply Message
1935 * "The secret variable, Rm, changes every two minutes to a
1936 * random value"
1937 */
1938 if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
1939 wgp->wgp_randval = cprng_strong32();
1940 wgp->wgp_last_genrandval_time = time_uptime;
1941 }
1942
1943 switch (src->sa_family) {
1944 case AF_INET: {
1945 const struct sockaddr_in *sin = satocsin(src);
1946 addrlen = sizeof(sin->sin_addr);
1947 memcpy(addr, &sin->sin_addr, addrlen);
1948 uh_sport = sin->sin_port;
1949 break;
1950 }
1951 #ifdef INET6
1952 case AF_INET6: {
1953 const struct sockaddr_in6 *sin6 = satocsin6(src);
1954 addrlen = sizeof(sin6->sin6_addr);
1955 memcpy(addr, &sin6->sin6_addr, addrlen);
1956 uh_sport = sin6->sin6_port;
1957 break;
1958 }
1959 #endif
1960 default:
1961 panic("invalid af=%d", wgp->wgp_sa.sa_family);
1962 }
1963
1964 wg_algo_mac(cookie, sizeof(cookie),
1965 (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
1966 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
1967 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
1968 sizeof(wg->wg_pubkey));
1969 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
1970 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
1971
1972 /* Need to store to calculate mac2 */
1973 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
1974 wgp->wgp_last_sent_cookie_valid = true;
1975 }
1976
1977 static int
1978 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
1979 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
1980 const struct sockaddr *src)
1981 {
1982 int error;
1983 struct mbuf *m;
1984 struct wg_msg_cookie *wgmc;
1985
1986 m = m_gethdr(M_WAIT, MT_DATA);
1987 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
1988 wgmc = mtod(m, struct wg_msg_cookie *);
1989 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
1990
1991 error = wg->wg_ops->send_hs_msg(wgp, m);
1992 if (error == 0)
1993 WG_TRACE("cookie msg sent");
1994 return error;
1995 }
1996
1997 static bool
1998 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
1999 {
2000 #ifdef WG_DEBUG_PARAMS
2001 if (wg_force_underload)
2002 return true;
2003 #endif
2004
2005 /*
2006 * XXX we don't have a means of a load estimation. The purpose of
2007 * the mechanism is a DoS mitigation, so we consider frequent handshake
2008 * messages as (a kind of) load; if a message of the same type comes
2009 * to a peer within 1 second, we consider we are under load.
2010 */
2011 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2012 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2013 return (time_uptime - last) == 0;
2014 }
2015
2016 static void
2017 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2018 {
2019
2020 /*
2021 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2022 */
2023 if (initiator) {
2024 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2025 wgs->wgs_chaining_key, NULL, 0);
2026 } else {
2027 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2028 wgs->wgs_chaining_key, NULL, 0);
2029 }
2030 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2031 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2032 }
2033
2034 static void
2035 wg_clear_states(struct wg_session *wgs)
2036 {
2037
2038 wgs->wgs_send_counter = 0;
2039 sliwin_reset(&wgs->wgs_recvwin->window);
2040
2041 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2042 wgs_clear(handshake_hash);
2043 wgs_clear(chaining_key);
2044 wgs_clear(ephemeral_key_pub);
2045 wgs_clear(ephemeral_key_priv);
2046 wgs_clear(ephemeral_key_peer);
2047 #undef wgs_clear
2048 }
2049
2050 static struct wg_session *
2051 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2052 struct psref *psref)
2053 {
2054 struct wg_peer *wgp;
2055 struct wg_session *wgs;
2056
2057 int s = pserialize_read_enter();
2058 /* XXX O(n) */
2059 WG_PEER_READER_FOREACH(wgp, wg) {
2060 wgs = wgp->wgp_session_stable;
2061 WG_DLOG("index=%x wgs_sender_index=%x\n",
2062 index, wgs->wgs_sender_index);
2063 if (wgs->wgs_sender_index == index)
2064 break;
2065 wgs = wgp->wgp_session_unstable;
2066 WG_DLOG("index=%x wgs_sender_index=%x\n",
2067 index, wgs->wgs_sender_index);
2068 if (wgs->wgs_sender_index == index)
2069 break;
2070 wgs = NULL;
2071 }
2072 if (wgs != NULL)
2073 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2074 pserialize_read_exit(s);
2075
2076 return wgs;
2077 }
2078
2079 static void
2080 wg_schedule_rekey_timer(struct wg_peer *wgp)
2081 {
2082 int timeout = MIN(wg_rekey_after_time, INT_MAX/hz);
2083
2084 callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
2085 }
2086
2087 static void
2088 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2089 {
2090 struct mbuf *m;
2091
2092 /*
2093 * [W] 6.5 Passive Keepalive
2094 * "A keepalive message is simply a transport data message with
2095 * a zero-length encapsulated encrypted inner-packet."
2096 */
2097 m = m_gethdr(M_WAIT, MT_DATA);
2098 wg_send_data_msg(wgp, wgs, m);
2099 }
2100
2101 static bool
2102 wg_need_to_send_init_message(struct wg_session *wgs)
2103 {
2104 /*
2105 * [W] 6.2 Transport Message Limits
2106 * "if a peer is the initiator of a current secure session,
2107 * WireGuard will send a handshake initiation message to begin
2108 * a new secure session ... if after receiving a transport data
2109 * message, the current secure session is (REJECT-AFTER-TIME
2110 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2111 * not yet acted upon this event."
2112 */
2113 return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
2114 (time_uptime - wgs->wgs_time_established) >=
2115 (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
2116 }
2117
2118 static void
2119 wg_schedule_peer_task(struct wg_peer *wgp, int task)
2120 {
2121
2122 atomic_or_uint(&wgp->wgp_tasks, task);
2123 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2124 wg_wakeup_worker(wgp->wgp_sc->wg_worker, WG_WAKEUP_REASON_PEER);
2125 }
2126
2127 static void
2128 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2129 {
2130
2131 KASSERT(mutex_owned(wgp->wgp_lock));
2132
2133 WG_TRACE("Changing endpoint");
2134
2135 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2136 wgp->wgp_endpoint0 = atomic_swap_ptr(&wgp->wgp_endpoint,
2137 wgp->wgp_endpoint0);
2138 if (!wgp->wgp_endpoint_available)
2139 wgp->wgp_endpoint_available = true;
2140 wgp->wgp_endpoint_changing = true;
2141 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2142 }
2143
2144 static bool
2145 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2146 {
2147 uint16_t packet_len;
2148 const struct ip *ip;
2149
2150 if (__predict_false(decrypted_len < sizeof(struct ip)))
2151 return false;
2152
2153 ip = (const struct ip *)packet;
2154 if (ip->ip_v == 4)
2155 *af = AF_INET;
2156 else if (ip->ip_v == 6)
2157 *af = AF_INET6;
2158 else
2159 return false;
2160
2161 WG_DLOG("af=%d\n", *af);
2162
2163 if (*af == AF_INET) {
2164 packet_len = ntohs(ip->ip_len);
2165 } else {
2166 const struct ip6_hdr *ip6;
2167
2168 if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
2169 return false;
2170
2171 ip6 = (const struct ip6_hdr *)packet;
2172 packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2173 }
2174
2175 WG_DLOG("packet_len=%u\n", packet_len);
2176 if (packet_len > decrypted_len)
2177 return false;
2178
2179 return true;
2180 }
2181
2182 static bool
2183 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2184 int af, char *packet)
2185 {
2186 struct sockaddr_storage ss;
2187 struct sockaddr *sa;
2188 struct psref psref;
2189 struct wg_peer *wgp;
2190 bool ok;
2191
2192 /*
2193 * II CRYPTOKEY ROUTING
2194 * "it will only accept it if its source IP resolves in the
2195 * table to the public key used in the secure session for
2196 * decrypting it."
2197 */
2198
2199 if (af == AF_INET) {
2200 const struct ip *ip = (const struct ip *)packet;
2201 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2202 sockaddr_in_init(sin, &ip->ip_src, 0);
2203 sa = sintosa(sin);
2204 #ifdef INET6
2205 } else {
2206 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2207 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2208 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2209 sa = sin6tosa(sin6);
2210 #endif
2211 }
2212
2213 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2214 ok = (wgp == wgp_expected);
2215 if (wgp != NULL)
2216 wg_put_peer(wgp, &psref);
2217
2218 return ok;
2219 }
2220
2221 static void
2222 wg_session_dtor_timer(void *arg)
2223 {
2224 struct wg_peer *wgp = arg;
2225
2226 WG_TRACE("enter");
2227
2228 mutex_enter(wgp->wgp_lock);
2229 if (__predict_false(wgp->wgp_state == WGP_STATE_DESTROYING)) {
2230 mutex_exit(wgp->wgp_lock);
2231 return;
2232 }
2233 mutex_exit(wgp->wgp_lock);
2234
2235 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2236 }
2237
2238 static void
2239 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2240 {
2241
2242 /* 1 second grace period */
2243 callout_schedule(&wgp->wgp_session_dtor_timer, hz);
2244 }
2245
2246 static void
2247 wg_stop_session_dtor_timer(struct wg_peer *wgp)
2248 {
2249
2250 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
2251 }
2252
2253 static bool
2254 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2255 {
2256 if (sa1->sa_family != sa2->sa_family)
2257 return false;
2258
2259 switch (sa1->sa_family) {
2260 case AF_INET:
2261 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2262 case AF_INET6:
2263 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2264 default:
2265 return true;
2266 }
2267 }
2268
2269 static void
2270 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2271 const struct sockaddr *src)
2272 {
2273
2274 #ifdef WG_DEBUG_LOG
2275 char oldaddr[128], newaddr[128];
2276 sockaddr_format(&wgp->wgp_sa, oldaddr, sizeof(oldaddr));
2277 sockaddr_format(src, newaddr, sizeof(newaddr));
2278 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2279 #endif
2280
2281 /*
2282 * III: "Since the packet has authenticated correctly, the source IP of
2283 * the outer UDP/IP packet is used to update the endpoint for peer..."
2284 */
2285 if (__predict_false(sockaddr_cmp(src, &wgp->wgp_sa) != 0 ||
2286 !sockaddr_port_match(src, &wgp->wgp_sa))) {
2287 mutex_enter(wgp->wgp_lock);
2288 /* XXX We can't change the endpoint twice in a short period */
2289 if (!wgp->wgp_endpoint_changing) {
2290 wg_change_endpoint(wgp, src);
2291 }
2292 mutex_exit(wgp->wgp_lock);
2293 }
2294 }
2295
2296 static void
2297 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2298 const struct sockaddr *src)
2299 {
2300 struct wg_msg_data *wgmd;
2301 char *encrypted_buf = NULL, *decrypted_buf;
2302 size_t encrypted_len, decrypted_len;
2303 struct wg_session *wgs;
2304 struct wg_peer *wgp;
2305 size_t mlen;
2306 struct psref psref;
2307 int error, af;
2308 bool success, free_encrypted_buf = false, ok;
2309 struct mbuf *n;
2310
2311 if (m->m_len < sizeof(struct wg_msg_data)) {
2312 m = m_pullup(m, sizeof(struct wg_msg_data));
2313 if (m == NULL)
2314 return;
2315 }
2316 wgmd = mtod(m, struct wg_msg_data *);
2317
2318 KASSERT(wgmd->wgmd_type == WG_MSG_TYPE_DATA);
2319 WG_TRACE("data");
2320
2321 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2322 if (wgs == NULL) {
2323 WG_TRACE("No session found");
2324 m_freem(m);
2325 return;
2326 }
2327 wgp = wgs->wgs_peer;
2328
2329 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2330 wgmd->wgmd_counter);
2331 if (error) {
2332 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2333 "out-of-window packet: %"PRIu64"\n",
2334 wgmd->wgmd_counter);
2335 goto out;
2336 }
2337
2338 mlen = m_length(m);
2339 encrypted_len = mlen - sizeof(*wgmd);
2340
2341 if (encrypted_len < WG_AUTHTAG_LEN) {
2342 WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
2343 goto out;
2344 }
2345
2346 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2347 if (success) {
2348 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2349 } else {
2350 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2351 if (encrypted_buf == NULL) {
2352 WG_DLOG("failed to allocate encrypted_buf\n");
2353 goto out;
2354 }
2355 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2356 free_encrypted_buf = true;
2357 }
2358 /* m_ensure_contig may change m regardless of its result */
2359 wgmd = mtod(m, struct wg_msg_data *);
2360
2361 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2362 if (decrypted_len > MCLBYTES) {
2363 /* FIXME handle larger data than MCLBYTES */
2364 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2365 goto out;
2366 }
2367
2368 /* To avoid zero length */
2369 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2370 if (n == NULL) {
2371 WG_DLOG("wg_get_mbuf failed\n");
2372 goto out;
2373 }
2374 decrypted_buf = mtod(n, char *);
2375
2376 WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
2377 error = wg_algo_aead_dec(decrypted_buf,
2378 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2379 wgs->wgs_tkey_recv, wgmd->wgmd_counter, encrypted_buf,
2380 encrypted_len, NULL, 0);
2381 if (error != 0) {
2382 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2383 "failed to wg_algo_aead_dec\n");
2384 m_freem(n);
2385 goto out;
2386 }
2387 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2388
2389 mutex_enter(&wgs->wgs_recvwin->lock);
2390 error = sliwin_update(&wgs->wgs_recvwin->window,
2391 wgmd->wgmd_counter);
2392 mutex_exit(&wgs->wgs_recvwin->lock);
2393 if (error) {
2394 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2395 "replay or out-of-window packet: %"PRIu64"\n",
2396 wgmd->wgmd_counter);
2397 m_freem(n);
2398 goto out;
2399 }
2400
2401 m_freem(m);
2402 m = NULL;
2403 wgmd = NULL;
2404
2405 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2406 if (!ok) {
2407 /* something wrong... */
2408 m_freem(n);
2409 goto out;
2410 }
2411
2412 wg_update_endpoint_if_necessary(wgp, src);
2413
2414 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2415 if (ok) {
2416 wg->wg_ops->input(&wg->wg_if, n, af);
2417 } else {
2418 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2419 "invalid source address\n");
2420 m_freem(n);
2421 /*
2422 * The inner address is invalid however the session is valid
2423 * so continue the session processing below.
2424 */
2425 }
2426 n = NULL;
2427
2428 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
2429 struct wg_session *wgs_prev;
2430
2431 KASSERT(wgs == wgp->wgp_session_unstable);
2432 wgs->wgs_state = WGS_STATE_ESTABLISHED;
2433 wgs->wgs_time_established = time_uptime;
2434 wgs->wgs_time_last_data_sent = 0;
2435 wgs->wgs_is_initiator = false;
2436 WG_TRACE("WGS_STATE_ESTABLISHED");
2437
2438 mutex_enter(wgp->wgp_lock);
2439 wg_swap_sessions(wgp);
2440 wgs_prev = wgp->wgp_session_unstable;
2441 mutex_enter(wgs_prev->wgs_lock);
2442 getnanotime(&wgp->wgp_last_handshake_time);
2443 wgp->wgp_handshake_start_time = 0;
2444 wgp->wgp_last_sent_mac1_valid = false;
2445 wgp->wgp_last_sent_cookie_valid = false;
2446 mutex_exit(wgp->wgp_lock);
2447
2448 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2449 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
2450 /* We can't destroy the old session immediately */
2451 wg_schedule_session_dtor_timer(wgp);
2452 } else {
2453 wg_clear_states(wgs_prev);
2454 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
2455 }
2456 mutex_exit(wgs_prev->wgs_lock);
2457
2458 /* Anyway run a softint to flush pending packets */
2459 kpreempt_disable();
2460 softint_schedule(wgp->wgp_si);
2461 kpreempt_enable();
2462 } else {
2463 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2464 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2465 }
2466 /*
2467 * [W] 6.5 Passive Keepalive
2468 * "If a peer has received a validly-authenticated transport
2469 * data message (section 5.4.6), but does not have any packets
2470 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2471 * a keepalive message."
2472 */
2473 WG_DLOG("time_uptime=%lu wgs_time_last_data_sent=%lu\n",
2474 time_uptime, wgs->wgs_time_last_data_sent);
2475 if ((time_uptime - wgs->wgs_time_last_data_sent) >=
2476 wg_keepalive_timeout) {
2477 WG_TRACE("Schedule sending keepalive message");
2478 /*
2479 * We can't send a keepalive message here to avoid
2480 * a deadlock; we already hold the solock of a socket
2481 * that is used to send the message.
2482 */
2483 wg_schedule_peer_task(wgp,
2484 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2485 }
2486 }
2487 out:
2488 wg_put_session(wgs, &psref);
2489 if (m != NULL)
2490 m_freem(m);
2491 if (free_encrypted_buf)
2492 kmem_intr_free(encrypted_buf, encrypted_len);
2493 }
2494
2495 static void
2496 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2497 {
2498 struct wg_session *wgs;
2499 struct wg_peer *wgp;
2500 struct psref psref;
2501 int error;
2502 uint8_t key[WG_HASH_LEN];
2503 uint8_t cookie[WG_COOKIE_LEN];
2504
2505 WG_TRACE("cookie msg received");
2506 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2507 if (wgs == NULL) {
2508 WG_TRACE("No session found");
2509 return;
2510 }
2511 wgp = wgs->wgs_peer;
2512
2513 if (!wgp->wgp_last_sent_mac1_valid) {
2514 WG_TRACE("No valid mac1 sent (or expired)");
2515 goto out;
2516 }
2517
2518 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
2519 sizeof(wgp->wgp_pubkey));
2520 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key, 0,
2521 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
2522 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
2523 wgmc->wgmc_salt);
2524 if (error != 0) {
2525 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2526 "wg_algo_aead_dec for cookie failed: error=%d\n", error);
2527 goto out;
2528 }
2529 /*
2530 * [W] 6.6: Interaction with Cookie Reply System
2531 * "it should simply store the decrypted cookie value from the cookie
2532 * reply message, and wait for the expiration of the REKEY-TIMEOUT
2533 * timer for retrying a handshake initiation message."
2534 */
2535 wgp->wgp_latest_cookie_time = time_uptime;
2536 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
2537 out:
2538 wg_put_session(wgs, &psref);
2539 }
2540
2541 static bool
2542 wg_validate_msg_length(struct wg_softc *wg, const struct mbuf *m)
2543 {
2544 struct wg_msg *wgm;
2545 size_t mlen;
2546
2547 mlen = m_length(m);
2548 if (__predict_false(mlen < sizeof(struct wg_msg)))
2549 return false;
2550
2551 wgm = mtod(m, struct wg_msg *);
2552 switch (wgm->wgm_type) {
2553 case WG_MSG_TYPE_INIT:
2554 if (__predict_true(mlen >= sizeof(struct wg_msg_init)))
2555 return true;
2556 break;
2557 case WG_MSG_TYPE_RESP:
2558 if (__predict_true(mlen >= sizeof(struct wg_msg_resp)))
2559 return true;
2560 break;
2561 case WG_MSG_TYPE_COOKIE:
2562 if (__predict_true(mlen >= sizeof(struct wg_msg_cookie)))
2563 return true;
2564 break;
2565 case WG_MSG_TYPE_DATA:
2566 if (__predict_true(mlen >= sizeof(struct wg_msg_data)))
2567 return true;
2568 break;
2569 default:
2570 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
2571 "Unexpected msg type: %u\n", wgm->wgm_type);
2572 return false;
2573 }
2574 WG_DLOG("Invalid msg size: mlen=%lu type=%u\n", mlen, wgm->wgm_type);
2575
2576 return false;
2577 }
2578
2579 static void
2580 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
2581 const struct sockaddr *src)
2582 {
2583 struct wg_msg *wgm;
2584 bool valid;
2585
2586 valid = wg_validate_msg_length(wg, m);
2587 if (!valid) {
2588 m_freem(m);
2589 return;
2590 }
2591
2592 wgm = mtod(m, struct wg_msg *);
2593 switch (wgm->wgm_type) {
2594 case WG_MSG_TYPE_INIT:
2595 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
2596 break;
2597 case WG_MSG_TYPE_RESP:
2598 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
2599 break;
2600 case WG_MSG_TYPE_COOKIE:
2601 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
2602 break;
2603 case WG_MSG_TYPE_DATA:
2604 wg_handle_msg_data(wg, m, src);
2605 break;
2606 default:
2607 /* wg_validate_msg_length should already reject this case */
2608 break;
2609 }
2610 }
2611
2612 static void
2613 wg_receive_packets(struct wg_softc *wg, const int af)
2614 {
2615
2616 for (;;) {
2617 int error, flags;
2618 struct socket *so;
2619 struct mbuf *m = NULL;
2620 struct uio dummy_uio;
2621 struct mbuf *paddr = NULL;
2622 struct sockaddr *src;
2623
2624 so = wg_get_so_by_af(wg->wg_worker, af);
2625 flags = MSG_DONTWAIT;
2626 dummy_uio.uio_resid = 1000000000;
2627
2628 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
2629 &flags);
2630 if (error || m == NULL) {
2631 //if (error == EWOULDBLOCK)
2632 return;
2633 }
2634
2635 KASSERT(paddr != NULL);
2636 src = mtod(paddr, struct sockaddr *);
2637
2638 wg_handle_packet(wg, m, src);
2639 }
2640 }
2641
2642 static void
2643 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
2644 {
2645
2646 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
2647 }
2648
2649 static void
2650 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
2651 {
2652
2653 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
2654 }
2655
2656 static void
2657 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
2658 {
2659 struct psref psref;
2660 struct wg_session *wgs;
2661
2662 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
2663
2664 if (!wgp->wgp_endpoint_available) {
2665 WGLOG(LOG_DEBUG, "No endpoint available\n");
2666 /* XXX should do something? */
2667 return;
2668 }
2669
2670 wgs = wg_get_stable_session(wgp, &psref);
2671 if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
2672 wg_put_session(wgs, &psref);
2673 wg_send_handshake_msg_init(wg, wgp);
2674 } else {
2675 wg_put_session(wgs, &psref);
2676 /* rekey */
2677 wgs = wg_get_unstable_session(wgp, &psref);
2678 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2679 wg_send_handshake_msg_init(wg, wgp);
2680 wg_put_session(wgs, &psref);
2681 }
2682 }
2683
2684 static void
2685 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
2686 {
2687
2688 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
2689
2690 mutex_enter(wgp->wgp_lock);
2691 if (wgp->wgp_endpoint_changing) {
2692 pserialize_perform(wgp->wgp_psz);
2693 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
2694 wg_psref_class);
2695 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
2696 wg_psref_class);
2697 wgp->wgp_endpoint_changing = false;
2698 }
2699 mutex_exit(wgp->wgp_lock);
2700 }
2701
2702 static void
2703 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
2704 {
2705 struct psref psref;
2706 struct wg_session *wgs;
2707
2708 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
2709
2710 wgs = wg_get_stable_session(wgp, &psref);
2711 wg_send_keepalive_msg(wgp, wgs);
2712 wg_put_session(wgs, &psref);
2713 }
2714
2715 static void
2716 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
2717 {
2718 struct wg_session *wgs;
2719
2720 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
2721
2722 mutex_enter(wgp->wgp_lock);
2723 wgs = wgp->wgp_session_unstable;
2724 mutex_enter(wgs->wgs_lock);
2725 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
2726 pserialize_perform(wgp->wgp_psz);
2727 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
2728 psref_target_init(&wgs->wgs_psref, wg_psref_class);
2729 wg_clear_states(wgs);
2730 wgs->wgs_state = WGS_STATE_UNKNOWN;
2731 }
2732 mutex_exit(wgs->wgs_lock);
2733 mutex_exit(wgp->wgp_lock);
2734 }
2735
2736 static void
2737 wg_process_peer_tasks(struct wg_softc *wg)
2738 {
2739 struct wg_peer *wgp;
2740 int s;
2741
2742 /* XXX should avoid checking all peers */
2743 s = pserialize_read_enter();
2744 WG_PEER_READER_FOREACH(wgp, wg) {
2745 struct psref psref;
2746 unsigned int tasks;
2747
2748 if (wgp->wgp_tasks == 0)
2749 continue;
2750
2751 wg_get_peer(wgp, &psref);
2752 pserialize_read_exit(s);
2753
2754 restart:
2755 tasks = atomic_swap_uint(&wgp->wgp_tasks, 0);
2756 KASSERT(tasks != 0);
2757
2758 WG_DLOG("tasks=%x\n", tasks);
2759
2760 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
2761 wg_task_send_init_message(wg, wgp);
2762 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
2763 wg_task_endpoint_changed(wg, wgp);
2764 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
2765 wg_task_send_keepalive_message(wg, wgp);
2766 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
2767 wg_task_destroy_prev_session(wg, wgp);
2768
2769 /* New tasks may be scheduled during processing tasks */
2770 WG_DLOG("wgp_tasks=%d\n", wgp->wgp_tasks);
2771 if (wgp->wgp_tasks != 0)
2772 goto restart;
2773
2774 s = pserialize_read_enter();
2775 wg_put_peer(wgp, &psref);
2776 }
2777 pserialize_read_exit(s);
2778 }
2779
2780 static void
2781 wg_worker(void *arg)
2782 {
2783 struct wg_softc *wg = arg;
2784 struct wg_worker *wgw = wg->wg_worker;
2785 bool todie = false;
2786
2787 KASSERT(wg != NULL);
2788 KASSERT(wgw != NULL);
2789
2790 while (!todie) {
2791 int reasons;
2792 int bound;
2793
2794 mutex_enter(&wgw->wgw_lock);
2795 /* New tasks may come during task handling */
2796 while ((reasons = wgw->wgw_wakeup_reasons) == 0 &&
2797 !(todie = wgw->wgw_todie))
2798 cv_wait(&wgw->wgw_cv, &wgw->wgw_lock);
2799 wgw->wgw_wakeup_reasons = 0;
2800 mutex_exit(&wgw->wgw_lock);
2801
2802 bound = curlwp_bind();
2803 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4))
2804 wg_receive_packets(wg, AF_INET);
2805 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6))
2806 wg_receive_packets(wg, AF_INET6);
2807 if (ISSET(reasons, WG_WAKEUP_REASON_PEER))
2808 wg_process_peer_tasks(wg);
2809 curlwp_bindx(bound);
2810 }
2811 kthread_exit(0);
2812 }
2813
2814 static void
2815 wg_wakeup_worker(struct wg_worker *wgw, const int reason)
2816 {
2817
2818 mutex_enter(&wgw->wgw_lock);
2819 wgw->wgw_wakeup_reasons |= reason;
2820 cv_broadcast(&wgw->wgw_cv);
2821 mutex_exit(&wgw->wgw_lock);
2822 }
2823
2824 static int
2825 wg_bind_port(struct wg_softc *wg, const uint16_t port)
2826 {
2827 int error;
2828 struct wg_worker *wgw = wg->wg_worker;
2829 uint16_t old_port = wg->wg_listen_port;
2830
2831 if (port != 0 && old_port == port)
2832 return 0;
2833
2834 struct sockaddr_in _sin, *sin = &_sin;
2835 sin->sin_len = sizeof(*sin);
2836 sin->sin_family = AF_INET;
2837 sin->sin_addr.s_addr = INADDR_ANY;
2838 sin->sin_port = htons(port);
2839
2840 error = sobind(wgw->wgw_so4, sintosa(sin), curlwp);
2841 if (error != 0)
2842 return error;
2843
2844 #ifdef INET6
2845 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
2846 sin6->sin6_len = sizeof(*sin6);
2847 sin6->sin6_family = AF_INET6;
2848 sin6->sin6_addr = in6addr_any;
2849 sin6->sin6_port = htons(port);
2850
2851 error = sobind(wgw->wgw_so6, sin6tosa(sin6), curlwp);
2852 if (error != 0)
2853 return error;
2854 #endif
2855
2856 wg->wg_listen_port = port;
2857
2858 return 0;
2859 }
2860
2861 static void
2862 wg_so_upcall(struct socket *so, void *arg, int events, int waitflag)
2863 {
2864 struct wg_worker *wgw = arg;
2865 int reason;
2866
2867 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
2868 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 :
2869 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6;
2870 wg_wakeup_worker(wgw, reason);
2871 }
2872
2873 static int
2874 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
2875 struct sockaddr *src, void *arg)
2876 {
2877 struct wg_softc *wg = arg;
2878 struct wg_msg wgm;
2879 struct mbuf *m = *mp;
2880
2881 WG_TRACE("enter");
2882
2883 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
2884 WG_DLOG("type=%d\n", wgm.wgm_type);
2885
2886 switch (wgm.wgm_type) {
2887 case WG_MSG_TYPE_DATA:
2888 m_adj(m, offset);
2889 wg_handle_msg_data(wg, m, src);
2890 *mp = NULL;
2891 return 1;
2892 default:
2893 break;
2894 }
2895
2896 return 0;
2897 }
2898
2899 static int
2900 wg_worker_socreate(struct wg_softc *wg, struct wg_worker *wgw, const int af,
2901 struct socket **sop)
2902 {
2903 int error;
2904 struct socket *so;
2905
2906 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
2907 if (error != 0)
2908 return error;
2909
2910 solock(so);
2911 so->so_upcallarg = wgw;
2912 so->so_upcall = wg_so_upcall;
2913 so->so_rcv.sb_flags |= SB_UPCALL;
2914 if (af == AF_INET)
2915 in_pcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
2916 #if INET6
2917 else
2918 in6_pcb_register_overudp_cb(sotoin6pcb(so), wg_overudp_cb, wg);
2919 #endif
2920 sounlock(so);
2921
2922 *sop = so;
2923
2924 return 0;
2925 }
2926
2927 static int
2928 wg_worker_init(struct wg_softc *wg)
2929 {
2930 int error;
2931 struct wg_worker *wgw;
2932 const char *ifname = wg->wg_if.if_xname;
2933 struct socket *so;
2934
2935 wgw = kmem_zalloc(sizeof(struct wg_worker), KM_SLEEP);
2936
2937 mutex_init(&wgw->wgw_lock, MUTEX_DEFAULT, IPL_NONE);
2938 cv_init(&wgw->wgw_cv, ifname);
2939 wgw->wgw_todie = false;
2940 wgw->wgw_wakeup_reasons = 0;
2941
2942 error = wg_worker_socreate(wg, wgw, AF_INET, &so);
2943 if (error != 0)
2944 goto error;
2945 wgw->wgw_so4 = so;
2946 #ifdef INET6
2947 error = wg_worker_socreate(wg, wgw, AF_INET6, &so);
2948 if (error != 0)
2949 goto error;
2950 wgw->wgw_so6 = so;
2951 #endif
2952
2953 wg->wg_worker = wgw;
2954
2955 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE | KTHREAD_MUSTJOIN,
2956 NULL, wg_worker, wg, &wg->wg_worker_lwp, "%s", ifname);
2957 if (error != 0)
2958 goto error;
2959
2960 return 0;
2961
2962 error:
2963 #ifdef INET6
2964 if (wgw->wgw_so6 != NULL)
2965 soclose(wgw->wgw_so6);
2966 #endif
2967 if (wgw->wgw_so4 != NULL)
2968 soclose(wgw->wgw_so4);
2969 cv_destroy(&wgw->wgw_cv);
2970 mutex_destroy(&wgw->wgw_lock);
2971
2972 return error;
2973 }
2974
2975 static void
2976 wg_worker_destroy(struct wg_softc *wg)
2977 {
2978 struct wg_worker *wgw = wg->wg_worker;
2979
2980 mutex_enter(&wgw->wgw_lock);
2981 wgw->wgw_todie = true;
2982 wgw->wgw_wakeup_reasons = 0;
2983 cv_broadcast(&wgw->wgw_cv);
2984 mutex_exit(&wgw->wgw_lock);
2985
2986 kthread_join(wg->wg_worker_lwp);
2987
2988 #ifdef INET6
2989 soclose(wgw->wgw_so6);
2990 #endif
2991 soclose(wgw->wgw_so4);
2992 cv_destroy(&wgw->wgw_cv);
2993 mutex_destroy(&wgw->wgw_lock);
2994 kmem_free(wg->wg_worker, sizeof(struct wg_worker));
2995 wg->wg_worker = NULL;
2996 }
2997
2998 static bool
2999 wg_session_hit_limits(struct wg_session *wgs)
3000 {
3001
3002 /*
3003 * [W] 6.2: Transport Message Limits
3004 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3005 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3006 * comes first, WireGuard will refuse to send any more transport data
3007 * messages using the current secure session, ..."
3008 */
3009 KASSERT(wgs->wgs_time_established != 0);
3010 if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
3011 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3012 return true;
3013 } else if (wgs->wgs_send_counter > wg_reject_after_messages) {
3014 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3015 return true;
3016 }
3017
3018 return false;
3019 }
3020
3021 static void
3022 wg_peer_softint(void *arg)
3023 {
3024 struct wg_peer *wgp = arg;
3025 struct wg_session *wgs;
3026 struct mbuf *m;
3027 struct psref psref;
3028
3029 wgs = wg_get_stable_session(wgp, &psref);
3030 if (wgs->wgs_state != WGS_STATE_ESTABLISHED) {
3031 /* XXX how to treat? */
3032 WG_TRACE("skipped");
3033 goto out;
3034 }
3035 if (wg_session_hit_limits(wgs)) {
3036 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3037 goto out;
3038 }
3039 WG_TRACE("running");
3040
3041 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3042 wg_send_data_msg(wgp, wgs, m);
3043 }
3044 out:
3045 wg_put_session(wgs, &psref);
3046 }
3047
3048 static void
3049 wg_rekey_timer(void *arg)
3050 {
3051 struct wg_peer *wgp = arg;
3052
3053 mutex_enter(wgp->wgp_lock);
3054 if (__predict_true(wgp->wgp_state != WGP_STATE_DESTROYING)) {
3055 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3056 }
3057 mutex_exit(wgp->wgp_lock);
3058 }
3059
3060 static void
3061 wg_purge_pending_packets(struct wg_peer *wgp)
3062 {
3063 struct mbuf *m;
3064
3065 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3066 m_freem(m);
3067 }
3068 }
3069
3070 static void
3071 wg_handshake_timeout_timer(void *arg)
3072 {
3073 struct wg_peer *wgp = arg;
3074 struct wg_session *wgs;
3075 struct psref psref;
3076
3077 WG_TRACE("enter");
3078
3079 mutex_enter(wgp->wgp_lock);
3080 if (__predict_false(wgp->wgp_state == WGP_STATE_DESTROYING)) {
3081 mutex_exit(wgp->wgp_lock);
3082 return;
3083 }
3084 mutex_exit(wgp->wgp_lock);
3085
3086 KASSERT(wgp->wgp_handshake_start_time != 0);
3087 wgs = wg_get_unstable_session(wgp, &psref);
3088 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
3089
3090 /* [W] 6.4 Handshake Initiation Retransmission */
3091 if ((time_uptime - wgp->wgp_handshake_start_time) >
3092 wg_rekey_attempt_time) {
3093 /* Give up handshaking */
3094 wgs->wgs_state = WGS_STATE_UNKNOWN;
3095 wg_clear_states(wgs);
3096 wgp->wgp_state = WGP_STATE_GIVEUP;
3097 wgp->wgp_handshake_start_time = 0;
3098 wg_put_session(wgs, &psref);
3099 WG_TRACE("give up");
3100 /*
3101 * If a new data packet comes, handshaking will be retried
3102 * and a new session would be established at that time,
3103 * however we don't want to send pending packets then.
3104 */
3105 wg_purge_pending_packets(wgp);
3106 return;
3107 }
3108
3109 /* No response for an initiation message sent, retry handshaking */
3110 wgs->wgs_state = WGS_STATE_UNKNOWN;
3111 wg_clear_states(wgs);
3112 wg_put_session(wgs, &psref);
3113
3114 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3115 }
3116
3117 static struct wg_peer *
3118 wg_alloc_peer(struct wg_softc *wg)
3119 {
3120 struct wg_peer *wgp;
3121
3122 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3123
3124 wgp->wgp_sc = wg;
3125 wgp->wgp_state = WGP_STATE_INIT;
3126 wgp->wgp_q = pcq_create(1024, KM_SLEEP);
3127 wgp->wgp_si = softint_establish(SOFTINT_NET, wg_peer_softint, wgp);
3128 callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
3129 callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
3130 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3131 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3132 wg_handshake_timeout_timer, wgp);
3133 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3134 callout_setfunc(&wgp->wgp_session_dtor_timer,
3135 wg_session_dtor_timer, wgp);
3136 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3137 wgp->wgp_endpoint_changing = false;
3138 wgp->wgp_endpoint_available = false;
3139 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3140 wgp->wgp_psz = pserialize_create();
3141 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3142
3143 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3144 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3145 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3146 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3147
3148 struct wg_session *wgs;
3149 wgp->wgp_session_stable =
3150 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3151 wgp->wgp_session_unstable =
3152 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3153 wgs = wgp->wgp_session_stable;
3154 wgs->wgs_peer = wgp;
3155 wgs->wgs_state = WGS_STATE_UNKNOWN;
3156 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3157 wgs->wgs_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3158 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3159 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_NONE);
3160
3161 wgs = wgp->wgp_session_unstable;
3162 wgs->wgs_peer = wgp;
3163 wgs->wgs_state = WGS_STATE_UNKNOWN;
3164 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3165 wgs->wgs_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3166 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3167 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_NONE);
3168
3169 return wgp;
3170 }
3171
3172 static void
3173 wg_destroy_peer(struct wg_peer *wgp)
3174 {
3175 struct wg_session *wgs;
3176 struct wg_softc *wg = wgp->wgp_sc;
3177
3178 rw_enter(wg->wg_rwlock, RW_WRITER);
3179 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3180 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3181 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3182 struct radix_node *rn;
3183
3184 KASSERT(rnh != NULL);
3185 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3186 &wga->wga_sa_mask, rnh);
3187 if (rn == NULL) {
3188 char addrstr[128];
3189 sockaddr_format(&wga->wga_sa_addr, addrstr,
3190 sizeof(addrstr));
3191 WGLOG(LOG_WARNING, "Couldn't delete %s", addrstr);
3192 }
3193 }
3194 rw_exit(wg->wg_rwlock);
3195
3196 softint_disestablish(wgp->wgp_si);
3197 callout_halt(&wgp->wgp_rekey_timer, NULL);
3198 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3199 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3200
3201 wgs = wgp->wgp_session_unstable;
3202 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
3203 mutex_obj_free(wgs->wgs_lock);
3204 mutex_destroy(&wgs->wgs_recvwin->lock);
3205 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3206 kmem_free(wgs, sizeof(*wgs));
3207 wgs = wgp->wgp_session_stable;
3208 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
3209 mutex_obj_free(wgs->wgs_lock);
3210 mutex_destroy(&wgs->wgs_recvwin->lock);
3211 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3212 kmem_free(wgs, sizeof(*wgs));
3213
3214 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3215 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3216 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3217 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3218
3219 pserialize_destroy(wgp->wgp_psz);
3220 pcq_destroy(wgp->wgp_q);
3221 mutex_obj_free(wgp->wgp_lock);
3222
3223 kmem_free(wgp, sizeof(*wgp));
3224 }
3225
3226 static void
3227 wg_destroy_all_peers(struct wg_softc *wg)
3228 {
3229 struct wg_peer *wgp;
3230
3231 restart:
3232 mutex_enter(wg->wg_lock);
3233 WG_PEER_WRITER_FOREACH(wgp, wg) {
3234 WG_PEER_WRITER_REMOVE(wgp);
3235 mutex_enter(wgp->wgp_lock);
3236 wgp->wgp_state = WGP_STATE_DESTROYING;
3237 pserialize_perform(wgp->wgp_psz);
3238 mutex_exit(wgp->wgp_lock);
3239 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3240 break;
3241 }
3242 mutex_exit(wg->wg_lock);
3243
3244 if (wgp == NULL)
3245 return;
3246
3247 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3248
3249 wg_destroy_peer(wgp);
3250
3251 goto restart;
3252 }
3253
3254 static int
3255 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3256 {
3257 struct wg_peer *wgp;
3258
3259 mutex_enter(wg->wg_lock);
3260 WG_PEER_WRITER_FOREACH(wgp, wg) {
3261 if (strcmp(wgp->wgp_name, name) == 0)
3262 break;
3263 }
3264 if (wgp != NULL) {
3265 WG_PEER_WRITER_REMOVE(wgp);
3266 wg->wg_npeers--;
3267 mutex_enter(wgp->wgp_lock);
3268 wgp->wgp_state = WGP_STATE_DESTROYING;
3269 pserialize_perform(wgp->wgp_psz);
3270 mutex_exit(wgp->wgp_lock);
3271 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3272 }
3273 mutex_exit(wg->wg_lock);
3274
3275 if (wgp == NULL)
3276 return ENOENT;
3277
3278 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3279
3280 wg_destroy_peer(wgp);
3281
3282 return 0;
3283 }
3284
3285 static int
3286 wg_if_attach(struct wg_softc *wg)
3287 {
3288 int error;
3289
3290 wg->wg_if.if_addrlen = 0;
3291 wg->wg_if.if_mtu = WG_MTU;
3292 wg->wg_if.if_flags = IFF_POINTOPOINT;
3293 wg->wg_if.if_extflags = IFEF_NO_LINK_STATE_CHANGE;
3294 wg->wg_if.if_extflags |= IFEF_MPSAFE;
3295 wg->wg_if.if_ioctl = wg_ioctl;
3296 wg->wg_if.if_output = wg_output;
3297 wg->wg_if.if_init = wg_init;
3298 wg->wg_if.if_stop = wg_stop;
3299 wg->wg_if.if_type = IFT_WIREGUARD;
3300 wg->wg_if.if_dlt = DLT_NULL;
3301 wg->wg_if.if_softc = wg;
3302 IFQ_SET_READY(&wg->wg_if.if_snd);
3303
3304 error = if_initialize(&wg->wg_if);
3305 if (error != 0)
3306 return error;
3307
3308 if_alloc_sadl(&wg->wg_if);
3309 if_register(&wg->wg_if);
3310
3311 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3312
3313 return 0;
3314 }
3315
3316 static int
3317 wg_clone_create(struct if_clone *ifc, int unit)
3318 {
3319 struct wg_softc *wg;
3320 int error;
3321
3322 wg = kmem_zalloc(sizeof(struct wg_softc), KM_SLEEP);
3323
3324 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3325
3326 error = wg_worker_init(wg);
3327 if (error != 0) {
3328 kmem_free(wg, sizeof(struct wg_softc));
3329 return error;
3330 }
3331
3332 rn_inithead((void **)&wg->wg_rtable_ipv4,
3333 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3334 #ifdef INET6
3335 rn_inithead((void **)&wg->wg_rtable_ipv6,
3336 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3337 #endif
3338
3339 PSLIST_INIT(&wg->wg_peers);
3340 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3341 wg->wg_rwlock = rw_obj_alloc();
3342 wg->wg_ops = &wg_ops_rumpkernel;
3343
3344 error = wg_if_attach(wg);
3345 if (error != 0) {
3346 wg_worker_destroy(wg);
3347 if (wg->wg_rtable_ipv4 != NULL)
3348 free(wg->wg_rtable_ipv4, M_RTABLE);
3349 if (wg->wg_rtable_ipv6 != NULL)
3350 free(wg->wg_rtable_ipv6, M_RTABLE);
3351 PSLIST_DESTROY(&wg->wg_peers);
3352 mutex_obj_free(wg->wg_lock);
3353 kmem_free(wg, sizeof(struct wg_softc));
3354 return error;
3355 }
3356
3357 mutex_enter(&wg_softcs.lock);
3358 LIST_INSERT_HEAD(&wg_softcs.list, wg, wg_list);
3359 mutex_exit(&wg_softcs.lock);
3360
3361 return 0;
3362 }
3363
3364 static int
3365 wg_clone_destroy(struct ifnet *ifp)
3366 {
3367 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
3368
3369 mutex_enter(&wg_softcs.lock);
3370 LIST_REMOVE(wg, wg_list);
3371 mutex_exit(&wg_softcs.lock);
3372
3373 #ifdef WG_RUMPKERNEL
3374 if (wg_user_mode(wg)) {
3375 rumpuser_wg_destroy(wg->wg_user);
3376 wg->wg_user = NULL;
3377 }
3378 #endif
3379
3380 bpf_detach(ifp);
3381 if_detach(ifp);
3382 wg_worker_destroy(wg);
3383 wg_destroy_all_peers(wg);
3384 if (wg->wg_rtable_ipv4 != NULL)
3385 free(wg->wg_rtable_ipv4, M_RTABLE);
3386 if (wg->wg_rtable_ipv6 != NULL)
3387 free(wg->wg_rtable_ipv6, M_RTABLE);
3388
3389 PSLIST_DESTROY(&wg->wg_peers);
3390 mutex_obj_free(wg->wg_lock);
3391 rw_obj_free(wg->wg_rwlock);
3392
3393 kmem_free(wg, sizeof(struct wg_softc));
3394
3395 return 0;
3396 }
3397
3398 static struct wg_peer *
3399 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
3400 struct psref *psref)
3401 {
3402 struct radix_node_head *rnh;
3403 struct radix_node *rn;
3404 struct wg_peer *wgp = NULL;
3405 struct wg_allowedip *wga;
3406
3407 #ifdef WG_DEBUG_LOG
3408 char addrstr[128];
3409 sockaddr_format(sa, addrstr, sizeof(addrstr));
3410 WG_DLOG("sa=%s\n", addrstr);
3411 #endif
3412
3413 rw_enter(wg->wg_rwlock, RW_READER);
3414
3415 rnh = wg_rnh(wg, sa->sa_family);
3416 if (rnh == NULL)
3417 goto out;
3418
3419 rn = rnh->rnh_matchaddr(sa, rnh);
3420 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
3421 goto out;
3422
3423 WG_TRACE("success");
3424
3425 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
3426 wgp = wga->wga_peer;
3427 wg_get_peer(wgp, psref);
3428
3429 out:
3430 rw_exit(wg->wg_rwlock);
3431 return wgp;
3432 }
3433
3434 static void
3435 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
3436 struct wg_session *wgs, struct wg_msg_data *wgmd)
3437 {
3438
3439 memset(wgmd, 0, sizeof(*wgmd));
3440 wgmd->wgmd_type = WG_MSG_TYPE_DATA;
3441 wgmd->wgmd_receiver = wgs->wgs_receiver_index;
3442 /* [W] 5.4.6: msg.counter := Nm^send */
3443 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
3444 wgmd->wgmd_counter = atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
3445 WG_DLOG("counter=%"PRIu64"\n", wgmd->wgmd_counter);
3446 }
3447
3448 static int
3449 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
3450 const struct rtentry *rt)
3451 {
3452 struct wg_softc *wg = ifp->if_softc;
3453 int error = 0;
3454 int bound;
3455 struct psref psref;
3456
3457 /* TODO make the nest limit configurable via sysctl */
3458 error = if_tunnel_check_nesting(ifp, m, 1);
3459 if (error != 0) {
3460 m_freem(m);
3461 WGLOG(LOG_ERR, "tunneling loop detected and packet dropped\n");
3462 return error;
3463 }
3464
3465 bound = curlwp_bind();
3466
3467 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
3468
3469 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
3470
3471 m->m_flags &= ~(M_BCAST|M_MCAST);
3472
3473 struct wg_peer *wgp = wg_pick_peer_by_sa(wg, dst, &psref);
3474 if (wgp == NULL) {
3475 WG_TRACE("peer not found");
3476 error = EHOSTUNREACH;
3477 goto error;
3478 }
3479
3480 /* Clear checksum-offload flags. */
3481 m->m_pkthdr.csum_flags = 0;
3482 m->m_pkthdr.csum_data = 0;
3483
3484 if (!pcq_put(wgp->wgp_q, m)) {
3485 error = ENOBUFS;
3486 goto error;
3487 }
3488
3489 struct psref psref_wgs;
3490 struct wg_session *wgs;
3491 wgs = wg_get_stable_session(wgp, &psref_wgs);
3492 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3493 !wg_session_hit_limits(wgs)) {
3494 kpreempt_disable();
3495 softint_schedule(wgp->wgp_si);
3496 kpreempt_enable();
3497 WG_TRACE("softint scheduled");
3498 } else {
3499 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3500 WG_TRACE("softint NOT scheduled");
3501 }
3502 wg_put_session(wgs, &psref_wgs);
3503 wg_put_peer(wgp, &psref);
3504
3505 return 0;
3506
3507 error:
3508 if (wgp != NULL)
3509 wg_put_peer(wgp, &psref);
3510 if (m != NULL)
3511 m_freem(m);
3512 curlwp_bindx(bound);
3513 return error;
3514 }
3515
3516 static int
3517 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
3518 {
3519 struct psref psref;
3520 struct wg_sockaddr *wgsa;
3521 int error;
3522 struct socket *so = wg_get_so_by_peer(wgp);
3523
3524 solock(so);
3525 wgsa = wg_get_endpoint_sa(wgp, &psref);
3526 if (wgsatosa(wgsa)->sa_family == AF_INET) {
3527 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
3528 } else {
3529 #ifdef INET6
3530 error = udp6_output(sotoin6pcb(so), m, wgsatosin6(wgsa),
3531 NULL, curlwp);
3532 #else
3533 error = EPROTONOSUPPORT;
3534 #endif
3535 }
3536 wg_put_sa(wgp, wgsa, &psref);
3537 sounlock(so);
3538
3539 return error;
3540 }
3541
3542 /* Inspired by pppoe_get_mbuf */
3543 static struct mbuf *
3544 wg_get_mbuf(size_t leading_len, size_t len)
3545 {
3546 struct mbuf *m;
3547
3548 m = m_gethdr(M_DONTWAIT, MT_DATA);
3549 if (m == NULL)
3550 return NULL;
3551 if (len + leading_len > MHLEN) {
3552 m_clget(m, M_DONTWAIT);
3553 if ((m->m_flags & M_EXT) == 0) {
3554 m_free(m);
3555 return NULL;
3556 }
3557 }
3558 m->m_data += leading_len;
3559 m->m_pkthdr.len = m->m_len = len;
3560
3561 return m;
3562 }
3563
3564 static int
3565 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
3566 struct mbuf *m)
3567 {
3568 struct wg_softc *wg = wgp->wgp_sc;
3569 int error;
3570 size_t inner_len, padded_len, encrypted_len;
3571 char *padded_buf = NULL;
3572 size_t mlen;
3573 struct wg_msg_data *wgmd;
3574 bool free_padded_buf = false;
3575 struct mbuf *n;
3576 size_t leading_len = max_linkhdr + sizeof(struct ip6_hdr) +
3577 sizeof(struct udphdr);
3578
3579 mlen = m_length(m);
3580 inner_len = mlen;
3581 padded_len = roundup(mlen, 16);
3582 encrypted_len = padded_len + WG_AUTHTAG_LEN;
3583 WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
3584 inner_len, padded_len, encrypted_len);
3585 if (mlen != 0) {
3586 bool success;
3587 success = m_ensure_contig(&m, padded_len);
3588 if (success) {
3589 padded_buf = mtod(m, char *);
3590 } else {
3591 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
3592 if (padded_buf == NULL) {
3593 error = ENOBUFS;
3594 goto end;
3595 }
3596 free_padded_buf = true;
3597 m_copydata(m, 0, mlen, padded_buf);
3598 }
3599 memset(padded_buf + mlen, 0, padded_len - inner_len);
3600 }
3601
3602 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
3603 if (n == NULL) {
3604 error = ENOBUFS;
3605 goto end;
3606 }
3607 wgmd = mtod(n, struct wg_msg_data *);
3608 wg_fill_msg_data(wg, wgp, wgs, wgmd);
3609 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
3610 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
3611 wgs->wgs_tkey_send, wgmd->wgmd_counter, padded_buf, padded_len,
3612 NULL, 0);
3613
3614 error = wg->wg_ops->send_data_msg(wgp, n);
3615 if (error == 0) {
3616 struct ifnet *ifp = &wg->wg_if;
3617 if_statadd(ifp, if_obytes, mlen);
3618 if_statinc(ifp, if_opackets);
3619 if (wgs->wgs_is_initiator &&
3620 wgs->wgs_time_last_data_sent == 0) {
3621 /*
3622 * [W] 6.2 Transport Message Limits
3623 * "if a peer is the initiator of a current secure
3624 * session, WireGuard will send a handshake initiation
3625 * message to begin a new secure session if, after
3626 * transmitting a transport data message, the current
3627 * secure session is REKEY-AFTER-TIME seconds old,"
3628 */
3629 wg_schedule_rekey_timer(wgp);
3630 }
3631 wgs->wgs_time_last_data_sent = time_uptime;
3632 if (wgs->wgs_send_counter >= wg_rekey_after_messages) {
3633 /*
3634 * [W] 6.2 Transport Message Limits
3635 * "WireGuard will try to create a new session, by
3636 * sending a handshake initiation message (section
3637 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
3638 * transport data messages..."
3639 */
3640 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3641 }
3642 }
3643 end:
3644 m_freem(m);
3645 if (free_padded_buf)
3646 kmem_intr_free(padded_buf, padded_len);
3647 return error;
3648 }
3649
3650 static void
3651 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
3652 {
3653 pktqueue_t *pktq;
3654 size_t pktlen;
3655
3656 KASSERT(af == AF_INET || af == AF_INET6);
3657
3658 WG_TRACE("");
3659
3660 m_set_rcvif(m, ifp);
3661 pktlen = m->m_pkthdr.len;
3662
3663 bpf_mtap_af(ifp, af, m, BPF_D_IN);
3664
3665 switch (af) {
3666 case AF_INET:
3667 pktq = ip_pktq;
3668 break;
3669 #ifdef INET6
3670 case AF_INET6:
3671 pktq = ip6_pktq;
3672 break;
3673 #endif
3674 default:
3675 panic("invalid af=%d", af);
3676 }
3677
3678 const u_int h = curcpu()->ci_index;
3679 if (__predict_true(pktq_enqueue(pktq, m, h))) {
3680 if_statadd(ifp, if_ibytes, pktlen);
3681 if_statinc(ifp, if_ipackets);
3682 } else {
3683 m_freem(m);
3684 }
3685 }
3686
3687 static void
3688 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
3689 const uint8_t privkey[WG_STATIC_KEY_LEN])
3690 {
3691
3692 crypto_scalarmult_base(pubkey, privkey);
3693 }
3694
3695 static int
3696 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
3697 {
3698 struct radix_node_head *rnh;
3699 struct radix_node *rn;
3700 int error = 0;
3701
3702 rw_enter(wg->wg_rwlock, RW_WRITER);
3703 rnh = wg_rnh(wg, wga->wga_family);
3704 KASSERT(rnh != NULL);
3705 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
3706 wga->wga_nodes);
3707 rw_exit(wg->wg_rwlock);
3708
3709 if (rn == NULL)
3710 error = EEXIST;
3711
3712 return error;
3713 }
3714
3715 static int
3716 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
3717 struct wg_peer **wgpp)
3718 {
3719 int error = 0;
3720 const void *pubkey;
3721 size_t pubkey_len;
3722 const void *psk;
3723 size_t psk_len;
3724 const char *name = NULL;
3725
3726 if (prop_dictionary_get_string(peer, "name", &name)) {
3727 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
3728 error = EINVAL;
3729 goto out;
3730 }
3731 }
3732
3733 if (!prop_dictionary_get_data(peer, "public_key",
3734 &pubkey, &pubkey_len)) {
3735 error = EINVAL;
3736 goto out;
3737 }
3738 #ifdef WG_DEBUG_DUMP
3739 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n", pubkey, pubkey_len);
3740 for (int _i = 0; _i < pubkey_len; _i++)
3741 log(LOG_DEBUG, "%c", ((const char *)pubkey)[_i]);
3742 log(LOG_DEBUG, "\n");
3743 #endif
3744
3745 struct wg_peer *wgp = wg_alloc_peer(wg);
3746 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
3747 if (name != NULL)
3748 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
3749
3750 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
3751 if (psk_len != sizeof(wgp->wgp_psk)) {
3752 error = EINVAL;
3753 goto out;
3754 }
3755 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
3756 }
3757
3758 struct sockaddr_storage sockaddr;
3759 const void *addr;
3760 size_t addr_len;
3761
3762 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
3763 goto skip_endpoint;
3764 memcpy(&sockaddr, addr, addr_len);
3765 switch (sockaddr.ss_family) {
3766 case AF_INET: {
3767 struct sockaddr_in sin;
3768 sockaddr_copy(sintosa(&sin), sizeof(sin),
3769 (const struct sockaddr *)&sockaddr);
3770 sockaddr_copy(sintosa(&wgp->wgp_sin),
3771 sizeof(wgp->wgp_sin), (const struct sockaddr *)&sockaddr);
3772 char addrstr[128];
3773 sockaddr_format(sintosa(&sin), addrstr, sizeof(addrstr));
3774 WG_DLOG("addr=%s\n", addrstr);
3775 break;
3776 }
3777 #ifdef INET6
3778 case AF_INET6: {
3779 struct sockaddr_in6 sin6;
3780 char addrstr[128];
3781 sockaddr_copy(sintosa(&sin6), sizeof(sin6),
3782 (const struct sockaddr *)&sockaddr);
3783 sockaddr_format(sintosa(&sin6), addrstr, sizeof(addrstr));
3784 WG_DLOG("addr=%s\n", addrstr);
3785 sockaddr_copy(sin6tosa(&wgp->wgp_sin6),
3786 sizeof(wgp->wgp_sin6), (const struct sockaddr *)&sockaddr);
3787 break;
3788 }
3789 #endif
3790 default:
3791 break;
3792 }
3793 wgp->wgp_endpoint_available = true;
3794
3795 prop_array_t allowedips;
3796 skip_endpoint:
3797 allowedips = prop_dictionary_get(peer, "allowedips");
3798 if (allowedips == NULL)
3799 goto skip;
3800
3801 prop_object_iterator_t _it = prop_array_iterator(allowedips);
3802 prop_dictionary_t prop_allowedip;
3803 int j = 0;
3804 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
3805 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
3806
3807 if (!prop_dictionary_get_int(prop_allowedip, "family",
3808 &wga->wga_family))
3809 continue;
3810 if (!prop_dictionary_get_data(prop_allowedip, "ip",
3811 &addr, &addr_len))
3812 continue;
3813 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
3814 &wga->wga_cidr))
3815 continue;
3816
3817 switch (wga->wga_family) {
3818 case AF_INET: {
3819 struct sockaddr_in sin;
3820 char addrstr[128];
3821 struct in_addr mask;
3822 struct sockaddr_in sin_mask;
3823
3824 if (addr_len != sizeof(struct in_addr))
3825 return EINVAL;
3826 memcpy(&wga->wga_addr4, addr, addr_len);
3827
3828 sockaddr_in_init(&sin, (const struct in_addr *)addr,
3829 0);
3830 sockaddr_copy(&wga->wga_sa_addr,
3831 sizeof(sin), sintosa(&sin));
3832
3833 sockaddr_format(sintosa(&sin),
3834 addrstr, sizeof(addrstr));
3835 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
3836
3837 in_len2mask(&mask, wga->wga_cidr);
3838 sockaddr_in_init(&sin_mask, &mask, 0);
3839 sockaddr_copy(&wga->wga_sa_mask,
3840 sizeof(sin_mask), sintosa(&sin_mask));
3841
3842 break;
3843 }
3844 #ifdef INET6
3845 case AF_INET6: {
3846 struct sockaddr_in6 sin6;
3847 char addrstr[128];
3848 struct in6_addr mask;
3849 struct sockaddr_in6 sin6_mask;
3850
3851 if (addr_len != sizeof(struct in6_addr))
3852 return EINVAL;
3853 memcpy(&wga->wga_addr6, addr, addr_len);
3854
3855 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
3856 0, 0, 0);
3857 sockaddr_copy(&wga->wga_sa_addr,
3858 sizeof(sin6), sin6tosa(&sin6));
3859
3860 sockaddr_format(sin6tosa(&sin6),
3861 addrstr, sizeof(addrstr));
3862 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
3863
3864 in6_prefixlen2mask(&mask, wga->wga_cidr);
3865 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
3866 sockaddr_copy(&wga->wga_sa_mask,
3867 sizeof(sin6_mask), sin6tosa(&sin6_mask));
3868
3869 break;
3870 }
3871 #endif
3872 default:
3873 error = EINVAL;
3874 goto out;
3875 }
3876 wga->wga_peer = wgp;
3877
3878 error = wg_rtable_add_route(wg, wga);
3879 if (error != 0)
3880 goto out;
3881
3882 j++;
3883 }
3884 wgp->wgp_n_allowedips = j;
3885 skip:
3886 *wgpp = wgp;
3887 out:
3888 return error;
3889 }
3890
3891 static int
3892 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
3893 {
3894 int error;
3895 char *buf;
3896
3897 WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
3898 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
3899 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
3900 if (error != 0)
3901 return error;
3902 buf[ifd->ifd_len] = '\0';
3903 #ifdef WG_DEBUG_DUMP
3904 for (int i = 0; i < ifd->ifd_len; i++)
3905 log(LOG_DEBUG, "%c", buf[i]);
3906 log(LOG_DEBUG, "\n");
3907 #endif
3908 *_buf = buf;
3909 return 0;
3910 }
3911
3912 static int
3913 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
3914 {
3915 int error;
3916 prop_dictionary_t prop_dict;
3917 char *buf = NULL;
3918 const void *privkey;
3919 size_t privkey_len;
3920
3921 error = wg_alloc_prop_buf(&buf, ifd);
3922 if (error != 0)
3923 return error;
3924 error = EINVAL;
3925 prop_dict = prop_dictionary_internalize(buf);
3926 if (prop_dict == NULL)
3927 goto out;
3928 if (!prop_dictionary_get_data(prop_dict, "private_key",
3929 &privkey, &privkey_len))
3930 goto out;
3931 #ifdef WG_DEBUG_DUMP
3932 log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n", privkey, privkey_len);
3933 for (int i = 0; i < privkey_len; i++)
3934 log(LOG_DEBUG, "%c", ((const char *)privkey)[i]);
3935 log(LOG_DEBUG, "\n");
3936 #endif
3937 if (privkey_len != WG_STATIC_KEY_LEN)
3938 goto out;
3939 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
3940 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
3941 error = 0;
3942
3943 out:
3944 kmem_free(buf, ifd->ifd_len + 1);
3945 return error;
3946 }
3947
3948 static int
3949 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
3950 {
3951 int error;
3952 prop_dictionary_t prop_dict;
3953 char *buf = NULL;
3954 uint16_t port;
3955
3956 error = wg_alloc_prop_buf(&buf, ifd);
3957 if (error != 0)
3958 return error;
3959 error = EINVAL;
3960 prop_dict = prop_dictionary_internalize(buf);
3961 if (prop_dict == NULL)
3962 goto out;
3963 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
3964 goto out;
3965
3966 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
3967
3968 out:
3969 kmem_free(buf, ifd->ifd_len + 1);
3970 return error;
3971 }
3972
3973 static int
3974 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
3975 {
3976 int error;
3977 prop_dictionary_t prop_dict;
3978 char *buf = NULL;
3979 struct wg_peer *wgp = NULL;
3980
3981 error = wg_alloc_prop_buf(&buf, ifd);
3982 if (error != 0)
3983 return error;
3984 error = EINVAL;
3985 prop_dict = prop_dictionary_internalize(buf);
3986 if (prop_dict == NULL)
3987 goto out;
3988
3989 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
3990 if (error != 0)
3991 goto out;
3992
3993 mutex_enter(wg->wg_lock);
3994 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
3995 wg->wg_npeers++;
3996 mutex_exit(wg->wg_lock);
3997
3998 out:
3999 kmem_free(buf, ifd->ifd_len + 1);
4000 return error;
4001 }
4002
4003 static int
4004 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4005 {
4006 int error;
4007 prop_dictionary_t prop_dict;
4008 char *buf = NULL;
4009 const char *name;
4010
4011 error = wg_alloc_prop_buf(&buf, ifd);
4012 if (error != 0)
4013 return error;
4014 error = EINVAL;
4015 prop_dict = prop_dictionary_internalize(buf);
4016 if (prop_dict == NULL)
4017 goto out;
4018
4019 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4020 goto out;
4021 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4022 goto out;
4023
4024 error = wg_destroy_peer_name(wg, name);
4025 out:
4026 kmem_free(buf, ifd->ifd_len + 1);
4027 return error;
4028 }
4029
4030 static int
4031 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4032 {
4033 int error = ENOMEM;
4034 prop_dictionary_t prop_dict;
4035 prop_array_t peers;
4036 char *buf;
4037 struct wg_peer *wgp;
4038 int s, i;
4039
4040 prop_dict = prop_dictionary_create();
4041 if (prop_dict == NULL)
4042 goto error;
4043
4044 if (!prop_dictionary_set_data(prop_dict, "private_key", wg->wg_privkey,
4045 WG_STATIC_KEY_LEN))
4046 goto error;
4047
4048 if (wg->wg_listen_port != 0) {
4049 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4050 wg->wg_listen_port))
4051 goto error;
4052 }
4053
4054 if (wg->wg_npeers == 0)
4055 goto skip_peers;
4056
4057 peers = prop_array_create();
4058 if (peers == NULL)
4059 goto error;
4060
4061 s = pserialize_read_enter();
4062 i = 0;
4063 WG_PEER_READER_FOREACH(wgp, wg) {
4064 struct psref psref;
4065 prop_dictionary_t prop_peer;
4066
4067 wg_get_peer(wgp, &psref);
4068 pserialize_read_exit(s);
4069
4070 prop_peer = prop_dictionary_create();
4071 if (prop_peer == NULL)
4072 goto next;
4073
4074 if (strlen(wgp->wgp_name) > 0) {
4075 if (!prop_dictionary_set_string(prop_peer, "name",
4076 wgp->wgp_name))
4077 goto next;
4078 }
4079
4080 if (!prop_dictionary_set_data(prop_peer, "public_key",
4081 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4082 goto next;
4083
4084 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4085 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4086 sizeof(wgp->wgp_psk))) {
4087 if (!prop_dictionary_set_data(prop_peer,
4088 "preshared_key",
4089 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4090 goto next;
4091 }
4092
4093 switch (wgp->wgp_sa.sa_family) {
4094 case AF_INET:
4095 if (!prop_dictionary_set_data(prop_peer, "endpoint",
4096 &wgp->wgp_sin, sizeof(wgp->wgp_sin)))
4097 goto next;
4098 break;
4099 #ifdef INET6
4100 case AF_INET6:
4101 if (!prop_dictionary_set_data(prop_peer, "endpoint",
4102 &wgp->wgp_sin6, sizeof(wgp->wgp_sin6)))
4103 goto next;
4104 break;
4105 #endif
4106 }
4107
4108 const struct timespec *t = &wgp->wgp_last_handshake_time;
4109
4110 if (!prop_dictionary_set_uint64(prop_peer,
4111 "last_handshake_time_sec", t->tv_sec))
4112 goto next;
4113 if (!prop_dictionary_set_uint32(prop_peer,
4114 "last_handshake_time_nsec", t->tv_nsec))
4115 goto next;
4116
4117 if (wgp->wgp_n_allowedips == 0)
4118 goto skip_allowedips;
4119
4120 prop_array_t allowedips = prop_array_create();
4121 if (allowedips == NULL)
4122 goto next;
4123 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4124 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4125 prop_dictionary_t prop_allowedip;
4126
4127 prop_allowedip = prop_dictionary_create();
4128 if (prop_allowedip == NULL)
4129 break;
4130
4131 if (!prop_dictionary_set_int(prop_allowedip, "family",
4132 wga->wga_family))
4133 goto _next;
4134 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4135 wga->wga_cidr))
4136 goto _next;
4137
4138 switch (wga->wga_family) {
4139 case AF_INET:
4140 if (!prop_dictionary_set_data(prop_allowedip,
4141 "ip", &wga->wga_addr4,
4142 sizeof(wga->wga_addr4)))
4143 goto _next;
4144 break;
4145 #ifdef INET6
4146 case AF_INET6:
4147 if (!prop_dictionary_set_data(prop_allowedip,
4148 "ip", &wga->wga_addr6,
4149 sizeof(wga->wga_addr6)))
4150 goto _next;
4151 break;
4152 #endif
4153 default:
4154 break;
4155 }
4156 prop_array_set(allowedips, j, prop_allowedip);
4157 _next:
4158 prop_object_release(prop_allowedip);
4159 }
4160 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4161 prop_object_release(allowedips);
4162
4163 skip_allowedips:
4164
4165 prop_array_set(peers, i, prop_peer);
4166 next:
4167 if (prop_peer)
4168 prop_object_release(prop_peer);
4169 i++;
4170
4171 s = pserialize_read_enter();
4172 wg_put_peer(wgp, &psref);
4173 }
4174 pserialize_read_exit(s);
4175
4176 prop_dictionary_set(prop_dict, "peers", peers);
4177 prop_object_release(peers);
4178 peers = NULL;
4179
4180 skip_peers:
4181 buf = prop_dictionary_externalize(prop_dict);
4182 if (buf == NULL)
4183 goto error;
4184 if (ifd->ifd_len < (strlen(buf) + 1)) {
4185 error = EINVAL;
4186 goto error;
4187 }
4188 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4189
4190 free(buf, 0);
4191 error:
4192 if (peers != NULL)
4193 prop_object_release(peers);
4194 if (prop_dict != NULL)
4195 prop_object_release(prop_dict);
4196
4197 return error;
4198 }
4199
4200 static int
4201 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4202 {
4203 struct wg_softc *wg = ifp->if_softc;
4204 struct ifreq *ifr = data;
4205 struct ifaddr *ifa = data;
4206 struct ifdrv *ifd = data;
4207 int error = 0;
4208
4209 switch (cmd) {
4210 case SIOCINITIFADDR:
4211 if (ifa->ifa_addr->sa_family != AF_LINK &&
4212 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
4213 (IFF_UP | IFF_RUNNING)) {
4214 ifp->if_flags |= IFF_UP;
4215 error = ifp->if_init(ifp);
4216 }
4217 return error;
4218 case SIOCADDMULTI:
4219 case SIOCDELMULTI:
4220 switch (ifr->ifr_addr.sa_family) {
4221 case AF_INET: /* IP supports Multicast */
4222 break;
4223 #ifdef INET6
4224 case AF_INET6: /* IP6 supports Multicast */
4225 break;
4226 #endif
4227 default: /* Other protocols doesn't support Multicast */
4228 error = EAFNOSUPPORT;
4229 break;
4230 }
4231 return error;
4232 case SIOCSDRVSPEC:
4233 switch (ifd->ifd_cmd) {
4234 case WG_IOCTL_SET_PRIVATE_KEY:
4235 error = wg_ioctl_set_private_key(wg, ifd);
4236 break;
4237 case WG_IOCTL_SET_LISTEN_PORT:
4238 error = wg_ioctl_set_listen_port(wg, ifd);
4239 break;
4240 case WG_IOCTL_ADD_PEER:
4241 error = wg_ioctl_add_peer(wg, ifd);
4242 break;
4243 case WG_IOCTL_DELETE_PEER:
4244 error = wg_ioctl_delete_peer(wg, ifd);
4245 break;
4246 default:
4247 error = EINVAL;
4248 break;
4249 }
4250 return error;
4251 case SIOCGDRVSPEC:
4252 return wg_ioctl_get(wg, ifd);
4253 case SIOCSIFFLAGS:
4254 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
4255 break;
4256 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4257 case IFF_RUNNING:
4258 /*
4259 * If interface is marked down and it is running,
4260 * then stop and disable it.
4261 */
4262 (*ifp->if_stop)(ifp, 1);
4263 break;
4264 case IFF_UP:
4265 /*
4266 * If interface is marked up and it is stopped, then
4267 * start it.
4268 */
4269 error = (*ifp->if_init)(ifp);
4270 break;
4271 default:
4272 break;
4273 }
4274 return error;
4275 #ifdef WG_RUMPKERNEL
4276 case SIOCSLINKSTR:
4277 error = wg_ioctl_linkstr(wg, ifd);
4278 if (error == 0)
4279 wg->wg_ops = &wg_ops_rumpuser;
4280 return error;
4281 #endif
4282 default:
4283 break;
4284 }
4285
4286 error = ifioctl_common(ifp, cmd, data);
4287
4288 #ifdef WG_RUMPKERNEL
4289 if (!wg_user_mode(wg))
4290 return error;
4291
4292 /* Do the same to the corresponding tun device on the host */
4293 /*
4294 * XXX Actually the command has not been handled yet. It
4295 * will be handled via pr_ioctl form doifioctl later.
4296 */
4297 switch (cmd) {
4298 case SIOCAIFADDR:
4299 case SIOCDIFADDR: {
4300 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
4301 struct in_aliasreq *ifra = &_ifra;
4302 KASSERT(error == ENOTTY);
4303 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4304 IFNAMSIZ);
4305 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
4306 if (error == 0)
4307 error = ENOTTY;
4308 break;
4309 }
4310 #ifdef INET6
4311 case SIOCAIFADDR_IN6:
4312 case SIOCDIFADDR_IN6: {
4313 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
4314 struct in6_aliasreq *ifra = &_ifra;
4315 KASSERT(error == ENOTTY);
4316 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4317 IFNAMSIZ);
4318 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
4319 if (error == 0)
4320 error = ENOTTY;
4321 break;
4322 }
4323 #endif
4324 }
4325 #endif /* WG_RUMPKERNEL */
4326
4327 return error;
4328 }
4329
4330 static int
4331 wg_init(struct ifnet *ifp)
4332 {
4333
4334 ifp->if_flags |= IFF_RUNNING;
4335
4336 /* TODO flush pending packets. */
4337 return 0;
4338 }
4339
4340 static void
4341 wg_stop(struct ifnet *ifp, int disable)
4342 {
4343
4344 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
4345 ifp->if_flags &= ~IFF_RUNNING;
4346
4347 /* Need to do something? */
4348 }
4349
4350 #ifdef WG_DEBUG_PARAMS
4351 SYSCTL_SETUP(sysctl_net_wireguard_setup, "sysctl net.wireguard setup")
4352 {
4353 const struct sysctlnode *node = NULL;
4354
4355 sysctl_createv(clog, 0, NULL, &node,
4356 CTLFLAG_PERMANENT,
4357 CTLTYPE_NODE, "wireguard",
4358 SYSCTL_DESCR("WireGuard"),
4359 NULL, 0, NULL, 0,
4360 CTL_NET, CTL_CREATE, CTL_EOL);
4361 sysctl_createv(clog, 0, &node, NULL,
4362 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4363 CTLTYPE_QUAD, "rekey_after_messages",
4364 SYSCTL_DESCR("session liftime by messages"),
4365 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
4366 sysctl_createv(clog, 0, &node, NULL,
4367 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4368 CTLTYPE_INT, "rekey_after_time",
4369 SYSCTL_DESCR("session liftime"),
4370 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
4371 sysctl_createv(clog, 0, &node, NULL,
4372 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4373 CTLTYPE_INT, "rekey_timeout",
4374 SYSCTL_DESCR("session handshake retry time"),
4375 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
4376 sysctl_createv(clog, 0, &node, NULL,
4377 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4378 CTLTYPE_INT, "rekey_attempt_time",
4379 SYSCTL_DESCR("session handshake timeout"),
4380 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
4381 sysctl_createv(clog, 0, &node, NULL,
4382 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4383 CTLTYPE_INT, "keepalive_timeout",
4384 SYSCTL_DESCR("keepalive timeout"),
4385 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
4386 sysctl_createv(clog, 0, &node, NULL,
4387 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4388 CTLTYPE_BOOL, "force_underload",
4389 SYSCTL_DESCR("force to detemine under load"),
4390 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
4391 }
4392 #endif
4393
4394 #ifdef WG_RUMPKERNEL
4395 static bool
4396 wg_user_mode(struct wg_softc *wg)
4397 {
4398
4399 return wg->wg_user != NULL;
4400 }
4401
4402 static int
4403 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
4404 {
4405 struct ifnet *ifp = &wg->wg_if;
4406 int error;
4407
4408 if (ifp->if_flags & IFF_UP)
4409 return EBUSY;
4410
4411 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
4412 /* XXX do nothing */
4413 return 0;
4414 } else if (ifd->ifd_cmd != 0) {
4415 return EINVAL;
4416 } else if (wg->wg_user != NULL) {
4417 return EBUSY;
4418 }
4419
4420 /* Assume \0 included */
4421 if (ifd->ifd_len > IFNAMSIZ) {
4422 return E2BIG;
4423 } else if (ifd->ifd_len < 1) {
4424 return EINVAL;
4425 }
4426
4427 char tun_name[IFNAMSIZ];
4428 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
4429 if (error != 0)
4430 return error;
4431
4432 if (strncmp(tun_name, "tun", 3) != 0)
4433 return EINVAL;
4434
4435 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
4436
4437 return error;
4438 }
4439
4440 static int
4441 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
4442 {
4443 int error;
4444 struct psref psref;
4445 struct wg_sockaddr *wgsa;
4446 struct wg_softc *wg = wgp->wgp_sc;
4447 struct iovec iov[1];
4448
4449 wgsa = wg_get_endpoint_sa(wgp, &psref);
4450
4451 iov[0].iov_base = mtod(m, void *);
4452 iov[0].iov_len = m->m_len;
4453
4454 /* Send messages to a peer via an ordinary socket. */
4455 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
4456
4457 wg_put_sa(wgp, wgsa, &psref);
4458
4459 return error;
4460 }
4461
4462 static void
4463 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
4464 {
4465 struct wg_softc *wg = ifp->if_softc;
4466 struct iovec iov[2];
4467 struct sockaddr_storage ss;
4468
4469 KASSERT(af == AF_INET || af == AF_INET6);
4470
4471 WG_TRACE("");
4472
4473 if (af == AF_INET) {
4474 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
4475 struct ip *ip;
4476 ip = mtod(m, struct ip *);
4477 sockaddr_in_init(sin, &ip->ip_dst, 0);
4478 } else {
4479 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
4480 struct ip6_hdr *ip6;
4481 ip6 = mtod(m, struct ip6_hdr *);
4482 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
4483 }
4484
4485 iov[0].iov_base = &ss;
4486 iov[0].iov_len = ss.ss_len;
4487 iov[1].iov_base = mtod(m, void *);
4488 iov[1].iov_len = m->m_len;
4489
4490 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4491
4492 /* Send decrypted packets to users via a tun. */
4493 rumpuser_wg_send_user(wg->wg_user, iov, 2);
4494 }
4495
4496 static int
4497 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
4498 {
4499 int error;
4500 uint16_t old_port = wg->wg_listen_port;
4501
4502 if (port != 0 && old_port == port)
4503 return 0;
4504
4505 error = rumpuser_wg_sock_bind(wg->wg_user, port);
4506 if (error == 0)
4507 wg->wg_listen_port = port;
4508 return error;
4509 }
4510
4511 /*
4512 * Receive user packets.
4513 */
4514 void
4515 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4516 {
4517 struct ifnet *ifp = &wg->wg_if;
4518 struct mbuf *m;
4519 const struct sockaddr *dst;
4520
4521 WG_TRACE("");
4522
4523 dst = iov[0].iov_base;
4524
4525 m = m_gethdr(M_NOWAIT, MT_DATA);
4526 if (m == NULL)
4527 return;
4528 m->m_len = m->m_pkthdr.len = 0;
4529 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4530
4531 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4532 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4533
4534 (void)wg_output(ifp, m, dst, NULL);
4535 }
4536
4537 /*
4538 * Receive packets from a peer.
4539 */
4540 void
4541 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4542 {
4543 struct mbuf *m;
4544 const struct sockaddr *src;
4545
4546 WG_TRACE("");
4547
4548 src = iov[0].iov_base;
4549
4550 m = m_gethdr(M_NOWAIT, MT_DATA);
4551 if (m == NULL)
4552 return;
4553 m->m_len = m->m_pkthdr.len = 0;
4554 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4555
4556 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4557 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4558
4559 wg_handle_packet(wg, m, src);
4560 }
4561 #endif /* WG_RUMPKERNEL */
4562
4563 /*
4564 * Module infrastructure
4565 */
4566 #include "if_module.h"
4567
4568 IF_MODULE(MODULE_CLASS_DRIVER, wg, "")
4569