if_wg.c revision 1.22 1 /* $NetBSD: if_wg.c,v 1.22 2020/08/21 20:21:36 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This is an implementation of WireGuard, a fast, modern, secure VPN protocol,
34 * for the NetBSD kernel and rump kernels.
35 *
36 * The implementation is based on the paper of WireGuard as of 2018-06-30 [1].
37 * The paper is referred in the source code with label [W]. Also the
38 * specification of the Noise protocol framework as of 2018-07-11 [2] is
39 * referred with label [N].
40 *
41 * [1] https://www.wireguard.com/papers/wireguard.pdf
42 * [2] http://noiseprotocol.org/noise.pdf
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.22 2020/08/21 20:21:36 riastradh Exp $");
47
48 #ifdef _KERNEL_OPT
49 #include "opt_inet.h"
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/socket.h>
57 #include <sys/sockio.h>
58 #include <sys/errno.h>
59 #include <sys/ioctl.h>
60 #include <sys/time.h>
61 #include <sys/timespec.h>
62 #include <sys/socketvar.h>
63 #include <sys/syslog.h>
64 #include <sys/cpu.h>
65 #include <sys/intr.h>
66 #include <sys/kmem.h>
67 #include <sys/device.h>
68 #include <sys/module.h>
69 #include <sys/mutex.h>
70 #include <sys/rwlock.h>
71 #include <sys/pserialize.h>
72 #include <sys/psref.h>
73 #include <sys/kthread.h>
74 #include <sys/cprng.h>
75 #include <sys/atomic.h>
76 #include <sys/sysctl.h>
77 #include <sys/domain.h>
78 #include <sys/pcq.h>
79 #include <sys/queue.h>
80 #include <sys/percpu.h>
81 #include <sys/callout.h>
82
83 #include <net/bpf.h>
84 #include <net/if.h>
85 #include <net/if_types.h>
86 #include <net/route.h>
87
88 #include <netinet/in.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/udp.h>
92 #include <netinet/udp_var.h>
93 #include <netinet/in_var.h>
94 #include <netinet/in_pcb.h>
95
96 #ifdef INET6
97 #include <netinet6/in6_var.h>
98 #include <netinet/ip6.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/in6_pcb.h>
101 #include <netinet6/udp6_var.h>
102 #endif /* INET6 */
103
104 #include <net/if_wg.h>
105
106 #include <prop/proplib.h>
107
108 #include <crypto/blake2/blake2s.h>
109 #include <crypto/sodium/crypto_scalarmult.h>
110 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
111 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
112
113 #include "ioconf.h"
114
115 #ifdef WG_RUMPKERNEL
116 #include "wg_user.h"
117 #endif
118
119 /*
120 * Data structures
121 * - struct wg_softc is an instance of wg interfaces
122 * - It has a list of peers (struct wg_peer)
123 * - It has a kthread that sends/receives WireGuard handshake messages and
124 * runs event handlers
125 * - It has its own two routing tables: one is for IPv4 and the other IPv6
126 * - struct wg_peer is a representative of a peer
127 * - It has a softint that is used to send packets over an wg interface
128 * to a peer
129 * - It has a pair of session instances (struct wg_session)
130 * - It has a pair of endpoint instances (struct wg_sockaddr)
131 * - Normally one endpoint is used and the second one is used only on
132 * a peer migration (a change of peer's IP address)
133 * - It has a list of IP addresses and sub networks called allowedips
134 * (struct wg_allowedip)
135 * - A packets sent over a session is allowed if its destination matches
136 * any IP addresses or sub networks of the list
137 * - struct wg_session represents a session of a secure tunnel with a peer
138 * - Two instances of sessions belong to a peer; a stable session and a
139 * unstable session
140 * - A handshake process of a session always starts with a unstable instace
141 * - Once a session is established, its instance becomes stable and the
142 * other becomes unstable instead
143 * - Data messages are always sent via a stable session
144 *
145 * Locking notes:
146 * - wg interfaces (struct wg_softc, wg) is listed in wg_softcs.list and
147 * protected by wg_softcs.lock
148 * - Each wg has a mutex(9) and a rwlock(9)
149 * - The mutex (wg_lock) protects its peer list (wg_peers)
150 * - A peer on the list is also protected by pserialize(9) or psref(9)
151 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
152 * - Each peer (struct wg_peer, wgp) has a mutex
153 * - The mutex (wgp_lock) protects wgp_session_unstable and wgp_state
154 * - Each session (struct wg_session, wgs) has a mutex
155 * - The mutex (wgs_lock) protects its state (wgs_state) and its handshake
156 * states
157 * - wgs_state of a unstable session can be changed while it never be
158 * changed on a stable session, so once get a session instace via
159 * wgp_session_stable we can safely access wgs_state without
160 * holding wgs_lock
161 * - A session is protected by pserialize or psref like wgp
162 * - On a session swap, we must wait for all readers to release a
163 * reference to a stable session before changing wgs_state and
164 * session states
165 */
166
167
168 #define WGLOG(level, fmt, args...) \
169 log(level, "%s: " fmt, __func__, ##args)
170
171 /* Debug options */
172 #ifdef WG_DEBUG
173 /* Output debug logs */
174 #ifndef WG_DEBUG_LOG
175 #define WG_DEBUG_LOG
176 #endif
177 /* Output trace logs */
178 #ifndef WG_DEBUG_TRACE
179 #define WG_DEBUG_TRACE
180 #endif
181 /* Output hash values, etc. */
182 #ifndef WG_DEBUG_DUMP
183 #define WG_DEBUG_DUMP
184 #endif
185 /* Make some internal parameters configurable for testing and debugging */
186 #ifndef WG_DEBUG_PARAMS
187 #define WG_DEBUG_PARAMS
188 #endif
189 #endif
190
191 #ifdef WG_DEBUG_TRACE
192 #define WG_TRACE(msg) \
193 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
194 #else
195 #define WG_TRACE(msg) __nothing
196 #endif
197
198 #ifdef WG_DEBUG_LOG
199 #define WG_DLOG(fmt, args...) log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
200 #else
201 #define WG_DLOG(fmt, args...) __nothing
202 #endif
203
204 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
205 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
206 &(wgprc)->wgprc_curpps, 1)) { \
207 log(level, fmt, ##args); \
208 } \
209 } while (0)
210
211 #ifdef WG_DEBUG_PARAMS
212 static bool wg_force_underload = false;
213 #endif
214
215 #ifdef WG_DEBUG_DUMP
216
217 #ifdef WG_RUMPKERNEL
218 static void
219 wg_dump_buf(const char *func, const char *buf, const size_t size)
220 {
221
222 log(LOG_DEBUG, "%s: ", func);
223 for (int i = 0; i < size; i++)
224 log(LOG_DEBUG, "%02x ", (int)(0xff & buf[i]));
225 log(LOG_DEBUG, "\n");
226 }
227 #endif
228
229 static void
230 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
231 const size_t size)
232 {
233
234 log(LOG_DEBUG, "%s: %s: ", func, name);
235 for (int i = 0; i < size; i++)
236 log(LOG_DEBUG, "%02x ", (int)(0xff & hash[i]));
237 log(LOG_DEBUG, "\n");
238 }
239
240 #define WG_DUMP_HASH(name, hash) \
241 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
242 #define WG_DUMP_HASH48(name, hash) \
243 wg_dump_hash(__func__, name, hash, 48)
244 #define WG_DUMP_BUF(buf, size) \
245 wg_dump_buf(__func__, buf, size)
246 #else
247 #define WG_DUMP_HASH(name, hash) __nothing
248 #define WG_DUMP_HASH48(name, hash) __nothing
249 #define WG_DUMP_BUF(buf, size) __nothing
250 #endif /* WG_DEBUG_DUMP */
251
252 #define WG_MTU 1420
253 #define WG_ALLOWEDIPS 16
254
255 #define CURVE25519_KEY_LEN 32
256 #define TAI64N_LEN sizeof(uint32_t) * 3
257 #define POLY1305_AUTHTAG_LEN 16
258 #define HMAC_BLOCK_LEN 64
259
260 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
261 /* [N] 4.3: Hash functions */
262 #define NOISE_DHLEN 32
263 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
264 #define NOISE_HASHLEN 32
265 #define NOISE_BLOCKLEN 64
266 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
267 /* [N] 5.1: "k" */
268 #define NOISE_CIPHER_KEY_LEN 32
269 /*
270 * [N] 9.2: "psk"
271 * "... psk is a 32-byte secret value provided by the application."
272 */
273 #define NOISE_PRESHARED_KEY_LEN 32
274
275 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
276 #define WG_TIMESTAMP_LEN TAI64N_LEN
277
278 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
279
280 #define WG_COOKIE_LEN 16
281 #define WG_MAC_LEN 16
282 #define WG_RANDVAL_LEN 24
283
284 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
285 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
286 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
287 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
288 #define WG_HASH_LEN NOISE_HASHLEN
289 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
290 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
291 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
292 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
293 #define WG_DATA_KEY_LEN 32
294 #define WG_SALT_LEN 24
295
296 /*
297 * The protocol messages
298 */
299 struct wg_msg {
300 uint32_t wgm_type;
301 } __packed;
302
303 /* [W] 5.4.2 First Message: Initiator to Responder */
304 struct wg_msg_init {
305 uint32_t wgmi_type;
306 uint32_t wgmi_sender;
307 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
308 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
309 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
310 uint8_t wgmi_mac1[WG_MAC_LEN];
311 uint8_t wgmi_mac2[WG_MAC_LEN];
312 } __packed;
313
314 /* [W] 5.4.3 Second Message: Responder to Initiator */
315 struct wg_msg_resp {
316 uint32_t wgmr_type;
317 uint32_t wgmr_sender;
318 uint32_t wgmr_receiver;
319 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
320 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
321 uint8_t wgmr_mac1[WG_MAC_LEN];
322 uint8_t wgmr_mac2[WG_MAC_LEN];
323 } __packed;
324
325 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
326 struct wg_msg_data {
327 uint32_t wgmd_type;
328 uint32_t wgmd_receiver;
329 uint64_t wgmd_counter;
330 uint32_t wgmd_packet[0];
331 } __packed;
332
333 /* [W] 5.4.7 Under Load: Cookie Reply Message */
334 struct wg_msg_cookie {
335 uint32_t wgmc_type;
336 uint32_t wgmc_receiver;
337 uint8_t wgmc_salt[WG_SALT_LEN];
338 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
339 } __packed;
340
341 #define WG_MSG_TYPE_INIT 1
342 #define WG_MSG_TYPE_RESP 2
343 #define WG_MSG_TYPE_COOKIE 3
344 #define WG_MSG_TYPE_DATA 4
345 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
346
347 /* Sliding windows */
348
349 #define SLIWIN_BITS 2048u
350 #define SLIWIN_TYPE uint32_t
351 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
352 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
353 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
354
355 struct sliwin {
356 SLIWIN_TYPE B[SLIWIN_WORDS];
357 uint64_t T;
358 };
359
360 static void
361 sliwin_reset(struct sliwin *W)
362 {
363
364 memset(W, 0, sizeof(*W));
365 }
366
367 static int
368 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
369 {
370
371 /*
372 * If it's more than one window older than the highest sequence
373 * number we've seen, reject.
374 */
375 #ifdef __HAVE_ATOMIC64_LOADSTORE
376 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
377 return EAUTH;
378 #endif
379
380 /*
381 * Otherwise, we need to take the lock to decide, so don't
382 * reject just yet. Caller must serialize a call to
383 * sliwin_update in this case.
384 */
385 return 0;
386 }
387
388 static int
389 sliwin_update(struct sliwin *W, uint64_t S)
390 {
391 unsigned word, bit;
392
393 /*
394 * If it's more than one window older than the highest sequence
395 * number we've seen, reject.
396 */
397 if (S + SLIWIN_NPKT < W->T)
398 return EAUTH;
399
400 /*
401 * If it's higher than the highest sequence number we've seen,
402 * advance the window.
403 */
404 if (S > W->T) {
405 uint64_t i = W->T / SLIWIN_BPW;
406 uint64_t j = S / SLIWIN_BPW;
407 unsigned k;
408
409 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
410 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
411 #ifdef __HAVE_ATOMIC64_LOADSTORE
412 atomic_store_relaxed(&W->T, S);
413 #else
414 W->T = S;
415 #endif
416 }
417
418 /* Test and set the bit -- if already set, reject. */
419 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
420 bit = S % SLIWIN_BPW;
421 if (W->B[word] & (1UL << bit))
422 return EAUTH;
423 W->B[word] |= 1UL << bit;
424
425 /* Accept! */
426 return 0;
427 }
428
429 struct wg_worker {
430 kmutex_t wgw_lock;
431 kcondvar_t wgw_cv;
432 bool wgw_todie;
433 struct socket *wgw_so4;
434 struct socket *wgw_so6;
435 int wgw_wakeup_reasons;
436 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 __BIT(0)
437 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6 __BIT(1)
438 #define WG_WAKEUP_REASON_PEER __BIT(2)
439 };
440
441 struct wg_session {
442 struct wg_peer *wgs_peer;
443 struct psref_target
444 wgs_psref;
445 kmutex_t *wgs_lock;
446
447 int wgs_state;
448 #define WGS_STATE_UNKNOWN 0
449 #define WGS_STATE_INIT_ACTIVE 1
450 #define WGS_STATE_INIT_PASSIVE 2
451 #define WGS_STATE_ESTABLISHED 3
452 #define WGS_STATE_DESTROYING 4
453
454 time_t wgs_time_established;
455 time_t wgs_time_last_data_sent;
456 bool wgs_is_initiator;
457
458 uint32_t wgs_sender_index;
459 uint32_t wgs_receiver_index;
460 #ifdef __HAVE_ATOMIC64_LOADSTORE
461 volatile uint64_t
462 wgs_send_counter;
463 #else
464 kmutex_t wgs_send_counter_lock;
465 uint64_t wgs_send_counter;
466 #endif
467
468 struct {
469 kmutex_t lock;
470 struct sliwin window;
471 } *wgs_recvwin;
472
473 uint8_t wgs_handshake_hash[WG_HASH_LEN];
474 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
475 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
476 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
477 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
478 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
479 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
480 };
481
482 struct wg_sockaddr {
483 union {
484 struct sockaddr_storage _ss;
485 struct sockaddr _sa;
486 struct sockaddr_in _sin;
487 struct sockaddr_in6 _sin6;
488 };
489 struct psref_target wgsa_psref;
490 };
491
492 #define wgsatosa(wgsa) (&(wgsa)->_sa)
493 #define wgsatosin(wgsa) (&(wgsa)->_sin)
494 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
495
496 struct wg_peer;
497 struct wg_allowedip {
498 struct radix_node wga_nodes[2];
499 struct wg_sockaddr _wga_sa_addr;
500 struct wg_sockaddr _wga_sa_mask;
501 #define wga_sa_addr _wga_sa_addr._sa
502 #define wga_sa_mask _wga_sa_mask._sa
503
504 int wga_family;
505 uint8_t wga_cidr;
506 union {
507 struct in_addr _ip4;
508 struct in6_addr _ip6;
509 } wga_addr;
510 #define wga_addr4 wga_addr._ip4
511 #define wga_addr6 wga_addr._ip6
512
513 struct wg_peer *wga_peer;
514 };
515
516 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
517
518 struct wg_ppsratecheck {
519 struct timeval wgprc_lasttime;
520 int wgprc_curpps;
521 };
522
523 struct wg_softc;
524 struct wg_peer {
525 struct wg_softc *wgp_sc;
526 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
527 struct pslist_entry wgp_peerlist_entry;
528 pserialize_t wgp_psz;
529 struct psref_target wgp_psref;
530 kmutex_t *wgp_lock;
531
532 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
533 struct wg_sockaddr *wgp_endpoint;
534 #define wgp_ss wgp_endpoint->_ss
535 #define wgp_sa wgp_endpoint->_sa
536 #define wgp_sin wgp_endpoint->_sin
537 #define wgp_sin6 wgp_endpoint->_sin6
538 struct wg_sockaddr *wgp_endpoint0;
539 bool wgp_endpoint_changing;
540 bool wgp_endpoint_available;
541
542 /* The preshared key (optional) */
543 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
544
545 int wgp_state;
546 #define WGP_STATE_INIT 0
547 #define WGP_STATE_ESTABLISHED 1
548 #define WGP_STATE_GIVEUP 2
549 #define WGP_STATE_DESTROYING 3
550
551 void *wgp_si;
552 pcq_t *wgp_q;
553
554 struct wg_session *wgp_session_stable;
555 struct wg_session *wgp_session_unstable;
556
557 /* timestamp in big-endian */
558 wg_timestamp_t wgp_timestamp_latest_init;
559
560 struct timespec wgp_last_handshake_time;
561
562 callout_t wgp_rekey_timer;
563 callout_t wgp_handshake_timeout_timer;
564 callout_t wgp_session_dtor_timer;
565
566 time_t wgp_handshake_start_time;
567
568 int wgp_n_allowedips;
569 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
570
571 time_t wgp_latest_cookie_time;
572 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
573 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
574 bool wgp_last_sent_mac1_valid;
575 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
576 bool wgp_last_sent_cookie_valid;
577
578 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
579
580 time_t wgp_last_genrandval_time;
581 uint32_t wgp_randval;
582
583 struct wg_ppsratecheck wgp_ppsratecheck;
584
585 volatile unsigned int wgp_tasks;
586 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
587 #define WGP_TASK_ENDPOINT_CHANGED __BIT(1)
588 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(2)
589 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(3)
590 };
591
592 struct wg_ops;
593
594 struct wg_softc {
595 struct ifnet wg_if;
596 LIST_ENTRY(wg_softc) wg_list;
597 kmutex_t *wg_lock;
598 krwlock_t *wg_rwlock;
599
600 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
601 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
602
603 int wg_npeers;
604 struct pslist_head wg_peers;
605 uint16_t wg_listen_port;
606
607 struct wg_worker *wg_worker;
608 lwp_t *wg_worker_lwp;
609
610 struct radix_node_head *wg_rtable_ipv4;
611 struct radix_node_head *wg_rtable_ipv6;
612
613 struct wg_ppsratecheck wg_ppsratecheck;
614
615 struct wg_ops *wg_ops;
616
617 #ifdef WG_RUMPKERNEL
618 struct wg_user *wg_user;
619 #endif
620 };
621
622 /* [W] 6.1 Preliminaries */
623 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
624 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
625 #define WG_REKEY_AFTER_TIME 120
626 #define WG_REJECT_AFTER_TIME 180
627 #define WG_REKEY_ATTEMPT_TIME 90
628 #define WG_REKEY_TIMEOUT 5
629 #define WG_KEEPALIVE_TIMEOUT 10
630
631 #define WG_COOKIE_TIME 120
632 #define WG_RANDVAL_TIME (2 * 60)
633
634 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
635 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
636 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
637 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
638 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
639 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
640 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
641
642 static struct mbuf *
643 wg_get_mbuf(size_t, size_t);
644
645 static void wg_wakeup_worker(struct wg_worker *, int);
646
647 static int wg_send_data_msg(struct wg_peer *, struct wg_session *,
648 struct mbuf *);
649 static int wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
650 const uint32_t, const uint8_t [], const struct sockaddr *);
651 static int wg_send_handshake_msg_resp(struct wg_softc *,
652 struct wg_peer *, const struct wg_msg_init *);
653 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
654
655 static struct wg_peer *
656 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
657 struct psref *);
658 static struct wg_peer *
659 wg_lookup_peer_by_pubkey(struct wg_softc *,
660 const uint8_t [], struct psref *);
661
662 static struct wg_session *
663 wg_lookup_session_by_index(struct wg_softc *,
664 const uint32_t, struct psref *);
665
666 static void wg_update_endpoint_if_necessary(struct wg_peer *,
667 const struct sockaddr *);
668
669 static void wg_schedule_rekey_timer(struct wg_peer *);
670 static void wg_schedule_session_dtor_timer(struct wg_peer *);
671 static void wg_stop_session_dtor_timer(struct wg_peer *);
672
673 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
674 static void wg_calculate_keys(struct wg_session *, const bool);
675
676 static void wg_clear_states(struct wg_session *);
677
678 static void wg_get_peer(struct wg_peer *, struct psref *);
679 static void wg_put_peer(struct wg_peer *, struct psref *);
680
681 static int wg_send_so(struct wg_peer *, struct mbuf *);
682 static int wg_send_udp(struct wg_peer *, struct mbuf *);
683 static int wg_output(struct ifnet *, struct mbuf *,
684 const struct sockaddr *, const struct rtentry *);
685 static void wg_input(struct ifnet *, struct mbuf *, const int);
686 static int wg_ioctl(struct ifnet *, u_long, void *);
687 static int wg_bind_port(struct wg_softc *, const uint16_t);
688 static int wg_init(struct ifnet *);
689 static void wg_stop(struct ifnet *, int);
690
691 static int wg_clone_create(struct if_clone *, int);
692 static int wg_clone_destroy(struct ifnet *);
693
694 struct wg_ops {
695 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
696 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
697 void (*input)(struct ifnet *, struct mbuf *, const int);
698 int (*bind_port)(struct wg_softc *, const uint16_t);
699 };
700
701 struct wg_ops wg_ops_rumpkernel = {
702 .send_hs_msg = wg_send_so,
703 .send_data_msg = wg_send_udp,
704 .input = wg_input,
705 .bind_port = wg_bind_port,
706 };
707
708 #ifdef WG_RUMPKERNEL
709 static bool wg_user_mode(struct wg_softc *);
710 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
711
712 static int wg_send_user(struct wg_peer *, struct mbuf *);
713 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
714 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
715
716 struct wg_ops wg_ops_rumpuser = {
717 .send_hs_msg = wg_send_user,
718 .send_data_msg = wg_send_user,
719 .input = wg_input_user,
720 .bind_port = wg_bind_port_user,
721 };
722 #endif
723
724 #define WG_PEER_READER_FOREACH(wgp, wg) \
725 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
726 wgp_peerlist_entry)
727 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
728 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
729 wgp_peerlist_entry)
730 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
731 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
732 #define WG_PEER_WRITER_REMOVE(wgp) \
733 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
734
735 struct wg_route {
736 struct radix_node wgr_nodes[2];
737 struct wg_peer *wgr_peer;
738 };
739
740 static struct radix_node_head *
741 wg_rnh(struct wg_softc *wg, const int family)
742 {
743
744 switch (family) {
745 case AF_INET:
746 return wg->wg_rtable_ipv4;
747 #ifdef INET6
748 case AF_INET6:
749 return wg->wg_rtable_ipv6;
750 #endif
751 default:
752 return NULL;
753 }
754 }
755
756
757 /*
758 * Global variables
759 */
760 LIST_HEAD(wg_sclist, wg_softc);
761 static struct {
762 struct wg_sclist list;
763 kmutex_t lock;
764 } wg_softcs __cacheline_aligned;
765
766 struct psref_class *wg_psref_class __read_mostly;
767
768 static struct if_clone wg_cloner =
769 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
770
771
772 void wgattach(int);
773 /* ARGSUSED */
774 void
775 wgattach(int count)
776 {
777 /*
778 * Nothing to do here, initialization is handled by the
779 * module initialization code in wginit() below).
780 */
781 }
782
783 static void
784 wginit(void)
785 {
786
787 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
788
789 mutex_init(&wg_softcs.lock, MUTEX_DEFAULT, IPL_NONE);
790 LIST_INIT(&wg_softcs.list);
791 if_clone_attach(&wg_cloner);
792 }
793
794 static int
795 wgdetach(void)
796 {
797 int error = 0;
798
799 mutex_enter(&wg_softcs.lock);
800 if (!LIST_EMPTY(&wg_softcs.list)) {
801 mutex_exit(&wg_softcs.lock);
802 error = EBUSY;
803 }
804
805 if (error == 0) {
806 psref_class_destroy(wg_psref_class);
807
808 if_clone_detach(&wg_cloner);
809 }
810
811 return error;
812 }
813
814 static void
815 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
816 uint8_t hash[WG_HASH_LEN])
817 {
818 /* [W] 5.4: CONSTRUCTION */
819 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
820 /* [W] 5.4: IDENTIFIER */
821 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
822 struct blake2s state;
823
824 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
825 signature, strlen(signature));
826
827 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
828 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
829
830 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
831 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
832 blake2s_update(&state, id, strlen(id));
833 blake2s_final(&state, hash);
834
835 WG_DUMP_HASH("ckey", ckey);
836 WG_DUMP_HASH("hash", hash);
837 }
838
839 static void
840 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
841 const size_t inputsize)
842 {
843 struct blake2s state;
844
845 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
846 blake2s_update(&state, hash, WG_HASH_LEN);
847 blake2s_update(&state, input, inputsize);
848 blake2s_final(&state, hash);
849 }
850
851 static void
852 wg_algo_mac(uint8_t out[], const size_t outsize,
853 const uint8_t key[], const size_t keylen,
854 const uint8_t input1[], const size_t input1len,
855 const uint8_t input2[], const size_t input2len)
856 {
857 struct blake2s state;
858
859 blake2s_init(&state, outsize, key, keylen);
860
861 blake2s_update(&state, input1, input1len);
862 if (input2 != NULL)
863 blake2s_update(&state, input2, input2len);
864 blake2s_final(&state, out);
865 }
866
867 static void
868 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
869 const uint8_t input1[], const size_t input1len,
870 const uint8_t input2[], const size_t input2len)
871 {
872 struct blake2s state;
873 /* [W] 5.4: LABEL-MAC1 */
874 const char *label = "mac1----";
875 uint8_t key[WG_HASH_LEN];
876
877 blake2s_init(&state, sizeof(key), NULL, 0);
878 blake2s_update(&state, label, strlen(label));
879 blake2s_update(&state, input1, input1len);
880 blake2s_final(&state, key);
881
882 blake2s_init(&state, outsize, key, sizeof(key));
883 if (input2 != NULL)
884 blake2s_update(&state, input2, input2len);
885 blake2s_final(&state, out);
886 }
887
888 static void
889 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
890 const uint8_t input1[], const size_t input1len)
891 {
892 struct blake2s state;
893 /* [W] 5.4: LABEL-COOKIE */
894 const char *label = "cookie--";
895
896 blake2s_init(&state, outsize, NULL, 0);
897 blake2s_update(&state, label, strlen(label));
898 blake2s_update(&state, input1, input1len);
899 blake2s_final(&state, out);
900 }
901
902 static void
903 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
904 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
905 {
906
907 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
908
909 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
910 crypto_scalarmult_base(pubkey, privkey);
911 }
912
913 static void
914 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
915 const uint8_t privkey[WG_STATIC_KEY_LEN],
916 const uint8_t pubkey[WG_STATIC_KEY_LEN])
917 {
918
919 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
920
921 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
922 KASSERT(ret == 0);
923 }
924
925 static void
926 wg_algo_hmac(uint8_t out[], const size_t outlen,
927 const uint8_t key[], const size_t keylen,
928 const uint8_t in[], const size_t inlen)
929 {
930 #define IPAD 0x36
931 #define OPAD 0x5c
932 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
933 uint8_t ipad[HMAC_BLOCK_LEN];
934 uint8_t opad[HMAC_BLOCK_LEN];
935 int i;
936 struct blake2s state;
937
938 KASSERT(outlen == WG_HASH_LEN);
939 KASSERT(keylen <= HMAC_BLOCK_LEN);
940
941 memcpy(hmackey, key, keylen);
942
943 for (i = 0; i < sizeof(hmackey); i++) {
944 ipad[i] = hmackey[i] ^ IPAD;
945 opad[i] = hmackey[i] ^ OPAD;
946 }
947
948 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
949 blake2s_update(&state, ipad, sizeof(ipad));
950 blake2s_update(&state, in, inlen);
951 blake2s_final(&state, out);
952
953 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
954 blake2s_update(&state, opad, sizeof(opad));
955 blake2s_update(&state, out, WG_HASH_LEN);
956 blake2s_final(&state, out);
957 #undef IPAD
958 #undef OPAD
959 }
960
961 static void
962 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
963 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
964 const uint8_t input[], const size_t inputlen)
965 {
966 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
967 uint8_t one[1];
968
969 /*
970 * [N] 4.3: "an input_key_material byte sequence with length
971 * either zero bytes, 32 bytes, or DHLEN bytes."
972 */
973 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
974
975 WG_DUMP_HASH("ckey", ckey);
976 if (input != NULL)
977 WG_DUMP_HASH("input", input);
978 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
979 input, inputlen);
980 WG_DUMP_HASH("tmp1", tmp1);
981 one[0] = 1;
982 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
983 one, sizeof(one));
984 WG_DUMP_HASH("out1", out1);
985 if (out2 == NULL)
986 return;
987 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
988 tmp2[WG_KDF_OUTPUT_LEN] = 2;
989 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
990 tmp2, sizeof(tmp2));
991 WG_DUMP_HASH("out2", out2);
992 if (out3 == NULL)
993 return;
994 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
995 tmp2[WG_KDF_OUTPUT_LEN] = 3;
996 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
997 tmp2, sizeof(tmp2));
998 WG_DUMP_HASH("out3", out3);
999 }
1000
1001 static void
1002 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
1003 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1004 const uint8_t local_key[WG_STATIC_KEY_LEN],
1005 const uint8_t remote_key[WG_STATIC_KEY_LEN])
1006 {
1007 uint8_t dhout[WG_DH_OUTPUT_LEN];
1008
1009 wg_algo_dh(dhout, local_key, remote_key);
1010 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1011
1012 WG_DUMP_HASH("dhout", dhout);
1013 WG_DUMP_HASH("ckey", ckey);
1014 if (cipher_key != NULL)
1015 WG_DUMP_HASH("cipher_key", cipher_key);
1016 }
1017
1018 static void
1019 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1020 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1021 const uint8_t auth[], size_t authlen)
1022 {
1023 uint8_t nonce[(32 + 64) / 8] = {0};
1024 long long unsigned int outsize;
1025 int error __diagused;
1026
1027 memcpy(&nonce[4], &counter, sizeof(counter));
1028
1029 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1030 plainsize, auth, authlen, NULL, nonce, key);
1031 KASSERT(error == 0);
1032 KASSERT(outsize == expected_outsize);
1033 }
1034
1035 static int
1036 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1037 const uint64_t counter, const uint8_t encrypted[],
1038 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1039 {
1040 uint8_t nonce[(32 + 64) / 8] = {0};
1041 long long unsigned int outsize;
1042 int error;
1043
1044 memcpy(&nonce[4], &counter, sizeof(counter));
1045
1046 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1047 encrypted, encryptedsize, auth, authlen, nonce, key);
1048 if (error == 0)
1049 KASSERT(outsize == expected_outsize);
1050 return error;
1051 }
1052
1053 static void
1054 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1055 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1056 const uint8_t auth[], size_t authlen,
1057 const uint8_t nonce[WG_SALT_LEN])
1058 {
1059 long long unsigned int outsize;
1060 int error __diagused;
1061
1062 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1063 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1064 plain, plainsize, auth, authlen, NULL, nonce, key);
1065 KASSERT(error == 0);
1066 KASSERT(outsize == expected_outsize);
1067 }
1068
1069 static int
1070 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1071 const uint8_t key[], const uint64_t counter,
1072 const uint8_t encrypted[], const size_t encryptedsize,
1073 const uint8_t auth[], size_t authlen,
1074 const uint8_t nonce[WG_SALT_LEN])
1075 {
1076 long long unsigned int outsize;
1077 int error;
1078
1079 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1080 encrypted, encryptedsize, auth, authlen, nonce, key);
1081 if (error == 0)
1082 KASSERT(outsize == expected_outsize);
1083 return error;
1084 }
1085
1086 static void
1087 wg_algo_tai64n(wg_timestamp_t timestamp)
1088 {
1089 struct timespec ts;
1090
1091 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1092 getnanotime(&ts);
1093 /* TAI64 label in external TAI64 format */
1094 be32enc(timestamp, 0x40000000UL + (ts.tv_sec >> 32));
1095 /* second beginning from 1970 TAI */
1096 be32enc(timestamp + 4, ts.tv_sec & 0xffffffffU);
1097 /* nanosecond in big-endian format */
1098 be32enc(timestamp + 8, ts.tv_nsec);
1099 }
1100
1101 static struct wg_session *
1102 wg_get_unstable_session(struct wg_peer *wgp, struct psref *psref)
1103 {
1104 int s;
1105 struct wg_session *wgs;
1106
1107 s = pserialize_read_enter();
1108 wgs = wgp->wgp_session_unstable;
1109 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1110 pserialize_read_exit(s);
1111 return wgs;
1112 }
1113
1114 static struct wg_session *
1115 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1116 {
1117 int s;
1118 struct wg_session *wgs;
1119
1120 s = pserialize_read_enter();
1121 wgs = wgp->wgp_session_stable;
1122 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1123 pserialize_read_exit(s);
1124 return wgs;
1125 }
1126
1127 static void
1128 wg_get_session(struct wg_session *wgs, struct psref *psref)
1129 {
1130
1131 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1132 }
1133
1134 static void
1135 wg_put_session(struct wg_session *wgs, struct psref *psref)
1136 {
1137
1138 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1139 }
1140
1141 static struct wg_session *
1142 wg_lock_unstable_session(struct wg_peer *wgp)
1143 {
1144 struct wg_session *wgs;
1145
1146 mutex_enter(wgp->wgp_lock);
1147 wgs = wgp->wgp_session_unstable;
1148 mutex_enter(wgs->wgs_lock);
1149 mutex_exit(wgp->wgp_lock);
1150 return wgs;
1151 }
1152
1153 #if 0
1154 static void
1155 wg_unlock_session(struct wg_peer *wgp, struct wg_session *wgs)
1156 {
1157
1158 mutex_exit(wgs->wgs_lock);
1159 }
1160 #endif
1161
1162 /*
1163 * Handshake patterns
1164 *
1165 * [W] 5: "These messages use the "IK" pattern from Noise"
1166 * [N] 7.5. Interactive handshake patterns (fundamental)
1167 * "The first character refers to the initiators static key:"
1168 * "I = Static key for initiator Immediately transmitted to responder,
1169 * despite reduced or absent identity hiding"
1170 * "The second character refers to the responders static key:"
1171 * "K = Static key for responder Known to initiator"
1172 * "IK:
1173 * <- s
1174 * ...
1175 * -> e, es, s, ss
1176 * <- e, ee, se"
1177 * [N] 9.4. Pattern modifiers
1178 * "IKpsk2:
1179 * <- s
1180 * ...
1181 * -> e, es, s, ss
1182 * <- e, ee, se, psk"
1183 */
1184 static void
1185 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1186 struct wg_session *wgs, struct wg_msg_init *wgmi)
1187 {
1188 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1189 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1190 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1191 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1192 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1193
1194 wgmi->wgmi_type = WG_MSG_TYPE_INIT;
1195 wgmi->wgmi_sender = cprng_strong32();
1196
1197 /* [W] 5.4.2: First Message: Initiator to Responder */
1198
1199 /* Ci := HASH(CONSTRUCTION) */
1200 /* Hi := HASH(Ci || IDENTIFIER) */
1201 wg_init_key_and_hash(ckey, hash);
1202 /* Hi := HASH(Hi || Sr^pub) */
1203 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1204
1205 WG_DUMP_HASH("hash", hash);
1206
1207 /* [N] 2.2: "e" */
1208 /* Ei^priv, Ei^pub := DH-GENERATE() */
1209 wg_algo_generate_keypair(pubkey, privkey);
1210 /* Ci := KDF1(Ci, Ei^pub) */
1211 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1212 /* msg.ephemeral := Ei^pub */
1213 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1214 /* Hi := HASH(Hi || msg.ephemeral) */
1215 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1216
1217 WG_DUMP_HASH("ckey", ckey);
1218 WG_DUMP_HASH("hash", hash);
1219
1220 /* [N] 2.2: "es" */
1221 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1222 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1223
1224 /* [N] 2.2: "s" */
1225 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1226 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1227 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1228 hash, sizeof(hash));
1229 /* Hi := HASH(Hi || msg.static) */
1230 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1231
1232 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1233
1234 /* [N] 2.2: "ss" */
1235 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1236 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1237
1238 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1239 wg_timestamp_t timestamp;
1240 wg_algo_tai64n(timestamp);
1241 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1242 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1243 /* Hi := HASH(Hi || msg.timestamp) */
1244 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1245
1246 /* [W] 5.4.4 Cookie MACs */
1247 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1248 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1249 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1250 /* Need mac1 to decrypt a cookie from a cookie message */
1251 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1252 sizeof(wgp->wgp_last_sent_mac1));
1253 wgp->wgp_last_sent_mac1_valid = true;
1254
1255 if (wgp->wgp_latest_cookie_time == 0 ||
1256 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1257 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1258 else {
1259 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1260 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1261 (const uint8_t *)wgmi,
1262 offsetof(struct wg_msg_init, wgmi_mac2),
1263 NULL, 0);
1264 }
1265
1266 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1267 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1268 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1269 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1270 wgs->wgs_sender_index = wgmi->wgmi_sender;
1271 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_sender_index);
1272 }
1273
1274 static void
1275 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1276 const struct sockaddr *src)
1277 {
1278 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1279 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1280 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1281 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1282 struct wg_peer *wgp;
1283 struct wg_session *wgs;
1284 bool reset_state_on_error = false;
1285 int error, ret;
1286 struct psref psref_peer;
1287 struct psref psref_session;
1288 uint8_t mac1[WG_MAC_LEN];
1289
1290 WG_TRACE("init msg received");
1291
1292 /*
1293 * [W] 5.4.2: First Message: Initiator to Responder
1294 * "When the responder receives this message, it does the same
1295 * operations so that its final state variables are identical,
1296 * replacing the operands of the DH function to produce equivalent
1297 * values."
1298 * Note that the following comments of operations are just copies of
1299 * the initiator's ones.
1300 */
1301
1302 /* Ci := HASH(CONSTRUCTION) */
1303 /* Hi := HASH(Ci || IDENTIFIER) */
1304 wg_init_key_and_hash(ckey, hash);
1305 /* Hi := HASH(Hi || Sr^pub) */
1306 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1307
1308 /* [N] 2.2: "e" */
1309 /* Ci := KDF1(Ci, Ei^pub) */
1310 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1311 sizeof(wgmi->wgmi_ephemeral));
1312 /* Hi := HASH(Hi || msg.ephemeral) */
1313 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1314
1315 WG_DUMP_HASH("ckey", ckey);
1316
1317 /* [N] 2.2: "es" */
1318 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1319 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1320
1321 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1322
1323 /* [N] 2.2: "s" */
1324 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1325 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1326 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1327 if (error != 0) {
1328 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1329 "wg_algo_aead_dec for secret key failed\n");
1330 return;
1331 }
1332 /* Hi := HASH(Hi || msg.static) */
1333 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1334
1335 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1336 if (wgp == NULL) {
1337 WG_DLOG("peer not found\n");
1338 return;
1339 }
1340
1341 wgs = wg_lock_unstable_session(wgp);
1342 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
1343 /*
1344 * We can assume that the peer doesn't have an established
1345 * session, so clear it now.
1346 */
1347 WG_TRACE("Session destroying, but force to clear");
1348 wg_stop_session_dtor_timer(wgp);
1349 wg_clear_states(wgs);
1350 wgs->wgs_state = WGS_STATE_UNKNOWN;
1351 }
1352 if (wgs->wgs_state == WGS_STATE_INIT_ACTIVE) {
1353 WG_TRACE("Sesssion already initializing, ignoring the message");
1354 mutex_exit(wgs->wgs_lock);
1355 goto out_wgp;
1356 }
1357 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
1358 WG_TRACE("Sesssion already initializing, destroying old states");
1359 wg_clear_states(wgs);
1360 }
1361 wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
1362 reset_state_on_error = true;
1363 wg_get_session(wgs, &psref_session);
1364 mutex_exit(wgs->wgs_lock);
1365
1366 wg_algo_mac_mac1(mac1, sizeof(mac1),
1367 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1368 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1369
1370 /*
1371 * [W] 5.3: Denial of Service Mitigation & Cookies
1372 * "the responder, ..., must always reject messages with an invalid
1373 * msg.mac1"
1374 */
1375 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1376 WG_DLOG("mac1 is invalid\n");
1377 goto out;
1378 }
1379
1380 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1381 WG_TRACE("under load");
1382 /*
1383 * [W] 5.3: Denial of Service Mitigation & Cookies
1384 * "the responder, ..., and when under load may reject messages
1385 * with an invalid msg.mac2. If the responder receives a
1386 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1387 * and is under load, it may respond with a cookie reply
1388 * message"
1389 */
1390 uint8_t zero[WG_MAC_LEN] = {0};
1391 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1392 WG_TRACE("sending a cookie message: no cookie included");
1393 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1394 wgmi->wgmi_mac1, src);
1395 goto out;
1396 }
1397 if (!wgp->wgp_last_sent_cookie_valid) {
1398 WG_TRACE("sending a cookie message: no cookie sent ever");
1399 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1400 wgmi->wgmi_mac1, src);
1401 goto out;
1402 }
1403 uint8_t mac2[WG_MAC_LEN];
1404 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1405 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1406 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1407 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1408 WG_DLOG("mac2 is invalid\n");
1409 goto out;
1410 }
1411 WG_TRACE("under load, but continue to sending");
1412 }
1413
1414 /* [N] 2.2: "ss" */
1415 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1416 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1417
1418 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1419 wg_timestamp_t timestamp;
1420 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1421 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1422 hash, sizeof(hash));
1423 if (error != 0) {
1424 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1425 "wg_algo_aead_dec for timestamp failed\n");
1426 goto out;
1427 }
1428 /* Hi := HASH(Hi || msg.timestamp) */
1429 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1430
1431 /*
1432 * [W] 5.1 "The responder keeps track of the greatest timestamp
1433 * received per peer and discards packets containing
1434 * timestamps less than or equal to it."
1435 */
1436 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1437 sizeof(timestamp));
1438 if (ret <= 0) {
1439 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1440 "invalid init msg: timestamp is old\n");
1441 goto out;
1442 }
1443 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1444
1445 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1446 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1447 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1448 sizeof(wgmi->wgmi_ephemeral));
1449
1450 wg_update_endpoint_if_necessary(wgp, src);
1451
1452 (void)wg_send_handshake_msg_resp(wg, wgp, wgmi);
1453
1454 wg_calculate_keys(wgs, false);
1455 wg_clear_states(wgs);
1456
1457 wg_put_session(wgs, &psref_session);
1458 wg_put_peer(wgp, &psref_peer);
1459 return;
1460
1461 out:
1462 if (reset_state_on_error) {
1463 mutex_enter(wgs->wgs_lock);
1464 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1465 wgs->wgs_state = WGS_STATE_UNKNOWN;
1466 mutex_exit(wgs->wgs_lock);
1467 }
1468 wg_put_session(wgs, &psref_session);
1469 out_wgp:
1470 wg_put_peer(wgp, &psref_peer);
1471 }
1472
1473 static void
1474 wg_schedule_handshake_timeout_timer(struct wg_peer *wgp)
1475 {
1476
1477 mutex_enter(wgp->wgp_lock);
1478 if (__predict_true(wgp->wgp_state != WGP_STATE_DESTROYING)) {
1479 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1480 MIN(wg_rekey_timeout, INT_MAX/hz) * hz);
1481 }
1482 mutex_exit(wgp->wgp_lock);
1483 }
1484
1485 static void
1486 wg_stop_handshake_timeout_timer(struct wg_peer *wgp)
1487 {
1488
1489 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
1490 }
1491
1492 static struct socket *
1493 wg_get_so_by_af(struct wg_worker *wgw, const int af)
1494 {
1495
1496 return (af == AF_INET) ? wgw->wgw_so4 : wgw->wgw_so6;
1497 }
1498
1499 static struct socket *
1500 wg_get_so_by_peer(struct wg_peer *wgp)
1501 {
1502
1503 return wg_get_so_by_af(wgp->wgp_sc->wg_worker, wgp->wgp_sa.sa_family);
1504 }
1505
1506 static struct wg_sockaddr *
1507 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1508 {
1509 struct wg_sockaddr *wgsa;
1510 int s;
1511
1512 s = pserialize_read_enter();
1513 wgsa = wgp->wgp_endpoint;
1514 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1515 pserialize_read_exit(s);
1516
1517 return wgsa;
1518 }
1519
1520 static void
1521 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1522 {
1523
1524 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1525 }
1526
1527 static int
1528 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1529 {
1530 int error;
1531 struct socket *so;
1532 struct psref psref;
1533 struct wg_sockaddr *wgsa;
1534
1535 so = wg_get_so_by_peer(wgp);
1536 wgsa = wg_get_endpoint_sa(wgp, &psref);
1537 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1538 wg_put_sa(wgp, wgsa, &psref);
1539
1540 return error;
1541 }
1542
1543 static int
1544 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1545 {
1546 int error;
1547 struct mbuf *m;
1548 struct wg_msg_init *wgmi;
1549 struct wg_session *wgs;
1550 struct psref psref;
1551
1552 wgs = wg_lock_unstable_session(wgp);
1553 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
1554 WG_TRACE("Session destroying");
1555 mutex_exit(wgs->wgs_lock);
1556 /* XXX should wait? */
1557 return EBUSY;
1558 }
1559 if (wgs->wgs_state == WGS_STATE_INIT_ACTIVE) {
1560 WG_TRACE("Sesssion already initializing, skip starting a new one");
1561 mutex_exit(wgs->wgs_lock);
1562 return EBUSY;
1563 }
1564 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
1565 WG_TRACE("Sesssion already initializing, destroying old states");
1566 wg_clear_states(wgs);
1567 }
1568 wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
1569 wg_get_session(wgs, &psref);
1570 mutex_exit(wgs->wgs_lock);
1571
1572 m = m_gethdr(M_WAIT, MT_DATA);
1573 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1574 wgmi = mtod(m, struct wg_msg_init *);
1575
1576 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1577
1578 error = wg->wg_ops->send_hs_msg(wgp, m);
1579 if (error == 0) {
1580 WG_TRACE("init msg sent");
1581
1582 if (wgp->wgp_handshake_start_time == 0)
1583 wgp->wgp_handshake_start_time = time_uptime;
1584 wg_schedule_handshake_timeout_timer(wgp);
1585 } else {
1586 mutex_enter(wgs->wgs_lock);
1587 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1588 wgs->wgs_state = WGS_STATE_UNKNOWN;
1589 mutex_exit(wgs->wgs_lock);
1590 }
1591 wg_put_session(wgs, &psref);
1592
1593 return error;
1594 }
1595
1596 static void
1597 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1598 struct wg_msg_resp *wgmr, const struct wg_msg_init *wgmi)
1599 {
1600 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1601 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1602 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1603 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1604 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1605 struct wg_session *wgs;
1606 struct psref psref;
1607
1608 wgs = wg_get_unstable_session(wgp, &psref);
1609 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1610 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1611
1612 wgmr->wgmr_type = WG_MSG_TYPE_RESP;
1613 wgmr->wgmr_sender = cprng_strong32();
1614 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1615
1616 /* [W] 5.4.3 Second Message: Responder to Initiator */
1617
1618 /* [N] 2.2: "e" */
1619 /* Er^priv, Er^pub := DH-GENERATE() */
1620 wg_algo_generate_keypair(pubkey, privkey);
1621 /* Cr := KDF1(Cr, Er^pub) */
1622 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1623 /* msg.ephemeral := Er^pub */
1624 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1625 /* Hr := HASH(Hr || msg.ephemeral) */
1626 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1627
1628 WG_DUMP_HASH("ckey", ckey);
1629 WG_DUMP_HASH("hash", hash);
1630
1631 /* [N] 2.2: "ee" */
1632 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1633 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1634
1635 /* [N] 2.2: "se" */
1636 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1637 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1638
1639 /* [N] 9.2: "psk" */
1640 {
1641 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1642 /* Cr, r, k := KDF3(Cr, Q) */
1643 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1644 sizeof(wgp->wgp_psk));
1645 /* Hr := HASH(Hr || r) */
1646 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1647 }
1648
1649 /* msg.empty := AEAD(k, 0, e, Hr) */
1650 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1651 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1652 /* Hr := HASH(Hr || msg.empty) */
1653 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1654
1655 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1656
1657 /* [W] 5.4.4: Cookie MACs */
1658 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1659 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1660 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1661 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1662 /* Need mac1 to decrypt a cookie from a cookie message */
1663 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1664 sizeof(wgp->wgp_last_sent_mac1));
1665 wgp->wgp_last_sent_mac1_valid = true;
1666
1667 if (wgp->wgp_latest_cookie_time == 0 ||
1668 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1669 /* msg.mac2 := 0^16 */
1670 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1671 else {
1672 /* msg.mac2 := MAC(Lm, msg_b) */
1673 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1674 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1675 (const uint8_t *)wgmr,
1676 offsetof(struct wg_msg_resp, wgmr_mac2),
1677 NULL, 0);
1678 }
1679
1680 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1681 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1682 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1683 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1684 wgs->wgs_sender_index = wgmr->wgmr_sender;
1685 wgs->wgs_receiver_index = wgmi->wgmi_sender;
1686 WG_DLOG("sender=%x\n", wgs->wgs_sender_index);
1687 WG_DLOG("receiver=%x\n", wgs->wgs_receiver_index);
1688 wg_put_session(wgs, &psref);
1689 }
1690
1691 static void
1692 wg_swap_sessions(struct wg_peer *wgp)
1693 {
1694
1695 KASSERT(mutex_owned(wgp->wgp_lock));
1696
1697 wgp->wgp_session_unstable = atomic_swap_ptr(&wgp->wgp_session_stable,
1698 wgp->wgp_session_unstable);
1699 KASSERT(wgp->wgp_session_stable->wgs_state == WGS_STATE_ESTABLISHED);
1700 }
1701
1702 static void
1703 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1704 const struct sockaddr *src)
1705 {
1706 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1707 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1708 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1709 struct wg_peer *wgp;
1710 struct wg_session *wgs;
1711 struct psref psref;
1712 int error;
1713 uint8_t mac1[WG_MAC_LEN];
1714 struct wg_session *wgs_prev;
1715
1716 WG_TRACE("resp msg received");
1717 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
1718 if (wgs == NULL) {
1719 WG_TRACE("No session found");
1720 return;
1721 }
1722
1723 wgp = wgs->wgs_peer;
1724
1725 wg_algo_mac_mac1(mac1, sizeof(mac1),
1726 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1727 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1728
1729 /*
1730 * [W] 5.3: Denial of Service Mitigation & Cookies
1731 * "the responder, ..., must always reject messages with an invalid
1732 * msg.mac1"
1733 */
1734 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
1735 WG_DLOG("mac1 is invalid\n");
1736 goto out;
1737 }
1738
1739 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
1740 WG_TRACE("under load");
1741 /*
1742 * [W] 5.3: Denial of Service Mitigation & Cookies
1743 * "the responder, ..., and when under load may reject messages
1744 * with an invalid msg.mac2. If the responder receives a
1745 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1746 * and is under load, it may respond with a cookie reply
1747 * message"
1748 */
1749 uint8_t zero[WG_MAC_LEN] = {0};
1750 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
1751 WG_TRACE("sending a cookie message: no cookie included");
1752 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1753 wgmr->wgmr_mac1, src);
1754 goto out;
1755 }
1756 if (!wgp->wgp_last_sent_cookie_valid) {
1757 WG_TRACE("sending a cookie message: no cookie sent ever");
1758 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1759 wgmr->wgmr_mac1, src);
1760 goto out;
1761 }
1762 uint8_t mac2[WG_MAC_LEN];
1763 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1764 WG_COOKIE_LEN, (const uint8_t *)wgmr,
1765 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
1766 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
1767 WG_DLOG("mac2 is invalid\n");
1768 goto out;
1769 }
1770 WG_TRACE("under load, but continue to sending");
1771 }
1772
1773 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1774 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1775
1776 /*
1777 * [W] 5.4.3 Second Message: Responder to Initiator
1778 * "When the initiator receives this message, it does the same
1779 * operations so that its final state variables are identical,
1780 * replacing the operands of the DH function to produce equivalent
1781 * values."
1782 * Note that the following comments of operations are just copies of
1783 * the initiator's ones.
1784 */
1785
1786 /* [N] 2.2: "e" */
1787 /* Cr := KDF1(Cr, Er^pub) */
1788 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
1789 sizeof(wgmr->wgmr_ephemeral));
1790 /* Hr := HASH(Hr || msg.ephemeral) */
1791 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
1792
1793 WG_DUMP_HASH("ckey", ckey);
1794 WG_DUMP_HASH("hash", hash);
1795
1796 /* [N] 2.2: "ee" */
1797 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1798 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
1799 wgmr->wgmr_ephemeral);
1800
1801 /* [N] 2.2: "se" */
1802 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1803 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
1804
1805 /* [N] 9.2: "psk" */
1806 {
1807 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1808 /* Cr, r, k := KDF3(Cr, Q) */
1809 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1810 sizeof(wgp->wgp_psk));
1811 /* Hr := HASH(Hr || r) */
1812 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1813 }
1814
1815 {
1816 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
1817 /* msg.empty := AEAD(k, 0, e, Hr) */
1818 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
1819 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
1820 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1821 if (error != 0) {
1822 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1823 "wg_algo_aead_dec for empty message failed\n");
1824 goto out;
1825 }
1826 /* Hr := HASH(Hr || msg.empty) */
1827 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1828 }
1829
1830 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
1831 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
1832 wgs->wgs_receiver_index = wgmr->wgmr_sender;
1833 WG_DLOG("receiver=%x\n", wgs->wgs_receiver_index);
1834
1835 wgs->wgs_state = WGS_STATE_ESTABLISHED;
1836 wgs->wgs_time_established = time_uptime;
1837 wgs->wgs_time_last_data_sent = 0;
1838 wgs->wgs_is_initiator = true;
1839 wg_calculate_keys(wgs, true);
1840 wg_clear_states(wgs);
1841 WG_TRACE("WGS_STATE_ESTABLISHED");
1842
1843 wg_stop_handshake_timeout_timer(wgp);
1844
1845 mutex_enter(wgp->wgp_lock);
1846 wg_swap_sessions(wgp);
1847 wgs_prev = wgp->wgp_session_unstable;
1848 mutex_enter(wgs_prev->wgs_lock);
1849
1850 getnanotime(&wgp->wgp_last_handshake_time);
1851 wgp->wgp_handshake_start_time = 0;
1852 wgp->wgp_last_sent_mac1_valid = false;
1853 wgp->wgp_last_sent_cookie_valid = false;
1854 mutex_exit(wgp->wgp_lock);
1855
1856 wg_schedule_rekey_timer(wgp);
1857
1858 wg_update_endpoint_if_necessary(wgp, src);
1859
1860 /*
1861 * Send something immediately (same as the official implementation)
1862 * XXX if there are pending data packets, we don't need to send
1863 * a keepalive message.
1864 */
1865 wg_send_keepalive_msg(wgp, wgs);
1866
1867 /* Anyway run a softint to flush pending packets */
1868 kpreempt_disable();
1869 softint_schedule(wgp->wgp_si);
1870 kpreempt_enable();
1871 WG_TRACE("softint scheduled");
1872
1873 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
1874 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
1875 /* We can't destroy the old session immediately */
1876 wg_schedule_session_dtor_timer(wgp);
1877 }
1878 mutex_exit(wgs_prev->wgs_lock);
1879
1880 out:
1881 wg_put_session(wgs, &psref);
1882 }
1883
1884 static int
1885 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1886 const struct wg_msg_init *wgmi)
1887 {
1888 int error;
1889 struct mbuf *m;
1890 struct wg_msg_resp *wgmr;
1891
1892 m = m_gethdr(M_WAIT, MT_DATA);
1893 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
1894 wgmr = mtod(m, struct wg_msg_resp *);
1895 wg_fill_msg_resp(wg, wgp, wgmr, wgmi);
1896
1897 error = wg->wg_ops->send_hs_msg(wgp, m);
1898 if (error == 0)
1899 WG_TRACE("resp msg sent");
1900 return error;
1901 }
1902
1903 static struct wg_peer *
1904 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
1905 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
1906 {
1907 struct wg_peer *wgp;
1908
1909 int s = pserialize_read_enter();
1910 /* XXX O(n) */
1911 WG_PEER_READER_FOREACH(wgp, wg) {
1912 if (consttime_memequal(wgp->wgp_pubkey, pubkey,
1913 sizeof(wgp->wgp_pubkey)))
1914 break;
1915 }
1916 if (wgp != NULL)
1917 wg_get_peer(wgp, psref);
1918 pserialize_read_exit(s);
1919
1920 return wgp;
1921 }
1922
1923 static void
1924 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
1925 struct wg_msg_cookie *wgmc, const uint32_t sender,
1926 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
1927 {
1928 uint8_t cookie[WG_COOKIE_LEN];
1929 uint8_t key[WG_HASH_LEN];
1930 uint8_t addr[sizeof(struct in6_addr)];
1931 size_t addrlen;
1932 uint16_t uh_sport; /* be */
1933
1934 wgmc->wgmc_type = WG_MSG_TYPE_COOKIE;
1935 wgmc->wgmc_receiver = sender;
1936 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
1937
1938 /*
1939 * [W] 5.4.7: Under Load: Cookie Reply Message
1940 * "The secret variable, Rm, changes every two minutes to a
1941 * random value"
1942 */
1943 if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
1944 wgp->wgp_randval = cprng_strong32();
1945 wgp->wgp_last_genrandval_time = time_uptime;
1946 }
1947
1948 switch (src->sa_family) {
1949 case AF_INET: {
1950 const struct sockaddr_in *sin = satocsin(src);
1951 addrlen = sizeof(sin->sin_addr);
1952 memcpy(addr, &sin->sin_addr, addrlen);
1953 uh_sport = sin->sin_port;
1954 break;
1955 }
1956 #ifdef INET6
1957 case AF_INET6: {
1958 const struct sockaddr_in6 *sin6 = satocsin6(src);
1959 addrlen = sizeof(sin6->sin6_addr);
1960 memcpy(addr, &sin6->sin6_addr, addrlen);
1961 uh_sport = sin6->sin6_port;
1962 break;
1963 }
1964 #endif
1965 default:
1966 panic("invalid af=%d", wgp->wgp_sa.sa_family);
1967 }
1968
1969 wg_algo_mac(cookie, sizeof(cookie),
1970 (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
1971 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
1972 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
1973 sizeof(wg->wg_pubkey));
1974 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
1975 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
1976
1977 /* Need to store to calculate mac2 */
1978 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
1979 wgp->wgp_last_sent_cookie_valid = true;
1980 }
1981
1982 static int
1983 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
1984 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
1985 const struct sockaddr *src)
1986 {
1987 int error;
1988 struct mbuf *m;
1989 struct wg_msg_cookie *wgmc;
1990
1991 m = m_gethdr(M_WAIT, MT_DATA);
1992 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
1993 wgmc = mtod(m, struct wg_msg_cookie *);
1994 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
1995
1996 error = wg->wg_ops->send_hs_msg(wgp, m);
1997 if (error == 0)
1998 WG_TRACE("cookie msg sent");
1999 return error;
2000 }
2001
2002 static bool
2003 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2004 {
2005 #ifdef WG_DEBUG_PARAMS
2006 if (wg_force_underload)
2007 return true;
2008 #endif
2009
2010 /*
2011 * XXX we don't have a means of a load estimation. The purpose of
2012 * the mechanism is a DoS mitigation, so we consider frequent handshake
2013 * messages as (a kind of) load; if a message of the same type comes
2014 * to a peer within 1 second, we consider we are under load.
2015 */
2016 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2017 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2018 return (time_uptime - last) == 0;
2019 }
2020
2021 static void
2022 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2023 {
2024
2025 /*
2026 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2027 */
2028 if (initiator) {
2029 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2030 wgs->wgs_chaining_key, NULL, 0);
2031 } else {
2032 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2033 wgs->wgs_chaining_key, NULL, 0);
2034 }
2035 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2036 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2037 }
2038
2039 static uint64_t
2040 wg_session_get_send_counter(struct wg_session *wgs)
2041 {
2042 #ifdef __HAVE_ATOMIC64_LOADSTORE
2043 return atomic_load_relaxed(&wgs->wgs_send_counter);
2044 #else
2045 uint64_t send_counter;
2046
2047 mutex_enter(&wgs->wgs_send_counter_lock);
2048 send_counter = wgs->wgs_send_counter;
2049 mutex_exit(&wgs->wgs_send_counter_lock);
2050
2051 return send_counter;
2052 #endif
2053 }
2054
2055 static uint64_t
2056 wg_session_inc_send_counter(struct wg_session *wgs)
2057 {
2058 #ifdef __HAVE_ATOMIC64_LOADSTORE
2059 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2060 #else
2061 uint64_t send_counter;
2062
2063 mutex_enter(&wgs->wgs_send_counter_lock);
2064 send_counter = wgs->wgs_send_counter++;
2065 mutex_exit(&wgs->wgs_send_counter_lock);
2066
2067 return send_counter;
2068 #endif
2069 }
2070
2071 static void
2072 wg_clear_states(struct wg_session *wgs)
2073 {
2074
2075 wgs->wgs_send_counter = 0;
2076 sliwin_reset(&wgs->wgs_recvwin->window);
2077
2078 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2079 wgs_clear(handshake_hash);
2080 wgs_clear(chaining_key);
2081 wgs_clear(ephemeral_key_pub);
2082 wgs_clear(ephemeral_key_priv);
2083 wgs_clear(ephemeral_key_peer);
2084 #undef wgs_clear
2085 }
2086
2087 static struct wg_session *
2088 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2089 struct psref *psref)
2090 {
2091 struct wg_peer *wgp;
2092 struct wg_session *wgs;
2093
2094 int s = pserialize_read_enter();
2095 /* XXX O(n) */
2096 WG_PEER_READER_FOREACH(wgp, wg) {
2097 wgs = wgp->wgp_session_stable;
2098 WG_DLOG("index=%x wgs_sender_index=%x\n",
2099 index, wgs->wgs_sender_index);
2100 if (wgs->wgs_sender_index == index)
2101 break;
2102 wgs = wgp->wgp_session_unstable;
2103 WG_DLOG("index=%x wgs_sender_index=%x\n",
2104 index, wgs->wgs_sender_index);
2105 if (wgs->wgs_sender_index == index)
2106 break;
2107 wgs = NULL;
2108 }
2109 if (wgs != NULL)
2110 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2111 pserialize_read_exit(s);
2112
2113 return wgs;
2114 }
2115
2116 static void
2117 wg_schedule_rekey_timer(struct wg_peer *wgp)
2118 {
2119 int timeout = MIN(wg_rekey_after_time, INT_MAX/hz);
2120
2121 callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
2122 }
2123
2124 static void
2125 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2126 {
2127 struct mbuf *m;
2128
2129 /*
2130 * [W] 6.5 Passive Keepalive
2131 * "A keepalive message is simply a transport data message with
2132 * a zero-length encapsulated encrypted inner-packet."
2133 */
2134 m = m_gethdr(M_WAIT, MT_DATA);
2135 wg_send_data_msg(wgp, wgs, m);
2136 }
2137
2138 static bool
2139 wg_need_to_send_init_message(struct wg_session *wgs)
2140 {
2141 /*
2142 * [W] 6.2 Transport Message Limits
2143 * "if a peer is the initiator of a current secure session,
2144 * WireGuard will send a handshake initiation message to begin
2145 * a new secure session ... if after receiving a transport data
2146 * message, the current secure session is (REJECT-AFTER-TIME
2147 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2148 * not yet acted upon this event."
2149 */
2150 return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
2151 (time_uptime - wgs->wgs_time_established) >=
2152 (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
2153 }
2154
2155 static void
2156 wg_schedule_peer_task(struct wg_peer *wgp, int task)
2157 {
2158
2159 atomic_or_uint(&wgp->wgp_tasks, task);
2160 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2161 wg_wakeup_worker(wgp->wgp_sc->wg_worker, WG_WAKEUP_REASON_PEER);
2162 }
2163
2164 static void
2165 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2166 {
2167
2168 KASSERT(mutex_owned(wgp->wgp_lock));
2169
2170 WG_TRACE("Changing endpoint");
2171
2172 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2173 wgp->wgp_endpoint0 = atomic_swap_ptr(&wgp->wgp_endpoint,
2174 wgp->wgp_endpoint0);
2175 if (!wgp->wgp_endpoint_available)
2176 wgp->wgp_endpoint_available = true;
2177 wgp->wgp_endpoint_changing = true;
2178 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2179 }
2180
2181 static bool
2182 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2183 {
2184 uint16_t packet_len;
2185 const struct ip *ip;
2186
2187 if (__predict_false(decrypted_len < sizeof(struct ip)))
2188 return false;
2189
2190 ip = (const struct ip *)packet;
2191 if (ip->ip_v == 4)
2192 *af = AF_INET;
2193 else if (ip->ip_v == 6)
2194 *af = AF_INET6;
2195 else
2196 return false;
2197
2198 WG_DLOG("af=%d\n", *af);
2199
2200 if (*af == AF_INET) {
2201 packet_len = ntohs(ip->ip_len);
2202 } else {
2203 const struct ip6_hdr *ip6;
2204
2205 if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
2206 return false;
2207
2208 ip6 = (const struct ip6_hdr *)packet;
2209 packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2210 }
2211
2212 WG_DLOG("packet_len=%u\n", packet_len);
2213 if (packet_len > decrypted_len)
2214 return false;
2215
2216 return true;
2217 }
2218
2219 static bool
2220 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2221 int af, char *packet)
2222 {
2223 struct sockaddr_storage ss;
2224 struct sockaddr *sa;
2225 struct psref psref;
2226 struct wg_peer *wgp;
2227 bool ok;
2228
2229 /*
2230 * II CRYPTOKEY ROUTING
2231 * "it will only accept it if its source IP resolves in the
2232 * table to the public key used in the secure session for
2233 * decrypting it."
2234 */
2235
2236 if (af == AF_INET) {
2237 const struct ip *ip = (const struct ip *)packet;
2238 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2239 sockaddr_in_init(sin, &ip->ip_src, 0);
2240 sa = sintosa(sin);
2241 #ifdef INET6
2242 } else {
2243 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2244 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2245 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2246 sa = sin6tosa(sin6);
2247 #endif
2248 }
2249
2250 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2251 ok = (wgp == wgp_expected);
2252 if (wgp != NULL)
2253 wg_put_peer(wgp, &psref);
2254
2255 return ok;
2256 }
2257
2258 static void
2259 wg_session_dtor_timer(void *arg)
2260 {
2261 struct wg_peer *wgp = arg;
2262
2263 WG_TRACE("enter");
2264
2265 mutex_enter(wgp->wgp_lock);
2266 if (__predict_false(wgp->wgp_state == WGP_STATE_DESTROYING)) {
2267 mutex_exit(wgp->wgp_lock);
2268 return;
2269 }
2270 mutex_exit(wgp->wgp_lock);
2271
2272 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2273 }
2274
2275 static void
2276 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2277 {
2278
2279 /* 1 second grace period */
2280 callout_schedule(&wgp->wgp_session_dtor_timer, hz);
2281 }
2282
2283 static void
2284 wg_stop_session_dtor_timer(struct wg_peer *wgp)
2285 {
2286
2287 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
2288 }
2289
2290 static bool
2291 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2292 {
2293 if (sa1->sa_family != sa2->sa_family)
2294 return false;
2295
2296 switch (sa1->sa_family) {
2297 case AF_INET:
2298 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2299 case AF_INET6:
2300 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2301 default:
2302 return true;
2303 }
2304 }
2305
2306 static void
2307 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2308 const struct sockaddr *src)
2309 {
2310
2311 #ifdef WG_DEBUG_LOG
2312 char oldaddr[128], newaddr[128];
2313 sockaddr_format(&wgp->wgp_sa, oldaddr, sizeof(oldaddr));
2314 sockaddr_format(src, newaddr, sizeof(newaddr));
2315 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2316 #endif
2317
2318 /*
2319 * III: "Since the packet has authenticated correctly, the source IP of
2320 * the outer UDP/IP packet is used to update the endpoint for peer..."
2321 */
2322 if (__predict_false(sockaddr_cmp(src, &wgp->wgp_sa) != 0 ||
2323 !sockaddr_port_match(src, &wgp->wgp_sa))) {
2324 mutex_enter(wgp->wgp_lock);
2325 /* XXX We can't change the endpoint twice in a short period */
2326 if (!wgp->wgp_endpoint_changing) {
2327 wg_change_endpoint(wgp, src);
2328 }
2329 mutex_exit(wgp->wgp_lock);
2330 }
2331 }
2332
2333 static void
2334 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2335 const struct sockaddr *src)
2336 {
2337 struct wg_msg_data *wgmd;
2338 char *encrypted_buf = NULL, *decrypted_buf;
2339 size_t encrypted_len, decrypted_len;
2340 struct wg_session *wgs;
2341 struct wg_peer *wgp;
2342 size_t mlen;
2343 struct psref psref;
2344 int error, af;
2345 bool success, free_encrypted_buf = false, ok;
2346 struct mbuf *n;
2347
2348 if (m->m_len < sizeof(struct wg_msg_data)) {
2349 m = m_pullup(m, sizeof(struct wg_msg_data));
2350 if (m == NULL)
2351 return;
2352 }
2353 wgmd = mtod(m, struct wg_msg_data *);
2354
2355 KASSERT(wgmd->wgmd_type == WG_MSG_TYPE_DATA);
2356 WG_TRACE("data");
2357
2358 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2359 if (wgs == NULL) {
2360 WG_TRACE("No session found");
2361 m_freem(m);
2362 return;
2363 }
2364 wgp = wgs->wgs_peer;
2365
2366 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2367 wgmd->wgmd_counter);
2368 if (error) {
2369 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2370 "out-of-window packet: %"PRIu64"\n",
2371 wgmd->wgmd_counter);
2372 goto out;
2373 }
2374
2375 mlen = m_length(m);
2376 encrypted_len = mlen - sizeof(*wgmd);
2377
2378 if (encrypted_len < WG_AUTHTAG_LEN) {
2379 WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
2380 goto out;
2381 }
2382
2383 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2384 if (success) {
2385 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2386 } else {
2387 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2388 if (encrypted_buf == NULL) {
2389 WG_DLOG("failed to allocate encrypted_buf\n");
2390 goto out;
2391 }
2392 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2393 free_encrypted_buf = true;
2394 }
2395 /* m_ensure_contig may change m regardless of its result */
2396 wgmd = mtod(m, struct wg_msg_data *);
2397
2398 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2399 if (decrypted_len > MCLBYTES) {
2400 /* FIXME handle larger data than MCLBYTES */
2401 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2402 goto out;
2403 }
2404
2405 /* To avoid zero length */
2406 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2407 if (n == NULL) {
2408 WG_DLOG("wg_get_mbuf failed\n");
2409 goto out;
2410 }
2411 decrypted_buf = mtod(n, char *);
2412
2413 WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
2414 error = wg_algo_aead_dec(decrypted_buf,
2415 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2416 wgs->wgs_tkey_recv, wgmd->wgmd_counter, encrypted_buf,
2417 encrypted_len, NULL, 0);
2418 if (error != 0) {
2419 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2420 "failed to wg_algo_aead_dec\n");
2421 m_freem(n);
2422 goto out;
2423 }
2424 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2425
2426 mutex_enter(&wgs->wgs_recvwin->lock);
2427 error = sliwin_update(&wgs->wgs_recvwin->window,
2428 wgmd->wgmd_counter);
2429 mutex_exit(&wgs->wgs_recvwin->lock);
2430 if (error) {
2431 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2432 "replay or out-of-window packet: %"PRIu64"\n",
2433 wgmd->wgmd_counter);
2434 m_freem(n);
2435 goto out;
2436 }
2437
2438 m_freem(m);
2439 m = NULL;
2440 wgmd = NULL;
2441
2442 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2443 if (!ok) {
2444 /* something wrong... */
2445 m_freem(n);
2446 goto out;
2447 }
2448
2449 wg_update_endpoint_if_necessary(wgp, src);
2450
2451 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2452 if (ok) {
2453 wg->wg_ops->input(&wg->wg_if, n, af);
2454 } else {
2455 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2456 "invalid source address\n");
2457 m_freem(n);
2458 /*
2459 * The inner address is invalid however the session is valid
2460 * so continue the session processing below.
2461 */
2462 }
2463 n = NULL;
2464
2465 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
2466 struct wg_session *wgs_prev;
2467
2468 KASSERT(wgs == wgp->wgp_session_unstable);
2469 wgs->wgs_state = WGS_STATE_ESTABLISHED;
2470 wgs->wgs_time_established = time_uptime;
2471 wgs->wgs_time_last_data_sent = 0;
2472 wgs->wgs_is_initiator = false;
2473 WG_TRACE("WGS_STATE_ESTABLISHED");
2474
2475 mutex_enter(wgp->wgp_lock);
2476 wg_swap_sessions(wgp);
2477 wgs_prev = wgp->wgp_session_unstable;
2478 mutex_enter(wgs_prev->wgs_lock);
2479 getnanotime(&wgp->wgp_last_handshake_time);
2480 wgp->wgp_handshake_start_time = 0;
2481 wgp->wgp_last_sent_mac1_valid = false;
2482 wgp->wgp_last_sent_cookie_valid = false;
2483 mutex_exit(wgp->wgp_lock);
2484
2485 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2486 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
2487 /* We can't destroy the old session immediately */
2488 wg_schedule_session_dtor_timer(wgp);
2489 } else {
2490 wg_clear_states(wgs_prev);
2491 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
2492 }
2493 mutex_exit(wgs_prev->wgs_lock);
2494
2495 /* Anyway run a softint to flush pending packets */
2496 kpreempt_disable();
2497 softint_schedule(wgp->wgp_si);
2498 kpreempt_enable();
2499 } else {
2500 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2501 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2502 }
2503 /*
2504 * [W] 6.5 Passive Keepalive
2505 * "If a peer has received a validly-authenticated transport
2506 * data message (section 5.4.6), but does not have any packets
2507 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2508 * a keepalive message."
2509 */
2510 WG_DLOG("time_uptime=%lu wgs_time_last_data_sent=%lu\n",
2511 time_uptime, wgs->wgs_time_last_data_sent);
2512 if ((time_uptime - wgs->wgs_time_last_data_sent) >=
2513 wg_keepalive_timeout) {
2514 WG_TRACE("Schedule sending keepalive message");
2515 /*
2516 * We can't send a keepalive message here to avoid
2517 * a deadlock; we already hold the solock of a socket
2518 * that is used to send the message.
2519 */
2520 wg_schedule_peer_task(wgp,
2521 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2522 }
2523 }
2524 out:
2525 wg_put_session(wgs, &psref);
2526 if (m != NULL)
2527 m_freem(m);
2528 if (free_encrypted_buf)
2529 kmem_intr_free(encrypted_buf, encrypted_len);
2530 }
2531
2532 static void
2533 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2534 {
2535 struct wg_session *wgs;
2536 struct wg_peer *wgp;
2537 struct psref psref;
2538 int error;
2539 uint8_t key[WG_HASH_LEN];
2540 uint8_t cookie[WG_COOKIE_LEN];
2541
2542 WG_TRACE("cookie msg received");
2543 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2544 if (wgs == NULL) {
2545 WG_TRACE("No session found");
2546 return;
2547 }
2548 wgp = wgs->wgs_peer;
2549
2550 if (!wgp->wgp_last_sent_mac1_valid) {
2551 WG_TRACE("No valid mac1 sent (or expired)");
2552 goto out;
2553 }
2554
2555 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
2556 sizeof(wgp->wgp_pubkey));
2557 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key, 0,
2558 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
2559 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
2560 wgmc->wgmc_salt);
2561 if (error != 0) {
2562 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2563 "wg_algo_aead_dec for cookie failed: error=%d\n", error);
2564 goto out;
2565 }
2566 /*
2567 * [W] 6.6: Interaction with Cookie Reply System
2568 * "it should simply store the decrypted cookie value from the cookie
2569 * reply message, and wait for the expiration of the REKEY-TIMEOUT
2570 * timer for retrying a handshake initiation message."
2571 */
2572 wgp->wgp_latest_cookie_time = time_uptime;
2573 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
2574 out:
2575 wg_put_session(wgs, &psref);
2576 }
2577
2578 static bool
2579 wg_validate_msg_length(struct wg_softc *wg, const struct mbuf *m)
2580 {
2581 struct wg_msg *wgm;
2582 size_t mlen;
2583
2584 mlen = m_length(m);
2585 if (__predict_false(mlen < sizeof(struct wg_msg)))
2586 return false;
2587
2588 wgm = mtod(m, struct wg_msg *);
2589 switch (wgm->wgm_type) {
2590 case WG_MSG_TYPE_INIT:
2591 if (__predict_true(mlen >= sizeof(struct wg_msg_init)))
2592 return true;
2593 break;
2594 case WG_MSG_TYPE_RESP:
2595 if (__predict_true(mlen >= sizeof(struct wg_msg_resp)))
2596 return true;
2597 break;
2598 case WG_MSG_TYPE_COOKIE:
2599 if (__predict_true(mlen >= sizeof(struct wg_msg_cookie)))
2600 return true;
2601 break;
2602 case WG_MSG_TYPE_DATA:
2603 if (__predict_true(mlen >= sizeof(struct wg_msg_data)))
2604 return true;
2605 break;
2606 default:
2607 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
2608 "Unexpected msg type: %u\n", wgm->wgm_type);
2609 return false;
2610 }
2611 WG_DLOG("Invalid msg size: mlen=%lu type=%u\n", mlen, wgm->wgm_type);
2612
2613 return false;
2614 }
2615
2616 static void
2617 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
2618 const struct sockaddr *src)
2619 {
2620 struct wg_msg *wgm;
2621 bool valid;
2622
2623 valid = wg_validate_msg_length(wg, m);
2624 if (!valid) {
2625 m_freem(m);
2626 return;
2627 }
2628
2629 wgm = mtod(m, struct wg_msg *);
2630 switch (wgm->wgm_type) {
2631 case WG_MSG_TYPE_INIT:
2632 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
2633 break;
2634 case WG_MSG_TYPE_RESP:
2635 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
2636 break;
2637 case WG_MSG_TYPE_COOKIE:
2638 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
2639 break;
2640 case WG_MSG_TYPE_DATA:
2641 wg_handle_msg_data(wg, m, src);
2642 break;
2643 default:
2644 /* wg_validate_msg_length should already reject this case */
2645 break;
2646 }
2647 }
2648
2649 static void
2650 wg_receive_packets(struct wg_softc *wg, const int af)
2651 {
2652
2653 for (;;) {
2654 int error, flags;
2655 struct socket *so;
2656 struct mbuf *m = NULL;
2657 struct uio dummy_uio;
2658 struct mbuf *paddr = NULL;
2659 struct sockaddr *src;
2660
2661 so = wg_get_so_by_af(wg->wg_worker, af);
2662 flags = MSG_DONTWAIT;
2663 dummy_uio.uio_resid = 1000000000;
2664
2665 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
2666 &flags);
2667 if (error || m == NULL) {
2668 //if (error == EWOULDBLOCK)
2669 return;
2670 }
2671
2672 KASSERT(paddr != NULL);
2673 src = mtod(paddr, struct sockaddr *);
2674
2675 wg_handle_packet(wg, m, src);
2676 }
2677 }
2678
2679 static void
2680 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
2681 {
2682
2683 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
2684 }
2685
2686 static void
2687 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
2688 {
2689
2690 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
2691 }
2692
2693 static void
2694 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
2695 {
2696 struct psref psref;
2697 struct wg_session *wgs;
2698
2699 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
2700
2701 if (!wgp->wgp_endpoint_available) {
2702 WGLOG(LOG_DEBUG, "No endpoint available\n");
2703 /* XXX should do something? */
2704 return;
2705 }
2706
2707 wgs = wg_get_stable_session(wgp, &psref);
2708 if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
2709 wg_put_session(wgs, &psref);
2710 wg_send_handshake_msg_init(wg, wgp);
2711 } else {
2712 wg_put_session(wgs, &psref);
2713 /* rekey */
2714 wgs = wg_get_unstable_session(wgp, &psref);
2715 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2716 wg_send_handshake_msg_init(wg, wgp);
2717 wg_put_session(wgs, &psref);
2718 }
2719 }
2720
2721 static void
2722 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
2723 {
2724
2725 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
2726
2727 mutex_enter(wgp->wgp_lock);
2728 if (wgp->wgp_endpoint_changing) {
2729 pserialize_perform(wgp->wgp_psz);
2730 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
2731 wg_psref_class);
2732 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
2733 wg_psref_class);
2734 wgp->wgp_endpoint_changing = false;
2735 }
2736 mutex_exit(wgp->wgp_lock);
2737 }
2738
2739 static void
2740 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
2741 {
2742 struct psref psref;
2743 struct wg_session *wgs;
2744
2745 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
2746
2747 wgs = wg_get_stable_session(wgp, &psref);
2748 wg_send_keepalive_msg(wgp, wgs);
2749 wg_put_session(wgs, &psref);
2750 }
2751
2752 static void
2753 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
2754 {
2755 struct wg_session *wgs;
2756
2757 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
2758
2759 mutex_enter(wgp->wgp_lock);
2760 wgs = wgp->wgp_session_unstable;
2761 mutex_enter(wgs->wgs_lock);
2762 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
2763 pserialize_perform(wgp->wgp_psz);
2764 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
2765 psref_target_init(&wgs->wgs_psref, wg_psref_class);
2766 wg_clear_states(wgs);
2767 wgs->wgs_state = WGS_STATE_UNKNOWN;
2768 }
2769 mutex_exit(wgs->wgs_lock);
2770 mutex_exit(wgp->wgp_lock);
2771 }
2772
2773 static void
2774 wg_process_peer_tasks(struct wg_softc *wg)
2775 {
2776 struct wg_peer *wgp;
2777 int s;
2778
2779 /* XXX should avoid checking all peers */
2780 s = pserialize_read_enter();
2781 WG_PEER_READER_FOREACH(wgp, wg) {
2782 struct psref psref;
2783 unsigned int tasks;
2784
2785 if (wgp->wgp_tasks == 0)
2786 continue;
2787
2788 wg_get_peer(wgp, &psref);
2789 pserialize_read_exit(s);
2790
2791 restart:
2792 tasks = atomic_swap_uint(&wgp->wgp_tasks, 0);
2793 KASSERT(tasks != 0);
2794
2795 WG_DLOG("tasks=%x\n", tasks);
2796
2797 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
2798 wg_task_send_init_message(wg, wgp);
2799 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
2800 wg_task_endpoint_changed(wg, wgp);
2801 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
2802 wg_task_send_keepalive_message(wg, wgp);
2803 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
2804 wg_task_destroy_prev_session(wg, wgp);
2805
2806 /* New tasks may be scheduled during processing tasks */
2807 WG_DLOG("wgp_tasks=%d\n", wgp->wgp_tasks);
2808 if (wgp->wgp_tasks != 0)
2809 goto restart;
2810
2811 s = pserialize_read_enter();
2812 wg_put_peer(wgp, &psref);
2813 }
2814 pserialize_read_exit(s);
2815 }
2816
2817 static void
2818 wg_worker(void *arg)
2819 {
2820 struct wg_softc *wg = arg;
2821 struct wg_worker *wgw = wg->wg_worker;
2822 bool todie = false;
2823
2824 KASSERT(wg != NULL);
2825 KASSERT(wgw != NULL);
2826
2827 while (!todie) {
2828 int reasons;
2829 int bound;
2830
2831 mutex_enter(&wgw->wgw_lock);
2832 /* New tasks may come during task handling */
2833 while ((reasons = wgw->wgw_wakeup_reasons) == 0 &&
2834 !(todie = wgw->wgw_todie))
2835 cv_wait(&wgw->wgw_cv, &wgw->wgw_lock);
2836 wgw->wgw_wakeup_reasons = 0;
2837 mutex_exit(&wgw->wgw_lock);
2838
2839 bound = curlwp_bind();
2840 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4))
2841 wg_receive_packets(wg, AF_INET);
2842 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6))
2843 wg_receive_packets(wg, AF_INET6);
2844 if (ISSET(reasons, WG_WAKEUP_REASON_PEER))
2845 wg_process_peer_tasks(wg);
2846 curlwp_bindx(bound);
2847 }
2848 kthread_exit(0);
2849 }
2850
2851 static void
2852 wg_wakeup_worker(struct wg_worker *wgw, const int reason)
2853 {
2854
2855 mutex_enter(&wgw->wgw_lock);
2856 wgw->wgw_wakeup_reasons |= reason;
2857 cv_broadcast(&wgw->wgw_cv);
2858 mutex_exit(&wgw->wgw_lock);
2859 }
2860
2861 static int
2862 wg_bind_port(struct wg_softc *wg, const uint16_t port)
2863 {
2864 int error;
2865 struct wg_worker *wgw = wg->wg_worker;
2866 uint16_t old_port = wg->wg_listen_port;
2867
2868 if (port != 0 && old_port == port)
2869 return 0;
2870
2871 struct sockaddr_in _sin, *sin = &_sin;
2872 sin->sin_len = sizeof(*sin);
2873 sin->sin_family = AF_INET;
2874 sin->sin_addr.s_addr = INADDR_ANY;
2875 sin->sin_port = htons(port);
2876
2877 error = sobind(wgw->wgw_so4, sintosa(sin), curlwp);
2878 if (error != 0)
2879 return error;
2880
2881 #ifdef INET6
2882 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
2883 sin6->sin6_len = sizeof(*sin6);
2884 sin6->sin6_family = AF_INET6;
2885 sin6->sin6_addr = in6addr_any;
2886 sin6->sin6_port = htons(port);
2887
2888 error = sobind(wgw->wgw_so6, sin6tosa(sin6), curlwp);
2889 if (error != 0)
2890 return error;
2891 #endif
2892
2893 wg->wg_listen_port = port;
2894
2895 return 0;
2896 }
2897
2898 static void
2899 wg_so_upcall(struct socket *so, void *arg, int events, int waitflag)
2900 {
2901 struct wg_worker *wgw = arg;
2902 int reason;
2903
2904 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
2905 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 :
2906 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6;
2907 wg_wakeup_worker(wgw, reason);
2908 }
2909
2910 static int
2911 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
2912 struct sockaddr *src, void *arg)
2913 {
2914 struct wg_softc *wg = arg;
2915 struct wg_msg wgm;
2916 struct mbuf *m = *mp;
2917
2918 WG_TRACE("enter");
2919
2920 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
2921 WG_DLOG("type=%d\n", wgm.wgm_type);
2922
2923 switch (wgm.wgm_type) {
2924 case WG_MSG_TYPE_DATA:
2925 m_adj(m, offset);
2926 wg_handle_msg_data(wg, m, src);
2927 *mp = NULL;
2928 return 1;
2929 default:
2930 break;
2931 }
2932
2933 return 0;
2934 }
2935
2936 static int
2937 wg_worker_socreate(struct wg_softc *wg, struct wg_worker *wgw, const int af,
2938 struct socket **sop)
2939 {
2940 int error;
2941 struct socket *so;
2942
2943 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
2944 if (error != 0)
2945 return error;
2946
2947 solock(so);
2948 so->so_upcallarg = wgw;
2949 so->so_upcall = wg_so_upcall;
2950 so->so_rcv.sb_flags |= SB_UPCALL;
2951 if (af == AF_INET)
2952 in_pcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
2953 #if INET6
2954 else
2955 in6_pcb_register_overudp_cb(sotoin6pcb(so), wg_overudp_cb, wg);
2956 #endif
2957 sounlock(so);
2958
2959 *sop = so;
2960
2961 return 0;
2962 }
2963
2964 static int
2965 wg_worker_init(struct wg_softc *wg)
2966 {
2967 int error;
2968 struct wg_worker *wgw;
2969 const char *ifname = wg->wg_if.if_xname;
2970 struct socket *so;
2971
2972 wgw = kmem_zalloc(sizeof(struct wg_worker), KM_SLEEP);
2973
2974 mutex_init(&wgw->wgw_lock, MUTEX_DEFAULT, IPL_NONE);
2975 cv_init(&wgw->wgw_cv, ifname);
2976 wgw->wgw_todie = false;
2977 wgw->wgw_wakeup_reasons = 0;
2978
2979 error = wg_worker_socreate(wg, wgw, AF_INET, &so);
2980 if (error != 0)
2981 goto error;
2982 wgw->wgw_so4 = so;
2983 #ifdef INET6
2984 error = wg_worker_socreate(wg, wgw, AF_INET6, &so);
2985 if (error != 0)
2986 goto error;
2987 wgw->wgw_so6 = so;
2988 #endif
2989
2990 wg->wg_worker = wgw;
2991
2992 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE | KTHREAD_MUSTJOIN,
2993 NULL, wg_worker, wg, &wg->wg_worker_lwp, "%s", ifname);
2994 if (error != 0)
2995 goto error;
2996
2997 return 0;
2998
2999 error:
3000 #ifdef INET6
3001 if (wgw->wgw_so6 != NULL)
3002 soclose(wgw->wgw_so6);
3003 #endif
3004 if (wgw->wgw_so4 != NULL)
3005 soclose(wgw->wgw_so4);
3006 cv_destroy(&wgw->wgw_cv);
3007 mutex_destroy(&wgw->wgw_lock);
3008
3009 return error;
3010 }
3011
3012 static void
3013 wg_worker_destroy(struct wg_softc *wg)
3014 {
3015 struct wg_worker *wgw = wg->wg_worker;
3016
3017 mutex_enter(&wgw->wgw_lock);
3018 wgw->wgw_todie = true;
3019 wgw->wgw_wakeup_reasons = 0;
3020 cv_broadcast(&wgw->wgw_cv);
3021 mutex_exit(&wgw->wgw_lock);
3022
3023 kthread_join(wg->wg_worker_lwp);
3024
3025 #ifdef INET6
3026 soclose(wgw->wgw_so6);
3027 #endif
3028 soclose(wgw->wgw_so4);
3029 cv_destroy(&wgw->wgw_cv);
3030 mutex_destroy(&wgw->wgw_lock);
3031 kmem_free(wg->wg_worker, sizeof(struct wg_worker));
3032 wg->wg_worker = NULL;
3033 }
3034
3035 static bool
3036 wg_session_hit_limits(struct wg_session *wgs)
3037 {
3038
3039 /*
3040 * [W] 6.2: Transport Message Limits
3041 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3042 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3043 * comes first, WireGuard will refuse to send any more transport data
3044 * messages using the current secure session, ..."
3045 */
3046 KASSERT(wgs->wgs_time_established != 0);
3047 if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
3048 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3049 return true;
3050 } else if (wg_session_get_send_counter(wgs) >
3051 wg_reject_after_messages) {
3052 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3053 return true;
3054 }
3055
3056 return false;
3057 }
3058
3059 static void
3060 wg_peer_softint(void *arg)
3061 {
3062 struct wg_peer *wgp = arg;
3063 struct wg_session *wgs;
3064 struct mbuf *m;
3065 struct psref psref;
3066
3067 wgs = wg_get_stable_session(wgp, &psref);
3068 if (wgs->wgs_state != WGS_STATE_ESTABLISHED) {
3069 /* XXX how to treat? */
3070 WG_TRACE("skipped");
3071 goto out;
3072 }
3073 if (wg_session_hit_limits(wgs)) {
3074 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3075 goto out;
3076 }
3077 WG_TRACE("running");
3078
3079 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3080 wg_send_data_msg(wgp, wgs, m);
3081 }
3082 out:
3083 wg_put_session(wgs, &psref);
3084 }
3085
3086 static void
3087 wg_rekey_timer(void *arg)
3088 {
3089 struct wg_peer *wgp = arg;
3090
3091 mutex_enter(wgp->wgp_lock);
3092 if (__predict_true(wgp->wgp_state != WGP_STATE_DESTROYING)) {
3093 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3094 }
3095 mutex_exit(wgp->wgp_lock);
3096 }
3097
3098 static void
3099 wg_purge_pending_packets(struct wg_peer *wgp)
3100 {
3101 struct mbuf *m;
3102
3103 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3104 m_freem(m);
3105 }
3106 }
3107
3108 static void
3109 wg_handshake_timeout_timer(void *arg)
3110 {
3111 struct wg_peer *wgp = arg;
3112 struct wg_session *wgs;
3113 struct psref psref;
3114
3115 WG_TRACE("enter");
3116
3117 mutex_enter(wgp->wgp_lock);
3118 if (__predict_false(wgp->wgp_state == WGP_STATE_DESTROYING)) {
3119 mutex_exit(wgp->wgp_lock);
3120 return;
3121 }
3122 mutex_exit(wgp->wgp_lock);
3123
3124 KASSERT(wgp->wgp_handshake_start_time != 0);
3125 wgs = wg_get_unstable_session(wgp, &psref);
3126 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
3127
3128 /* [W] 6.4 Handshake Initiation Retransmission */
3129 if ((time_uptime - wgp->wgp_handshake_start_time) >
3130 wg_rekey_attempt_time) {
3131 /* Give up handshaking */
3132 wgs->wgs_state = WGS_STATE_UNKNOWN;
3133 wg_clear_states(wgs);
3134 wgp->wgp_state = WGP_STATE_GIVEUP;
3135 wgp->wgp_handshake_start_time = 0;
3136 wg_put_session(wgs, &psref);
3137 WG_TRACE("give up");
3138 /*
3139 * If a new data packet comes, handshaking will be retried
3140 * and a new session would be established at that time,
3141 * however we don't want to send pending packets then.
3142 */
3143 wg_purge_pending_packets(wgp);
3144 return;
3145 }
3146
3147 /* No response for an initiation message sent, retry handshaking */
3148 wgs->wgs_state = WGS_STATE_UNKNOWN;
3149 wg_clear_states(wgs);
3150 wg_put_session(wgs, &psref);
3151
3152 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3153 }
3154
3155 static struct wg_peer *
3156 wg_alloc_peer(struct wg_softc *wg)
3157 {
3158 struct wg_peer *wgp;
3159
3160 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3161
3162 wgp->wgp_sc = wg;
3163 wgp->wgp_state = WGP_STATE_INIT;
3164 wgp->wgp_q = pcq_create(1024, KM_SLEEP);
3165 wgp->wgp_si = softint_establish(SOFTINT_NET, wg_peer_softint, wgp);
3166 callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
3167 callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
3168 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3169 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3170 wg_handshake_timeout_timer, wgp);
3171 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3172 callout_setfunc(&wgp->wgp_session_dtor_timer,
3173 wg_session_dtor_timer, wgp);
3174 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3175 wgp->wgp_endpoint_changing = false;
3176 wgp->wgp_endpoint_available = false;
3177 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3178 wgp->wgp_psz = pserialize_create();
3179 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3180
3181 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3182 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3183 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3184 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3185
3186 struct wg_session *wgs;
3187 wgp->wgp_session_stable =
3188 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3189 wgp->wgp_session_unstable =
3190 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3191 wgs = wgp->wgp_session_stable;
3192 wgs->wgs_peer = wgp;
3193 wgs->wgs_state = WGS_STATE_UNKNOWN;
3194 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3195 wgs->wgs_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3196 #ifndef __HAVE_ATOMIC64_LOADSTORE
3197 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3198 #endif
3199 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3200 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_NONE);
3201
3202 wgs = wgp->wgp_session_unstable;
3203 wgs->wgs_peer = wgp;
3204 wgs->wgs_state = WGS_STATE_UNKNOWN;
3205 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3206 wgs->wgs_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3207 #ifndef __HAVE_ATOMIC64_LOADSTORE
3208 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3209 #endif
3210 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3211 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_NONE);
3212
3213 return wgp;
3214 }
3215
3216 static void
3217 wg_destroy_peer(struct wg_peer *wgp)
3218 {
3219 struct wg_session *wgs;
3220 struct wg_softc *wg = wgp->wgp_sc;
3221
3222 rw_enter(wg->wg_rwlock, RW_WRITER);
3223 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3224 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3225 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3226 struct radix_node *rn;
3227
3228 KASSERT(rnh != NULL);
3229 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3230 &wga->wga_sa_mask, rnh);
3231 if (rn == NULL) {
3232 char addrstr[128];
3233 sockaddr_format(&wga->wga_sa_addr, addrstr,
3234 sizeof(addrstr));
3235 WGLOG(LOG_WARNING, "Couldn't delete %s", addrstr);
3236 }
3237 }
3238 rw_exit(wg->wg_rwlock);
3239
3240 softint_disestablish(wgp->wgp_si);
3241 callout_halt(&wgp->wgp_rekey_timer, NULL);
3242 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3243 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3244
3245 wgs = wgp->wgp_session_unstable;
3246 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
3247 mutex_obj_free(wgs->wgs_lock);
3248 mutex_destroy(&wgs->wgs_recvwin->lock);
3249 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3250 #ifndef __HAVE_ATOMIC64_LOADSTORE
3251 mutex_destroy(&wgs->wgs_send_counter_lock);
3252 #endif
3253 kmem_free(wgs, sizeof(*wgs));
3254 wgs = wgp->wgp_session_stable;
3255 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
3256 mutex_obj_free(wgs->wgs_lock);
3257 mutex_destroy(&wgs->wgs_recvwin->lock);
3258 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3259 #ifndef __HAVE_ATOMIC64_LOADSTORE
3260 mutex_destroy(&wgs->wgs_send_counter_lock);
3261 #endif
3262 kmem_free(wgs, sizeof(*wgs));
3263
3264 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3265 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3266 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3267 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3268
3269 pserialize_destroy(wgp->wgp_psz);
3270 pcq_destroy(wgp->wgp_q);
3271 mutex_obj_free(wgp->wgp_lock);
3272
3273 kmem_free(wgp, sizeof(*wgp));
3274 }
3275
3276 static void
3277 wg_destroy_all_peers(struct wg_softc *wg)
3278 {
3279 struct wg_peer *wgp;
3280
3281 restart:
3282 mutex_enter(wg->wg_lock);
3283 WG_PEER_WRITER_FOREACH(wgp, wg) {
3284 WG_PEER_WRITER_REMOVE(wgp);
3285 mutex_enter(wgp->wgp_lock);
3286 wgp->wgp_state = WGP_STATE_DESTROYING;
3287 pserialize_perform(wgp->wgp_psz);
3288 mutex_exit(wgp->wgp_lock);
3289 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3290 break;
3291 }
3292 mutex_exit(wg->wg_lock);
3293
3294 if (wgp == NULL)
3295 return;
3296
3297 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3298
3299 wg_destroy_peer(wgp);
3300
3301 goto restart;
3302 }
3303
3304 static int
3305 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3306 {
3307 struct wg_peer *wgp;
3308
3309 mutex_enter(wg->wg_lock);
3310 WG_PEER_WRITER_FOREACH(wgp, wg) {
3311 if (strcmp(wgp->wgp_name, name) == 0)
3312 break;
3313 }
3314 if (wgp != NULL) {
3315 WG_PEER_WRITER_REMOVE(wgp);
3316 wg->wg_npeers--;
3317 mutex_enter(wgp->wgp_lock);
3318 wgp->wgp_state = WGP_STATE_DESTROYING;
3319 pserialize_perform(wgp->wgp_psz);
3320 mutex_exit(wgp->wgp_lock);
3321 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3322 }
3323 mutex_exit(wg->wg_lock);
3324
3325 if (wgp == NULL)
3326 return ENOENT;
3327
3328 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3329
3330 wg_destroy_peer(wgp);
3331
3332 return 0;
3333 }
3334
3335 static int
3336 wg_if_attach(struct wg_softc *wg)
3337 {
3338 int error;
3339
3340 wg->wg_if.if_addrlen = 0;
3341 wg->wg_if.if_mtu = WG_MTU;
3342 wg->wg_if.if_flags = IFF_POINTOPOINT;
3343 wg->wg_if.if_extflags = IFEF_NO_LINK_STATE_CHANGE;
3344 wg->wg_if.if_extflags |= IFEF_MPSAFE;
3345 wg->wg_if.if_ioctl = wg_ioctl;
3346 wg->wg_if.if_output = wg_output;
3347 wg->wg_if.if_init = wg_init;
3348 wg->wg_if.if_stop = wg_stop;
3349 wg->wg_if.if_type = IFT_WIREGUARD;
3350 wg->wg_if.if_dlt = DLT_NULL;
3351 wg->wg_if.if_softc = wg;
3352 IFQ_SET_READY(&wg->wg_if.if_snd);
3353
3354 error = if_initialize(&wg->wg_if);
3355 if (error != 0)
3356 return error;
3357
3358 if_alloc_sadl(&wg->wg_if);
3359 if_register(&wg->wg_if);
3360
3361 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3362
3363 return 0;
3364 }
3365
3366 static int
3367 wg_clone_create(struct if_clone *ifc, int unit)
3368 {
3369 struct wg_softc *wg;
3370 int error;
3371
3372 wg = kmem_zalloc(sizeof(struct wg_softc), KM_SLEEP);
3373
3374 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3375
3376 error = wg_worker_init(wg);
3377 if (error != 0) {
3378 kmem_free(wg, sizeof(struct wg_softc));
3379 return error;
3380 }
3381
3382 rn_inithead((void **)&wg->wg_rtable_ipv4,
3383 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3384 #ifdef INET6
3385 rn_inithead((void **)&wg->wg_rtable_ipv6,
3386 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3387 #endif
3388
3389 PSLIST_INIT(&wg->wg_peers);
3390 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3391 wg->wg_rwlock = rw_obj_alloc();
3392 wg->wg_ops = &wg_ops_rumpkernel;
3393
3394 error = wg_if_attach(wg);
3395 if (error != 0) {
3396 wg_worker_destroy(wg);
3397 if (wg->wg_rtable_ipv4 != NULL)
3398 free(wg->wg_rtable_ipv4, M_RTABLE);
3399 if (wg->wg_rtable_ipv6 != NULL)
3400 free(wg->wg_rtable_ipv6, M_RTABLE);
3401 PSLIST_DESTROY(&wg->wg_peers);
3402 mutex_obj_free(wg->wg_lock);
3403 kmem_free(wg, sizeof(struct wg_softc));
3404 return error;
3405 }
3406
3407 mutex_enter(&wg_softcs.lock);
3408 LIST_INSERT_HEAD(&wg_softcs.list, wg, wg_list);
3409 mutex_exit(&wg_softcs.lock);
3410
3411 return 0;
3412 }
3413
3414 static int
3415 wg_clone_destroy(struct ifnet *ifp)
3416 {
3417 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
3418
3419 mutex_enter(&wg_softcs.lock);
3420 LIST_REMOVE(wg, wg_list);
3421 mutex_exit(&wg_softcs.lock);
3422
3423 #ifdef WG_RUMPKERNEL
3424 if (wg_user_mode(wg)) {
3425 rumpuser_wg_destroy(wg->wg_user);
3426 wg->wg_user = NULL;
3427 }
3428 #endif
3429
3430 bpf_detach(ifp);
3431 if_detach(ifp);
3432 wg_worker_destroy(wg);
3433 wg_destroy_all_peers(wg);
3434 if (wg->wg_rtable_ipv4 != NULL)
3435 free(wg->wg_rtable_ipv4, M_RTABLE);
3436 if (wg->wg_rtable_ipv6 != NULL)
3437 free(wg->wg_rtable_ipv6, M_RTABLE);
3438
3439 PSLIST_DESTROY(&wg->wg_peers);
3440 mutex_obj_free(wg->wg_lock);
3441 rw_obj_free(wg->wg_rwlock);
3442
3443 kmem_free(wg, sizeof(struct wg_softc));
3444
3445 return 0;
3446 }
3447
3448 static struct wg_peer *
3449 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
3450 struct psref *psref)
3451 {
3452 struct radix_node_head *rnh;
3453 struct radix_node *rn;
3454 struct wg_peer *wgp = NULL;
3455 struct wg_allowedip *wga;
3456
3457 #ifdef WG_DEBUG_LOG
3458 char addrstr[128];
3459 sockaddr_format(sa, addrstr, sizeof(addrstr));
3460 WG_DLOG("sa=%s\n", addrstr);
3461 #endif
3462
3463 rw_enter(wg->wg_rwlock, RW_READER);
3464
3465 rnh = wg_rnh(wg, sa->sa_family);
3466 if (rnh == NULL)
3467 goto out;
3468
3469 rn = rnh->rnh_matchaddr(sa, rnh);
3470 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
3471 goto out;
3472
3473 WG_TRACE("success");
3474
3475 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
3476 wgp = wga->wga_peer;
3477 wg_get_peer(wgp, psref);
3478
3479 out:
3480 rw_exit(wg->wg_rwlock);
3481 return wgp;
3482 }
3483
3484 static void
3485 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
3486 struct wg_session *wgs, struct wg_msg_data *wgmd)
3487 {
3488
3489 memset(wgmd, 0, sizeof(*wgmd));
3490 wgmd->wgmd_type = WG_MSG_TYPE_DATA;
3491 wgmd->wgmd_receiver = wgs->wgs_receiver_index;
3492 /* [W] 5.4.6: msg.counter := Nm^send */
3493 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
3494 wgmd->wgmd_counter = wg_session_inc_send_counter(wgs);
3495 WG_DLOG("counter=%"PRIu64"\n", wgmd->wgmd_counter);
3496 }
3497
3498 static int
3499 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
3500 const struct rtentry *rt)
3501 {
3502 struct wg_softc *wg = ifp->if_softc;
3503 int error = 0;
3504 int bound;
3505 struct psref psref;
3506
3507 /* TODO make the nest limit configurable via sysctl */
3508 error = if_tunnel_check_nesting(ifp, m, 1);
3509 if (error != 0) {
3510 m_freem(m);
3511 WGLOG(LOG_ERR, "tunneling loop detected and packet dropped\n");
3512 return error;
3513 }
3514
3515 bound = curlwp_bind();
3516
3517 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
3518
3519 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
3520
3521 m->m_flags &= ~(M_BCAST|M_MCAST);
3522
3523 struct wg_peer *wgp = wg_pick_peer_by_sa(wg, dst, &psref);
3524 if (wgp == NULL) {
3525 WG_TRACE("peer not found");
3526 error = EHOSTUNREACH;
3527 goto error;
3528 }
3529
3530 /* Clear checksum-offload flags. */
3531 m->m_pkthdr.csum_flags = 0;
3532 m->m_pkthdr.csum_data = 0;
3533
3534 if (!pcq_put(wgp->wgp_q, m)) {
3535 error = ENOBUFS;
3536 goto error;
3537 }
3538
3539 struct psref psref_wgs;
3540 struct wg_session *wgs;
3541 wgs = wg_get_stable_session(wgp, &psref_wgs);
3542 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3543 !wg_session_hit_limits(wgs)) {
3544 kpreempt_disable();
3545 softint_schedule(wgp->wgp_si);
3546 kpreempt_enable();
3547 WG_TRACE("softint scheduled");
3548 } else {
3549 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3550 WG_TRACE("softint NOT scheduled");
3551 }
3552 wg_put_session(wgs, &psref_wgs);
3553 wg_put_peer(wgp, &psref);
3554
3555 return 0;
3556
3557 error:
3558 if (wgp != NULL)
3559 wg_put_peer(wgp, &psref);
3560 if (m != NULL)
3561 m_freem(m);
3562 curlwp_bindx(bound);
3563 return error;
3564 }
3565
3566 static int
3567 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
3568 {
3569 struct psref psref;
3570 struct wg_sockaddr *wgsa;
3571 int error;
3572 struct socket *so = wg_get_so_by_peer(wgp);
3573
3574 solock(so);
3575 wgsa = wg_get_endpoint_sa(wgp, &psref);
3576 if (wgsatosa(wgsa)->sa_family == AF_INET) {
3577 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
3578 } else {
3579 #ifdef INET6
3580 error = udp6_output(sotoin6pcb(so), m, wgsatosin6(wgsa),
3581 NULL, curlwp);
3582 #else
3583 error = EPROTONOSUPPORT;
3584 #endif
3585 }
3586 wg_put_sa(wgp, wgsa, &psref);
3587 sounlock(so);
3588
3589 return error;
3590 }
3591
3592 /* Inspired by pppoe_get_mbuf */
3593 static struct mbuf *
3594 wg_get_mbuf(size_t leading_len, size_t len)
3595 {
3596 struct mbuf *m;
3597
3598 m = m_gethdr(M_DONTWAIT, MT_DATA);
3599 if (m == NULL)
3600 return NULL;
3601 if (len + leading_len > MHLEN) {
3602 m_clget(m, M_DONTWAIT);
3603 if ((m->m_flags & M_EXT) == 0) {
3604 m_free(m);
3605 return NULL;
3606 }
3607 }
3608 m->m_data += leading_len;
3609 m->m_pkthdr.len = m->m_len = len;
3610
3611 return m;
3612 }
3613
3614 static int
3615 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
3616 struct mbuf *m)
3617 {
3618 struct wg_softc *wg = wgp->wgp_sc;
3619 int error;
3620 size_t inner_len, padded_len, encrypted_len;
3621 char *padded_buf = NULL;
3622 size_t mlen;
3623 struct wg_msg_data *wgmd;
3624 bool free_padded_buf = false;
3625 struct mbuf *n;
3626 size_t leading_len = max_linkhdr + sizeof(struct ip6_hdr) +
3627 sizeof(struct udphdr);
3628
3629 mlen = m_length(m);
3630 inner_len = mlen;
3631 padded_len = roundup(mlen, 16);
3632 encrypted_len = padded_len + WG_AUTHTAG_LEN;
3633 WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
3634 inner_len, padded_len, encrypted_len);
3635 if (mlen != 0) {
3636 bool success;
3637 success = m_ensure_contig(&m, padded_len);
3638 if (success) {
3639 padded_buf = mtod(m, char *);
3640 } else {
3641 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
3642 if (padded_buf == NULL) {
3643 error = ENOBUFS;
3644 goto end;
3645 }
3646 free_padded_buf = true;
3647 m_copydata(m, 0, mlen, padded_buf);
3648 }
3649 memset(padded_buf + mlen, 0, padded_len - inner_len);
3650 }
3651
3652 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
3653 if (n == NULL) {
3654 error = ENOBUFS;
3655 goto end;
3656 }
3657 wgmd = mtod(n, struct wg_msg_data *);
3658 wg_fill_msg_data(wg, wgp, wgs, wgmd);
3659 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
3660 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
3661 wgs->wgs_tkey_send, wgmd->wgmd_counter, padded_buf, padded_len,
3662 NULL, 0);
3663
3664 error = wg->wg_ops->send_data_msg(wgp, n);
3665 if (error == 0) {
3666 struct ifnet *ifp = &wg->wg_if;
3667 if_statadd(ifp, if_obytes, mlen);
3668 if_statinc(ifp, if_opackets);
3669 if (wgs->wgs_is_initiator &&
3670 wgs->wgs_time_last_data_sent == 0) {
3671 /*
3672 * [W] 6.2 Transport Message Limits
3673 * "if a peer is the initiator of a current secure
3674 * session, WireGuard will send a handshake initiation
3675 * message to begin a new secure session if, after
3676 * transmitting a transport data message, the current
3677 * secure session is REKEY-AFTER-TIME seconds old,"
3678 */
3679 wg_schedule_rekey_timer(wgp);
3680 }
3681 wgs->wgs_time_last_data_sent = time_uptime;
3682 if (wg_session_get_send_counter(wgs) >=
3683 wg_rekey_after_messages) {
3684 /*
3685 * [W] 6.2 Transport Message Limits
3686 * "WireGuard will try to create a new session, by
3687 * sending a handshake initiation message (section
3688 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
3689 * transport data messages..."
3690 */
3691 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3692 }
3693 }
3694 end:
3695 m_freem(m);
3696 if (free_padded_buf)
3697 kmem_intr_free(padded_buf, padded_len);
3698 return error;
3699 }
3700
3701 static void
3702 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
3703 {
3704 pktqueue_t *pktq;
3705 size_t pktlen;
3706
3707 KASSERT(af == AF_INET || af == AF_INET6);
3708
3709 WG_TRACE("");
3710
3711 m_set_rcvif(m, ifp);
3712 pktlen = m->m_pkthdr.len;
3713
3714 bpf_mtap_af(ifp, af, m, BPF_D_IN);
3715
3716 switch (af) {
3717 case AF_INET:
3718 pktq = ip_pktq;
3719 break;
3720 #ifdef INET6
3721 case AF_INET6:
3722 pktq = ip6_pktq;
3723 break;
3724 #endif
3725 default:
3726 panic("invalid af=%d", af);
3727 }
3728
3729 const u_int h = curcpu()->ci_index;
3730 if (__predict_true(pktq_enqueue(pktq, m, h))) {
3731 if_statadd(ifp, if_ibytes, pktlen);
3732 if_statinc(ifp, if_ipackets);
3733 } else {
3734 m_freem(m);
3735 }
3736 }
3737
3738 static void
3739 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
3740 const uint8_t privkey[WG_STATIC_KEY_LEN])
3741 {
3742
3743 crypto_scalarmult_base(pubkey, privkey);
3744 }
3745
3746 static int
3747 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
3748 {
3749 struct radix_node_head *rnh;
3750 struct radix_node *rn;
3751 int error = 0;
3752
3753 rw_enter(wg->wg_rwlock, RW_WRITER);
3754 rnh = wg_rnh(wg, wga->wga_family);
3755 KASSERT(rnh != NULL);
3756 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
3757 wga->wga_nodes);
3758 rw_exit(wg->wg_rwlock);
3759
3760 if (rn == NULL)
3761 error = EEXIST;
3762
3763 return error;
3764 }
3765
3766 static int
3767 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
3768 struct wg_peer **wgpp)
3769 {
3770 int error = 0;
3771 const void *pubkey;
3772 size_t pubkey_len;
3773 const void *psk;
3774 size_t psk_len;
3775 const char *name = NULL;
3776
3777 if (prop_dictionary_get_string(peer, "name", &name)) {
3778 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
3779 error = EINVAL;
3780 goto out;
3781 }
3782 }
3783
3784 if (!prop_dictionary_get_data(peer, "public_key",
3785 &pubkey, &pubkey_len)) {
3786 error = EINVAL;
3787 goto out;
3788 }
3789 #ifdef WG_DEBUG_DUMP
3790 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n", pubkey, pubkey_len);
3791 for (int _i = 0; _i < pubkey_len; _i++)
3792 log(LOG_DEBUG, "%c", ((const char *)pubkey)[_i]);
3793 log(LOG_DEBUG, "\n");
3794 #endif
3795
3796 struct wg_peer *wgp = wg_alloc_peer(wg);
3797 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
3798 if (name != NULL)
3799 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
3800
3801 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
3802 if (psk_len != sizeof(wgp->wgp_psk)) {
3803 error = EINVAL;
3804 goto out;
3805 }
3806 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
3807 }
3808
3809 struct sockaddr_storage sockaddr;
3810 const void *addr;
3811 size_t addr_len;
3812
3813 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
3814 goto skip_endpoint;
3815 memcpy(&sockaddr, addr, addr_len);
3816 switch (sockaddr.ss_family) {
3817 case AF_INET: {
3818 struct sockaddr_in sin;
3819 sockaddr_copy(sintosa(&sin), sizeof(sin),
3820 (const struct sockaddr *)&sockaddr);
3821 sockaddr_copy(sintosa(&wgp->wgp_sin),
3822 sizeof(wgp->wgp_sin), (const struct sockaddr *)&sockaddr);
3823 char addrstr[128];
3824 sockaddr_format(sintosa(&sin), addrstr, sizeof(addrstr));
3825 WG_DLOG("addr=%s\n", addrstr);
3826 break;
3827 }
3828 #ifdef INET6
3829 case AF_INET6: {
3830 struct sockaddr_in6 sin6;
3831 char addrstr[128];
3832 sockaddr_copy(sintosa(&sin6), sizeof(sin6),
3833 (const struct sockaddr *)&sockaddr);
3834 sockaddr_format(sintosa(&sin6), addrstr, sizeof(addrstr));
3835 WG_DLOG("addr=%s\n", addrstr);
3836 sockaddr_copy(sin6tosa(&wgp->wgp_sin6),
3837 sizeof(wgp->wgp_sin6), (const struct sockaddr *)&sockaddr);
3838 break;
3839 }
3840 #endif
3841 default:
3842 break;
3843 }
3844 wgp->wgp_endpoint_available = true;
3845
3846 prop_array_t allowedips;
3847 skip_endpoint:
3848 allowedips = prop_dictionary_get(peer, "allowedips");
3849 if (allowedips == NULL)
3850 goto skip;
3851
3852 prop_object_iterator_t _it = prop_array_iterator(allowedips);
3853 prop_dictionary_t prop_allowedip;
3854 int j = 0;
3855 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
3856 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
3857
3858 if (!prop_dictionary_get_int(prop_allowedip, "family",
3859 &wga->wga_family))
3860 continue;
3861 if (!prop_dictionary_get_data(prop_allowedip, "ip",
3862 &addr, &addr_len))
3863 continue;
3864 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
3865 &wga->wga_cidr))
3866 continue;
3867
3868 switch (wga->wga_family) {
3869 case AF_INET: {
3870 struct sockaddr_in sin;
3871 char addrstr[128];
3872 struct in_addr mask;
3873 struct sockaddr_in sin_mask;
3874
3875 if (addr_len != sizeof(struct in_addr))
3876 return EINVAL;
3877 memcpy(&wga->wga_addr4, addr, addr_len);
3878
3879 sockaddr_in_init(&sin, (const struct in_addr *)addr,
3880 0);
3881 sockaddr_copy(&wga->wga_sa_addr,
3882 sizeof(sin), sintosa(&sin));
3883
3884 sockaddr_format(sintosa(&sin),
3885 addrstr, sizeof(addrstr));
3886 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
3887
3888 in_len2mask(&mask, wga->wga_cidr);
3889 sockaddr_in_init(&sin_mask, &mask, 0);
3890 sockaddr_copy(&wga->wga_sa_mask,
3891 sizeof(sin_mask), sintosa(&sin_mask));
3892
3893 break;
3894 }
3895 #ifdef INET6
3896 case AF_INET6: {
3897 struct sockaddr_in6 sin6;
3898 char addrstr[128];
3899 struct in6_addr mask;
3900 struct sockaddr_in6 sin6_mask;
3901
3902 if (addr_len != sizeof(struct in6_addr))
3903 return EINVAL;
3904 memcpy(&wga->wga_addr6, addr, addr_len);
3905
3906 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
3907 0, 0, 0);
3908 sockaddr_copy(&wga->wga_sa_addr,
3909 sizeof(sin6), sin6tosa(&sin6));
3910
3911 sockaddr_format(sin6tosa(&sin6),
3912 addrstr, sizeof(addrstr));
3913 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
3914
3915 in6_prefixlen2mask(&mask, wga->wga_cidr);
3916 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
3917 sockaddr_copy(&wga->wga_sa_mask,
3918 sizeof(sin6_mask), sin6tosa(&sin6_mask));
3919
3920 break;
3921 }
3922 #endif
3923 default:
3924 error = EINVAL;
3925 goto out;
3926 }
3927 wga->wga_peer = wgp;
3928
3929 error = wg_rtable_add_route(wg, wga);
3930 if (error != 0)
3931 goto out;
3932
3933 j++;
3934 }
3935 wgp->wgp_n_allowedips = j;
3936 skip:
3937 *wgpp = wgp;
3938 out:
3939 return error;
3940 }
3941
3942 static int
3943 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
3944 {
3945 int error;
3946 char *buf;
3947
3948 WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
3949 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
3950 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
3951 if (error != 0)
3952 return error;
3953 buf[ifd->ifd_len] = '\0';
3954 #ifdef WG_DEBUG_DUMP
3955 for (int i = 0; i < ifd->ifd_len; i++)
3956 log(LOG_DEBUG, "%c", buf[i]);
3957 log(LOG_DEBUG, "\n");
3958 #endif
3959 *_buf = buf;
3960 return 0;
3961 }
3962
3963 static int
3964 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
3965 {
3966 int error;
3967 prop_dictionary_t prop_dict;
3968 char *buf = NULL;
3969 const void *privkey;
3970 size_t privkey_len;
3971
3972 error = wg_alloc_prop_buf(&buf, ifd);
3973 if (error != 0)
3974 return error;
3975 error = EINVAL;
3976 prop_dict = prop_dictionary_internalize(buf);
3977 if (prop_dict == NULL)
3978 goto out;
3979 if (!prop_dictionary_get_data(prop_dict, "private_key",
3980 &privkey, &privkey_len))
3981 goto out;
3982 #ifdef WG_DEBUG_DUMP
3983 log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n", privkey, privkey_len);
3984 for (int i = 0; i < privkey_len; i++)
3985 log(LOG_DEBUG, "%c", ((const char *)privkey)[i]);
3986 log(LOG_DEBUG, "\n");
3987 #endif
3988 if (privkey_len != WG_STATIC_KEY_LEN)
3989 goto out;
3990 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
3991 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
3992 error = 0;
3993
3994 out:
3995 kmem_free(buf, ifd->ifd_len + 1);
3996 return error;
3997 }
3998
3999 static int
4000 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4001 {
4002 int error;
4003 prop_dictionary_t prop_dict;
4004 char *buf = NULL;
4005 uint16_t port;
4006
4007 error = wg_alloc_prop_buf(&buf, ifd);
4008 if (error != 0)
4009 return error;
4010 error = EINVAL;
4011 prop_dict = prop_dictionary_internalize(buf);
4012 if (prop_dict == NULL)
4013 goto out;
4014 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4015 goto out;
4016
4017 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4018
4019 out:
4020 kmem_free(buf, ifd->ifd_len + 1);
4021 return error;
4022 }
4023
4024 static int
4025 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4026 {
4027 int error;
4028 prop_dictionary_t prop_dict;
4029 char *buf = NULL;
4030 struct wg_peer *wgp = NULL;
4031
4032 error = wg_alloc_prop_buf(&buf, ifd);
4033 if (error != 0)
4034 return error;
4035 error = EINVAL;
4036 prop_dict = prop_dictionary_internalize(buf);
4037 if (prop_dict == NULL)
4038 goto out;
4039
4040 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4041 if (error != 0)
4042 goto out;
4043
4044 mutex_enter(wg->wg_lock);
4045 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4046 wg->wg_npeers++;
4047 mutex_exit(wg->wg_lock);
4048
4049 out:
4050 kmem_free(buf, ifd->ifd_len + 1);
4051 return error;
4052 }
4053
4054 static int
4055 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4056 {
4057 int error;
4058 prop_dictionary_t prop_dict;
4059 char *buf = NULL;
4060 const char *name;
4061
4062 error = wg_alloc_prop_buf(&buf, ifd);
4063 if (error != 0)
4064 return error;
4065 error = EINVAL;
4066 prop_dict = prop_dictionary_internalize(buf);
4067 if (prop_dict == NULL)
4068 goto out;
4069
4070 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4071 goto out;
4072 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4073 goto out;
4074
4075 error = wg_destroy_peer_name(wg, name);
4076 out:
4077 kmem_free(buf, ifd->ifd_len + 1);
4078 return error;
4079 }
4080
4081 static int
4082 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4083 {
4084 int error = ENOMEM;
4085 prop_dictionary_t prop_dict;
4086 prop_array_t peers;
4087 char *buf;
4088 struct wg_peer *wgp;
4089 int s, i;
4090
4091 prop_dict = prop_dictionary_create();
4092 if (prop_dict == NULL)
4093 goto error;
4094
4095 if (!prop_dictionary_set_data(prop_dict, "private_key", wg->wg_privkey,
4096 WG_STATIC_KEY_LEN))
4097 goto error;
4098
4099 if (wg->wg_listen_port != 0) {
4100 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4101 wg->wg_listen_port))
4102 goto error;
4103 }
4104
4105 if (wg->wg_npeers == 0)
4106 goto skip_peers;
4107
4108 peers = prop_array_create();
4109 if (peers == NULL)
4110 goto error;
4111
4112 s = pserialize_read_enter();
4113 i = 0;
4114 WG_PEER_READER_FOREACH(wgp, wg) {
4115 struct psref psref;
4116 prop_dictionary_t prop_peer;
4117
4118 wg_get_peer(wgp, &psref);
4119 pserialize_read_exit(s);
4120
4121 prop_peer = prop_dictionary_create();
4122 if (prop_peer == NULL)
4123 goto next;
4124
4125 if (strlen(wgp->wgp_name) > 0) {
4126 if (!prop_dictionary_set_string(prop_peer, "name",
4127 wgp->wgp_name))
4128 goto next;
4129 }
4130
4131 if (!prop_dictionary_set_data(prop_peer, "public_key",
4132 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4133 goto next;
4134
4135 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4136 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4137 sizeof(wgp->wgp_psk))) {
4138 if (!prop_dictionary_set_data(prop_peer,
4139 "preshared_key",
4140 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4141 goto next;
4142 }
4143
4144 switch (wgp->wgp_sa.sa_family) {
4145 case AF_INET:
4146 if (!prop_dictionary_set_data(prop_peer, "endpoint",
4147 &wgp->wgp_sin, sizeof(wgp->wgp_sin)))
4148 goto next;
4149 break;
4150 #ifdef INET6
4151 case AF_INET6:
4152 if (!prop_dictionary_set_data(prop_peer, "endpoint",
4153 &wgp->wgp_sin6, sizeof(wgp->wgp_sin6)))
4154 goto next;
4155 break;
4156 #endif
4157 }
4158
4159 const struct timespec *t = &wgp->wgp_last_handshake_time;
4160
4161 if (!prop_dictionary_set_uint64(prop_peer,
4162 "last_handshake_time_sec", t->tv_sec))
4163 goto next;
4164 if (!prop_dictionary_set_uint32(prop_peer,
4165 "last_handshake_time_nsec", t->tv_nsec))
4166 goto next;
4167
4168 if (wgp->wgp_n_allowedips == 0)
4169 goto skip_allowedips;
4170
4171 prop_array_t allowedips = prop_array_create();
4172 if (allowedips == NULL)
4173 goto next;
4174 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4175 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4176 prop_dictionary_t prop_allowedip;
4177
4178 prop_allowedip = prop_dictionary_create();
4179 if (prop_allowedip == NULL)
4180 break;
4181
4182 if (!prop_dictionary_set_int(prop_allowedip, "family",
4183 wga->wga_family))
4184 goto _next;
4185 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4186 wga->wga_cidr))
4187 goto _next;
4188
4189 switch (wga->wga_family) {
4190 case AF_INET:
4191 if (!prop_dictionary_set_data(prop_allowedip,
4192 "ip", &wga->wga_addr4,
4193 sizeof(wga->wga_addr4)))
4194 goto _next;
4195 break;
4196 #ifdef INET6
4197 case AF_INET6:
4198 if (!prop_dictionary_set_data(prop_allowedip,
4199 "ip", &wga->wga_addr6,
4200 sizeof(wga->wga_addr6)))
4201 goto _next;
4202 break;
4203 #endif
4204 default:
4205 break;
4206 }
4207 prop_array_set(allowedips, j, prop_allowedip);
4208 _next:
4209 prop_object_release(prop_allowedip);
4210 }
4211 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4212 prop_object_release(allowedips);
4213
4214 skip_allowedips:
4215
4216 prop_array_set(peers, i, prop_peer);
4217 next:
4218 if (prop_peer)
4219 prop_object_release(prop_peer);
4220 i++;
4221
4222 s = pserialize_read_enter();
4223 wg_put_peer(wgp, &psref);
4224 }
4225 pserialize_read_exit(s);
4226
4227 prop_dictionary_set(prop_dict, "peers", peers);
4228 prop_object_release(peers);
4229 peers = NULL;
4230
4231 skip_peers:
4232 buf = prop_dictionary_externalize(prop_dict);
4233 if (buf == NULL)
4234 goto error;
4235 if (ifd->ifd_len < (strlen(buf) + 1)) {
4236 error = EINVAL;
4237 goto error;
4238 }
4239 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4240
4241 free(buf, 0);
4242 error:
4243 if (peers != NULL)
4244 prop_object_release(peers);
4245 if (prop_dict != NULL)
4246 prop_object_release(prop_dict);
4247
4248 return error;
4249 }
4250
4251 static int
4252 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4253 {
4254 struct wg_softc *wg = ifp->if_softc;
4255 struct ifreq *ifr = data;
4256 struct ifaddr *ifa = data;
4257 struct ifdrv *ifd = data;
4258 int error = 0;
4259
4260 switch (cmd) {
4261 case SIOCINITIFADDR:
4262 if (ifa->ifa_addr->sa_family != AF_LINK &&
4263 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
4264 (IFF_UP | IFF_RUNNING)) {
4265 ifp->if_flags |= IFF_UP;
4266 error = ifp->if_init(ifp);
4267 }
4268 return error;
4269 case SIOCADDMULTI:
4270 case SIOCDELMULTI:
4271 switch (ifr->ifr_addr.sa_family) {
4272 case AF_INET: /* IP supports Multicast */
4273 break;
4274 #ifdef INET6
4275 case AF_INET6: /* IP6 supports Multicast */
4276 break;
4277 #endif
4278 default: /* Other protocols doesn't support Multicast */
4279 error = EAFNOSUPPORT;
4280 break;
4281 }
4282 return error;
4283 case SIOCSDRVSPEC:
4284 switch (ifd->ifd_cmd) {
4285 case WG_IOCTL_SET_PRIVATE_KEY:
4286 error = wg_ioctl_set_private_key(wg, ifd);
4287 break;
4288 case WG_IOCTL_SET_LISTEN_PORT:
4289 error = wg_ioctl_set_listen_port(wg, ifd);
4290 break;
4291 case WG_IOCTL_ADD_PEER:
4292 error = wg_ioctl_add_peer(wg, ifd);
4293 break;
4294 case WG_IOCTL_DELETE_PEER:
4295 error = wg_ioctl_delete_peer(wg, ifd);
4296 break;
4297 default:
4298 error = EINVAL;
4299 break;
4300 }
4301 return error;
4302 case SIOCGDRVSPEC:
4303 return wg_ioctl_get(wg, ifd);
4304 case SIOCSIFFLAGS:
4305 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
4306 break;
4307 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4308 case IFF_RUNNING:
4309 /*
4310 * If interface is marked down and it is running,
4311 * then stop and disable it.
4312 */
4313 (*ifp->if_stop)(ifp, 1);
4314 break;
4315 case IFF_UP:
4316 /*
4317 * If interface is marked up and it is stopped, then
4318 * start it.
4319 */
4320 error = (*ifp->if_init)(ifp);
4321 break;
4322 default:
4323 break;
4324 }
4325 return error;
4326 #ifdef WG_RUMPKERNEL
4327 case SIOCSLINKSTR:
4328 error = wg_ioctl_linkstr(wg, ifd);
4329 if (error == 0)
4330 wg->wg_ops = &wg_ops_rumpuser;
4331 return error;
4332 #endif
4333 default:
4334 break;
4335 }
4336
4337 error = ifioctl_common(ifp, cmd, data);
4338
4339 #ifdef WG_RUMPKERNEL
4340 if (!wg_user_mode(wg))
4341 return error;
4342
4343 /* Do the same to the corresponding tun device on the host */
4344 /*
4345 * XXX Actually the command has not been handled yet. It
4346 * will be handled via pr_ioctl form doifioctl later.
4347 */
4348 switch (cmd) {
4349 case SIOCAIFADDR:
4350 case SIOCDIFADDR: {
4351 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
4352 struct in_aliasreq *ifra = &_ifra;
4353 KASSERT(error == ENOTTY);
4354 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4355 IFNAMSIZ);
4356 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
4357 if (error == 0)
4358 error = ENOTTY;
4359 break;
4360 }
4361 #ifdef INET6
4362 case SIOCAIFADDR_IN6:
4363 case SIOCDIFADDR_IN6: {
4364 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
4365 struct in6_aliasreq *ifra = &_ifra;
4366 KASSERT(error == ENOTTY);
4367 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4368 IFNAMSIZ);
4369 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
4370 if (error == 0)
4371 error = ENOTTY;
4372 break;
4373 }
4374 #endif
4375 }
4376 #endif /* WG_RUMPKERNEL */
4377
4378 return error;
4379 }
4380
4381 static int
4382 wg_init(struct ifnet *ifp)
4383 {
4384
4385 ifp->if_flags |= IFF_RUNNING;
4386
4387 /* TODO flush pending packets. */
4388 return 0;
4389 }
4390
4391 static void
4392 wg_stop(struct ifnet *ifp, int disable)
4393 {
4394
4395 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
4396 ifp->if_flags &= ~IFF_RUNNING;
4397
4398 /* Need to do something? */
4399 }
4400
4401 #ifdef WG_DEBUG_PARAMS
4402 SYSCTL_SETUP(sysctl_net_wireguard_setup, "sysctl net.wireguard setup")
4403 {
4404 const struct sysctlnode *node = NULL;
4405
4406 sysctl_createv(clog, 0, NULL, &node,
4407 CTLFLAG_PERMANENT,
4408 CTLTYPE_NODE, "wireguard",
4409 SYSCTL_DESCR("WireGuard"),
4410 NULL, 0, NULL, 0,
4411 CTL_NET, CTL_CREATE, CTL_EOL);
4412 sysctl_createv(clog, 0, &node, NULL,
4413 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4414 CTLTYPE_QUAD, "rekey_after_messages",
4415 SYSCTL_DESCR("session liftime by messages"),
4416 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
4417 sysctl_createv(clog, 0, &node, NULL,
4418 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4419 CTLTYPE_INT, "rekey_after_time",
4420 SYSCTL_DESCR("session liftime"),
4421 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
4422 sysctl_createv(clog, 0, &node, NULL,
4423 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4424 CTLTYPE_INT, "rekey_timeout",
4425 SYSCTL_DESCR("session handshake retry time"),
4426 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
4427 sysctl_createv(clog, 0, &node, NULL,
4428 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4429 CTLTYPE_INT, "rekey_attempt_time",
4430 SYSCTL_DESCR("session handshake timeout"),
4431 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
4432 sysctl_createv(clog, 0, &node, NULL,
4433 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4434 CTLTYPE_INT, "keepalive_timeout",
4435 SYSCTL_DESCR("keepalive timeout"),
4436 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
4437 sysctl_createv(clog, 0, &node, NULL,
4438 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4439 CTLTYPE_BOOL, "force_underload",
4440 SYSCTL_DESCR("force to detemine under load"),
4441 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
4442 }
4443 #endif
4444
4445 #ifdef WG_RUMPKERNEL
4446 static bool
4447 wg_user_mode(struct wg_softc *wg)
4448 {
4449
4450 return wg->wg_user != NULL;
4451 }
4452
4453 static int
4454 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
4455 {
4456 struct ifnet *ifp = &wg->wg_if;
4457 int error;
4458
4459 if (ifp->if_flags & IFF_UP)
4460 return EBUSY;
4461
4462 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
4463 /* XXX do nothing */
4464 return 0;
4465 } else if (ifd->ifd_cmd != 0) {
4466 return EINVAL;
4467 } else if (wg->wg_user != NULL) {
4468 return EBUSY;
4469 }
4470
4471 /* Assume \0 included */
4472 if (ifd->ifd_len > IFNAMSIZ) {
4473 return E2BIG;
4474 } else if (ifd->ifd_len < 1) {
4475 return EINVAL;
4476 }
4477
4478 char tun_name[IFNAMSIZ];
4479 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
4480 if (error != 0)
4481 return error;
4482
4483 if (strncmp(tun_name, "tun", 3) != 0)
4484 return EINVAL;
4485
4486 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
4487
4488 return error;
4489 }
4490
4491 static int
4492 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
4493 {
4494 int error;
4495 struct psref psref;
4496 struct wg_sockaddr *wgsa;
4497 struct wg_softc *wg = wgp->wgp_sc;
4498 struct iovec iov[1];
4499
4500 wgsa = wg_get_endpoint_sa(wgp, &psref);
4501
4502 iov[0].iov_base = mtod(m, void *);
4503 iov[0].iov_len = m->m_len;
4504
4505 /* Send messages to a peer via an ordinary socket. */
4506 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
4507
4508 wg_put_sa(wgp, wgsa, &psref);
4509
4510 return error;
4511 }
4512
4513 static void
4514 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
4515 {
4516 struct wg_softc *wg = ifp->if_softc;
4517 struct iovec iov[2];
4518 struct sockaddr_storage ss;
4519
4520 KASSERT(af == AF_INET || af == AF_INET6);
4521
4522 WG_TRACE("");
4523
4524 if (af == AF_INET) {
4525 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
4526 struct ip *ip;
4527 ip = mtod(m, struct ip *);
4528 sockaddr_in_init(sin, &ip->ip_dst, 0);
4529 } else {
4530 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
4531 struct ip6_hdr *ip6;
4532 ip6 = mtod(m, struct ip6_hdr *);
4533 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
4534 }
4535
4536 iov[0].iov_base = &ss;
4537 iov[0].iov_len = ss.ss_len;
4538 iov[1].iov_base = mtod(m, void *);
4539 iov[1].iov_len = m->m_len;
4540
4541 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4542
4543 /* Send decrypted packets to users via a tun. */
4544 rumpuser_wg_send_user(wg->wg_user, iov, 2);
4545 }
4546
4547 static int
4548 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
4549 {
4550 int error;
4551 uint16_t old_port = wg->wg_listen_port;
4552
4553 if (port != 0 && old_port == port)
4554 return 0;
4555
4556 error = rumpuser_wg_sock_bind(wg->wg_user, port);
4557 if (error == 0)
4558 wg->wg_listen_port = port;
4559 return error;
4560 }
4561
4562 /*
4563 * Receive user packets.
4564 */
4565 void
4566 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4567 {
4568 struct ifnet *ifp = &wg->wg_if;
4569 struct mbuf *m;
4570 const struct sockaddr *dst;
4571
4572 WG_TRACE("");
4573
4574 dst = iov[0].iov_base;
4575
4576 m = m_gethdr(M_NOWAIT, MT_DATA);
4577 if (m == NULL)
4578 return;
4579 m->m_len = m->m_pkthdr.len = 0;
4580 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4581
4582 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4583 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4584
4585 (void)wg_output(ifp, m, dst, NULL);
4586 }
4587
4588 /*
4589 * Receive packets from a peer.
4590 */
4591 void
4592 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4593 {
4594 struct mbuf *m;
4595 const struct sockaddr *src;
4596
4597 WG_TRACE("");
4598
4599 src = iov[0].iov_base;
4600
4601 m = m_gethdr(M_NOWAIT, MT_DATA);
4602 if (m == NULL)
4603 return;
4604 m->m_len = m->m_pkthdr.len = 0;
4605 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4606
4607 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4608 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4609
4610 wg_handle_packet(wg, m, src);
4611 }
4612 #endif /* WG_RUMPKERNEL */
4613
4614 /*
4615 * Module infrastructure
4616 */
4617 #include "if_module.h"
4618
4619 IF_MODULE(MODULE_CLASS_DRIVER, wg, "")
4620