if_wg.c revision 1.27 1 /* $NetBSD: if_wg.c,v 1.27 2020/08/27 02:54:31 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.27 2020/08/27 02:54:31 riastradh Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_inet.h"
48 #endif
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/errno.h>
57 #include <sys/ioctl.h>
58 #include <sys/time.h>
59 #include <sys/timespec.h>
60 #include <sys/socketvar.h>
61 #include <sys/syslog.h>
62 #include <sys/cpu.h>
63 #include <sys/intr.h>
64 #include <sys/kmem.h>
65 #include <sys/device.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/rwlock.h>
69 #include <sys/pserialize.h>
70 #include <sys/psref.h>
71 #include <sys/kthread.h>
72 #include <sys/cprng.h>
73 #include <sys/atomic.h>
74 #include <sys/sysctl.h>
75 #include <sys/domain.h>
76 #include <sys/pcq.h>
77 #include <sys/queue.h>
78 #include <sys/percpu.h>
79 #include <sys/callout.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_types.h>
84 #include <net/route.h>
85
86 #include <netinet/in.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/udp.h>
90 #include <netinet/udp_var.h>
91 #include <netinet/in_var.h>
92 #include <netinet/in_pcb.h>
93
94 #ifdef INET6
95 #include <netinet6/in6_var.h>
96 #include <netinet/ip6.h>
97 #include <netinet6/ip6_var.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/udp6_var.h>
100 #endif /* INET6 */
101
102 #include <net/if_wg.h>
103
104 #include <prop/proplib.h>
105
106 #include <crypto/blake2/blake2s.h>
107 #include <crypto/sodium/crypto_scalarmult.h>
108 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
109 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
110
111 #include "ioconf.h"
112
113 #ifdef WG_RUMPKERNEL
114 #include "wg_user.h"
115 #endif
116
117 /*
118 * Data structures
119 * - struct wg_softc is an instance of wg interfaces
120 * - It has a list of peers (struct wg_peer)
121 * - It has a kthread that sends/receives handshake messages and
122 * runs event handlers
123 * - It has its own two routing tables: one is for IPv4 and the other IPv6
124 * - struct wg_peer is a representative of a peer
125 * - It has a softint that is used to send packets over an wg interface
126 * to a peer
127 * - It has a pair of session instances (struct wg_session)
128 * - It has a pair of endpoint instances (struct wg_sockaddr)
129 * - Normally one endpoint is used and the second one is used only on
130 * a peer migration (a change of peer's IP address)
131 * - It has a list of IP addresses and sub networks called allowedips
132 * (struct wg_allowedip)
133 * - A packets sent over a session is allowed if its destination matches
134 * any IP addresses or sub networks of the list
135 * - struct wg_session represents a session of a secure tunnel with a peer
136 * - Two instances of sessions belong to a peer; a stable session and a
137 * unstable session
138 * - A handshake process of a session always starts with a unstable instace
139 * - Once a session is established, its instance becomes stable and the
140 * other becomes unstable instead
141 * - Data messages are always sent via a stable session
142 *
143 * Locking notes:
144 * - wg interfaces (struct wg_softc, wg) is listed in wg_softcs.list and
145 * protected by wg_softcs.lock
146 * - Each wg has a mutex(9) and a rwlock(9)
147 * - The mutex (wg_lock) protects its peer list (wg_peers)
148 * - A peer on the list is also protected by pserialize(9) or psref(9)
149 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
150 * - Each peer (struct wg_peer, wgp) has a mutex
151 * - The mutex (wgp_lock) protects wgp_session_unstable and wgp_state
152 * - Each session (struct wg_session, wgs) has a mutex
153 * - The mutex (wgs_lock) protects its state (wgs_state) and its handshake
154 * states
155 * - wgs_state of a unstable session can be changed while it never be
156 * changed on a stable session, so once get a session instace via
157 * wgp_session_stable we can safely access wgs_state without
158 * holding wgs_lock
159 * - A session is protected by pserialize or psref like wgp
160 * - On a session swap, we must wait for all readers to release a
161 * reference to a stable session before changing wgs_state and
162 * session states
163 */
164
165
166 #define WGLOG(level, fmt, args...) \
167 log(level, "%s: " fmt, __func__, ##args)
168
169 /* Debug options */
170 #ifdef WG_DEBUG
171 /* Output debug logs */
172 #ifndef WG_DEBUG_LOG
173 #define WG_DEBUG_LOG
174 #endif
175 /* Output trace logs */
176 #ifndef WG_DEBUG_TRACE
177 #define WG_DEBUG_TRACE
178 #endif
179 /* Output hash values, etc. */
180 #ifndef WG_DEBUG_DUMP
181 #define WG_DEBUG_DUMP
182 #endif
183 /* Make some internal parameters configurable for testing and debugging */
184 #ifndef WG_DEBUG_PARAMS
185 #define WG_DEBUG_PARAMS
186 #endif
187 #endif
188
189 #ifdef WG_DEBUG_TRACE
190 #define WG_TRACE(msg) \
191 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
192 #else
193 #define WG_TRACE(msg) __nothing
194 #endif
195
196 #ifdef WG_DEBUG_LOG
197 #define WG_DLOG(fmt, args...) log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
198 #else
199 #define WG_DLOG(fmt, args...) __nothing
200 #endif
201
202 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
203 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
204 &(wgprc)->wgprc_curpps, 1)) { \
205 log(level, fmt, ##args); \
206 } \
207 } while (0)
208
209 #ifdef WG_DEBUG_PARAMS
210 static bool wg_force_underload = false;
211 #endif
212
213 #ifdef WG_DEBUG_DUMP
214
215 #ifdef WG_RUMPKERNEL
216 static void
217 wg_dump_buf(const char *func, const char *buf, const size_t size)
218 {
219
220 log(LOG_DEBUG, "%s: ", func);
221 for (int i = 0; i < size; i++)
222 log(LOG_DEBUG, "%02x ", (int)(0xff & buf[i]));
223 log(LOG_DEBUG, "\n");
224 }
225 #endif
226
227 static void
228 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
229 const size_t size)
230 {
231
232 log(LOG_DEBUG, "%s: %s: ", func, name);
233 for (int i = 0; i < size; i++)
234 log(LOG_DEBUG, "%02x ", (int)(0xff & hash[i]));
235 log(LOG_DEBUG, "\n");
236 }
237
238 #define WG_DUMP_HASH(name, hash) \
239 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
240 #define WG_DUMP_HASH48(name, hash) \
241 wg_dump_hash(__func__, name, hash, 48)
242 #define WG_DUMP_BUF(buf, size) \
243 wg_dump_buf(__func__, buf, size)
244 #else
245 #define WG_DUMP_HASH(name, hash) __nothing
246 #define WG_DUMP_HASH48(name, hash) __nothing
247 #define WG_DUMP_BUF(buf, size) __nothing
248 #endif /* WG_DEBUG_DUMP */
249
250 #define WG_MTU 1420
251 #define WG_ALLOWEDIPS 16
252
253 #define CURVE25519_KEY_LEN 32
254 #define TAI64N_LEN sizeof(uint32_t) * 3
255 #define POLY1305_AUTHTAG_LEN 16
256 #define HMAC_BLOCK_LEN 64
257
258 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
259 /* [N] 4.3: Hash functions */
260 #define NOISE_DHLEN 32
261 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
262 #define NOISE_HASHLEN 32
263 #define NOISE_BLOCKLEN 64
264 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
265 /* [N] 5.1: "k" */
266 #define NOISE_CIPHER_KEY_LEN 32
267 /*
268 * [N] 9.2: "psk"
269 * "... psk is a 32-byte secret value provided by the application."
270 */
271 #define NOISE_PRESHARED_KEY_LEN 32
272
273 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
274 #define WG_TIMESTAMP_LEN TAI64N_LEN
275
276 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
277
278 #define WG_COOKIE_LEN 16
279 #define WG_MAC_LEN 16
280 #define WG_RANDVAL_LEN 24
281
282 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
283 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
284 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
285 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
286 #define WG_HASH_LEN NOISE_HASHLEN
287 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
288 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
289 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
290 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
291 #define WG_DATA_KEY_LEN 32
292 #define WG_SALT_LEN 24
293
294 /*
295 * The protocol messages
296 */
297 struct wg_msg {
298 uint32_t wgm_type;
299 } __packed;
300
301 /* [W] 5.4.2 First Message: Initiator to Responder */
302 struct wg_msg_init {
303 uint32_t wgmi_type;
304 uint32_t wgmi_sender;
305 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
306 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
307 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
308 uint8_t wgmi_mac1[WG_MAC_LEN];
309 uint8_t wgmi_mac2[WG_MAC_LEN];
310 } __packed;
311
312 /* [W] 5.4.3 Second Message: Responder to Initiator */
313 struct wg_msg_resp {
314 uint32_t wgmr_type;
315 uint32_t wgmr_sender;
316 uint32_t wgmr_receiver;
317 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
318 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
319 uint8_t wgmr_mac1[WG_MAC_LEN];
320 uint8_t wgmr_mac2[WG_MAC_LEN];
321 } __packed;
322
323 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
324 struct wg_msg_data {
325 uint32_t wgmd_type;
326 uint32_t wgmd_receiver;
327 uint64_t wgmd_counter;
328 uint32_t wgmd_packet[0];
329 } __packed;
330
331 /* [W] 5.4.7 Under Load: Cookie Reply Message */
332 struct wg_msg_cookie {
333 uint32_t wgmc_type;
334 uint32_t wgmc_receiver;
335 uint8_t wgmc_salt[WG_SALT_LEN];
336 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
337 } __packed;
338
339 #define WG_MSG_TYPE_INIT 1
340 #define WG_MSG_TYPE_RESP 2
341 #define WG_MSG_TYPE_COOKIE 3
342 #define WG_MSG_TYPE_DATA 4
343 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
344
345 /* Sliding windows */
346
347 #define SLIWIN_BITS 2048u
348 #define SLIWIN_TYPE uint32_t
349 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
350 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
351 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
352
353 struct sliwin {
354 SLIWIN_TYPE B[SLIWIN_WORDS];
355 uint64_t T;
356 };
357
358 static void
359 sliwin_reset(struct sliwin *W)
360 {
361
362 memset(W, 0, sizeof(*W));
363 }
364
365 static int
366 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
367 {
368
369 /*
370 * If it's more than one window older than the highest sequence
371 * number we've seen, reject.
372 */
373 #ifdef __HAVE_ATOMIC64_LOADSTORE
374 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
375 return EAUTH;
376 #endif
377
378 /*
379 * Otherwise, we need to take the lock to decide, so don't
380 * reject just yet. Caller must serialize a call to
381 * sliwin_update in this case.
382 */
383 return 0;
384 }
385
386 static int
387 sliwin_update(struct sliwin *W, uint64_t S)
388 {
389 unsigned word, bit;
390
391 /*
392 * If it's more than one window older than the highest sequence
393 * number we've seen, reject.
394 */
395 if (S + SLIWIN_NPKT < W->T)
396 return EAUTH;
397
398 /*
399 * If it's higher than the highest sequence number we've seen,
400 * advance the window.
401 */
402 if (S > W->T) {
403 uint64_t i = W->T / SLIWIN_BPW;
404 uint64_t j = S / SLIWIN_BPW;
405 unsigned k;
406
407 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
408 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
409 #ifdef __HAVE_ATOMIC64_LOADSTORE
410 atomic_store_relaxed(&W->T, S);
411 #else
412 W->T = S;
413 #endif
414 }
415
416 /* Test and set the bit -- if already set, reject. */
417 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
418 bit = S % SLIWIN_BPW;
419 if (W->B[word] & (1UL << bit))
420 return EAUTH;
421 W->B[word] |= 1UL << bit;
422
423 /* Accept! */
424 return 0;
425 }
426
427 struct wg_worker {
428 kmutex_t wgw_lock;
429 kcondvar_t wgw_cv;
430 bool wgw_todie;
431 struct socket *wgw_so4;
432 struct socket *wgw_so6;
433 int wgw_wakeup_reasons;
434 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 __BIT(0)
435 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6 __BIT(1)
436 #define WG_WAKEUP_REASON_PEER __BIT(2)
437 };
438
439 struct wg_session {
440 struct wg_peer *wgs_peer;
441 struct psref_target
442 wgs_psref;
443 kmutex_t *wgs_lock;
444
445 int wgs_state;
446 #define WGS_STATE_UNKNOWN 0
447 #define WGS_STATE_INIT_ACTIVE 1
448 #define WGS_STATE_INIT_PASSIVE 2
449 #define WGS_STATE_ESTABLISHED 3
450 #define WGS_STATE_DESTROYING 4
451
452 time_t wgs_time_established;
453 time_t wgs_time_last_data_sent;
454 bool wgs_is_initiator;
455
456 uint32_t wgs_sender_index;
457 uint32_t wgs_receiver_index;
458 #ifdef __HAVE_ATOMIC64_LOADSTORE
459 volatile uint64_t
460 wgs_send_counter;
461 #else
462 kmutex_t wgs_send_counter_lock;
463 uint64_t wgs_send_counter;
464 #endif
465
466 struct {
467 kmutex_t lock;
468 struct sliwin window;
469 } *wgs_recvwin;
470
471 uint8_t wgs_handshake_hash[WG_HASH_LEN];
472 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
473 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
474 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
475 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
476 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
477 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
478 };
479
480 struct wg_sockaddr {
481 union {
482 struct sockaddr_storage _ss;
483 struct sockaddr _sa;
484 struct sockaddr_in _sin;
485 struct sockaddr_in6 _sin6;
486 };
487 struct psref_target wgsa_psref;
488 };
489
490 #define wgsatosa(wgsa) (&(wgsa)->_sa)
491 #define wgsatosin(wgsa) (&(wgsa)->_sin)
492 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
493
494 struct wg_peer;
495 struct wg_allowedip {
496 struct radix_node wga_nodes[2];
497 struct wg_sockaddr _wga_sa_addr;
498 struct wg_sockaddr _wga_sa_mask;
499 #define wga_sa_addr _wga_sa_addr._sa
500 #define wga_sa_mask _wga_sa_mask._sa
501
502 int wga_family;
503 uint8_t wga_cidr;
504 union {
505 struct in_addr _ip4;
506 struct in6_addr _ip6;
507 } wga_addr;
508 #define wga_addr4 wga_addr._ip4
509 #define wga_addr6 wga_addr._ip6
510
511 struct wg_peer *wga_peer;
512 };
513
514 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
515
516 struct wg_ppsratecheck {
517 struct timeval wgprc_lasttime;
518 int wgprc_curpps;
519 };
520
521 struct wg_softc;
522 struct wg_peer {
523 struct wg_softc *wgp_sc;
524 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
525 struct pslist_entry wgp_peerlist_entry;
526 pserialize_t wgp_psz;
527 struct psref_target wgp_psref;
528 kmutex_t *wgp_lock;
529
530 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
531 struct wg_sockaddr *wgp_endpoint;
532 #define wgp_ss wgp_endpoint->_ss
533 #define wgp_sa wgp_endpoint->_sa
534 #define wgp_sin wgp_endpoint->_sin
535 #define wgp_sin6 wgp_endpoint->_sin6
536 struct wg_sockaddr *wgp_endpoint0;
537 bool wgp_endpoint_changing;
538 bool wgp_endpoint_available;
539
540 /* The preshared key (optional) */
541 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
542
543 int wgp_state;
544 #define WGP_STATE_INIT 0
545 #define WGP_STATE_ESTABLISHED 1
546 #define WGP_STATE_GIVEUP 2
547 #define WGP_STATE_DESTROYING 3
548
549 void *wgp_si;
550 pcq_t *wgp_q;
551
552 struct wg_session *wgp_session_stable;
553 struct wg_session *wgp_session_unstable;
554
555 /* timestamp in big-endian */
556 wg_timestamp_t wgp_timestamp_latest_init;
557
558 struct timespec wgp_last_handshake_time;
559
560 callout_t wgp_rekey_timer;
561 callout_t wgp_handshake_timeout_timer;
562 callout_t wgp_session_dtor_timer;
563
564 time_t wgp_handshake_start_time;
565
566 int wgp_n_allowedips;
567 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
568
569 time_t wgp_latest_cookie_time;
570 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
571 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
572 bool wgp_last_sent_mac1_valid;
573 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
574 bool wgp_last_sent_cookie_valid;
575
576 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
577
578 time_t wgp_last_genrandval_time;
579 uint32_t wgp_randval;
580
581 struct wg_ppsratecheck wgp_ppsratecheck;
582
583 volatile unsigned int wgp_tasks;
584 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
585 #define WGP_TASK_ENDPOINT_CHANGED __BIT(1)
586 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(2)
587 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(3)
588 };
589
590 struct wg_ops;
591
592 struct wg_softc {
593 struct ifnet wg_if;
594 LIST_ENTRY(wg_softc) wg_list;
595 kmutex_t *wg_lock;
596 krwlock_t *wg_rwlock;
597
598 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
599 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
600
601 int wg_npeers;
602 struct pslist_head wg_peers;
603 uint16_t wg_listen_port;
604
605 struct wg_worker *wg_worker;
606 lwp_t *wg_worker_lwp;
607
608 struct radix_node_head *wg_rtable_ipv4;
609 struct radix_node_head *wg_rtable_ipv6;
610
611 struct wg_ppsratecheck wg_ppsratecheck;
612
613 struct wg_ops *wg_ops;
614
615 #ifdef WG_RUMPKERNEL
616 struct wg_user *wg_user;
617 #endif
618 };
619
620 /* [W] 6.1 Preliminaries */
621 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
622 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
623 #define WG_REKEY_AFTER_TIME 120
624 #define WG_REJECT_AFTER_TIME 180
625 #define WG_REKEY_ATTEMPT_TIME 90
626 #define WG_REKEY_TIMEOUT 5
627 #define WG_KEEPALIVE_TIMEOUT 10
628
629 #define WG_COOKIE_TIME 120
630 #define WG_RANDVAL_TIME (2 * 60)
631
632 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
633 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
634 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
635 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
636 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
637 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
638 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
639
640 static struct mbuf *
641 wg_get_mbuf(size_t, size_t);
642
643 static void wg_wakeup_worker(struct wg_worker *, int);
644
645 static int wg_send_data_msg(struct wg_peer *, struct wg_session *,
646 struct mbuf *);
647 static int wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
648 const uint32_t, const uint8_t [], const struct sockaddr *);
649 static int wg_send_handshake_msg_resp(struct wg_softc *,
650 struct wg_peer *, const struct wg_msg_init *);
651 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
652
653 static struct wg_peer *
654 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
655 struct psref *);
656 static struct wg_peer *
657 wg_lookup_peer_by_pubkey(struct wg_softc *,
658 const uint8_t [], struct psref *);
659
660 static struct wg_session *
661 wg_lookup_session_by_index(struct wg_softc *,
662 const uint32_t, struct psref *);
663
664 static void wg_update_endpoint_if_necessary(struct wg_peer *,
665 const struct sockaddr *);
666
667 static void wg_schedule_rekey_timer(struct wg_peer *);
668 static void wg_schedule_session_dtor_timer(struct wg_peer *);
669 static void wg_stop_session_dtor_timer(struct wg_peer *);
670
671 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
672 static void wg_calculate_keys(struct wg_session *, const bool);
673
674 static void wg_clear_states(struct wg_session *);
675
676 static void wg_get_peer(struct wg_peer *, struct psref *);
677 static void wg_put_peer(struct wg_peer *, struct psref *);
678
679 static int wg_send_so(struct wg_peer *, struct mbuf *);
680 static int wg_send_udp(struct wg_peer *, struct mbuf *);
681 static int wg_output(struct ifnet *, struct mbuf *,
682 const struct sockaddr *, const struct rtentry *);
683 static void wg_input(struct ifnet *, struct mbuf *, const int);
684 static int wg_ioctl(struct ifnet *, u_long, void *);
685 static int wg_bind_port(struct wg_softc *, const uint16_t);
686 static int wg_init(struct ifnet *);
687 static void wg_stop(struct ifnet *, int);
688
689 static int wg_clone_create(struct if_clone *, int);
690 static int wg_clone_destroy(struct ifnet *);
691
692 struct wg_ops {
693 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
694 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
695 void (*input)(struct ifnet *, struct mbuf *, const int);
696 int (*bind_port)(struct wg_softc *, const uint16_t);
697 };
698
699 struct wg_ops wg_ops_rumpkernel = {
700 .send_hs_msg = wg_send_so,
701 .send_data_msg = wg_send_udp,
702 .input = wg_input,
703 .bind_port = wg_bind_port,
704 };
705
706 #ifdef WG_RUMPKERNEL
707 static bool wg_user_mode(struct wg_softc *);
708 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
709
710 static int wg_send_user(struct wg_peer *, struct mbuf *);
711 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
712 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
713
714 struct wg_ops wg_ops_rumpuser = {
715 .send_hs_msg = wg_send_user,
716 .send_data_msg = wg_send_user,
717 .input = wg_input_user,
718 .bind_port = wg_bind_port_user,
719 };
720 #endif
721
722 #define WG_PEER_READER_FOREACH(wgp, wg) \
723 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
724 wgp_peerlist_entry)
725 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
726 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
727 wgp_peerlist_entry)
728 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
729 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
730 #define WG_PEER_WRITER_REMOVE(wgp) \
731 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
732
733 struct wg_route {
734 struct radix_node wgr_nodes[2];
735 struct wg_peer *wgr_peer;
736 };
737
738 static struct radix_node_head *
739 wg_rnh(struct wg_softc *wg, const int family)
740 {
741
742 switch (family) {
743 case AF_INET:
744 return wg->wg_rtable_ipv4;
745 #ifdef INET6
746 case AF_INET6:
747 return wg->wg_rtable_ipv6;
748 #endif
749 default:
750 return NULL;
751 }
752 }
753
754
755 /*
756 * Global variables
757 */
758 LIST_HEAD(wg_sclist, wg_softc);
759 static struct {
760 struct wg_sclist list;
761 kmutex_t lock;
762 } wg_softcs __cacheline_aligned;
763
764 struct psref_class *wg_psref_class __read_mostly;
765
766 static struct if_clone wg_cloner =
767 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
768
769
770 void wgattach(int);
771 /* ARGSUSED */
772 void
773 wgattach(int count)
774 {
775 /*
776 * Nothing to do here, initialization is handled by the
777 * module initialization code in wginit() below).
778 */
779 }
780
781 static void
782 wginit(void)
783 {
784
785 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
786
787 mutex_init(&wg_softcs.lock, MUTEX_DEFAULT, IPL_NONE);
788 LIST_INIT(&wg_softcs.list);
789 if_clone_attach(&wg_cloner);
790 }
791
792 static int
793 wgdetach(void)
794 {
795 int error = 0;
796
797 mutex_enter(&wg_softcs.lock);
798 if (!LIST_EMPTY(&wg_softcs.list)) {
799 mutex_exit(&wg_softcs.lock);
800 error = EBUSY;
801 }
802
803 if (error == 0) {
804 psref_class_destroy(wg_psref_class);
805
806 if_clone_detach(&wg_cloner);
807 }
808
809 return error;
810 }
811
812 static void
813 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
814 uint8_t hash[WG_HASH_LEN])
815 {
816 /* [W] 5.4: CONSTRUCTION */
817 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
818 /* [W] 5.4: IDENTIFIER */
819 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
820 struct blake2s state;
821
822 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
823 signature, strlen(signature));
824
825 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
826 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
827
828 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
829 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
830 blake2s_update(&state, id, strlen(id));
831 blake2s_final(&state, hash);
832
833 WG_DUMP_HASH("ckey", ckey);
834 WG_DUMP_HASH("hash", hash);
835 }
836
837 static void
838 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
839 const size_t inputsize)
840 {
841 struct blake2s state;
842
843 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
844 blake2s_update(&state, hash, WG_HASH_LEN);
845 blake2s_update(&state, input, inputsize);
846 blake2s_final(&state, hash);
847 }
848
849 static void
850 wg_algo_mac(uint8_t out[], const size_t outsize,
851 const uint8_t key[], const size_t keylen,
852 const uint8_t input1[], const size_t input1len,
853 const uint8_t input2[], const size_t input2len)
854 {
855 struct blake2s state;
856
857 blake2s_init(&state, outsize, key, keylen);
858
859 blake2s_update(&state, input1, input1len);
860 if (input2 != NULL)
861 blake2s_update(&state, input2, input2len);
862 blake2s_final(&state, out);
863 }
864
865 static void
866 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
867 const uint8_t input1[], const size_t input1len,
868 const uint8_t input2[], const size_t input2len)
869 {
870 struct blake2s state;
871 /* [W] 5.4: LABEL-MAC1 */
872 const char *label = "mac1----";
873 uint8_t key[WG_HASH_LEN];
874
875 blake2s_init(&state, sizeof(key), NULL, 0);
876 blake2s_update(&state, label, strlen(label));
877 blake2s_update(&state, input1, input1len);
878 blake2s_final(&state, key);
879
880 blake2s_init(&state, outsize, key, sizeof(key));
881 if (input2 != NULL)
882 blake2s_update(&state, input2, input2len);
883 blake2s_final(&state, out);
884 }
885
886 static void
887 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
888 const uint8_t input1[], const size_t input1len)
889 {
890 struct blake2s state;
891 /* [W] 5.4: LABEL-COOKIE */
892 const char *label = "cookie--";
893
894 blake2s_init(&state, outsize, NULL, 0);
895 blake2s_update(&state, label, strlen(label));
896 blake2s_update(&state, input1, input1len);
897 blake2s_final(&state, out);
898 }
899
900 static void
901 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
902 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
903 {
904
905 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
906
907 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
908 crypto_scalarmult_base(pubkey, privkey);
909 }
910
911 static void
912 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
913 const uint8_t privkey[WG_STATIC_KEY_LEN],
914 const uint8_t pubkey[WG_STATIC_KEY_LEN])
915 {
916
917 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
918
919 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
920 KASSERT(ret == 0);
921 }
922
923 static void
924 wg_algo_hmac(uint8_t out[], const size_t outlen,
925 const uint8_t key[], const size_t keylen,
926 const uint8_t in[], const size_t inlen)
927 {
928 #define IPAD 0x36
929 #define OPAD 0x5c
930 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
931 uint8_t ipad[HMAC_BLOCK_LEN];
932 uint8_t opad[HMAC_BLOCK_LEN];
933 int i;
934 struct blake2s state;
935
936 KASSERT(outlen == WG_HASH_LEN);
937 KASSERT(keylen <= HMAC_BLOCK_LEN);
938
939 memcpy(hmackey, key, keylen);
940
941 for (i = 0; i < sizeof(hmackey); i++) {
942 ipad[i] = hmackey[i] ^ IPAD;
943 opad[i] = hmackey[i] ^ OPAD;
944 }
945
946 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
947 blake2s_update(&state, ipad, sizeof(ipad));
948 blake2s_update(&state, in, inlen);
949 blake2s_final(&state, out);
950
951 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
952 blake2s_update(&state, opad, sizeof(opad));
953 blake2s_update(&state, out, WG_HASH_LEN);
954 blake2s_final(&state, out);
955 #undef IPAD
956 #undef OPAD
957 }
958
959 static void
960 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
961 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
962 const uint8_t input[], const size_t inputlen)
963 {
964 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
965 uint8_t one[1];
966
967 /*
968 * [N] 4.3: "an input_key_material byte sequence with length
969 * either zero bytes, 32 bytes, or DHLEN bytes."
970 */
971 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
972
973 WG_DUMP_HASH("ckey", ckey);
974 if (input != NULL)
975 WG_DUMP_HASH("input", input);
976 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
977 input, inputlen);
978 WG_DUMP_HASH("tmp1", tmp1);
979 one[0] = 1;
980 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
981 one, sizeof(one));
982 WG_DUMP_HASH("out1", out1);
983 if (out2 == NULL)
984 return;
985 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
986 tmp2[WG_KDF_OUTPUT_LEN] = 2;
987 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
988 tmp2, sizeof(tmp2));
989 WG_DUMP_HASH("out2", out2);
990 if (out3 == NULL)
991 return;
992 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
993 tmp2[WG_KDF_OUTPUT_LEN] = 3;
994 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
995 tmp2, sizeof(tmp2));
996 WG_DUMP_HASH("out3", out3);
997 }
998
999 static void
1000 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
1001 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1002 const uint8_t local_key[WG_STATIC_KEY_LEN],
1003 const uint8_t remote_key[WG_STATIC_KEY_LEN])
1004 {
1005 uint8_t dhout[WG_DH_OUTPUT_LEN];
1006
1007 wg_algo_dh(dhout, local_key, remote_key);
1008 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1009
1010 WG_DUMP_HASH("dhout", dhout);
1011 WG_DUMP_HASH("ckey", ckey);
1012 if (cipher_key != NULL)
1013 WG_DUMP_HASH("cipher_key", cipher_key);
1014 }
1015
1016 static void
1017 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1018 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1019 const uint8_t auth[], size_t authlen)
1020 {
1021 uint8_t nonce[(32 + 64) / 8] = {0};
1022 long long unsigned int outsize;
1023 int error __diagused;
1024
1025 memcpy(&nonce[4], &counter, sizeof(counter));
1026
1027 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1028 plainsize, auth, authlen, NULL, nonce, key);
1029 KASSERT(error == 0);
1030 KASSERT(outsize == expected_outsize);
1031 }
1032
1033 static int
1034 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1035 const uint64_t counter, const uint8_t encrypted[],
1036 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1037 {
1038 uint8_t nonce[(32 + 64) / 8] = {0};
1039 long long unsigned int outsize;
1040 int error;
1041
1042 memcpy(&nonce[4], &counter, sizeof(counter));
1043
1044 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1045 encrypted, encryptedsize, auth, authlen, nonce, key);
1046 if (error == 0)
1047 KASSERT(outsize == expected_outsize);
1048 return error;
1049 }
1050
1051 static void
1052 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1053 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1054 const uint8_t auth[], size_t authlen,
1055 const uint8_t nonce[WG_SALT_LEN])
1056 {
1057 long long unsigned int outsize;
1058 int error __diagused;
1059
1060 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1061 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1062 plain, plainsize, auth, authlen, NULL, nonce, key);
1063 KASSERT(error == 0);
1064 KASSERT(outsize == expected_outsize);
1065 }
1066
1067 static int
1068 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1069 const uint8_t key[], const uint64_t counter,
1070 const uint8_t encrypted[], const size_t encryptedsize,
1071 const uint8_t auth[], size_t authlen,
1072 const uint8_t nonce[WG_SALT_LEN])
1073 {
1074 long long unsigned int outsize;
1075 int error;
1076
1077 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1078 encrypted, encryptedsize, auth, authlen, nonce, key);
1079 if (error == 0)
1080 KASSERT(outsize == expected_outsize);
1081 return error;
1082 }
1083
1084 static void
1085 wg_algo_tai64n(wg_timestamp_t timestamp)
1086 {
1087 struct timespec ts;
1088
1089 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1090 getnanotime(&ts);
1091 /* TAI64 label in external TAI64 format */
1092 be32enc(timestamp, 0x40000000UL + (ts.tv_sec >> 32));
1093 /* second beginning from 1970 TAI */
1094 be32enc(timestamp + 4, ts.tv_sec & 0xffffffffU);
1095 /* nanosecond in big-endian format */
1096 be32enc(timestamp + 8, ts.tv_nsec);
1097 }
1098
1099 static struct wg_session *
1100 wg_get_unstable_session(struct wg_peer *wgp, struct psref *psref)
1101 {
1102 int s;
1103 struct wg_session *wgs;
1104
1105 s = pserialize_read_enter();
1106 wgs = wgp->wgp_session_unstable;
1107 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1108 pserialize_read_exit(s);
1109 return wgs;
1110 }
1111
1112 static struct wg_session *
1113 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1114 {
1115 int s;
1116 struct wg_session *wgs;
1117
1118 s = pserialize_read_enter();
1119 wgs = wgp->wgp_session_stable;
1120 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1121 pserialize_read_exit(s);
1122 return wgs;
1123 }
1124
1125 static void
1126 wg_get_session(struct wg_session *wgs, struct psref *psref)
1127 {
1128
1129 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1130 }
1131
1132 static void
1133 wg_put_session(struct wg_session *wgs, struct psref *psref)
1134 {
1135
1136 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1137 }
1138
1139 static struct wg_session *
1140 wg_lock_unstable_session(struct wg_peer *wgp)
1141 {
1142 struct wg_session *wgs;
1143
1144 mutex_enter(wgp->wgp_lock);
1145 wgs = wgp->wgp_session_unstable;
1146 mutex_enter(wgs->wgs_lock);
1147 mutex_exit(wgp->wgp_lock);
1148 return wgs;
1149 }
1150
1151 #if 0
1152 static void
1153 wg_unlock_session(struct wg_peer *wgp, struct wg_session *wgs)
1154 {
1155
1156 mutex_exit(wgs->wgs_lock);
1157 }
1158 #endif
1159
1160 /*
1161 * Handshake patterns
1162 *
1163 * [W] 5: "These messages use the "IK" pattern from Noise"
1164 * [N] 7.5. Interactive handshake patterns (fundamental)
1165 * "The first character refers to the initiators static key:"
1166 * "I = Static key for initiator Immediately transmitted to responder,
1167 * despite reduced or absent identity hiding"
1168 * "The second character refers to the responders static key:"
1169 * "K = Static key for responder Known to initiator"
1170 * "IK:
1171 * <- s
1172 * ...
1173 * -> e, es, s, ss
1174 * <- e, ee, se"
1175 * [N] 9.4. Pattern modifiers
1176 * "IKpsk2:
1177 * <- s
1178 * ...
1179 * -> e, es, s, ss
1180 * <- e, ee, se, psk"
1181 */
1182 static void
1183 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1184 struct wg_session *wgs, struct wg_msg_init *wgmi)
1185 {
1186 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1187 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1188 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1189 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1190 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1191
1192 wgmi->wgmi_type = WG_MSG_TYPE_INIT;
1193 wgmi->wgmi_sender = cprng_strong32();
1194
1195 /* [W] 5.4.2: First Message: Initiator to Responder */
1196
1197 /* Ci := HASH(CONSTRUCTION) */
1198 /* Hi := HASH(Ci || IDENTIFIER) */
1199 wg_init_key_and_hash(ckey, hash);
1200 /* Hi := HASH(Hi || Sr^pub) */
1201 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1202
1203 WG_DUMP_HASH("hash", hash);
1204
1205 /* [N] 2.2: "e" */
1206 /* Ei^priv, Ei^pub := DH-GENERATE() */
1207 wg_algo_generate_keypair(pubkey, privkey);
1208 /* Ci := KDF1(Ci, Ei^pub) */
1209 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1210 /* msg.ephemeral := Ei^pub */
1211 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1212 /* Hi := HASH(Hi || msg.ephemeral) */
1213 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1214
1215 WG_DUMP_HASH("ckey", ckey);
1216 WG_DUMP_HASH("hash", hash);
1217
1218 /* [N] 2.2: "es" */
1219 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1220 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1221
1222 /* [N] 2.2: "s" */
1223 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1224 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1225 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1226 hash, sizeof(hash));
1227 /* Hi := HASH(Hi || msg.static) */
1228 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1229
1230 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1231
1232 /* [N] 2.2: "ss" */
1233 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1234 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1235
1236 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1237 wg_timestamp_t timestamp;
1238 wg_algo_tai64n(timestamp);
1239 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1240 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1241 /* Hi := HASH(Hi || msg.timestamp) */
1242 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1243
1244 /* [W] 5.4.4 Cookie MACs */
1245 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1246 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1247 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1248 /* Need mac1 to decrypt a cookie from a cookie message */
1249 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1250 sizeof(wgp->wgp_last_sent_mac1));
1251 wgp->wgp_last_sent_mac1_valid = true;
1252
1253 if (wgp->wgp_latest_cookie_time == 0 ||
1254 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1255 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1256 else {
1257 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1258 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1259 (const uint8_t *)wgmi,
1260 offsetof(struct wg_msg_init, wgmi_mac2),
1261 NULL, 0);
1262 }
1263
1264 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1265 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1266 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1267 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1268 wgs->wgs_sender_index = wgmi->wgmi_sender;
1269 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_sender_index);
1270 }
1271
1272 static void
1273 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1274 const struct sockaddr *src)
1275 {
1276 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1277 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1278 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1279 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1280 struct wg_peer *wgp;
1281 struct wg_session *wgs;
1282 bool reset_state_on_error = false;
1283 int error, ret;
1284 struct psref psref_peer;
1285 struct psref psref_session;
1286 uint8_t mac1[WG_MAC_LEN];
1287
1288 WG_TRACE("init msg received");
1289
1290 /*
1291 * [W] 5.4.2: First Message: Initiator to Responder
1292 * "When the responder receives this message, it does the same
1293 * operations so that its final state variables are identical,
1294 * replacing the operands of the DH function to produce equivalent
1295 * values."
1296 * Note that the following comments of operations are just copies of
1297 * the initiator's ones.
1298 */
1299
1300 /* Ci := HASH(CONSTRUCTION) */
1301 /* Hi := HASH(Ci || IDENTIFIER) */
1302 wg_init_key_and_hash(ckey, hash);
1303 /* Hi := HASH(Hi || Sr^pub) */
1304 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1305
1306 /* [N] 2.2: "e" */
1307 /* Ci := KDF1(Ci, Ei^pub) */
1308 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1309 sizeof(wgmi->wgmi_ephemeral));
1310 /* Hi := HASH(Hi || msg.ephemeral) */
1311 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1312
1313 WG_DUMP_HASH("ckey", ckey);
1314
1315 /* [N] 2.2: "es" */
1316 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1317 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1318
1319 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1320
1321 /* [N] 2.2: "s" */
1322 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1323 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1324 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1325 if (error != 0) {
1326 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1327 "wg_algo_aead_dec for secret key failed\n");
1328 return;
1329 }
1330 /* Hi := HASH(Hi || msg.static) */
1331 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1332
1333 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1334 if (wgp == NULL) {
1335 WG_DLOG("peer not found\n");
1336 return;
1337 }
1338
1339 wgs = wg_lock_unstable_session(wgp);
1340 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
1341 /*
1342 * We can assume that the peer doesn't have an established
1343 * session, so clear it now.
1344 */
1345 WG_TRACE("Session destroying, but force to clear");
1346 wg_stop_session_dtor_timer(wgp);
1347 wg_clear_states(wgs);
1348 wgs->wgs_state = WGS_STATE_UNKNOWN;
1349 }
1350 if (wgs->wgs_state == WGS_STATE_INIT_ACTIVE) {
1351 WG_TRACE("Sesssion already initializing, ignoring the message");
1352 mutex_exit(wgs->wgs_lock);
1353 goto out_wgp;
1354 }
1355 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
1356 WG_TRACE("Sesssion already initializing, destroying old states");
1357 wg_clear_states(wgs);
1358 }
1359 wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
1360 reset_state_on_error = true;
1361 wg_get_session(wgs, &psref_session);
1362 mutex_exit(wgs->wgs_lock);
1363
1364 wg_algo_mac_mac1(mac1, sizeof(mac1),
1365 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1366 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1367
1368 /*
1369 * [W] 5.3: Denial of Service Mitigation & Cookies
1370 * "the responder, ..., must always reject messages with an invalid
1371 * msg.mac1"
1372 */
1373 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1374 WG_DLOG("mac1 is invalid\n");
1375 goto out;
1376 }
1377
1378 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1379 WG_TRACE("under load");
1380 /*
1381 * [W] 5.3: Denial of Service Mitigation & Cookies
1382 * "the responder, ..., and when under load may reject messages
1383 * with an invalid msg.mac2. If the responder receives a
1384 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1385 * and is under load, it may respond with a cookie reply
1386 * message"
1387 */
1388 uint8_t zero[WG_MAC_LEN] = {0};
1389 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1390 WG_TRACE("sending a cookie message: no cookie included");
1391 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1392 wgmi->wgmi_mac1, src);
1393 goto out;
1394 }
1395 if (!wgp->wgp_last_sent_cookie_valid) {
1396 WG_TRACE("sending a cookie message: no cookie sent ever");
1397 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1398 wgmi->wgmi_mac1, src);
1399 goto out;
1400 }
1401 uint8_t mac2[WG_MAC_LEN];
1402 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1403 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1404 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1405 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1406 WG_DLOG("mac2 is invalid\n");
1407 goto out;
1408 }
1409 WG_TRACE("under load, but continue to sending");
1410 }
1411
1412 /* [N] 2.2: "ss" */
1413 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1414 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1415
1416 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1417 wg_timestamp_t timestamp;
1418 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1419 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1420 hash, sizeof(hash));
1421 if (error != 0) {
1422 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1423 "wg_algo_aead_dec for timestamp failed\n");
1424 goto out;
1425 }
1426 /* Hi := HASH(Hi || msg.timestamp) */
1427 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1428
1429 /*
1430 * [W] 5.1 "The responder keeps track of the greatest timestamp
1431 * received per peer and discards packets containing
1432 * timestamps less than or equal to it."
1433 */
1434 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1435 sizeof(timestamp));
1436 if (ret <= 0) {
1437 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1438 "invalid init msg: timestamp is old\n");
1439 goto out;
1440 }
1441 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1442
1443 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1444 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1445 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1446 sizeof(wgmi->wgmi_ephemeral));
1447
1448 wg_update_endpoint_if_necessary(wgp, src);
1449
1450 (void)wg_send_handshake_msg_resp(wg, wgp, wgmi);
1451
1452 wg_calculate_keys(wgs, false);
1453 wg_clear_states(wgs);
1454
1455 wg_put_session(wgs, &psref_session);
1456 wg_put_peer(wgp, &psref_peer);
1457 return;
1458
1459 out:
1460 if (reset_state_on_error) {
1461 mutex_enter(wgs->wgs_lock);
1462 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1463 wgs->wgs_state = WGS_STATE_UNKNOWN;
1464 mutex_exit(wgs->wgs_lock);
1465 }
1466 wg_put_session(wgs, &psref_session);
1467 out_wgp:
1468 wg_put_peer(wgp, &psref_peer);
1469 }
1470
1471 static void
1472 wg_schedule_handshake_timeout_timer(struct wg_peer *wgp)
1473 {
1474
1475 mutex_enter(wgp->wgp_lock);
1476 if (__predict_true(wgp->wgp_state != WGP_STATE_DESTROYING)) {
1477 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1478 MIN(wg_rekey_timeout, INT_MAX/hz) * hz);
1479 }
1480 mutex_exit(wgp->wgp_lock);
1481 }
1482
1483 static void
1484 wg_stop_handshake_timeout_timer(struct wg_peer *wgp)
1485 {
1486
1487 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
1488 }
1489
1490 static struct socket *
1491 wg_get_so_by_af(struct wg_worker *wgw, const int af)
1492 {
1493
1494 return (af == AF_INET) ? wgw->wgw_so4 : wgw->wgw_so6;
1495 }
1496
1497 static struct socket *
1498 wg_get_so_by_peer(struct wg_peer *wgp)
1499 {
1500
1501 return wg_get_so_by_af(wgp->wgp_sc->wg_worker, wgp->wgp_sa.sa_family);
1502 }
1503
1504 static struct wg_sockaddr *
1505 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1506 {
1507 struct wg_sockaddr *wgsa;
1508 int s;
1509
1510 s = pserialize_read_enter();
1511 wgsa = wgp->wgp_endpoint;
1512 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1513 pserialize_read_exit(s);
1514
1515 return wgsa;
1516 }
1517
1518 static void
1519 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1520 {
1521
1522 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1523 }
1524
1525 static int
1526 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1527 {
1528 int error;
1529 struct socket *so;
1530 struct psref psref;
1531 struct wg_sockaddr *wgsa;
1532
1533 so = wg_get_so_by_peer(wgp);
1534 wgsa = wg_get_endpoint_sa(wgp, &psref);
1535 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1536 wg_put_sa(wgp, wgsa, &psref);
1537
1538 return error;
1539 }
1540
1541 static int
1542 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1543 {
1544 int error;
1545 struct mbuf *m;
1546 struct wg_msg_init *wgmi;
1547 struct wg_session *wgs;
1548 struct psref psref;
1549
1550 wgs = wg_lock_unstable_session(wgp);
1551 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
1552 WG_TRACE("Session destroying");
1553 mutex_exit(wgs->wgs_lock);
1554 /* XXX should wait? */
1555 return EBUSY;
1556 }
1557 if (wgs->wgs_state == WGS_STATE_INIT_ACTIVE) {
1558 WG_TRACE("Sesssion already initializing, skip starting a new one");
1559 mutex_exit(wgs->wgs_lock);
1560 return EBUSY;
1561 }
1562 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
1563 WG_TRACE("Sesssion already initializing, destroying old states");
1564 wg_clear_states(wgs);
1565 }
1566 wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
1567 wg_get_session(wgs, &psref);
1568 mutex_exit(wgs->wgs_lock);
1569
1570 m = m_gethdr(M_WAIT, MT_DATA);
1571 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1572 wgmi = mtod(m, struct wg_msg_init *);
1573 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1574
1575 error = wg->wg_ops->send_hs_msg(wgp, m);
1576 if (error == 0) {
1577 WG_TRACE("init msg sent");
1578
1579 if (wgp->wgp_handshake_start_time == 0)
1580 wgp->wgp_handshake_start_time = time_uptime;
1581 wg_schedule_handshake_timeout_timer(wgp);
1582 } else {
1583 mutex_enter(wgs->wgs_lock);
1584 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1585 wgs->wgs_state = WGS_STATE_UNKNOWN;
1586 mutex_exit(wgs->wgs_lock);
1587 }
1588 wg_put_session(wgs, &psref);
1589
1590 return error;
1591 }
1592
1593 static void
1594 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1595 struct wg_msg_resp *wgmr, const struct wg_msg_init *wgmi)
1596 {
1597 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1598 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1599 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1600 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1601 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1602 struct wg_session *wgs;
1603 struct psref psref;
1604
1605 wgs = wg_get_unstable_session(wgp, &psref);
1606 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1607 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1608
1609 wgmr->wgmr_type = WG_MSG_TYPE_RESP;
1610 wgmr->wgmr_sender = cprng_strong32();
1611 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1612
1613 /* [W] 5.4.3 Second Message: Responder to Initiator */
1614
1615 /* [N] 2.2: "e" */
1616 /* Er^priv, Er^pub := DH-GENERATE() */
1617 wg_algo_generate_keypair(pubkey, privkey);
1618 /* Cr := KDF1(Cr, Er^pub) */
1619 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1620 /* msg.ephemeral := Er^pub */
1621 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1622 /* Hr := HASH(Hr || msg.ephemeral) */
1623 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1624
1625 WG_DUMP_HASH("ckey", ckey);
1626 WG_DUMP_HASH("hash", hash);
1627
1628 /* [N] 2.2: "ee" */
1629 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1630 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1631
1632 /* [N] 2.2: "se" */
1633 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1634 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1635
1636 /* [N] 9.2: "psk" */
1637 {
1638 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1639 /* Cr, r, k := KDF3(Cr, Q) */
1640 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1641 sizeof(wgp->wgp_psk));
1642 /* Hr := HASH(Hr || r) */
1643 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1644 }
1645
1646 /* msg.empty := AEAD(k, 0, e, Hr) */
1647 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1648 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1649 /* Hr := HASH(Hr || msg.empty) */
1650 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1651
1652 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1653
1654 /* [W] 5.4.4: Cookie MACs */
1655 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1656 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1657 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1658 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1659 /* Need mac1 to decrypt a cookie from a cookie message */
1660 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1661 sizeof(wgp->wgp_last_sent_mac1));
1662 wgp->wgp_last_sent_mac1_valid = true;
1663
1664 if (wgp->wgp_latest_cookie_time == 0 ||
1665 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1666 /* msg.mac2 := 0^16 */
1667 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1668 else {
1669 /* msg.mac2 := MAC(Lm, msg_b) */
1670 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1671 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1672 (const uint8_t *)wgmr,
1673 offsetof(struct wg_msg_resp, wgmr_mac2),
1674 NULL, 0);
1675 }
1676
1677 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1678 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1679 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1680 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1681 wgs->wgs_sender_index = wgmr->wgmr_sender;
1682 wgs->wgs_receiver_index = wgmi->wgmi_sender;
1683 WG_DLOG("sender=%x\n", wgs->wgs_sender_index);
1684 WG_DLOG("receiver=%x\n", wgs->wgs_receiver_index);
1685 wg_put_session(wgs, &psref);
1686 }
1687
1688 static void
1689 wg_swap_sessions(struct wg_peer *wgp)
1690 {
1691
1692 KASSERT(mutex_owned(wgp->wgp_lock));
1693
1694 wgp->wgp_session_unstable = atomic_swap_ptr(&wgp->wgp_session_stable,
1695 wgp->wgp_session_unstable);
1696 KASSERT(wgp->wgp_session_stable->wgs_state == WGS_STATE_ESTABLISHED);
1697 }
1698
1699 static void
1700 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1701 const struct sockaddr *src)
1702 {
1703 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1704 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1705 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1706 struct wg_peer *wgp;
1707 struct wg_session *wgs;
1708 struct psref psref;
1709 int error;
1710 uint8_t mac1[WG_MAC_LEN];
1711 struct wg_session *wgs_prev;
1712
1713 WG_TRACE("resp msg received");
1714 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
1715 if (wgs == NULL) {
1716 WG_TRACE("No session found");
1717 return;
1718 }
1719
1720 wgp = wgs->wgs_peer;
1721
1722 wg_algo_mac_mac1(mac1, sizeof(mac1),
1723 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1724 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1725
1726 /*
1727 * [W] 5.3: Denial of Service Mitigation & Cookies
1728 * "the responder, ..., must always reject messages with an invalid
1729 * msg.mac1"
1730 */
1731 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
1732 WG_DLOG("mac1 is invalid\n");
1733 goto out;
1734 }
1735
1736 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
1737 WG_TRACE("under load");
1738 /*
1739 * [W] 5.3: Denial of Service Mitigation & Cookies
1740 * "the responder, ..., and when under load may reject messages
1741 * with an invalid msg.mac2. If the responder receives a
1742 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1743 * and is under load, it may respond with a cookie reply
1744 * message"
1745 */
1746 uint8_t zero[WG_MAC_LEN] = {0};
1747 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
1748 WG_TRACE("sending a cookie message: no cookie included");
1749 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1750 wgmr->wgmr_mac1, src);
1751 goto out;
1752 }
1753 if (!wgp->wgp_last_sent_cookie_valid) {
1754 WG_TRACE("sending a cookie message: no cookie sent ever");
1755 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1756 wgmr->wgmr_mac1, src);
1757 goto out;
1758 }
1759 uint8_t mac2[WG_MAC_LEN];
1760 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1761 WG_COOKIE_LEN, (const uint8_t *)wgmr,
1762 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
1763 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
1764 WG_DLOG("mac2 is invalid\n");
1765 goto out;
1766 }
1767 WG_TRACE("under load, but continue to sending");
1768 }
1769
1770 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1771 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1772
1773 /*
1774 * [W] 5.4.3 Second Message: Responder to Initiator
1775 * "When the initiator receives this message, it does the same
1776 * operations so that its final state variables are identical,
1777 * replacing the operands of the DH function to produce equivalent
1778 * values."
1779 * Note that the following comments of operations are just copies of
1780 * the initiator's ones.
1781 */
1782
1783 /* [N] 2.2: "e" */
1784 /* Cr := KDF1(Cr, Er^pub) */
1785 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
1786 sizeof(wgmr->wgmr_ephemeral));
1787 /* Hr := HASH(Hr || msg.ephemeral) */
1788 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
1789
1790 WG_DUMP_HASH("ckey", ckey);
1791 WG_DUMP_HASH("hash", hash);
1792
1793 /* [N] 2.2: "ee" */
1794 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1795 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
1796 wgmr->wgmr_ephemeral);
1797
1798 /* [N] 2.2: "se" */
1799 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1800 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
1801
1802 /* [N] 9.2: "psk" */
1803 {
1804 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1805 /* Cr, r, k := KDF3(Cr, Q) */
1806 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1807 sizeof(wgp->wgp_psk));
1808 /* Hr := HASH(Hr || r) */
1809 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1810 }
1811
1812 {
1813 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
1814 /* msg.empty := AEAD(k, 0, e, Hr) */
1815 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
1816 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
1817 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1818 if (error != 0) {
1819 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1820 "wg_algo_aead_dec for empty message failed\n");
1821 goto out;
1822 }
1823 /* Hr := HASH(Hr || msg.empty) */
1824 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1825 }
1826
1827 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
1828 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
1829 wgs->wgs_receiver_index = wgmr->wgmr_sender;
1830 WG_DLOG("receiver=%x\n", wgs->wgs_receiver_index);
1831
1832 wgs->wgs_state = WGS_STATE_ESTABLISHED;
1833 wgs->wgs_time_established = time_uptime;
1834 wgs->wgs_time_last_data_sent = 0;
1835 wgs->wgs_is_initiator = true;
1836 wg_calculate_keys(wgs, true);
1837 wg_clear_states(wgs);
1838 WG_TRACE("WGS_STATE_ESTABLISHED");
1839
1840 wg_stop_handshake_timeout_timer(wgp);
1841
1842 mutex_enter(wgp->wgp_lock);
1843 wg_swap_sessions(wgp);
1844 wgs_prev = wgp->wgp_session_unstable;
1845 mutex_enter(wgs_prev->wgs_lock);
1846
1847 getnanotime(&wgp->wgp_last_handshake_time);
1848 wgp->wgp_handshake_start_time = 0;
1849 wgp->wgp_last_sent_mac1_valid = false;
1850 wgp->wgp_last_sent_cookie_valid = false;
1851 mutex_exit(wgp->wgp_lock);
1852
1853 wg_schedule_rekey_timer(wgp);
1854
1855 wg_update_endpoint_if_necessary(wgp, src);
1856
1857 /*
1858 * Send something immediately (same as the official implementation)
1859 * XXX if there are pending data packets, we don't need to send
1860 * a keepalive message.
1861 */
1862 wg_send_keepalive_msg(wgp, wgs);
1863
1864 /* Anyway run a softint to flush pending packets */
1865 kpreempt_disable();
1866 softint_schedule(wgp->wgp_si);
1867 kpreempt_enable();
1868 WG_TRACE("softint scheduled");
1869
1870 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
1871 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
1872 /* We can't destroy the old session immediately */
1873 wg_schedule_session_dtor_timer(wgp);
1874 }
1875 mutex_exit(wgs_prev->wgs_lock);
1876
1877 out:
1878 wg_put_session(wgs, &psref);
1879 }
1880
1881 static int
1882 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1883 const struct wg_msg_init *wgmi)
1884 {
1885 int error;
1886 struct mbuf *m;
1887 struct wg_msg_resp *wgmr;
1888
1889 m = m_gethdr(M_WAIT, MT_DATA);
1890 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
1891 wgmr = mtod(m, struct wg_msg_resp *);
1892 wg_fill_msg_resp(wg, wgp, wgmr, wgmi);
1893
1894 error = wg->wg_ops->send_hs_msg(wgp, m);
1895 if (error == 0)
1896 WG_TRACE("resp msg sent");
1897 return error;
1898 }
1899
1900 static struct wg_peer *
1901 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
1902 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
1903 {
1904 struct wg_peer *wgp;
1905
1906 int s = pserialize_read_enter();
1907 /* XXX O(n) */
1908 WG_PEER_READER_FOREACH(wgp, wg) {
1909 if (consttime_memequal(wgp->wgp_pubkey, pubkey,
1910 sizeof(wgp->wgp_pubkey)))
1911 break;
1912 }
1913 if (wgp != NULL)
1914 wg_get_peer(wgp, psref);
1915 pserialize_read_exit(s);
1916
1917 return wgp;
1918 }
1919
1920 static void
1921 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
1922 struct wg_msg_cookie *wgmc, const uint32_t sender,
1923 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
1924 {
1925 uint8_t cookie[WG_COOKIE_LEN];
1926 uint8_t key[WG_HASH_LEN];
1927 uint8_t addr[sizeof(struct in6_addr)];
1928 size_t addrlen;
1929 uint16_t uh_sport; /* be */
1930
1931 wgmc->wgmc_type = WG_MSG_TYPE_COOKIE;
1932 wgmc->wgmc_receiver = sender;
1933 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
1934
1935 /*
1936 * [W] 5.4.7: Under Load: Cookie Reply Message
1937 * "The secret variable, Rm, changes every two minutes to a
1938 * random value"
1939 */
1940 if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
1941 wgp->wgp_randval = cprng_strong32();
1942 wgp->wgp_last_genrandval_time = time_uptime;
1943 }
1944
1945 switch (src->sa_family) {
1946 case AF_INET: {
1947 const struct sockaddr_in *sin = satocsin(src);
1948 addrlen = sizeof(sin->sin_addr);
1949 memcpy(addr, &sin->sin_addr, addrlen);
1950 uh_sport = sin->sin_port;
1951 break;
1952 }
1953 #ifdef INET6
1954 case AF_INET6: {
1955 const struct sockaddr_in6 *sin6 = satocsin6(src);
1956 addrlen = sizeof(sin6->sin6_addr);
1957 memcpy(addr, &sin6->sin6_addr, addrlen);
1958 uh_sport = sin6->sin6_port;
1959 break;
1960 }
1961 #endif
1962 default:
1963 panic("invalid af=%d", wgp->wgp_sa.sa_family);
1964 }
1965
1966 wg_algo_mac(cookie, sizeof(cookie),
1967 (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
1968 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
1969 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
1970 sizeof(wg->wg_pubkey));
1971 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
1972 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
1973
1974 /* Need to store to calculate mac2 */
1975 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
1976 wgp->wgp_last_sent_cookie_valid = true;
1977 }
1978
1979 static int
1980 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
1981 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
1982 const struct sockaddr *src)
1983 {
1984 int error;
1985 struct mbuf *m;
1986 struct wg_msg_cookie *wgmc;
1987
1988 m = m_gethdr(M_WAIT, MT_DATA);
1989 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
1990 wgmc = mtod(m, struct wg_msg_cookie *);
1991 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
1992
1993 error = wg->wg_ops->send_hs_msg(wgp, m);
1994 if (error == 0)
1995 WG_TRACE("cookie msg sent");
1996 return error;
1997 }
1998
1999 static bool
2000 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2001 {
2002 #ifdef WG_DEBUG_PARAMS
2003 if (wg_force_underload)
2004 return true;
2005 #endif
2006
2007 /*
2008 * XXX we don't have a means of a load estimation. The purpose of
2009 * the mechanism is a DoS mitigation, so we consider frequent handshake
2010 * messages as (a kind of) load; if a message of the same type comes
2011 * to a peer within 1 second, we consider we are under load.
2012 */
2013 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2014 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2015 return (time_uptime - last) == 0;
2016 }
2017
2018 static void
2019 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2020 {
2021
2022 /*
2023 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2024 */
2025 if (initiator) {
2026 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2027 wgs->wgs_chaining_key, NULL, 0);
2028 } else {
2029 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2030 wgs->wgs_chaining_key, NULL, 0);
2031 }
2032 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2033 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2034 }
2035
2036 static uint64_t
2037 wg_session_get_send_counter(struct wg_session *wgs)
2038 {
2039 #ifdef __HAVE_ATOMIC64_LOADSTORE
2040 return atomic_load_relaxed(&wgs->wgs_send_counter);
2041 #else
2042 uint64_t send_counter;
2043
2044 mutex_enter(&wgs->wgs_send_counter_lock);
2045 send_counter = wgs->wgs_send_counter;
2046 mutex_exit(&wgs->wgs_send_counter_lock);
2047
2048 return send_counter;
2049 #endif
2050 }
2051
2052 static uint64_t
2053 wg_session_inc_send_counter(struct wg_session *wgs)
2054 {
2055 #ifdef __HAVE_ATOMIC64_LOADSTORE
2056 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2057 #else
2058 uint64_t send_counter;
2059
2060 mutex_enter(&wgs->wgs_send_counter_lock);
2061 send_counter = wgs->wgs_send_counter++;
2062 mutex_exit(&wgs->wgs_send_counter_lock);
2063
2064 return send_counter;
2065 #endif
2066 }
2067
2068 static void
2069 wg_clear_states(struct wg_session *wgs)
2070 {
2071
2072 wgs->wgs_send_counter = 0;
2073 sliwin_reset(&wgs->wgs_recvwin->window);
2074
2075 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2076 wgs_clear(handshake_hash);
2077 wgs_clear(chaining_key);
2078 wgs_clear(ephemeral_key_pub);
2079 wgs_clear(ephemeral_key_priv);
2080 wgs_clear(ephemeral_key_peer);
2081 #undef wgs_clear
2082 }
2083
2084 static struct wg_session *
2085 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2086 struct psref *psref)
2087 {
2088 struct wg_peer *wgp;
2089 struct wg_session *wgs;
2090
2091 int s = pserialize_read_enter();
2092 /* XXX O(n) */
2093 WG_PEER_READER_FOREACH(wgp, wg) {
2094 wgs = wgp->wgp_session_stable;
2095 WG_DLOG("index=%x wgs_sender_index=%x\n",
2096 index, wgs->wgs_sender_index);
2097 if (wgs->wgs_sender_index == index)
2098 break;
2099 wgs = wgp->wgp_session_unstable;
2100 WG_DLOG("index=%x wgs_sender_index=%x\n",
2101 index, wgs->wgs_sender_index);
2102 if (wgs->wgs_sender_index == index)
2103 break;
2104 wgs = NULL;
2105 }
2106 if (wgs != NULL)
2107 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2108 pserialize_read_exit(s);
2109
2110 return wgs;
2111 }
2112
2113 static void
2114 wg_schedule_rekey_timer(struct wg_peer *wgp)
2115 {
2116 int timeout = MIN(wg_rekey_after_time, INT_MAX/hz);
2117
2118 callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
2119 }
2120
2121 static void
2122 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2123 {
2124 struct mbuf *m;
2125
2126 /*
2127 * [W] 6.5 Passive Keepalive
2128 * "A keepalive message is simply a transport data message with
2129 * a zero-length encapsulated encrypted inner-packet."
2130 */
2131 m = m_gethdr(M_WAIT, MT_DATA);
2132 wg_send_data_msg(wgp, wgs, m);
2133 }
2134
2135 static bool
2136 wg_need_to_send_init_message(struct wg_session *wgs)
2137 {
2138 /*
2139 * [W] 6.2 Transport Message Limits
2140 * "if a peer is the initiator of a current secure session,
2141 * WireGuard will send a handshake initiation message to begin
2142 * a new secure session ... if after receiving a transport data
2143 * message, the current secure session is (REJECT-AFTER-TIME
2144 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2145 * not yet acted upon this event."
2146 */
2147 return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
2148 (time_uptime - wgs->wgs_time_established) >=
2149 (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
2150 }
2151
2152 static void
2153 wg_schedule_peer_task(struct wg_peer *wgp, int task)
2154 {
2155
2156 atomic_or_uint(&wgp->wgp_tasks, task);
2157 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2158 wg_wakeup_worker(wgp->wgp_sc->wg_worker, WG_WAKEUP_REASON_PEER);
2159 }
2160
2161 static void
2162 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2163 {
2164
2165 KASSERT(mutex_owned(wgp->wgp_lock));
2166
2167 WG_TRACE("Changing endpoint");
2168
2169 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2170 wgp->wgp_endpoint0 = atomic_swap_ptr(&wgp->wgp_endpoint,
2171 wgp->wgp_endpoint0);
2172 if (!wgp->wgp_endpoint_available)
2173 wgp->wgp_endpoint_available = true;
2174 wgp->wgp_endpoint_changing = true;
2175 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2176 }
2177
2178 static bool
2179 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2180 {
2181 uint16_t packet_len;
2182 const struct ip *ip;
2183
2184 if (__predict_false(decrypted_len < sizeof(struct ip)))
2185 return false;
2186
2187 ip = (const struct ip *)packet;
2188 if (ip->ip_v == 4)
2189 *af = AF_INET;
2190 else if (ip->ip_v == 6)
2191 *af = AF_INET6;
2192 else
2193 return false;
2194
2195 WG_DLOG("af=%d\n", *af);
2196
2197 if (*af == AF_INET) {
2198 packet_len = ntohs(ip->ip_len);
2199 } else {
2200 const struct ip6_hdr *ip6;
2201
2202 if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
2203 return false;
2204
2205 ip6 = (const struct ip6_hdr *)packet;
2206 packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2207 }
2208
2209 WG_DLOG("packet_len=%u\n", packet_len);
2210 if (packet_len > decrypted_len)
2211 return false;
2212
2213 return true;
2214 }
2215
2216 static bool
2217 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2218 int af, char *packet)
2219 {
2220 struct sockaddr_storage ss;
2221 struct sockaddr *sa;
2222 struct psref psref;
2223 struct wg_peer *wgp;
2224 bool ok;
2225
2226 /*
2227 * II CRYPTOKEY ROUTING
2228 * "it will only accept it if its source IP resolves in the
2229 * table to the public key used in the secure session for
2230 * decrypting it."
2231 */
2232
2233 if (af == AF_INET) {
2234 const struct ip *ip = (const struct ip *)packet;
2235 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2236 sockaddr_in_init(sin, &ip->ip_src, 0);
2237 sa = sintosa(sin);
2238 #ifdef INET6
2239 } else {
2240 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2241 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2242 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2243 sa = sin6tosa(sin6);
2244 #endif
2245 }
2246
2247 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2248 ok = (wgp == wgp_expected);
2249 if (wgp != NULL)
2250 wg_put_peer(wgp, &psref);
2251
2252 return ok;
2253 }
2254
2255 static void
2256 wg_session_dtor_timer(void *arg)
2257 {
2258 struct wg_peer *wgp = arg;
2259
2260 WG_TRACE("enter");
2261
2262 mutex_enter(wgp->wgp_lock);
2263 if (__predict_false(wgp->wgp_state == WGP_STATE_DESTROYING)) {
2264 mutex_exit(wgp->wgp_lock);
2265 return;
2266 }
2267 mutex_exit(wgp->wgp_lock);
2268
2269 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2270 }
2271
2272 static void
2273 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2274 {
2275
2276 /* 1 second grace period */
2277 callout_schedule(&wgp->wgp_session_dtor_timer, hz);
2278 }
2279
2280 static void
2281 wg_stop_session_dtor_timer(struct wg_peer *wgp)
2282 {
2283
2284 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
2285 }
2286
2287 static bool
2288 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2289 {
2290 if (sa1->sa_family != sa2->sa_family)
2291 return false;
2292
2293 switch (sa1->sa_family) {
2294 case AF_INET:
2295 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2296 case AF_INET6:
2297 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2298 default:
2299 return true;
2300 }
2301 }
2302
2303 static void
2304 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2305 const struct sockaddr *src)
2306 {
2307
2308 #ifdef WG_DEBUG_LOG
2309 char oldaddr[128], newaddr[128];
2310 sockaddr_format(&wgp->wgp_sa, oldaddr, sizeof(oldaddr));
2311 sockaddr_format(src, newaddr, sizeof(newaddr));
2312 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2313 #endif
2314
2315 /*
2316 * III: "Since the packet has authenticated correctly, the source IP of
2317 * the outer UDP/IP packet is used to update the endpoint for peer..."
2318 */
2319 if (__predict_false(sockaddr_cmp(src, &wgp->wgp_sa) != 0 ||
2320 !sockaddr_port_match(src, &wgp->wgp_sa))) {
2321 mutex_enter(wgp->wgp_lock);
2322 /* XXX We can't change the endpoint twice in a short period */
2323 if (!wgp->wgp_endpoint_changing) {
2324 wg_change_endpoint(wgp, src);
2325 }
2326 mutex_exit(wgp->wgp_lock);
2327 }
2328 }
2329
2330 static void
2331 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2332 const struct sockaddr *src)
2333 {
2334 struct wg_msg_data *wgmd;
2335 char *encrypted_buf = NULL, *decrypted_buf;
2336 size_t encrypted_len, decrypted_len;
2337 struct wg_session *wgs;
2338 struct wg_peer *wgp;
2339 size_t mlen;
2340 struct psref psref;
2341 int error, af;
2342 bool success, free_encrypted_buf = false, ok;
2343 struct mbuf *n;
2344
2345 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2346 wgmd = mtod(m, struct wg_msg_data *);
2347
2348 KASSERT(wgmd->wgmd_type == WG_MSG_TYPE_DATA);
2349 WG_TRACE("data");
2350
2351 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2352 if (wgs == NULL) {
2353 WG_TRACE("No session found");
2354 m_freem(m);
2355 return;
2356 }
2357 wgp = wgs->wgs_peer;
2358
2359 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2360 wgmd->wgmd_counter);
2361 if (error) {
2362 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2363 "out-of-window packet: %"PRIu64"\n",
2364 wgmd->wgmd_counter);
2365 goto out;
2366 }
2367
2368 mlen = m_length(m);
2369 encrypted_len = mlen - sizeof(*wgmd);
2370
2371 if (encrypted_len < WG_AUTHTAG_LEN) {
2372 WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
2373 goto out;
2374 }
2375
2376 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2377 if (success) {
2378 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2379 } else {
2380 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2381 if (encrypted_buf == NULL) {
2382 WG_DLOG("failed to allocate encrypted_buf\n");
2383 goto out;
2384 }
2385 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2386 free_encrypted_buf = true;
2387 }
2388 /* m_ensure_contig may change m regardless of its result */
2389 KASSERT(m->m_len >= sizeof(*wgmd));
2390 wgmd = mtod(m, struct wg_msg_data *);
2391
2392 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2393 if (decrypted_len > MCLBYTES) {
2394 /* FIXME handle larger data than MCLBYTES */
2395 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2396 goto out;
2397 }
2398
2399 /* To avoid zero length */
2400 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2401 if (n == NULL) {
2402 WG_DLOG("wg_get_mbuf failed\n");
2403 goto out;
2404 }
2405 decrypted_buf = mtod(n, char *);
2406
2407 WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
2408 error = wg_algo_aead_dec(decrypted_buf,
2409 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2410 wgs->wgs_tkey_recv, wgmd->wgmd_counter, encrypted_buf,
2411 encrypted_len, NULL, 0);
2412 if (error != 0) {
2413 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2414 "failed to wg_algo_aead_dec\n");
2415 m_freem(n);
2416 goto out;
2417 }
2418 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2419
2420 mutex_enter(&wgs->wgs_recvwin->lock);
2421 error = sliwin_update(&wgs->wgs_recvwin->window,
2422 wgmd->wgmd_counter);
2423 mutex_exit(&wgs->wgs_recvwin->lock);
2424 if (error) {
2425 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2426 "replay or out-of-window packet: %"PRIu64"\n",
2427 wgmd->wgmd_counter);
2428 m_freem(n);
2429 goto out;
2430 }
2431
2432 m_freem(m);
2433 m = NULL;
2434 wgmd = NULL;
2435
2436 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2437 if (!ok) {
2438 /* something wrong... */
2439 m_freem(n);
2440 goto out;
2441 }
2442
2443 wg_update_endpoint_if_necessary(wgp, src);
2444
2445 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2446 if (ok) {
2447 wg->wg_ops->input(&wg->wg_if, n, af);
2448 } else {
2449 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2450 "invalid source address\n");
2451 m_freem(n);
2452 /*
2453 * The inner address is invalid however the session is valid
2454 * so continue the session processing below.
2455 */
2456 }
2457 n = NULL;
2458
2459 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
2460 struct wg_session *wgs_prev;
2461
2462 KASSERT(wgs == wgp->wgp_session_unstable);
2463 wgs->wgs_state = WGS_STATE_ESTABLISHED;
2464 wgs->wgs_time_established = time_uptime;
2465 wgs->wgs_time_last_data_sent = 0;
2466 wgs->wgs_is_initiator = false;
2467 WG_TRACE("WGS_STATE_ESTABLISHED");
2468
2469 mutex_enter(wgp->wgp_lock);
2470 wg_swap_sessions(wgp);
2471 wgs_prev = wgp->wgp_session_unstable;
2472 mutex_enter(wgs_prev->wgs_lock);
2473 getnanotime(&wgp->wgp_last_handshake_time);
2474 wgp->wgp_handshake_start_time = 0;
2475 wgp->wgp_last_sent_mac1_valid = false;
2476 wgp->wgp_last_sent_cookie_valid = false;
2477 mutex_exit(wgp->wgp_lock);
2478
2479 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2480 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
2481 /* We can't destroy the old session immediately */
2482 wg_schedule_session_dtor_timer(wgp);
2483 } else {
2484 wg_clear_states(wgs_prev);
2485 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
2486 }
2487 mutex_exit(wgs_prev->wgs_lock);
2488
2489 /* Anyway run a softint to flush pending packets */
2490 kpreempt_disable();
2491 softint_schedule(wgp->wgp_si);
2492 kpreempt_enable();
2493 } else {
2494 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2495 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2496 }
2497 /*
2498 * [W] 6.5 Passive Keepalive
2499 * "If a peer has received a validly-authenticated transport
2500 * data message (section 5.4.6), but does not have any packets
2501 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2502 * a keepalive message."
2503 */
2504 WG_DLOG("time_uptime=%lu wgs_time_last_data_sent=%lu\n",
2505 time_uptime, wgs->wgs_time_last_data_sent);
2506 if ((time_uptime - wgs->wgs_time_last_data_sent) >=
2507 wg_keepalive_timeout) {
2508 WG_TRACE("Schedule sending keepalive message");
2509 /*
2510 * We can't send a keepalive message here to avoid
2511 * a deadlock; we already hold the solock of a socket
2512 * that is used to send the message.
2513 */
2514 wg_schedule_peer_task(wgp,
2515 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2516 }
2517 }
2518 out:
2519 wg_put_session(wgs, &psref);
2520 if (m != NULL)
2521 m_freem(m);
2522 if (free_encrypted_buf)
2523 kmem_intr_free(encrypted_buf, encrypted_len);
2524 }
2525
2526 static void
2527 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2528 {
2529 struct wg_session *wgs;
2530 struct wg_peer *wgp;
2531 struct psref psref;
2532 int error;
2533 uint8_t key[WG_HASH_LEN];
2534 uint8_t cookie[WG_COOKIE_LEN];
2535
2536 WG_TRACE("cookie msg received");
2537 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2538 if (wgs == NULL) {
2539 WG_TRACE("No session found");
2540 return;
2541 }
2542 wgp = wgs->wgs_peer;
2543
2544 if (!wgp->wgp_last_sent_mac1_valid) {
2545 WG_TRACE("No valid mac1 sent (or expired)");
2546 goto out;
2547 }
2548
2549 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
2550 sizeof(wgp->wgp_pubkey));
2551 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key, 0,
2552 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
2553 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
2554 wgmc->wgmc_salt);
2555 if (error != 0) {
2556 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2557 "wg_algo_aead_dec for cookie failed: error=%d\n", error);
2558 goto out;
2559 }
2560 /*
2561 * [W] 6.6: Interaction with Cookie Reply System
2562 * "it should simply store the decrypted cookie value from the cookie
2563 * reply message, and wait for the expiration of the REKEY-TIMEOUT
2564 * timer for retrying a handshake initiation message."
2565 */
2566 wgp->wgp_latest_cookie_time = time_uptime;
2567 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
2568 out:
2569 wg_put_session(wgs, &psref);
2570 }
2571
2572 static struct mbuf *
2573 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
2574 {
2575 struct wg_msg wgm;
2576 size_t mbuflen;
2577 size_t msglen;
2578
2579 /*
2580 * Get the mbuf chain length. It is already guaranteed, by
2581 * wg_overudp_cb, to be large enough for a struct wg_msg.
2582 */
2583 mbuflen = m_length(m);
2584 KASSERT(mbuflen >= sizeof(struct wg_msg));
2585
2586 /*
2587 * Copy the message header (32-bit message type) out -- we'll
2588 * worry about contiguity and alignment later.
2589 */
2590 m_copydata(m, 0, sizeof(wgm), &wgm);
2591 switch (wgm.wgm_type) {
2592 case WG_MSG_TYPE_INIT:
2593 msglen = sizeof(struct wg_msg_init);
2594 break;
2595 case WG_MSG_TYPE_RESP:
2596 msglen = sizeof(struct wg_msg_resp);
2597 break;
2598 case WG_MSG_TYPE_COOKIE:
2599 msglen = sizeof(struct wg_msg_cookie);
2600 break;
2601 case WG_MSG_TYPE_DATA:
2602 msglen = sizeof(struct wg_msg_data);
2603 break;
2604 default:
2605 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
2606 "Unexpected msg type: %u\n", wgm.wgm_type);
2607 goto error;
2608 }
2609
2610 /* Verify the mbuf chain is long enough for this type of message. */
2611 if (__predict_false(mbuflen < msglen)) {
2612 WG_DLOG("Invalid msg size: mbuflen=%lu type=%u\n", mbuflen,
2613 wgm.wgm_type);
2614 goto error;
2615 }
2616
2617 /* Make the message header contiguous if necessary. */
2618 if (__predict_false(m->m_len < msglen)) {
2619 m = m_pullup(m, msglen);
2620 if (m == NULL)
2621 return NULL;
2622 }
2623
2624 return m;
2625
2626 error:
2627 m_freem(m);
2628 return NULL;
2629 }
2630
2631 static void
2632 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
2633 const struct sockaddr *src)
2634 {
2635 struct wg_msg *wgm;
2636
2637 m = wg_validate_msg_header(wg, m);
2638 if (__predict_false(m == NULL))
2639 return;
2640
2641 KASSERT(m->m_len >= sizeof(struct wg_msg));
2642 wgm = mtod(m, struct wg_msg *);
2643 switch (wgm->wgm_type) {
2644 case WG_MSG_TYPE_INIT:
2645 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
2646 break;
2647 case WG_MSG_TYPE_RESP:
2648 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
2649 break;
2650 case WG_MSG_TYPE_COOKIE:
2651 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
2652 break;
2653 case WG_MSG_TYPE_DATA:
2654 wg_handle_msg_data(wg, m, src);
2655 break;
2656 default:
2657 /* wg_validate_msg_header should already reject this case */
2658 break;
2659 }
2660 }
2661
2662 static void
2663 wg_receive_packets(struct wg_softc *wg, const int af)
2664 {
2665
2666 for (;;) {
2667 int error, flags;
2668 struct socket *so;
2669 struct mbuf *m = NULL;
2670 struct uio dummy_uio;
2671 struct mbuf *paddr = NULL;
2672 struct sockaddr *src;
2673
2674 so = wg_get_so_by_af(wg->wg_worker, af);
2675 flags = MSG_DONTWAIT;
2676 dummy_uio.uio_resid = 1000000000;
2677
2678 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
2679 &flags);
2680 if (error || m == NULL) {
2681 //if (error == EWOULDBLOCK)
2682 return;
2683 }
2684
2685 KASSERT(paddr != NULL);
2686 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
2687 src = mtod(paddr, struct sockaddr *);
2688
2689 wg_handle_packet(wg, m, src);
2690 }
2691 }
2692
2693 static void
2694 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
2695 {
2696
2697 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
2698 }
2699
2700 static void
2701 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
2702 {
2703
2704 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
2705 }
2706
2707 static void
2708 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
2709 {
2710 struct psref psref;
2711 struct wg_session *wgs;
2712
2713 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
2714
2715 if (!wgp->wgp_endpoint_available) {
2716 WGLOG(LOG_DEBUG, "No endpoint available\n");
2717 /* XXX should do something? */
2718 return;
2719 }
2720
2721 wgs = wg_get_stable_session(wgp, &psref);
2722 if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
2723 wg_put_session(wgs, &psref);
2724 wg_send_handshake_msg_init(wg, wgp);
2725 } else {
2726 wg_put_session(wgs, &psref);
2727 /* rekey */
2728 wgs = wg_get_unstable_session(wgp, &psref);
2729 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2730 wg_send_handshake_msg_init(wg, wgp);
2731 wg_put_session(wgs, &psref);
2732 }
2733 }
2734
2735 static void
2736 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
2737 {
2738
2739 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
2740
2741 mutex_enter(wgp->wgp_lock);
2742 if (wgp->wgp_endpoint_changing) {
2743 pserialize_perform(wgp->wgp_psz);
2744 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
2745 wg_psref_class);
2746 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
2747 wg_psref_class);
2748 wgp->wgp_endpoint_changing = false;
2749 }
2750 mutex_exit(wgp->wgp_lock);
2751 }
2752
2753 static void
2754 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
2755 {
2756 struct psref psref;
2757 struct wg_session *wgs;
2758
2759 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
2760
2761 wgs = wg_get_stable_session(wgp, &psref);
2762 wg_send_keepalive_msg(wgp, wgs);
2763 wg_put_session(wgs, &psref);
2764 }
2765
2766 static void
2767 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
2768 {
2769 struct wg_session *wgs;
2770
2771 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
2772
2773 mutex_enter(wgp->wgp_lock);
2774 wgs = wgp->wgp_session_unstable;
2775 mutex_enter(wgs->wgs_lock);
2776 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
2777 pserialize_perform(wgp->wgp_psz);
2778 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
2779 psref_target_init(&wgs->wgs_psref, wg_psref_class);
2780 wg_clear_states(wgs);
2781 wgs->wgs_state = WGS_STATE_UNKNOWN;
2782 }
2783 mutex_exit(wgs->wgs_lock);
2784 mutex_exit(wgp->wgp_lock);
2785 }
2786
2787 static void
2788 wg_process_peer_tasks(struct wg_softc *wg)
2789 {
2790 struct wg_peer *wgp;
2791 int s;
2792
2793 /* XXX should avoid checking all peers */
2794 s = pserialize_read_enter();
2795 WG_PEER_READER_FOREACH(wgp, wg) {
2796 struct psref psref;
2797 unsigned int tasks;
2798
2799 if (wgp->wgp_tasks == 0)
2800 continue;
2801
2802 wg_get_peer(wgp, &psref);
2803 pserialize_read_exit(s);
2804
2805 restart:
2806 tasks = atomic_swap_uint(&wgp->wgp_tasks, 0);
2807 KASSERT(tasks != 0);
2808
2809 WG_DLOG("tasks=%x\n", tasks);
2810
2811 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
2812 wg_task_send_init_message(wg, wgp);
2813 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
2814 wg_task_endpoint_changed(wg, wgp);
2815 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
2816 wg_task_send_keepalive_message(wg, wgp);
2817 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
2818 wg_task_destroy_prev_session(wg, wgp);
2819
2820 /* New tasks may be scheduled during processing tasks */
2821 WG_DLOG("wgp_tasks=%d\n", wgp->wgp_tasks);
2822 if (wgp->wgp_tasks != 0)
2823 goto restart;
2824
2825 s = pserialize_read_enter();
2826 wg_put_peer(wgp, &psref);
2827 }
2828 pserialize_read_exit(s);
2829 }
2830
2831 static void
2832 wg_worker(void *arg)
2833 {
2834 struct wg_softc *wg = arg;
2835 struct wg_worker *wgw = wg->wg_worker;
2836 bool todie = false;
2837
2838 KASSERT(wg != NULL);
2839 KASSERT(wgw != NULL);
2840
2841 while (!todie) {
2842 int reasons;
2843 int bound;
2844
2845 mutex_enter(&wgw->wgw_lock);
2846 /* New tasks may come during task handling */
2847 while ((reasons = wgw->wgw_wakeup_reasons) == 0 &&
2848 !(todie = wgw->wgw_todie))
2849 cv_wait(&wgw->wgw_cv, &wgw->wgw_lock);
2850 wgw->wgw_wakeup_reasons = 0;
2851 mutex_exit(&wgw->wgw_lock);
2852
2853 bound = curlwp_bind();
2854 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4))
2855 wg_receive_packets(wg, AF_INET);
2856 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6))
2857 wg_receive_packets(wg, AF_INET6);
2858 if (ISSET(reasons, WG_WAKEUP_REASON_PEER))
2859 wg_process_peer_tasks(wg);
2860 curlwp_bindx(bound);
2861 }
2862 kthread_exit(0);
2863 }
2864
2865 static void
2866 wg_wakeup_worker(struct wg_worker *wgw, const int reason)
2867 {
2868
2869 mutex_enter(&wgw->wgw_lock);
2870 wgw->wgw_wakeup_reasons |= reason;
2871 cv_broadcast(&wgw->wgw_cv);
2872 mutex_exit(&wgw->wgw_lock);
2873 }
2874
2875 static int
2876 wg_bind_port(struct wg_softc *wg, const uint16_t port)
2877 {
2878 int error;
2879 struct wg_worker *wgw = wg->wg_worker;
2880 uint16_t old_port = wg->wg_listen_port;
2881
2882 if (port != 0 && old_port == port)
2883 return 0;
2884
2885 struct sockaddr_in _sin, *sin = &_sin;
2886 sin->sin_len = sizeof(*sin);
2887 sin->sin_family = AF_INET;
2888 sin->sin_addr.s_addr = INADDR_ANY;
2889 sin->sin_port = htons(port);
2890
2891 error = sobind(wgw->wgw_so4, sintosa(sin), curlwp);
2892 if (error != 0)
2893 return error;
2894
2895 #ifdef INET6
2896 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
2897 sin6->sin6_len = sizeof(*sin6);
2898 sin6->sin6_family = AF_INET6;
2899 sin6->sin6_addr = in6addr_any;
2900 sin6->sin6_port = htons(port);
2901
2902 error = sobind(wgw->wgw_so6, sin6tosa(sin6), curlwp);
2903 if (error != 0)
2904 return error;
2905 #endif
2906
2907 wg->wg_listen_port = port;
2908
2909 return 0;
2910 }
2911
2912 static void
2913 wg_so_upcall(struct socket *so, void *arg, int events, int waitflag)
2914 {
2915 struct wg_worker *wgw = arg;
2916 int reason;
2917
2918 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
2919 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 :
2920 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6;
2921 wg_wakeup_worker(wgw, reason);
2922 }
2923
2924 static int
2925 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
2926 struct sockaddr *src, void *arg)
2927 {
2928 struct wg_softc *wg = arg;
2929 struct wg_msg wgm;
2930 struct mbuf *m = *mp;
2931
2932 WG_TRACE("enter");
2933
2934 /* Verify the mbuf chain is long enough to have a wg msg header. */
2935 KASSERT(offset <= m_length(m));
2936 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
2937 m_freem(m);
2938 return -1;
2939 }
2940
2941 /*
2942 * Copy the message header (32-bit message type) out -- we'll
2943 * worry about contiguity and alignment later.
2944 */
2945 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
2946 WG_DLOG("type=%d\n", wgm.wgm_type);
2947
2948 /*
2949 * Handle DATA packets promptly as they arrive. Other packets
2950 * may require expensive public-key crypto and are not as
2951 * sensitive to latency, so defer them to the worker thread.
2952 */
2953 switch (wgm.wgm_type) {
2954 case WG_MSG_TYPE_DATA:
2955 m_adj(m, offset);
2956 wg_handle_msg_data(wg, m, src);
2957 *mp = NULL;
2958 return 1;
2959 default:
2960 break;
2961 }
2962
2963 return 0;
2964 }
2965
2966 static int
2967 wg_worker_socreate(struct wg_softc *wg, struct wg_worker *wgw, const int af,
2968 struct socket **sop)
2969 {
2970 int error;
2971 struct socket *so;
2972
2973 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
2974 if (error != 0)
2975 return error;
2976
2977 solock(so);
2978 so->so_upcallarg = wgw;
2979 so->so_upcall = wg_so_upcall;
2980 so->so_rcv.sb_flags |= SB_UPCALL;
2981 if (af == AF_INET)
2982 in_pcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
2983 #if INET6
2984 else
2985 in6_pcb_register_overudp_cb(sotoin6pcb(so), wg_overudp_cb, wg);
2986 #endif
2987 sounlock(so);
2988
2989 *sop = so;
2990
2991 return 0;
2992 }
2993
2994 static int
2995 wg_worker_init(struct wg_softc *wg)
2996 {
2997 int error;
2998 struct wg_worker *wgw;
2999 const char *ifname = wg->wg_if.if_xname;
3000 struct socket *so;
3001
3002 wgw = kmem_zalloc(sizeof(struct wg_worker), KM_SLEEP);
3003
3004 mutex_init(&wgw->wgw_lock, MUTEX_DEFAULT, IPL_NONE);
3005 cv_init(&wgw->wgw_cv, ifname);
3006 wgw->wgw_todie = false;
3007 wgw->wgw_wakeup_reasons = 0;
3008
3009 error = wg_worker_socreate(wg, wgw, AF_INET, &so);
3010 if (error != 0)
3011 goto error;
3012 wgw->wgw_so4 = so;
3013 #ifdef INET6
3014 error = wg_worker_socreate(wg, wgw, AF_INET6, &so);
3015 if (error != 0)
3016 goto error;
3017 wgw->wgw_so6 = so;
3018 #endif
3019
3020 wg->wg_worker = wgw;
3021
3022 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE | KTHREAD_MUSTJOIN,
3023 NULL, wg_worker, wg, &wg->wg_worker_lwp, "%s", ifname);
3024 if (error != 0)
3025 goto error;
3026
3027 return 0;
3028
3029 error:
3030 #ifdef INET6
3031 if (wgw->wgw_so6 != NULL)
3032 soclose(wgw->wgw_so6);
3033 #endif
3034 if (wgw->wgw_so4 != NULL)
3035 soclose(wgw->wgw_so4);
3036 cv_destroy(&wgw->wgw_cv);
3037 mutex_destroy(&wgw->wgw_lock);
3038
3039 return error;
3040 }
3041
3042 static void
3043 wg_worker_destroy(struct wg_softc *wg)
3044 {
3045 struct wg_worker *wgw = wg->wg_worker;
3046
3047 mutex_enter(&wgw->wgw_lock);
3048 wgw->wgw_todie = true;
3049 wgw->wgw_wakeup_reasons = 0;
3050 cv_broadcast(&wgw->wgw_cv);
3051 mutex_exit(&wgw->wgw_lock);
3052
3053 kthread_join(wg->wg_worker_lwp);
3054
3055 #ifdef INET6
3056 soclose(wgw->wgw_so6);
3057 #endif
3058 soclose(wgw->wgw_so4);
3059 cv_destroy(&wgw->wgw_cv);
3060 mutex_destroy(&wgw->wgw_lock);
3061 kmem_free(wg->wg_worker, sizeof(struct wg_worker));
3062 wg->wg_worker = NULL;
3063 }
3064
3065 static bool
3066 wg_session_hit_limits(struct wg_session *wgs)
3067 {
3068
3069 /*
3070 * [W] 6.2: Transport Message Limits
3071 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3072 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3073 * comes first, WireGuard will refuse to send any more transport data
3074 * messages using the current secure session, ..."
3075 */
3076 KASSERT(wgs->wgs_time_established != 0);
3077 if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
3078 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3079 return true;
3080 } else if (wg_session_get_send_counter(wgs) >
3081 wg_reject_after_messages) {
3082 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3083 return true;
3084 }
3085
3086 return false;
3087 }
3088
3089 static void
3090 wg_peer_softint(void *arg)
3091 {
3092 struct wg_peer *wgp = arg;
3093 struct wg_session *wgs;
3094 struct mbuf *m;
3095 struct psref psref;
3096
3097 wgs = wg_get_stable_session(wgp, &psref);
3098 if (wgs->wgs_state != WGS_STATE_ESTABLISHED) {
3099 /* XXX how to treat? */
3100 WG_TRACE("skipped");
3101 goto out;
3102 }
3103 if (wg_session_hit_limits(wgs)) {
3104 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3105 goto out;
3106 }
3107 WG_TRACE("running");
3108
3109 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3110 wg_send_data_msg(wgp, wgs, m);
3111 }
3112 out:
3113 wg_put_session(wgs, &psref);
3114 }
3115
3116 static void
3117 wg_rekey_timer(void *arg)
3118 {
3119 struct wg_peer *wgp = arg;
3120
3121 mutex_enter(wgp->wgp_lock);
3122 if (__predict_true(wgp->wgp_state != WGP_STATE_DESTROYING)) {
3123 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3124 }
3125 mutex_exit(wgp->wgp_lock);
3126 }
3127
3128 static void
3129 wg_purge_pending_packets(struct wg_peer *wgp)
3130 {
3131 struct mbuf *m;
3132
3133 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3134 m_freem(m);
3135 }
3136 }
3137
3138 static void
3139 wg_handshake_timeout_timer(void *arg)
3140 {
3141 struct wg_peer *wgp = arg;
3142 struct wg_session *wgs;
3143 struct psref psref;
3144
3145 WG_TRACE("enter");
3146
3147 mutex_enter(wgp->wgp_lock);
3148 if (__predict_false(wgp->wgp_state == WGP_STATE_DESTROYING)) {
3149 mutex_exit(wgp->wgp_lock);
3150 return;
3151 }
3152 mutex_exit(wgp->wgp_lock);
3153
3154 KASSERT(wgp->wgp_handshake_start_time != 0);
3155 wgs = wg_get_unstable_session(wgp, &psref);
3156 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
3157
3158 /* [W] 6.4 Handshake Initiation Retransmission */
3159 if ((time_uptime - wgp->wgp_handshake_start_time) >
3160 wg_rekey_attempt_time) {
3161 /* Give up handshaking */
3162 wgs->wgs_state = WGS_STATE_UNKNOWN;
3163 wg_clear_states(wgs);
3164 wgp->wgp_state = WGP_STATE_GIVEUP;
3165 wgp->wgp_handshake_start_time = 0;
3166 wg_put_session(wgs, &psref);
3167 WG_TRACE("give up");
3168 /*
3169 * If a new data packet comes, handshaking will be retried
3170 * and a new session would be established at that time,
3171 * however we don't want to send pending packets then.
3172 */
3173 wg_purge_pending_packets(wgp);
3174 return;
3175 }
3176
3177 /* No response for an initiation message sent, retry handshaking */
3178 wgs->wgs_state = WGS_STATE_UNKNOWN;
3179 wg_clear_states(wgs);
3180 wg_put_session(wgs, &psref);
3181
3182 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3183 }
3184
3185 static struct wg_peer *
3186 wg_alloc_peer(struct wg_softc *wg)
3187 {
3188 struct wg_peer *wgp;
3189
3190 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3191
3192 wgp->wgp_sc = wg;
3193 wgp->wgp_state = WGP_STATE_INIT;
3194 wgp->wgp_q = pcq_create(1024, KM_SLEEP);
3195 wgp->wgp_si = softint_establish(SOFTINT_NET, wg_peer_softint, wgp);
3196 callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
3197 callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
3198 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3199 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3200 wg_handshake_timeout_timer, wgp);
3201 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3202 callout_setfunc(&wgp->wgp_session_dtor_timer,
3203 wg_session_dtor_timer, wgp);
3204 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3205 wgp->wgp_endpoint_changing = false;
3206 wgp->wgp_endpoint_available = false;
3207 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3208 wgp->wgp_psz = pserialize_create();
3209 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3210
3211 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3212 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3213 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3214 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3215
3216 struct wg_session *wgs;
3217 wgp->wgp_session_stable =
3218 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3219 wgp->wgp_session_unstable =
3220 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3221 wgs = wgp->wgp_session_stable;
3222 wgs->wgs_peer = wgp;
3223 wgs->wgs_state = WGS_STATE_UNKNOWN;
3224 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3225 wgs->wgs_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3226 #ifndef __HAVE_ATOMIC64_LOADSTORE
3227 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3228 #endif
3229 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3230 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_NONE);
3231
3232 wgs = wgp->wgp_session_unstable;
3233 wgs->wgs_peer = wgp;
3234 wgs->wgs_state = WGS_STATE_UNKNOWN;
3235 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3236 wgs->wgs_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3237 #ifndef __HAVE_ATOMIC64_LOADSTORE
3238 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3239 #endif
3240 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3241 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_NONE);
3242
3243 return wgp;
3244 }
3245
3246 static void
3247 wg_destroy_peer(struct wg_peer *wgp)
3248 {
3249 struct wg_session *wgs;
3250 struct wg_softc *wg = wgp->wgp_sc;
3251
3252 rw_enter(wg->wg_rwlock, RW_WRITER);
3253 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3254 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3255 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3256 struct radix_node *rn;
3257
3258 KASSERT(rnh != NULL);
3259 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3260 &wga->wga_sa_mask, rnh);
3261 if (rn == NULL) {
3262 char addrstr[128];
3263 sockaddr_format(&wga->wga_sa_addr, addrstr,
3264 sizeof(addrstr));
3265 WGLOG(LOG_WARNING, "Couldn't delete %s", addrstr);
3266 }
3267 }
3268 rw_exit(wg->wg_rwlock);
3269
3270 softint_disestablish(wgp->wgp_si);
3271 callout_halt(&wgp->wgp_rekey_timer, NULL);
3272 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3273 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3274
3275 wgs = wgp->wgp_session_unstable;
3276 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
3277 mutex_obj_free(wgs->wgs_lock);
3278 mutex_destroy(&wgs->wgs_recvwin->lock);
3279 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3280 #ifndef __HAVE_ATOMIC64_LOADSTORE
3281 mutex_destroy(&wgs->wgs_send_counter_lock);
3282 #endif
3283 kmem_free(wgs, sizeof(*wgs));
3284 wgs = wgp->wgp_session_stable;
3285 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
3286 mutex_obj_free(wgs->wgs_lock);
3287 mutex_destroy(&wgs->wgs_recvwin->lock);
3288 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3289 #ifndef __HAVE_ATOMIC64_LOADSTORE
3290 mutex_destroy(&wgs->wgs_send_counter_lock);
3291 #endif
3292 kmem_free(wgs, sizeof(*wgs));
3293
3294 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3295 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3296 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3297 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3298
3299 pserialize_destroy(wgp->wgp_psz);
3300 pcq_destroy(wgp->wgp_q);
3301 mutex_obj_free(wgp->wgp_lock);
3302
3303 kmem_free(wgp, sizeof(*wgp));
3304 }
3305
3306 static void
3307 wg_destroy_all_peers(struct wg_softc *wg)
3308 {
3309 struct wg_peer *wgp;
3310
3311 restart:
3312 mutex_enter(wg->wg_lock);
3313 WG_PEER_WRITER_FOREACH(wgp, wg) {
3314 WG_PEER_WRITER_REMOVE(wgp);
3315 mutex_enter(wgp->wgp_lock);
3316 wgp->wgp_state = WGP_STATE_DESTROYING;
3317 pserialize_perform(wgp->wgp_psz);
3318 mutex_exit(wgp->wgp_lock);
3319 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3320 break;
3321 }
3322 mutex_exit(wg->wg_lock);
3323
3324 if (wgp == NULL)
3325 return;
3326
3327 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3328
3329 wg_destroy_peer(wgp);
3330
3331 goto restart;
3332 }
3333
3334 static int
3335 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3336 {
3337 struct wg_peer *wgp;
3338
3339 mutex_enter(wg->wg_lock);
3340 WG_PEER_WRITER_FOREACH(wgp, wg) {
3341 if (strcmp(wgp->wgp_name, name) == 0)
3342 break;
3343 }
3344 if (wgp != NULL) {
3345 WG_PEER_WRITER_REMOVE(wgp);
3346 wg->wg_npeers--;
3347 mutex_enter(wgp->wgp_lock);
3348 wgp->wgp_state = WGP_STATE_DESTROYING;
3349 pserialize_perform(wgp->wgp_psz);
3350 mutex_exit(wgp->wgp_lock);
3351 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3352 }
3353 mutex_exit(wg->wg_lock);
3354
3355 if (wgp == NULL)
3356 return ENOENT;
3357
3358 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3359
3360 wg_destroy_peer(wgp);
3361
3362 return 0;
3363 }
3364
3365 static int
3366 wg_if_attach(struct wg_softc *wg)
3367 {
3368 int error;
3369
3370 wg->wg_if.if_addrlen = 0;
3371 wg->wg_if.if_mtu = WG_MTU;
3372 wg->wg_if.if_flags = IFF_POINTOPOINT;
3373 wg->wg_if.if_extflags = IFEF_NO_LINK_STATE_CHANGE;
3374 wg->wg_if.if_extflags |= IFEF_MPSAFE;
3375 wg->wg_if.if_ioctl = wg_ioctl;
3376 wg->wg_if.if_output = wg_output;
3377 wg->wg_if.if_init = wg_init;
3378 wg->wg_if.if_stop = wg_stop;
3379 wg->wg_if.if_type = IFT_OTHER;
3380 wg->wg_if.if_dlt = DLT_NULL;
3381 wg->wg_if.if_softc = wg;
3382 IFQ_SET_READY(&wg->wg_if.if_snd);
3383
3384 error = if_initialize(&wg->wg_if);
3385 if (error != 0)
3386 return error;
3387
3388 if_alloc_sadl(&wg->wg_if);
3389 if_register(&wg->wg_if);
3390
3391 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3392
3393 return 0;
3394 }
3395
3396 static int
3397 wg_clone_create(struct if_clone *ifc, int unit)
3398 {
3399 struct wg_softc *wg;
3400 int error;
3401
3402 wg = kmem_zalloc(sizeof(struct wg_softc), KM_SLEEP);
3403
3404 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3405
3406 error = wg_worker_init(wg);
3407 if (error != 0) {
3408 kmem_free(wg, sizeof(struct wg_softc));
3409 return error;
3410 }
3411
3412 rn_inithead((void **)&wg->wg_rtable_ipv4,
3413 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3414 #ifdef INET6
3415 rn_inithead((void **)&wg->wg_rtable_ipv6,
3416 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3417 #endif
3418
3419 PSLIST_INIT(&wg->wg_peers);
3420 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3421 wg->wg_rwlock = rw_obj_alloc();
3422 wg->wg_ops = &wg_ops_rumpkernel;
3423
3424 error = wg_if_attach(wg);
3425 if (error != 0) {
3426 wg_worker_destroy(wg);
3427 if (wg->wg_rtable_ipv4 != NULL)
3428 free(wg->wg_rtable_ipv4, M_RTABLE);
3429 if (wg->wg_rtable_ipv6 != NULL)
3430 free(wg->wg_rtable_ipv6, M_RTABLE);
3431 PSLIST_DESTROY(&wg->wg_peers);
3432 mutex_obj_free(wg->wg_lock);
3433 kmem_free(wg, sizeof(struct wg_softc));
3434 return error;
3435 }
3436
3437 mutex_enter(&wg_softcs.lock);
3438 LIST_INSERT_HEAD(&wg_softcs.list, wg, wg_list);
3439 mutex_exit(&wg_softcs.lock);
3440
3441 return 0;
3442 }
3443
3444 static int
3445 wg_clone_destroy(struct ifnet *ifp)
3446 {
3447 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
3448
3449 mutex_enter(&wg_softcs.lock);
3450 LIST_REMOVE(wg, wg_list);
3451 mutex_exit(&wg_softcs.lock);
3452
3453 #ifdef WG_RUMPKERNEL
3454 if (wg_user_mode(wg)) {
3455 rumpuser_wg_destroy(wg->wg_user);
3456 wg->wg_user = NULL;
3457 }
3458 #endif
3459
3460 bpf_detach(ifp);
3461 if_detach(ifp);
3462 wg_worker_destroy(wg);
3463 wg_destroy_all_peers(wg);
3464 if (wg->wg_rtable_ipv4 != NULL)
3465 free(wg->wg_rtable_ipv4, M_RTABLE);
3466 if (wg->wg_rtable_ipv6 != NULL)
3467 free(wg->wg_rtable_ipv6, M_RTABLE);
3468
3469 PSLIST_DESTROY(&wg->wg_peers);
3470 mutex_obj_free(wg->wg_lock);
3471 rw_obj_free(wg->wg_rwlock);
3472
3473 kmem_free(wg, sizeof(struct wg_softc));
3474
3475 return 0;
3476 }
3477
3478 static struct wg_peer *
3479 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
3480 struct psref *psref)
3481 {
3482 struct radix_node_head *rnh;
3483 struct radix_node *rn;
3484 struct wg_peer *wgp = NULL;
3485 struct wg_allowedip *wga;
3486
3487 #ifdef WG_DEBUG_LOG
3488 char addrstr[128];
3489 sockaddr_format(sa, addrstr, sizeof(addrstr));
3490 WG_DLOG("sa=%s\n", addrstr);
3491 #endif
3492
3493 rw_enter(wg->wg_rwlock, RW_READER);
3494
3495 rnh = wg_rnh(wg, sa->sa_family);
3496 if (rnh == NULL)
3497 goto out;
3498
3499 rn = rnh->rnh_matchaddr(sa, rnh);
3500 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
3501 goto out;
3502
3503 WG_TRACE("success");
3504
3505 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
3506 wgp = wga->wga_peer;
3507 wg_get_peer(wgp, psref);
3508
3509 out:
3510 rw_exit(wg->wg_rwlock);
3511 return wgp;
3512 }
3513
3514 static void
3515 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
3516 struct wg_session *wgs, struct wg_msg_data *wgmd)
3517 {
3518
3519 memset(wgmd, 0, sizeof(*wgmd));
3520 wgmd->wgmd_type = WG_MSG_TYPE_DATA;
3521 wgmd->wgmd_receiver = wgs->wgs_receiver_index;
3522 /* [W] 5.4.6: msg.counter := Nm^send */
3523 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
3524 wgmd->wgmd_counter = wg_session_inc_send_counter(wgs);
3525 WG_DLOG("counter=%"PRIu64"\n", wgmd->wgmd_counter);
3526 }
3527
3528 static int
3529 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
3530 const struct rtentry *rt)
3531 {
3532 struct wg_softc *wg = ifp->if_softc;
3533 int error = 0;
3534 int bound;
3535 struct psref psref;
3536
3537 /* TODO make the nest limit configurable via sysctl */
3538 error = if_tunnel_check_nesting(ifp, m, 1);
3539 if (error != 0) {
3540 m_freem(m);
3541 WGLOG(LOG_ERR, "tunneling loop detected and packet dropped\n");
3542 return error;
3543 }
3544
3545 bound = curlwp_bind();
3546
3547 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
3548
3549 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
3550
3551 m->m_flags &= ~(M_BCAST|M_MCAST);
3552
3553 struct wg_peer *wgp = wg_pick_peer_by_sa(wg, dst, &psref);
3554 if (wgp == NULL) {
3555 WG_TRACE("peer not found");
3556 error = EHOSTUNREACH;
3557 goto error;
3558 }
3559
3560 /* Clear checksum-offload flags. */
3561 m->m_pkthdr.csum_flags = 0;
3562 m->m_pkthdr.csum_data = 0;
3563
3564 if (!pcq_put(wgp->wgp_q, m)) {
3565 error = ENOBUFS;
3566 goto error;
3567 }
3568
3569 struct psref psref_wgs;
3570 struct wg_session *wgs;
3571 wgs = wg_get_stable_session(wgp, &psref_wgs);
3572 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3573 !wg_session_hit_limits(wgs)) {
3574 kpreempt_disable();
3575 softint_schedule(wgp->wgp_si);
3576 kpreempt_enable();
3577 WG_TRACE("softint scheduled");
3578 } else {
3579 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3580 WG_TRACE("softint NOT scheduled");
3581 }
3582 wg_put_session(wgs, &psref_wgs);
3583 wg_put_peer(wgp, &psref);
3584
3585 return 0;
3586
3587 error:
3588 if (wgp != NULL)
3589 wg_put_peer(wgp, &psref);
3590 if (m != NULL)
3591 m_freem(m);
3592 curlwp_bindx(bound);
3593 return error;
3594 }
3595
3596 static int
3597 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
3598 {
3599 struct psref psref;
3600 struct wg_sockaddr *wgsa;
3601 int error;
3602 struct socket *so = wg_get_so_by_peer(wgp);
3603
3604 solock(so);
3605 wgsa = wg_get_endpoint_sa(wgp, &psref);
3606 if (wgsatosa(wgsa)->sa_family == AF_INET) {
3607 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
3608 } else {
3609 #ifdef INET6
3610 error = udp6_output(sotoin6pcb(so), m, wgsatosin6(wgsa),
3611 NULL, curlwp);
3612 #else
3613 error = EPROTONOSUPPORT;
3614 #endif
3615 }
3616 wg_put_sa(wgp, wgsa, &psref);
3617 sounlock(so);
3618
3619 return error;
3620 }
3621
3622 /* Inspired by pppoe_get_mbuf */
3623 static struct mbuf *
3624 wg_get_mbuf(size_t leading_len, size_t len)
3625 {
3626 struct mbuf *m;
3627
3628 m = m_gethdr(M_DONTWAIT, MT_DATA);
3629 if (m == NULL)
3630 return NULL;
3631 if (len + leading_len > MHLEN) {
3632 m_clget(m, M_DONTWAIT);
3633 if ((m->m_flags & M_EXT) == 0) {
3634 m_free(m);
3635 return NULL;
3636 }
3637 }
3638 m->m_data += leading_len;
3639 m->m_pkthdr.len = m->m_len = len;
3640
3641 return m;
3642 }
3643
3644 static int
3645 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
3646 struct mbuf *m)
3647 {
3648 struct wg_softc *wg = wgp->wgp_sc;
3649 int error;
3650 size_t inner_len, padded_len, encrypted_len;
3651 char *padded_buf = NULL;
3652 size_t mlen;
3653 struct wg_msg_data *wgmd;
3654 bool free_padded_buf = false;
3655 struct mbuf *n;
3656 size_t leading_len = max_linkhdr + sizeof(struct ip6_hdr) +
3657 sizeof(struct udphdr);
3658
3659 mlen = m_length(m);
3660 inner_len = mlen;
3661 padded_len = roundup(mlen, 16);
3662 encrypted_len = padded_len + WG_AUTHTAG_LEN;
3663 WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
3664 inner_len, padded_len, encrypted_len);
3665 if (mlen != 0) {
3666 bool success;
3667 success = m_ensure_contig(&m, padded_len);
3668 if (success) {
3669 padded_buf = mtod(m, char *);
3670 } else {
3671 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
3672 if (padded_buf == NULL) {
3673 error = ENOBUFS;
3674 goto end;
3675 }
3676 free_padded_buf = true;
3677 m_copydata(m, 0, mlen, padded_buf);
3678 }
3679 memset(padded_buf + mlen, 0, padded_len - inner_len);
3680 }
3681
3682 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
3683 if (n == NULL) {
3684 error = ENOBUFS;
3685 goto end;
3686 }
3687 KASSERT(n->m_len >= sizeof(*wgmd));
3688 wgmd = mtod(n, struct wg_msg_data *);
3689 wg_fill_msg_data(wg, wgp, wgs, wgmd);
3690 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
3691 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
3692 wgs->wgs_tkey_send, wgmd->wgmd_counter, padded_buf, padded_len,
3693 NULL, 0);
3694
3695 error = wg->wg_ops->send_data_msg(wgp, n);
3696 if (error == 0) {
3697 struct ifnet *ifp = &wg->wg_if;
3698 if_statadd(ifp, if_obytes, mlen);
3699 if_statinc(ifp, if_opackets);
3700 if (wgs->wgs_is_initiator &&
3701 wgs->wgs_time_last_data_sent == 0) {
3702 /*
3703 * [W] 6.2 Transport Message Limits
3704 * "if a peer is the initiator of a current secure
3705 * session, WireGuard will send a handshake initiation
3706 * message to begin a new secure session if, after
3707 * transmitting a transport data message, the current
3708 * secure session is REKEY-AFTER-TIME seconds old,"
3709 */
3710 wg_schedule_rekey_timer(wgp);
3711 }
3712 wgs->wgs_time_last_data_sent = time_uptime;
3713 if (wg_session_get_send_counter(wgs) >=
3714 wg_rekey_after_messages) {
3715 /*
3716 * [W] 6.2 Transport Message Limits
3717 * "WireGuard will try to create a new session, by
3718 * sending a handshake initiation message (section
3719 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
3720 * transport data messages..."
3721 */
3722 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3723 }
3724 }
3725 end:
3726 m_freem(m);
3727 if (free_padded_buf)
3728 kmem_intr_free(padded_buf, padded_len);
3729 return error;
3730 }
3731
3732 static void
3733 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
3734 {
3735 pktqueue_t *pktq;
3736 size_t pktlen;
3737
3738 KASSERT(af == AF_INET || af == AF_INET6);
3739
3740 WG_TRACE("");
3741
3742 m_set_rcvif(m, ifp);
3743 pktlen = m->m_pkthdr.len;
3744
3745 bpf_mtap_af(ifp, af, m, BPF_D_IN);
3746
3747 switch (af) {
3748 case AF_INET:
3749 pktq = ip_pktq;
3750 break;
3751 #ifdef INET6
3752 case AF_INET6:
3753 pktq = ip6_pktq;
3754 break;
3755 #endif
3756 default:
3757 panic("invalid af=%d", af);
3758 }
3759
3760 const u_int h = curcpu()->ci_index;
3761 if (__predict_true(pktq_enqueue(pktq, m, h))) {
3762 if_statadd(ifp, if_ibytes, pktlen);
3763 if_statinc(ifp, if_ipackets);
3764 } else {
3765 m_freem(m);
3766 }
3767 }
3768
3769 static void
3770 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
3771 const uint8_t privkey[WG_STATIC_KEY_LEN])
3772 {
3773
3774 crypto_scalarmult_base(pubkey, privkey);
3775 }
3776
3777 static int
3778 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
3779 {
3780 struct radix_node_head *rnh;
3781 struct radix_node *rn;
3782 int error = 0;
3783
3784 rw_enter(wg->wg_rwlock, RW_WRITER);
3785 rnh = wg_rnh(wg, wga->wga_family);
3786 KASSERT(rnh != NULL);
3787 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
3788 wga->wga_nodes);
3789 rw_exit(wg->wg_rwlock);
3790
3791 if (rn == NULL)
3792 error = EEXIST;
3793
3794 return error;
3795 }
3796
3797 static int
3798 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
3799 struct wg_peer **wgpp)
3800 {
3801 int error = 0;
3802 const void *pubkey;
3803 size_t pubkey_len;
3804 const void *psk;
3805 size_t psk_len;
3806 const char *name = NULL;
3807
3808 if (prop_dictionary_get_string(peer, "name", &name)) {
3809 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
3810 error = EINVAL;
3811 goto out;
3812 }
3813 }
3814
3815 if (!prop_dictionary_get_data(peer, "public_key",
3816 &pubkey, &pubkey_len)) {
3817 error = EINVAL;
3818 goto out;
3819 }
3820 #ifdef WG_DEBUG_DUMP
3821 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n", pubkey, pubkey_len);
3822 for (int _i = 0; _i < pubkey_len; _i++)
3823 log(LOG_DEBUG, "%c", ((const char *)pubkey)[_i]);
3824 log(LOG_DEBUG, "\n");
3825 #endif
3826
3827 struct wg_peer *wgp = wg_alloc_peer(wg);
3828 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
3829 if (name != NULL)
3830 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
3831
3832 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
3833 if (psk_len != sizeof(wgp->wgp_psk)) {
3834 error = EINVAL;
3835 goto out;
3836 }
3837 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
3838 }
3839
3840 struct sockaddr_storage sockaddr;
3841 const void *addr;
3842 size_t addr_len;
3843
3844 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
3845 goto skip_endpoint;
3846 memcpy(&sockaddr, addr, addr_len);
3847 switch (sockaddr.ss_family) {
3848 case AF_INET: {
3849 struct sockaddr_in sin;
3850 sockaddr_copy(sintosa(&sin), sizeof(sin),
3851 (const struct sockaddr *)&sockaddr);
3852 sockaddr_copy(sintosa(&wgp->wgp_sin),
3853 sizeof(wgp->wgp_sin), (const struct sockaddr *)&sockaddr);
3854 char addrstr[128];
3855 sockaddr_format(sintosa(&sin), addrstr, sizeof(addrstr));
3856 WG_DLOG("addr=%s\n", addrstr);
3857 break;
3858 }
3859 #ifdef INET6
3860 case AF_INET6: {
3861 struct sockaddr_in6 sin6;
3862 char addrstr[128];
3863 sockaddr_copy(sintosa(&sin6), sizeof(sin6),
3864 (const struct sockaddr *)&sockaddr);
3865 sockaddr_format(sintosa(&sin6), addrstr, sizeof(addrstr));
3866 WG_DLOG("addr=%s\n", addrstr);
3867 sockaddr_copy(sin6tosa(&wgp->wgp_sin6),
3868 sizeof(wgp->wgp_sin6), (const struct sockaddr *)&sockaddr);
3869 break;
3870 }
3871 #endif
3872 default:
3873 break;
3874 }
3875 wgp->wgp_endpoint_available = true;
3876
3877 prop_array_t allowedips;
3878 skip_endpoint:
3879 allowedips = prop_dictionary_get(peer, "allowedips");
3880 if (allowedips == NULL)
3881 goto skip;
3882
3883 prop_object_iterator_t _it = prop_array_iterator(allowedips);
3884 prop_dictionary_t prop_allowedip;
3885 int j = 0;
3886 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
3887 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
3888
3889 if (!prop_dictionary_get_int(prop_allowedip, "family",
3890 &wga->wga_family))
3891 continue;
3892 if (!prop_dictionary_get_data(prop_allowedip, "ip",
3893 &addr, &addr_len))
3894 continue;
3895 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
3896 &wga->wga_cidr))
3897 continue;
3898
3899 switch (wga->wga_family) {
3900 case AF_INET: {
3901 struct sockaddr_in sin;
3902 char addrstr[128];
3903 struct in_addr mask;
3904 struct sockaddr_in sin_mask;
3905
3906 if (addr_len != sizeof(struct in_addr))
3907 return EINVAL;
3908 memcpy(&wga->wga_addr4, addr, addr_len);
3909
3910 sockaddr_in_init(&sin, (const struct in_addr *)addr,
3911 0);
3912 sockaddr_copy(&wga->wga_sa_addr,
3913 sizeof(sin), sintosa(&sin));
3914
3915 sockaddr_format(sintosa(&sin),
3916 addrstr, sizeof(addrstr));
3917 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
3918
3919 in_len2mask(&mask, wga->wga_cidr);
3920 sockaddr_in_init(&sin_mask, &mask, 0);
3921 sockaddr_copy(&wga->wga_sa_mask,
3922 sizeof(sin_mask), sintosa(&sin_mask));
3923
3924 break;
3925 }
3926 #ifdef INET6
3927 case AF_INET6: {
3928 struct sockaddr_in6 sin6;
3929 char addrstr[128];
3930 struct in6_addr mask;
3931 struct sockaddr_in6 sin6_mask;
3932
3933 if (addr_len != sizeof(struct in6_addr))
3934 return EINVAL;
3935 memcpy(&wga->wga_addr6, addr, addr_len);
3936
3937 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
3938 0, 0, 0);
3939 sockaddr_copy(&wga->wga_sa_addr,
3940 sizeof(sin6), sin6tosa(&sin6));
3941
3942 sockaddr_format(sin6tosa(&sin6),
3943 addrstr, sizeof(addrstr));
3944 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
3945
3946 in6_prefixlen2mask(&mask, wga->wga_cidr);
3947 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
3948 sockaddr_copy(&wga->wga_sa_mask,
3949 sizeof(sin6_mask), sin6tosa(&sin6_mask));
3950
3951 break;
3952 }
3953 #endif
3954 default:
3955 error = EINVAL;
3956 goto out;
3957 }
3958 wga->wga_peer = wgp;
3959
3960 error = wg_rtable_add_route(wg, wga);
3961 if (error != 0)
3962 goto out;
3963
3964 j++;
3965 }
3966 wgp->wgp_n_allowedips = j;
3967 skip:
3968 *wgpp = wgp;
3969 out:
3970 return error;
3971 }
3972
3973 static int
3974 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
3975 {
3976 int error;
3977 char *buf;
3978
3979 WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
3980 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
3981 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
3982 if (error != 0)
3983 return error;
3984 buf[ifd->ifd_len] = '\0';
3985 #ifdef WG_DEBUG_DUMP
3986 for (int i = 0; i < ifd->ifd_len; i++)
3987 log(LOG_DEBUG, "%c", buf[i]);
3988 log(LOG_DEBUG, "\n");
3989 #endif
3990 *_buf = buf;
3991 return 0;
3992 }
3993
3994 static int
3995 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
3996 {
3997 int error;
3998 prop_dictionary_t prop_dict;
3999 char *buf = NULL;
4000 const void *privkey;
4001 size_t privkey_len;
4002
4003 error = wg_alloc_prop_buf(&buf, ifd);
4004 if (error != 0)
4005 return error;
4006 error = EINVAL;
4007 prop_dict = prop_dictionary_internalize(buf);
4008 if (prop_dict == NULL)
4009 goto out;
4010 if (!prop_dictionary_get_data(prop_dict, "private_key",
4011 &privkey, &privkey_len))
4012 goto out;
4013 #ifdef WG_DEBUG_DUMP
4014 log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n", privkey, privkey_len);
4015 for (int i = 0; i < privkey_len; i++)
4016 log(LOG_DEBUG, "%c", ((const char *)privkey)[i]);
4017 log(LOG_DEBUG, "\n");
4018 #endif
4019 if (privkey_len != WG_STATIC_KEY_LEN)
4020 goto out;
4021 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4022 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4023 error = 0;
4024
4025 out:
4026 kmem_free(buf, ifd->ifd_len + 1);
4027 return error;
4028 }
4029
4030 static int
4031 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4032 {
4033 int error;
4034 prop_dictionary_t prop_dict;
4035 char *buf = NULL;
4036 uint16_t port;
4037
4038 error = wg_alloc_prop_buf(&buf, ifd);
4039 if (error != 0)
4040 return error;
4041 error = EINVAL;
4042 prop_dict = prop_dictionary_internalize(buf);
4043 if (prop_dict == NULL)
4044 goto out;
4045 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4046 goto out;
4047
4048 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4049
4050 out:
4051 kmem_free(buf, ifd->ifd_len + 1);
4052 return error;
4053 }
4054
4055 static int
4056 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4057 {
4058 int error;
4059 prop_dictionary_t prop_dict;
4060 char *buf = NULL;
4061 struct wg_peer *wgp = NULL;
4062
4063 error = wg_alloc_prop_buf(&buf, ifd);
4064 if (error != 0)
4065 return error;
4066 error = EINVAL;
4067 prop_dict = prop_dictionary_internalize(buf);
4068 if (prop_dict == NULL)
4069 goto out;
4070
4071 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4072 if (error != 0)
4073 goto out;
4074
4075 mutex_enter(wg->wg_lock);
4076 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4077 wg->wg_npeers++;
4078 mutex_exit(wg->wg_lock);
4079
4080 out:
4081 kmem_free(buf, ifd->ifd_len + 1);
4082 return error;
4083 }
4084
4085 static int
4086 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4087 {
4088 int error;
4089 prop_dictionary_t prop_dict;
4090 char *buf = NULL;
4091 const char *name;
4092
4093 error = wg_alloc_prop_buf(&buf, ifd);
4094 if (error != 0)
4095 return error;
4096 error = EINVAL;
4097 prop_dict = prop_dictionary_internalize(buf);
4098 if (prop_dict == NULL)
4099 goto out;
4100
4101 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4102 goto out;
4103 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4104 goto out;
4105
4106 error = wg_destroy_peer_name(wg, name);
4107 out:
4108 kmem_free(buf, ifd->ifd_len + 1);
4109 return error;
4110 }
4111
4112 static int
4113 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4114 {
4115 int error = ENOMEM;
4116 prop_dictionary_t prop_dict;
4117 prop_array_t peers = NULL;
4118 char *buf;
4119 struct wg_peer *wgp;
4120 int s, i;
4121
4122 prop_dict = prop_dictionary_create();
4123 if (prop_dict == NULL)
4124 goto error;
4125
4126 if (!prop_dictionary_set_data(prop_dict, "private_key", wg->wg_privkey,
4127 WG_STATIC_KEY_LEN))
4128 goto error;
4129
4130 if (wg->wg_listen_port != 0) {
4131 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4132 wg->wg_listen_port))
4133 goto error;
4134 }
4135
4136 if (wg->wg_npeers == 0)
4137 goto skip_peers;
4138
4139 peers = prop_array_create();
4140 if (peers == NULL)
4141 goto error;
4142
4143 s = pserialize_read_enter();
4144 i = 0;
4145 WG_PEER_READER_FOREACH(wgp, wg) {
4146 struct psref psref;
4147 prop_dictionary_t prop_peer;
4148
4149 wg_get_peer(wgp, &psref);
4150 pserialize_read_exit(s);
4151
4152 prop_peer = prop_dictionary_create();
4153 if (prop_peer == NULL)
4154 goto next;
4155
4156 if (strlen(wgp->wgp_name) > 0) {
4157 if (!prop_dictionary_set_string(prop_peer, "name",
4158 wgp->wgp_name))
4159 goto next;
4160 }
4161
4162 if (!prop_dictionary_set_data(prop_peer, "public_key",
4163 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4164 goto next;
4165
4166 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4167 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4168 sizeof(wgp->wgp_psk))) {
4169 if (!prop_dictionary_set_data(prop_peer,
4170 "preshared_key",
4171 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4172 goto next;
4173 }
4174
4175 switch (wgp->wgp_sa.sa_family) {
4176 case AF_INET:
4177 if (!prop_dictionary_set_data(prop_peer, "endpoint",
4178 &wgp->wgp_sin, sizeof(wgp->wgp_sin)))
4179 goto next;
4180 break;
4181 #ifdef INET6
4182 case AF_INET6:
4183 if (!prop_dictionary_set_data(prop_peer, "endpoint",
4184 &wgp->wgp_sin6, sizeof(wgp->wgp_sin6)))
4185 goto next;
4186 break;
4187 #endif
4188 }
4189
4190 const struct timespec *t = &wgp->wgp_last_handshake_time;
4191
4192 if (!prop_dictionary_set_uint64(prop_peer,
4193 "last_handshake_time_sec", t->tv_sec))
4194 goto next;
4195 if (!prop_dictionary_set_uint32(prop_peer,
4196 "last_handshake_time_nsec", t->tv_nsec))
4197 goto next;
4198
4199 if (wgp->wgp_n_allowedips == 0)
4200 goto skip_allowedips;
4201
4202 prop_array_t allowedips = prop_array_create();
4203 if (allowedips == NULL)
4204 goto next;
4205 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4206 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4207 prop_dictionary_t prop_allowedip;
4208
4209 prop_allowedip = prop_dictionary_create();
4210 if (prop_allowedip == NULL)
4211 break;
4212
4213 if (!prop_dictionary_set_int(prop_allowedip, "family",
4214 wga->wga_family))
4215 goto _next;
4216 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4217 wga->wga_cidr))
4218 goto _next;
4219
4220 switch (wga->wga_family) {
4221 case AF_INET:
4222 if (!prop_dictionary_set_data(prop_allowedip,
4223 "ip", &wga->wga_addr4,
4224 sizeof(wga->wga_addr4)))
4225 goto _next;
4226 break;
4227 #ifdef INET6
4228 case AF_INET6:
4229 if (!prop_dictionary_set_data(prop_allowedip,
4230 "ip", &wga->wga_addr6,
4231 sizeof(wga->wga_addr6)))
4232 goto _next;
4233 break;
4234 #endif
4235 default:
4236 break;
4237 }
4238 prop_array_set(allowedips, j, prop_allowedip);
4239 _next:
4240 prop_object_release(prop_allowedip);
4241 }
4242 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4243 prop_object_release(allowedips);
4244
4245 skip_allowedips:
4246
4247 prop_array_set(peers, i, prop_peer);
4248 next:
4249 if (prop_peer)
4250 prop_object_release(prop_peer);
4251 i++;
4252
4253 s = pserialize_read_enter();
4254 wg_put_peer(wgp, &psref);
4255 }
4256 pserialize_read_exit(s);
4257
4258 prop_dictionary_set(prop_dict, "peers", peers);
4259 prop_object_release(peers);
4260 peers = NULL;
4261
4262 skip_peers:
4263 buf = prop_dictionary_externalize(prop_dict);
4264 if (buf == NULL)
4265 goto error;
4266 if (ifd->ifd_len < (strlen(buf) + 1)) {
4267 error = EINVAL;
4268 goto error;
4269 }
4270 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4271
4272 free(buf, 0);
4273 error:
4274 if (peers != NULL)
4275 prop_object_release(peers);
4276 if (prop_dict != NULL)
4277 prop_object_release(prop_dict);
4278
4279 return error;
4280 }
4281
4282 static int
4283 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4284 {
4285 struct wg_softc *wg = ifp->if_softc;
4286 struct ifreq *ifr = data;
4287 struct ifaddr *ifa = data;
4288 struct ifdrv *ifd = data;
4289 int error = 0;
4290
4291 switch (cmd) {
4292 case SIOCINITIFADDR:
4293 if (ifa->ifa_addr->sa_family != AF_LINK &&
4294 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
4295 (IFF_UP | IFF_RUNNING)) {
4296 ifp->if_flags |= IFF_UP;
4297 error = ifp->if_init(ifp);
4298 }
4299 return error;
4300 case SIOCADDMULTI:
4301 case SIOCDELMULTI:
4302 switch (ifr->ifr_addr.sa_family) {
4303 case AF_INET: /* IP supports Multicast */
4304 break;
4305 #ifdef INET6
4306 case AF_INET6: /* IP6 supports Multicast */
4307 break;
4308 #endif
4309 default: /* Other protocols doesn't support Multicast */
4310 error = EAFNOSUPPORT;
4311 break;
4312 }
4313 return error;
4314 case SIOCSDRVSPEC:
4315 switch (ifd->ifd_cmd) {
4316 case WG_IOCTL_SET_PRIVATE_KEY:
4317 error = wg_ioctl_set_private_key(wg, ifd);
4318 break;
4319 case WG_IOCTL_SET_LISTEN_PORT:
4320 error = wg_ioctl_set_listen_port(wg, ifd);
4321 break;
4322 case WG_IOCTL_ADD_PEER:
4323 error = wg_ioctl_add_peer(wg, ifd);
4324 break;
4325 case WG_IOCTL_DELETE_PEER:
4326 error = wg_ioctl_delete_peer(wg, ifd);
4327 break;
4328 default:
4329 error = EINVAL;
4330 break;
4331 }
4332 return error;
4333 case SIOCGDRVSPEC:
4334 return wg_ioctl_get(wg, ifd);
4335 case SIOCSIFFLAGS:
4336 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
4337 break;
4338 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4339 case IFF_RUNNING:
4340 /*
4341 * If interface is marked down and it is running,
4342 * then stop and disable it.
4343 */
4344 (*ifp->if_stop)(ifp, 1);
4345 break;
4346 case IFF_UP:
4347 /*
4348 * If interface is marked up and it is stopped, then
4349 * start it.
4350 */
4351 error = (*ifp->if_init)(ifp);
4352 break;
4353 default:
4354 break;
4355 }
4356 return error;
4357 #ifdef WG_RUMPKERNEL
4358 case SIOCSLINKSTR:
4359 error = wg_ioctl_linkstr(wg, ifd);
4360 if (error == 0)
4361 wg->wg_ops = &wg_ops_rumpuser;
4362 return error;
4363 #endif
4364 default:
4365 break;
4366 }
4367
4368 error = ifioctl_common(ifp, cmd, data);
4369
4370 #ifdef WG_RUMPKERNEL
4371 if (!wg_user_mode(wg))
4372 return error;
4373
4374 /* Do the same to the corresponding tun device on the host */
4375 /*
4376 * XXX Actually the command has not been handled yet. It
4377 * will be handled via pr_ioctl form doifioctl later.
4378 */
4379 switch (cmd) {
4380 case SIOCAIFADDR:
4381 case SIOCDIFADDR: {
4382 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
4383 struct in_aliasreq *ifra = &_ifra;
4384 KASSERT(error == ENOTTY);
4385 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4386 IFNAMSIZ);
4387 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
4388 if (error == 0)
4389 error = ENOTTY;
4390 break;
4391 }
4392 #ifdef INET6
4393 case SIOCAIFADDR_IN6:
4394 case SIOCDIFADDR_IN6: {
4395 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
4396 struct in6_aliasreq *ifra = &_ifra;
4397 KASSERT(error == ENOTTY);
4398 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4399 IFNAMSIZ);
4400 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
4401 if (error == 0)
4402 error = ENOTTY;
4403 break;
4404 }
4405 #endif
4406 }
4407 #endif /* WG_RUMPKERNEL */
4408
4409 return error;
4410 }
4411
4412 static int
4413 wg_init(struct ifnet *ifp)
4414 {
4415
4416 ifp->if_flags |= IFF_RUNNING;
4417
4418 /* TODO flush pending packets. */
4419 return 0;
4420 }
4421
4422 static void
4423 wg_stop(struct ifnet *ifp, int disable)
4424 {
4425
4426 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
4427 ifp->if_flags &= ~IFF_RUNNING;
4428
4429 /* Need to do something? */
4430 }
4431
4432 #ifdef WG_DEBUG_PARAMS
4433 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
4434 {
4435 const struct sysctlnode *node = NULL;
4436
4437 sysctl_createv(clog, 0, NULL, &node,
4438 CTLFLAG_PERMANENT,
4439 CTLTYPE_NODE, "wg",
4440 SYSCTL_DESCR("wg(4)"),
4441 NULL, 0, NULL, 0,
4442 CTL_NET, CTL_CREATE, CTL_EOL);
4443 sysctl_createv(clog, 0, &node, NULL,
4444 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4445 CTLTYPE_QUAD, "rekey_after_messages",
4446 SYSCTL_DESCR("session liftime by messages"),
4447 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
4448 sysctl_createv(clog, 0, &node, NULL,
4449 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4450 CTLTYPE_INT, "rekey_after_time",
4451 SYSCTL_DESCR("session liftime"),
4452 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
4453 sysctl_createv(clog, 0, &node, NULL,
4454 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4455 CTLTYPE_INT, "rekey_timeout",
4456 SYSCTL_DESCR("session handshake retry time"),
4457 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
4458 sysctl_createv(clog, 0, &node, NULL,
4459 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4460 CTLTYPE_INT, "rekey_attempt_time",
4461 SYSCTL_DESCR("session handshake timeout"),
4462 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
4463 sysctl_createv(clog, 0, &node, NULL,
4464 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4465 CTLTYPE_INT, "keepalive_timeout",
4466 SYSCTL_DESCR("keepalive timeout"),
4467 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
4468 sysctl_createv(clog, 0, &node, NULL,
4469 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4470 CTLTYPE_BOOL, "force_underload",
4471 SYSCTL_DESCR("force to detemine under load"),
4472 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
4473 }
4474 #endif
4475
4476 #ifdef WG_RUMPKERNEL
4477 static bool
4478 wg_user_mode(struct wg_softc *wg)
4479 {
4480
4481 return wg->wg_user != NULL;
4482 }
4483
4484 static int
4485 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
4486 {
4487 struct ifnet *ifp = &wg->wg_if;
4488 int error;
4489
4490 if (ifp->if_flags & IFF_UP)
4491 return EBUSY;
4492
4493 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
4494 /* XXX do nothing */
4495 return 0;
4496 } else if (ifd->ifd_cmd != 0) {
4497 return EINVAL;
4498 } else if (wg->wg_user != NULL) {
4499 return EBUSY;
4500 }
4501
4502 /* Assume \0 included */
4503 if (ifd->ifd_len > IFNAMSIZ) {
4504 return E2BIG;
4505 } else if (ifd->ifd_len < 1) {
4506 return EINVAL;
4507 }
4508
4509 char tun_name[IFNAMSIZ];
4510 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
4511 if (error != 0)
4512 return error;
4513
4514 if (strncmp(tun_name, "tun", 3) != 0)
4515 return EINVAL;
4516
4517 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
4518
4519 return error;
4520 }
4521
4522 static int
4523 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
4524 {
4525 int error;
4526 struct psref psref;
4527 struct wg_sockaddr *wgsa;
4528 struct wg_softc *wg = wgp->wgp_sc;
4529 struct iovec iov[1];
4530
4531 wgsa = wg_get_endpoint_sa(wgp, &psref);
4532
4533 iov[0].iov_base = mtod(m, void *);
4534 iov[0].iov_len = m->m_len;
4535
4536 /* Send messages to a peer via an ordinary socket. */
4537 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
4538
4539 wg_put_sa(wgp, wgsa, &psref);
4540
4541 return error;
4542 }
4543
4544 static void
4545 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
4546 {
4547 struct wg_softc *wg = ifp->if_softc;
4548 struct iovec iov[2];
4549 struct sockaddr_storage ss;
4550
4551 KASSERT(af == AF_INET || af == AF_INET6);
4552
4553 WG_TRACE("");
4554
4555 if (af == AF_INET) {
4556 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
4557 struct ip *ip;
4558
4559 KASSERT(m->m_len >= sizeof(struct ip));
4560 ip = mtod(m, struct ip *);
4561 sockaddr_in_init(sin, &ip->ip_dst, 0);
4562 } else {
4563 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
4564 struct ip6_hdr *ip6;
4565
4566 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
4567 ip6 = mtod(m, struct ip6_hdr *);
4568 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
4569 }
4570
4571 iov[0].iov_base = &ss;
4572 iov[0].iov_len = ss.ss_len;
4573 iov[1].iov_base = mtod(m, void *);
4574 iov[1].iov_len = m->m_len;
4575
4576 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4577
4578 /* Send decrypted packets to users via a tun. */
4579 rumpuser_wg_send_user(wg->wg_user, iov, 2);
4580 }
4581
4582 static int
4583 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
4584 {
4585 int error;
4586 uint16_t old_port = wg->wg_listen_port;
4587
4588 if (port != 0 && old_port == port)
4589 return 0;
4590
4591 error = rumpuser_wg_sock_bind(wg->wg_user, port);
4592 if (error == 0)
4593 wg->wg_listen_port = port;
4594 return error;
4595 }
4596
4597 /*
4598 * Receive user packets.
4599 */
4600 void
4601 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4602 {
4603 struct ifnet *ifp = &wg->wg_if;
4604 struct mbuf *m;
4605 const struct sockaddr *dst;
4606
4607 WG_TRACE("");
4608
4609 dst = iov[0].iov_base;
4610
4611 m = m_gethdr(M_NOWAIT, MT_DATA);
4612 if (m == NULL)
4613 return;
4614 m->m_len = m->m_pkthdr.len = 0;
4615 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4616
4617 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4618 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4619
4620 (void)wg_output(ifp, m, dst, NULL);
4621 }
4622
4623 /*
4624 * Receive packets from a peer.
4625 */
4626 void
4627 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4628 {
4629 struct mbuf *m;
4630 const struct sockaddr *src;
4631
4632 WG_TRACE("");
4633
4634 src = iov[0].iov_base;
4635
4636 m = m_gethdr(M_NOWAIT, MT_DATA);
4637 if (m == NULL)
4638 return;
4639 m->m_len = m->m_pkthdr.len = 0;
4640 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4641
4642 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4643 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4644
4645 wg_handle_packet(wg, m, src);
4646 }
4647 #endif /* WG_RUMPKERNEL */
4648
4649 /*
4650 * Module infrastructure
4651 */
4652 #include "if_module.h"
4653
4654 IF_MODULE(MODULE_CLASS_DRIVER, wg, "")
4655