if_wg.c revision 1.41 1 /* $NetBSD: if_wg.c,v 1.41 2020/08/31 20:25:33 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.41 2020/08/31 20:25:33 riastradh Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_inet.h"
48 #endif
49
50 #include <sys/param.h>
51 #include <sys/types.h>
52
53 #include <sys/atomic.h>
54 #include <sys/callout.h>
55 #include <sys/cprng.h>
56 #include <sys/cpu.h>
57 #include <sys/device.h>
58 #include <sys/domain.h>
59 #include <sys/errno.h>
60 #include <sys/intr.h>
61 #include <sys/ioctl.h>
62 #include <sys/kernel.h>
63 #include <sys/kmem.h>
64 #include <sys/kthread.h>
65 #include <sys/mbuf.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/pcq.h>
69 #include <sys/percpu.h>
70 #include <sys/pserialize.h>
71 #include <sys/psref.h>
72 #include <sys/queue.h>
73 #include <sys/rwlock.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/systm.h>
80 #include <sys/thmap.h>
81 #include <sys/time.h>
82 #include <sys/timespec.h>
83
84 #include <net/bpf.h>
85 #include <net/if.h>
86 #include <net/if_types.h>
87 #include <net/if_wg.h>
88 #include <net/route.h>
89
90 #include <netinet/in.h>
91 #include <netinet/in_pcb.h>
92 #include <netinet/in_var.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_var.h>
95 #include <netinet/udp.h>
96 #include <netinet/udp_var.h>
97
98 #ifdef INET6
99 #include <netinet/ip6.h>
100 #include <netinet6/in6_pcb.h>
101 #include <netinet6/in6_var.h>
102 #include <netinet6/ip6_var.h>
103 #include <netinet6/udp6_var.h>
104 #endif /* INET6 */
105
106 #include <prop/proplib.h>
107
108 #include <crypto/blake2/blake2s.h>
109 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
110 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
111 #include <crypto/sodium/crypto_scalarmult.h>
112
113 #include "ioconf.h"
114
115 #ifdef WG_RUMPKERNEL
116 #include "wg_user.h"
117 #endif
118
119 /*
120 * Data structures
121 * - struct wg_softc is an instance of wg interfaces
122 * - It has a list of peers (struct wg_peer)
123 * - It has a kthread that sends/receives handshake messages and
124 * runs event handlers
125 * - It has its own two routing tables: one is for IPv4 and the other IPv6
126 * - struct wg_peer is a representative of a peer
127 * - It has a softint that is used to send packets over an wg interface
128 * to a peer
129 * - It has a pair of session instances (struct wg_session)
130 * - It has a pair of endpoint instances (struct wg_sockaddr)
131 * - Normally one endpoint is used and the second one is used only on
132 * a peer migration (a change of peer's IP address)
133 * - It has a list of IP addresses and sub networks called allowedips
134 * (struct wg_allowedip)
135 * - A packets sent over a session is allowed if its destination matches
136 * any IP addresses or sub networks of the list
137 * - struct wg_session represents a session of a secure tunnel with a peer
138 * - Two instances of sessions belong to a peer; a stable session and a
139 * unstable session
140 * - A handshake process of a session always starts with a unstable instace
141 * - Once a session is established, its instance becomes stable and the
142 * other becomes unstable instead
143 * - Data messages are always sent via a stable session
144 *
145 * Locking notes:
146 * - wg interfaces (struct wg_softc, wg) is listed in wg_softcs.list and
147 * protected by wg_softcs.lock
148 * - Each wg has a mutex(9) and a rwlock(9)
149 * - The mutex (wg_lock) protects its peer list (wg_peers)
150 * - A peer on the list is also protected by pserialize(9) or psref(9)
151 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
152 * - Each peer (struct wg_peer, wgp) has a mutex
153 * - The mutex (wgp_lock) protects wgp_session_unstable and wgp_state
154 * - Each session (struct wg_session, wgs) has a mutex
155 * - The mutex (wgs_lock) protects its state (wgs_state) and its handshake
156 * states
157 * - wgs_state of a unstable session can be changed while it never be
158 * changed on a stable session, so once get a session instace via
159 * wgp_session_stable we can safely access wgs_state without
160 * holding wgs_lock
161 * - A session is protected by pserialize or psref like wgp
162 * - On a session swap, we must wait for all readers to release a
163 * reference to a stable session before changing wgs_state and
164 * session states
165 *
166 * Lock order: wg_lock -> wgp_lock -> wgs_lock
167 */
168
169
170 #define WGLOG(level, fmt, args...) \
171 log(level, "%s: " fmt, __func__, ##args)
172
173 /* Debug options */
174 #ifdef WG_DEBUG
175 /* Output debug logs */
176 #ifndef WG_DEBUG_LOG
177 #define WG_DEBUG_LOG
178 #endif
179 /* Output trace logs */
180 #ifndef WG_DEBUG_TRACE
181 #define WG_DEBUG_TRACE
182 #endif
183 /* Output hash values, etc. */
184 #ifndef WG_DEBUG_DUMP
185 #define WG_DEBUG_DUMP
186 #endif
187 /* Make some internal parameters configurable for testing and debugging */
188 #ifndef WG_DEBUG_PARAMS
189 #define WG_DEBUG_PARAMS
190 #endif
191 #endif
192
193 #ifdef WG_DEBUG_TRACE
194 #define WG_TRACE(msg) \
195 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
196 #else
197 #define WG_TRACE(msg) __nothing
198 #endif
199
200 #ifdef WG_DEBUG_LOG
201 #define WG_DLOG(fmt, args...) log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
202 #else
203 #define WG_DLOG(fmt, args...) __nothing
204 #endif
205
206 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
207 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
208 &(wgprc)->wgprc_curpps, 1)) { \
209 log(level, fmt, ##args); \
210 } \
211 } while (0)
212
213 #ifdef WG_DEBUG_PARAMS
214 static bool wg_force_underload = false;
215 #endif
216
217 #ifdef WG_DEBUG_DUMP
218
219 #ifdef WG_RUMPKERNEL
220 static void
221 wg_dump_buf(const char *func, const char *buf, const size_t size)
222 {
223
224 log(LOG_DEBUG, "%s: ", func);
225 for (int i = 0; i < size; i++)
226 log(LOG_DEBUG, "%02x ", (int)(0xff & buf[i]));
227 log(LOG_DEBUG, "\n");
228 }
229 #endif
230
231 static void
232 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
233 const size_t size)
234 {
235
236 log(LOG_DEBUG, "%s: %s: ", func, name);
237 for (int i = 0; i < size; i++)
238 log(LOG_DEBUG, "%02x ", (int)(0xff & hash[i]));
239 log(LOG_DEBUG, "\n");
240 }
241
242 #define WG_DUMP_HASH(name, hash) \
243 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
244 #define WG_DUMP_HASH48(name, hash) \
245 wg_dump_hash(__func__, name, hash, 48)
246 #define WG_DUMP_BUF(buf, size) \
247 wg_dump_buf(__func__, buf, size)
248 #else
249 #define WG_DUMP_HASH(name, hash) __nothing
250 #define WG_DUMP_HASH48(name, hash) __nothing
251 #define WG_DUMP_BUF(buf, size) __nothing
252 #endif /* WG_DEBUG_DUMP */
253
254 #define WG_MTU 1420
255 #define WG_ALLOWEDIPS 16
256
257 #define CURVE25519_KEY_LEN 32
258 #define TAI64N_LEN sizeof(uint32_t) * 3
259 #define POLY1305_AUTHTAG_LEN 16
260 #define HMAC_BLOCK_LEN 64
261
262 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
263 /* [N] 4.3: Hash functions */
264 #define NOISE_DHLEN 32
265 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
266 #define NOISE_HASHLEN 32
267 #define NOISE_BLOCKLEN 64
268 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
269 /* [N] 5.1: "k" */
270 #define NOISE_CIPHER_KEY_LEN 32
271 /*
272 * [N] 9.2: "psk"
273 * "... psk is a 32-byte secret value provided by the application."
274 */
275 #define NOISE_PRESHARED_KEY_LEN 32
276
277 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
278 #define WG_TIMESTAMP_LEN TAI64N_LEN
279
280 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
281
282 #define WG_COOKIE_LEN 16
283 #define WG_MAC_LEN 16
284 #define WG_RANDVAL_LEN 24
285
286 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
287 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
288 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
289 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
290 #define WG_HASH_LEN NOISE_HASHLEN
291 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
292 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
293 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
294 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
295 #define WG_DATA_KEY_LEN 32
296 #define WG_SALT_LEN 24
297
298 /*
299 * The protocol messages
300 */
301 struct wg_msg {
302 uint32_t wgm_type;
303 } __packed;
304
305 /* [W] 5.4.2 First Message: Initiator to Responder */
306 struct wg_msg_init {
307 uint32_t wgmi_type;
308 uint32_t wgmi_sender;
309 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
310 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
311 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
312 uint8_t wgmi_mac1[WG_MAC_LEN];
313 uint8_t wgmi_mac2[WG_MAC_LEN];
314 } __packed;
315
316 /* [W] 5.4.3 Second Message: Responder to Initiator */
317 struct wg_msg_resp {
318 uint32_t wgmr_type;
319 uint32_t wgmr_sender;
320 uint32_t wgmr_receiver;
321 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
322 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
323 uint8_t wgmr_mac1[WG_MAC_LEN];
324 uint8_t wgmr_mac2[WG_MAC_LEN];
325 } __packed;
326
327 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
328 struct wg_msg_data {
329 uint32_t wgmd_type;
330 uint32_t wgmd_receiver;
331 uint64_t wgmd_counter;
332 uint32_t wgmd_packet[0];
333 } __packed;
334
335 /* [W] 5.4.7 Under Load: Cookie Reply Message */
336 struct wg_msg_cookie {
337 uint32_t wgmc_type;
338 uint32_t wgmc_receiver;
339 uint8_t wgmc_salt[WG_SALT_LEN];
340 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
341 } __packed;
342
343 #define WG_MSG_TYPE_INIT 1
344 #define WG_MSG_TYPE_RESP 2
345 #define WG_MSG_TYPE_COOKIE 3
346 #define WG_MSG_TYPE_DATA 4
347 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
348
349 /* Sliding windows */
350
351 #define SLIWIN_BITS 2048u
352 #define SLIWIN_TYPE uint32_t
353 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
354 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
355 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
356
357 struct sliwin {
358 SLIWIN_TYPE B[SLIWIN_WORDS];
359 uint64_t T;
360 };
361
362 static void
363 sliwin_reset(struct sliwin *W)
364 {
365
366 memset(W, 0, sizeof(*W));
367 }
368
369 static int
370 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
371 {
372
373 /*
374 * If it's more than one window older than the highest sequence
375 * number we've seen, reject.
376 */
377 #ifdef __HAVE_ATOMIC64_LOADSTORE
378 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
379 return EAUTH;
380 #endif
381
382 /*
383 * Otherwise, we need to take the lock to decide, so don't
384 * reject just yet. Caller must serialize a call to
385 * sliwin_update in this case.
386 */
387 return 0;
388 }
389
390 static int
391 sliwin_update(struct sliwin *W, uint64_t S)
392 {
393 unsigned word, bit;
394
395 /*
396 * If it's more than one window older than the highest sequence
397 * number we've seen, reject.
398 */
399 if (S + SLIWIN_NPKT < W->T)
400 return EAUTH;
401
402 /*
403 * If it's higher than the highest sequence number we've seen,
404 * advance the window.
405 */
406 if (S > W->T) {
407 uint64_t i = W->T / SLIWIN_BPW;
408 uint64_t j = S / SLIWIN_BPW;
409 unsigned k;
410
411 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
412 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
413 #ifdef __HAVE_ATOMIC64_LOADSTORE
414 atomic_store_relaxed(&W->T, S);
415 #else
416 W->T = S;
417 #endif
418 }
419
420 /* Test and set the bit -- if already set, reject. */
421 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
422 bit = S % SLIWIN_BPW;
423 if (W->B[word] & (1UL << bit))
424 return EAUTH;
425 W->B[word] |= 1UL << bit;
426
427 /* Accept! */
428 return 0;
429 }
430
431 struct wg_worker {
432 kmutex_t wgw_lock;
433 kcondvar_t wgw_cv;
434 bool wgw_todie;
435 struct socket *wgw_so4;
436 struct socket *wgw_so6;
437 int wgw_wakeup_reasons;
438 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 __BIT(0)
439 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6 __BIT(1)
440 #define WG_WAKEUP_REASON_PEER __BIT(2)
441 };
442
443 struct wg_session {
444 struct wg_peer *wgs_peer;
445 struct psref_target
446 wgs_psref;
447 kmutex_t *wgs_lock;
448
449 int wgs_state;
450 #define WGS_STATE_UNKNOWN 0
451 #define WGS_STATE_INIT_ACTIVE 1
452 #define WGS_STATE_INIT_PASSIVE 2
453 #define WGS_STATE_ESTABLISHED 3
454 #define WGS_STATE_DESTROYING 4
455
456 time_t wgs_time_established;
457 time_t wgs_time_last_data_sent;
458 bool wgs_is_initiator;
459
460 uint32_t wgs_sender_index;
461 uint32_t wgs_receiver_index;
462 #ifdef __HAVE_ATOMIC64_LOADSTORE
463 volatile uint64_t
464 wgs_send_counter;
465 #else
466 kmutex_t wgs_send_counter_lock;
467 uint64_t wgs_send_counter;
468 #endif
469
470 struct {
471 kmutex_t lock;
472 struct sliwin window;
473 } *wgs_recvwin;
474
475 uint8_t wgs_handshake_hash[WG_HASH_LEN];
476 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
477 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
478 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
479 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
480 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
481 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
482 };
483
484 struct wg_sockaddr {
485 union {
486 struct sockaddr_storage _ss;
487 struct sockaddr _sa;
488 struct sockaddr_in _sin;
489 struct sockaddr_in6 _sin6;
490 };
491 struct psref_target wgsa_psref;
492 };
493
494 #define wgsatosa(wgsa) (&(wgsa)->_sa)
495 #define wgsatosin(wgsa) (&(wgsa)->_sin)
496 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
497
498 struct wg_peer;
499 struct wg_allowedip {
500 struct radix_node wga_nodes[2];
501 struct wg_sockaddr _wga_sa_addr;
502 struct wg_sockaddr _wga_sa_mask;
503 #define wga_sa_addr _wga_sa_addr._sa
504 #define wga_sa_mask _wga_sa_mask._sa
505
506 int wga_family;
507 uint8_t wga_cidr;
508 union {
509 struct in_addr _ip4;
510 struct in6_addr _ip6;
511 } wga_addr;
512 #define wga_addr4 wga_addr._ip4
513 #define wga_addr6 wga_addr._ip6
514
515 struct wg_peer *wga_peer;
516 };
517
518 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
519
520 struct wg_ppsratecheck {
521 struct timeval wgprc_lasttime;
522 int wgprc_curpps;
523 };
524
525 struct wg_softc;
526 struct wg_peer {
527 struct wg_softc *wgp_sc;
528 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
529 struct pslist_entry wgp_peerlist_entry;
530 pserialize_t wgp_psz;
531 struct psref_target wgp_psref;
532 kmutex_t *wgp_lock;
533
534 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
535 struct wg_sockaddr *wgp_endpoint;
536 #define wgp_ss wgp_endpoint->_ss
537 #define wgp_sa wgp_endpoint->_sa
538 #define wgp_sin wgp_endpoint->_sin
539 #define wgp_sin6 wgp_endpoint->_sin6
540 struct wg_sockaddr *wgp_endpoint0;
541 bool wgp_endpoint_changing;
542 bool wgp_endpoint_available;
543
544 /* The preshared key (optional) */
545 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
546
547 int wgp_state;
548 #define WGP_STATE_INIT 0
549 #define WGP_STATE_ESTABLISHED 1
550 #define WGP_STATE_GIVEUP 2
551 #define WGP_STATE_DESTROYING 3
552
553 void *wgp_si;
554 pcq_t *wgp_q;
555
556 struct wg_session *wgp_session_stable;
557 struct wg_session *wgp_session_unstable;
558
559 /* timestamp in big-endian */
560 wg_timestamp_t wgp_timestamp_latest_init;
561
562 struct timespec wgp_last_handshake_time;
563
564 callout_t wgp_rekey_timer;
565 callout_t wgp_handshake_timeout_timer;
566 callout_t wgp_session_dtor_timer;
567
568 time_t wgp_handshake_start_time;
569
570 int wgp_n_allowedips;
571 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
572
573 time_t wgp_latest_cookie_time;
574 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
575 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
576 bool wgp_last_sent_mac1_valid;
577 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
578 bool wgp_last_sent_cookie_valid;
579
580 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
581
582 time_t wgp_last_genrandval_time;
583 uint32_t wgp_randval;
584
585 struct wg_ppsratecheck wgp_ppsratecheck;
586
587 volatile unsigned int wgp_tasks;
588 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
589 #define WGP_TASK_ENDPOINT_CHANGED __BIT(1)
590 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(2)
591 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(3)
592 };
593
594 struct wg_ops;
595
596 struct wg_softc {
597 struct ifnet wg_if;
598 LIST_ENTRY(wg_softc) wg_list;
599 kmutex_t *wg_lock;
600 krwlock_t *wg_rwlock;
601
602 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
603 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
604
605 int wg_npeers;
606 struct pslist_head wg_peers;
607 struct thmap *wg_peers_bypubkey;
608 struct thmap *wg_peers_byname;
609 struct thmap *wg_sessions_byindex;
610 uint16_t wg_listen_port;
611
612 struct wg_worker *wg_worker;
613 lwp_t *wg_worker_lwp;
614
615 struct radix_node_head *wg_rtable_ipv4;
616 struct radix_node_head *wg_rtable_ipv6;
617
618 struct wg_ppsratecheck wg_ppsratecheck;
619
620 struct wg_ops *wg_ops;
621
622 #ifdef WG_RUMPKERNEL
623 struct wg_user *wg_user;
624 #endif
625 };
626
627 /* [W] 6.1 Preliminaries */
628 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
629 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
630 #define WG_REKEY_AFTER_TIME 120
631 #define WG_REJECT_AFTER_TIME 180
632 #define WG_REKEY_ATTEMPT_TIME 90
633 #define WG_REKEY_TIMEOUT 5
634 #define WG_KEEPALIVE_TIMEOUT 10
635
636 #define WG_COOKIE_TIME 120
637 #define WG_RANDVAL_TIME (2 * 60)
638
639 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
640 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
641 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
642 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
643 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
644 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
645 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
646
647 static struct mbuf *
648 wg_get_mbuf(size_t, size_t);
649
650 static void wg_wakeup_worker(struct wg_worker *, int);
651
652 static int wg_send_data_msg(struct wg_peer *, struct wg_session *,
653 struct mbuf *);
654 static int wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
655 const uint32_t, const uint8_t [], const struct sockaddr *);
656 static int wg_send_handshake_msg_resp(struct wg_softc *,
657 struct wg_peer *, const struct wg_msg_init *);
658 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
659
660 static struct wg_peer *
661 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
662 struct psref *);
663 static struct wg_peer *
664 wg_lookup_peer_by_pubkey(struct wg_softc *,
665 const uint8_t [], struct psref *);
666
667 static struct wg_session *
668 wg_lookup_session_by_index(struct wg_softc *,
669 const uint32_t, struct psref *);
670
671 static void wg_update_endpoint_if_necessary(struct wg_peer *,
672 const struct sockaddr *);
673
674 static void wg_schedule_rekey_timer(struct wg_peer *);
675 static void wg_schedule_session_dtor_timer(struct wg_peer *);
676
677 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
678 static void wg_calculate_keys(struct wg_session *, const bool);
679
680 static void wg_clear_states(struct wg_session *);
681
682 static void wg_get_peer(struct wg_peer *, struct psref *);
683 static void wg_put_peer(struct wg_peer *, struct psref *);
684
685 static int wg_send_so(struct wg_peer *, struct mbuf *);
686 static int wg_send_udp(struct wg_peer *, struct mbuf *);
687 static int wg_output(struct ifnet *, struct mbuf *,
688 const struct sockaddr *, const struct rtentry *);
689 static void wg_input(struct ifnet *, struct mbuf *, const int);
690 static int wg_ioctl(struct ifnet *, u_long, void *);
691 static int wg_bind_port(struct wg_softc *, const uint16_t);
692 static int wg_init(struct ifnet *);
693 static void wg_stop(struct ifnet *, int);
694
695 static int wg_clone_create(struct if_clone *, int);
696 static int wg_clone_destroy(struct ifnet *);
697
698 struct wg_ops {
699 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
700 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
701 void (*input)(struct ifnet *, struct mbuf *, const int);
702 int (*bind_port)(struct wg_softc *, const uint16_t);
703 };
704
705 struct wg_ops wg_ops_rumpkernel = {
706 .send_hs_msg = wg_send_so,
707 .send_data_msg = wg_send_udp,
708 .input = wg_input,
709 .bind_port = wg_bind_port,
710 };
711
712 #ifdef WG_RUMPKERNEL
713 static bool wg_user_mode(struct wg_softc *);
714 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
715
716 static int wg_send_user(struct wg_peer *, struct mbuf *);
717 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
718 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
719
720 struct wg_ops wg_ops_rumpuser = {
721 .send_hs_msg = wg_send_user,
722 .send_data_msg = wg_send_user,
723 .input = wg_input_user,
724 .bind_port = wg_bind_port_user,
725 };
726 #endif
727
728 #define WG_PEER_READER_FOREACH(wgp, wg) \
729 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
730 wgp_peerlist_entry)
731 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
732 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
733 wgp_peerlist_entry)
734 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
735 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
736 #define WG_PEER_WRITER_REMOVE(wgp) \
737 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
738
739 struct wg_route {
740 struct radix_node wgr_nodes[2];
741 struct wg_peer *wgr_peer;
742 };
743
744 static struct radix_node_head *
745 wg_rnh(struct wg_softc *wg, const int family)
746 {
747
748 switch (family) {
749 case AF_INET:
750 return wg->wg_rtable_ipv4;
751 #ifdef INET6
752 case AF_INET6:
753 return wg->wg_rtable_ipv6;
754 #endif
755 default:
756 return NULL;
757 }
758 }
759
760
761 /*
762 * Global variables
763 */
764 LIST_HEAD(wg_sclist, wg_softc);
765 static struct {
766 struct wg_sclist list;
767 kmutex_t lock;
768 } wg_softcs __cacheline_aligned;
769
770 struct psref_class *wg_psref_class __read_mostly;
771
772 static struct if_clone wg_cloner =
773 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
774
775
776 void wgattach(int);
777 /* ARGSUSED */
778 void
779 wgattach(int count)
780 {
781 /*
782 * Nothing to do here, initialization is handled by the
783 * module initialization code in wginit() below).
784 */
785 }
786
787 static void
788 wginit(void)
789 {
790
791 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
792
793 mutex_init(&wg_softcs.lock, MUTEX_DEFAULT, IPL_NONE);
794 LIST_INIT(&wg_softcs.list);
795 if_clone_attach(&wg_cloner);
796 }
797
798 static int
799 wgdetach(void)
800 {
801 int error = 0;
802
803 mutex_enter(&wg_softcs.lock);
804 if (!LIST_EMPTY(&wg_softcs.list)) {
805 mutex_exit(&wg_softcs.lock);
806 error = EBUSY;
807 }
808
809 if (error == 0) {
810 psref_class_destroy(wg_psref_class);
811
812 if_clone_detach(&wg_cloner);
813 }
814
815 return error;
816 }
817
818 static void
819 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
820 uint8_t hash[WG_HASH_LEN])
821 {
822 /* [W] 5.4: CONSTRUCTION */
823 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
824 /* [W] 5.4: IDENTIFIER */
825 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
826 struct blake2s state;
827
828 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
829 signature, strlen(signature));
830
831 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
832 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
833
834 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
835 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
836 blake2s_update(&state, id, strlen(id));
837 blake2s_final(&state, hash);
838
839 WG_DUMP_HASH("ckey", ckey);
840 WG_DUMP_HASH("hash", hash);
841 }
842
843 static void
844 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
845 const size_t inputsize)
846 {
847 struct blake2s state;
848
849 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
850 blake2s_update(&state, hash, WG_HASH_LEN);
851 blake2s_update(&state, input, inputsize);
852 blake2s_final(&state, hash);
853 }
854
855 static void
856 wg_algo_mac(uint8_t out[], const size_t outsize,
857 const uint8_t key[], const size_t keylen,
858 const uint8_t input1[], const size_t input1len,
859 const uint8_t input2[], const size_t input2len)
860 {
861 struct blake2s state;
862
863 blake2s_init(&state, outsize, key, keylen);
864
865 blake2s_update(&state, input1, input1len);
866 if (input2 != NULL)
867 blake2s_update(&state, input2, input2len);
868 blake2s_final(&state, out);
869 }
870
871 static void
872 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
873 const uint8_t input1[], const size_t input1len,
874 const uint8_t input2[], const size_t input2len)
875 {
876 struct blake2s state;
877 /* [W] 5.4: LABEL-MAC1 */
878 const char *label = "mac1----";
879 uint8_t key[WG_HASH_LEN];
880
881 blake2s_init(&state, sizeof(key), NULL, 0);
882 blake2s_update(&state, label, strlen(label));
883 blake2s_update(&state, input1, input1len);
884 blake2s_final(&state, key);
885
886 blake2s_init(&state, outsize, key, sizeof(key));
887 if (input2 != NULL)
888 blake2s_update(&state, input2, input2len);
889 blake2s_final(&state, out);
890 }
891
892 static void
893 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
894 const uint8_t input1[], const size_t input1len)
895 {
896 struct blake2s state;
897 /* [W] 5.4: LABEL-COOKIE */
898 const char *label = "cookie--";
899
900 blake2s_init(&state, outsize, NULL, 0);
901 blake2s_update(&state, label, strlen(label));
902 blake2s_update(&state, input1, input1len);
903 blake2s_final(&state, out);
904 }
905
906 static void
907 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
908 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
909 {
910
911 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
912
913 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
914 crypto_scalarmult_base(pubkey, privkey);
915 }
916
917 static void
918 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
919 const uint8_t privkey[WG_STATIC_KEY_LEN],
920 const uint8_t pubkey[WG_STATIC_KEY_LEN])
921 {
922
923 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
924
925 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
926 KASSERT(ret == 0);
927 }
928
929 static void
930 wg_algo_hmac(uint8_t out[], const size_t outlen,
931 const uint8_t key[], const size_t keylen,
932 const uint8_t in[], const size_t inlen)
933 {
934 #define IPAD 0x36
935 #define OPAD 0x5c
936 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
937 uint8_t ipad[HMAC_BLOCK_LEN];
938 uint8_t opad[HMAC_BLOCK_LEN];
939 int i;
940 struct blake2s state;
941
942 KASSERT(outlen == WG_HASH_LEN);
943 KASSERT(keylen <= HMAC_BLOCK_LEN);
944
945 memcpy(hmackey, key, keylen);
946
947 for (i = 0; i < sizeof(hmackey); i++) {
948 ipad[i] = hmackey[i] ^ IPAD;
949 opad[i] = hmackey[i] ^ OPAD;
950 }
951
952 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
953 blake2s_update(&state, ipad, sizeof(ipad));
954 blake2s_update(&state, in, inlen);
955 blake2s_final(&state, out);
956
957 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
958 blake2s_update(&state, opad, sizeof(opad));
959 blake2s_update(&state, out, WG_HASH_LEN);
960 blake2s_final(&state, out);
961 #undef IPAD
962 #undef OPAD
963 }
964
965 static void
966 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
967 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
968 const uint8_t input[], const size_t inputlen)
969 {
970 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
971 uint8_t one[1];
972
973 /*
974 * [N] 4.3: "an input_key_material byte sequence with length
975 * either zero bytes, 32 bytes, or DHLEN bytes."
976 */
977 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
978
979 WG_DUMP_HASH("ckey", ckey);
980 if (input != NULL)
981 WG_DUMP_HASH("input", input);
982 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
983 input, inputlen);
984 WG_DUMP_HASH("tmp1", tmp1);
985 one[0] = 1;
986 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
987 one, sizeof(one));
988 WG_DUMP_HASH("out1", out1);
989 if (out2 == NULL)
990 return;
991 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
992 tmp2[WG_KDF_OUTPUT_LEN] = 2;
993 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
994 tmp2, sizeof(tmp2));
995 WG_DUMP_HASH("out2", out2);
996 if (out3 == NULL)
997 return;
998 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
999 tmp2[WG_KDF_OUTPUT_LEN] = 3;
1000 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1001 tmp2, sizeof(tmp2));
1002 WG_DUMP_HASH("out3", out3);
1003 }
1004
1005 static void
1006 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
1007 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1008 const uint8_t local_key[WG_STATIC_KEY_LEN],
1009 const uint8_t remote_key[WG_STATIC_KEY_LEN])
1010 {
1011 uint8_t dhout[WG_DH_OUTPUT_LEN];
1012
1013 wg_algo_dh(dhout, local_key, remote_key);
1014 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1015
1016 WG_DUMP_HASH("dhout", dhout);
1017 WG_DUMP_HASH("ckey", ckey);
1018 if (cipher_key != NULL)
1019 WG_DUMP_HASH("cipher_key", cipher_key);
1020 }
1021
1022 static void
1023 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1024 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1025 const uint8_t auth[], size_t authlen)
1026 {
1027 uint8_t nonce[(32 + 64) / 8] = {0};
1028 long long unsigned int outsize;
1029 int error __diagused;
1030
1031 le64enc(&nonce[4], counter);
1032
1033 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1034 plainsize, auth, authlen, NULL, nonce, key);
1035 KASSERT(error == 0);
1036 KASSERT(outsize == expected_outsize);
1037 }
1038
1039 static int
1040 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1041 const uint64_t counter, const uint8_t encrypted[],
1042 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1043 {
1044 uint8_t nonce[(32 + 64) / 8] = {0};
1045 long long unsigned int outsize;
1046 int error;
1047
1048 le64enc(&nonce[4], counter);
1049
1050 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1051 encrypted, encryptedsize, auth, authlen, nonce, key);
1052 if (error == 0)
1053 KASSERT(outsize == expected_outsize);
1054 return error;
1055 }
1056
1057 static void
1058 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1059 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1060 const uint8_t auth[], size_t authlen,
1061 const uint8_t nonce[WG_SALT_LEN])
1062 {
1063 long long unsigned int outsize;
1064 int error __diagused;
1065
1066 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1067 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1068 plain, plainsize, auth, authlen, NULL, nonce, key);
1069 KASSERT(error == 0);
1070 KASSERT(outsize == expected_outsize);
1071 }
1072
1073 static int
1074 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1075 const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
1076 const uint8_t auth[], size_t authlen,
1077 const uint8_t nonce[WG_SALT_LEN])
1078 {
1079 long long unsigned int outsize;
1080 int error;
1081
1082 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1083 encrypted, encryptedsize, auth, authlen, nonce, key);
1084 if (error == 0)
1085 KASSERT(outsize == expected_outsize);
1086 return error;
1087 }
1088
1089 static void
1090 wg_algo_tai64n(wg_timestamp_t timestamp)
1091 {
1092 struct timespec ts;
1093
1094 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1095 getnanotime(&ts);
1096 /* TAI64 label in external TAI64 format */
1097 be32enc(timestamp, 0x40000000UL + (ts.tv_sec >> 32));
1098 /* second beginning from 1970 TAI */
1099 be32enc(timestamp + 4, ts.tv_sec & 0xffffffffU);
1100 /* nanosecond in big-endian format */
1101 be32enc(timestamp + 8, ts.tv_nsec);
1102 }
1103
1104 static struct wg_session *
1105 wg_get_unstable_session(struct wg_peer *wgp, struct psref *psref)
1106 {
1107 int s;
1108 struct wg_session *wgs;
1109
1110 s = pserialize_read_enter();
1111 wgs = wgp->wgp_session_unstable;
1112 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1113 pserialize_read_exit(s);
1114 return wgs;
1115 }
1116
1117 static struct wg_session *
1118 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1119 {
1120 int s;
1121 struct wg_session *wgs;
1122
1123 s = pserialize_read_enter();
1124 wgs = wgp->wgp_session_stable;
1125 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1126 pserialize_read_exit(s);
1127 return wgs;
1128 }
1129
1130 static void
1131 wg_get_session(struct wg_session *wgs, struct psref *psref)
1132 {
1133
1134 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1135 }
1136
1137 static void
1138 wg_put_session(struct wg_session *wgs, struct psref *psref)
1139 {
1140
1141 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1142 }
1143
1144 static struct wg_session *
1145 wg_lock_unstable_session(struct wg_peer *wgp)
1146 {
1147 struct wg_session *wgs;
1148
1149 mutex_enter(wgp->wgp_lock);
1150 wgs = wgp->wgp_session_unstable;
1151 mutex_enter(wgs->wgs_lock);
1152 mutex_exit(wgp->wgp_lock);
1153 return wgs;
1154 }
1155
1156 #if 0
1157 static void
1158 wg_unlock_session(struct wg_peer *wgp, struct wg_session *wgs)
1159 {
1160
1161 mutex_exit(wgs->wgs_lock);
1162 }
1163 #endif
1164
1165 static uint32_t
1166 wg_assign_sender_index(struct wg_softc *wg, struct wg_session *wgs)
1167 {
1168 struct wg_peer *wgp = wgs->wgs_peer;
1169 struct wg_session *wgs0;
1170 uint32_t index;
1171 void *garbage;
1172
1173 mutex_enter(wgs->wgs_lock);
1174
1175 /* Release the current index, if there is one. */
1176 while ((index = wgs->wgs_sender_index) != 0) {
1177 /* Remove the session by index. */
1178 thmap_del(wg->wg_sessions_byindex, &index, sizeof index);
1179 wgs->wgs_sender_index = 0;
1180 mutex_exit(wgs->wgs_lock);
1181
1182 /* Wait for all thmap_gets to complete, and GC. */
1183 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1184 mutex_enter(wgs->wgs_peer->wgp_lock);
1185 pserialize_perform(wgp->wgp_psz);
1186 mutex_exit(wgs->wgs_peer->wgp_lock);
1187 thmap_gc(wg->wg_sessions_byindex, garbage);
1188
1189 mutex_enter(wgs->wgs_lock);
1190 }
1191
1192 restart:
1193 /* Pick a uniform random nonzero index. */
1194 while (__predict_false((index = cprng_strong32()) == 0))
1195 continue;
1196
1197 /* Try to take it. */
1198 wgs->wgs_sender_index = index;
1199 wgs0 = thmap_put(wg->wg_sessions_byindex,
1200 &wgs->wgs_sender_index, sizeof wgs->wgs_sender_index, wgs);
1201
1202 /* If someone else beat us, start over. */
1203 if (__predict_false(wgs0 != wgs))
1204 goto restart;
1205
1206 mutex_exit(wgs->wgs_lock);
1207
1208 return index;
1209 }
1210
1211 /*
1212 * Handshake patterns
1213 *
1214 * [W] 5: "These messages use the "IK" pattern from Noise"
1215 * [N] 7.5. Interactive handshake patterns (fundamental)
1216 * "The first character refers to the initiators static key:"
1217 * "I = Static key for initiator Immediately transmitted to responder,
1218 * despite reduced or absent identity hiding"
1219 * "The second character refers to the responders static key:"
1220 * "K = Static key for responder Known to initiator"
1221 * "IK:
1222 * <- s
1223 * ...
1224 * -> e, es, s, ss
1225 * <- e, ee, se"
1226 * [N] 9.4. Pattern modifiers
1227 * "IKpsk2:
1228 * <- s
1229 * ...
1230 * -> e, es, s, ss
1231 * <- e, ee, se, psk"
1232 */
1233 static void
1234 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1235 struct wg_session *wgs, struct wg_msg_init *wgmi)
1236 {
1237 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1238 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1239 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1240 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1241 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1242
1243 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1244 wgmi->wgmi_sender = wg_assign_sender_index(wg, wgs);
1245
1246 /* [W] 5.4.2: First Message: Initiator to Responder */
1247
1248 /* Ci := HASH(CONSTRUCTION) */
1249 /* Hi := HASH(Ci || IDENTIFIER) */
1250 wg_init_key_and_hash(ckey, hash);
1251 /* Hi := HASH(Hi || Sr^pub) */
1252 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1253
1254 WG_DUMP_HASH("hash", hash);
1255
1256 /* [N] 2.2: "e" */
1257 /* Ei^priv, Ei^pub := DH-GENERATE() */
1258 wg_algo_generate_keypair(pubkey, privkey);
1259 /* Ci := KDF1(Ci, Ei^pub) */
1260 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1261 /* msg.ephemeral := Ei^pub */
1262 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1263 /* Hi := HASH(Hi || msg.ephemeral) */
1264 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1265
1266 WG_DUMP_HASH("ckey", ckey);
1267 WG_DUMP_HASH("hash", hash);
1268
1269 /* [N] 2.2: "es" */
1270 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1271 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1272
1273 /* [N] 2.2: "s" */
1274 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1275 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1276 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1277 hash, sizeof(hash));
1278 /* Hi := HASH(Hi || msg.static) */
1279 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1280
1281 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1282
1283 /* [N] 2.2: "ss" */
1284 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1285 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1286
1287 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1288 wg_timestamp_t timestamp;
1289 wg_algo_tai64n(timestamp);
1290 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1291 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1292 /* Hi := HASH(Hi || msg.timestamp) */
1293 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1294
1295 /* [W] 5.4.4 Cookie MACs */
1296 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1297 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1298 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1299 /* Need mac1 to decrypt a cookie from a cookie message */
1300 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1301 sizeof(wgp->wgp_last_sent_mac1));
1302 wgp->wgp_last_sent_mac1_valid = true;
1303
1304 if (wgp->wgp_latest_cookie_time == 0 ||
1305 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1306 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1307 else {
1308 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1309 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1310 (const uint8_t *)wgmi,
1311 offsetof(struct wg_msg_init, wgmi_mac2),
1312 NULL, 0);
1313 }
1314
1315 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1316 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1317 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1318 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1319 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_sender_index);
1320 }
1321
1322 static void
1323 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1324 const struct sockaddr *src)
1325 {
1326 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1327 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1328 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1329 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1330 struct wg_peer *wgp;
1331 struct wg_session *wgs;
1332 bool reset_state_on_error = false;
1333 int error, ret;
1334 struct psref psref_peer;
1335 struct psref psref_session;
1336 uint8_t mac1[WG_MAC_LEN];
1337
1338 WG_TRACE("init msg received");
1339
1340 /*
1341 * [W] 5.4.2: First Message: Initiator to Responder
1342 * "When the responder receives this message, it does the same
1343 * operations so that its final state variables are identical,
1344 * replacing the operands of the DH function to produce equivalent
1345 * values."
1346 * Note that the following comments of operations are just copies of
1347 * the initiator's ones.
1348 */
1349
1350 /* Ci := HASH(CONSTRUCTION) */
1351 /* Hi := HASH(Ci || IDENTIFIER) */
1352 wg_init_key_and_hash(ckey, hash);
1353 /* Hi := HASH(Hi || Sr^pub) */
1354 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1355
1356 /* [N] 2.2: "e" */
1357 /* Ci := KDF1(Ci, Ei^pub) */
1358 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1359 sizeof(wgmi->wgmi_ephemeral));
1360 /* Hi := HASH(Hi || msg.ephemeral) */
1361 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1362
1363 WG_DUMP_HASH("ckey", ckey);
1364
1365 /* [N] 2.2: "es" */
1366 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1367 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1368
1369 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1370
1371 /* [N] 2.2: "s" */
1372 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1373 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1374 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1375 if (error != 0) {
1376 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1377 "wg_algo_aead_dec for secret key failed\n");
1378 return;
1379 }
1380 /* Hi := HASH(Hi || msg.static) */
1381 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1382
1383 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1384 if (wgp == NULL) {
1385 WG_DLOG("peer not found\n");
1386 return;
1387 }
1388
1389 wgs = wg_lock_unstable_session(wgp);
1390 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
1391 /*
1392 * We can assume that the peer doesn't have an established
1393 * session, so clear it now.
1394 */
1395 WG_TRACE("Session destroying, but force to clear");
1396 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
1397 wg_clear_states(wgs);
1398 wgs->wgs_state = WGS_STATE_UNKNOWN;
1399 }
1400 if (wgs->wgs_state == WGS_STATE_INIT_ACTIVE) {
1401 WG_TRACE("Sesssion already initializing, ignoring the message");
1402 mutex_exit(wgs->wgs_lock);
1403 goto out_wgp;
1404 }
1405 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
1406 WG_TRACE("Sesssion already initializing, destroying old states");
1407 wg_clear_states(wgs);
1408 }
1409 wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
1410 reset_state_on_error = true;
1411 wg_get_session(wgs, &psref_session);
1412 mutex_exit(wgs->wgs_lock);
1413
1414 wg_algo_mac_mac1(mac1, sizeof(mac1),
1415 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1416 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1417
1418 /*
1419 * [W] 5.3: Denial of Service Mitigation & Cookies
1420 * "the responder, ..., must always reject messages with an invalid
1421 * msg.mac1"
1422 */
1423 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1424 WG_DLOG("mac1 is invalid\n");
1425 goto out;
1426 }
1427
1428 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1429 WG_TRACE("under load");
1430 /*
1431 * [W] 5.3: Denial of Service Mitigation & Cookies
1432 * "the responder, ..., and when under load may reject messages
1433 * with an invalid msg.mac2. If the responder receives a
1434 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1435 * and is under load, it may respond with a cookie reply
1436 * message"
1437 */
1438 uint8_t zero[WG_MAC_LEN] = {0};
1439 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1440 WG_TRACE("sending a cookie message: no cookie included");
1441 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1442 wgmi->wgmi_mac1, src);
1443 goto out;
1444 }
1445 if (!wgp->wgp_last_sent_cookie_valid) {
1446 WG_TRACE("sending a cookie message: no cookie sent ever");
1447 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1448 wgmi->wgmi_mac1, src);
1449 goto out;
1450 }
1451 uint8_t mac2[WG_MAC_LEN];
1452 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1453 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1454 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1455 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1456 WG_DLOG("mac2 is invalid\n");
1457 goto out;
1458 }
1459 WG_TRACE("under load, but continue to sending");
1460 }
1461
1462 /* [N] 2.2: "ss" */
1463 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1464 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1465
1466 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1467 wg_timestamp_t timestamp;
1468 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1469 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1470 hash, sizeof(hash));
1471 if (error != 0) {
1472 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1473 "wg_algo_aead_dec for timestamp failed\n");
1474 goto out;
1475 }
1476 /* Hi := HASH(Hi || msg.timestamp) */
1477 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1478
1479 /*
1480 * [W] 5.1 "The responder keeps track of the greatest timestamp
1481 * received per peer and discards packets containing
1482 * timestamps less than or equal to it."
1483 */
1484 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1485 sizeof(timestamp));
1486 if (ret <= 0) {
1487 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1488 "invalid init msg: timestamp is old\n");
1489 goto out;
1490 }
1491 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1492
1493 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1494 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1495 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1496 sizeof(wgmi->wgmi_ephemeral));
1497
1498 wg_update_endpoint_if_necessary(wgp, src);
1499
1500 (void)wg_send_handshake_msg_resp(wg, wgp, wgmi);
1501
1502 wg_calculate_keys(wgs, false);
1503 wg_clear_states(wgs);
1504
1505 wg_put_session(wgs, &psref_session);
1506 wg_put_peer(wgp, &psref_peer);
1507 return;
1508
1509 out:
1510 if (reset_state_on_error) {
1511 mutex_enter(wgs->wgs_lock);
1512 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1513 wgs->wgs_state = WGS_STATE_UNKNOWN;
1514 mutex_exit(wgs->wgs_lock);
1515 }
1516 wg_put_session(wgs, &psref_session);
1517 out_wgp:
1518 wg_put_peer(wgp, &psref_peer);
1519 }
1520
1521 static void
1522 wg_schedule_handshake_timeout_timer(struct wg_peer *wgp)
1523 {
1524
1525 mutex_enter(wgp->wgp_lock);
1526 if (__predict_true(wgp->wgp_state != WGP_STATE_DESTROYING)) {
1527 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1528 MIN(wg_rekey_timeout, INT_MAX/hz) * hz);
1529 }
1530 mutex_exit(wgp->wgp_lock);
1531 }
1532
1533 static struct socket *
1534 wg_get_so_by_af(struct wg_worker *wgw, const int af)
1535 {
1536
1537 return (af == AF_INET) ? wgw->wgw_so4 : wgw->wgw_so6;
1538 }
1539
1540 static struct socket *
1541 wg_get_so_by_peer(struct wg_peer *wgp)
1542 {
1543
1544 return wg_get_so_by_af(wgp->wgp_sc->wg_worker, wgp->wgp_sa.sa_family);
1545 }
1546
1547 static struct wg_sockaddr *
1548 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1549 {
1550 struct wg_sockaddr *wgsa;
1551 int s;
1552
1553 s = pserialize_read_enter();
1554 wgsa = wgp->wgp_endpoint;
1555 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1556 pserialize_read_exit(s);
1557
1558 return wgsa;
1559 }
1560
1561 static void
1562 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1563 {
1564
1565 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1566 }
1567
1568 static int
1569 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1570 {
1571 int error;
1572 struct socket *so;
1573 struct psref psref;
1574 struct wg_sockaddr *wgsa;
1575
1576 so = wg_get_so_by_peer(wgp);
1577 wgsa = wg_get_endpoint_sa(wgp, &psref);
1578 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1579 wg_put_sa(wgp, wgsa, &psref);
1580
1581 return error;
1582 }
1583
1584 static int
1585 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1586 {
1587 int error;
1588 struct mbuf *m;
1589 struct wg_msg_init *wgmi;
1590 struct wg_session *wgs;
1591 struct psref psref;
1592
1593 wgs = wg_lock_unstable_session(wgp);
1594 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
1595 WG_TRACE("Session destroying");
1596 mutex_exit(wgs->wgs_lock);
1597 /* XXX should wait? */
1598 return EBUSY;
1599 }
1600 if (wgs->wgs_state == WGS_STATE_INIT_ACTIVE) {
1601 WG_TRACE("Sesssion already initializing, skip starting a new one");
1602 mutex_exit(wgs->wgs_lock);
1603 return EBUSY;
1604 }
1605 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
1606 WG_TRACE("Sesssion already initializing, destroying old states");
1607 wg_clear_states(wgs);
1608 }
1609 wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
1610 wg_get_session(wgs, &psref);
1611 mutex_exit(wgs->wgs_lock);
1612
1613 m = m_gethdr(M_WAIT, MT_DATA);
1614 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1615 wgmi = mtod(m, struct wg_msg_init *);
1616 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1617
1618 error = wg->wg_ops->send_hs_msg(wgp, m);
1619 if (error == 0) {
1620 WG_TRACE("init msg sent");
1621
1622 if (wgp->wgp_handshake_start_time == 0)
1623 wgp->wgp_handshake_start_time = time_uptime;
1624 wg_schedule_handshake_timeout_timer(wgp);
1625 } else {
1626 mutex_enter(wgs->wgs_lock);
1627 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1628 wgs->wgs_state = WGS_STATE_UNKNOWN;
1629 mutex_exit(wgs->wgs_lock);
1630 }
1631 wg_put_session(wgs, &psref);
1632
1633 return error;
1634 }
1635
1636 static void
1637 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1638 struct wg_msg_resp *wgmr, const struct wg_msg_init *wgmi)
1639 {
1640 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1641 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1642 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1643 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1644 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1645 struct wg_session *wgs;
1646 struct psref psref;
1647
1648 wgs = wg_get_unstable_session(wgp, &psref);
1649 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1650 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1651
1652 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
1653 wgmr->wgmr_sender = wg_assign_sender_index(wg, wgs);
1654 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1655
1656 /* [W] 5.4.3 Second Message: Responder to Initiator */
1657
1658 /* [N] 2.2: "e" */
1659 /* Er^priv, Er^pub := DH-GENERATE() */
1660 wg_algo_generate_keypair(pubkey, privkey);
1661 /* Cr := KDF1(Cr, Er^pub) */
1662 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1663 /* msg.ephemeral := Er^pub */
1664 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1665 /* Hr := HASH(Hr || msg.ephemeral) */
1666 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1667
1668 WG_DUMP_HASH("ckey", ckey);
1669 WG_DUMP_HASH("hash", hash);
1670
1671 /* [N] 2.2: "ee" */
1672 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1673 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1674
1675 /* [N] 2.2: "se" */
1676 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1677 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1678
1679 /* [N] 9.2: "psk" */
1680 {
1681 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1682 /* Cr, r, k := KDF3(Cr, Q) */
1683 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1684 sizeof(wgp->wgp_psk));
1685 /* Hr := HASH(Hr || r) */
1686 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1687 }
1688
1689 /* msg.empty := AEAD(k, 0, e, Hr) */
1690 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1691 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1692 /* Hr := HASH(Hr || msg.empty) */
1693 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1694
1695 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1696
1697 /* [W] 5.4.4: Cookie MACs */
1698 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1699 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1700 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1701 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1702 /* Need mac1 to decrypt a cookie from a cookie message */
1703 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1704 sizeof(wgp->wgp_last_sent_mac1));
1705 wgp->wgp_last_sent_mac1_valid = true;
1706
1707 if (wgp->wgp_latest_cookie_time == 0 ||
1708 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1709 /* msg.mac2 := 0^16 */
1710 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1711 else {
1712 /* msg.mac2 := MAC(Lm, msg_b) */
1713 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1714 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1715 (const uint8_t *)wgmr,
1716 offsetof(struct wg_msg_resp, wgmr_mac2),
1717 NULL, 0);
1718 }
1719
1720 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1721 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1722 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1723 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1724 wgs->wgs_receiver_index = wgmi->wgmi_sender;
1725 WG_DLOG("sender=%x\n", wgs->wgs_sender_index);
1726 WG_DLOG("receiver=%x\n", wgs->wgs_receiver_index);
1727 wg_put_session(wgs, &psref);
1728 }
1729
1730 static void
1731 wg_swap_sessions(struct wg_peer *wgp)
1732 {
1733
1734 KASSERT(mutex_owned(wgp->wgp_lock));
1735
1736 wgp->wgp_session_unstable = atomic_swap_ptr(&wgp->wgp_session_stable,
1737 wgp->wgp_session_unstable);
1738 KASSERT(wgp->wgp_session_stable->wgs_state == WGS_STATE_ESTABLISHED);
1739 }
1740
1741 static void
1742 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1743 const struct sockaddr *src)
1744 {
1745 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1746 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1747 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1748 struct wg_peer *wgp;
1749 struct wg_session *wgs;
1750 struct psref psref;
1751 int error;
1752 uint8_t mac1[WG_MAC_LEN];
1753 struct wg_session *wgs_prev;
1754
1755 WG_TRACE("resp msg received");
1756 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
1757 if (wgs == NULL) {
1758 WG_TRACE("No session found");
1759 return;
1760 }
1761
1762 wgp = wgs->wgs_peer;
1763
1764 wg_algo_mac_mac1(mac1, sizeof(mac1),
1765 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1766 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1767
1768 /*
1769 * [W] 5.3: Denial of Service Mitigation & Cookies
1770 * "the responder, ..., must always reject messages with an invalid
1771 * msg.mac1"
1772 */
1773 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
1774 WG_DLOG("mac1 is invalid\n");
1775 goto out;
1776 }
1777
1778 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
1779 WG_TRACE("under load");
1780 /*
1781 * [W] 5.3: Denial of Service Mitigation & Cookies
1782 * "the responder, ..., and when under load may reject messages
1783 * with an invalid msg.mac2. If the responder receives a
1784 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1785 * and is under load, it may respond with a cookie reply
1786 * message"
1787 */
1788 uint8_t zero[WG_MAC_LEN] = {0};
1789 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
1790 WG_TRACE("sending a cookie message: no cookie included");
1791 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1792 wgmr->wgmr_mac1, src);
1793 goto out;
1794 }
1795 if (!wgp->wgp_last_sent_cookie_valid) {
1796 WG_TRACE("sending a cookie message: no cookie sent ever");
1797 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1798 wgmr->wgmr_mac1, src);
1799 goto out;
1800 }
1801 uint8_t mac2[WG_MAC_LEN];
1802 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1803 WG_COOKIE_LEN, (const uint8_t *)wgmr,
1804 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
1805 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
1806 WG_DLOG("mac2 is invalid\n");
1807 goto out;
1808 }
1809 WG_TRACE("under load, but continue to sending");
1810 }
1811
1812 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1813 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1814
1815 /*
1816 * [W] 5.4.3 Second Message: Responder to Initiator
1817 * "When the initiator receives this message, it does the same
1818 * operations so that its final state variables are identical,
1819 * replacing the operands of the DH function to produce equivalent
1820 * values."
1821 * Note that the following comments of operations are just copies of
1822 * the initiator's ones.
1823 */
1824
1825 /* [N] 2.2: "e" */
1826 /* Cr := KDF1(Cr, Er^pub) */
1827 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
1828 sizeof(wgmr->wgmr_ephemeral));
1829 /* Hr := HASH(Hr || msg.ephemeral) */
1830 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
1831
1832 WG_DUMP_HASH("ckey", ckey);
1833 WG_DUMP_HASH("hash", hash);
1834
1835 /* [N] 2.2: "ee" */
1836 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1837 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
1838 wgmr->wgmr_ephemeral);
1839
1840 /* [N] 2.2: "se" */
1841 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1842 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
1843
1844 /* [N] 9.2: "psk" */
1845 {
1846 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1847 /* Cr, r, k := KDF3(Cr, Q) */
1848 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1849 sizeof(wgp->wgp_psk));
1850 /* Hr := HASH(Hr || r) */
1851 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1852 }
1853
1854 {
1855 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
1856 /* msg.empty := AEAD(k, 0, e, Hr) */
1857 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
1858 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
1859 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1860 if (error != 0) {
1861 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1862 "wg_algo_aead_dec for empty message failed\n");
1863 goto out;
1864 }
1865 /* Hr := HASH(Hr || msg.empty) */
1866 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1867 }
1868
1869 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
1870 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
1871 wgs->wgs_receiver_index = wgmr->wgmr_sender;
1872 WG_DLOG("receiver=%x\n", wgs->wgs_receiver_index);
1873
1874 wgs->wgs_state = WGS_STATE_ESTABLISHED;
1875 wgs->wgs_time_established = time_uptime;
1876 wgs->wgs_time_last_data_sent = 0;
1877 wgs->wgs_is_initiator = true;
1878 wg_calculate_keys(wgs, true);
1879 wg_clear_states(wgs);
1880 WG_TRACE("WGS_STATE_ESTABLISHED");
1881
1882 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
1883
1884 mutex_enter(wgp->wgp_lock);
1885 wg_swap_sessions(wgp);
1886 wgs_prev = wgp->wgp_session_unstable;
1887 mutex_enter(wgs_prev->wgs_lock);
1888
1889 getnanotime(&wgp->wgp_last_handshake_time);
1890 wgp->wgp_handshake_start_time = 0;
1891 wgp->wgp_last_sent_mac1_valid = false;
1892 wgp->wgp_last_sent_cookie_valid = false;
1893 mutex_exit(wgp->wgp_lock);
1894
1895 wg_schedule_rekey_timer(wgp);
1896
1897 wg_update_endpoint_if_necessary(wgp, src);
1898
1899 /*
1900 * Send something immediately (same as the official implementation)
1901 * XXX if there are pending data packets, we don't need to send
1902 * a keepalive message.
1903 */
1904 wg_send_keepalive_msg(wgp, wgs);
1905
1906 /* Anyway run a softint to flush pending packets */
1907 kpreempt_disable();
1908 softint_schedule(wgp->wgp_si);
1909 kpreempt_enable();
1910 WG_TRACE("softint scheduled");
1911
1912 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
1913 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
1914 /* We can't destroy the old session immediately */
1915 wg_schedule_session_dtor_timer(wgp);
1916 }
1917 mutex_exit(wgs_prev->wgs_lock);
1918
1919 out:
1920 wg_put_session(wgs, &psref);
1921 }
1922
1923 static int
1924 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1925 const struct wg_msg_init *wgmi)
1926 {
1927 int error;
1928 struct mbuf *m;
1929 struct wg_msg_resp *wgmr;
1930
1931 m = m_gethdr(M_WAIT, MT_DATA);
1932 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
1933 wgmr = mtod(m, struct wg_msg_resp *);
1934 wg_fill_msg_resp(wg, wgp, wgmr, wgmi);
1935
1936 error = wg->wg_ops->send_hs_msg(wgp, m);
1937 if (error == 0)
1938 WG_TRACE("resp msg sent");
1939 return error;
1940 }
1941
1942 static struct wg_peer *
1943 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
1944 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
1945 {
1946 struct wg_peer *wgp;
1947
1948 int s = pserialize_read_enter();
1949 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
1950 if (wgp != NULL)
1951 wg_get_peer(wgp, psref);
1952 pserialize_read_exit(s);
1953
1954 return wgp;
1955 }
1956
1957 static void
1958 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
1959 struct wg_msg_cookie *wgmc, const uint32_t sender,
1960 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
1961 {
1962 uint8_t cookie[WG_COOKIE_LEN];
1963 uint8_t key[WG_HASH_LEN];
1964 uint8_t addr[sizeof(struct in6_addr)];
1965 size_t addrlen;
1966 uint16_t uh_sport; /* be */
1967
1968 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
1969 wgmc->wgmc_receiver = sender;
1970 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
1971
1972 /*
1973 * [W] 5.4.7: Under Load: Cookie Reply Message
1974 * "The secret variable, Rm, changes every two minutes to a
1975 * random value"
1976 */
1977 if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
1978 wgp->wgp_randval = cprng_strong32();
1979 wgp->wgp_last_genrandval_time = time_uptime;
1980 }
1981
1982 switch (src->sa_family) {
1983 case AF_INET: {
1984 const struct sockaddr_in *sin = satocsin(src);
1985 addrlen = sizeof(sin->sin_addr);
1986 memcpy(addr, &sin->sin_addr, addrlen);
1987 uh_sport = sin->sin_port;
1988 break;
1989 }
1990 #ifdef INET6
1991 case AF_INET6: {
1992 const struct sockaddr_in6 *sin6 = satocsin6(src);
1993 addrlen = sizeof(sin6->sin6_addr);
1994 memcpy(addr, &sin6->sin6_addr, addrlen);
1995 uh_sport = sin6->sin6_port;
1996 break;
1997 }
1998 #endif
1999 default:
2000 panic("invalid af=%d", wgp->wgp_sa.sa_family);
2001 }
2002
2003 wg_algo_mac(cookie, sizeof(cookie),
2004 (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
2005 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2006 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2007 sizeof(wg->wg_pubkey));
2008 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2009 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2010
2011 /* Need to store to calculate mac2 */
2012 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2013 wgp->wgp_last_sent_cookie_valid = true;
2014 }
2015
2016 static int
2017 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2018 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
2019 const struct sockaddr *src)
2020 {
2021 int error;
2022 struct mbuf *m;
2023 struct wg_msg_cookie *wgmc;
2024
2025 m = m_gethdr(M_WAIT, MT_DATA);
2026 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2027 wgmc = mtod(m, struct wg_msg_cookie *);
2028 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2029
2030 error = wg->wg_ops->send_hs_msg(wgp, m);
2031 if (error == 0)
2032 WG_TRACE("cookie msg sent");
2033 return error;
2034 }
2035
2036 static bool
2037 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2038 {
2039 #ifdef WG_DEBUG_PARAMS
2040 if (wg_force_underload)
2041 return true;
2042 #endif
2043
2044 /*
2045 * XXX we don't have a means of a load estimation. The purpose of
2046 * the mechanism is a DoS mitigation, so we consider frequent handshake
2047 * messages as (a kind of) load; if a message of the same type comes
2048 * to a peer within 1 second, we consider we are under load.
2049 */
2050 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2051 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2052 return (time_uptime - last) == 0;
2053 }
2054
2055 static void
2056 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2057 {
2058
2059 /*
2060 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2061 */
2062 if (initiator) {
2063 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2064 wgs->wgs_chaining_key, NULL, 0);
2065 } else {
2066 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2067 wgs->wgs_chaining_key, NULL, 0);
2068 }
2069 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2070 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2071 }
2072
2073 static uint64_t
2074 wg_session_get_send_counter(struct wg_session *wgs)
2075 {
2076 #ifdef __HAVE_ATOMIC64_LOADSTORE
2077 return atomic_load_relaxed(&wgs->wgs_send_counter);
2078 #else
2079 uint64_t send_counter;
2080
2081 mutex_enter(&wgs->wgs_send_counter_lock);
2082 send_counter = wgs->wgs_send_counter;
2083 mutex_exit(&wgs->wgs_send_counter_lock);
2084
2085 return send_counter;
2086 #endif
2087 }
2088
2089 static uint64_t
2090 wg_session_inc_send_counter(struct wg_session *wgs)
2091 {
2092 #ifdef __HAVE_ATOMIC64_LOADSTORE
2093 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2094 #else
2095 uint64_t send_counter;
2096
2097 mutex_enter(&wgs->wgs_send_counter_lock);
2098 send_counter = wgs->wgs_send_counter++;
2099 mutex_exit(&wgs->wgs_send_counter_lock);
2100
2101 return send_counter;
2102 #endif
2103 }
2104
2105 static void
2106 wg_clear_states(struct wg_session *wgs)
2107 {
2108
2109 wgs->wgs_send_counter = 0;
2110 sliwin_reset(&wgs->wgs_recvwin->window);
2111
2112 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2113 wgs_clear(handshake_hash);
2114 wgs_clear(chaining_key);
2115 wgs_clear(ephemeral_key_pub);
2116 wgs_clear(ephemeral_key_priv);
2117 wgs_clear(ephemeral_key_peer);
2118 #undef wgs_clear
2119 }
2120
2121 static struct wg_session *
2122 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2123 struct psref *psref)
2124 {
2125 struct wg_session *wgs;
2126
2127 int s = pserialize_read_enter();
2128 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2129 if (wgs != NULL)
2130 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2131 pserialize_read_exit(s);
2132
2133 return wgs;
2134 }
2135
2136 static void
2137 wg_schedule_rekey_timer(struct wg_peer *wgp)
2138 {
2139 int timeout = MIN(wg_rekey_after_time, INT_MAX/hz);
2140
2141 callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
2142 }
2143
2144 static void
2145 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2146 {
2147 struct mbuf *m;
2148
2149 /*
2150 * [W] 6.5 Passive Keepalive
2151 * "A keepalive message is simply a transport data message with
2152 * a zero-length encapsulated encrypted inner-packet."
2153 */
2154 m = m_gethdr(M_WAIT, MT_DATA);
2155 wg_send_data_msg(wgp, wgs, m);
2156 }
2157
2158 static bool
2159 wg_need_to_send_init_message(struct wg_session *wgs)
2160 {
2161 /*
2162 * [W] 6.2 Transport Message Limits
2163 * "if a peer is the initiator of a current secure session,
2164 * WireGuard will send a handshake initiation message to begin
2165 * a new secure session ... if after receiving a transport data
2166 * message, the current secure session is (REJECT-AFTER-TIME
2167 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2168 * not yet acted upon this event."
2169 */
2170 return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
2171 (time_uptime - wgs->wgs_time_established) >=
2172 (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
2173 }
2174
2175 static void
2176 wg_schedule_peer_task(struct wg_peer *wgp, int task)
2177 {
2178
2179 atomic_or_uint(&wgp->wgp_tasks, task);
2180 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2181 wg_wakeup_worker(wgp->wgp_sc->wg_worker, WG_WAKEUP_REASON_PEER);
2182 }
2183
2184 static void
2185 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2186 {
2187
2188 KASSERT(mutex_owned(wgp->wgp_lock));
2189
2190 WG_TRACE("Changing endpoint");
2191
2192 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2193 wgp->wgp_endpoint0 = atomic_swap_ptr(&wgp->wgp_endpoint,
2194 wgp->wgp_endpoint0);
2195 if (!wgp->wgp_endpoint_available)
2196 wgp->wgp_endpoint_available = true;
2197 wgp->wgp_endpoint_changing = true;
2198 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2199 }
2200
2201 static bool
2202 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2203 {
2204 uint16_t packet_len;
2205 const struct ip *ip;
2206
2207 if (__predict_false(decrypted_len < sizeof(struct ip)))
2208 return false;
2209
2210 ip = (const struct ip *)packet;
2211 if (ip->ip_v == 4)
2212 *af = AF_INET;
2213 else if (ip->ip_v == 6)
2214 *af = AF_INET6;
2215 else
2216 return false;
2217
2218 WG_DLOG("af=%d\n", *af);
2219
2220 if (*af == AF_INET) {
2221 packet_len = ntohs(ip->ip_len);
2222 } else {
2223 const struct ip6_hdr *ip6;
2224
2225 if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
2226 return false;
2227
2228 ip6 = (const struct ip6_hdr *)packet;
2229 packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2230 }
2231
2232 WG_DLOG("packet_len=%u\n", packet_len);
2233 if (packet_len > decrypted_len)
2234 return false;
2235
2236 return true;
2237 }
2238
2239 static bool
2240 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2241 int af, char *packet)
2242 {
2243 struct sockaddr_storage ss;
2244 struct sockaddr *sa;
2245 struct psref psref;
2246 struct wg_peer *wgp;
2247 bool ok;
2248
2249 /*
2250 * II CRYPTOKEY ROUTING
2251 * "it will only accept it if its source IP resolves in the
2252 * table to the public key used in the secure session for
2253 * decrypting it."
2254 */
2255
2256 if (af == AF_INET) {
2257 const struct ip *ip = (const struct ip *)packet;
2258 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2259 sockaddr_in_init(sin, &ip->ip_src, 0);
2260 sa = sintosa(sin);
2261 #ifdef INET6
2262 } else {
2263 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2264 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2265 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2266 sa = sin6tosa(sin6);
2267 #endif
2268 }
2269
2270 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2271 ok = (wgp == wgp_expected);
2272 if (wgp != NULL)
2273 wg_put_peer(wgp, &psref);
2274
2275 return ok;
2276 }
2277
2278 static void
2279 wg_session_dtor_timer(void *arg)
2280 {
2281 struct wg_peer *wgp = arg;
2282
2283 WG_TRACE("enter");
2284
2285 mutex_enter(wgp->wgp_lock);
2286 if (__predict_false(wgp->wgp_state == WGP_STATE_DESTROYING)) {
2287 mutex_exit(wgp->wgp_lock);
2288 return;
2289 }
2290 mutex_exit(wgp->wgp_lock);
2291
2292 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2293 }
2294
2295 static void
2296 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2297 {
2298
2299 /* 1 second grace period */
2300 callout_schedule(&wgp->wgp_session_dtor_timer, hz);
2301 }
2302
2303 static bool
2304 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2305 {
2306 if (sa1->sa_family != sa2->sa_family)
2307 return false;
2308
2309 switch (sa1->sa_family) {
2310 case AF_INET:
2311 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2312 case AF_INET6:
2313 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2314 default:
2315 return true;
2316 }
2317 }
2318
2319 static void
2320 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2321 const struct sockaddr *src)
2322 {
2323
2324 #ifdef WG_DEBUG_LOG
2325 char oldaddr[128], newaddr[128];
2326 sockaddr_format(&wgp->wgp_sa, oldaddr, sizeof(oldaddr));
2327 sockaddr_format(src, newaddr, sizeof(newaddr));
2328 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2329 #endif
2330
2331 /*
2332 * III: "Since the packet has authenticated correctly, the source IP of
2333 * the outer UDP/IP packet is used to update the endpoint for peer..."
2334 */
2335 if (__predict_false(sockaddr_cmp(src, &wgp->wgp_sa) != 0 ||
2336 !sockaddr_port_match(src, &wgp->wgp_sa))) {
2337 mutex_enter(wgp->wgp_lock);
2338 /* XXX We can't change the endpoint twice in a short period */
2339 if (!wgp->wgp_endpoint_changing) {
2340 wg_change_endpoint(wgp, src);
2341 }
2342 mutex_exit(wgp->wgp_lock);
2343 }
2344 }
2345
2346 static void
2347 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2348 const struct sockaddr *src)
2349 {
2350 struct wg_msg_data *wgmd;
2351 char *encrypted_buf = NULL, *decrypted_buf;
2352 size_t encrypted_len, decrypted_len;
2353 struct wg_session *wgs;
2354 struct wg_peer *wgp;
2355 size_t mlen;
2356 struct psref psref;
2357 int error, af;
2358 bool success, free_encrypted_buf = false, ok;
2359 struct mbuf *n;
2360
2361 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2362 wgmd = mtod(m, struct wg_msg_data *);
2363
2364 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2365 WG_TRACE("data");
2366
2367 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2368 if (wgs == NULL) {
2369 WG_TRACE("No session found");
2370 m_freem(m);
2371 return;
2372 }
2373 wgp = wgs->wgs_peer;
2374
2375 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2376 le64toh(wgmd->wgmd_counter));
2377 if (error) {
2378 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2379 "out-of-window packet: %"PRIu64"\n",
2380 le64toh(wgmd->wgmd_counter));
2381 goto out;
2382 }
2383
2384 mlen = m_length(m);
2385 encrypted_len = mlen - sizeof(*wgmd);
2386
2387 if (encrypted_len < WG_AUTHTAG_LEN) {
2388 WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
2389 goto out;
2390 }
2391
2392 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2393 if (success) {
2394 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2395 } else {
2396 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2397 if (encrypted_buf == NULL) {
2398 WG_DLOG("failed to allocate encrypted_buf\n");
2399 goto out;
2400 }
2401 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2402 free_encrypted_buf = true;
2403 }
2404 /* m_ensure_contig may change m regardless of its result */
2405 KASSERT(m->m_len >= sizeof(*wgmd));
2406 wgmd = mtod(m, struct wg_msg_data *);
2407
2408 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2409 if (decrypted_len > MCLBYTES) {
2410 /* FIXME handle larger data than MCLBYTES */
2411 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2412 goto out;
2413 }
2414
2415 /* To avoid zero length */
2416 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2417 if (n == NULL) {
2418 WG_DLOG("wg_get_mbuf failed\n");
2419 goto out;
2420 }
2421 decrypted_buf = mtod(n, char *);
2422
2423 WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
2424 error = wg_algo_aead_dec(decrypted_buf,
2425 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2426 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
2427 encrypted_len, NULL, 0);
2428 if (error != 0) {
2429 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2430 "failed to wg_algo_aead_dec\n");
2431 m_freem(n);
2432 goto out;
2433 }
2434 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2435
2436 mutex_enter(&wgs->wgs_recvwin->lock);
2437 error = sliwin_update(&wgs->wgs_recvwin->window,
2438 le64toh(wgmd->wgmd_counter));
2439 mutex_exit(&wgs->wgs_recvwin->lock);
2440 if (error) {
2441 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2442 "replay or out-of-window packet: %"PRIu64"\n",
2443 le64toh(wgmd->wgmd_counter));
2444 m_freem(n);
2445 goto out;
2446 }
2447
2448 m_freem(m);
2449 m = NULL;
2450 wgmd = NULL;
2451
2452 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2453 if (!ok) {
2454 /* something wrong... */
2455 m_freem(n);
2456 goto out;
2457 }
2458
2459 wg_update_endpoint_if_necessary(wgp, src);
2460
2461 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2462 if (ok) {
2463 wg->wg_ops->input(&wg->wg_if, n, af);
2464 } else {
2465 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2466 "invalid source address\n");
2467 m_freem(n);
2468 /*
2469 * The inner address is invalid however the session is valid
2470 * so continue the session processing below.
2471 */
2472 }
2473 n = NULL;
2474
2475 if (wgs->wgs_state == WGS_STATE_INIT_PASSIVE) {
2476 struct wg_session *wgs_prev;
2477
2478 KASSERT(wgs == wgp->wgp_session_unstable);
2479 wgs->wgs_state = WGS_STATE_ESTABLISHED;
2480 wgs->wgs_time_established = time_uptime;
2481 wgs->wgs_time_last_data_sent = 0;
2482 wgs->wgs_is_initiator = false;
2483 WG_TRACE("WGS_STATE_ESTABLISHED");
2484
2485 mutex_enter(wgp->wgp_lock);
2486 wg_swap_sessions(wgp);
2487 wgs_prev = wgp->wgp_session_unstable;
2488 mutex_enter(wgs_prev->wgs_lock);
2489 getnanotime(&wgp->wgp_last_handshake_time);
2490 wgp->wgp_handshake_start_time = 0;
2491 wgp->wgp_last_sent_mac1_valid = false;
2492 wgp->wgp_last_sent_cookie_valid = false;
2493 mutex_exit(wgp->wgp_lock);
2494
2495 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2496 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
2497 /* We can't destroy the old session immediately */
2498 wg_schedule_session_dtor_timer(wgp);
2499 } else {
2500 wg_clear_states(wgs_prev);
2501 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
2502 }
2503 mutex_exit(wgs_prev->wgs_lock);
2504
2505 /* Anyway run a softint to flush pending packets */
2506 kpreempt_disable();
2507 softint_schedule(wgp->wgp_si);
2508 kpreempt_enable();
2509 } else {
2510 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2511 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2512 }
2513 /*
2514 * [W] 6.5 Passive Keepalive
2515 * "If a peer has received a validly-authenticated transport
2516 * data message (section 5.4.6), but does not have any packets
2517 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2518 * a keepalive message."
2519 */
2520 WG_DLOG("time_uptime=%lu wgs_time_last_data_sent=%lu\n",
2521 time_uptime, wgs->wgs_time_last_data_sent);
2522 if ((time_uptime - wgs->wgs_time_last_data_sent) >=
2523 wg_keepalive_timeout) {
2524 WG_TRACE("Schedule sending keepalive message");
2525 /*
2526 * We can't send a keepalive message here to avoid
2527 * a deadlock; we already hold the solock of a socket
2528 * that is used to send the message.
2529 */
2530 wg_schedule_peer_task(wgp,
2531 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2532 }
2533 }
2534 out:
2535 wg_put_session(wgs, &psref);
2536 if (m != NULL)
2537 m_freem(m);
2538 if (free_encrypted_buf)
2539 kmem_intr_free(encrypted_buf, encrypted_len);
2540 }
2541
2542 static void
2543 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2544 {
2545 struct wg_session *wgs;
2546 struct wg_peer *wgp;
2547 struct psref psref;
2548 int error;
2549 uint8_t key[WG_HASH_LEN];
2550 uint8_t cookie[WG_COOKIE_LEN];
2551
2552 WG_TRACE("cookie msg received");
2553 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2554 if (wgs == NULL) {
2555 WG_TRACE("No session found");
2556 return;
2557 }
2558 wgp = wgs->wgs_peer;
2559
2560 if (!wgp->wgp_last_sent_mac1_valid) {
2561 WG_TRACE("No valid mac1 sent (or expired)");
2562 goto out;
2563 }
2564
2565 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
2566 sizeof(wgp->wgp_pubkey));
2567 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
2568 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
2569 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
2570 wgmc->wgmc_salt);
2571 if (error != 0) {
2572 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2573 "wg_algo_aead_dec for cookie failed: error=%d\n", error);
2574 goto out;
2575 }
2576 /*
2577 * [W] 6.6: Interaction with Cookie Reply System
2578 * "it should simply store the decrypted cookie value from the cookie
2579 * reply message, and wait for the expiration of the REKEY-TIMEOUT
2580 * timer for retrying a handshake initiation message."
2581 */
2582 wgp->wgp_latest_cookie_time = time_uptime;
2583 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
2584 out:
2585 wg_put_session(wgs, &psref);
2586 }
2587
2588 static struct mbuf *
2589 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
2590 {
2591 struct wg_msg wgm;
2592 size_t mbuflen;
2593 size_t msglen;
2594
2595 /*
2596 * Get the mbuf chain length. It is already guaranteed, by
2597 * wg_overudp_cb, to be large enough for a struct wg_msg.
2598 */
2599 mbuflen = m_length(m);
2600 KASSERT(mbuflen >= sizeof(struct wg_msg));
2601
2602 /*
2603 * Copy the message header (32-bit message type) out -- we'll
2604 * worry about contiguity and alignment later.
2605 */
2606 m_copydata(m, 0, sizeof(wgm), &wgm);
2607 switch (le32toh(wgm.wgm_type)) {
2608 case WG_MSG_TYPE_INIT:
2609 msglen = sizeof(struct wg_msg_init);
2610 break;
2611 case WG_MSG_TYPE_RESP:
2612 msglen = sizeof(struct wg_msg_resp);
2613 break;
2614 case WG_MSG_TYPE_COOKIE:
2615 msglen = sizeof(struct wg_msg_cookie);
2616 break;
2617 case WG_MSG_TYPE_DATA:
2618 msglen = sizeof(struct wg_msg_data);
2619 break;
2620 default:
2621 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
2622 "Unexpected msg type: %u\n", le32toh(wgm.wgm_type));
2623 goto error;
2624 }
2625
2626 /* Verify the mbuf chain is long enough for this type of message. */
2627 if (__predict_false(mbuflen < msglen)) {
2628 WG_DLOG("Invalid msg size: mbuflen=%lu type=%u\n", mbuflen,
2629 le32toh(wgm.wgm_type));
2630 goto error;
2631 }
2632
2633 /* Make the message header contiguous if necessary. */
2634 if (__predict_false(m->m_len < msglen)) {
2635 m = m_pullup(m, msglen);
2636 if (m == NULL)
2637 return NULL;
2638 }
2639
2640 return m;
2641
2642 error:
2643 m_freem(m);
2644 return NULL;
2645 }
2646
2647 static void
2648 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
2649 const struct sockaddr *src)
2650 {
2651 struct wg_msg *wgm;
2652
2653 m = wg_validate_msg_header(wg, m);
2654 if (__predict_false(m == NULL))
2655 return;
2656
2657 KASSERT(m->m_len >= sizeof(struct wg_msg));
2658 wgm = mtod(m, struct wg_msg *);
2659 switch (le32toh(wgm->wgm_type)) {
2660 case WG_MSG_TYPE_INIT:
2661 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
2662 break;
2663 case WG_MSG_TYPE_RESP:
2664 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
2665 break;
2666 case WG_MSG_TYPE_COOKIE:
2667 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
2668 break;
2669 case WG_MSG_TYPE_DATA:
2670 wg_handle_msg_data(wg, m, src);
2671 /* wg_handle_msg_data frees m for us */
2672 return;
2673 default:
2674 panic("invalid message type: %d", le32toh(wgm->wgm_type));
2675 }
2676
2677 m_freem(m);
2678 }
2679
2680 static void
2681 wg_receive_packets(struct wg_softc *wg, const int af)
2682 {
2683
2684 for (;;) {
2685 int error, flags;
2686 struct socket *so;
2687 struct mbuf *m = NULL;
2688 struct uio dummy_uio;
2689 struct mbuf *paddr = NULL;
2690 struct sockaddr *src;
2691
2692 so = wg_get_so_by_af(wg->wg_worker, af);
2693 flags = MSG_DONTWAIT;
2694 dummy_uio.uio_resid = 1000000000;
2695
2696 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
2697 &flags);
2698 if (error || m == NULL) {
2699 //if (error == EWOULDBLOCK)
2700 return;
2701 }
2702
2703 KASSERT(paddr != NULL);
2704 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
2705 src = mtod(paddr, struct sockaddr *);
2706
2707 wg_handle_packet(wg, m, src);
2708 }
2709 }
2710
2711 static void
2712 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
2713 {
2714
2715 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
2716 }
2717
2718 static void
2719 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
2720 {
2721
2722 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
2723 }
2724
2725 static void
2726 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
2727 {
2728 struct psref psref;
2729 struct wg_session *wgs;
2730
2731 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
2732
2733 if (!wgp->wgp_endpoint_available) {
2734 WGLOG(LOG_DEBUG, "No endpoint available\n");
2735 /* XXX should do something? */
2736 return;
2737 }
2738
2739 wgs = wg_get_stable_session(wgp, &psref);
2740 if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
2741 wg_put_session(wgs, &psref);
2742 wg_send_handshake_msg_init(wg, wgp);
2743 } else {
2744 wg_put_session(wgs, &psref);
2745 /* rekey */
2746 wgs = wg_get_unstable_session(wgp, &psref);
2747 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2748 wg_send_handshake_msg_init(wg, wgp);
2749 wg_put_session(wgs, &psref);
2750 }
2751 }
2752
2753 static void
2754 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
2755 {
2756
2757 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
2758
2759 mutex_enter(wgp->wgp_lock);
2760 if (wgp->wgp_endpoint_changing) {
2761 pserialize_perform(wgp->wgp_psz);
2762 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
2763 wg_psref_class);
2764 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
2765 wg_psref_class);
2766 wgp->wgp_endpoint_changing = false;
2767 }
2768 mutex_exit(wgp->wgp_lock);
2769 }
2770
2771 static void
2772 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
2773 {
2774 struct psref psref;
2775 struct wg_session *wgs;
2776
2777 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
2778
2779 wgs = wg_get_stable_session(wgp, &psref);
2780 wg_send_keepalive_msg(wgp, wgs);
2781 wg_put_session(wgs, &psref);
2782 }
2783
2784 static void
2785 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
2786 {
2787 struct wg_session *wgs;
2788
2789 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
2790
2791 mutex_enter(wgp->wgp_lock);
2792 wgs = wgp->wgp_session_unstable;
2793 mutex_enter(wgs->wgs_lock);
2794 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
2795 pserialize_perform(wgp->wgp_psz);
2796 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
2797 psref_target_init(&wgs->wgs_psref, wg_psref_class);
2798 wg_clear_states(wgs);
2799 wgs->wgs_state = WGS_STATE_UNKNOWN;
2800 }
2801 mutex_exit(wgs->wgs_lock);
2802 mutex_exit(wgp->wgp_lock);
2803 }
2804
2805 static void
2806 wg_process_peer_tasks(struct wg_softc *wg)
2807 {
2808 struct wg_peer *wgp;
2809 int s;
2810
2811 /* XXX should avoid checking all peers */
2812 s = pserialize_read_enter();
2813 WG_PEER_READER_FOREACH(wgp, wg) {
2814 struct psref psref;
2815 unsigned int tasks;
2816
2817 if (wgp->wgp_tasks == 0)
2818 continue;
2819
2820 wg_get_peer(wgp, &psref);
2821 pserialize_read_exit(s);
2822
2823 restart:
2824 tasks = atomic_swap_uint(&wgp->wgp_tasks, 0);
2825 KASSERT(tasks != 0);
2826
2827 WG_DLOG("tasks=%x\n", tasks);
2828
2829 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
2830 wg_task_send_init_message(wg, wgp);
2831 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
2832 wg_task_endpoint_changed(wg, wgp);
2833 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
2834 wg_task_send_keepalive_message(wg, wgp);
2835 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
2836 wg_task_destroy_prev_session(wg, wgp);
2837
2838 /* New tasks may be scheduled during processing tasks */
2839 WG_DLOG("wgp_tasks=%d\n", wgp->wgp_tasks);
2840 if (wgp->wgp_tasks != 0)
2841 goto restart;
2842
2843 s = pserialize_read_enter();
2844 wg_put_peer(wgp, &psref);
2845 }
2846 pserialize_read_exit(s);
2847 }
2848
2849 static void
2850 wg_worker(void *arg)
2851 {
2852 struct wg_softc *wg = arg;
2853 struct wg_worker *wgw = wg->wg_worker;
2854 bool todie = false;
2855
2856 KASSERT(wg != NULL);
2857 KASSERT(wgw != NULL);
2858
2859 while (!todie) {
2860 int reasons;
2861 int bound;
2862
2863 mutex_enter(&wgw->wgw_lock);
2864 /* New tasks may come during task handling */
2865 while ((reasons = wgw->wgw_wakeup_reasons) == 0 &&
2866 !(todie = wgw->wgw_todie))
2867 cv_wait(&wgw->wgw_cv, &wgw->wgw_lock);
2868 wgw->wgw_wakeup_reasons = 0;
2869 mutex_exit(&wgw->wgw_lock);
2870
2871 bound = curlwp_bind();
2872 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4))
2873 wg_receive_packets(wg, AF_INET);
2874 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6))
2875 wg_receive_packets(wg, AF_INET6);
2876 if (ISSET(reasons, WG_WAKEUP_REASON_PEER))
2877 wg_process_peer_tasks(wg);
2878 curlwp_bindx(bound);
2879 }
2880 kthread_exit(0);
2881 }
2882
2883 static void
2884 wg_wakeup_worker(struct wg_worker *wgw, const int reason)
2885 {
2886
2887 mutex_enter(&wgw->wgw_lock);
2888 wgw->wgw_wakeup_reasons |= reason;
2889 cv_broadcast(&wgw->wgw_cv);
2890 mutex_exit(&wgw->wgw_lock);
2891 }
2892
2893 static int
2894 wg_bind_port(struct wg_softc *wg, const uint16_t port)
2895 {
2896 int error;
2897 struct wg_worker *wgw = wg->wg_worker;
2898 uint16_t old_port = wg->wg_listen_port;
2899
2900 if (port != 0 && old_port == port)
2901 return 0;
2902
2903 struct sockaddr_in _sin, *sin = &_sin;
2904 sin->sin_len = sizeof(*sin);
2905 sin->sin_family = AF_INET;
2906 sin->sin_addr.s_addr = INADDR_ANY;
2907 sin->sin_port = htons(port);
2908
2909 error = sobind(wgw->wgw_so4, sintosa(sin), curlwp);
2910 if (error != 0)
2911 return error;
2912
2913 #ifdef INET6
2914 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
2915 sin6->sin6_len = sizeof(*sin6);
2916 sin6->sin6_family = AF_INET6;
2917 sin6->sin6_addr = in6addr_any;
2918 sin6->sin6_port = htons(port);
2919
2920 error = sobind(wgw->wgw_so6, sin6tosa(sin6), curlwp);
2921 if (error != 0)
2922 return error;
2923 #endif
2924
2925 wg->wg_listen_port = port;
2926
2927 return 0;
2928 }
2929
2930 static void
2931 wg_so_upcall(struct socket *so, void *arg, int events, int waitflag)
2932 {
2933 struct wg_worker *wgw = arg;
2934 int reason;
2935
2936 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
2937 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 :
2938 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6;
2939 wg_wakeup_worker(wgw, reason);
2940 }
2941
2942 static int
2943 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
2944 struct sockaddr *src, void *arg)
2945 {
2946 struct wg_softc *wg = arg;
2947 struct wg_msg wgm;
2948 struct mbuf *m = *mp;
2949
2950 WG_TRACE("enter");
2951
2952 /* Verify the mbuf chain is long enough to have a wg msg header. */
2953 KASSERT(offset <= m_length(m));
2954 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
2955 /* drop on the floor */
2956 m_freem(m);
2957 return -1;
2958 }
2959
2960 /*
2961 * Copy the message header (32-bit message type) out -- we'll
2962 * worry about contiguity and alignment later.
2963 */
2964 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
2965 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
2966
2967 /*
2968 * Handle DATA packets promptly as they arrive. Other packets
2969 * may require expensive public-key crypto and are not as
2970 * sensitive to latency, so defer them to the worker thread.
2971 */
2972 switch (le32toh(wgm.wgm_type)) {
2973 case WG_MSG_TYPE_DATA:
2974 /* handle immediately */
2975 m_adj(m, offset);
2976 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
2977 m = m_pullup(m, sizeof(struct wg_msg_data));
2978 if (m == NULL)
2979 return -1;
2980 }
2981 wg_handle_msg_data(wg, m, src);
2982 *mp = NULL;
2983 return 1;
2984 case WG_MSG_TYPE_INIT:
2985 case WG_MSG_TYPE_RESP:
2986 case WG_MSG_TYPE_COOKIE:
2987 /* pass through to so_receive in wg_receive_packets */
2988 return 0;
2989 default:
2990 /* drop on the floor */
2991 m_freem(m);
2992 return -1;
2993 }
2994 }
2995
2996 static int
2997 wg_worker_socreate(struct wg_softc *wg, struct wg_worker *wgw, const int af,
2998 struct socket **sop)
2999 {
3000 int error;
3001 struct socket *so;
3002
3003 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3004 if (error != 0)
3005 return error;
3006
3007 solock(so);
3008 so->so_upcallarg = wgw;
3009 so->so_upcall = wg_so_upcall;
3010 so->so_rcv.sb_flags |= SB_UPCALL;
3011 if (af == AF_INET)
3012 in_pcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3013 #if INET6
3014 else
3015 in6_pcb_register_overudp_cb(sotoin6pcb(so), wg_overudp_cb, wg);
3016 #endif
3017 sounlock(so);
3018
3019 *sop = so;
3020
3021 return 0;
3022 }
3023
3024 static int
3025 wg_worker_init(struct wg_softc *wg)
3026 {
3027 int error;
3028 struct wg_worker *wgw;
3029 const char *ifname = wg->wg_if.if_xname;
3030 struct socket *so;
3031
3032 wgw = kmem_zalloc(sizeof(struct wg_worker), KM_SLEEP);
3033
3034 mutex_init(&wgw->wgw_lock, MUTEX_DEFAULT, IPL_NONE);
3035 cv_init(&wgw->wgw_cv, ifname);
3036 wgw->wgw_todie = false;
3037 wgw->wgw_wakeup_reasons = 0;
3038
3039 error = wg_worker_socreate(wg, wgw, AF_INET, &so);
3040 if (error != 0)
3041 goto error;
3042 wgw->wgw_so4 = so;
3043 #ifdef INET6
3044 error = wg_worker_socreate(wg, wgw, AF_INET6, &so);
3045 if (error != 0)
3046 goto error;
3047 wgw->wgw_so6 = so;
3048 #endif
3049
3050 wg->wg_worker = wgw;
3051
3052 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE | KTHREAD_MUSTJOIN,
3053 NULL, wg_worker, wg, &wg->wg_worker_lwp, "%s", ifname);
3054 if (error != 0)
3055 goto error;
3056
3057 return 0;
3058
3059 error:
3060 #ifdef INET6
3061 if (wgw->wgw_so6 != NULL)
3062 soclose(wgw->wgw_so6);
3063 #endif
3064 if (wgw->wgw_so4 != NULL)
3065 soclose(wgw->wgw_so4);
3066 cv_destroy(&wgw->wgw_cv);
3067 mutex_destroy(&wgw->wgw_lock);
3068
3069 return error;
3070 }
3071
3072 static void
3073 wg_worker_destroy(struct wg_softc *wg)
3074 {
3075 struct wg_worker *wgw = wg->wg_worker;
3076
3077 mutex_enter(&wgw->wgw_lock);
3078 wgw->wgw_todie = true;
3079 wgw->wgw_wakeup_reasons = 0;
3080 cv_broadcast(&wgw->wgw_cv);
3081 mutex_exit(&wgw->wgw_lock);
3082
3083 kthread_join(wg->wg_worker_lwp);
3084
3085 #ifdef INET6
3086 soclose(wgw->wgw_so6);
3087 #endif
3088 soclose(wgw->wgw_so4);
3089 cv_destroy(&wgw->wgw_cv);
3090 mutex_destroy(&wgw->wgw_lock);
3091 kmem_free(wg->wg_worker, sizeof(struct wg_worker));
3092 wg->wg_worker = NULL;
3093 }
3094
3095 static bool
3096 wg_session_hit_limits(struct wg_session *wgs)
3097 {
3098
3099 /*
3100 * [W] 6.2: Transport Message Limits
3101 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3102 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3103 * comes first, WireGuard will refuse to send any more transport data
3104 * messages using the current secure session, ..."
3105 */
3106 KASSERT(wgs->wgs_time_established != 0);
3107 if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
3108 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3109 return true;
3110 } else if (wg_session_get_send_counter(wgs) >
3111 wg_reject_after_messages) {
3112 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3113 return true;
3114 }
3115
3116 return false;
3117 }
3118
3119 static void
3120 wg_peer_softint(void *arg)
3121 {
3122 struct wg_peer *wgp = arg;
3123 struct wg_session *wgs;
3124 struct mbuf *m;
3125 struct psref psref;
3126
3127 wgs = wg_get_stable_session(wgp, &psref);
3128 if (wgs->wgs_state != WGS_STATE_ESTABLISHED) {
3129 /* XXX how to treat? */
3130 WG_TRACE("skipped");
3131 goto out;
3132 }
3133 if (wg_session_hit_limits(wgs)) {
3134 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3135 goto out;
3136 }
3137 WG_TRACE("running");
3138
3139 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3140 wg_send_data_msg(wgp, wgs, m);
3141 }
3142 out:
3143 wg_put_session(wgs, &psref);
3144 }
3145
3146 static void
3147 wg_rekey_timer(void *arg)
3148 {
3149 struct wg_peer *wgp = arg;
3150
3151 mutex_enter(wgp->wgp_lock);
3152 if (__predict_true(wgp->wgp_state != WGP_STATE_DESTROYING)) {
3153 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3154 }
3155 mutex_exit(wgp->wgp_lock);
3156 }
3157
3158 static void
3159 wg_purge_pending_packets(struct wg_peer *wgp)
3160 {
3161 struct mbuf *m;
3162
3163 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3164 m_freem(m);
3165 }
3166 }
3167
3168 static void
3169 wg_handshake_timeout_timer(void *arg)
3170 {
3171 struct wg_peer *wgp = arg;
3172 struct wg_session *wgs;
3173 struct psref psref;
3174
3175 WG_TRACE("enter");
3176
3177 mutex_enter(wgp->wgp_lock);
3178 if (__predict_false(wgp->wgp_state == WGP_STATE_DESTROYING)) {
3179 mutex_exit(wgp->wgp_lock);
3180 return;
3181 }
3182 mutex_exit(wgp->wgp_lock);
3183
3184 KASSERT(wgp->wgp_handshake_start_time != 0);
3185 wgs = wg_get_unstable_session(wgp, &psref);
3186 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
3187
3188 /* [W] 6.4 Handshake Initiation Retransmission */
3189 if ((time_uptime - wgp->wgp_handshake_start_time) >
3190 wg_rekey_attempt_time) {
3191 /* Give up handshaking */
3192 wgs->wgs_state = WGS_STATE_UNKNOWN;
3193 wg_clear_states(wgs);
3194 wgp->wgp_state = WGP_STATE_GIVEUP;
3195 wgp->wgp_handshake_start_time = 0;
3196 wg_put_session(wgs, &psref);
3197 WG_TRACE("give up");
3198 /*
3199 * If a new data packet comes, handshaking will be retried
3200 * and a new session would be established at that time,
3201 * however we don't want to send pending packets then.
3202 */
3203 wg_purge_pending_packets(wgp);
3204 return;
3205 }
3206
3207 /* No response for an initiation message sent, retry handshaking */
3208 wgs->wgs_state = WGS_STATE_UNKNOWN;
3209 wg_clear_states(wgs);
3210 wg_put_session(wgs, &psref);
3211
3212 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3213 }
3214
3215 static struct wg_peer *
3216 wg_alloc_peer(struct wg_softc *wg)
3217 {
3218 struct wg_peer *wgp;
3219
3220 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3221
3222 wgp->wgp_sc = wg;
3223 wgp->wgp_state = WGP_STATE_INIT;
3224 wgp->wgp_q = pcq_create(1024, KM_SLEEP);
3225 wgp->wgp_si = softint_establish(SOFTINT_NET, wg_peer_softint, wgp);
3226 callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
3227 callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
3228 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3229 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3230 wg_handshake_timeout_timer, wgp);
3231 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3232 callout_setfunc(&wgp->wgp_session_dtor_timer,
3233 wg_session_dtor_timer, wgp);
3234 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3235 wgp->wgp_endpoint_changing = false;
3236 wgp->wgp_endpoint_available = false;
3237 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3238 wgp->wgp_psz = pserialize_create();
3239 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3240
3241 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3242 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3243 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3244 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3245
3246 struct wg_session *wgs;
3247 wgp->wgp_session_stable =
3248 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3249 wgp->wgp_session_unstable =
3250 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3251 wgs = wgp->wgp_session_stable;
3252 wgs->wgs_peer = wgp;
3253 wgs->wgs_state = WGS_STATE_UNKNOWN;
3254 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3255 wgs->wgs_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3256 #ifndef __HAVE_ATOMIC64_LOADSTORE
3257 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3258 #endif
3259 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3260 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_NONE);
3261
3262 wgs = wgp->wgp_session_unstable;
3263 wgs->wgs_peer = wgp;
3264 wgs->wgs_state = WGS_STATE_UNKNOWN;
3265 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3266 wgs->wgs_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3267 #ifndef __HAVE_ATOMIC64_LOADSTORE
3268 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3269 #endif
3270 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3271 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_NONE);
3272
3273 return wgp;
3274 }
3275
3276 static void
3277 wg_destroy_peer(struct wg_peer *wgp)
3278 {
3279 struct wg_session *wgs;
3280 struct wg_softc *wg = wgp->wgp_sc;
3281 uint32_t index;
3282 void *garbage;
3283
3284 /* Prevent new packets from this peer on any source address. */
3285 rw_enter(wg->wg_rwlock, RW_WRITER);
3286 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3287 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3288 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3289 struct radix_node *rn;
3290
3291 KASSERT(rnh != NULL);
3292 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3293 &wga->wga_sa_mask, rnh);
3294 if (rn == NULL) {
3295 char addrstr[128];
3296 sockaddr_format(&wga->wga_sa_addr, addrstr,
3297 sizeof(addrstr));
3298 WGLOG(LOG_WARNING, "Couldn't delete %s", addrstr);
3299 }
3300 }
3301 rw_exit(wg->wg_rwlock);
3302
3303 /* Purge pending packets. */
3304 wg_purge_pending_packets(wgp);
3305
3306 /* Halt all packet processing and timeouts. */
3307 softint_disestablish(wgp->wgp_si);
3308 callout_halt(&wgp->wgp_rekey_timer, NULL);
3309 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3310 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3311
3312 /* Remove the sessions by index. */
3313 if ((index = wgp->wgp_session_stable->wgs_sender_index) != 0) {
3314 thmap_del(wg->wg_sessions_byindex, &index, sizeof index);
3315 wgp->wgp_session_stable->wgs_sender_index = 0;
3316 }
3317 if ((index = wgp->wgp_session_unstable->wgs_sender_index) != 0) {
3318 thmap_del(wg->wg_sessions_byindex, &index, sizeof index);
3319 wgp->wgp_session_unstable->wgs_sender_index = 0;
3320 }
3321
3322 /* Wait for all thmap_gets to complete, and GC. */
3323 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
3324 mutex_enter(wgp->wgp_lock);
3325 pserialize_perform(wgp->wgp_psz);
3326 mutex_exit(wgp->wgp_lock);
3327 thmap_gc(wg->wg_sessions_byindex, garbage);
3328
3329 wgs = wgp->wgp_session_unstable;
3330 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
3331 mutex_obj_free(wgs->wgs_lock);
3332 mutex_destroy(&wgs->wgs_recvwin->lock);
3333 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3334 #ifndef __HAVE_ATOMIC64_LOADSTORE
3335 mutex_destroy(&wgs->wgs_send_counter_lock);
3336 #endif
3337 kmem_free(wgs, sizeof(*wgs));
3338
3339 wgs = wgp->wgp_session_stable;
3340 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
3341 mutex_obj_free(wgs->wgs_lock);
3342 mutex_destroy(&wgs->wgs_recvwin->lock);
3343 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3344 #ifndef __HAVE_ATOMIC64_LOADSTORE
3345 mutex_destroy(&wgs->wgs_send_counter_lock);
3346 #endif
3347 kmem_free(wgs, sizeof(*wgs));
3348
3349 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3350 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3351 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3352 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3353
3354 pserialize_destroy(wgp->wgp_psz);
3355 pcq_destroy(wgp->wgp_q);
3356 mutex_obj_free(wgp->wgp_lock);
3357
3358 kmem_free(wgp, sizeof(*wgp));
3359 }
3360
3361 static void
3362 wg_destroy_all_peers(struct wg_softc *wg)
3363 {
3364 struct wg_peer *wgp, *wgp0 __diagused;
3365 void *garbage_byname, *garbage_bypubkey;
3366
3367 restart:
3368 garbage_byname = garbage_bypubkey = NULL;
3369 mutex_enter(wg->wg_lock);
3370 WG_PEER_WRITER_FOREACH(wgp, wg) {
3371 if (wgp->wgp_name[0]) {
3372 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3373 strlen(wgp->wgp_name));
3374 KASSERT(wgp0 == wgp);
3375 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3376 }
3377 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3378 sizeof(wgp->wgp_pubkey));
3379 KASSERT(wgp0 == wgp);
3380 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3381 WG_PEER_WRITER_REMOVE(wgp);
3382 wg->wg_npeers--;
3383 mutex_enter(wgp->wgp_lock);
3384 wgp->wgp_state = WGP_STATE_DESTROYING;
3385 pserialize_perform(wgp->wgp_psz);
3386 mutex_exit(wgp->wgp_lock);
3387 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3388 break;
3389 }
3390 mutex_exit(wg->wg_lock);
3391
3392 if (wgp == NULL)
3393 return;
3394
3395 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3396
3397 wg_destroy_peer(wgp);
3398 thmap_gc(wg->wg_peers_byname, garbage_byname);
3399 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3400
3401 goto restart;
3402 }
3403
3404 static int
3405 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3406 {
3407 struct wg_peer *wgp, *wgp0 __diagused;
3408 void *garbage_byname, *garbage_bypubkey;
3409
3410 mutex_enter(wg->wg_lock);
3411 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
3412 if (wgp != NULL) {
3413 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3414 sizeof(wgp->wgp_pubkey));
3415 KASSERT(wgp0 == wgp);
3416 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3417 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3418 WG_PEER_WRITER_REMOVE(wgp);
3419 wg->wg_npeers--;
3420 mutex_enter(wgp->wgp_lock);
3421 wgp->wgp_state = WGP_STATE_DESTROYING;
3422 pserialize_perform(wgp->wgp_psz);
3423 mutex_exit(wgp->wgp_lock);
3424 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3425 }
3426 mutex_exit(wg->wg_lock);
3427
3428 if (wgp == NULL)
3429 return ENOENT;
3430
3431 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3432
3433 wg_destroy_peer(wgp);
3434 thmap_gc(wg->wg_peers_byname, garbage_byname);
3435 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3436
3437 return 0;
3438 }
3439
3440 static int
3441 wg_if_attach(struct wg_softc *wg)
3442 {
3443 int error;
3444
3445 wg->wg_if.if_addrlen = 0;
3446 wg->wg_if.if_mtu = WG_MTU;
3447 wg->wg_if.if_flags = IFF_MULTICAST;
3448 wg->wg_if.if_extflags = IFEF_NO_LINK_STATE_CHANGE;
3449 wg->wg_if.if_extflags |= IFEF_MPSAFE;
3450 wg->wg_if.if_ioctl = wg_ioctl;
3451 wg->wg_if.if_output = wg_output;
3452 wg->wg_if.if_init = wg_init;
3453 wg->wg_if.if_stop = wg_stop;
3454 wg->wg_if.if_type = IFT_OTHER;
3455 wg->wg_if.if_dlt = DLT_NULL;
3456 wg->wg_if.if_softc = wg;
3457 IFQ_SET_READY(&wg->wg_if.if_snd);
3458
3459 error = if_initialize(&wg->wg_if);
3460 if (error != 0)
3461 return error;
3462
3463 if_alloc_sadl(&wg->wg_if);
3464 if_register(&wg->wg_if);
3465
3466 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3467
3468 return 0;
3469 }
3470
3471 static int
3472 wg_clone_create(struct if_clone *ifc, int unit)
3473 {
3474 struct wg_softc *wg;
3475 int error;
3476
3477 wg = kmem_zalloc(sizeof(struct wg_softc), KM_SLEEP);
3478
3479 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3480
3481 error = wg_worker_init(wg);
3482 if (error != 0) {
3483 kmem_free(wg, sizeof(struct wg_softc));
3484 return error;
3485 }
3486
3487 rn_inithead((void **)&wg->wg_rtable_ipv4,
3488 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3489 #ifdef INET6
3490 rn_inithead((void **)&wg->wg_rtable_ipv6,
3491 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3492 #endif
3493
3494 PSLIST_INIT(&wg->wg_peers);
3495 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
3496 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
3497 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
3498 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3499 wg->wg_rwlock = rw_obj_alloc();
3500 wg->wg_ops = &wg_ops_rumpkernel;
3501
3502 error = wg_if_attach(wg);
3503 if (error != 0) {
3504 wg_worker_destroy(wg);
3505 if (wg->wg_rtable_ipv4 != NULL)
3506 free(wg->wg_rtable_ipv4, M_RTABLE);
3507 if (wg->wg_rtable_ipv6 != NULL)
3508 free(wg->wg_rtable_ipv6, M_RTABLE);
3509 PSLIST_DESTROY(&wg->wg_peers);
3510 mutex_obj_free(wg->wg_lock);
3511 thmap_destroy(wg->wg_sessions_byindex);
3512 thmap_destroy(wg->wg_peers_byname);
3513 thmap_destroy(wg->wg_peers_bypubkey);
3514 kmem_free(wg, sizeof(struct wg_softc));
3515 return error;
3516 }
3517
3518 mutex_enter(&wg_softcs.lock);
3519 LIST_INSERT_HEAD(&wg_softcs.list, wg, wg_list);
3520 mutex_exit(&wg_softcs.lock);
3521
3522 return 0;
3523 }
3524
3525 static int
3526 wg_clone_destroy(struct ifnet *ifp)
3527 {
3528 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
3529
3530 mutex_enter(&wg_softcs.lock);
3531 LIST_REMOVE(wg, wg_list);
3532 mutex_exit(&wg_softcs.lock);
3533
3534 #ifdef WG_RUMPKERNEL
3535 if (wg_user_mode(wg)) {
3536 rumpuser_wg_destroy(wg->wg_user);
3537 wg->wg_user = NULL;
3538 }
3539 #endif
3540
3541 bpf_detach(ifp);
3542 if_detach(ifp);
3543 wg_worker_destroy(wg);
3544 wg_destroy_all_peers(wg);
3545 if (wg->wg_rtable_ipv4 != NULL)
3546 free(wg->wg_rtable_ipv4, M_RTABLE);
3547 if (wg->wg_rtable_ipv6 != NULL)
3548 free(wg->wg_rtable_ipv6, M_RTABLE);
3549
3550 PSLIST_DESTROY(&wg->wg_peers);
3551 thmap_destroy(wg->wg_sessions_byindex);
3552 thmap_destroy(wg->wg_peers_byname);
3553 thmap_destroy(wg->wg_peers_bypubkey);
3554 mutex_obj_free(wg->wg_lock);
3555 rw_obj_free(wg->wg_rwlock);
3556
3557 kmem_free(wg, sizeof(struct wg_softc));
3558
3559 return 0;
3560 }
3561
3562 static struct wg_peer *
3563 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
3564 struct psref *psref)
3565 {
3566 struct radix_node_head *rnh;
3567 struct radix_node *rn;
3568 struct wg_peer *wgp = NULL;
3569 struct wg_allowedip *wga;
3570
3571 #ifdef WG_DEBUG_LOG
3572 char addrstr[128];
3573 sockaddr_format(sa, addrstr, sizeof(addrstr));
3574 WG_DLOG("sa=%s\n", addrstr);
3575 #endif
3576
3577 rw_enter(wg->wg_rwlock, RW_READER);
3578
3579 rnh = wg_rnh(wg, sa->sa_family);
3580 if (rnh == NULL)
3581 goto out;
3582
3583 rn = rnh->rnh_matchaddr(sa, rnh);
3584 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
3585 goto out;
3586
3587 WG_TRACE("success");
3588
3589 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
3590 wgp = wga->wga_peer;
3591 wg_get_peer(wgp, psref);
3592
3593 out:
3594 rw_exit(wg->wg_rwlock);
3595 return wgp;
3596 }
3597
3598 static void
3599 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
3600 struct wg_session *wgs, struct wg_msg_data *wgmd)
3601 {
3602
3603 memset(wgmd, 0, sizeof(*wgmd));
3604 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
3605 wgmd->wgmd_receiver = wgs->wgs_receiver_index;
3606 /* [W] 5.4.6: msg.counter := Nm^send */
3607 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
3608 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
3609 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
3610 }
3611
3612 static int
3613 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
3614 const struct rtentry *rt)
3615 {
3616 struct wg_softc *wg = ifp->if_softc;
3617 int error = 0;
3618 int bound;
3619 struct psref psref;
3620
3621 /* TODO make the nest limit configurable via sysctl */
3622 error = if_tunnel_check_nesting(ifp, m, 1);
3623 if (error != 0) {
3624 m_freem(m);
3625 WGLOG(LOG_ERR, "tunneling loop detected and packet dropped\n");
3626 return error;
3627 }
3628
3629 bound = curlwp_bind();
3630
3631 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
3632
3633 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
3634
3635 m->m_flags &= ~(M_BCAST|M_MCAST);
3636
3637 struct wg_peer *wgp = wg_pick_peer_by_sa(wg, dst, &psref);
3638 if (wgp == NULL) {
3639 WG_TRACE("peer not found");
3640 error = EHOSTUNREACH;
3641 goto error;
3642 }
3643
3644 /* Clear checksum-offload flags. */
3645 m->m_pkthdr.csum_flags = 0;
3646 m->m_pkthdr.csum_data = 0;
3647
3648 if (!pcq_put(wgp->wgp_q, m)) {
3649 error = ENOBUFS;
3650 goto error;
3651 }
3652
3653 struct psref psref_wgs;
3654 struct wg_session *wgs;
3655 wgs = wg_get_stable_session(wgp, &psref_wgs);
3656 if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
3657 !wg_session_hit_limits(wgs)) {
3658 kpreempt_disable();
3659 softint_schedule(wgp->wgp_si);
3660 kpreempt_enable();
3661 WG_TRACE("softint scheduled");
3662 } else {
3663 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3664 WG_TRACE("softint NOT scheduled");
3665 }
3666 wg_put_session(wgs, &psref_wgs);
3667 wg_put_peer(wgp, &psref);
3668
3669 return 0;
3670
3671 error:
3672 if (wgp != NULL)
3673 wg_put_peer(wgp, &psref);
3674 if (m != NULL)
3675 m_freem(m);
3676 curlwp_bindx(bound);
3677 return error;
3678 }
3679
3680 static int
3681 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
3682 {
3683 struct psref psref;
3684 struct wg_sockaddr *wgsa;
3685 int error;
3686 struct socket *so = wg_get_so_by_peer(wgp);
3687
3688 solock(so);
3689 wgsa = wg_get_endpoint_sa(wgp, &psref);
3690 if (wgsatosa(wgsa)->sa_family == AF_INET) {
3691 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
3692 } else {
3693 #ifdef INET6
3694 error = udp6_output(sotoin6pcb(so), m, wgsatosin6(wgsa),
3695 NULL, curlwp);
3696 #else
3697 m_freem(m);
3698 error = EPROTONOSUPPORT;
3699 #endif
3700 }
3701 wg_put_sa(wgp, wgsa, &psref);
3702 sounlock(so);
3703
3704 return error;
3705 }
3706
3707 /* Inspired by pppoe_get_mbuf */
3708 static struct mbuf *
3709 wg_get_mbuf(size_t leading_len, size_t len)
3710 {
3711 struct mbuf *m;
3712
3713 KASSERT(leading_len <= MCLBYTES);
3714 KASSERT(len <= MCLBYTES - leading_len);
3715
3716 m = m_gethdr(M_DONTWAIT, MT_DATA);
3717 if (m == NULL)
3718 return NULL;
3719 if (len + leading_len > MHLEN) {
3720 m_clget(m, M_DONTWAIT);
3721 if ((m->m_flags & M_EXT) == 0) {
3722 m_free(m);
3723 return NULL;
3724 }
3725 }
3726 m->m_data += leading_len;
3727 m->m_pkthdr.len = m->m_len = len;
3728
3729 return m;
3730 }
3731
3732 static int
3733 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
3734 struct mbuf *m)
3735 {
3736 struct wg_softc *wg = wgp->wgp_sc;
3737 int error;
3738 size_t inner_len, padded_len, encrypted_len;
3739 char *padded_buf = NULL;
3740 size_t mlen;
3741 struct wg_msg_data *wgmd;
3742 bool free_padded_buf = false;
3743 struct mbuf *n;
3744 size_t leading_len = max_linkhdr + sizeof(struct ip6_hdr) +
3745 sizeof(struct udphdr);
3746
3747 mlen = m_length(m);
3748 inner_len = mlen;
3749 padded_len = roundup(mlen, 16);
3750 encrypted_len = padded_len + WG_AUTHTAG_LEN;
3751 WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
3752 inner_len, padded_len, encrypted_len);
3753 if (mlen != 0) {
3754 bool success;
3755 success = m_ensure_contig(&m, padded_len);
3756 if (success) {
3757 padded_buf = mtod(m, char *);
3758 } else {
3759 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
3760 if (padded_buf == NULL) {
3761 error = ENOBUFS;
3762 goto end;
3763 }
3764 free_padded_buf = true;
3765 m_copydata(m, 0, mlen, padded_buf);
3766 }
3767 memset(padded_buf + mlen, 0, padded_len - inner_len);
3768 }
3769
3770 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
3771 if (n == NULL) {
3772 error = ENOBUFS;
3773 goto end;
3774 }
3775 KASSERT(n->m_len >= sizeof(*wgmd));
3776 wgmd = mtod(n, struct wg_msg_data *);
3777 wg_fill_msg_data(wg, wgp, wgs, wgmd);
3778 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
3779 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
3780 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
3781 padded_buf, padded_len,
3782 NULL, 0);
3783
3784 error = wg->wg_ops->send_data_msg(wgp, n);
3785 if (error == 0) {
3786 struct ifnet *ifp = &wg->wg_if;
3787 if_statadd(ifp, if_obytes, mlen);
3788 if_statinc(ifp, if_opackets);
3789 if (wgs->wgs_is_initiator &&
3790 wgs->wgs_time_last_data_sent == 0) {
3791 /*
3792 * [W] 6.2 Transport Message Limits
3793 * "if a peer is the initiator of a current secure
3794 * session, WireGuard will send a handshake initiation
3795 * message to begin a new secure session if, after
3796 * transmitting a transport data message, the current
3797 * secure session is REKEY-AFTER-TIME seconds old,"
3798 */
3799 wg_schedule_rekey_timer(wgp);
3800 }
3801 wgs->wgs_time_last_data_sent = time_uptime;
3802 if (wg_session_get_send_counter(wgs) >=
3803 wg_rekey_after_messages) {
3804 /*
3805 * [W] 6.2 Transport Message Limits
3806 * "WireGuard will try to create a new session, by
3807 * sending a handshake initiation message (section
3808 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
3809 * transport data messages..."
3810 */
3811 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3812 }
3813 }
3814 end:
3815 m_freem(m);
3816 if (free_padded_buf)
3817 kmem_intr_free(padded_buf, padded_len);
3818 return error;
3819 }
3820
3821 static void
3822 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
3823 {
3824 pktqueue_t *pktq;
3825 size_t pktlen;
3826
3827 KASSERT(af == AF_INET || af == AF_INET6);
3828
3829 WG_TRACE("");
3830
3831 m_set_rcvif(m, ifp);
3832 pktlen = m->m_pkthdr.len;
3833
3834 bpf_mtap_af(ifp, af, m, BPF_D_IN);
3835
3836 switch (af) {
3837 case AF_INET:
3838 pktq = ip_pktq;
3839 break;
3840 #ifdef INET6
3841 case AF_INET6:
3842 pktq = ip6_pktq;
3843 break;
3844 #endif
3845 default:
3846 panic("invalid af=%d", af);
3847 }
3848
3849 const u_int h = curcpu()->ci_index;
3850 if (__predict_true(pktq_enqueue(pktq, m, h))) {
3851 if_statadd(ifp, if_ibytes, pktlen);
3852 if_statinc(ifp, if_ipackets);
3853 } else {
3854 m_freem(m);
3855 }
3856 }
3857
3858 static void
3859 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
3860 const uint8_t privkey[WG_STATIC_KEY_LEN])
3861 {
3862
3863 crypto_scalarmult_base(pubkey, privkey);
3864 }
3865
3866 static int
3867 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
3868 {
3869 struct radix_node_head *rnh;
3870 struct radix_node *rn;
3871 int error = 0;
3872
3873 rw_enter(wg->wg_rwlock, RW_WRITER);
3874 rnh = wg_rnh(wg, wga->wga_family);
3875 KASSERT(rnh != NULL);
3876 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
3877 wga->wga_nodes);
3878 rw_exit(wg->wg_rwlock);
3879
3880 if (rn == NULL)
3881 error = EEXIST;
3882
3883 return error;
3884 }
3885
3886 static int
3887 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
3888 struct wg_peer **wgpp)
3889 {
3890 int error = 0;
3891 const void *pubkey;
3892 size_t pubkey_len;
3893 const void *psk;
3894 size_t psk_len;
3895 const char *name = NULL;
3896
3897 if (prop_dictionary_get_string(peer, "name", &name)) {
3898 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
3899 error = EINVAL;
3900 goto out;
3901 }
3902 }
3903
3904 if (!prop_dictionary_get_data(peer, "public_key",
3905 &pubkey, &pubkey_len)) {
3906 error = EINVAL;
3907 goto out;
3908 }
3909 #ifdef WG_DEBUG_DUMP
3910 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n", pubkey, pubkey_len);
3911 for (int _i = 0; _i < pubkey_len; _i++)
3912 log(LOG_DEBUG, "%c", ((const char *)pubkey)[_i]);
3913 log(LOG_DEBUG, "\n");
3914 #endif
3915
3916 struct wg_peer *wgp = wg_alloc_peer(wg);
3917 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
3918 if (name != NULL)
3919 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
3920
3921 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
3922 if (psk_len != sizeof(wgp->wgp_psk)) {
3923 error = EINVAL;
3924 goto out;
3925 }
3926 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
3927 }
3928
3929 struct sockaddr_storage sockaddr;
3930 const void *addr;
3931 size_t addr_len;
3932
3933 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
3934 goto skip_endpoint;
3935 memcpy(&sockaddr, addr, addr_len);
3936 switch (sockaddr.ss_family) {
3937 case AF_INET: {
3938 struct sockaddr_in sin;
3939 sockaddr_copy(sintosa(&sin), sizeof(sin),
3940 (const struct sockaddr *)&sockaddr);
3941 sockaddr_copy(sintosa(&wgp->wgp_sin),
3942 sizeof(wgp->wgp_sin), (const struct sockaddr *)&sockaddr);
3943 char addrstr[128];
3944 sockaddr_format(sintosa(&sin), addrstr, sizeof(addrstr));
3945 WG_DLOG("addr=%s\n", addrstr);
3946 break;
3947 }
3948 #ifdef INET6
3949 case AF_INET6: {
3950 struct sockaddr_in6 sin6;
3951 char addrstr[128];
3952 sockaddr_copy(sintosa(&sin6), sizeof(sin6),
3953 (const struct sockaddr *)&sockaddr);
3954 sockaddr_format(sintosa(&sin6), addrstr, sizeof(addrstr));
3955 WG_DLOG("addr=%s\n", addrstr);
3956 sockaddr_copy(sin6tosa(&wgp->wgp_sin6),
3957 sizeof(wgp->wgp_sin6), (const struct sockaddr *)&sockaddr);
3958 break;
3959 }
3960 #endif
3961 default:
3962 break;
3963 }
3964 wgp->wgp_endpoint_available = true;
3965
3966 prop_array_t allowedips;
3967 skip_endpoint:
3968 allowedips = prop_dictionary_get(peer, "allowedips");
3969 if (allowedips == NULL)
3970 goto skip;
3971
3972 prop_object_iterator_t _it = prop_array_iterator(allowedips);
3973 prop_dictionary_t prop_allowedip;
3974 int j = 0;
3975 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
3976 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
3977
3978 if (!prop_dictionary_get_int(prop_allowedip, "family",
3979 &wga->wga_family))
3980 continue;
3981 if (!prop_dictionary_get_data(prop_allowedip, "ip",
3982 &addr, &addr_len))
3983 continue;
3984 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
3985 &wga->wga_cidr))
3986 continue;
3987
3988 switch (wga->wga_family) {
3989 case AF_INET: {
3990 struct sockaddr_in sin;
3991 char addrstr[128];
3992 struct in_addr mask;
3993 struct sockaddr_in sin_mask;
3994
3995 if (addr_len != sizeof(struct in_addr))
3996 return EINVAL;
3997 memcpy(&wga->wga_addr4, addr, addr_len);
3998
3999 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4000 0);
4001 sockaddr_copy(&wga->wga_sa_addr,
4002 sizeof(sin), sintosa(&sin));
4003
4004 sockaddr_format(sintosa(&sin),
4005 addrstr, sizeof(addrstr));
4006 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4007
4008 in_len2mask(&mask, wga->wga_cidr);
4009 sockaddr_in_init(&sin_mask, &mask, 0);
4010 sockaddr_copy(&wga->wga_sa_mask,
4011 sizeof(sin_mask), sintosa(&sin_mask));
4012
4013 break;
4014 }
4015 #ifdef INET6
4016 case AF_INET6: {
4017 struct sockaddr_in6 sin6;
4018 char addrstr[128];
4019 struct in6_addr mask;
4020 struct sockaddr_in6 sin6_mask;
4021
4022 if (addr_len != sizeof(struct in6_addr))
4023 return EINVAL;
4024 memcpy(&wga->wga_addr6, addr, addr_len);
4025
4026 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4027 0, 0, 0);
4028 sockaddr_copy(&wga->wga_sa_addr,
4029 sizeof(sin6), sin6tosa(&sin6));
4030
4031 sockaddr_format(sin6tosa(&sin6),
4032 addrstr, sizeof(addrstr));
4033 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4034
4035 in6_prefixlen2mask(&mask, wga->wga_cidr);
4036 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4037 sockaddr_copy(&wga->wga_sa_mask,
4038 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4039
4040 break;
4041 }
4042 #endif
4043 default:
4044 error = EINVAL;
4045 goto out;
4046 }
4047 wga->wga_peer = wgp;
4048
4049 error = wg_rtable_add_route(wg, wga);
4050 if (error != 0)
4051 goto out;
4052
4053 j++;
4054 }
4055 wgp->wgp_n_allowedips = j;
4056 skip:
4057 *wgpp = wgp;
4058 out:
4059 return error;
4060 }
4061
4062 static int
4063 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4064 {
4065 int error;
4066 char *buf;
4067
4068 WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
4069 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4070 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4071 if (error != 0)
4072 return error;
4073 buf[ifd->ifd_len] = '\0';
4074 #ifdef WG_DEBUG_DUMP
4075 for (int i = 0; i < ifd->ifd_len; i++)
4076 log(LOG_DEBUG, "%c", buf[i]);
4077 log(LOG_DEBUG, "\n");
4078 #endif
4079 *_buf = buf;
4080 return 0;
4081 }
4082
4083 static int
4084 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4085 {
4086 int error;
4087 prop_dictionary_t prop_dict;
4088 char *buf = NULL;
4089 const void *privkey;
4090 size_t privkey_len;
4091
4092 error = wg_alloc_prop_buf(&buf, ifd);
4093 if (error != 0)
4094 return error;
4095 error = EINVAL;
4096 prop_dict = prop_dictionary_internalize(buf);
4097 if (prop_dict == NULL)
4098 goto out;
4099 if (!prop_dictionary_get_data(prop_dict, "private_key",
4100 &privkey, &privkey_len))
4101 goto out;
4102 #ifdef WG_DEBUG_DUMP
4103 log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n", privkey, privkey_len);
4104 for (int i = 0; i < privkey_len; i++)
4105 log(LOG_DEBUG, "%c", ((const char *)privkey)[i]);
4106 log(LOG_DEBUG, "\n");
4107 #endif
4108 if (privkey_len != WG_STATIC_KEY_LEN)
4109 goto out;
4110 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4111 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4112 error = 0;
4113
4114 out:
4115 kmem_free(buf, ifd->ifd_len + 1);
4116 return error;
4117 }
4118
4119 static int
4120 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4121 {
4122 int error;
4123 prop_dictionary_t prop_dict;
4124 char *buf = NULL;
4125 uint16_t port;
4126
4127 error = wg_alloc_prop_buf(&buf, ifd);
4128 if (error != 0)
4129 return error;
4130 error = EINVAL;
4131 prop_dict = prop_dictionary_internalize(buf);
4132 if (prop_dict == NULL)
4133 goto out;
4134 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4135 goto out;
4136
4137 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4138
4139 out:
4140 kmem_free(buf, ifd->ifd_len + 1);
4141 return error;
4142 }
4143
4144 static int
4145 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4146 {
4147 int error;
4148 prop_dictionary_t prop_dict;
4149 char *buf = NULL;
4150 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4151
4152 error = wg_alloc_prop_buf(&buf, ifd);
4153 if (error != 0)
4154 return error;
4155 error = EINVAL;
4156 prop_dict = prop_dictionary_internalize(buf);
4157 if (prop_dict == NULL)
4158 goto out;
4159
4160 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4161 if (error != 0)
4162 goto out;
4163
4164 mutex_enter(wg->wg_lock);
4165 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4166 sizeof(wgp->wgp_pubkey)) != NULL ||
4167 (wgp->wgp_name[0] &&
4168 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4169 strlen(wgp->wgp_name)) != NULL)) {
4170 mutex_exit(wg->wg_lock);
4171 wg_destroy_peer(wgp);
4172 error = EEXIST;
4173 goto out;
4174 }
4175 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4176 sizeof(wgp->wgp_pubkey), wgp);
4177 KASSERT(wgp0 == wgp);
4178 if (wgp->wgp_name[0]) {
4179 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4180 strlen(wgp->wgp_name), wgp);
4181 KASSERT(wgp0 == wgp);
4182 }
4183 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4184 wg->wg_npeers++;
4185 mutex_exit(wg->wg_lock);
4186
4187 out:
4188 kmem_free(buf, ifd->ifd_len + 1);
4189 return error;
4190 }
4191
4192 static int
4193 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4194 {
4195 int error;
4196 prop_dictionary_t prop_dict;
4197 char *buf = NULL;
4198 const char *name;
4199
4200 error = wg_alloc_prop_buf(&buf, ifd);
4201 if (error != 0)
4202 return error;
4203 error = EINVAL;
4204 prop_dict = prop_dictionary_internalize(buf);
4205 if (prop_dict == NULL)
4206 goto out;
4207
4208 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4209 goto out;
4210 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4211 goto out;
4212
4213 error = wg_destroy_peer_name(wg, name);
4214 out:
4215 kmem_free(buf, ifd->ifd_len + 1);
4216 return error;
4217 }
4218
4219 static int
4220 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4221 {
4222 int error = ENOMEM;
4223 prop_dictionary_t prop_dict;
4224 prop_array_t peers = NULL;
4225 char *buf;
4226 struct wg_peer *wgp;
4227 int s, i;
4228
4229 prop_dict = prop_dictionary_create();
4230 if (prop_dict == NULL)
4231 goto error;
4232
4233 if (!prop_dictionary_set_data(prop_dict, "private_key", wg->wg_privkey,
4234 WG_STATIC_KEY_LEN))
4235 goto error;
4236
4237 if (wg->wg_listen_port != 0) {
4238 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4239 wg->wg_listen_port))
4240 goto error;
4241 }
4242
4243 if (wg->wg_npeers == 0)
4244 goto skip_peers;
4245
4246 peers = prop_array_create();
4247 if (peers == NULL)
4248 goto error;
4249
4250 s = pserialize_read_enter();
4251 i = 0;
4252 WG_PEER_READER_FOREACH(wgp, wg) {
4253 struct psref psref;
4254 prop_dictionary_t prop_peer;
4255
4256 wg_get_peer(wgp, &psref);
4257 pserialize_read_exit(s);
4258
4259 prop_peer = prop_dictionary_create();
4260 if (prop_peer == NULL)
4261 goto next;
4262
4263 if (strlen(wgp->wgp_name) > 0) {
4264 if (!prop_dictionary_set_string(prop_peer, "name",
4265 wgp->wgp_name))
4266 goto next;
4267 }
4268
4269 if (!prop_dictionary_set_data(prop_peer, "public_key",
4270 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4271 goto next;
4272
4273 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4274 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4275 sizeof(wgp->wgp_psk))) {
4276 if (!prop_dictionary_set_data(prop_peer,
4277 "preshared_key",
4278 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4279 goto next;
4280 }
4281
4282 switch (wgp->wgp_sa.sa_family) {
4283 case AF_INET:
4284 if (!prop_dictionary_set_data(prop_peer, "endpoint",
4285 &wgp->wgp_sin, sizeof(wgp->wgp_sin)))
4286 goto next;
4287 break;
4288 #ifdef INET6
4289 case AF_INET6:
4290 if (!prop_dictionary_set_data(prop_peer, "endpoint",
4291 &wgp->wgp_sin6, sizeof(wgp->wgp_sin6)))
4292 goto next;
4293 break;
4294 #endif
4295 }
4296
4297 const struct timespec *t = &wgp->wgp_last_handshake_time;
4298
4299 if (!prop_dictionary_set_uint64(prop_peer,
4300 "last_handshake_time_sec", t->tv_sec))
4301 goto next;
4302 if (!prop_dictionary_set_uint32(prop_peer,
4303 "last_handshake_time_nsec", t->tv_nsec))
4304 goto next;
4305
4306 if (wgp->wgp_n_allowedips == 0)
4307 goto skip_allowedips;
4308
4309 prop_array_t allowedips = prop_array_create();
4310 if (allowedips == NULL)
4311 goto next;
4312 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4313 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4314 prop_dictionary_t prop_allowedip;
4315
4316 prop_allowedip = prop_dictionary_create();
4317 if (prop_allowedip == NULL)
4318 break;
4319
4320 if (!prop_dictionary_set_int(prop_allowedip, "family",
4321 wga->wga_family))
4322 goto _next;
4323 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4324 wga->wga_cidr))
4325 goto _next;
4326
4327 switch (wga->wga_family) {
4328 case AF_INET:
4329 if (!prop_dictionary_set_data(prop_allowedip,
4330 "ip", &wga->wga_addr4,
4331 sizeof(wga->wga_addr4)))
4332 goto _next;
4333 break;
4334 #ifdef INET6
4335 case AF_INET6:
4336 if (!prop_dictionary_set_data(prop_allowedip,
4337 "ip", &wga->wga_addr6,
4338 sizeof(wga->wga_addr6)))
4339 goto _next;
4340 break;
4341 #endif
4342 default:
4343 break;
4344 }
4345 prop_array_set(allowedips, j, prop_allowedip);
4346 _next:
4347 prop_object_release(prop_allowedip);
4348 }
4349 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4350 prop_object_release(allowedips);
4351
4352 skip_allowedips:
4353
4354 prop_array_set(peers, i, prop_peer);
4355 next:
4356 if (prop_peer)
4357 prop_object_release(prop_peer);
4358 i++;
4359
4360 s = pserialize_read_enter();
4361 wg_put_peer(wgp, &psref);
4362 }
4363 pserialize_read_exit(s);
4364
4365 prop_dictionary_set(prop_dict, "peers", peers);
4366 prop_object_release(peers);
4367 peers = NULL;
4368
4369 skip_peers:
4370 buf = prop_dictionary_externalize(prop_dict);
4371 if (buf == NULL)
4372 goto error;
4373 if (ifd->ifd_len < (strlen(buf) + 1)) {
4374 error = EINVAL;
4375 goto error;
4376 }
4377 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4378
4379 free(buf, 0);
4380 error:
4381 if (peers != NULL)
4382 prop_object_release(peers);
4383 if (prop_dict != NULL)
4384 prop_object_release(prop_dict);
4385
4386 return error;
4387 }
4388
4389 static int
4390 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4391 {
4392 struct wg_softc *wg = ifp->if_softc;
4393 struct ifreq *ifr = data;
4394 struct ifaddr *ifa = data;
4395 struct ifdrv *ifd = data;
4396 int error = 0;
4397
4398 switch (cmd) {
4399 case SIOCINITIFADDR:
4400 if (ifa->ifa_addr->sa_family != AF_LINK &&
4401 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
4402 (IFF_UP | IFF_RUNNING)) {
4403 ifp->if_flags |= IFF_UP;
4404 error = ifp->if_init(ifp);
4405 }
4406 return error;
4407 case SIOCADDMULTI:
4408 case SIOCDELMULTI:
4409 switch (ifr->ifr_addr.sa_family) {
4410 case AF_INET: /* IP supports Multicast */
4411 break;
4412 #ifdef INET6
4413 case AF_INET6: /* IP6 supports Multicast */
4414 break;
4415 #endif
4416 default: /* Other protocols doesn't support Multicast */
4417 error = EAFNOSUPPORT;
4418 break;
4419 }
4420 return error;
4421 case SIOCSDRVSPEC:
4422 switch (ifd->ifd_cmd) {
4423 case WG_IOCTL_SET_PRIVATE_KEY:
4424 error = wg_ioctl_set_private_key(wg, ifd);
4425 break;
4426 case WG_IOCTL_SET_LISTEN_PORT:
4427 error = wg_ioctl_set_listen_port(wg, ifd);
4428 break;
4429 case WG_IOCTL_ADD_PEER:
4430 error = wg_ioctl_add_peer(wg, ifd);
4431 break;
4432 case WG_IOCTL_DELETE_PEER:
4433 error = wg_ioctl_delete_peer(wg, ifd);
4434 break;
4435 default:
4436 error = EINVAL;
4437 break;
4438 }
4439 return error;
4440 case SIOCGDRVSPEC:
4441 return wg_ioctl_get(wg, ifd);
4442 case SIOCSIFFLAGS:
4443 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
4444 break;
4445 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4446 case IFF_RUNNING:
4447 /*
4448 * If interface is marked down and it is running,
4449 * then stop and disable it.
4450 */
4451 (*ifp->if_stop)(ifp, 1);
4452 break;
4453 case IFF_UP:
4454 /*
4455 * If interface is marked up and it is stopped, then
4456 * start it.
4457 */
4458 error = (*ifp->if_init)(ifp);
4459 break;
4460 default:
4461 break;
4462 }
4463 return error;
4464 #ifdef WG_RUMPKERNEL
4465 case SIOCSLINKSTR:
4466 error = wg_ioctl_linkstr(wg, ifd);
4467 if (error == 0)
4468 wg->wg_ops = &wg_ops_rumpuser;
4469 return error;
4470 #endif
4471 default:
4472 break;
4473 }
4474
4475 error = ifioctl_common(ifp, cmd, data);
4476
4477 #ifdef WG_RUMPKERNEL
4478 if (!wg_user_mode(wg))
4479 return error;
4480
4481 /* Do the same to the corresponding tun device on the host */
4482 /*
4483 * XXX Actually the command has not been handled yet. It
4484 * will be handled via pr_ioctl form doifioctl later.
4485 */
4486 switch (cmd) {
4487 case SIOCAIFADDR:
4488 case SIOCDIFADDR: {
4489 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
4490 struct in_aliasreq *ifra = &_ifra;
4491 KASSERT(error == ENOTTY);
4492 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4493 IFNAMSIZ);
4494 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
4495 if (error == 0)
4496 error = ENOTTY;
4497 break;
4498 }
4499 #ifdef INET6
4500 case SIOCAIFADDR_IN6:
4501 case SIOCDIFADDR_IN6: {
4502 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
4503 struct in6_aliasreq *ifra = &_ifra;
4504 KASSERT(error == ENOTTY);
4505 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4506 IFNAMSIZ);
4507 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
4508 if (error == 0)
4509 error = ENOTTY;
4510 break;
4511 }
4512 #endif
4513 }
4514 #endif /* WG_RUMPKERNEL */
4515
4516 return error;
4517 }
4518
4519 static int
4520 wg_init(struct ifnet *ifp)
4521 {
4522
4523 ifp->if_flags |= IFF_RUNNING;
4524
4525 /* TODO flush pending packets. */
4526 return 0;
4527 }
4528
4529 static void
4530 wg_stop(struct ifnet *ifp, int disable)
4531 {
4532
4533 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
4534 ifp->if_flags &= ~IFF_RUNNING;
4535
4536 /* Need to do something? */
4537 }
4538
4539 #ifdef WG_DEBUG_PARAMS
4540 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
4541 {
4542 const struct sysctlnode *node = NULL;
4543
4544 sysctl_createv(clog, 0, NULL, &node,
4545 CTLFLAG_PERMANENT,
4546 CTLTYPE_NODE, "wg",
4547 SYSCTL_DESCR("wg(4)"),
4548 NULL, 0, NULL, 0,
4549 CTL_NET, CTL_CREATE, CTL_EOL);
4550 sysctl_createv(clog, 0, &node, NULL,
4551 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4552 CTLTYPE_QUAD, "rekey_after_messages",
4553 SYSCTL_DESCR("session liftime by messages"),
4554 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
4555 sysctl_createv(clog, 0, &node, NULL,
4556 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4557 CTLTYPE_INT, "rekey_after_time",
4558 SYSCTL_DESCR("session liftime"),
4559 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
4560 sysctl_createv(clog, 0, &node, NULL,
4561 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4562 CTLTYPE_INT, "rekey_timeout",
4563 SYSCTL_DESCR("session handshake retry time"),
4564 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
4565 sysctl_createv(clog, 0, &node, NULL,
4566 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4567 CTLTYPE_INT, "rekey_attempt_time",
4568 SYSCTL_DESCR("session handshake timeout"),
4569 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
4570 sysctl_createv(clog, 0, &node, NULL,
4571 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4572 CTLTYPE_INT, "keepalive_timeout",
4573 SYSCTL_DESCR("keepalive timeout"),
4574 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
4575 sysctl_createv(clog, 0, &node, NULL,
4576 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4577 CTLTYPE_BOOL, "force_underload",
4578 SYSCTL_DESCR("force to detemine under load"),
4579 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
4580 }
4581 #endif
4582
4583 #ifdef WG_RUMPKERNEL
4584 static bool
4585 wg_user_mode(struct wg_softc *wg)
4586 {
4587
4588 return wg->wg_user != NULL;
4589 }
4590
4591 static int
4592 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
4593 {
4594 struct ifnet *ifp = &wg->wg_if;
4595 int error;
4596
4597 if (ifp->if_flags & IFF_UP)
4598 return EBUSY;
4599
4600 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
4601 /* XXX do nothing */
4602 return 0;
4603 } else if (ifd->ifd_cmd != 0) {
4604 return EINVAL;
4605 } else if (wg->wg_user != NULL) {
4606 return EBUSY;
4607 }
4608
4609 /* Assume \0 included */
4610 if (ifd->ifd_len > IFNAMSIZ) {
4611 return E2BIG;
4612 } else if (ifd->ifd_len < 1) {
4613 return EINVAL;
4614 }
4615
4616 char tun_name[IFNAMSIZ];
4617 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
4618 if (error != 0)
4619 return error;
4620
4621 if (strncmp(tun_name, "tun", 3) != 0)
4622 return EINVAL;
4623
4624 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
4625
4626 return error;
4627 }
4628
4629 static int
4630 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
4631 {
4632 int error;
4633 struct psref psref;
4634 struct wg_sockaddr *wgsa;
4635 struct wg_softc *wg = wgp->wgp_sc;
4636 struct iovec iov[1];
4637
4638 wgsa = wg_get_endpoint_sa(wgp, &psref);
4639
4640 iov[0].iov_base = mtod(m, void *);
4641 iov[0].iov_len = m->m_len;
4642
4643 /* Send messages to a peer via an ordinary socket. */
4644 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
4645
4646 wg_put_sa(wgp, wgsa, &psref);
4647
4648 m_freem(m);
4649
4650 return error;
4651 }
4652
4653 static void
4654 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
4655 {
4656 struct wg_softc *wg = ifp->if_softc;
4657 struct iovec iov[2];
4658 struct sockaddr_storage ss;
4659
4660 KASSERT(af == AF_INET || af == AF_INET6);
4661
4662 WG_TRACE("");
4663
4664 if (af == AF_INET) {
4665 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
4666 struct ip *ip;
4667
4668 KASSERT(m->m_len >= sizeof(struct ip));
4669 ip = mtod(m, struct ip *);
4670 sockaddr_in_init(sin, &ip->ip_dst, 0);
4671 } else {
4672 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
4673 struct ip6_hdr *ip6;
4674
4675 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
4676 ip6 = mtod(m, struct ip6_hdr *);
4677 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
4678 }
4679
4680 iov[0].iov_base = &ss;
4681 iov[0].iov_len = ss.ss_len;
4682 iov[1].iov_base = mtod(m, void *);
4683 iov[1].iov_len = m->m_len;
4684
4685 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4686
4687 /* Send decrypted packets to users via a tun. */
4688 rumpuser_wg_send_user(wg->wg_user, iov, 2);
4689
4690 m_freem(m);
4691 }
4692
4693 static int
4694 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
4695 {
4696 int error;
4697 uint16_t old_port = wg->wg_listen_port;
4698
4699 if (port != 0 && old_port == port)
4700 return 0;
4701
4702 error = rumpuser_wg_sock_bind(wg->wg_user, port);
4703 if (error == 0)
4704 wg->wg_listen_port = port;
4705 return error;
4706 }
4707
4708 /*
4709 * Receive user packets.
4710 */
4711 void
4712 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4713 {
4714 struct ifnet *ifp = &wg->wg_if;
4715 struct mbuf *m;
4716 const struct sockaddr *dst;
4717
4718 WG_TRACE("");
4719
4720 dst = iov[0].iov_base;
4721
4722 m = m_gethdr(M_NOWAIT, MT_DATA);
4723 if (m == NULL)
4724 return;
4725 m->m_len = m->m_pkthdr.len = 0;
4726 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4727
4728 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4729 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4730
4731 (void)wg_output(ifp, m, dst, NULL);
4732 }
4733
4734 /*
4735 * Receive packets from a peer.
4736 */
4737 void
4738 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4739 {
4740 struct mbuf *m;
4741 const struct sockaddr *src;
4742
4743 WG_TRACE("");
4744
4745 src = iov[0].iov_base;
4746
4747 m = m_gethdr(M_NOWAIT, MT_DATA);
4748 if (m == NULL)
4749 return;
4750 m->m_len = m->m_pkthdr.len = 0;
4751 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4752
4753 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4754 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4755
4756 wg_handle_packet(wg, m, src);
4757 }
4758 #endif /* WG_RUMPKERNEL */
4759
4760 /*
4761 * Module infrastructure
4762 */
4763 #include "if_module.h"
4764
4765 IF_MODULE(MODULE_CLASS_DRIVER, wg, "")
4766