if_wg.c revision 1.50 1 /* $NetBSD: if_wg.c,v 1.50 2020/08/31 20:34:18 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.50 2020/08/31 20:34:18 riastradh Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_inet.h"
48 #endif
49
50 #include <sys/param.h>
51 #include <sys/types.h>
52
53 #include <sys/atomic.h>
54 #include <sys/callout.h>
55 #include <sys/cprng.h>
56 #include <sys/cpu.h>
57 #include <sys/device.h>
58 #include <sys/domain.h>
59 #include <sys/errno.h>
60 #include <sys/intr.h>
61 #include <sys/ioctl.h>
62 #include <sys/kernel.h>
63 #include <sys/kmem.h>
64 #include <sys/kthread.h>
65 #include <sys/mbuf.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/pcq.h>
69 #include <sys/percpu.h>
70 #include <sys/pserialize.h>
71 #include <sys/psref.h>
72 #include <sys/queue.h>
73 #include <sys/rwlock.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/systm.h>
80 #include <sys/thmap.h>
81 #include <sys/time.h>
82 #include <sys/timespec.h>
83
84 #include <net/bpf.h>
85 #include <net/if.h>
86 #include <net/if_types.h>
87 #include <net/if_wg.h>
88 #include <net/route.h>
89
90 #include <netinet/in.h>
91 #include <netinet/in_pcb.h>
92 #include <netinet/in_var.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_var.h>
95 #include <netinet/udp.h>
96 #include <netinet/udp_var.h>
97
98 #ifdef INET6
99 #include <netinet/ip6.h>
100 #include <netinet6/in6_pcb.h>
101 #include <netinet6/in6_var.h>
102 #include <netinet6/ip6_var.h>
103 #include <netinet6/udp6_var.h>
104 #endif /* INET6 */
105
106 #include <prop/proplib.h>
107
108 #include <crypto/blake2/blake2s.h>
109 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
110 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
111 #include <crypto/sodium/crypto_scalarmult.h>
112
113 #include "ioconf.h"
114
115 #ifdef WG_RUMPKERNEL
116 #include "wg_user.h"
117 #endif
118
119 /*
120 * Data structures
121 * - struct wg_softc is an instance of wg interfaces
122 * - It has a list of peers (struct wg_peer)
123 * - It has a kthread that sends/receives handshake messages and
124 * runs event handlers
125 * - It has its own two routing tables: one is for IPv4 and the other IPv6
126 * - struct wg_peer is a representative of a peer
127 * - It has a softint that is used to send packets over an wg interface
128 * to a peer
129 * - It has a pair of session instances (struct wg_session)
130 * - It has a pair of endpoint instances (struct wg_sockaddr)
131 * - Normally one endpoint is used and the second one is used only on
132 * a peer migration (a change of peer's IP address)
133 * - It has a list of IP addresses and sub networks called allowedips
134 * (struct wg_allowedip)
135 * - A packets sent over a session is allowed if its destination matches
136 * any IP addresses or sub networks of the list
137 * - struct wg_session represents a session of a secure tunnel with a peer
138 * - Two instances of sessions belong to a peer; a stable session and a
139 * unstable session
140 * - A handshake process of a session always starts with a unstable instance
141 * - Once a session is established, its instance becomes stable and the
142 * other becomes unstable instead
143 * - Data messages are always sent via a stable session
144 *
145 * Locking notes:
146 * - wg interfaces (struct wg_softc, wg) is listed in wg_softcs.list and
147 * protected by wg_softcs.lock
148 * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
149 * - Changes to the peer list are serialized by wg_lock
150 * - The peer list may be read with pserialize(9) and psref(9)
151 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
152 * => XXX replace by pserialize when routing table is psz-safe
153 * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
154 * only in thread context and serializes:
155 * - the stable and unstable session pointers
156 * - all unstable session state
157 * - Packet processing may be done in softint context:
158 * - The stable session can be read under pserialize(9) or psref(9)
159 * - The stable session is always ESTABLISHED
160 * - On a session swap, we must wait for all readers to release a
161 * reference to a stable session before changing wgs_state and
162 * session states
163 * - Lock order: wg_lock -> wgp_lock
164 */
165
166
167 #define WGLOG(level, fmt, args...) \
168 log(level, "%s: " fmt, __func__, ##args)
169
170 /* Debug options */
171 #ifdef WG_DEBUG
172 /* Output debug logs */
173 #ifndef WG_DEBUG_LOG
174 #define WG_DEBUG_LOG
175 #endif
176 /* Output trace logs */
177 #ifndef WG_DEBUG_TRACE
178 #define WG_DEBUG_TRACE
179 #endif
180 /* Output hash values, etc. */
181 #ifndef WG_DEBUG_DUMP
182 #define WG_DEBUG_DUMP
183 #endif
184 /* Make some internal parameters configurable for testing and debugging */
185 #ifndef WG_DEBUG_PARAMS
186 #define WG_DEBUG_PARAMS
187 #endif
188 #endif
189
190 #ifdef WG_DEBUG_TRACE
191 #define WG_TRACE(msg) \
192 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
193 #else
194 #define WG_TRACE(msg) __nothing
195 #endif
196
197 #ifdef WG_DEBUG_LOG
198 #define WG_DLOG(fmt, args...) log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
199 #else
200 #define WG_DLOG(fmt, args...) __nothing
201 #endif
202
203 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
204 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
205 &(wgprc)->wgprc_curpps, 1)) { \
206 log(level, fmt, ##args); \
207 } \
208 } while (0)
209
210 #ifdef WG_DEBUG_PARAMS
211 static bool wg_force_underload = false;
212 #endif
213
214 #ifdef WG_DEBUG_DUMP
215
216 #ifdef WG_RUMPKERNEL
217 static void
218 wg_dump_buf(const char *func, const char *buf, const size_t size)
219 {
220
221 log(LOG_DEBUG, "%s: ", func);
222 for (int i = 0; i < size; i++)
223 log(LOG_DEBUG, "%02x ", (int)(0xff & buf[i]));
224 log(LOG_DEBUG, "\n");
225 }
226 #endif
227
228 static void
229 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
230 const size_t size)
231 {
232
233 log(LOG_DEBUG, "%s: %s: ", func, name);
234 for (int i = 0; i < size; i++)
235 log(LOG_DEBUG, "%02x ", (int)(0xff & hash[i]));
236 log(LOG_DEBUG, "\n");
237 }
238
239 #define WG_DUMP_HASH(name, hash) \
240 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
241 #define WG_DUMP_HASH48(name, hash) \
242 wg_dump_hash(__func__, name, hash, 48)
243 #define WG_DUMP_BUF(buf, size) \
244 wg_dump_buf(__func__, buf, size)
245 #else
246 #define WG_DUMP_HASH(name, hash) __nothing
247 #define WG_DUMP_HASH48(name, hash) __nothing
248 #define WG_DUMP_BUF(buf, size) __nothing
249 #endif /* WG_DEBUG_DUMP */
250
251 #define WG_MTU 1420
252 #define WG_ALLOWEDIPS 16
253
254 #define CURVE25519_KEY_LEN 32
255 #define TAI64N_LEN sizeof(uint32_t) * 3
256 #define POLY1305_AUTHTAG_LEN 16
257 #define HMAC_BLOCK_LEN 64
258
259 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
260 /* [N] 4.3: Hash functions */
261 #define NOISE_DHLEN 32
262 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
263 #define NOISE_HASHLEN 32
264 #define NOISE_BLOCKLEN 64
265 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
266 /* [N] 5.1: "k" */
267 #define NOISE_CIPHER_KEY_LEN 32
268 /*
269 * [N] 9.2: "psk"
270 * "... psk is a 32-byte secret value provided by the application."
271 */
272 #define NOISE_PRESHARED_KEY_LEN 32
273
274 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
275 #define WG_TIMESTAMP_LEN TAI64N_LEN
276
277 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
278
279 #define WG_COOKIE_LEN 16
280 #define WG_MAC_LEN 16
281 #define WG_RANDVAL_LEN 24
282
283 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
284 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
285 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
286 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
287 #define WG_HASH_LEN NOISE_HASHLEN
288 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
289 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
290 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
291 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
292 #define WG_DATA_KEY_LEN 32
293 #define WG_SALT_LEN 24
294
295 /*
296 * The protocol messages
297 */
298 struct wg_msg {
299 uint32_t wgm_type;
300 } __packed;
301
302 /* [W] 5.4.2 First Message: Initiator to Responder */
303 struct wg_msg_init {
304 uint32_t wgmi_type;
305 uint32_t wgmi_sender;
306 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
307 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
308 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
309 uint8_t wgmi_mac1[WG_MAC_LEN];
310 uint8_t wgmi_mac2[WG_MAC_LEN];
311 } __packed;
312
313 /* [W] 5.4.3 Second Message: Responder to Initiator */
314 struct wg_msg_resp {
315 uint32_t wgmr_type;
316 uint32_t wgmr_sender;
317 uint32_t wgmr_receiver;
318 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
319 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
320 uint8_t wgmr_mac1[WG_MAC_LEN];
321 uint8_t wgmr_mac2[WG_MAC_LEN];
322 } __packed;
323
324 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
325 struct wg_msg_data {
326 uint32_t wgmd_type;
327 uint32_t wgmd_receiver;
328 uint64_t wgmd_counter;
329 uint32_t wgmd_packet[0];
330 } __packed;
331
332 /* [W] 5.4.7 Under Load: Cookie Reply Message */
333 struct wg_msg_cookie {
334 uint32_t wgmc_type;
335 uint32_t wgmc_receiver;
336 uint8_t wgmc_salt[WG_SALT_LEN];
337 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
338 } __packed;
339
340 #define WG_MSG_TYPE_INIT 1
341 #define WG_MSG_TYPE_RESP 2
342 #define WG_MSG_TYPE_COOKIE 3
343 #define WG_MSG_TYPE_DATA 4
344 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
345
346 /* Sliding windows */
347
348 #define SLIWIN_BITS 2048u
349 #define SLIWIN_TYPE uint32_t
350 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
351 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
352 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
353
354 struct sliwin {
355 SLIWIN_TYPE B[SLIWIN_WORDS];
356 uint64_t T;
357 };
358
359 static void
360 sliwin_reset(struct sliwin *W)
361 {
362
363 memset(W, 0, sizeof(*W));
364 }
365
366 static int
367 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
368 {
369
370 /*
371 * If it's more than one window older than the highest sequence
372 * number we've seen, reject.
373 */
374 #ifdef __HAVE_ATOMIC64_LOADSTORE
375 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
376 return EAUTH;
377 #endif
378
379 /*
380 * Otherwise, we need to take the lock to decide, so don't
381 * reject just yet. Caller must serialize a call to
382 * sliwin_update in this case.
383 */
384 return 0;
385 }
386
387 static int
388 sliwin_update(struct sliwin *W, uint64_t S)
389 {
390 unsigned word, bit;
391
392 /*
393 * If it's more than one window older than the highest sequence
394 * number we've seen, reject.
395 */
396 if (S + SLIWIN_NPKT < W->T)
397 return EAUTH;
398
399 /*
400 * If it's higher than the highest sequence number we've seen,
401 * advance the window.
402 */
403 if (S > W->T) {
404 uint64_t i = W->T / SLIWIN_BPW;
405 uint64_t j = S / SLIWIN_BPW;
406 unsigned k;
407
408 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
409 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
410 #ifdef __HAVE_ATOMIC64_LOADSTORE
411 atomic_store_relaxed(&W->T, S);
412 #else
413 W->T = S;
414 #endif
415 }
416
417 /* Test and set the bit -- if already set, reject. */
418 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
419 bit = S % SLIWIN_BPW;
420 if (W->B[word] & (1UL << bit))
421 return EAUTH;
422 W->B[word] |= 1UL << bit;
423
424 /* Accept! */
425 return 0;
426 }
427
428 struct wg_worker {
429 kmutex_t wgw_lock;
430 kcondvar_t wgw_cv;
431 bool wgw_todie;
432 struct socket *wgw_so4;
433 struct socket *wgw_so6;
434 int wgw_wakeup_reasons;
435 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 __BIT(0)
436 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6 __BIT(1)
437 #define WG_WAKEUP_REASON_PEER __BIT(2)
438 };
439
440 struct wg_session {
441 struct wg_peer *wgs_peer;
442 struct psref_target
443 wgs_psref;
444
445 int wgs_state;
446 #define WGS_STATE_UNKNOWN 0
447 #define WGS_STATE_INIT_ACTIVE 1
448 #define WGS_STATE_INIT_PASSIVE 2
449 #define WGS_STATE_ESTABLISHED 3
450 #define WGS_STATE_DESTROYING 4
451
452 time_t wgs_time_established;
453 time_t wgs_time_last_data_sent;
454 bool wgs_is_initiator;
455
456 uint32_t wgs_local_index;
457 uint32_t wgs_remote_index;
458 #ifdef __HAVE_ATOMIC64_LOADSTORE
459 volatile uint64_t
460 wgs_send_counter;
461 #else
462 kmutex_t wgs_send_counter_lock;
463 uint64_t wgs_send_counter;
464 #endif
465
466 struct {
467 kmutex_t lock;
468 struct sliwin window;
469 } *wgs_recvwin;
470
471 uint8_t wgs_handshake_hash[WG_HASH_LEN];
472 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
473 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
474 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
475 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
476 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
477 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
478 };
479
480 struct wg_sockaddr {
481 union {
482 struct sockaddr_storage _ss;
483 struct sockaddr _sa;
484 struct sockaddr_in _sin;
485 struct sockaddr_in6 _sin6;
486 };
487 struct psref_target wgsa_psref;
488 };
489
490 #define wgsatoss(wgsa) (&(wgsa)->_ss)
491 #define wgsatosa(wgsa) (&(wgsa)->_sa)
492 #define wgsatosin(wgsa) (&(wgsa)->_sin)
493 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
494
495 #define wgsa_family(wgsa) (wgsatosa(wgsa)->sa_family)
496
497 struct wg_peer;
498 struct wg_allowedip {
499 struct radix_node wga_nodes[2];
500 struct wg_sockaddr _wga_sa_addr;
501 struct wg_sockaddr _wga_sa_mask;
502 #define wga_sa_addr _wga_sa_addr._sa
503 #define wga_sa_mask _wga_sa_mask._sa
504
505 int wga_family;
506 uint8_t wga_cidr;
507 union {
508 struct in_addr _ip4;
509 struct in6_addr _ip6;
510 } wga_addr;
511 #define wga_addr4 wga_addr._ip4
512 #define wga_addr6 wga_addr._ip6
513
514 struct wg_peer *wga_peer;
515 };
516
517 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
518
519 struct wg_ppsratecheck {
520 struct timeval wgprc_lasttime;
521 int wgprc_curpps;
522 };
523
524 struct wg_softc;
525 struct wg_peer {
526 struct wg_softc *wgp_sc;
527 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
528 struct pslist_entry wgp_peerlist_entry;
529 pserialize_t wgp_psz;
530 struct psref_target wgp_psref;
531 kmutex_t *wgp_lock;
532
533 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
534 struct wg_sockaddr *wgp_endpoint;
535 struct wg_sockaddr *wgp_endpoint0;
536 volatile unsigned wgp_endpoint_changing;
537 bool wgp_endpoint_available;
538
539 /* The preshared key (optional) */
540 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
541
542 void *wgp_si;
543 pcq_t *wgp_q;
544
545 struct wg_session *wgp_session_stable;
546 struct wg_session *wgp_session_unstable;
547
548 /* timestamp in big-endian */
549 wg_timestamp_t wgp_timestamp_latest_init;
550
551 struct timespec wgp_last_handshake_time;
552
553 callout_t wgp_rekey_timer;
554 callout_t wgp_handshake_timeout_timer;
555 callout_t wgp_session_dtor_timer;
556
557 time_t wgp_handshake_start_time;
558
559 int wgp_n_allowedips;
560 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
561
562 time_t wgp_latest_cookie_time;
563 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
564 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
565 bool wgp_last_sent_mac1_valid;
566 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
567 bool wgp_last_sent_cookie_valid;
568
569 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
570
571 time_t wgp_last_genrandval_time;
572 uint32_t wgp_randval;
573
574 struct wg_ppsratecheck wgp_ppsratecheck;
575
576 volatile unsigned int wgp_tasks;
577 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
578 #define WGP_TASK_RETRY_HANDSHAKE __BIT(1)
579 #define WGP_TASK_ESTABLISH_SESSION __BIT(2)
580 #define WGP_TASK_ENDPOINT_CHANGED __BIT(3)
581 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(4)
582 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(5)
583 };
584
585 struct wg_ops;
586
587 struct wg_softc {
588 struct ifnet wg_if;
589 LIST_ENTRY(wg_softc) wg_list;
590 kmutex_t *wg_lock;
591 krwlock_t *wg_rwlock;
592
593 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
594 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
595
596 int wg_npeers;
597 struct pslist_head wg_peers;
598 struct thmap *wg_peers_bypubkey;
599 struct thmap *wg_peers_byname;
600 struct thmap *wg_sessions_byindex;
601 uint16_t wg_listen_port;
602
603 struct wg_worker *wg_worker;
604 lwp_t *wg_worker_lwp;
605
606 struct radix_node_head *wg_rtable_ipv4;
607 struct radix_node_head *wg_rtable_ipv6;
608
609 struct wg_ppsratecheck wg_ppsratecheck;
610
611 struct wg_ops *wg_ops;
612
613 #ifdef WG_RUMPKERNEL
614 struct wg_user *wg_user;
615 #endif
616 };
617
618 /* [W] 6.1 Preliminaries */
619 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
620 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
621 #define WG_REKEY_AFTER_TIME 120
622 #define WG_REJECT_AFTER_TIME 180
623 #define WG_REKEY_ATTEMPT_TIME 90
624 #define WG_REKEY_TIMEOUT 5
625 #define WG_KEEPALIVE_TIMEOUT 10
626
627 #define WG_COOKIE_TIME 120
628 #define WG_RANDVAL_TIME (2 * 60)
629
630 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
631 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
632 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
633 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
634 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
635 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
636 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
637
638 static struct mbuf *
639 wg_get_mbuf(size_t, size_t);
640
641 static void wg_wakeup_worker(struct wg_worker *, int);
642
643 static int wg_send_data_msg(struct wg_peer *, struct wg_session *,
644 struct mbuf *);
645 static int wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
646 const uint32_t, const uint8_t [], const struct sockaddr *);
647 static int wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
648 struct wg_session *, const struct wg_msg_init *);
649 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
650
651 static struct wg_peer *
652 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
653 struct psref *);
654 static struct wg_peer *
655 wg_lookup_peer_by_pubkey(struct wg_softc *,
656 const uint8_t [], struct psref *);
657
658 static struct wg_session *
659 wg_lookup_session_by_index(struct wg_softc *,
660 const uint32_t, struct psref *);
661
662 static void wg_update_endpoint_if_necessary(struct wg_peer *,
663 const struct sockaddr *);
664
665 static void wg_schedule_rekey_timer(struct wg_peer *);
666 static void wg_schedule_session_dtor_timer(struct wg_peer *);
667
668 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
669 static void wg_calculate_keys(struct wg_session *, const bool);
670
671 static void wg_clear_states(struct wg_session *);
672
673 static void wg_get_peer(struct wg_peer *, struct psref *);
674 static void wg_put_peer(struct wg_peer *, struct psref *);
675
676 static int wg_send_so(struct wg_peer *, struct mbuf *);
677 static int wg_send_udp(struct wg_peer *, struct mbuf *);
678 static int wg_output(struct ifnet *, struct mbuf *,
679 const struct sockaddr *, const struct rtentry *);
680 static void wg_input(struct ifnet *, struct mbuf *, const int);
681 static int wg_ioctl(struct ifnet *, u_long, void *);
682 static int wg_bind_port(struct wg_softc *, const uint16_t);
683 static int wg_init(struct ifnet *);
684 static void wg_stop(struct ifnet *, int);
685
686 static void wg_purge_pending_packets(struct wg_peer *);
687
688 static int wg_clone_create(struct if_clone *, int);
689 static int wg_clone_destroy(struct ifnet *);
690
691 struct wg_ops {
692 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
693 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
694 void (*input)(struct ifnet *, struct mbuf *, const int);
695 int (*bind_port)(struct wg_softc *, const uint16_t);
696 };
697
698 struct wg_ops wg_ops_rumpkernel = {
699 .send_hs_msg = wg_send_so,
700 .send_data_msg = wg_send_udp,
701 .input = wg_input,
702 .bind_port = wg_bind_port,
703 };
704
705 #ifdef WG_RUMPKERNEL
706 static bool wg_user_mode(struct wg_softc *);
707 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
708
709 static int wg_send_user(struct wg_peer *, struct mbuf *);
710 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
711 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
712
713 struct wg_ops wg_ops_rumpuser = {
714 .send_hs_msg = wg_send_user,
715 .send_data_msg = wg_send_user,
716 .input = wg_input_user,
717 .bind_port = wg_bind_port_user,
718 };
719 #endif
720
721 #define WG_PEER_READER_FOREACH(wgp, wg) \
722 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
723 wgp_peerlist_entry)
724 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
725 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
726 wgp_peerlist_entry)
727 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
728 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
729 #define WG_PEER_WRITER_REMOVE(wgp) \
730 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
731
732 struct wg_route {
733 struct radix_node wgr_nodes[2];
734 struct wg_peer *wgr_peer;
735 };
736
737 static struct radix_node_head *
738 wg_rnh(struct wg_softc *wg, const int family)
739 {
740
741 switch (family) {
742 case AF_INET:
743 return wg->wg_rtable_ipv4;
744 #ifdef INET6
745 case AF_INET6:
746 return wg->wg_rtable_ipv6;
747 #endif
748 default:
749 return NULL;
750 }
751 }
752
753
754 /*
755 * Global variables
756 */
757 LIST_HEAD(wg_sclist, wg_softc);
758 static struct {
759 struct wg_sclist list;
760 kmutex_t lock;
761 } wg_softcs __cacheline_aligned;
762
763 struct psref_class *wg_psref_class __read_mostly;
764
765 static struct if_clone wg_cloner =
766 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
767
768
769 void wgattach(int);
770 /* ARGSUSED */
771 void
772 wgattach(int count)
773 {
774 /*
775 * Nothing to do here, initialization is handled by the
776 * module initialization code in wginit() below).
777 */
778 }
779
780 static void
781 wginit(void)
782 {
783
784 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
785
786 mutex_init(&wg_softcs.lock, MUTEX_DEFAULT, IPL_NONE);
787 LIST_INIT(&wg_softcs.list);
788 if_clone_attach(&wg_cloner);
789 }
790
791 static int
792 wgdetach(void)
793 {
794 int error = 0;
795
796 mutex_enter(&wg_softcs.lock);
797 if (!LIST_EMPTY(&wg_softcs.list)) {
798 mutex_exit(&wg_softcs.lock);
799 error = EBUSY;
800 }
801
802 if (error == 0) {
803 psref_class_destroy(wg_psref_class);
804
805 if_clone_detach(&wg_cloner);
806 }
807
808 return error;
809 }
810
811 static void
812 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
813 uint8_t hash[WG_HASH_LEN])
814 {
815 /* [W] 5.4: CONSTRUCTION */
816 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
817 /* [W] 5.4: IDENTIFIER */
818 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
819 struct blake2s state;
820
821 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
822 signature, strlen(signature));
823
824 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
825 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
826
827 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
828 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
829 blake2s_update(&state, id, strlen(id));
830 blake2s_final(&state, hash);
831
832 WG_DUMP_HASH("ckey", ckey);
833 WG_DUMP_HASH("hash", hash);
834 }
835
836 static void
837 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
838 const size_t inputsize)
839 {
840 struct blake2s state;
841
842 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
843 blake2s_update(&state, hash, WG_HASH_LEN);
844 blake2s_update(&state, input, inputsize);
845 blake2s_final(&state, hash);
846 }
847
848 static void
849 wg_algo_mac(uint8_t out[], const size_t outsize,
850 const uint8_t key[], const size_t keylen,
851 const uint8_t input1[], const size_t input1len,
852 const uint8_t input2[], const size_t input2len)
853 {
854 struct blake2s state;
855
856 blake2s_init(&state, outsize, key, keylen);
857
858 blake2s_update(&state, input1, input1len);
859 if (input2 != NULL)
860 blake2s_update(&state, input2, input2len);
861 blake2s_final(&state, out);
862 }
863
864 static void
865 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
866 const uint8_t input1[], const size_t input1len,
867 const uint8_t input2[], const size_t input2len)
868 {
869 struct blake2s state;
870 /* [W] 5.4: LABEL-MAC1 */
871 const char *label = "mac1----";
872 uint8_t key[WG_HASH_LEN];
873
874 blake2s_init(&state, sizeof(key), NULL, 0);
875 blake2s_update(&state, label, strlen(label));
876 blake2s_update(&state, input1, input1len);
877 blake2s_final(&state, key);
878
879 blake2s_init(&state, outsize, key, sizeof(key));
880 if (input2 != NULL)
881 blake2s_update(&state, input2, input2len);
882 blake2s_final(&state, out);
883 }
884
885 static void
886 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
887 const uint8_t input1[], const size_t input1len)
888 {
889 struct blake2s state;
890 /* [W] 5.4: LABEL-COOKIE */
891 const char *label = "cookie--";
892
893 blake2s_init(&state, outsize, NULL, 0);
894 blake2s_update(&state, label, strlen(label));
895 blake2s_update(&state, input1, input1len);
896 blake2s_final(&state, out);
897 }
898
899 static void
900 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
901 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
902 {
903
904 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
905
906 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
907 crypto_scalarmult_base(pubkey, privkey);
908 }
909
910 static void
911 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
912 const uint8_t privkey[WG_STATIC_KEY_LEN],
913 const uint8_t pubkey[WG_STATIC_KEY_LEN])
914 {
915
916 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
917
918 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
919 KASSERT(ret == 0);
920 }
921
922 static void
923 wg_algo_hmac(uint8_t out[], const size_t outlen,
924 const uint8_t key[], const size_t keylen,
925 const uint8_t in[], const size_t inlen)
926 {
927 #define IPAD 0x36
928 #define OPAD 0x5c
929 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
930 uint8_t ipad[HMAC_BLOCK_LEN];
931 uint8_t opad[HMAC_BLOCK_LEN];
932 int i;
933 struct blake2s state;
934
935 KASSERT(outlen == WG_HASH_LEN);
936 KASSERT(keylen <= HMAC_BLOCK_LEN);
937
938 memcpy(hmackey, key, keylen);
939
940 for (i = 0; i < sizeof(hmackey); i++) {
941 ipad[i] = hmackey[i] ^ IPAD;
942 opad[i] = hmackey[i] ^ OPAD;
943 }
944
945 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
946 blake2s_update(&state, ipad, sizeof(ipad));
947 blake2s_update(&state, in, inlen);
948 blake2s_final(&state, out);
949
950 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
951 blake2s_update(&state, opad, sizeof(opad));
952 blake2s_update(&state, out, WG_HASH_LEN);
953 blake2s_final(&state, out);
954 #undef IPAD
955 #undef OPAD
956 }
957
958 static void
959 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
960 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
961 const uint8_t input[], const size_t inputlen)
962 {
963 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
964 uint8_t one[1];
965
966 /*
967 * [N] 4.3: "an input_key_material byte sequence with length
968 * either zero bytes, 32 bytes, or DHLEN bytes."
969 */
970 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
971
972 WG_DUMP_HASH("ckey", ckey);
973 if (input != NULL)
974 WG_DUMP_HASH("input", input);
975 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
976 input, inputlen);
977 WG_DUMP_HASH("tmp1", tmp1);
978 one[0] = 1;
979 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
980 one, sizeof(one));
981 WG_DUMP_HASH("out1", out1);
982 if (out2 == NULL)
983 return;
984 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
985 tmp2[WG_KDF_OUTPUT_LEN] = 2;
986 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
987 tmp2, sizeof(tmp2));
988 WG_DUMP_HASH("out2", out2);
989 if (out3 == NULL)
990 return;
991 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
992 tmp2[WG_KDF_OUTPUT_LEN] = 3;
993 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
994 tmp2, sizeof(tmp2));
995 WG_DUMP_HASH("out3", out3);
996 }
997
998 static void
999 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
1000 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1001 const uint8_t local_key[WG_STATIC_KEY_LEN],
1002 const uint8_t remote_key[WG_STATIC_KEY_LEN])
1003 {
1004 uint8_t dhout[WG_DH_OUTPUT_LEN];
1005
1006 wg_algo_dh(dhout, local_key, remote_key);
1007 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1008
1009 WG_DUMP_HASH("dhout", dhout);
1010 WG_DUMP_HASH("ckey", ckey);
1011 if (cipher_key != NULL)
1012 WG_DUMP_HASH("cipher_key", cipher_key);
1013 }
1014
1015 static void
1016 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1017 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1018 const uint8_t auth[], size_t authlen)
1019 {
1020 uint8_t nonce[(32 + 64) / 8] = {0};
1021 long long unsigned int outsize;
1022 int error __diagused;
1023
1024 le64enc(&nonce[4], counter);
1025
1026 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1027 plainsize, auth, authlen, NULL, nonce, key);
1028 KASSERT(error == 0);
1029 KASSERT(outsize == expected_outsize);
1030 }
1031
1032 static int
1033 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1034 const uint64_t counter, const uint8_t encrypted[],
1035 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1036 {
1037 uint8_t nonce[(32 + 64) / 8] = {0};
1038 long long unsigned int outsize;
1039 int error;
1040
1041 le64enc(&nonce[4], counter);
1042
1043 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1044 encrypted, encryptedsize, auth, authlen, nonce, key);
1045 if (error == 0)
1046 KASSERT(outsize == expected_outsize);
1047 return error;
1048 }
1049
1050 static void
1051 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1052 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1053 const uint8_t auth[], size_t authlen,
1054 const uint8_t nonce[WG_SALT_LEN])
1055 {
1056 long long unsigned int outsize;
1057 int error __diagused;
1058
1059 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1060 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1061 plain, plainsize, auth, authlen, NULL, nonce, key);
1062 KASSERT(error == 0);
1063 KASSERT(outsize == expected_outsize);
1064 }
1065
1066 static int
1067 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1068 const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
1069 const uint8_t auth[], size_t authlen,
1070 const uint8_t nonce[WG_SALT_LEN])
1071 {
1072 long long unsigned int outsize;
1073 int error;
1074
1075 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1076 encrypted, encryptedsize, auth, authlen, nonce, key);
1077 if (error == 0)
1078 KASSERT(outsize == expected_outsize);
1079 return error;
1080 }
1081
1082 static void
1083 wg_algo_tai64n(wg_timestamp_t timestamp)
1084 {
1085 struct timespec ts;
1086
1087 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1088 getnanotime(&ts);
1089 /* TAI64 label in external TAI64 format */
1090 be32enc(timestamp, 0x40000000UL + (ts.tv_sec >> 32));
1091 /* second beginning from 1970 TAI */
1092 be32enc(timestamp + 4, ts.tv_sec & 0xffffffffU);
1093 /* nanosecond in big-endian format */
1094 be32enc(timestamp + 8, ts.tv_nsec);
1095 }
1096
1097 /*
1098 * wg_get_stable_session(wgp, psref)
1099 *
1100 * Get a passive reference to the current stable session, or
1101 * return NULL if there is no current stable session.
1102 *
1103 * The pointer is always there but the session is not necessarily
1104 * ESTABLISHED; if it is not ESTABLISHED, return NULL. However,
1105 * the session may transition from ESTABLISHED to DESTROYING while
1106 * holding the passive reference.
1107 */
1108 static struct wg_session *
1109 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1110 {
1111 int s;
1112 struct wg_session *wgs;
1113
1114 s = pserialize_read_enter();
1115 wgs = atomic_load_consume(&wgp->wgp_session_stable);
1116 if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
1117 wgs = NULL;
1118 else
1119 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1120 pserialize_read_exit(s);
1121
1122 return wgs;
1123 }
1124
1125 static void
1126 wg_put_session(struct wg_session *wgs, struct psref *psref)
1127 {
1128
1129 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1130 }
1131
1132 static void
1133 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1134 {
1135 struct wg_peer *wgp = wgs->wgs_peer;
1136 struct wg_session *wgs0 __diagused;
1137 void *garbage;
1138
1139 KASSERT(mutex_owned(wgp->wgp_lock));
1140 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1141
1142 /* Remove the session from the table. */
1143 wgs0 = thmap_del(wg->wg_sessions_byindex,
1144 &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1145 KASSERT(wgs0 == wgs);
1146 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1147
1148 /* Wait for passive references to drain. */
1149 pserialize_perform(wgp->wgp_psz);
1150 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1151
1152 /* Free memory, zero state, and transition to UNKNOWN. */
1153 thmap_gc(wg->wg_sessions_byindex, garbage);
1154 wg_clear_states(wgs);
1155 wgs->wgs_state = WGS_STATE_UNKNOWN;
1156 }
1157
1158 /*
1159 * wg_get_session_index(wg, wgs)
1160 *
1161 * Choose a session index for wgs->wgs_local_index, and store it
1162 * in wg's table of sessions by index.
1163 *
1164 * wgs must be the unstable session of its peer, and must be
1165 * transitioning out of the UNKNOWN state.
1166 */
1167 static void
1168 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1169 {
1170 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1171 struct wg_session *wgs0;
1172 uint32_t index;
1173
1174 KASSERT(mutex_owned(wgp->wgp_lock));
1175 KASSERT(wgs == wgp->wgp_session_unstable);
1176 KASSERT(wgs->wgs_state == WGS_STATE_UNKNOWN);
1177
1178 do {
1179 /* Pick a uniform random index. */
1180 index = cprng_strong32();
1181
1182 /* Try to take it. */
1183 wgs->wgs_local_index = index;
1184 wgs0 = thmap_put(wg->wg_sessions_byindex,
1185 &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1186
1187 /* If someone else beat us, start over. */
1188 } while (__predict_false(wgs0 != wgs));
1189 }
1190
1191 /*
1192 * wg_put_session_index(wg, wgs)
1193 *
1194 * Remove wgs from the table of sessions by index, wait for any
1195 * passive references to drain, and transition the session to the
1196 * UNKNOWN state.
1197 *
1198 * wgs must be the unstable session of its peer, and must not be
1199 * UNKNOWN or ESTABLISHED.
1200 */
1201 static void
1202 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1203 {
1204 struct wg_peer *wgp = wgs->wgs_peer;
1205
1206 KASSERT(mutex_owned(wgp->wgp_lock));
1207 KASSERT(wgs == wgp->wgp_session_unstable);
1208 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1209 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1210
1211 wg_destroy_session(wg, wgs);
1212 psref_target_init(&wgs->wgs_psref, wg_psref_class);
1213 }
1214
1215 /*
1216 * Handshake patterns
1217 *
1218 * [W] 5: "These messages use the "IK" pattern from Noise"
1219 * [N] 7.5. Interactive handshake patterns (fundamental)
1220 * "The first character refers to the initiators static key:"
1221 * "I = Static key for initiator Immediately transmitted to responder,
1222 * despite reduced or absent identity hiding"
1223 * "The second character refers to the responders static key:"
1224 * "K = Static key for responder Known to initiator"
1225 * "IK:
1226 * <- s
1227 * ...
1228 * -> e, es, s, ss
1229 * <- e, ee, se"
1230 * [N] 9.4. Pattern modifiers
1231 * "IKpsk2:
1232 * <- s
1233 * ...
1234 * -> e, es, s, ss
1235 * <- e, ee, se, psk"
1236 */
1237 static void
1238 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1239 struct wg_session *wgs, struct wg_msg_init *wgmi)
1240 {
1241 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1242 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1243 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1244 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1245 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1246
1247 KASSERT(mutex_owned(wgp->wgp_lock));
1248 KASSERT(wgs == wgp->wgp_session_unstable);
1249 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1250
1251 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1252 wgmi->wgmi_sender = wgs->wgs_local_index;
1253
1254 /* [W] 5.4.2: First Message: Initiator to Responder */
1255
1256 /* Ci := HASH(CONSTRUCTION) */
1257 /* Hi := HASH(Ci || IDENTIFIER) */
1258 wg_init_key_and_hash(ckey, hash);
1259 /* Hi := HASH(Hi || Sr^pub) */
1260 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1261
1262 WG_DUMP_HASH("hash", hash);
1263
1264 /* [N] 2.2: "e" */
1265 /* Ei^priv, Ei^pub := DH-GENERATE() */
1266 wg_algo_generate_keypair(pubkey, privkey);
1267 /* Ci := KDF1(Ci, Ei^pub) */
1268 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1269 /* msg.ephemeral := Ei^pub */
1270 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1271 /* Hi := HASH(Hi || msg.ephemeral) */
1272 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1273
1274 WG_DUMP_HASH("ckey", ckey);
1275 WG_DUMP_HASH("hash", hash);
1276
1277 /* [N] 2.2: "es" */
1278 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1279 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1280
1281 /* [N] 2.2: "s" */
1282 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1283 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1284 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1285 hash, sizeof(hash));
1286 /* Hi := HASH(Hi || msg.static) */
1287 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1288
1289 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1290
1291 /* [N] 2.2: "ss" */
1292 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1293 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1294
1295 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1296 wg_timestamp_t timestamp;
1297 wg_algo_tai64n(timestamp);
1298 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1299 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1300 /* Hi := HASH(Hi || msg.timestamp) */
1301 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1302
1303 /* [W] 5.4.4 Cookie MACs */
1304 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1305 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1306 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1307 /* Need mac1 to decrypt a cookie from a cookie message */
1308 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1309 sizeof(wgp->wgp_last_sent_mac1));
1310 wgp->wgp_last_sent_mac1_valid = true;
1311
1312 if (wgp->wgp_latest_cookie_time == 0 ||
1313 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1314 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1315 else {
1316 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1317 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1318 (const uint8_t *)wgmi,
1319 offsetof(struct wg_msg_init, wgmi_mac2),
1320 NULL, 0);
1321 }
1322
1323 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1324 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1325 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1326 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1327 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1328 }
1329
1330 static void
1331 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1332 const struct sockaddr *src)
1333 {
1334 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1335 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1336 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1337 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1338 struct wg_peer *wgp;
1339 struct wg_session *wgs;
1340 int error, ret;
1341 struct psref psref_peer;
1342 uint8_t mac1[WG_MAC_LEN];
1343
1344 WG_TRACE("init msg received");
1345
1346 wg_algo_mac_mac1(mac1, sizeof(mac1),
1347 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1348 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1349
1350 /*
1351 * [W] 5.3: Denial of Service Mitigation & Cookies
1352 * "the responder, ..., must always reject messages with an invalid
1353 * msg.mac1"
1354 */
1355 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1356 WG_DLOG("mac1 is invalid\n");
1357 return;
1358 }
1359
1360 /*
1361 * [W] 5.4.2: First Message: Initiator to Responder
1362 * "When the responder receives this message, it does the same
1363 * operations so that its final state variables are identical,
1364 * replacing the operands of the DH function to produce equivalent
1365 * values."
1366 * Note that the following comments of operations are just copies of
1367 * the initiator's ones.
1368 */
1369
1370 /* Ci := HASH(CONSTRUCTION) */
1371 /* Hi := HASH(Ci || IDENTIFIER) */
1372 wg_init_key_and_hash(ckey, hash);
1373 /* Hi := HASH(Hi || Sr^pub) */
1374 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1375
1376 /* [N] 2.2: "e" */
1377 /* Ci := KDF1(Ci, Ei^pub) */
1378 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1379 sizeof(wgmi->wgmi_ephemeral));
1380 /* Hi := HASH(Hi || msg.ephemeral) */
1381 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1382
1383 WG_DUMP_HASH("ckey", ckey);
1384
1385 /* [N] 2.2: "es" */
1386 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1387 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1388
1389 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1390
1391 /* [N] 2.2: "s" */
1392 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1393 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1394 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1395 if (error != 0) {
1396 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1397 "wg_algo_aead_dec for secret key failed\n");
1398 return;
1399 }
1400 /* Hi := HASH(Hi || msg.static) */
1401 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1402
1403 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1404 if (wgp == NULL) {
1405 WG_DLOG("peer not found\n");
1406 return;
1407 }
1408
1409 /*
1410 * Lock the peer to serialize access to cookie state.
1411 *
1412 * XXX Can we safely avoid holding the lock across DH? Take it
1413 * just to verify mac2 and then unlock/DH/lock?
1414 */
1415 mutex_enter(wgp->wgp_lock);
1416
1417 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1418 WG_TRACE("under load");
1419 /*
1420 * [W] 5.3: Denial of Service Mitigation & Cookies
1421 * "the responder, ..., and when under load may reject messages
1422 * with an invalid msg.mac2. If the responder receives a
1423 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1424 * and is under load, it may respond with a cookie reply
1425 * message"
1426 */
1427 uint8_t zero[WG_MAC_LEN] = {0};
1428 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1429 WG_TRACE("sending a cookie message: no cookie included");
1430 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1431 wgmi->wgmi_mac1, src);
1432 goto out;
1433 }
1434 if (!wgp->wgp_last_sent_cookie_valid) {
1435 WG_TRACE("sending a cookie message: no cookie sent ever");
1436 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1437 wgmi->wgmi_mac1, src);
1438 goto out;
1439 }
1440 uint8_t mac2[WG_MAC_LEN];
1441 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1442 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1443 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1444 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1445 WG_DLOG("mac2 is invalid\n");
1446 goto out;
1447 }
1448 WG_TRACE("under load, but continue to sending");
1449 }
1450
1451 /* [N] 2.2: "ss" */
1452 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1453 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1454
1455 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1456 wg_timestamp_t timestamp;
1457 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1458 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1459 hash, sizeof(hash));
1460 if (error != 0) {
1461 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1462 "wg_algo_aead_dec for timestamp failed\n");
1463 goto out;
1464 }
1465 /* Hi := HASH(Hi || msg.timestamp) */
1466 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1467
1468 /*
1469 * [W] 5.1 "The responder keeps track of the greatest timestamp
1470 * received per peer and discards packets containing
1471 * timestamps less than or equal to it."
1472 */
1473 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1474 sizeof(timestamp));
1475 if (ret <= 0) {
1476 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1477 "invalid init msg: timestamp is old\n");
1478 goto out;
1479 }
1480 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1481
1482 /*
1483 * Message is good -- we're committing to handle it now, unless
1484 * we were already initiating a session.
1485 */
1486 wgs = wgp->wgp_session_unstable;
1487 switch (wgs->wgs_state) {
1488 case WGS_STATE_UNKNOWN: /* new session initiated by peer */
1489 wg_get_session_index(wg, wgs);
1490 break;
1491 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, drop */
1492 WG_TRACE("Session already initializing, ignoring the message");
1493 goto out;
1494 case WGS_STATE_INIT_PASSIVE: /* peer is retrying, start over */
1495 WG_TRACE("Session already initializing, destroying old states");
1496 wg_clear_states(wgs);
1497 /* keep session index */
1498 break;
1499 case WGS_STATE_ESTABLISHED: /* can't happen */
1500 panic("unstable session can't be established");
1501 break;
1502 case WGS_STATE_DESTROYING: /* rekey initiated by peer */
1503 WG_TRACE("Session destroying, but force to clear");
1504 callout_stop(&wgp->wgp_session_dtor_timer);
1505 wg_clear_states(wgs);
1506 /* keep session index */
1507 break;
1508 default:
1509 panic("invalid session state: %d", wgs->wgs_state);
1510 }
1511 wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
1512
1513 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1514 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1515 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1516 sizeof(wgmi->wgmi_ephemeral));
1517
1518 wg_update_endpoint_if_necessary(wgp, src);
1519
1520 (void)wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1521
1522 wg_calculate_keys(wgs, false);
1523 wg_clear_states(wgs);
1524
1525 out:
1526 mutex_exit(wgp->wgp_lock);
1527 wg_put_peer(wgp, &psref_peer);
1528 }
1529
1530 static struct socket *
1531 wg_get_so_by_af(struct wg_worker *wgw, const int af)
1532 {
1533
1534 return (af == AF_INET) ? wgw->wgw_so4 : wgw->wgw_so6;
1535 }
1536
1537 static struct socket *
1538 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1539 {
1540
1541 return wg_get_so_by_af(wgp->wgp_sc->wg_worker, wgsa_family(wgsa));
1542 }
1543
1544 static struct wg_sockaddr *
1545 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1546 {
1547 struct wg_sockaddr *wgsa;
1548 int s;
1549
1550 s = pserialize_read_enter();
1551 wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1552 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1553 pserialize_read_exit(s);
1554
1555 return wgsa;
1556 }
1557
1558 static void
1559 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1560 {
1561
1562 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1563 }
1564
1565 static int
1566 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1567 {
1568 int error;
1569 struct socket *so;
1570 struct psref psref;
1571 struct wg_sockaddr *wgsa;
1572
1573 wgsa = wg_get_endpoint_sa(wgp, &psref);
1574 so = wg_get_so_by_peer(wgp, wgsa);
1575 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1576 wg_put_sa(wgp, wgsa, &psref);
1577
1578 return error;
1579 }
1580
1581 static int
1582 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1583 {
1584 int error;
1585 struct mbuf *m;
1586 struct wg_msg_init *wgmi;
1587 struct wg_session *wgs;
1588
1589 KASSERT(mutex_owned(wgp->wgp_lock));
1590
1591 wgs = wgp->wgp_session_unstable;
1592 /* XXX pull dispatch out into wg_task_send_init_message */
1593 switch (wgs->wgs_state) {
1594 case WGS_STATE_UNKNOWN: /* new session initiated by us */
1595 wg_get_session_index(wg, wgs);
1596 break;
1597 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, stop */
1598 WG_TRACE("Session already initializing, skip starting new one");
1599 return EBUSY;
1600 case WGS_STATE_INIT_PASSIVE: /* peer was trying -- XXX what now? */
1601 WG_TRACE("Session already initializing, destroying old states");
1602 wg_clear_states(wgs);
1603 /* keep session index */
1604 break;
1605 case WGS_STATE_ESTABLISHED: /* can't happen */
1606 panic("unstable session can't be established");
1607 break;
1608 case WGS_STATE_DESTROYING: /* rekey initiated by us too early */
1609 WG_TRACE("Session destroying");
1610 /* XXX should wait? */
1611 return EBUSY;
1612 }
1613 wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
1614
1615 m = m_gethdr(M_WAIT, MT_DATA);
1616 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1617 wgmi = mtod(m, struct wg_msg_init *);
1618 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1619
1620 error = wg->wg_ops->send_hs_msg(wgp, m);
1621 if (error == 0) {
1622 WG_TRACE("init msg sent");
1623
1624 if (wgp->wgp_handshake_start_time == 0)
1625 wgp->wgp_handshake_start_time = time_uptime;
1626 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1627 MIN(wg_rekey_timeout, INT_MAX/hz) * hz);
1628 } else {
1629 wg_put_session_index(wg, wgs);
1630 }
1631
1632 return error;
1633 }
1634
1635 static void
1636 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1637 struct wg_session *wgs, struct wg_msg_resp *wgmr,
1638 const struct wg_msg_init *wgmi)
1639 {
1640 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1641 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1642 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1643 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1644 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1645
1646 KASSERT(mutex_owned(wgp->wgp_lock));
1647 KASSERT(wgs == wgp->wgp_session_unstable);
1648 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1649
1650 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1651 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1652
1653 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
1654 wgmr->wgmr_sender = wgs->wgs_local_index;
1655 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1656
1657 /* [W] 5.4.3 Second Message: Responder to Initiator */
1658
1659 /* [N] 2.2: "e" */
1660 /* Er^priv, Er^pub := DH-GENERATE() */
1661 wg_algo_generate_keypair(pubkey, privkey);
1662 /* Cr := KDF1(Cr, Er^pub) */
1663 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1664 /* msg.ephemeral := Er^pub */
1665 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1666 /* Hr := HASH(Hr || msg.ephemeral) */
1667 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1668
1669 WG_DUMP_HASH("ckey", ckey);
1670 WG_DUMP_HASH("hash", hash);
1671
1672 /* [N] 2.2: "ee" */
1673 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1674 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1675
1676 /* [N] 2.2: "se" */
1677 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1678 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1679
1680 /* [N] 9.2: "psk" */
1681 {
1682 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1683 /* Cr, r, k := KDF3(Cr, Q) */
1684 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1685 sizeof(wgp->wgp_psk));
1686 /* Hr := HASH(Hr || r) */
1687 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1688 }
1689
1690 /* msg.empty := AEAD(k, 0, e, Hr) */
1691 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1692 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1693 /* Hr := HASH(Hr || msg.empty) */
1694 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1695
1696 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1697
1698 /* [W] 5.4.4: Cookie MACs */
1699 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1700 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1701 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1702 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1703 /* Need mac1 to decrypt a cookie from a cookie message */
1704 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1705 sizeof(wgp->wgp_last_sent_mac1));
1706 wgp->wgp_last_sent_mac1_valid = true;
1707
1708 if (wgp->wgp_latest_cookie_time == 0 ||
1709 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1710 /* msg.mac2 := 0^16 */
1711 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1712 else {
1713 /* msg.mac2 := MAC(Lm, msg_b) */
1714 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1715 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1716 (const uint8_t *)wgmr,
1717 offsetof(struct wg_msg_resp, wgmr_mac2),
1718 NULL, 0);
1719 }
1720
1721 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1722 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1723 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1724 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1725 wgs->wgs_remote_index = wgmi->wgmi_sender;
1726 WG_DLOG("sender=%x\n", wgs->wgs_local_index);
1727 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1728 }
1729
1730 static void
1731 wg_swap_sessions(struct wg_peer *wgp)
1732 {
1733 struct wg_session *wgs, *wgs_prev;
1734
1735 KASSERT(mutex_owned(wgp->wgp_lock));
1736
1737 wgs = wgp->wgp_session_unstable;
1738 KASSERT(wgs->wgs_state == WGS_STATE_ESTABLISHED);
1739
1740 wgs_prev = wgp->wgp_session_stable;
1741 KASSERT(wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
1742 wgs_prev->wgs_state == WGS_STATE_UNKNOWN);
1743 atomic_store_release(&wgp->wgp_session_stable, wgs);
1744 wgp->wgp_session_unstable = wgs_prev;
1745 }
1746
1747 static void
1748 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1749 const struct sockaddr *src)
1750 {
1751 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1752 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1753 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1754 struct wg_peer *wgp;
1755 struct wg_session *wgs;
1756 struct psref psref;
1757 int error;
1758 uint8_t mac1[WG_MAC_LEN];
1759 struct wg_session *wgs_prev;
1760
1761 wg_algo_mac_mac1(mac1, sizeof(mac1),
1762 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1763 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1764
1765 /*
1766 * [W] 5.3: Denial of Service Mitigation & Cookies
1767 * "the responder, ..., must always reject messages with an invalid
1768 * msg.mac1"
1769 */
1770 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
1771 WG_DLOG("mac1 is invalid\n");
1772 return;
1773 }
1774
1775 WG_TRACE("resp msg received");
1776 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
1777 if (wgs == NULL) {
1778 WG_TRACE("No session found");
1779 return;
1780 }
1781
1782 wgp = wgs->wgs_peer;
1783
1784 mutex_enter(wgp->wgp_lock);
1785
1786 /* If we weren't waiting for a handshake response, drop it. */
1787 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
1788 WG_TRACE("peer sent spurious handshake response, ignoring");
1789 goto out;
1790 }
1791
1792 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
1793 WG_TRACE("under load");
1794 /*
1795 * [W] 5.3: Denial of Service Mitigation & Cookies
1796 * "the responder, ..., and when under load may reject messages
1797 * with an invalid msg.mac2. If the responder receives a
1798 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1799 * and is under load, it may respond with a cookie reply
1800 * message"
1801 */
1802 uint8_t zero[WG_MAC_LEN] = {0};
1803 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
1804 WG_TRACE("sending a cookie message: no cookie included");
1805 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1806 wgmr->wgmr_mac1, src);
1807 goto out;
1808 }
1809 if (!wgp->wgp_last_sent_cookie_valid) {
1810 WG_TRACE("sending a cookie message: no cookie sent ever");
1811 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1812 wgmr->wgmr_mac1, src);
1813 goto out;
1814 }
1815 uint8_t mac2[WG_MAC_LEN];
1816 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1817 WG_COOKIE_LEN, (const uint8_t *)wgmr,
1818 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
1819 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
1820 WG_DLOG("mac2 is invalid\n");
1821 goto out;
1822 }
1823 WG_TRACE("under load, but continue to sending");
1824 }
1825
1826 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1827 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1828
1829 /*
1830 * [W] 5.4.3 Second Message: Responder to Initiator
1831 * "When the initiator receives this message, it does the same
1832 * operations so that its final state variables are identical,
1833 * replacing the operands of the DH function to produce equivalent
1834 * values."
1835 * Note that the following comments of operations are just copies of
1836 * the initiator's ones.
1837 */
1838
1839 /* [N] 2.2: "e" */
1840 /* Cr := KDF1(Cr, Er^pub) */
1841 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
1842 sizeof(wgmr->wgmr_ephemeral));
1843 /* Hr := HASH(Hr || msg.ephemeral) */
1844 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
1845
1846 WG_DUMP_HASH("ckey", ckey);
1847 WG_DUMP_HASH("hash", hash);
1848
1849 /* [N] 2.2: "ee" */
1850 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1851 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
1852 wgmr->wgmr_ephemeral);
1853
1854 /* [N] 2.2: "se" */
1855 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1856 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
1857
1858 /* [N] 9.2: "psk" */
1859 {
1860 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1861 /* Cr, r, k := KDF3(Cr, Q) */
1862 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1863 sizeof(wgp->wgp_psk));
1864 /* Hr := HASH(Hr || r) */
1865 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1866 }
1867
1868 {
1869 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
1870 /* msg.empty := AEAD(k, 0, e, Hr) */
1871 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
1872 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
1873 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1874 if (error != 0) {
1875 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1876 "wg_algo_aead_dec for empty message failed\n");
1877 goto out;
1878 }
1879 /* Hr := HASH(Hr || msg.empty) */
1880 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1881 }
1882
1883 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
1884 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
1885 wgs->wgs_remote_index = wgmr->wgmr_sender;
1886 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1887
1888 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1889 wgs->wgs_state = WGS_STATE_ESTABLISHED;
1890 wgs->wgs_time_established = time_uptime;
1891 wgs->wgs_time_last_data_sent = 0;
1892 wgs->wgs_is_initiator = true;
1893 wg_calculate_keys(wgs, true);
1894 wg_clear_states(wgs);
1895 WG_TRACE("WGS_STATE_ESTABLISHED");
1896
1897 callout_stop(&wgp->wgp_handshake_timeout_timer);
1898
1899 wg_swap_sessions(wgp);
1900 KASSERT(wgs == wgp->wgp_session_stable);
1901 wgs_prev = wgp->wgp_session_unstable;
1902 getnanotime(&wgp->wgp_last_handshake_time);
1903 wgp->wgp_handshake_start_time = 0;
1904 wgp->wgp_last_sent_mac1_valid = false;
1905 wgp->wgp_last_sent_cookie_valid = false;
1906
1907 wg_schedule_rekey_timer(wgp);
1908
1909 wg_update_endpoint_if_necessary(wgp, src);
1910
1911 /*
1912 * Send something immediately (same as the official implementation)
1913 * XXX if there are pending data packets, we don't need to send
1914 * a keepalive message.
1915 */
1916 wg_send_keepalive_msg(wgp, wgs);
1917
1918 /* Anyway run a softint to flush pending packets */
1919 kpreempt_disable();
1920 softint_schedule(wgp->wgp_si);
1921 kpreempt_enable();
1922 WG_TRACE("softint scheduled");
1923
1924 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
1925 /* Wait for wg_get_stable_session to drain. */
1926 pserialize_perform(wgp->wgp_psz);
1927
1928 /* Transition ESTABLISHED->DESTROYING. */
1929 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
1930
1931 /* We can't destroy the old session immediately */
1932 wg_schedule_session_dtor_timer(wgp);
1933 } else {
1934 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
1935 "state=%d", wgs_prev->wgs_state);
1936 }
1937
1938 out:
1939 mutex_exit(wgp->wgp_lock);
1940 wg_put_session(wgs, &psref);
1941 }
1942
1943 static int
1944 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1945 struct wg_session *wgs, const struct wg_msg_init *wgmi)
1946 {
1947 int error;
1948 struct mbuf *m;
1949 struct wg_msg_resp *wgmr;
1950
1951 KASSERT(mutex_owned(wgp->wgp_lock));
1952 KASSERT(wgs == wgp->wgp_session_unstable);
1953 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1954
1955 m = m_gethdr(M_WAIT, MT_DATA);
1956 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
1957 wgmr = mtod(m, struct wg_msg_resp *);
1958 wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
1959
1960 error = wg->wg_ops->send_hs_msg(wgp, m);
1961 if (error == 0)
1962 WG_TRACE("resp msg sent");
1963 return error;
1964 }
1965
1966 static struct wg_peer *
1967 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
1968 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
1969 {
1970 struct wg_peer *wgp;
1971
1972 int s = pserialize_read_enter();
1973 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
1974 if (wgp != NULL)
1975 wg_get_peer(wgp, psref);
1976 pserialize_read_exit(s);
1977
1978 return wgp;
1979 }
1980
1981 static void
1982 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
1983 struct wg_msg_cookie *wgmc, const uint32_t sender,
1984 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
1985 {
1986 uint8_t cookie[WG_COOKIE_LEN];
1987 uint8_t key[WG_HASH_LEN];
1988 uint8_t addr[sizeof(struct in6_addr)];
1989 size_t addrlen;
1990 uint16_t uh_sport; /* be */
1991
1992 KASSERT(mutex_owned(wgp->wgp_lock));
1993
1994 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
1995 wgmc->wgmc_receiver = sender;
1996 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
1997
1998 /*
1999 * [W] 5.4.7: Under Load: Cookie Reply Message
2000 * "The secret variable, Rm, changes every two minutes to a
2001 * random value"
2002 */
2003 if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
2004 wgp->wgp_randval = cprng_strong32();
2005 wgp->wgp_last_genrandval_time = time_uptime;
2006 }
2007
2008 switch (src->sa_family) {
2009 case AF_INET: {
2010 const struct sockaddr_in *sin = satocsin(src);
2011 addrlen = sizeof(sin->sin_addr);
2012 memcpy(addr, &sin->sin_addr, addrlen);
2013 uh_sport = sin->sin_port;
2014 break;
2015 }
2016 #ifdef INET6
2017 case AF_INET6: {
2018 const struct sockaddr_in6 *sin6 = satocsin6(src);
2019 addrlen = sizeof(sin6->sin6_addr);
2020 memcpy(addr, &sin6->sin6_addr, addrlen);
2021 uh_sport = sin6->sin6_port;
2022 break;
2023 }
2024 #endif
2025 default:
2026 panic("invalid af=%d", src->sa_family);
2027 }
2028
2029 wg_algo_mac(cookie, sizeof(cookie),
2030 (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
2031 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2032 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2033 sizeof(wg->wg_pubkey));
2034 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2035 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2036
2037 /* Need to store to calculate mac2 */
2038 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2039 wgp->wgp_last_sent_cookie_valid = true;
2040 }
2041
2042 static int
2043 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2044 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
2045 const struct sockaddr *src)
2046 {
2047 int error;
2048 struct mbuf *m;
2049 struct wg_msg_cookie *wgmc;
2050
2051 KASSERT(mutex_owned(wgp->wgp_lock));
2052
2053 m = m_gethdr(M_WAIT, MT_DATA);
2054 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2055 wgmc = mtod(m, struct wg_msg_cookie *);
2056 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2057
2058 error = wg->wg_ops->send_hs_msg(wgp, m);
2059 if (error == 0)
2060 WG_TRACE("cookie msg sent");
2061 return error;
2062 }
2063
2064 static bool
2065 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2066 {
2067 #ifdef WG_DEBUG_PARAMS
2068 if (wg_force_underload)
2069 return true;
2070 #endif
2071
2072 /*
2073 * XXX we don't have a means of a load estimation. The purpose of
2074 * the mechanism is a DoS mitigation, so we consider frequent handshake
2075 * messages as (a kind of) load; if a message of the same type comes
2076 * to a peer within 1 second, we consider we are under load.
2077 */
2078 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2079 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2080 return (time_uptime - last) == 0;
2081 }
2082
2083 static void
2084 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2085 {
2086
2087 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2088
2089 /*
2090 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2091 */
2092 if (initiator) {
2093 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2094 wgs->wgs_chaining_key, NULL, 0);
2095 } else {
2096 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2097 wgs->wgs_chaining_key, NULL, 0);
2098 }
2099 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2100 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2101 }
2102
2103 static uint64_t
2104 wg_session_get_send_counter(struct wg_session *wgs)
2105 {
2106 #ifdef __HAVE_ATOMIC64_LOADSTORE
2107 return atomic_load_relaxed(&wgs->wgs_send_counter);
2108 #else
2109 uint64_t send_counter;
2110
2111 mutex_enter(&wgs->wgs_send_counter_lock);
2112 send_counter = wgs->wgs_send_counter;
2113 mutex_exit(&wgs->wgs_send_counter_lock);
2114
2115 return send_counter;
2116 #endif
2117 }
2118
2119 static uint64_t
2120 wg_session_inc_send_counter(struct wg_session *wgs)
2121 {
2122 #ifdef __HAVE_ATOMIC64_LOADSTORE
2123 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2124 #else
2125 uint64_t send_counter;
2126
2127 mutex_enter(&wgs->wgs_send_counter_lock);
2128 send_counter = wgs->wgs_send_counter++;
2129 mutex_exit(&wgs->wgs_send_counter_lock);
2130
2131 return send_counter;
2132 #endif
2133 }
2134
2135 static void
2136 wg_clear_states(struct wg_session *wgs)
2137 {
2138
2139 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2140
2141 wgs->wgs_send_counter = 0;
2142 sliwin_reset(&wgs->wgs_recvwin->window);
2143
2144 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2145 wgs_clear(handshake_hash);
2146 wgs_clear(chaining_key);
2147 wgs_clear(ephemeral_key_pub);
2148 wgs_clear(ephemeral_key_priv);
2149 wgs_clear(ephemeral_key_peer);
2150 #undef wgs_clear
2151 }
2152
2153 static struct wg_session *
2154 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2155 struct psref *psref)
2156 {
2157 struct wg_session *wgs;
2158
2159 int s = pserialize_read_enter();
2160 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2161 if (wgs != NULL) {
2162 KASSERT(atomic_load_relaxed(&wgs->wgs_state) !=
2163 WGS_STATE_UNKNOWN);
2164 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2165 }
2166 pserialize_read_exit(s);
2167
2168 return wgs;
2169 }
2170
2171 static void
2172 wg_schedule_rekey_timer(struct wg_peer *wgp)
2173 {
2174 int timeout = MIN(wg_rekey_after_time, INT_MAX/hz);
2175
2176 callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
2177 }
2178
2179 static void
2180 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2181 {
2182 struct mbuf *m;
2183
2184 /*
2185 * [W] 6.5 Passive Keepalive
2186 * "A keepalive message is simply a transport data message with
2187 * a zero-length encapsulated encrypted inner-packet."
2188 */
2189 m = m_gethdr(M_WAIT, MT_DATA);
2190 wg_send_data_msg(wgp, wgs, m);
2191 }
2192
2193 static bool
2194 wg_need_to_send_init_message(struct wg_session *wgs)
2195 {
2196 /*
2197 * [W] 6.2 Transport Message Limits
2198 * "if a peer is the initiator of a current secure session,
2199 * WireGuard will send a handshake initiation message to begin
2200 * a new secure session ... if after receiving a transport data
2201 * message, the current secure session is (REJECT-AFTER-TIME
2202 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2203 * not yet acted upon this event."
2204 */
2205 return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
2206 (time_uptime - wgs->wgs_time_established) >=
2207 (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
2208 }
2209
2210 static void
2211 wg_schedule_peer_task(struct wg_peer *wgp, int task)
2212 {
2213
2214 atomic_or_uint(&wgp->wgp_tasks, task);
2215 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2216 wg_wakeup_worker(wgp->wgp_sc->wg_worker, WG_WAKEUP_REASON_PEER);
2217 }
2218
2219 static void
2220 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2221 {
2222 struct wg_sockaddr *wgsa_prev;
2223
2224 WG_TRACE("Changing endpoint");
2225
2226 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2227 wgsa_prev = wgp->wgp_endpoint;
2228 atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2229 wgp->wgp_endpoint0 = wgsa_prev;
2230 atomic_store_release(&wgp->wgp_endpoint_available, true);
2231
2232 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2233 }
2234
2235 static bool
2236 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2237 {
2238 uint16_t packet_len;
2239 const struct ip *ip;
2240
2241 if (__predict_false(decrypted_len < sizeof(struct ip)))
2242 return false;
2243
2244 ip = (const struct ip *)packet;
2245 if (ip->ip_v == 4)
2246 *af = AF_INET;
2247 else if (ip->ip_v == 6)
2248 *af = AF_INET6;
2249 else
2250 return false;
2251
2252 WG_DLOG("af=%d\n", *af);
2253
2254 if (*af == AF_INET) {
2255 packet_len = ntohs(ip->ip_len);
2256 } else {
2257 const struct ip6_hdr *ip6;
2258
2259 if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
2260 return false;
2261
2262 ip6 = (const struct ip6_hdr *)packet;
2263 packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2264 }
2265
2266 WG_DLOG("packet_len=%u\n", packet_len);
2267 if (packet_len > decrypted_len)
2268 return false;
2269
2270 return true;
2271 }
2272
2273 static bool
2274 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2275 int af, char *packet)
2276 {
2277 struct sockaddr_storage ss;
2278 struct sockaddr *sa;
2279 struct psref psref;
2280 struct wg_peer *wgp;
2281 bool ok;
2282
2283 /*
2284 * II CRYPTOKEY ROUTING
2285 * "it will only accept it if its source IP resolves in the
2286 * table to the public key used in the secure session for
2287 * decrypting it."
2288 */
2289
2290 if (af == AF_INET) {
2291 const struct ip *ip = (const struct ip *)packet;
2292 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2293 sockaddr_in_init(sin, &ip->ip_src, 0);
2294 sa = sintosa(sin);
2295 #ifdef INET6
2296 } else {
2297 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2298 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2299 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2300 sa = sin6tosa(sin6);
2301 #endif
2302 }
2303
2304 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2305 ok = (wgp == wgp_expected);
2306 if (wgp != NULL)
2307 wg_put_peer(wgp, &psref);
2308
2309 return ok;
2310 }
2311
2312 static void
2313 wg_session_dtor_timer(void *arg)
2314 {
2315 struct wg_peer *wgp = arg;
2316
2317 WG_TRACE("enter");
2318
2319 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2320 }
2321
2322 static void
2323 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2324 {
2325
2326 /* 1 second grace period */
2327 callout_schedule(&wgp->wgp_session_dtor_timer, hz);
2328 }
2329
2330 static bool
2331 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2332 {
2333 if (sa1->sa_family != sa2->sa_family)
2334 return false;
2335
2336 switch (sa1->sa_family) {
2337 case AF_INET:
2338 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2339 case AF_INET6:
2340 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2341 default:
2342 return true;
2343 }
2344 }
2345
2346 static void
2347 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2348 const struct sockaddr *src)
2349 {
2350 struct wg_sockaddr *wgsa;
2351 struct psref psref;
2352
2353 wgsa = wg_get_endpoint_sa(wgp, &psref);
2354
2355 #ifdef WG_DEBUG_LOG
2356 char oldaddr[128], newaddr[128];
2357 sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2358 sockaddr_format(src, newaddr, sizeof(newaddr));
2359 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2360 #endif
2361
2362 /*
2363 * III: "Since the packet has authenticated correctly, the source IP of
2364 * the outer UDP/IP packet is used to update the endpoint for peer..."
2365 */
2366 if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2367 !sockaddr_port_match(src, wgsatosa(wgsa)))) {
2368 /* XXX We can't change the endpoint twice in a short period */
2369 if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2370 wg_change_endpoint(wgp, src);
2371 }
2372 }
2373
2374 wg_put_sa(wgp, wgsa, &psref);
2375 }
2376
2377 static void
2378 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2379 const struct sockaddr *src)
2380 {
2381 struct wg_msg_data *wgmd;
2382 char *encrypted_buf = NULL, *decrypted_buf;
2383 size_t encrypted_len, decrypted_len;
2384 struct wg_session *wgs;
2385 struct wg_peer *wgp;
2386 int state;
2387 size_t mlen;
2388 struct psref psref;
2389 int error, af;
2390 bool success, free_encrypted_buf = false, ok;
2391 struct mbuf *n;
2392
2393 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2394 wgmd = mtod(m, struct wg_msg_data *);
2395
2396 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2397 WG_TRACE("data");
2398
2399 /* Find the putative session, or drop. */
2400 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2401 if (wgs == NULL) {
2402 WG_TRACE("No session found");
2403 m_freem(m);
2404 return;
2405 }
2406
2407 /*
2408 * We are only ready to handle data when in INIT_PASSIVE,
2409 * ESTABLISHED, or DESTROYING. All transitions out of that
2410 * state dissociate the session index and drain psrefs.
2411 */
2412 state = atomic_load_relaxed(&wgs->wgs_state);
2413 switch (state) {
2414 case WGS_STATE_UNKNOWN:
2415 panic("wg session %p in unknown state has session index %u",
2416 wgs, wgmd->wgmd_receiver);
2417 case WGS_STATE_INIT_ACTIVE:
2418 WG_TRACE("not yet ready for data");
2419 goto out;
2420 case WGS_STATE_INIT_PASSIVE:
2421 case WGS_STATE_ESTABLISHED:
2422 case WGS_STATE_DESTROYING:
2423 break;
2424 }
2425
2426 /*
2427 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2428 * to update the endpoint if authentication succeeds.
2429 */
2430 wgp = wgs->wgs_peer;
2431
2432 /*
2433 * Reject outrageously wrong sequence numbers before doing any
2434 * crypto work or taking any locks.
2435 */
2436 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2437 le64toh(wgmd->wgmd_counter));
2438 if (error) {
2439 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2440 "out-of-window packet: %"PRIu64"\n",
2441 le64toh(wgmd->wgmd_counter));
2442 goto out;
2443 }
2444
2445 /* Ensure the payload and authenticator are contiguous. */
2446 mlen = m_length(m);
2447 encrypted_len = mlen - sizeof(*wgmd);
2448 if (encrypted_len < WG_AUTHTAG_LEN) {
2449 WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
2450 goto out;
2451 }
2452 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2453 if (success) {
2454 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2455 } else {
2456 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2457 if (encrypted_buf == NULL) {
2458 WG_DLOG("failed to allocate encrypted_buf\n");
2459 goto out;
2460 }
2461 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2462 free_encrypted_buf = true;
2463 }
2464 /* m_ensure_contig may change m regardless of its result */
2465 KASSERT(m->m_len >= sizeof(*wgmd));
2466 wgmd = mtod(m, struct wg_msg_data *);
2467
2468 /*
2469 * Get a buffer for the plaintext. Add WG_AUTHTAG_LEN to avoid
2470 * a zero-length buffer (XXX). Drop if plaintext is longer
2471 * than MCLBYTES (XXX).
2472 */
2473 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2474 if (decrypted_len > MCLBYTES) {
2475 /* FIXME handle larger data than MCLBYTES */
2476 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2477 goto out;
2478 }
2479 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2480 if (n == NULL) {
2481 WG_DLOG("wg_get_mbuf failed\n");
2482 goto out;
2483 }
2484 decrypted_buf = mtod(n, char *);
2485
2486 /* Decrypt and verify the packet. */
2487 WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
2488 error = wg_algo_aead_dec(decrypted_buf,
2489 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2490 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
2491 encrypted_len, NULL, 0);
2492 if (error != 0) {
2493 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2494 "failed to wg_algo_aead_dec\n");
2495 m_freem(n);
2496 goto out;
2497 }
2498 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2499
2500 /* Packet is genuine. Reject it if a replay or just too old. */
2501 mutex_enter(&wgs->wgs_recvwin->lock);
2502 error = sliwin_update(&wgs->wgs_recvwin->window,
2503 le64toh(wgmd->wgmd_counter));
2504 mutex_exit(&wgs->wgs_recvwin->lock);
2505 if (error) {
2506 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2507 "replay or out-of-window packet: %"PRIu64"\n",
2508 le64toh(wgmd->wgmd_counter));
2509 m_freem(n);
2510 goto out;
2511 }
2512
2513 /* We're done with m now; free it and chuck the pointers. */
2514 m_freem(m);
2515 m = NULL;
2516 wgmd = NULL;
2517
2518 /*
2519 * Validate the encapsulated packet header and get the address
2520 * family, or drop.
2521 */
2522 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2523 if (!ok) {
2524 m_freem(n);
2525 goto out;
2526 }
2527
2528 /*
2529 * The packet is genuine. Update the peer's endpoint if the
2530 * source address changed.
2531 *
2532 * XXX How to prevent DoS by replaying genuine packets from the
2533 * wrong source address?
2534 */
2535 wg_update_endpoint_if_necessary(wgp, src);
2536
2537 /* Submit it into our network stack if routable. */
2538 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2539 if (ok) {
2540 wg->wg_ops->input(&wg->wg_if, n, af);
2541 } else {
2542 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2543 "invalid source address\n");
2544 m_freem(n);
2545 /*
2546 * The inner address is invalid however the session is valid
2547 * so continue the session processing below.
2548 */
2549 }
2550 n = NULL;
2551
2552 /* Update the state machine if necessary. */
2553 if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
2554 /*
2555 * We were waiting for the initiator to send their
2556 * first data transport message, and that has happened.
2557 * Schedule a task to establish this session.
2558 */
2559 wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
2560 } else {
2561 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2562 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2563 }
2564 /*
2565 * [W] 6.5 Passive Keepalive
2566 * "If a peer has received a validly-authenticated transport
2567 * data message (section 5.4.6), but does not have any packets
2568 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2569 * a keepalive message."
2570 */
2571 WG_DLOG("time_uptime=%ju wgs_time_last_data_sent=%ju\n",
2572 (uintmax_t)time_uptime,
2573 (uintmax_t)wgs->wgs_time_last_data_sent);
2574 if ((time_uptime - wgs->wgs_time_last_data_sent) >=
2575 wg_keepalive_timeout) {
2576 WG_TRACE("Schedule sending keepalive message");
2577 /*
2578 * We can't send a keepalive message here to avoid
2579 * a deadlock; we already hold the solock of a socket
2580 * that is used to send the message.
2581 */
2582 wg_schedule_peer_task(wgp,
2583 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2584 }
2585 }
2586 out:
2587 wg_put_session(wgs, &psref);
2588 if (m != NULL)
2589 m_freem(m);
2590 if (free_encrypted_buf)
2591 kmem_intr_free(encrypted_buf, encrypted_len);
2592 }
2593
2594 static void
2595 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2596 {
2597 struct wg_session *wgs;
2598 struct wg_peer *wgp;
2599 struct psref psref;
2600 int error;
2601 uint8_t key[WG_HASH_LEN];
2602 uint8_t cookie[WG_COOKIE_LEN];
2603
2604 WG_TRACE("cookie msg received");
2605
2606 /* Find the putative session. */
2607 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2608 if (wgs == NULL) {
2609 WG_TRACE("No session found");
2610 return;
2611 }
2612
2613 /* Lock the peer so we can update the cookie state. */
2614 wgp = wgs->wgs_peer;
2615 mutex_enter(wgp->wgp_lock);
2616
2617 if (!wgp->wgp_last_sent_mac1_valid) {
2618 WG_TRACE("No valid mac1 sent (or expired)");
2619 goto out;
2620 }
2621
2622 /* Decrypt the cookie and store it for later handshake retry. */
2623 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
2624 sizeof(wgp->wgp_pubkey));
2625 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
2626 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
2627 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
2628 wgmc->wgmc_salt);
2629 if (error != 0) {
2630 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2631 "wg_algo_aead_dec for cookie failed: error=%d\n", error);
2632 goto out;
2633 }
2634 /*
2635 * [W] 6.6: Interaction with Cookie Reply System
2636 * "it should simply store the decrypted cookie value from the cookie
2637 * reply message, and wait for the expiration of the REKEY-TIMEOUT
2638 * timer for retrying a handshake initiation message."
2639 */
2640 wgp->wgp_latest_cookie_time = time_uptime;
2641 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
2642 out:
2643 mutex_exit(wgp->wgp_lock);
2644 wg_put_session(wgs, &psref);
2645 }
2646
2647 static struct mbuf *
2648 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
2649 {
2650 struct wg_msg wgm;
2651 size_t mbuflen;
2652 size_t msglen;
2653
2654 /*
2655 * Get the mbuf chain length. It is already guaranteed, by
2656 * wg_overudp_cb, to be large enough for a struct wg_msg.
2657 */
2658 mbuflen = m_length(m);
2659 KASSERT(mbuflen >= sizeof(struct wg_msg));
2660
2661 /*
2662 * Copy the message header (32-bit message type) out -- we'll
2663 * worry about contiguity and alignment later.
2664 */
2665 m_copydata(m, 0, sizeof(wgm), &wgm);
2666 switch (le32toh(wgm.wgm_type)) {
2667 case WG_MSG_TYPE_INIT:
2668 msglen = sizeof(struct wg_msg_init);
2669 break;
2670 case WG_MSG_TYPE_RESP:
2671 msglen = sizeof(struct wg_msg_resp);
2672 break;
2673 case WG_MSG_TYPE_COOKIE:
2674 msglen = sizeof(struct wg_msg_cookie);
2675 break;
2676 case WG_MSG_TYPE_DATA:
2677 msglen = sizeof(struct wg_msg_data);
2678 break;
2679 default:
2680 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
2681 "Unexpected msg type: %u\n", le32toh(wgm.wgm_type));
2682 goto error;
2683 }
2684
2685 /* Verify the mbuf chain is long enough for this type of message. */
2686 if (__predict_false(mbuflen < msglen)) {
2687 WG_DLOG("Invalid msg size: mbuflen=%lu type=%u\n", mbuflen,
2688 le32toh(wgm.wgm_type));
2689 goto error;
2690 }
2691
2692 /* Make the message header contiguous if necessary. */
2693 if (__predict_false(m->m_len < msglen)) {
2694 m = m_pullup(m, msglen);
2695 if (m == NULL)
2696 return NULL;
2697 }
2698
2699 return m;
2700
2701 error:
2702 m_freem(m);
2703 return NULL;
2704 }
2705
2706 static void
2707 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
2708 const struct sockaddr *src)
2709 {
2710 struct wg_msg *wgm;
2711
2712 m = wg_validate_msg_header(wg, m);
2713 if (__predict_false(m == NULL))
2714 return;
2715
2716 KASSERT(m->m_len >= sizeof(struct wg_msg));
2717 wgm = mtod(m, struct wg_msg *);
2718 switch (le32toh(wgm->wgm_type)) {
2719 case WG_MSG_TYPE_INIT:
2720 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
2721 break;
2722 case WG_MSG_TYPE_RESP:
2723 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
2724 break;
2725 case WG_MSG_TYPE_COOKIE:
2726 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
2727 break;
2728 case WG_MSG_TYPE_DATA:
2729 wg_handle_msg_data(wg, m, src);
2730 /* wg_handle_msg_data frees m for us */
2731 return;
2732 default:
2733 panic("invalid message type: %d", le32toh(wgm->wgm_type));
2734 }
2735
2736 m_freem(m);
2737 }
2738
2739 static void
2740 wg_receive_packets(struct wg_softc *wg, const int af)
2741 {
2742
2743 for (;;) {
2744 int error, flags;
2745 struct socket *so;
2746 struct mbuf *m = NULL;
2747 struct uio dummy_uio;
2748 struct mbuf *paddr = NULL;
2749 struct sockaddr *src;
2750
2751 so = wg_get_so_by_af(wg->wg_worker, af);
2752 flags = MSG_DONTWAIT;
2753 dummy_uio.uio_resid = 1000000000;
2754
2755 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
2756 &flags);
2757 if (error || m == NULL) {
2758 //if (error == EWOULDBLOCK)
2759 return;
2760 }
2761
2762 KASSERT(paddr != NULL);
2763 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
2764 src = mtod(paddr, struct sockaddr *);
2765
2766 wg_handle_packet(wg, m, src);
2767 }
2768 }
2769
2770 static void
2771 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
2772 {
2773
2774 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
2775 }
2776
2777 static void
2778 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
2779 {
2780
2781 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
2782 }
2783
2784 static void
2785 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
2786 {
2787 struct wg_session *wgs;
2788
2789 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
2790
2791 KASSERT(mutex_owned(wgp->wgp_lock));
2792
2793 if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
2794 WGLOG(LOG_DEBUG, "No endpoint available\n");
2795 /* XXX should do something? */
2796 return;
2797 }
2798
2799 wgs = wgp->wgp_session_stable;
2800 if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
2801 /* XXX What if the unstable session is already INIT_ACTIVE? */
2802 wg_send_handshake_msg_init(wg, wgp);
2803 } else {
2804 /* rekey */
2805 wgs = wgp->wgp_session_unstable;
2806 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2807 wg_send_handshake_msg_init(wg, wgp);
2808 }
2809 }
2810
2811 static void
2812 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
2813 {
2814 struct wg_session *wgs;
2815
2816 WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
2817
2818 KASSERT(mutex_owned(wgp->wgp_lock));
2819 KASSERT(wgp->wgp_handshake_start_time != 0);
2820
2821 wgs = wgp->wgp_session_unstable;
2822 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2823 return;
2824
2825 /*
2826 * XXX no real need to assign a new index here, but we do need
2827 * to transition to UNKNOWN temporarily
2828 */
2829 wg_put_session_index(wg, wgs);
2830
2831 /* [W] 6.4 Handshake Initiation Retransmission */
2832 if ((time_uptime - wgp->wgp_handshake_start_time) >
2833 wg_rekey_attempt_time) {
2834 /* Give up handshaking */
2835 wgp->wgp_handshake_start_time = 0;
2836 WG_TRACE("give up");
2837
2838 /*
2839 * If a new data packet comes, handshaking will be retried
2840 * and a new session would be established at that time,
2841 * however we don't want to send pending packets then.
2842 */
2843 wg_purge_pending_packets(wgp);
2844 return;
2845 }
2846
2847 wg_task_send_init_message(wg, wgp);
2848 }
2849
2850 static void
2851 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
2852 {
2853 struct wg_session *wgs, *wgs_prev;
2854
2855 KASSERT(mutex_owned(wgp->wgp_lock));
2856
2857 wgs = wgp->wgp_session_unstable;
2858 if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
2859 /* XXX Can this happen? */
2860 return;
2861
2862 wgs->wgs_state = WGS_STATE_ESTABLISHED;
2863 wgs->wgs_time_established = time_uptime;
2864 wgs->wgs_time_last_data_sent = 0;
2865 wgs->wgs_is_initiator = false;
2866 WG_TRACE("WGS_STATE_ESTABLISHED");
2867
2868 wg_swap_sessions(wgp);
2869 KASSERT(wgs == wgp->wgp_session_stable);
2870 wgs_prev = wgp->wgp_session_unstable;
2871 getnanotime(&wgp->wgp_last_handshake_time);
2872 wgp->wgp_handshake_start_time = 0;
2873 wgp->wgp_last_sent_mac1_valid = false;
2874 wgp->wgp_last_sent_cookie_valid = false;
2875
2876 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2877 /* Wait for wg_get_stable_session to drain. */
2878 pserialize_perform(wgp->wgp_psz);
2879
2880 /* Transition ESTABLISHED->DESTROYING. */
2881 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
2882
2883 /* We can't destroy the old session immediately */
2884 wg_schedule_session_dtor_timer(wgp);
2885 } else {
2886 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2887 "state=%d", wgs_prev->wgs_state);
2888 wg_clear_states(wgs_prev);
2889 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
2890 }
2891
2892 /* Anyway run a softint to flush pending packets */
2893 kpreempt_disable();
2894 softint_schedule(wgp->wgp_si);
2895 kpreempt_enable();
2896 }
2897
2898 static void
2899 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
2900 {
2901
2902 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
2903
2904 KASSERT(mutex_owned(wgp->wgp_lock));
2905
2906 if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
2907 pserialize_perform(wgp->wgp_psz);
2908 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
2909 wg_psref_class);
2910 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
2911 wg_psref_class);
2912 atomic_store_release(&wgp->wgp_endpoint_changing, 0);
2913 }
2914 }
2915
2916 static void
2917 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
2918 {
2919 struct wg_session *wgs;
2920
2921 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
2922
2923 KASSERT(mutex_owned(wgp->wgp_lock));
2924
2925 wgs = wgp->wgp_session_stable;
2926 if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
2927 return;
2928
2929 wg_send_keepalive_msg(wgp, wgs);
2930 }
2931
2932 static void
2933 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
2934 {
2935 struct wg_session *wgs;
2936
2937 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
2938
2939 KASSERT(mutex_owned(wgp->wgp_lock));
2940
2941 wgs = wgp->wgp_session_unstable;
2942 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
2943 wg_put_session_index(wg, wgs);
2944 }
2945 }
2946
2947 static void
2948 wg_process_peer_tasks(struct wg_softc *wg)
2949 {
2950 struct wg_peer *wgp;
2951 int s;
2952
2953 /* XXX should avoid checking all peers */
2954 s = pserialize_read_enter();
2955 WG_PEER_READER_FOREACH(wgp, wg) {
2956 struct psref psref;
2957 unsigned int tasks;
2958
2959 if (wgp->wgp_tasks == 0)
2960 continue;
2961
2962 wg_get_peer(wgp, &psref);
2963 pserialize_read_exit(s);
2964
2965 restart:
2966 tasks = atomic_swap_uint(&wgp->wgp_tasks, 0);
2967 KASSERT(tasks != 0);
2968
2969 WG_DLOG("tasks=%x\n", tasks);
2970
2971 mutex_enter(wgp->wgp_lock);
2972 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
2973 wg_task_send_init_message(wg, wgp);
2974 if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
2975 wg_task_retry_handshake(wg, wgp);
2976 if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
2977 wg_task_establish_session(wg, wgp);
2978 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
2979 wg_task_endpoint_changed(wg, wgp);
2980 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
2981 wg_task_send_keepalive_message(wg, wgp);
2982 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
2983 wg_task_destroy_prev_session(wg, wgp);
2984 mutex_exit(wgp->wgp_lock);
2985
2986 /* New tasks may be scheduled during processing tasks */
2987 WG_DLOG("wgp_tasks=%d\n", wgp->wgp_tasks);
2988 if (wgp->wgp_tasks != 0)
2989 goto restart;
2990
2991 s = pserialize_read_enter();
2992 wg_put_peer(wgp, &psref);
2993 }
2994 pserialize_read_exit(s);
2995 }
2996
2997 static void
2998 wg_worker(void *arg)
2999 {
3000 struct wg_softc *wg = arg;
3001 struct wg_worker *wgw = wg->wg_worker;
3002 bool todie = false;
3003
3004 KASSERT(wg != NULL);
3005 KASSERT(wgw != NULL);
3006
3007 while (!todie) {
3008 int reasons;
3009 int bound;
3010
3011 mutex_enter(&wgw->wgw_lock);
3012 /* New tasks may come during task handling */
3013 while ((reasons = wgw->wgw_wakeup_reasons) == 0 &&
3014 !(todie = wgw->wgw_todie))
3015 cv_wait(&wgw->wgw_cv, &wgw->wgw_lock);
3016 wgw->wgw_wakeup_reasons = 0;
3017 mutex_exit(&wgw->wgw_lock);
3018
3019 bound = curlwp_bind();
3020 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4))
3021 wg_receive_packets(wg, AF_INET);
3022 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6))
3023 wg_receive_packets(wg, AF_INET6);
3024 if (ISSET(reasons, WG_WAKEUP_REASON_PEER))
3025 wg_process_peer_tasks(wg);
3026 curlwp_bindx(bound);
3027 }
3028 kthread_exit(0);
3029 }
3030
3031 static void
3032 wg_wakeup_worker(struct wg_worker *wgw, const int reason)
3033 {
3034
3035 mutex_enter(&wgw->wgw_lock);
3036 wgw->wgw_wakeup_reasons |= reason;
3037 cv_broadcast(&wgw->wgw_cv);
3038 mutex_exit(&wgw->wgw_lock);
3039 }
3040
3041 static int
3042 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3043 {
3044 int error;
3045 struct wg_worker *wgw = wg->wg_worker;
3046 uint16_t old_port = wg->wg_listen_port;
3047
3048 if (port != 0 && old_port == port)
3049 return 0;
3050
3051 struct sockaddr_in _sin, *sin = &_sin;
3052 sin->sin_len = sizeof(*sin);
3053 sin->sin_family = AF_INET;
3054 sin->sin_addr.s_addr = INADDR_ANY;
3055 sin->sin_port = htons(port);
3056
3057 error = sobind(wgw->wgw_so4, sintosa(sin), curlwp);
3058 if (error != 0)
3059 return error;
3060
3061 #ifdef INET6
3062 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3063 sin6->sin6_len = sizeof(*sin6);
3064 sin6->sin6_family = AF_INET6;
3065 sin6->sin6_addr = in6addr_any;
3066 sin6->sin6_port = htons(port);
3067
3068 error = sobind(wgw->wgw_so6, sin6tosa(sin6), curlwp);
3069 if (error != 0)
3070 return error;
3071 #endif
3072
3073 wg->wg_listen_port = port;
3074
3075 return 0;
3076 }
3077
3078 static void
3079 wg_so_upcall(struct socket *so, void *arg, int events, int waitflag)
3080 {
3081 struct wg_worker *wgw = arg;
3082 int reason;
3083
3084 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3085 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 :
3086 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6;
3087 wg_wakeup_worker(wgw, reason);
3088 }
3089
3090 static int
3091 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3092 struct sockaddr *src, void *arg)
3093 {
3094 struct wg_softc *wg = arg;
3095 struct wg_msg wgm;
3096 struct mbuf *m = *mp;
3097
3098 WG_TRACE("enter");
3099
3100 /* Verify the mbuf chain is long enough to have a wg msg header. */
3101 KASSERT(offset <= m_length(m));
3102 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3103 /* drop on the floor */
3104 m_freem(m);
3105 return -1;
3106 }
3107
3108 /*
3109 * Copy the message header (32-bit message type) out -- we'll
3110 * worry about contiguity and alignment later.
3111 */
3112 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3113 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3114
3115 /*
3116 * Handle DATA packets promptly as they arrive. Other packets
3117 * may require expensive public-key crypto and are not as
3118 * sensitive to latency, so defer them to the worker thread.
3119 */
3120 switch (le32toh(wgm.wgm_type)) {
3121 case WG_MSG_TYPE_DATA:
3122 /* handle immediately */
3123 m_adj(m, offset);
3124 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3125 m = m_pullup(m, sizeof(struct wg_msg_data));
3126 if (m == NULL)
3127 return -1;
3128 }
3129 wg_handle_msg_data(wg, m, src);
3130 *mp = NULL;
3131 return 1;
3132 case WG_MSG_TYPE_INIT:
3133 case WG_MSG_TYPE_RESP:
3134 case WG_MSG_TYPE_COOKIE:
3135 /* pass through to so_receive in wg_receive_packets */
3136 return 0;
3137 default:
3138 /* drop on the floor */
3139 m_freem(m);
3140 return -1;
3141 }
3142 }
3143
3144 static int
3145 wg_worker_socreate(struct wg_softc *wg, struct wg_worker *wgw, const int af,
3146 struct socket **sop)
3147 {
3148 int error;
3149 struct socket *so;
3150
3151 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3152 if (error != 0)
3153 return error;
3154
3155 solock(so);
3156 so->so_upcallarg = wgw;
3157 so->so_upcall = wg_so_upcall;
3158 so->so_rcv.sb_flags |= SB_UPCALL;
3159 if (af == AF_INET)
3160 in_pcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3161 #if INET6
3162 else
3163 in6_pcb_register_overudp_cb(sotoin6pcb(so), wg_overudp_cb, wg);
3164 #endif
3165 sounlock(so);
3166
3167 *sop = so;
3168
3169 return 0;
3170 }
3171
3172 static int
3173 wg_worker_init(struct wg_softc *wg)
3174 {
3175 int error;
3176 struct wg_worker *wgw;
3177 const char *ifname = wg->wg_if.if_xname;
3178 struct socket *so;
3179
3180 wgw = kmem_zalloc(sizeof(struct wg_worker), KM_SLEEP);
3181
3182 mutex_init(&wgw->wgw_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3183 cv_init(&wgw->wgw_cv, ifname);
3184 wgw->wgw_todie = false;
3185 wgw->wgw_wakeup_reasons = 0;
3186
3187 error = wg_worker_socreate(wg, wgw, AF_INET, &so);
3188 if (error != 0)
3189 goto error;
3190 wgw->wgw_so4 = so;
3191 #ifdef INET6
3192 error = wg_worker_socreate(wg, wgw, AF_INET6, &so);
3193 if (error != 0)
3194 goto error;
3195 wgw->wgw_so6 = so;
3196 #endif
3197
3198 wg->wg_worker = wgw;
3199
3200 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE | KTHREAD_MUSTJOIN,
3201 NULL, wg_worker, wg, &wg->wg_worker_lwp, "%s", ifname);
3202 if (error != 0)
3203 goto error;
3204
3205 return 0;
3206
3207 error:
3208 #ifdef INET6
3209 if (wgw->wgw_so6 != NULL)
3210 soclose(wgw->wgw_so6);
3211 #endif
3212 if (wgw->wgw_so4 != NULL)
3213 soclose(wgw->wgw_so4);
3214 cv_destroy(&wgw->wgw_cv);
3215 mutex_destroy(&wgw->wgw_lock);
3216
3217 return error;
3218 }
3219
3220 static void
3221 wg_worker_destroy(struct wg_softc *wg)
3222 {
3223 struct wg_worker *wgw = wg->wg_worker;
3224
3225 mutex_enter(&wgw->wgw_lock);
3226 wgw->wgw_todie = true;
3227 wgw->wgw_wakeup_reasons = 0;
3228 cv_broadcast(&wgw->wgw_cv);
3229 mutex_exit(&wgw->wgw_lock);
3230
3231 kthread_join(wg->wg_worker_lwp);
3232
3233 #ifdef INET6
3234 soclose(wgw->wgw_so6);
3235 #endif
3236 soclose(wgw->wgw_so4);
3237 cv_destroy(&wgw->wgw_cv);
3238 mutex_destroy(&wgw->wgw_lock);
3239 kmem_free(wg->wg_worker, sizeof(struct wg_worker));
3240 wg->wg_worker = NULL;
3241 }
3242
3243 static bool
3244 wg_session_hit_limits(struct wg_session *wgs)
3245 {
3246
3247 /*
3248 * [W] 6.2: Transport Message Limits
3249 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3250 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3251 * comes first, WireGuard will refuse to send any more transport data
3252 * messages using the current secure session, ..."
3253 */
3254 KASSERT(wgs->wgs_time_established != 0);
3255 if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
3256 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3257 return true;
3258 } else if (wg_session_get_send_counter(wgs) >
3259 wg_reject_after_messages) {
3260 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3261 return true;
3262 }
3263
3264 return false;
3265 }
3266
3267 static void
3268 wg_peer_softint(void *arg)
3269 {
3270 struct wg_peer *wgp = arg;
3271 struct wg_session *wgs;
3272 struct mbuf *m;
3273 struct psref psref;
3274
3275 if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3276 /* XXX how to treat? */
3277 WG_TRACE("skipped");
3278 return;
3279 }
3280 if (wg_session_hit_limits(wgs)) {
3281 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3282 goto out;
3283 }
3284 WG_TRACE("running");
3285
3286 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3287 wg_send_data_msg(wgp, wgs, m);
3288 }
3289 out:
3290 wg_put_session(wgs, &psref);
3291 }
3292
3293 static void
3294 wg_rekey_timer(void *arg)
3295 {
3296 struct wg_peer *wgp = arg;
3297
3298 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3299 }
3300
3301 static void
3302 wg_purge_pending_packets(struct wg_peer *wgp)
3303 {
3304 struct mbuf *m;
3305
3306 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3307 m_freem(m);
3308 }
3309 }
3310
3311 static void
3312 wg_handshake_timeout_timer(void *arg)
3313 {
3314 struct wg_peer *wgp = arg;
3315
3316 WG_TRACE("enter");
3317
3318 wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3319 }
3320
3321 static struct wg_peer *
3322 wg_alloc_peer(struct wg_softc *wg)
3323 {
3324 struct wg_peer *wgp;
3325
3326 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3327
3328 wgp->wgp_sc = wg;
3329 wgp->wgp_q = pcq_create(1024, KM_SLEEP);
3330 wgp->wgp_si = softint_establish(SOFTINT_NET, wg_peer_softint, wgp);
3331 callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
3332 callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
3333 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3334 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3335 wg_handshake_timeout_timer, wgp);
3336 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3337 callout_setfunc(&wgp->wgp_session_dtor_timer,
3338 wg_session_dtor_timer, wgp);
3339 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3340 wgp->wgp_endpoint_changing = false;
3341 wgp->wgp_endpoint_available = false;
3342 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3343 wgp->wgp_psz = pserialize_create();
3344 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3345
3346 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3347 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3348 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3349 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3350
3351 struct wg_session *wgs;
3352 wgp->wgp_session_stable =
3353 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3354 wgp->wgp_session_unstable =
3355 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3356 wgs = wgp->wgp_session_stable;
3357 wgs->wgs_peer = wgp;
3358 wgs->wgs_state = WGS_STATE_UNKNOWN;
3359 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3360 #ifndef __HAVE_ATOMIC64_LOADSTORE
3361 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3362 #endif
3363 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3364 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3365
3366 wgs = wgp->wgp_session_unstable;
3367 wgs->wgs_peer = wgp;
3368 wgs->wgs_state = WGS_STATE_UNKNOWN;
3369 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3370 #ifndef __HAVE_ATOMIC64_LOADSTORE
3371 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3372 #endif
3373 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3374 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3375
3376 return wgp;
3377 }
3378
3379 static void
3380 wg_destroy_peer(struct wg_peer *wgp)
3381 {
3382 struct wg_session *wgs;
3383 struct wg_softc *wg = wgp->wgp_sc;
3384
3385 /* Prevent new packets from this peer on any source address. */
3386 rw_enter(wg->wg_rwlock, RW_WRITER);
3387 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3388 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3389 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3390 struct radix_node *rn;
3391
3392 KASSERT(rnh != NULL);
3393 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3394 &wga->wga_sa_mask, rnh);
3395 if (rn == NULL) {
3396 char addrstr[128];
3397 sockaddr_format(&wga->wga_sa_addr, addrstr,
3398 sizeof(addrstr));
3399 WGLOG(LOG_WARNING, "Couldn't delete %s", addrstr);
3400 }
3401 }
3402 rw_exit(wg->wg_rwlock);
3403
3404 /* Purge pending packets. */
3405 wg_purge_pending_packets(wgp);
3406
3407 /* Halt all packet processing and timeouts. */
3408 softint_disestablish(wgp->wgp_si);
3409 callout_halt(&wgp->wgp_rekey_timer, NULL);
3410 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3411 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3412
3413 wgs = wgp->wgp_session_unstable;
3414 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3415 mutex_enter(wgp->wgp_lock);
3416 wg_destroy_session(wg, wgs);
3417 mutex_exit(wgp->wgp_lock);
3418 }
3419 mutex_destroy(&wgs->wgs_recvwin->lock);
3420 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3421 #ifndef __HAVE_ATOMIC64_LOADSTORE
3422 mutex_destroy(&wgs->wgs_send_counter_lock);
3423 #endif
3424 kmem_free(wgs, sizeof(*wgs));
3425
3426 wgs = wgp->wgp_session_stable;
3427 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3428 mutex_enter(wgp->wgp_lock);
3429 wg_destroy_session(wg, wgs);
3430 mutex_exit(wgp->wgp_lock);
3431 }
3432 mutex_destroy(&wgs->wgs_recvwin->lock);
3433 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3434 #ifndef __HAVE_ATOMIC64_LOADSTORE
3435 mutex_destroy(&wgs->wgs_send_counter_lock);
3436 #endif
3437 kmem_free(wgs, sizeof(*wgs));
3438
3439 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3440 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3441 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3442 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3443
3444 pserialize_destroy(wgp->wgp_psz);
3445 pcq_destroy(wgp->wgp_q);
3446 mutex_obj_free(wgp->wgp_lock);
3447
3448 kmem_free(wgp, sizeof(*wgp));
3449 }
3450
3451 static void
3452 wg_destroy_all_peers(struct wg_softc *wg)
3453 {
3454 struct wg_peer *wgp, *wgp0 __diagused;
3455 void *garbage_byname, *garbage_bypubkey;
3456
3457 restart:
3458 garbage_byname = garbage_bypubkey = NULL;
3459 mutex_enter(wg->wg_lock);
3460 WG_PEER_WRITER_FOREACH(wgp, wg) {
3461 if (wgp->wgp_name[0]) {
3462 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3463 strlen(wgp->wgp_name));
3464 KASSERT(wgp0 == wgp);
3465 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3466 }
3467 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3468 sizeof(wgp->wgp_pubkey));
3469 KASSERT(wgp0 == wgp);
3470 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3471 WG_PEER_WRITER_REMOVE(wgp);
3472 wg->wg_npeers--;
3473 mutex_enter(wgp->wgp_lock);
3474 pserialize_perform(wgp->wgp_psz);
3475 mutex_exit(wgp->wgp_lock);
3476 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3477 break;
3478 }
3479 mutex_exit(wg->wg_lock);
3480
3481 if (wgp == NULL)
3482 return;
3483
3484 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3485
3486 wg_destroy_peer(wgp);
3487 thmap_gc(wg->wg_peers_byname, garbage_byname);
3488 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3489
3490 goto restart;
3491 }
3492
3493 static int
3494 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3495 {
3496 struct wg_peer *wgp, *wgp0 __diagused;
3497 void *garbage_byname, *garbage_bypubkey;
3498
3499 mutex_enter(wg->wg_lock);
3500 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
3501 if (wgp != NULL) {
3502 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3503 sizeof(wgp->wgp_pubkey));
3504 KASSERT(wgp0 == wgp);
3505 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3506 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3507 WG_PEER_WRITER_REMOVE(wgp);
3508 wg->wg_npeers--;
3509 mutex_enter(wgp->wgp_lock);
3510 pserialize_perform(wgp->wgp_psz);
3511 mutex_exit(wgp->wgp_lock);
3512 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3513 }
3514 mutex_exit(wg->wg_lock);
3515
3516 if (wgp == NULL)
3517 return ENOENT;
3518
3519 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3520
3521 wg_destroy_peer(wgp);
3522 thmap_gc(wg->wg_peers_byname, garbage_byname);
3523 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3524
3525 return 0;
3526 }
3527
3528 static int
3529 wg_if_attach(struct wg_softc *wg)
3530 {
3531 int error;
3532
3533 wg->wg_if.if_addrlen = 0;
3534 wg->wg_if.if_mtu = WG_MTU;
3535 wg->wg_if.if_flags = IFF_MULTICAST;
3536 wg->wg_if.if_extflags = IFEF_NO_LINK_STATE_CHANGE;
3537 wg->wg_if.if_extflags |= IFEF_MPSAFE;
3538 wg->wg_if.if_ioctl = wg_ioctl;
3539 wg->wg_if.if_output = wg_output;
3540 wg->wg_if.if_init = wg_init;
3541 wg->wg_if.if_stop = wg_stop;
3542 wg->wg_if.if_type = IFT_OTHER;
3543 wg->wg_if.if_dlt = DLT_NULL;
3544 wg->wg_if.if_softc = wg;
3545 IFQ_SET_READY(&wg->wg_if.if_snd);
3546
3547 error = if_initialize(&wg->wg_if);
3548 if (error != 0)
3549 return error;
3550
3551 if_alloc_sadl(&wg->wg_if);
3552 if_register(&wg->wg_if);
3553
3554 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3555
3556 return 0;
3557 }
3558
3559 static int
3560 wg_clone_create(struct if_clone *ifc, int unit)
3561 {
3562 struct wg_softc *wg;
3563 int error;
3564
3565 wg = kmem_zalloc(sizeof(struct wg_softc), KM_SLEEP);
3566
3567 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3568
3569 error = wg_worker_init(wg);
3570 if (error != 0) {
3571 kmem_free(wg, sizeof(struct wg_softc));
3572 return error;
3573 }
3574
3575 rn_inithead((void **)&wg->wg_rtable_ipv4,
3576 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3577 #ifdef INET6
3578 rn_inithead((void **)&wg->wg_rtable_ipv6,
3579 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3580 #endif
3581
3582 PSLIST_INIT(&wg->wg_peers);
3583 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
3584 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
3585 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
3586 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3587 wg->wg_rwlock = rw_obj_alloc();
3588 wg->wg_ops = &wg_ops_rumpkernel;
3589
3590 error = wg_if_attach(wg);
3591 if (error != 0) {
3592 wg_worker_destroy(wg);
3593 if (wg->wg_rtable_ipv4 != NULL)
3594 free(wg->wg_rtable_ipv4, M_RTABLE);
3595 if (wg->wg_rtable_ipv6 != NULL)
3596 free(wg->wg_rtable_ipv6, M_RTABLE);
3597 PSLIST_DESTROY(&wg->wg_peers);
3598 mutex_obj_free(wg->wg_lock);
3599 thmap_destroy(wg->wg_sessions_byindex);
3600 thmap_destroy(wg->wg_peers_byname);
3601 thmap_destroy(wg->wg_peers_bypubkey);
3602 kmem_free(wg, sizeof(struct wg_softc));
3603 return error;
3604 }
3605
3606 mutex_enter(&wg_softcs.lock);
3607 LIST_INSERT_HEAD(&wg_softcs.list, wg, wg_list);
3608 mutex_exit(&wg_softcs.lock);
3609
3610 return 0;
3611 }
3612
3613 static int
3614 wg_clone_destroy(struct ifnet *ifp)
3615 {
3616 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
3617
3618 mutex_enter(&wg_softcs.lock);
3619 LIST_REMOVE(wg, wg_list);
3620 mutex_exit(&wg_softcs.lock);
3621
3622 #ifdef WG_RUMPKERNEL
3623 if (wg_user_mode(wg)) {
3624 rumpuser_wg_destroy(wg->wg_user);
3625 wg->wg_user = NULL;
3626 }
3627 #endif
3628
3629 bpf_detach(ifp);
3630 if_detach(ifp);
3631 wg_worker_destroy(wg);
3632 wg_destroy_all_peers(wg);
3633 if (wg->wg_rtable_ipv4 != NULL)
3634 free(wg->wg_rtable_ipv4, M_RTABLE);
3635 if (wg->wg_rtable_ipv6 != NULL)
3636 free(wg->wg_rtable_ipv6, M_RTABLE);
3637
3638 PSLIST_DESTROY(&wg->wg_peers);
3639 thmap_destroy(wg->wg_sessions_byindex);
3640 thmap_destroy(wg->wg_peers_byname);
3641 thmap_destroy(wg->wg_peers_bypubkey);
3642 mutex_obj_free(wg->wg_lock);
3643 rw_obj_free(wg->wg_rwlock);
3644
3645 kmem_free(wg, sizeof(struct wg_softc));
3646
3647 return 0;
3648 }
3649
3650 static struct wg_peer *
3651 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
3652 struct psref *psref)
3653 {
3654 struct radix_node_head *rnh;
3655 struct radix_node *rn;
3656 struct wg_peer *wgp = NULL;
3657 struct wg_allowedip *wga;
3658
3659 #ifdef WG_DEBUG_LOG
3660 char addrstr[128];
3661 sockaddr_format(sa, addrstr, sizeof(addrstr));
3662 WG_DLOG("sa=%s\n", addrstr);
3663 #endif
3664
3665 rw_enter(wg->wg_rwlock, RW_READER);
3666
3667 rnh = wg_rnh(wg, sa->sa_family);
3668 if (rnh == NULL)
3669 goto out;
3670
3671 rn = rnh->rnh_matchaddr(sa, rnh);
3672 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
3673 goto out;
3674
3675 WG_TRACE("success");
3676
3677 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
3678 wgp = wga->wga_peer;
3679 wg_get_peer(wgp, psref);
3680
3681 out:
3682 rw_exit(wg->wg_rwlock);
3683 return wgp;
3684 }
3685
3686 static void
3687 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
3688 struct wg_session *wgs, struct wg_msg_data *wgmd)
3689 {
3690
3691 memset(wgmd, 0, sizeof(*wgmd));
3692 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
3693 wgmd->wgmd_receiver = wgs->wgs_remote_index;
3694 /* [W] 5.4.6: msg.counter := Nm^send */
3695 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
3696 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
3697 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
3698 }
3699
3700 static int
3701 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
3702 const struct rtentry *rt)
3703 {
3704 struct wg_softc *wg = ifp->if_softc;
3705 struct wg_peer *wgp = NULL;
3706 struct wg_session *wgs = NULL;
3707 struct psref wgp_psref, wgs_psref;
3708 int bound;
3709 int error;
3710
3711 bound = curlwp_bind();
3712
3713 /* TODO make the nest limit configurable via sysctl */
3714 error = if_tunnel_check_nesting(ifp, m, 1);
3715 if (error) {
3716 WGLOG(LOG_ERR, "tunneling loop detected and packet dropped\n");
3717 goto out;
3718 }
3719
3720 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
3721
3722 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
3723
3724 m->m_flags &= ~(M_BCAST|M_MCAST);
3725
3726 wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
3727 if (wgp == NULL) {
3728 WG_TRACE("peer not found");
3729 error = EHOSTUNREACH;
3730 goto out;
3731 }
3732
3733 /* Clear checksum-offload flags. */
3734 m->m_pkthdr.csum_flags = 0;
3735 m->m_pkthdr.csum_data = 0;
3736
3737 if (!pcq_put(wgp->wgp_q, m)) {
3738 error = ENOBUFS;
3739 goto out;
3740 }
3741 m = NULL; /* consumed */
3742
3743 wgs = wg_get_stable_session(wgp, &wgs_psref);
3744 if (wgs != NULL && !wg_session_hit_limits(wgs)) {
3745 kpreempt_disable();
3746 softint_schedule(wgp->wgp_si);
3747 kpreempt_enable();
3748 WG_TRACE("softint scheduled");
3749 } else {
3750 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3751 WG_TRACE("softint NOT scheduled");
3752 }
3753 error = 0;
3754
3755 out:
3756 if (wgs != NULL)
3757 wg_put_session(wgs, &wgs_psref);
3758 if (wgp != NULL)
3759 wg_put_peer(wgp, &wgp_psref);
3760 if (m != NULL)
3761 m_freem(m);
3762 curlwp_bindx(bound);
3763 return error;
3764 }
3765
3766 static int
3767 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
3768 {
3769 struct psref psref;
3770 struct wg_sockaddr *wgsa;
3771 int error;
3772 struct socket *so;
3773
3774 wgsa = wg_get_endpoint_sa(wgp, &psref);
3775 so = wg_get_so_by_peer(wgp, wgsa);
3776 solock(so);
3777 if (wgsatosa(wgsa)->sa_family == AF_INET) {
3778 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
3779 } else {
3780 #ifdef INET6
3781 error = udp6_output(sotoin6pcb(so), m, wgsatosin6(wgsa),
3782 NULL, curlwp);
3783 #else
3784 m_freem(m);
3785 error = EPFNOSUPPORT;
3786 #endif
3787 }
3788 sounlock(so);
3789 wg_put_sa(wgp, wgsa, &psref);
3790
3791 return error;
3792 }
3793
3794 /* Inspired by pppoe_get_mbuf */
3795 static struct mbuf *
3796 wg_get_mbuf(size_t leading_len, size_t len)
3797 {
3798 struct mbuf *m;
3799
3800 KASSERT(leading_len <= MCLBYTES);
3801 KASSERT(len <= MCLBYTES - leading_len);
3802
3803 m = m_gethdr(M_DONTWAIT, MT_DATA);
3804 if (m == NULL)
3805 return NULL;
3806 if (len + leading_len > MHLEN) {
3807 m_clget(m, M_DONTWAIT);
3808 if ((m->m_flags & M_EXT) == 0) {
3809 m_free(m);
3810 return NULL;
3811 }
3812 }
3813 m->m_data += leading_len;
3814 m->m_pkthdr.len = m->m_len = len;
3815
3816 return m;
3817 }
3818
3819 static int
3820 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
3821 struct mbuf *m)
3822 {
3823 struct wg_softc *wg = wgp->wgp_sc;
3824 int error;
3825 size_t inner_len, padded_len, encrypted_len;
3826 char *padded_buf = NULL;
3827 size_t mlen;
3828 struct wg_msg_data *wgmd;
3829 bool free_padded_buf = false;
3830 struct mbuf *n;
3831 size_t leading_len = max_linkhdr + sizeof(struct ip6_hdr) +
3832 sizeof(struct udphdr);
3833
3834 mlen = m_length(m);
3835 inner_len = mlen;
3836 padded_len = roundup(mlen, 16);
3837 encrypted_len = padded_len + WG_AUTHTAG_LEN;
3838 WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
3839 inner_len, padded_len, encrypted_len);
3840 if (mlen != 0) {
3841 bool success;
3842 success = m_ensure_contig(&m, padded_len);
3843 if (success) {
3844 padded_buf = mtod(m, char *);
3845 } else {
3846 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
3847 if (padded_buf == NULL) {
3848 error = ENOBUFS;
3849 goto end;
3850 }
3851 free_padded_buf = true;
3852 m_copydata(m, 0, mlen, padded_buf);
3853 }
3854 memset(padded_buf + mlen, 0, padded_len - inner_len);
3855 }
3856
3857 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
3858 if (n == NULL) {
3859 error = ENOBUFS;
3860 goto end;
3861 }
3862 KASSERT(n->m_len >= sizeof(*wgmd));
3863 wgmd = mtod(n, struct wg_msg_data *);
3864 wg_fill_msg_data(wg, wgp, wgs, wgmd);
3865 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
3866 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
3867 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
3868 padded_buf, padded_len,
3869 NULL, 0);
3870
3871 error = wg->wg_ops->send_data_msg(wgp, n);
3872 if (error == 0) {
3873 struct ifnet *ifp = &wg->wg_if;
3874 if_statadd(ifp, if_obytes, mlen);
3875 if_statinc(ifp, if_opackets);
3876 if (wgs->wgs_is_initiator &&
3877 wgs->wgs_time_last_data_sent == 0) {
3878 /*
3879 * [W] 6.2 Transport Message Limits
3880 * "if a peer is the initiator of a current secure
3881 * session, WireGuard will send a handshake initiation
3882 * message to begin a new secure session if, after
3883 * transmitting a transport data message, the current
3884 * secure session is REKEY-AFTER-TIME seconds old,"
3885 */
3886 wg_schedule_rekey_timer(wgp);
3887 }
3888 wgs->wgs_time_last_data_sent = time_uptime;
3889 if (wg_session_get_send_counter(wgs) >=
3890 wg_rekey_after_messages) {
3891 /*
3892 * [W] 6.2 Transport Message Limits
3893 * "WireGuard will try to create a new session, by
3894 * sending a handshake initiation message (section
3895 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
3896 * transport data messages..."
3897 */
3898 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3899 }
3900 }
3901 end:
3902 m_freem(m);
3903 if (free_padded_buf)
3904 kmem_intr_free(padded_buf, padded_len);
3905 return error;
3906 }
3907
3908 static void
3909 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
3910 {
3911 pktqueue_t *pktq;
3912 size_t pktlen;
3913
3914 KASSERT(af == AF_INET || af == AF_INET6);
3915
3916 WG_TRACE("");
3917
3918 m_set_rcvif(m, ifp);
3919 pktlen = m->m_pkthdr.len;
3920
3921 bpf_mtap_af(ifp, af, m, BPF_D_IN);
3922
3923 switch (af) {
3924 case AF_INET:
3925 pktq = ip_pktq;
3926 break;
3927 #ifdef INET6
3928 case AF_INET6:
3929 pktq = ip6_pktq;
3930 break;
3931 #endif
3932 default:
3933 panic("invalid af=%d", af);
3934 }
3935
3936 const u_int h = curcpu()->ci_index;
3937 if (__predict_true(pktq_enqueue(pktq, m, h))) {
3938 if_statadd(ifp, if_ibytes, pktlen);
3939 if_statinc(ifp, if_ipackets);
3940 } else {
3941 m_freem(m);
3942 }
3943 }
3944
3945 static void
3946 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
3947 const uint8_t privkey[WG_STATIC_KEY_LEN])
3948 {
3949
3950 crypto_scalarmult_base(pubkey, privkey);
3951 }
3952
3953 static int
3954 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
3955 {
3956 struct radix_node_head *rnh;
3957 struct radix_node *rn;
3958 int error = 0;
3959
3960 rw_enter(wg->wg_rwlock, RW_WRITER);
3961 rnh = wg_rnh(wg, wga->wga_family);
3962 KASSERT(rnh != NULL);
3963 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
3964 wga->wga_nodes);
3965 rw_exit(wg->wg_rwlock);
3966
3967 if (rn == NULL)
3968 error = EEXIST;
3969
3970 return error;
3971 }
3972
3973 static int
3974 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
3975 struct wg_peer **wgpp)
3976 {
3977 int error = 0;
3978 const void *pubkey;
3979 size_t pubkey_len;
3980 const void *psk;
3981 size_t psk_len;
3982 const char *name = NULL;
3983
3984 if (prop_dictionary_get_string(peer, "name", &name)) {
3985 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
3986 error = EINVAL;
3987 goto out;
3988 }
3989 }
3990
3991 if (!prop_dictionary_get_data(peer, "public_key",
3992 &pubkey, &pubkey_len)) {
3993 error = EINVAL;
3994 goto out;
3995 }
3996 #ifdef WG_DEBUG_DUMP
3997 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n", pubkey, pubkey_len);
3998 for (int _i = 0; _i < pubkey_len; _i++)
3999 log(LOG_DEBUG, "%c", ((const char *)pubkey)[_i]);
4000 log(LOG_DEBUG, "\n");
4001 #endif
4002
4003 struct wg_peer *wgp = wg_alloc_peer(wg);
4004 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4005 if (name != NULL)
4006 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4007
4008 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4009 if (psk_len != sizeof(wgp->wgp_psk)) {
4010 error = EINVAL;
4011 goto out;
4012 }
4013 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4014 }
4015
4016 const void *addr;
4017 size_t addr_len;
4018 struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4019
4020 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4021 goto skip_endpoint;
4022 if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4023 addr_len > sizeof(*wgsatoss(wgsa))) {
4024 error = EINVAL;
4025 goto out;
4026 }
4027 memcpy(wgsatoss(wgsa), addr, addr_len);
4028 switch (wgsa_family(wgsa)) {
4029 case AF_INET:
4030 #ifdef INET6
4031 case AF_INET6:
4032 #endif
4033 break;
4034 default:
4035 error = EPFNOSUPPORT;
4036 goto out;
4037 }
4038 if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4039 error = EINVAL;
4040 goto out;
4041 }
4042 {
4043 char addrstr[128];
4044 sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4045 WG_DLOG("addr=%s\n", addrstr);
4046 }
4047 wgp->wgp_endpoint_available = true;
4048
4049 prop_array_t allowedips;
4050 skip_endpoint:
4051 allowedips = prop_dictionary_get(peer, "allowedips");
4052 if (allowedips == NULL)
4053 goto skip;
4054
4055 prop_object_iterator_t _it = prop_array_iterator(allowedips);
4056 prop_dictionary_t prop_allowedip;
4057 int j = 0;
4058 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4059 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4060
4061 if (!prop_dictionary_get_int(prop_allowedip, "family",
4062 &wga->wga_family))
4063 continue;
4064 if (!prop_dictionary_get_data(prop_allowedip, "ip",
4065 &addr, &addr_len))
4066 continue;
4067 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4068 &wga->wga_cidr))
4069 continue;
4070
4071 switch (wga->wga_family) {
4072 case AF_INET: {
4073 struct sockaddr_in sin;
4074 char addrstr[128];
4075 struct in_addr mask;
4076 struct sockaddr_in sin_mask;
4077
4078 if (addr_len != sizeof(struct in_addr))
4079 return EINVAL;
4080 memcpy(&wga->wga_addr4, addr, addr_len);
4081
4082 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4083 0);
4084 sockaddr_copy(&wga->wga_sa_addr,
4085 sizeof(sin), sintosa(&sin));
4086
4087 sockaddr_format(sintosa(&sin),
4088 addrstr, sizeof(addrstr));
4089 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4090
4091 in_len2mask(&mask, wga->wga_cidr);
4092 sockaddr_in_init(&sin_mask, &mask, 0);
4093 sockaddr_copy(&wga->wga_sa_mask,
4094 sizeof(sin_mask), sintosa(&sin_mask));
4095
4096 break;
4097 }
4098 #ifdef INET6
4099 case AF_INET6: {
4100 struct sockaddr_in6 sin6;
4101 char addrstr[128];
4102 struct in6_addr mask;
4103 struct sockaddr_in6 sin6_mask;
4104
4105 if (addr_len != sizeof(struct in6_addr))
4106 return EINVAL;
4107 memcpy(&wga->wga_addr6, addr, addr_len);
4108
4109 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4110 0, 0, 0);
4111 sockaddr_copy(&wga->wga_sa_addr,
4112 sizeof(sin6), sin6tosa(&sin6));
4113
4114 sockaddr_format(sin6tosa(&sin6),
4115 addrstr, sizeof(addrstr));
4116 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4117
4118 in6_prefixlen2mask(&mask, wga->wga_cidr);
4119 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4120 sockaddr_copy(&wga->wga_sa_mask,
4121 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4122
4123 break;
4124 }
4125 #endif
4126 default:
4127 error = EINVAL;
4128 goto out;
4129 }
4130 wga->wga_peer = wgp;
4131
4132 error = wg_rtable_add_route(wg, wga);
4133 if (error != 0)
4134 goto out;
4135
4136 j++;
4137 }
4138 wgp->wgp_n_allowedips = j;
4139 skip:
4140 *wgpp = wgp;
4141 out:
4142 return error;
4143 }
4144
4145 static int
4146 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4147 {
4148 int error;
4149 char *buf;
4150
4151 WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
4152 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4153 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4154 if (error != 0)
4155 return error;
4156 buf[ifd->ifd_len] = '\0';
4157 #ifdef WG_DEBUG_DUMP
4158 for (int i = 0; i < ifd->ifd_len; i++)
4159 log(LOG_DEBUG, "%c", buf[i]);
4160 log(LOG_DEBUG, "\n");
4161 #endif
4162 *_buf = buf;
4163 return 0;
4164 }
4165
4166 static int
4167 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4168 {
4169 int error;
4170 prop_dictionary_t prop_dict;
4171 char *buf = NULL;
4172 const void *privkey;
4173 size_t privkey_len;
4174
4175 error = wg_alloc_prop_buf(&buf, ifd);
4176 if (error != 0)
4177 return error;
4178 error = EINVAL;
4179 prop_dict = prop_dictionary_internalize(buf);
4180 if (prop_dict == NULL)
4181 goto out;
4182 if (!prop_dictionary_get_data(prop_dict, "private_key",
4183 &privkey, &privkey_len))
4184 goto out;
4185 #ifdef WG_DEBUG_DUMP
4186 log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n", privkey, privkey_len);
4187 for (int i = 0; i < privkey_len; i++)
4188 log(LOG_DEBUG, "%c", ((const char *)privkey)[i]);
4189 log(LOG_DEBUG, "\n");
4190 #endif
4191 if (privkey_len != WG_STATIC_KEY_LEN)
4192 goto out;
4193 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4194 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4195 error = 0;
4196
4197 out:
4198 kmem_free(buf, ifd->ifd_len + 1);
4199 return error;
4200 }
4201
4202 static int
4203 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4204 {
4205 int error;
4206 prop_dictionary_t prop_dict;
4207 char *buf = NULL;
4208 uint16_t port;
4209
4210 error = wg_alloc_prop_buf(&buf, ifd);
4211 if (error != 0)
4212 return error;
4213 error = EINVAL;
4214 prop_dict = prop_dictionary_internalize(buf);
4215 if (prop_dict == NULL)
4216 goto out;
4217 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4218 goto out;
4219
4220 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4221
4222 out:
4223 kmem_free(buf, ifd->ifd_len + 1);
4224 return error;
4225 }
4226
4227 static int
4228 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4229 {
4230 int error;
4231 prop_dictionary_t prop_dict;
4232 char *buf = NULL;
4233 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4234
4235 error = wg_alloc_prop_buf(&buf, ifd);
4236 if (error != 0)
4237 return error;
4238 error = EINVAL;
4239 prop_dict = prop_dictionary_internalize(buf);
4240 if (prop_dict == NULL)
4241 goto out;
4242
4243 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4244 if (error != 0)
4245 goto out;
4246
4247 mutex_enter(wg->wg_lock);
4248 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4249 sizeof(wgp->wgp_pubkey)) != NULL ||
4250 (wgp->wgp_name[0] &&
4251 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4252 strlen(wgp->wgp_name)) != NULL)) {
4253 mutex_exit(wg->wg_lock);
4254 wg_destroy_peer(wgp);
4255 error = EEXIST;
4256 goto out;
4257 }
4258 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4259 sizeof(wgp->wgp_pubkey), wgp);
4260 KASSERT(wgp0 == wgp);
4261 if (wgp->wgp_name[0]) {
4262 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4263 strlen(wgp->wgp_name), wgp);
4264 KASSERT(wgp0 == wgp);
4265 }
4266 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4267 wg->wg_npeers++;
4268 mutex_exit(wg->wg_lock);
4269
4270 out:
4271 kmem_free(buf, ifd->ifd_len + 1);
4272 return error;
4273 }
4274
4275 static int
4276 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4277 {
4278 int error;
4279 prop_dictionary_t prop_dict;
4280 char *buf = NULL;
4281 const char *name;
4282
4283 error = wg_alloc_prop_buf(&buf, ifd);
4284 if (error != 0)
4285 return error;
4286 error = EINVAL;
4287 prop_dict = prop_dictionary_internalize(buf);
4288 if (prop_dict == NULL)
4289 goto out;
4290
4291 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4292 goto out;
4293 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4294 goto out;
4295
4296 error = wg_destroy_peer_name(wg, name);
4297 out:
4298 kmem_free(buf, ifd->ifd_len + 1);
4299 return error;
4300 }
4301
4302 static int
4303 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4304 {
4305 int error = ENOMEM;
4306 prop_dictionary_t prop_dict;
4307 prop_array_t peers = NULL;
4308 char *buf;
4309 struct wg_peer *wgp;
4310 int s, i;
4311
4312 prop_dict = prop_dictionary_create();
4313 if (prop_dict == NULL)
4314 goto error;
4315
4316 if (!prop_dictionary_set_data(prop_dict, "private_key", wg->wg_privkey,
4317 WG_STATIC_KEY_LEN))
4318 goto error;
4319
4320 if (wg->wg_listen_port != 0) {
4321 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4322 wg->wg_listen_port))
4323 goto error;
4324 }
4325
4326 if (wg->wg_npeers == 0)
4327 goto skip_peers;
4328
4329 peers = prop_array_create();
4330 if (peers == NULL)
4331 goto error;
4332
4333 s = pserialize_read_enter();
4334 i = 0;
4335 WG_PEER_READER_FOREACH(wgp, wg) {
4336 struct wg_sockaddr *wgsa;
4337 struct psref wgp_psref, wgsa_psref;
4338 prop_dictionary_t prop_peer;
4339
4340 wg_get_peer(wgp, &wgp_psref);
4341 pserialize_read_exit(s);
4342
4343 prop_peer = prop_dictionary_create();
4344 if (prop_peer == NULL)
4345 goto next;
4346
4347 if (strlen(wgp->wgp_name) > 0) {
4348 if (!prop_dictionary_set_string(prop_peer, "name",
4349 wgp->wgp_name))
4350 goto next;
4351 }
4352
4353 if (!prop_dictionary_set_data(prop_peer, "public_key",
4354 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4355 goto next;
4356
4357 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4358 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4359 sizeof(wgp->wgp_psk))) {
4360 if (!prop_dictionary_set_data(prop_peer,
4361 "preshared_key",
4362 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4363 goto next;
4364 }
4365
4366 wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
4367 CTASSERT(AF_UNSPEC == 0);
4368 if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
4369 !prop_dictionary_set_data(prop_peer, "endpoint",
4370 wgsatoss(wgsa),
4371 sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
4372 wg_put_sa(wgp, wgsa, &wgsa_psref);
4373 goto next;
4374 }
4375 wg_put_sa(wgp, wgsa, &wgsa_psref);
4376
4377 const struct timespec *t = &wgp->wgp_last_handshake_time;
4378
4379 if (!prop_dictionary_set_uint64(prop_peer,
4380 "last_handshake_time_sec", t->tv_sec))
4381 goto next;
4382 if (!prop_dictionary_set_uint32(prop_peer,
4383 "last_handshake_time_nsec", t->tv_nsec))
4384 goto next;
4385
4386 if (wgp->wgp_n_allowedips == 0)
4387 goto skip_allowedips;
4388
4389 prop_array_t allowedips = prop_array_create();
4390 if (allowedips == NULL)
4391 goto next;
4392 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4393 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4394 prop_dictionary_t prop_allowedip;
4395
4396 prop_allowedip = prop_dictionary_create();
4397 if (prop_allowedip == NULL)
4398 break;
4399
4400 if (!prop_dictionary_set_int(prop_allowedip, "family",
4401 wga->wga_family))
4402 goto _next;
4403 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4404 wga->wga_cidr))
4405 goto _next;
4406
4407 switch (wga->wga_family) {
4408 case AF_INET:
4409 if (!prop_dictionary_set_data(prop_allowedip,
4410 "ip", &wga->wga_addr4,
4411 sizeof(wga->wga_addr4)))
4412 goto _next;
4413 break;
4414 #ifdef INET6
4415 case AF_INET6:
4416 if (!prop_dictionary_set_data(prop_allowedip,
4417 "ip", &wga->wga_addr6,
4418 sizeof(wga->wga_addr6)))
4419 goto _next;
4420 break;
4421 #endif
4422 default:
4423 break;
4424 }
4425 prop_array_set(allowedips, j, prop_allowedip);
4426 _next:
4427 prop_object_release(prop_allowedip);
4428 }
4429 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4430 prop_object_release(allowedips);
4431
4432 skip_allowedips:
4433
4434 prop_array_set(peers, i, prop_peer);
4435 next:
4436 if (prop_peer)
4437 prop_object_release(prop_peer);
4438 i++;
4439
4440 s = pserialize_read_enter();
4441 wg_put_peer(wgp, &wgp_psref);
4442 }
4443 pserialize_read_exit(s);
4444
4445 prop_dictionary_set(prop_dict, "peers", peers);
4446 prop_object_release(peers);
4447 peers = NULL;
4448
4449 skip_peers:
4450 buf = prop_dictionary_externalize(prop_dict);
4451 if (buf == NULL)
4452 goto error;
4453 if (ifd->ifd_len < (strlen(buf) + 1)) {
4454 error = EINVAL;
4455 goto error;
4456 }
4457 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4458
4459 free(buf, 0);
4460 error:
4461 if (peers != NULL)
4462 prop_object_release(peers);
4463 if (prop_dict != NULL)
4464 prop_object_release(prop_dict);
4465
4466 return error;
4467 }
4468
4469 static int
4470 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4471 {
4472 struct wg_softc *wg = ifp->if_softc;
4473 struct ifreq *ifr = data;
4474 struct ifaddr *ifa = data;
4475 struct ifdrv *ifd = data;
4476 int error = 0;
4477
4478 switch (cmd) {
4479 case SIOCINITIFADDR:
4480 if (ifa->ifa_addr->sa_family != AF_LINK &&
4481 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
4482 (IFF_UP | IFF_RUNNING)) {
4483 ifp->if_flags |= IFF_UP;
4484 error = ifp->if_init(ifp);
4485 }
4486 return error;
4487 case SIOCADDMULTI:
4488 case SIOCDELMULTI:
4489 switch (ifr->ifr_addr.sa_family) {
4490 case AF_INET: /* IP supports Multicast */
4491 break;
4492 #ifdef INET6
4493 case AF_INET6: /* IP6 supports Multicast */
4494 break;
4495 #endif
4496 default: /* Other protocols doesn't support Multicast */
4497 error = EAFNOSUPPORT;
4498 break;
4499 }
4500 return error;
4501 case SIOCSDRVSPEC:
4502 switch (ifd->ifd_cmd) {
4503 case WG_IOCTL_SET_PRIVATE_KEY:
4504 error = wg_ioctl_set_private_key(wg, ifd);
4505 break;
4506 case WG_IOCTL_SET_LISTEN_PORT:
4507 error = wg_ioctl_set_listen_port(wg, ifd);
4508 break;
4509 case WG_IOCTL_ADD_PEER:
4510 error = wg_ioctl_add_peer(wg, ifd);
4511 break;
4512 case WG_IOCTL_DELETE_PEER:
4513 error = wg_ioctl_delete_peer(wg, ifd);
4514 break;
4515 default:
4516 error = EINVAL;
4517 break;
4518 }
4519 return error;
4520 case SIOCGDRVSPEC:
4521 return wg_ioctl_get(wg, ifd);
4522 case SIOCSIFFLAGS:
4523 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
4524 break;
4525 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4526 case IFF_RUNNING:
4527 /*
4528 * If interface is marked down and it is running,
4529 * then stop and disable it.
4530 */
4531 (*ifp->if_stop)(ifp, 1);
4532 break;
4533 case IFF_UP:
4534 /*
4535 * If interface is marked up and it is stopped, then
4536 * start it.
4537 */
4538 error = (*ifp->if_init)(ifp);
4539 break;
4540 default:
4541 break;
4542 }
4543 return error;
4544 #ifdef WG_RUMPKERNEL
4545 case SIOCSLINKSTR:
4546 error = wg_ioctl_linkstr(wg, ifd);
4547 if (error == 0)
4548 wg->wg_ops = &wg_ops_rumpuser;
4549 return error;
4550 #endif
4551 default:
4552 break;
4553 }
4554
4555 error = ifioctl_common(ifp, cmd, data);
4556
4557 #ifdef WG_RUMPKERNEL
4558 if (!wg_user_mode(wg))
4559 return error;
4560
4561 /* Do the same to the corresponding tun device on the host */
4562 /*
4563 * XXX Actually the command has not been handled yet. It
4564 * will be handled via pr_ioctl form doifioctl later.
4565 */
4566 switch (cmd) {
4567 case SIOCAIFADDR:
4568 case SIOCDIFADDR: {
4569 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
4570 struct in_aliasreq *ifra = &_ifra;
4571 KASSERT(error == ENOTTY);
4572 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4573 IFNAMSIZ);
4574 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
4575 if (error == 0)
4576 error = ENOTTY;
4577 break;
4578 }
4579 #ifdef INET6
4580 case SIOCAIFADDR_IN6:
4581 case SIOCDIFADDR_IN6: {
4582 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
4583 struct in6_aliasreq *ifra = &_ifra;
4584 KASSERT(error == ENOTTY);
4585 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4586 IFNAMSIZ);
4587 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
4588 if (error == 0)
4589 error = ENOTTY;
4590 break;
4591 }
4592 #endif
4593 }
4594 #endif /* WG_RUMPKERNEL */
4595
4596 return error;
4597 }
4598
4599 static int
4600 wg_init(struct ifnet *ifp)
4601 {
4602
4603 ifp->if_flags |= IFF_RUNNING;
4604
4605 /* TODO flush pending packets. */
4606 return 0;
4607 }
4608
4609 static void
4610 wg_stop(struct ifnet *ifp, int disable)
4611 {
4612
4613 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
4614 ifp->if_flags &= ~IFF_RUNNING;
4615
4616 /* Need to do something? */
4617 }
4618
4619 #ifdef WG_DEBUG_PARAMS
4620 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
4621 {
4622 const struct sysctlnode *node = NULL;
4623
4624 sysctl_createv(clog, 0, NULL, &node,
4625 CTLFLAG_PERMANENT,
4626 CTLTYPE_NODE, "wg",
4627 SYSCTL_DESCR("wg(4)"),
4628 NULL, 0, NULL, 0,
4629 CTL_NET, CTL_CREATE, CTL_EOL);
4630 sysctl_createv(clog, 0, &node, NULL,
4631 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4632 CTLTYPE_QUAD, "rekey_after_messages",
4633 SYSCTL_DESCR("session liftime by messages"),
4634 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
4635 sysctl_createv(clog, 0, &node, NULL,
4636 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4637 CTLTYPE_INT, "rekey_after_time",
4638 SYSCTL_DESCR("session liftime"),
4639 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
4640 sysctl_createv(clog, 0, &node, NULL,
4641 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4642 CTLTYPE_INT, "rekey_timeout",
4643 SYSCTL_DESCR("session handshake retry time"),
4644 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
4645 sysctl_createv(clog, 0, &node, NULL,
4646 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4647 CTLTYPE_INT, "rekey_attempt_time",
4648 SYSCTL_DESCR("session handshake timeout"),
4649 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
4650 sysctl_createv(clog, 0, &node, NULL,
4651 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4652 CTLTYPE_INT, "keepalive_timeout",
4653 SYSCTL_DESCR("keepalive timeout"),
4654 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
4655 sysctl_createv(clog, 0, &node, NULL,
4656 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4657 CTLTYPE_BOOL, "force_underload",
4658 SYSCTL_DESCR("force to detemine under load"),
4659 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
4660 }
4661 #endif
4662
4663 #ifdef WG_RUMPKERNEL
4664 static bool
4665 wg_user_mode(struct wg_softc *wg)
4666 {
4667
4668 return wg->wg_user != NULL;
4669 }
4670
4671 static int
4672 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
4673 {
4674 struct ifnet *ifp = &wg->wg_if;
4675 int error;
4676
4677 if (ifp->if_flags & IFF_UP)
4678 return EBUSY;
4679
4680 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
4681 /* XXX do nothing */
4682 return 0;
4683 } else if (ifd->ifd_cmd != 0) {
4684 return EINVAL;
4685 } else if (wg->wg_user != NULL) {
4686 return EBUSY;
4687 }
4688
4689 /* Assume \0 included */
4690 if (ifd->ifd_len > IFNAMSIZ) {
4691 return E2BIG;
4692 } else if (ifd->ifd_len < 1) {
4693 return EINVAL;
4694 }
4695
4696 char tun_name[IFNAMSIZ];
4697 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
4698 if (error != 0)
4699 return error;
4700
4701 if (strncmp(tun_name, "tun", 3) != 0)
4702 return EINVAL;
4703
4704 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
4705
4706 return error;
4707 }
4708
4709 static int
4710 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
4711 {
4712 int error;
4713 struct psref psref;
4714 struct wg_sockaddr *wgsa;
4715 struct wg_softc *wg = wgp->wgp_sc;
4716 struct iovec iov[1];
4717
4718 wgsa = wg_get_endpoint_sa(wgp, &psref);
4719
4720 iov[0].iov_base = mtod(m, void *);
4721 iov[0].iov_len = m->m_len;
4722
4723 /* Send messages to a peer via an ordinary socket. */
4724 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
4725
4726 wg_put_sa(wgp, wgsa, &psref);
4727
4728 m_freem(m);
4729
4730 return error;
4731 }
4732
4733 static void
4734 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
4735 {
4736 struct wg_softc *wg = ifp->if_softc;
4737 struct iovec iov[2];
4738 struct sockaddr_storage ss;
4739
4740 KASSERT(af == AF_INET || af == AF_INET6);
4741
4742 WG_TRACE("");
4743
4744 if (af == AF_INET) {
4745 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
4746 struct ip *ip;
4747
4748 KASSERT(m->m_len >= sizeof(struct ip));
4749 ip = mtod(m, struct ip *);
4750 sockaddr_in_init(sin, &ip->ip_dst, 0);
4751 } else {
4752 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
4753 struct ip6_hdr *ip6;
4754
4755 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
4756 ip6 = mtod(m, struct ip6_hdr *);
4757 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
4758 }
4759
4760 iov[0].iov_base = &ss;
4761 iov[0].iov_len = ss.ss_len;
4762 iov[1].iov_base = mtod(m, void *);
4763 iov[1].iov_len = m->m_len;
4764
4765 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4766
4767 /* Send decrypted packets to users via a tun. */
4768 rumpuser_wg_send_user(wg->wg_user, iov, 2);
4769
4770 m_freem(m);
4771 }
4772
4773 static int
4774 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
4775 {
4776 int error;
4777 uint16_t old_port = wg->wg_listen_port;
4778
4779 if (port != 0 && old_port == port)
4780 return 0;
4781
4782 error = rumpuser_wg_sock_bind(wg->wg_user, port);
4783 if (error == 0)
4784 wg->wg_listen_port = port;
4785 return error;
4786 }
4787
4788 /*
4789 * Receive user packets.
4790 */
4791 void
4792 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4793 {
4794 struct ifnet *ifp = &wg->wg_if;
4795 struct mbuf *m;
4796 const struct sockaddr *dst;
4797
4798 WG_TRACE("");
4799
4800 dst = iov[0].iov_base;
4801
4802 m = m_gethdr(M_DONTWAIT, MT_DATA);
4803 if (m == NULL)
4804 return;
4805 m->m_len = m->m_pkthdr.len = 0;
4806 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4807
4808 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4809 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4810
4811 (void)wg_output(ifp, m, dst, NULL);
4812 }
4813
4814 /*
4815 * Receive packets from a peer.
4816 */
4817 void
4818 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4819 {
4820 struct mbuf *m;
4821 const struct sockaddr *src;
4822
4823 WG_TRACE("");
4824
4825 src = iov[0].iov_base;
4826
4827 m = m_gethdr(M_DONTWAIT, MT_DATA);
4828 if (m == NULL)
4829 return;
4830 m->m_len = m->m_pkthdr.len = 0;
4831 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4832
4833 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4834 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4835
4836 wg_handle_packet(wg, m, src);
4837 }
4838 #endif /* WG_RUMPKERNEL */
4839
4840 /*
4841 * Module infrastructure
4842 */
4843 #include "if_module.h"
4844
4845 IF_MODULE(MODULE_CLASS_DRIVER, wg, "")
4846