if_wg.c revision 1.53 1 /* $NetBSD: if_wg.c,v 1.53 2020/09/07 00:33:08 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.53 2020/09/07 00:33:08 riastradh Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_inet.h"
48 #endif
49
50 #include <sys/param.h>
51 #include <sys/types.h>
52
53 #include <sys/atomic.h>
54 #include <sys/callout.h>
55 #include <sys/cprng.h>
56 #include <sys/cpu.h>
57 #include <sys/device.h>
58 #include <sys/domain.h>
59 #include <sys/errno.h>
60 #include <sys/intr.h>
61 #include <sys/ioctl.h>
62 #include <sys/kernel.h>
63 #include <sys/kmem.h>
64 #include <sys/kthread.h>
65 #include <sys/mbuf.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/pcq.h>
69 #include <sys/percpu.h>
70 #include <sys/pserialize.h>
71 #include <sys/psref.h>
72 #include <sys/queue.h>
73 #include <sys/rwlock.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/systm.h>
80 #include <sys/thmap.h>
81 #include <sys/time.h>
82 #include <sys/timespec.h>
83
84 #include <net/bpf.h>
85 #include <net/if.h>
86 #include <net/if_types.h>
87 #include <net/if_wg.h>
88 #include <net/route.h>
89
90 #include <netinet/in.h>
91 #include <netinet/in_pcb.h>
92 #include <netinet/in_var.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_var.h>
95 #include <netinet/udp.h>
96 #include <netinet/udp_var.h>
97
98 #ifdef INET6
99 #include <netinet/ip6.h>
100 #include <netinet6/in6_pcb.h>
101 #include <netinet6/in6_var.h>
102 #include <netinet6/ip6_var.h>
103 #include <netinet6/udp6_var.h>
104 #endif /* INET6 */
105
106 #include <prop/proplib.h>
107
108 #include <crypto/blake2/blake2s.h>
109 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
110 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
111 #include <crypto/sodium/crypto_scalarmult.h>
112
113 #include "ioconf.h"
114
115 #ifdef WG_RUMPKERNEL
116 #include "wg_user.h"
117 #endif
118
119 /*
120 * Data structures
121 * - struct wg_softc is an instance of wg interfaces
122 * - It has a list of peers (struct wg_peer)
123 * - It has a kthread that sends/receives handshake messages and
124 * runs event handlers
125 * - It has its own two routing tables: one is for IPv4 and the other IPv6
126 * - struct wg_peer is a representative of a peer
127 * - It has a softint that is used to send packets over an wg interface
128 * to a peer
129 * - It has a pair of session instances (struct wg_session)
130 * - It has a pair of endpoint instances (struct wg_sockaddr)
131 * - Normally one endpoint is used and the second one is used only on
132 * a peer migration (a change of peer's IP address)
133 * - It has a list of IP addresses and sub networks called allowedips
134 * (struct wg_allowedip)
135 * - A packets sent over a session is allowed if its destination matches
136 * any IP addresses or sub networks of the list
137 * - struct wg_session represents a session of a secure tunnel with a peer
138 * - Two instances of sessions belong to a peer; a stable session and a
139 * unstable session
140 * - A handshake process of a session always starts with a unstable instance
141 * - Once a session is established, its instance becomes stable and the
142 * other becomes unstable instead
143 * - Data messages are always sent via a stable session
144 *
145 * Locking notes:
146 * - wg interfaces (struct wg_softc, wg) is listed in wg_softcs.list and
147 * protected by wg_softcs.lock
148 * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
149 * - Changes to the peer list are serialized by wg_lock
150 * - The peer list may be read with pserialize(9) and psref(9)
151 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
152 * => XXX replace by pserialize when routing table is psz-safe
153 * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
154 * only in thread context and serializes:
155 * - the stable and unstable session pointers
156 * - all unstable session state
157 * - Packet processing may be done in softint context:
158 * - The stable session can be read under pserialize(9) or psref(9)
159 * - The stable session is always ESTABLISHED
160 * - On a session swap, we must wait for all readers to release a
161 * reference to a stable session before changing wgs_state and
162 * session states
163 * - Lock order: wg_lock -> wgp_lock
164 */
165
166
167 #define WGLOG(level, fmt, args...) \
168 log(level, "%s: " fmt, __func__, ##args)
169
170 /* Debug options */
171 #ifdef WG_DEBUG
172 /* Output debug logs */
173 #ifndef WG_DEBUG_LOG
174 #define WG_DEBUG_LOG
175 #endif
176 /* Output trace logs */
177 #ifndef WG_DEBUG_TRACE
178 #define WG_DEBUG_TRACE
179 #endif
180 /* Output hash values, etc. */
181 #ifndef WG_DEBUG_DUMP
182 #define WG_DEBUG_DUMP
183 #endif
184 /* Make some internal parameters configurable for testing and debugging */
185 #ifndef WG_DEBUG_PARAMS
186 #define WG_DEBUG_PARAMS
187 #endif
188 #endif
189
190 #ifdef WG_DEBUG_TRACE
191 #define WG_TRACE(msg) \
192 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
193 #else
194 #define WG_TRACE(msg) __nothing
195 #endif
196
197 #ifdef WG_DEBUG_LOG
198 #define WG_DLOG(fmt, args...) log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
199 #else
200 #define WG_DLOG(fmt, args...) __nothing
201 #endif
202
203 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
204 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
205 &(wgprc)->wgprc_curpps, 1)) { \
206 log(level, fmt, ##args); \
207 } \
208 } while (0)
209
210 #ifdef WG_DEBUG_PARAMS
211 static bool wg_force_underload = false;
212 #endif
213
214 #ifdef WG_DEBUG_DUMP
215
216 static char *
217 gethexdump(const char *p, size_t n)
218 {
219 char *buf;
220 size_t i;
221
222 if (n > SIZE_MAX/3 - 1)
223 return NULL;
224 buf = kmem_alloc(3*n + 1, KM_NOSLEEP);
225 if (buf == NULL)
226 return NULL;
227 for (i = 0; i < n; i++)
228 snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
229 return buf;
230 }
231
232 static void
233 puthexdump(char *buf, const void *p, size_t n)
234 {
235
236 if (buf == NULL)
237 return;
238 kmem_free(buf, 3*n + 1);
239 }
240
241 #ifdef WG_RUMPKERNEL
242 static void
243 wg_dump_buf(const char *func, const char *buf, const size_t size)
244 {
245 char *hex = gethexdump(buf, size);
246
247 log(LOG_DEBUG, "%s: %s\n", func, hex ? hex : "(enomem)");
248 puthexdump(hex, buf, size);
249 }
250 #endif
251
252 static void
253 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
254 const size_t size)
255 {
256 char *hex = gethexdump(hash, size);
257
258 log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex ? hex : "(enomem)");
259 puthexdump(hex, hash, size);
260 }
261
262 #define WG_DUMP_HASH(name, hash) \
263 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
264 #define WG_DUMP_HASH48(name, hash) \
265 wg_dump_hash(__func__, name, hash, 48)
266 #define WG_DUMP_BUF(buf, size) \
267 wg_dump_buf(__func__, buf, size)
268 #else
269 #define WG_DUMP_HASH(name, hash) __nothing
270 #define WG_DUMP_HASH48(name, hash) __nothing
271 #define WG_DUMP_BUF(buf, size) __nothing
272 #endif /* WG_DEBUG_DUMP */
273
274 #define WG_MTU 1420
275 #define WG_ALLOWEDIPS 16
276
277 #define CURVE25519_KEY_LEN 32
278 #define TAI64N_LEN sizeof(uint32_t) * 3
279 #define POLY1305_AUTHTAG_LEN 16
280 #define HMAC_BLOCK_LEN 64
281
282 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
283 /* [N] 4.3: Hash functions */
284 #define NOISE_DHLEN 32
285 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
286 #define NOISE_HASHLEN 32
287 #define NOISE_BLOCKLEN 64
288 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
289 /* [N] 5.1: "k" */
290 #define NOISE_CIPHER_KEY_LEN 32
291 /*
292 * [N] 9.2: "psk"
293 * "... psk is a 32-byte secret value provided by the application."
294 */
295 #define NOISE_PRESHARED_KEY_LEN 32
296
297 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
298 #define WG_TIMESTAMP_LEN TAI64N_LEN
299
300 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
301
302 #define WG_COOKIE_LEN 16
303 #define WG_MAC_LEN 16
304 #define WG_RANDVAL_LEN 24
305
306 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
307 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
308 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
309 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
310 #define WG_HASH_LEN NOISE_HASHLEN
311 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
312 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
313 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
314 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
315 #define WG_DATA_KEY_LEN 32
316 #define WG_SALT_LEN 24
317
318 /*
319 * The protocol messages
320 */
321 struct wg_msg {
322 uint32_t wgm_type;
323 } __packed;
324
325 /* [W] 5.4.2 First Message: Initiator to Responder */
326 struct wg_msg_init {
327 uint32_t wgmi_type;
328 uint32_t wgmi_sender;
329 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
330 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
331 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
332 uint8_t wgmi_mac1[WG_MAC_LEN];
333 uint8_t wgmi_mac2[WG_MAC_LEN];
334 } __packed;
335
336 /* [W] 5.4.3 Second Message: Responder to Initiator */
337 struct wg_msg_resp {
338 uint32_t wgmr_type;
339 uint32_t wgmr_sender;
340 uint32_t wgmr_receiver;
341 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
342 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
343 uint8_t wgmr_mac1[WG_MAC_LEN];
344 uint8_t wgmr_mac2[WG_MAC_LEN];
345 } __packed;
346
347 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
348 struct wg_msg_data {
349 uint32_t wgmd_type;
350 uint32_t wgmd_receiver;
351 uint64_t wgmd_counter;
352 uint32_t wgmd_packet[0];
353 } __packed;
354
355 /* [W] 5.4.7 Under Load: Cookie Reply Message */
356 struct wg_msg_cookie {
357 uint32_t wgmc_type;
358 uint32_t wgmc_receiver;
359 uint8_t wgmc_salt[WG_SALT_LEN];
360 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
361 } __packed;
362
363 #define WG_MSG_TYPE_INIT 1
364 #define WG_MSG_TYPE_RESP 2
365 #define WG_MSG_TYPE_COOKIE 3
366 #define WG_MSG_TYPE_DATA 4
367 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
368
369 /* Sliding windows */
370
371 #define SLIWIN_BITS 2048u
372 #define SLIWIN_TYPE uint32_t
373 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
374 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
375 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
376
377 struct sliwin {
378 SLIWIN_TYPE B[SLIWIN_WORDS];
379 uint64_t T;
380 };
381
382 static void
383 sliwin_reset(struct sliwin *W)
384 {
385
386 memset(W, 0, sizeof(*W));
387 }
388
389 static int
390 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
391 {
392
393 /*
394 * If it's more than one window older than the highest sequence
395 * number we've seen, reject.
396 */
397 #ifdef __HAVE_ATOMIC64_LOADSTORE
398 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
399 return EAUTH;
400 #endif
401
402 /*
403 * Otherwise, we need to take the lock to decide, so don't
404 * reject just yet. Caller must serialize a call to
405 * sliwin_update in this case.
406 */
407 return 0;
408 }
409
410 static int
411 sliwin_update(struct sliwin *W, uint64_t S)
412 {
413 unsigned word, bit;
414
415 /*
416 * If it's more than one window older than the highest sequence
417 * number we've seen, reject.
418 */
419 if (S + SLIWIN_NPKT < W->T)
420 return EAUTH;
421
422 /*
423 * If it's higher than the highest sequence number we've seen,
424 * advance the window.
425 */
426 if (S > W->T) {
427 uint64_t i = W->T / SLIWIN_BPW;
428 uint64_t j = S / SLIWIN_BPW;
429 unsigned k;
430
431 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
432 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
433 #ifdef __HAVE_ATOMIC64_LOADSTORE
434 atomic_store_relaxed(&W->T, S);
435 #else
436 W->T = S;
437 #endif
438 }
439
440 /* Test and set the bit -- if already set, reject. */
441 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
442 bit = S % SLIWIN_BPW;
443 if (W->B[word] & (1UL << bit))
444 return EAUTH;
445 W->B[word] |= 1UL << bit;
446
447 /* Accept! */
448 return 0;
449 }
450
451 struct wg_worker {
452 kmutex_t wgw_lock;
453 kcondvar_t wgw_cv;
454 bool wgw_todie;
455 struct socket *wgw_so4;
456 struct socket *wgw_so6;
457 int wgw_wakeup_reasons;
458 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 __BIT(0)
459 #define WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6 __BIT(1)
460 #define WG_WAKEUP_REASON_PEER __BIT(2)
461 };
462
463 struct wg_session {
464 struct wg_peer *wgs_peer;
465 struct psref_target
466 wgs_psref;
467
468 int wgs_state;
469 #define WGS_STATE_UNKNOWN 0
470 #define WGS_STATE_INIT_ACTIVE 1
471 #define WGS_STATE_INIT_PASSIVE 2
472 #define WGS_STATE_ESTABLISHED 3
473 #define WGS_STATE_DESTROYING 4
474
475 time_t wgs_time_established;
476 time_t wgs_time_last_data_sent;
477 bool wgs_is_initiator;
478
479 uint32_t wgs_local_index;
480 uint32_t wgs_remote_index;
481 #ifdef __HAVE_ATOMIC64_LOADSTORE
482 volatile uint64_t
483 wgs_send_counter;
484 #else
485 kmutex_t wgs_send_counter_lock;
486 uint64_t wgs_send_counter;
487 #endif
488
489 struct {
490 kmutex_t lock;
491 struct sliwin window;
492 } *wgs_recvwin;
493
494 uint8_t wgs_handshake_hash[WG_HASH_LEN];
495 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
496 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
497 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
498 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
499 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
500 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
501 };
502
503 struct wg_sockaddr {
504 union {
505 struct sockaddr_storage _ss;
506 struct sockaddr _sa;
507 struct sockaddr_in _sin;
508 struct sockaddr_in6 _sin6;
509 };
510 struct psref_target wgsa_psref;
511 };
512
513 #define wgsatoss(wgsa) (&(wgsa)->_ss)
514 #define wgsatosa(wgsa) (&(wgsa)->_sa)
515 #define wgsatosin(wgsa) (&(wgsa)->_sin)
516 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
517
518 #define wgsa_family(wgsa) (wgsatosa(wgsa)->sa_family)
519
520 struct wg_peer;
521 struct wg_allowedip {
522 struct radix_node wga_nodes[2];
523 struct wg_sockaddr _wga_sa_addr;
524 struct wg_sockaddr _wga_sa_mask;
525 #define wga_sa_addr _wga_sa_addr._sa
526 #define wga_sa_mask _wga_sa_mask._sa
527
528 int wga_family;
529 uint8_t wga_cidr;
530 union {
531 struct in_addr _ip4;
532 struct in6_addr _ip6;
533 } wga_addr;
534 #define wga_addr4 wga_addr._ip4
535 #define wga_addr6 wga_addr._ip6
536
537 struct wg_peer *wga_peer;
538 };
539
540 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
541
542 struct wg_ppsratecheck {
543 struct timeval wgprc_lasttime;
544 int wgprc_curpps;
545 };
546
547 struct wg_softc;
548 struct wg_peer {
549 struct wg_softc *wgp_sc;
550 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
551 struct pslist_entry wgp_peerlist_entry;
552 pserialize_t wgp_psz;
553 struct psref_target wgp_psref;
554 kmutex_t *wgp_lock;
555
556 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
557 struct wg_sockaddr *wgp_endpoint;
558 struct wg_sockaddr *wgp_endpoint0;
559 volatile unsigned wgp_endpoint_changing;
560 bool wgp_endpoint_available;
561
562 /* The preshared key (optional) */
563 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
564
565 void *wgp_si;
566 pcq_t *wgp_q;
567
568 struct wg_session *wgp_session_stable;
569 struct wg_session *wgp_session_unstable;
570
571 /* timestamp in big-endian */
572 wg_timestamp_t wgp_timestamp_latest_init;
573
574 struct timespec wgp_last_handshake_time;
575
576 callout_t wgp_rekey_timer;
577 callout_t wgp_handshake_timeout_timer;
578 callout_t wgp_session_dtor_timer;
579
580 time_t wgp_handshake_start_time;
581
582 int wgp_n_allowedips;
583 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
584
585 time_t wgp_latest_cookie_time;
586 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
587 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
588 bool wgp_last_sent_mac1_valid;
589 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
590 bool wgp_last_sent_cookie_valid;
591
592 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
593
594 time_t wgp_last_genrandval_time;
595 uint32_t wgp_randval;
596
597 struct wg_ppsratecheck wgp_ppsratecheck;
598
599 volatile unsigned int wgp_tasks;
600 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
601 #define WGP_TASK_RETRY_HANDSHAKE __BIT(1)
602 #define WGP_TASK_ESTABLISH_SESSION __BIT(2)
603 #define WGP_TASK_ENDPOINT_CHANGED __BIT(3)
604 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(4)
605 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(5)
606 };
607
608 struct wg_ops;
609
610 struct wg_softc {
611 struct ifnet wg_if;
612 LIST_ENTRY(wg_softc) wg_list;
613 kmutex_t *wg_lock;
614 krwlock_t *wg_rwlock;
615
616 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
617 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
618
619 int wg_npeers;
620 struct pslist_head wg_peers;
621 struct thmap *wg_peers_bypubkey;
622 struct thmap *wg_peers_byname;
623 struct thmap *wg_sessions_byindex;
624 uint16_t wg_listen_port;
625
626 struct wg_worker *wg_worker;
627 lwp_t *wg_worker_lwp;
628
629 struct radix_node_head *wg_rtable_ipv4;
630 struct radix_node_head *wg_rtable_ipv6;
631
632 struct wg_ppsratecheck wg_ppsratecheck;
633
634 struct wg_ops *wg_ops;
635
636 #ifdef WG_RUMPKERNEL
637 struct wg_user *wg_user;
638 #endif
639 };
640
641 /* [W] 6.1 Preliminaries */
642 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
643 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
644 #define WG_REKEY_AFTER_TIME 120
645 #define WG_REJECT_AFTER_TIME 180
646 #define WG_REKEY_ATTEMPT_TIME 90
647 #define WG_REKEY_TIMEOUT 5
648 #define WG_KEEPALIVE_TIMEOUT 10
649
650 #define WG_COOKIE_TIME 120
651 #define WG_RANDVAL_TIME (2 * 60)
652
653 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
654 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
655 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
656 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
657 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
658 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
659 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
660
661 static struct mbuf *
662 wg_get_mbuf(size_t, size_t);
663
664 static void wg_wakeup_worker(struct wg_worker *, int);
665
666 static int wg_send_data_msg(struct wg_peer *, struct wg_session *,
667 struct mbuf *);
668 static int wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
669 const uint32_t, const uint8_t [], const struct sockaddr *);
670 static int wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
671 struct wg_session *, const struct wg_msg_init *);
672 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
673
674 static struct wg_peer *
675 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
676 struct psref *);
677 static struct wg_peer *
678 wg_lookup_peer_by_pubkey(struct wg_softc *,
679 const uint8_t [], struct psref *);
680
681 static struct wg_session *
682 wg_lookup_session_by_index(struct wg_softc *,
683 const uint32_t, struct psref *);
684
685 static void wg_update_endpoint_if_necessary(struct wg_peer *,
686 const struct sockaddr *);
687
688 static void wg_schedule_rekey_timer(struct wg_peer *);
689 static void wg_schedule_session_dtor_timer(struct wg_peer *);
690
691 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
692 static void wg_calculate_keys(struct wg_session *, const bool);
693
694 static void wg_clear_states(struct wg_session *);
695
696 static void wg_get_peer(struct wg_peer *, struct psref *);
697 static void wg_put_peer(struct wg_peer *, struct psref *);
698
699 static int wg_send_so(struct wg_peer *, struct mbuf *);
700 static int wg_send_udp(struct wg_peer *, struct mbuf *);
701 static int wg_output(struct ifnet *, struct mbuf *,
702 const struct sockaddr *, const struct rtentry *);
703 static void wg_input(struct ifnet *, struct mbuf *, const int);
704 static int wg_ioctl(struct ifnet *, u_long, void *);
705 static int wg_bind_port(struct wg_softc *, const uint16_t);
706 static int wg_init(struct ifnet *);
707 static void wg_stop(struct ifnet *, int);
708
709 static void wg_purge_pending_packets(struct wg_peer *);
710
711 static int wg_clone_create(struct if_clone *, int);
712 static int wg_clone_destroy(struct ifnet *);
713
714 struct wg_ops {
715 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
716 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
717 void (*input)(struct ifnet *, struct mbuf *, const int);
718 int (*bind_port)(struct wg_softc *, const uint16_t);
719 };
720
721 struct wg_ops wg_ops_rumpkernel = {
722 .send_hs_msg = wg_send_so,
723 .send_data_msg = wg_send_udp,
724 .input = wg_input,
725 .bind_port = wg_bind_port,
726 };
727
728 #ifdef WG_RUMPKERNEL
729 static bool wg_user_mode(struct wg_softc *);
730 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
731
732 static int wg_send_user(struct wg_peer *, struct mbuf *);
733 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
734 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
735
736 struct wg_ops wg_ops_rumpuser = {
737 .send_hs_msg = wg_send_user,
738 .send_data_msg = wg_send_user,
739 .input = wg_input_user,
740 .bind_port = wg_bind_port_user,
741 };
742 #endif
743
744 #define WG_PEER_READER_FOREACH(wgp, wg) \
745 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
746 wgp_peerlist_entry)
747 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
748 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
749 wgp_peerlist_entry)
750 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
751 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
752 #define WG_PEER_WRITER_REMOVE(wgp) \
753 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
754
755 struct wg_route {
756 struct radix_node wgr_nodes[2];
757 struct wg_peer *wgr_peer;
758 };
759
760 static struct radix_node_head *
761 wg_rnh(struct wg_softc *wg, const int family)
762 {
763
764 switch (family) {
765 case AF_INET:
766 return wg->wg_rtable_ipv4;
767 #ifdef INET6
768 case AF_INET6:
769 return wg->wg_rtable_ipv6;
770 #endif
771 default:
772 return NULL;
773 }
774 }
775
776
777 /*
778 * Global variables
779 */
780 LIST_HEAD(wg_sclist, wg_softc);
781 static struct {
782 struct wg_sclist list;
783 kmutex_t lock;
784 } wg_softcs __cacheline_aligned;
785
786 struct psref_class *wg_psref_class __read_mostly;
787
788 static struct if_clone wg_cloner =
789 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
790
791
792 void wgattach(int);
793 /* ARGSUSED */
794 void
795 wgattach(int count)
796 {
797 /*
798 * Nothing to do here, initialization is handled by the
799 * module initialization code in wginit() below).
800 */
801 }
802
803 static void
804 wginit(void)
805 {
806
807 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
808
809 mutex_init(&wg_softcs.lock, MUTEX_DEFAULT, IPL_NONE);
810 LIST_INIT(&wg_softcs.list);
811 if_clone_attach(&wg_cloner);
812 }
813
814 static int
815 wgdetach(void)
816 {
817 int error = 0;
818
819 mutex_enter(&wg_softcs.lock);
820 if (!LIST_EMPTY(&wg_softcs.list)) {
821 mutex_exit(&wg_softcs.lock);
822 error = EBUSY;
823 }
824
825 if (error == 0) {
826 psref_class_destroy(wg_psref_class);
827
828 if_clone_detach(&wg_cloner);
829 }
830
831 return error;
832 }
833
834 static void
835 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
836 uint8_t hash[WG_HASH_LEN])
837 {
838 /* [W] 5.4: CONSTRUCTION */
839 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
840 /* [W] 5.4: IDENTIFIER */
841 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
842 struct blake2s state;
843
844 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
845 signature, strlen(signature));
846
847 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
848 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
849
850 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
851 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
852 blake2s_update(&state, id, strlen(id));
853 blake2s_final(&state, hash);
854
855 WG_DUMP_HASH("ckey", ckey);
856 WG_DUMP_HASH("hash", hash);
857 }
858
859 static void
860 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
861 const size_t inputsize)
862 {
863 struct blake2s state;
864
865 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
866 blake2s_update(&state, hash, WG_HASH_LEN);
867 blake2s_update(&state, input, inputsize);
868 blake2s_final(&state, hash);
869 }
870
871 static void
872 wg_algo_mac(uint8_t out[], const size_t outsize,
873 const uint8_t key[], const size_t keylen,
874 const uint8_t input1[], const size_t input1len,
875 const uint8_t input2[], const size_t input2len)
876 {
877 struct blake2s state;
878
879 blake2s_init(&state, outsize, key, keylen);
880
881 blake2s_update(&state, input1, input1len);
882 if (input2 != NULL)
883 blake2s_update(&state, input2, input2len);
884 blake2s_final(&state, out);
885 }
886
887 static void
888 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
889 const uint8_t input1[], const size_t input1len,
890 const uint8_t input2[], const size_t input2len)
891 {
892 struct blake2s state;
893 /* [W] 5.4: LABEL-MAC1 */
894 const char *label = "mac1----";
895 uint8_t key[WG_HASH_LEN];
896
897 blake2s_init(&state, sizeof(key), NULL, 0);
898 blake2s_update(&state, label, strlen(label));
899 blake2s_update(&state, input1, input1len);
900 blake2s_final(&state, key);
901
902 blake2s_init(&state, outsize, key, sizeof(key));
903 if (input2 != NULL)
904 blake2s_update(&state, input2, input2len);
905 blake2s_final(&state, out);
906 }
907
908 static void
909 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
910 const uint8_t input1[], const size_t input1len)
911 {
912 struct blake2s state;
913 /* [W] 5.4: LABEL-COOKIE */
914 const char *label = "cookie--";
915
916 blake2s_init(&state, outsize, NULL, 0);
917 blake2s_update(&state, label, strlen(label));
918 blake2s_update(&state, input1, input1len);
919 blake2s_final(&state, out);
920 }
921
922 static void
923 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
924 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
925 {
926
927 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
928
929 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
930 crypto_scalarmult_base(pubkey, privkey);
931 }
932
933 static void
934 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
935 const uint8_t privkey[WG_STATIC_KEY_LEN],
936 const uint8_t pubkey[WG_STATIC_KEY_LEN])
937 {
938
939 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
940
941 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
942 KASSERT(ret == 0);
943 }
944
945 static void
946 wg_algo_hmac(uint8_t out[], const size_t outlen,
947 const uint8_t key[], const size_t keylen,
948 const uint8_t in[], const size_t inlen)
949 {
950 #define IPAD 0x36
951 #define OPAD 0x5c
952 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
953 uint8_t ipad[HMAC_BLOCK_LEN];
954 uint8_t opad[HMAC_BLOCK_LEN];
955 int i;
956 struct blake2s state;
957
958 KASSERT(outlen == WG_HASH_LEN);
959 KASSERT(keylen <= HMAC_BLOCK_LEN);
960
961 memcpy(hmackey, key, keylen);
962
963 for (i = 0; i < sizeof(hmackey); i++) {
964 ipad[i] = hmackey[i] ^ IPAD;
965 opad[i] = hmackey[i] ^ OPAD;
966 }
967
968 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
969 blake2s_update(&state, ipad, sizeof(ipad));
970 blake2s_update(&state, in, inlen);
971 blake2s_final(&state, out);
972
973 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
974 blake2s_update(&state, opad, sizeof(opad));
975 blake2s_update(&state, out, WG_HASH_LEN);
976 blake2s_final(&state, out);
977 #undef IPAD
978 #undef OPAD
979 }
980
981 static void
982 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
983 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
984 const uint8_t input[], const size_t inputlen)
985 {
986 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
987 uint8_t one[1];
988
989 /*
990 * [N] 4.3: "an input_key_material byte sequence with length
991 * either zero bytes, 32 bytes, or DHLEN bytes."
992 */
993 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
994
995 WG_DUMP_HASH("ckey", ckey);
996 if (input != NULL)
997 WG_DUMP_HASH("input", input);
998 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
999 input, inputlen);
1000 WG_DUMP_HASH("tmp1", tmp1);
1001 one[0] = 1;
1002 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1003 one, sizeof(one));
1004 WG_DUMP_HASH("out1", out1);
1005 if (out2 == NULL)
1006 return;
1007 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
1008 tmp2[WG_KDF_OUTPUT_LEN] = 2;
1009 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1010 tmp2, sizeof(tmp2));
1011 WG_DUMP_HASH("out2", out2);
1012 if (out3 == NULL)
1013 return;
1014 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
1015 tmp2[WG_KDF_OUTPUT_LEN] = 3;
1016 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1017 tmp2, sizeof(tmp2));
1018 WG_DUMP_HASH("out3", out3);
1019 }
1020
1021 static void
1022 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
1023 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1024 const uint8_t local_key[WG_STATIC_KEY_LEN],
1025 const uint8_t remote_key[WG_STATIC_KEY_LEN])
1026 {
1027 uint8_t dhout[WG_DH_OUTPUT_LEN];
1028
1029 wg_algo_dh(dhout, local_key, remote_key);
1030 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1031
1032 WG_DUMP_HASH("dhout", dhout);
1033 WG_DUMP_HASH("ckey", ckey);
1034 if (cipher_key != NULL)
1035 WG_DUMP_HASH("cipher_key", cipher_key);
1036 }
1037
1038 static void
1039 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1040 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1041 const uint8_t auth[], size_t authlen)
1042 {
1043 uint8_t nonce[(32 + 64) / 8] = {0};
1044 long long unsigned int outsize;
1045 int error __diagused;
1046
1047 le64enc(&nonce[4], counter);
1048
1049 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1050 plainsize, auth, authlen, NULL, nonce, key);
1051 KASSERT(error == 0);
1052 KASSERT(outsize == expected_outsize);
1053 }
1054
1055 static int
1056 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1057 const uint64_t counter, const uint8_t encrypted[],
1058 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1059 {
1060 uint8_t nonce[(32 + 64) / 8] = {0};
1061 long long unsigned int outsize;
1062 int error;
1063
1064 le64enc(&nonce[4], counter);
1065
1066 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1067 encrypted, encryptedsize, auth, authlen, nonce, key);
1068 if (error == 0)
1069 KASSERT(outsize == expected_outsize);
1070 return error;
1071 }
1072
1073 static void
1074 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1075 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1076 const uint8_t auth[], size_t authlen,
1077 const uint8_t nonce[WG_SALT_LEN])
1078 {
1079 long long unsigned int outsize;
1080 int error __diagused;
1081
1082 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1083 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1084 plain, plainsize, auth, authlen, NULL, nonce, key);
1085 KASSERT(error == 0);
1086 KASSERT(outsize == expected_outsize);
1087 }
1088
1089 static int
1090 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1091 const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
1092 const uint8_t auth[], size_t authlen,
1093 const uint8_t nonce[WG_SALT_LEN])
1094 {
1095 long long unsigned int outsize;
1096 int error;
1097
1098 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1099 encrypted, encryptedsize, auth, authlen, nonce, key);
1100 if (error == 0)
1101 KASSERT(outsize == expected_outsize);
1102 return error;
1103 }
1104
1105 static void
1106 wg_algo_tai64n(wg_timestamp_t timestamp)
1107 {
1108 struct timespec ts;
1109
1110 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1111 getnanotime(&ts);
1112 /* TAI64 label in external TAI64 format */
1113 be32enc(timestamp, 0x40000000UL + (ts.tv_sec >> 32));
1114 /* second beginning from 1970 TAI */
1115 be32enc(timestamp + 4, ts.tv_sec & 0xffffffffU);
1116 /* nanosecond in big-endian format */
1117 be32enc(timestamp + 8, ts.tv_nsec);
1118 }
1119
1120 /*
1121 * wg_get_stable_session(wgp, psref)
1122 *
1123 * Get a passive reference to the current stable session, or
1124 * return NULL if there is no current stable session.
1125 *
1126 * The pointer is always there but the session is not necessarily
1127 * ESTABLISHED; if it is not ESTABLISHED, return NULL. However,
1128 * the session may transition from ESTABLISHED to DESTROYING while
1129 * holding the passive reference.
1130 */
1131 static struct wg_session *
1132 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1133 {
1134 int s;
1135 struct wg_session *wgs;
1136
1137 s = pserialize_read_enter();
1138 wgs = atomic_load_consume(&wgp->wgp_session_stable);
1139 if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
1140 wgs = NULL;
1141 else
1142 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1143 pserialize_read_exit(s);
1144
1145 return wgs;
1146 }
1147
1148 static void
1149 wg_put_session(struct wg_session *wgs, struct psref *psref)
1150 {
1151
1152 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1153 }
1154
1155 static void
1156 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1157 {
1158 struct wg_peer *wgp = wgs->wgs_peer;
1159 struct wg_session *wgs0 __diagused;
1160 void *garbage;
1161
1162 KASSERT(mutex_owned(wgp->wgp_lock));
1163 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1164
1165 /* Remove the session from the table. */
1166 wgs0 = thmap_del(wg->wg_sessions_byindex,
1167 &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1168 KASSERT(wgs0 == wgs);
1169 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1170
1171 /* Wait for passive references to drain. */
1172 pserialize_perform(wgp->wgp_psz);
1173 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1174
1175 /* Free memory, zero state, and transition to UNKNOWN. */
1176 thmap_gc(wg->wg_sessions_byindex, garbage);
1177 wg_clear_states(wgs);
1178 wgs->wgs_state = WGS_STATE_UNKNOWN;
1179 }
1180
1181 /*
1182 * wg_get_session_index(wg, wgs)
1183 *
1184 * Choose a session index for wgs->wgs_local_index, and store it
1185 * in wg's table of sessions by index.
1186 *
1187 * wgs must be the unstable session of its peer, and must be
1188 * transitioning out of the UNKNOWN state.
1189 */
1190 static void
1191 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1192 {
1193 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1194 struct wg_session *wgs0;
1195 uint32_t index;
1196
1197 KASSERT(mutex_owned(wgp->wgp_lock));
1198 KASSERT(wgs == wgp->wgp_session_unstable);
1199 KASSERT(wgs->wgs_state == WGS_STATE_UNKNOWN);
1200
1201 do {
1202 /* Pick a uniform random index. */
1203 index = cprng_strong32();
1204
1205 /* Try to take it. */
1206 wgs->wgs_local_index = index;
1207 wgs0 = thmap_put(wg->wg_sessions_byindex,
1208 &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1209
1210 /* If someone else beat us, start over. */
1211 } while (__predict_false(wgs0 != wgs));
1212 }
1213
1214 /*
1215 * wg_put_session_index(wg, wgs)
1216 *
1217 * Remove wgs from the table of sessions by index, wait for any
1218 * passive references to drain, and transition the session to the
1219 * UNKNOWN state.
1220 *
1221 * wgs must be the unstable session of its peer, and must not be
1222 * UNKNOWN or ESTABLISHED.
1223 */
1224 static void
1225 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1226 {
1227 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1228
1229 KASSERT(mutex_owned(wgp->wgp_lock));
1230 KASSERT(wgs == wgp->wgp_session_unstable);
1231 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1232 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1233
1234 wg_destroy_session(wg, wgs);
1235 psref_target_init(&wgs->wgs_psref, wg_psref_class);
1236 }
1237
1238 /*
1239 * Handshake patterns
1240 *
1241 * [W] 5: "These messages use the "IK" pattern from Noise"
1242 * [N] 7.5. Interactive handshake patterns (fundamental)
1243 * "The first character refers to the initiators static key:"
1244 * "I = Static key for initiator Immediately transmitted to responder,
1245 * despite reduced or absent identity hiding"
1246 * "The second character refers to the responders static key:"
1247 * "K = Static key for responder Known to initiator"
1248 * "IK:
1249 * <- s
1250 * ...
1251 * -> e, es, s, ss
1252 * <- e, ee, se"
1253 * [N] 9.4. Pattern modifiers
1254 * "IKpsk2:
1255 * <- s
1256 * ...
1257 * -> e, es, s, ss
1258 * <- e, ee, se, psk"
1259 */
1260 static void
1261 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1262 struct wg_session *wgs, struct wg_msg_init *wgmi)
1263 {
1264 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1265 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1266 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1267 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1268 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1269
1270 KASSERT(mutex_owned(wgp->wgp_lock));
1271 KASSERT(wgs == wgp->wgp_session_unstable);
1272 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1273
1274 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1275 wgmi->wgmi_sender = wgs->wgs_local_index;
1276
1277 /* [W] 5.4.2: First Message: Initiator to Responder */
1278
1279 /* Ci := HASH(CONSTRUCTION) */
1280 /* Hi := HASH(Ci || IDENTIFIER) */
1281 wg_init_key_and_hash(ckey, hash);
1282 /* Hi := HASH(Hi || Sr^pub) */
1283 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1284
1285 WG_DUMP_HASH("hash", hash);
1286
1287 /* [N] 2.2: "e" */
1288 /* Ei^priv, Ei^pub := DH-GENERATE() */
1289 wg_algo_generate_keypair(pubkey, privkey);
1290 /* Ci := KDF1(Ci, Ei^pub) */
1291 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1292 /* msg.ephemeral := Ei^pub */
1293 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1294 /* Hi := HASH(Hi || msg.ephemeral) */
1295 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1296
1297 WG_DUMP_HASH("ckey", ckey);
1298 WG_DUMP_HASH("hash", hash);
1299
1300 /* [N] 2.2: "es" */
1301 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1302 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1303
1304 /* [N] 2.2: "s" */
1305 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1306 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1307 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1308 hash, sizeof(hash));
1309 /* Hi := HASH(Hi || msg.static) */
1310 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1311
1312 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1313
1314 /* [N] 2.2: "ss" */
1315 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1316 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1317
1318 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1319 wg_timestamp_t timestamp;
1320 wg_algo_tai64n(timestamp);
1321 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1322 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1323 /* Hi := HASH(Hi || msg.timestamp) */
1324 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1325
1326 /* [W] 5.4.4 Cookie MACs */
1327 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1328 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1329 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1330 /* Need mac1 to decrypt a cookie from a cookie message */
1331 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1332 sizeof(wgp->wgp_last_sent_mac1));
1333 wgp->wgp_last_sent_mac1_valid = true;
1334
1335 if (wgp->wgp_latest_cookie_time == 0 ||
1336 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1337 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1338 else {
1339 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1340 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1341 (const uint8_t *)wgmi,
1342 offsetof(struct wg_msg_init, wgmi_mac2),
1343 NULL, 0);
1344 }
1345
1346 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1347 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1348 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1349 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1350 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1351 }
1352
1353 static void
1354 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1355 const struct sockaddr *src)
1356 {
1357 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1358 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1359 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1360 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1361 struct wg_peer *wgp;
1362 struct wg_session *wgs;
1363 int error, ret;
1364 struct psref psref_peer;
1365 uint8_t mac1[WG_MAC_LEN];
1366
1367 WG_TRACE("init msg received");
1368
1369 wg_algo_mac_mac1(mac1, sizeof(mac1),
1370 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1371 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1372
1373 /*
1374 * [W] 5.3: Denial of Service Mitigation & Cookies
1375 * "the responder, ..., must always reject messages with an invalid
1376 * msg.mac1"
1377 */
1378 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1379 WG_DLOG("mac1 is invalid\n");
1380 return;
1381 }
1382
1383 /*
1384 * [W] 5.4.2: First Message: Initiator to Responder
1385 * "When the responder receives this message, it does the same
1386 * operations so that its final state variables are identical,
1387 * replacing the operands of the DH function to produce equivalent
1388 * values."
1389 * Note that the following comments of operations are just copies of
1390 * the initiator's ones.
1391 */
1392
1393 /* Ci := HASH(CONSTRUCTION) */
1394 /* Hi := HASH(Ci || IDENTIFIER) */
1395 wg_init_key_and_hash(ckey, hash);
1396 /* Hi := HASH(Hi || Sr^pub) */
1397 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1398
1399 /* [N] 2.2: "e" */
1400 /* Ci := KDF1(Ci, Ei^pub) */
1401 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1402 sizeof(wgmi->wgmi_ephemeral));
1403 /* Hi := HASH(Hi || msg.ephemeral) */
1404 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1405
1406 WG_DUMP_HASH("ckey", ckey);
1407
1408 /* [N] 2.2: "es" */
1409 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1410 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1411
1412 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1413
1414 /* [N] 2.2: "s" */
1415 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1416 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1417 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1418 if (error != 0) {
1419 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1420 "wg_algo_aead_dec for secret key failed\n");
1421 return;
1422 }
1423 /* Hi := HASH(Hi || msg.static) */
1424 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1425
1426 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1427 if (wgp == NULL) {
1428 WG_DLOG("peer not found\n");
1429 return;
1430 }
1431
1432 /*
1433 * Lock the peer to serialize access to cookie state.
1434 *
1435 * XXX Can we safely avoid holding the lock across DH? Take it
1436 * just to verify mac2 and then unlock/DH/lock?
1437 */
1438 mutex_enter(wgp->wgp_lock);
1439
1440 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1441 WG_TRACE("under load");
1442 /*
1443 * [W] 5.3: Denial of Service Mitigation & Cookies
1444 * "the responder, ..., and when under load may reject messages
1445 * with an invalid msg.mac2. If the responder receives a
1446 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1447 * and is under load, it may respond with a cookie reply
1448 * message"
1449 */
1450 uint8_t zero[WG_MAC_LEN] = {0};
1451 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1452 WG_TRACE("sending a cookie message: no cookie included");
1453 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1454 wgmi->wgmi_mac1, src);
1455 goto out;
1456 }
1457 if (!wgp->wgp_last_sent_cookie_valid) {
1458 WG_TRACE("sending a cookie message: no cookie sent ever");
1459 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1460 wgmi->wgmi_mac1, src);
1461 goto out;
1462 }
1463 uint8_t mac2[WG_MAC_LEN];
1464 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1465 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1466 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1467 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1468 WG_DLOG("mac2 is invalid\n");
1469 goto out;
1470 }
1471 WG_TRACE("under load, but continue to sending");
1472 }
1473
1474 /* [N] 2.2: "ss" */
1475 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1476 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1477
1478 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1479 wg_timestamp_t timestamp;
1480 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1481 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1482 hash, sizeof(hash));
1483 if (error != 0) {
1484 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1485 "wg_algo_aead_dec for timestamp failed\n");
1486 goto out;
1487 }
1488 /* Hi := HASH(Hi || msg.timestamp) */
1489 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1490
1491 /*
1492 * [W] 5.1 "The responder keeps track of the greatest timestamp
1493 * received per peer and discards packets containing
1494 * timestamps less than or equal to it."
1495 */
1496 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1497 sizeof(timestamp));
1498 if (ret <= 0) {
1499 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1500 "invalid init msg: timestamp is old\n");
1501 goto out;
1502 }
1503 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1504
1505 /*
1506 * Message is good -- we're committing to handle it now, unless
1507 * we were already initiating a session.
1508 */
1509 wgs = wgp->wgp_session_unstable;
1510 switch (wgs->wgs_state) {
1511 case WGS_STATE_UNKNOWN: /* new session initiated by peer */
1512 wg_get_session_index(wg, wgs);
1513 break;
1514 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, drop */
1515 WG_TRACE("Session already initializing, ignoring the message");
1516 goto out;
1517 case WGS_STATE_INIT_PASSIVE: /* peer is retrying, start over */
1518 WG_TRACE("Session already initializing, destroying old states");
1519 wg_clear_states(wgs);
1520 /* keep session index */
1521 break;
1522 case WGS_STATE_ESTABLISHED: /* can't happen */
1523 panic("unstable session can't be established");
1524 break;
1525 case WGS_STATE_DESTROYING: /* rekey initiated by peer */
1526 WG_TRACE("Session destroying, but force to clear");
1527 callout_stop(&wgp->wgp_session_dtor_timer);
1528 wg_clear_states(wgs);
1529 /* keep session index */
1530 break;
1531 default:
1532 panic("invalid session state: %d", wgs->wgs_state);
1533 }
1534 wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
1535
1536 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1537 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1538 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1539 sizeof(wgmi->wgmi_ephemeral));
1540
1541 wg_update_endpoint_if_necessary(wgp, src);
1542
1543 (void)wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1544
1545 wg_calculate_keys(wgs, false);
1546 wg_clear_states(wgs);
1547
1548 out:
1549 mutex_exit(wgp->wgp_lock);
1550 wg_put_peer(wgp, &psref_peer);
1551 }
1552
1553 static struct socket *
1554 wg_get_so_by_af(struct wg_worker *wgw, const int af)
1555 {
1556
1557 return (af == AF_INET) ? wgw->wgw_so4 : wgw->wgw_so6;
1558 }
1559
1560 static struct socket *
1561 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1562 {
1563
1564 return wg_get_so_by_af(wgp->wgp_sc->wg_worker, wgsa_family(wgsa));
1565 }
1566
1567 static struct wg_sockaddr *
1568 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1569 {
1570 struct wg_sockaddr *wgsa;
1571 int s;
1572
1573 s = pserialize_read_enter();
1574 wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1575 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1576 pserialize_read_exit(s);
1577
1578 return wgsa;
1579 }
1580
1581 static void
1582 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1583 {
1584
1585 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1586 }
1587
1588 static int
1589 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1590 {
1591 int error;
1592 struct socket *so;
1593 struct psref psref;
1594 struct wg_sockaddr *wgsa;
1595
1596 wgsa = wg_get_endpoint_sa(wgp, &psref);
1597 so = wg_get_so_by_peer(wgp, wgsa);
1598 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1599 wg_put_sa(wgp, wgsa, &psref);
1600
1601 return error;
1602 }
1603
1604 static int
1605 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1606 {
1607 int error;
1608 struct mbuf *m;
1609 struct wg_msg_init *wgmi;
1610 struct wg_session *wgs;
1611
1612 KASSERT(mutex_owned(wgp->wgp_lock));
1613
1614 wgs = wgp->wgp_session_unstable;
1615 /* XXX pull dispatch out into wg_task_send_init_message */
1616 switch (wgs->wgs_state) {
1617 case WGS_STATE_UNKNOWN: /* new session initiated by us */
1618 wg_get_session_index(wg, wgs);
1619 break;
1620 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, stop */
1621 WG_TRACE("Session already initializing, skip starting new one");
1622 return EBUSY;
1623 case WGS_STATE_INIT_PASSIVE: /* peer was trying -- XXX what now? */
1624 WG_TRACE("Session already initializing, destroying old states");
1625 wg_clear_states(wgs);
1626 /* keep session index */
1627 break;
1628 case WGS_STATE_ESTABLISHED: /* can't happen */
1629 panic("unstable session can't be established");
1630 break;
1631 case WGS_STATE_DESTROYING: /* rekey initiated by us too early */
1632 WG_TRACE("Session destroying");
1633 /* XXX should wait? */
1634 return EBUSY;
1635 }
1636 wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
1637
1638 m = m_gethdr(M_WAIT, MT_DATA);
1639 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1640 wgmi = mtod(m, struct wg_msg_init *);
1641 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1642
1643 error = wg->wg_ops->send_hs_msg(wgp, m);
1644 if (error == 0) {
1645 WG_TRACE("init msg sent");
1646
1647 if (wgp->wgp_handshake_start_time == 0)
1648 wgp->wgp_handshake_start_time = time_uptime;
1649 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1650 MIN(wg_rekey_timeout, INT_MAX/hz) * hz);
1651 } else {
1652 wg_put_session_index(wg, wgs);
1653 }
1654
1655 return error;
1656 }
1657
1658 static void
1659 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1660 struct wg_session *wgs, struct wg_msg_resp *wgmr,
1661 const struct wg_msg_init *wgmi)
1662 {
1663 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1664 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1665 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1666 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1667 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1668
1669 KASSERT(mutex_owned(wgp->wgp_lock));
1670 KASSERT(wgs == wgp->wgp_session_unstable);
1671 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1672
1673 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1674 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1675
1676 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
1677 wgmr->wgmr_sender = wgs->wgs_local_index;
1678 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1679
1680 /* [W] 5.4.3 Second Message: Responder to Initiator */
1681
1682 /* [N] 2.2: "e" */
1683 /* Er^priv, Er^pub := DH-GENERATE() */
1684 wg_algo_generate_keypair(pubkey, privkey);
1685 /* Cr := KDF1(Cr, Er^pub) */
1686 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1687 /* msg.ephemeral := Er^pub */
1688 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1689 /* Hr := HASH(Hr || msg.ephemeral) */
1690 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1691
1692 WG_DUMP_HASH("ckey", ckey);
1693 WG_DUMP_HASH("hash", hash);
1694
1695 /* [N] 2.2: "ee" */
1696 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1697 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1698
1699 /* [N] 2.2: "se" */
1700 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1701 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1702
1703 /* [N] 9.2: "psk" */
1704 {
1705 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1706 /* Cr, r, k := KDF3(Cr, Q) */
1707 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1708 sizeof(wgp->wgp_psk));
1709 /* Hr := HASH(Hr || r) */
1710 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1711 }
1712
1713 /* msg.empty := AEAD(k, 0, e, Hr) */
1714 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1715 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1716 /* Hr := HASH(Hr || msg.empty) */
1717 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1718
1719 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1720
1721 /* [W] 5.4.4: Cookie MACs */
1722 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1723 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1724 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1725 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1726 /* Need mac1 to decrypt a cookie from a cookie message */
1727 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1728 sizeof(wgp->wgp_last_sent_mac1));
1729 wgp->wgp_last_sent_mac1_valid = true;
1730
1731 if (wgp->wgp_latest_cookie_time == 0 ||
1732 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1733 /* msg.mac2 := 0^16 */
1734 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1735 else {
1736 /* msg.mac2 := MAC(Lm, msg_b) */
1737 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1738 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1739 (const uint8_t *)wgmr,
1740 offsetof(struct wg_msg_resp, wgmr_mac2),
1741 NULL, 0);
1742 }
1743
1744 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1745 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1746 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1747 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1748 wgs->wgs_remote_index = wgmi->wgmi_sender;
1749 WG_DLOG("sender=%x\n", wgs->wgs_local_index);
1750 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1751 }
1752
1753 static void
1754 wg_swap_sessions(struct wg_peer *wgp)
1755 {
1756 struct wg_session *wgs, *wgs_prev;
1757
1758 KASSERT(mutex_owned(wgp->wgp_lock));
1759
1760 wgs = wgp->wgp_session_unstable;
1761 KASSERT(wgs->wgs_state == WGS_STATE_ESTABLISHED);
1762
1763 wgs_prev = wgp->wgp_session_stable;
1764 KASSERT(wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
1765 wgs_prev->wgs_state == WGS_STATE_UNKNOWN);
1766 atomic_store_release(&wgp->wgp_session_stable, wgs);
1767 wgp->wgp_session_unstable = wgs_prev;
1768 }
1769
1770 static void
1771 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1772 const struct sockaddr *src)
1773 {
1774 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1775 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1776 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1777 struct wg_peer *wgp;
1778 struct wg_session *wgs;
1779 struct psref psref;
1780 int error;
1781 uint8_t mac1[WG_MAC_LEN];
1782 struct wg_session *wgs_prev;
1783
1784 wg_algo_mac_mac1(mac1, sizeof(mac1),
1785 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1786 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1787
1788 /*
1789 * [W] 5.3: Denial of Service Mitigation & Cookies
1790 * "the responder, ..., must always reject messages with an invalid
1791 * msg.mac1"
1792 */
1793 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
1794 WG_DLOG("mac1 is invalid\n");
1795 return;
1796 }
1797
1798 WG_TRACE("resp msg received");
1799 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
1800 if (wgs == NULL) {
1801 WG_TRACE("No session found");
1802 return;
1803 }
1804
1805 wgp = wgs->wgs_peer;
1806
1807 mutex_enter(wgp->wgp_lock);
1808
1809 /* If we weren't waiting for a handshake response, drop it. */
1810 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
1811 WG_TRACE("peer sent spurious handshake response, ignoring");
1812 goto out;
1813 }
1814
1815 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
1816 WG_TRACE("under load");
1817 /*
1818 * [W] 5.3: Denial of Service Mitigation & Cookies
1819 * "the responder, ..., and when under load may reject messages
1820 * with an invalid msg.mac2. If the responder receives a
1821 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1822 * and is under load, it may respond with a cookie reply
1823 * message"
1824 */
1825 uint8_t zero[WG_MAC_LEN] = {0};
1826 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
1827 WG_TRACE("sending a cookie message: no cookie included");
1828 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1829 wgmr->wgmr_mac1, src);
1830 goto out;
1831 }
1832 if (!wgp->wgp_last_sent_cookie_valid) {
1833 WG_TRACE("sending a cookie message: no cookie sent ever");
1834 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1835 wgmr->wgmr_mac1, src);
1836 goto out;
1837 }
1838 uint8_t mac2[WG_MAC_LEN];
1839 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1840 WG_COOKIE_LEN, (const uint8_t *)wgmr,
1841 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
1842 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
1843 WG_DLOG("mac2 is invalid\n");
1844 goto out;
1845 }
1846 WG_TRACE("under load, but continue to sending");
1847 }
1848
1849 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1850 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1851
1852 /*
1853 * [W] 5.4.3 Second Message: Responder to Initiator
1854 * "When the initiator receives this message, it does the same
1855 * operations so that its final state variables are identical,
1856 * replacing the operands of the DH function to produce equivalent
1857 * values."
1858 * Note that the following comments of operations are just copies of
1859 * the initiator's ones.
1860 */
1861
1862 /* [N] 2.2: "e" */
1863 /* Cr := KDF1(Cr, Er^pub) */
1864 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
1865 sizeof(wgmr->wgmr_ephemeral));
1866 /* Hr := HASH(Hr || msg.ephemeral) */
1867 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
1868
1869 WG_DUMP_HASH("ckey", ckey);
1870 WG_DUMP_HASH("hash", hash);
1871
1872 /* [N] 2.2: "ee" */
1873 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1874 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
1875 wgmr->wgmr_ephemeral);
1876
1877 /* [N] 2.2: "se" */
1878 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1879 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
1880
1881 /* [N] 9.2: "psk" */
1882 {
1883 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1884 /* Cr, r, k := KDF3(Cr, Q) */
1885 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1886 sizeof(wgp->wgp_psk));
1887 /* Hr := HASH(Hr || r) */
1888 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1889 }
1890
1891 {
1892 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
1893 /* msg.empty := AEAD(k, 0, e, Hr) */
1894 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
1895 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
1896 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1897 if (error != 0) {
1898 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1899 "wg_algo_aead_dec for empty message failed\n");
1900 goto out;
1901 }
1902 /* Hr := HASH(Hr || msg.empty) */
1903 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1904 }
1905
1906 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
1907 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
1908 wgs->wgs_remote_index = wgmr->wgmr_sender;
1909 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1910
1911 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1912 wgs->wgs_state = WGS_STATE_ESTABLISHED;
1913 wgs->wgs_time_established = time_uptime;
1914 wgs->wgs_time_last_data_sent = 0;
1915 wgs->wgs_is_initiator = true;
1916 wg_calculate_keys(wgs, true);
1917 wg_clear_states(wgs);
1918 WG_TRACE("WGS_STATE_ESTABLISHED");
1919
1920 callout_stop(&wgp->wgp_handshake_timeout_timer);
1921
1922 wg_swap_sessions(wgp);
1923 KASSERT(wgs == wgp->wgp_session_stable);
1924 wgs_prev = wgp->wgp_session_unstable;
1925 getnanotime(&wgp->wgp_last_handshake_time);
1926 wgp->wgp_handshake_start_time = 0;
1927 wgp->wgp_last_sent_mac1_valid = false;
1928 wgp->wgp_last_sent_cookie_valid = false;
1929
1930 wg_schedule_rekey_timer(wgp);
1931
1932 wg_update_endpoint_if_necessary(wgp, src);
1933
1934 /*
1935 * Send something immediately (same as the official implementation)
1936 * XXX if there are pending data packets, we don't need to send
1937 * a keepalive message.
1938 */
1939 wg_send_keepalive_msg(wgp, wgs);
1940
1941 /* Anyway run a softint to flush pending packets */
1942 kpreempt_disable();
1943 softint_schedule(wgp->wgp_si);
1944 kpreempt_enable();
1945 WG_TRACE("softint scheduled");
1946
1947 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
1948 /* Wait for wg_get_stable_session to drain. */
1949 pserialize_perform(wgp->wgp_psz);
1950
1951 /* Transition ESTABLISHED->DESTROYING. */
1952 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
1953
1954 /* We can't destroy the old session immediately */
1955 wg_schedule_session_dtor_timer(wgp);
1956 } else {
1957 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
1958 "state=%d", wgs_prev->wgs_state);
1959 }
1960
1961 out:
1962 mutex_exit(wgp->wgp_lock);
1963 wg_put_session(wgs, &psref);
1964 }
1965
1966 static int
1967 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1968 struct wg_session *wgs, const struct wg_msg_init *wgmi)
1969 {
1970 int error;
1971 struct mbuf *m;
1972 struct wg_msg_resp *wgmr;
1973
1974 KASSERT(mutex_owned(wgp->wgp_lock));
1975 KASSERT(wgs == wgp->wgp_session_unstable);
1976 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1977
1978 m = m_gethdr(M_WAIT, MT_DATA);
1979 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
1980 wgmr = mtod(m, struct wg_msg_resp *);
1981 wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
1982
1983 error = wg->wg_ops->send_hs_msg(wgp, m);
1984 if (error == 0)
1985 WG_TRACE("resp msg sent");
1986 return error;
1987 }
1988
1989 static struct wg_peer *
1990 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
1991 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
1992 {
1993 struct wg_peer *wgp;
1994
1995 int s = pserialize_read_enter();
1996 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
1997 if (wgp != NULL)
1998 wg_get_peer(wgp, psref);
1999 pserialize_read_exit(s);
2000
2001 return wgp;
2002 }
2003
2004 static void
2005 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
2006 struct wg_msg_cookie *wgmc, const uint32_t sender,
2007 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
2008 {
2009 uint8_t cookie[WG_COOKIE_LEN];
2010 uint8_t key[WG_HASH_LEN];
2011 uint8_t addr[sizeof(struct in6_addr)];
2012 size_t addrlen;
2013 uint16_t uh_sport; /* be */
2014
2015 KASSERT(mutex_owned(wgp->wgp_lock));
2016
2017 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
2018 wgmc->wgmc_receiver = sender;
2019 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
2020
2021 /*
2022 * [W] 5.4.7: Under Load: Cookie Reply Message
2023 * "The secret variable, Rm, changes every two minutes to a
2024 * random value"
2025 */
2026 if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
2027 wgp->wgp_randval = cprng_strong32();
2028 wgp->wgp_last_genrandval_time = time_uptime;
2029 }
2030
2031 switch (src->sa_family) {
2032 case AF_INET: {
2033 const struct sockaddr_in *sin = satocsin(src);
2034 addrlen = sizeof(sin->sin_addr);
2035 memcpy(addr, &sin->sin_addr, addrlen);
2036 uh_sport = sin->sin_port;
2037 break;
2038 }
2039 #ifdef INET6
2040 case AF_INET6: {
2041 const struct sockaddr_in6 *sin6 = satocsin6(src);
2042 addrlen = sizeof(sin6->sin6_addr);
2043 memcpy(addr, &sin6->sin6_addr, addrlen);
2044 uh_sport = sin6->sin6_port;
2045 break;
2046 }
2047 #endif
2048 default:
2049 panic("invalid af=%d", src->sa_family);
2050 }
2051
2052 wg_algo_mac(cookie, sizeof(cookie),
2053 (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
2054 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2055 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2056 sizeof(wg->wg_pubkey));
2057 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2058 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2059
2060 /* Need to store to calculate mac2 */
2061 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2062 wgp->wgp_last_sent_cookie_valid = true;
2063 }
2064
2065 static int
2066 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2067 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
2068 const struct sockaddr *src)
2069 {
2070 int error;
2071 struct mbuf *m;
2072 struct wg_msg_cookie *wgmc;
2073
2074 KASSERT(mutex_owned(wgp->wgp_lock));
2075
2076 m = m_gethdr(M_WAIT, MT_DATA);
2077 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2078 wgmc = mtod(m, struct wg_msg_cookie *);
2079 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2080
2081 error = wg->wg_ops->send_hs_msg(wgp, m);
2082 if (error == 0)
2083 WG_TRACE("cookie msg sent");
2084 return error;
2085 }
2086
2087 static bool
2088 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2089 {
2090 #ifdef WG_DEBUG_PARAMS
2091 if (wg_force_underload)
2092 return true;
2093 #endif
2094
2095 /*
2096 * XXX we don't have a means of a load estimation. The purpose of
2097 * the mechanism is a DoS mitigation, so we consider frequent handshake
2098 * messages as (a kind of) load; if a message of the same type comes
2099 * to a peer within 1 second, we consider we are under load.
2100 */
2101 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2102 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2103 return (time_uptime - last) == 0;
2104 }
2105
2106 static void
2107 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2108 {
2109
2110 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2111
2112 /*
2113 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2114 */
2115 if (initiator) {
2116 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2117 wgs->wgs_chaining_key, NULL, 0);
2118 } else {
2119 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2120 wgs->wgs_chaining_key, NULL, 0);
2121 }
2122 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2123 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2124 }
2125
2126 static uint64_t
2127 wg_session_get_send_counter(struct wg_session *wgs)
2128 {
2129 #ifdef __HAVE_ATOMIC64_LOADSTORE
2130 return atomic_load_relaxed(&wgs->wgs_send_counter);
2131 #else
2132 uint64_t send_counter;
2133
2134 mutex_enter(&wgs->wgs_send_counter_lock);
2135 send_counter = wgs->wgs_send_counter;
2136 mutex_exit(&wgs->wgs_send_counter_lock);
2137
2138 return send_counter;
2139 #endif
2140 }
2141
2142 static uint64_t
2143 wg_session_inc_send_counter(struct wg_session *wgs)
2144 {
2145 #ifdef __HAVE_ATOMIC64_LOADSTORE
2146 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2147 #else
2148 uint64_t send_counter;
2149
2150 mutex_enter(&wgs->wgs_send_counter_lock);
2151 send_counter = wgs->wgs_send_counter++;
2152 mutex_exit(&wgs->wgs_send_counter_lock);
2153
2154 return send_counter;
2155 #endif
2156 }
2157
2158 static void
2159 wg_clear_states(struct wg_session *wgs)
2160 {
2161
2162 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2163
2164 wgs->wgs_send_counter = 0;
2165 sliwin_reset(&wgs->wgs_recvwin->window);
2166
2167 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2168 wgs_clear(handshake_hash);
2169 wgs_clear(chaining_key);
2170 wgs_clear(ephemeral_key_pub);
2171 wgs_clear(ephemeral_key_priv);
2172 wgs_clear(ephemeral_key_peer);
2173 #undef wgs_clear
2174 }
2175
2176 static struct wg_session *
2177 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2178 struct psref *psref)
2179 {
2180 struct wg_session *wgs;
2181
2182 int s = pserialize_read_enter();
2183 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2184 if (wgs != NULL) {
2185 KASSERT(atomic_load_relaxed(&wgs->wgs_state) !=
2186 WGS_STATE_UNKNOWN);
2187 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2188 }
2189 pserialize_read_exit(s);
2190
2191 return wgs;
2192 }
2193
2194 static void
2195 wg_schedule_rekey_timer(struct wg_peer *wgp)
2196 {
2197 int timeout = MIN(wg_rekey_after_time, INT_MAX/hz);
2198
2199 callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
2200 }
2201
2202 static void
2203 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2204 {
2205 struct mbuf *m;
2206
2207 /*
2208 * [W] 6.5 Passive Keepalive
2209 * "A keepalive message is simply a transport data message with
2210 * a zero-length encapsulated encrypted inner-packet."
2211 */
2212 m = m_gethdr(M_WAIT, MT_DATA);
2213 wg_send_data_msg(wgp, wgs, m);
2214 }
2215
2216 static bool
2217 wg_need_to_send_init_message(struct wg_session *wgs)
2218 {
2219 /*
2220 * [W] 6.2 Transport Message Limits
2221 * "if a peer is the initiator of a current secure session,
2222 * WireGuard will send a handshake initiation message to begin
2223 * a new secure session ... if after receiving a transport data
2224 * message, the current secure session is (REJECT-AFTER-TIME
2225 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2226 * not yet acted upon this event."
2227 */
2228 return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
2229 (time_uptime - wgs->wgs_time_established) >=
2230 (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
2231 }
2232
2233 static void
2234 wg_schedule_peer_task(struct wg_peer *wgp, int task)
2235 {
2236
2237 atomic_or_uint(&wgp->wgp_tasks, task);
2238 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2239 wg_wakeup_worker(wgp->wgp_sc->wg_worker, WG_WAKEUP_REASON_PEER);
2240 }
2241
2242 static void
2243 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2244 {
2245 struct wg_sockaddr *wgsa_prev;
2246
2247 WG_TRACE("Changing endpoint");
2248
2249 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2250 wgsa_prev = wgp->wgp_endpoint;
2251 atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2252 wgp->wgp_endpoint0 = wgsa_prev;
2253 atomic_store_release(&wgp->wgp_endpoint_available, true);
2254
2255 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2256 }
2257
2258 static bool
2259 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2260 {
2261 uint16_t packet_len;
2262 const struct ip *ip;
2263
2264 if (__predict_false(decrypted_len < sizeof(struct ip)))
2265 return false;
2266
2267 ip = (const struct ip *)packet;
2268 if (ip->ip_v == 4)
2269 *af = AF_INET;
2270 else if (ip->ip_v == 6)
2271 *af = AF_INET6;
2272 else
2273 return false;
2274
2275 WG_DLOG("af=%d\n", *af);
2276
2277 if (*af == AF_INET) {
2278 packet_len = ntohs(ip->ip_len);
2279 } else {
2280 const struct ip6_hdr *ip6;
2281
2282 if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
2283 return false;
2284
2285 ip6 = (const struct ip6_hdr *)packet;
2286 packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2287 }
2288
2289 WG_DLOG("packet_len=%u\n", packet_len);
2290 if (packet_len > decrypted_len)
2291 return false;
2292
2293 return true;
2294 }
2295
2296 static bool
2297 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2298 int af, char *packet)
2299 {
2300 struct sockaddr_storage ss;
2301 struct sockaddr *sa;
2302 struct psref psref;
2303 struct wg_peer *wgp;
2304 bool ok;
2305
2306 /*
2307 * II CRYPTOKEY ROUTING
2308 * "it will only accept it if its source IP resolves in the
2309 * table to the public key used in the secure session for
2310 * decrypting it."
2311 */
2312
2313 if (af == AF_INET) {
2314 const struct ip *ip = (const struct ip *)packet;
2315 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2316 sockaddr_in_init(sin, &ip->ip_src, 0);
2317 sa = sintosa(sin);
2318 #ifdef INET6
2319 } else {
2320 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2321 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2322 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2323 sa = sin6tosa(sin6);
2324 #endif
2325 }
2326
2327 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2328 ok = (wgp == wgp_expected);
2329 if (wgp != NULL)
2330 wg_put_peer(wgp, &psref);
2331
2332 return ok;
2333 }
2334
2335 static void
2336 wg_session_dtor_timer(void *arg)
2337 {
2338 struct wg_peer *wgp = arg;
2339
2340 WG_TRACE("enter");
2341
2342 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2343 }
2344
2345 static void
2346 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2347 {
2348
2349 /* 1 second grace period */
2350 callout_schedule(&wgp->wgp_session_dtor_timer, hz);
2351 }
2352
2353 static bool
2354 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2355 {
2356 if (sa1->sa_family != sa2->sa_family)
2357 return false;
2358
2359 switch (sa1->sa_family) {
2360 case AF_INET:
2361 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2362 case AF_INET6:
2363 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2364 default:
2365 return true;
2366 }
2367 }
2368
2369 static void
2370 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2371 const struct sockaddr *src)
2372 {
2373 struct wg_sockaddr *wgsa;
2374 struct psref psref;
2375
2376 wgsa = wg_get_endpoint_sa(wgp, &psref);
2377
2378 #ifdef WG_DEBUG_LOG
2379 char oldaddr[128], newaddr[128];
2380 sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2381 sockaddr_format(src, newaddr, sizeof(newaddr));
2382 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2383 #endif
2384
2385 /*
2386 * III: "Since the packet has authenticated correctly, the source IP of
2387 * the outer UDP/IP packet is used to update the endpoint for peer..."
2388 */
2389 if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2390 !sockaddr_port_match(src, wgsatosa(wgsa)))) {
2391 /* XXX We can't change the endpoint twice in a short period */
2392 if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2393 wg_change_endpoint(wgp, src);
2394 }
2395 }
2396
2397 wg_put_sa(wgp, wgsa, &psref);
2398 }
2399
2400 static void
2401 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2402 const struct sockaddr *src)
2403 {
2404 struct wg_msg_data *wgmd;
2405 char *encrypted_buf = NULL, *decrypted_buf;
2406 size_t encrypted_len, decrypted_len;
2407 struct wg_session *wgs;
2408 struct wg_peer *wgp;
2409 int state;
2410 size_t mlen;
2411 struct psref psref;
2412 int error, af;
2413 bool success, free_encrypted_buf = false, ok;
2414 struct mbuf *n;
2415
2416 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2417 wgmd = mtod(m, struct wg_msg_data *);
2418
2419 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2420 WG_TRACE("data");
2421
2422 /* Find the putative session, or drop. */
2423 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2424 if (wgs == NULL) {
2425 WG_TRACE("No session found");
2426 m_freem(m);
2427 return;
2428 }
2429
2430 /*
2431 * We are only ready to handle data when in INIT_PASSIVE,
2432 * ESTABLISHED, or DESTROYING. All transitions out of that
2433 * state dissociate the session index and drain psrefs.
2434 */
2435 state = atomic_load_relaxed(&wgs->wgs_state);
2436 switch (state) {
2437 case WGS_STATE_UNKNOWN:
2438 panic("wg session %p in unknown state has session index %u",
2439 wgs, wgmd->wgmd_receiver);
2440 case WGS_STATE_INIT_ACTIVE:
2441 WG_TRACE("not yet ready for data");
2442 goto out;
2443 case WGS_STATE_INIT_PASSIVE:
2444 case WGS_STATE_ESTABLISHED:
2445 case WGS_STATE_DESTROYING:
2446 break;
2447 }
2448
2449 /*
2450 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2451 * to update the endpoint if authentication succeeds.
2452 */
2453 wgp = wgs->wgs_peer;
2454
2455 /*
2456 * Reject outrageously wrong sequence numbers before doing any
2457 * crypto work or taking any locks.
2458 */
2459 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2460 le64toh(wgmd->wgmd_counter));
2461 if (error) {
2462 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2463 "out-of-window packet: %"PRIu64"\n",
2464 le64toh(wgmd->wgmd_counter));
2465 goto out;
2466 }
2467
2468 /* Ensure the payload and authenticator are contiguous. */
2469 mlen = m_length(m);
2470 encrypted_len = mlen - sizeof(*wgmd);
2471 if (encrypted_len < WG_AUTHTAG_LEN) {
2472 WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
2473 goto out;
2474 }
2475 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2476 if (success) {
2477 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2478 } else {
2479 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2480 if (encrypted_buf == NULL) {
2481 WG_DLOG("failed to allocate encrypted_buf\n");
2482 goto out;
2483 }
2484 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2485 free_encrypted_buf = true;
2486 }
2487 /* m_ensure_contig may change m regardless of its result */
2488 KASSERT(m->m_len >= sizeof(*wgmd));
2489 wgmd = mtod(m, struct wg_msg_data *);
2490
2491 /*
2492 * Get a buffer for the plaintext. Add WG_AUTHTAG_LEN to avoid
2493 * a zero-length buffer (XXX). Drop if plaintext is longer
2494 * than MCLBYTES (XXX).
2495 */
2496 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2497 if (decrypted_len > MCLBYTES) {
2498 /* FIXME handle larger data than MCLBYTES */
2499 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2500 goto out;
2501 }
2502 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2503 if (n == NULL) {
2504 WG_DLOG("wg_get_mbuf failed\n");
2505 goto out;
2506 }
2507 decrypted_buf = mtod(n, char *);
2508
2509 /* Decrypt and verify the packet. */
2510 WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
2511 error = wg_algo_aead_dec(decrypted_buf,
2512 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2513 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
2514 encrypted_len, NULL, 0);
2515 if (error != 0) {
2516 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2517 "failed to wg_algo_aead_dec\n");
2518 m_freem(n);
2519 goto out;
2520 }
2521 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2522
2523 /* Packet is genuine. Reject it if a replay or just too old. */
2524 mutex_enter(&wgs->wgs_recvwin->lock);
2525 error = sliwin_update(&wgs->wgs_recvwin->window,
2526 le64toh(wgmd->wgmd_counter));
2527 mutex_exit(&wgs->wgs_recvwin->lock);
2528 if (error) {
2529 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2530 "replay or out-of-window packet: %"PRIu64"\n",
2531 le64toh(wgmd->wgmd_counter));
2532 m_freem(n);
2533 goto out;
2534 }
2535
2536 /* We're done with m now; free it and chuck the pointers. */
2537 m_freem(m);
2538 m = NULL;
2539 wgmd = NULL;
2540
2541 /*
2542 * Validate the encapsulated packet header and get the address
2543 * family, or drop.
2544 */
2545 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2546 if (!ok) {
2547 m_freem(n);
2548 goto out;
2549 }
2550
2551 /*
2552 * The packet is genuine. Update the peer's endpoint if the
2553 * source address changed.
2554 *
2555 * XXX How to prevent DoS by replaying genuine packets from the
2556 * wrong source address?
2557 */
2558 wg_update_endpoint_if_necessary(wgp, src);
2559
2560 /* Submit it into our network stack if routable. */
2561 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2562 if (ok) {
2563 wg->wg_ops->input(&wg->wg_if, n, af);
2564 } else {
2565 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2566 "invalid source address\n");
2567 m_freem(n);
2568 /*
2569 * The inner address is invalid however the session is valid
2570 * so continue the session processing below.
2571 */
2572 }
2573 n = NULL;
2574
2575 /* Update the state machine if necessary. */
2576 if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
2577 /*
2578 * We were waiting for the initiator to send their
2579 * first data transport message, and that has happened.
2580 * Schedule a task to establish this session.
2581 */
2582 wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
2583 } else {
2584 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2585 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2586 }
2587 /*
2588 * [W] 6.5 Passive Keepalive
2589 * "If a peer has received a validly-authenticated transport
2590 * data message (section 5.4.6), but does not have any packets
2591 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2592 * a keepalive message."
2593 */
2594 WG_DLOG("time_uptime=%ju wgs_time_last_data_sent=%ju\n",
2595 (uintmax_t)time_uptime,
2596 (uintmax_t)wgs->wgs_time_last_data_sent);
2597 if ((time_uptime - wgs->wgs_time_last_data_sent) >=
2598 wg_keepalive_timeout) {
2599 WG_TRACE("Schedule sending keepalive message");
2600 /*
2601 * We can't send a keepalive message here to avoid
2602 * a deadlock; we already hold the solock of a socket
2603 * that is used to send the message.
2604 */
2605 wg_schedule_peer_task(wgp,
2606 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2607 }
2608 }
2609 out:
2610 wg_put_session(wgs, &psref);
2611 if (m != NULL)
2612 m_freem(m);
2613 if (free_encrypted_buf)
2614 kmem_intr_free(encrypted_buf, encrypted_len);
2615 }
2616
2617 static void
2618 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2619 {
2620 struct wg_session *wgs;
2621 struct wg_peer *wgp;
2622 struct psref psref;
2623 int error;
2624 uint8_t key[WG_HASH_LEN];
2625 uint8_t cookie[WG_COOKIE_LEN];
2626
2627 WG_TRACE("cookie msg received");
2628
2629 /* Find the putative session. */
2630 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2631 if (wgs == NULL) {
2632 WG_TRACE("No session found");
2633 return;
2634 }
2635
2636 /* Lock the peer so we can update the cookie state. */
2637 wgp = wgs->wgs_peer;
2638 mutex_enter(wgp->wgp_lock);
2639
2640 if (!wgp->wgp_last_sent_mac1_valid) {
2641 WG_TRACE("No valid mac1 sent (or expired)");
2642 goto out;
2643 }
2644
2645 /* Decrypt the cookie and store it for later handshake retry. */
2646 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
2647 sizeof(wgp->wgp_pubkey));
2648 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
2649 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
2650 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
2651 wgmc->wgmc_salt);
2652 if (error != 0) {
2653 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2654 "wg_algo_aead_dec for cookie failed: error=%d\n", error);
2655 goto out;
2656 }
2657 /*
2658 * [W] 6.6: Interaction with Cookie Reply System
2659 * "it should simply store the decrypted cookie value from the cookie
2660 * reply message, and wait for the expiration of the REKEY-TIMEOUT
2661 * timer for retrying a handshake initiation message."
2662 */
2663 wgp->wgp_latest_cookie_time = time_uptime;
2664 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
2665 out:
2666 mutex_exit(wgp->wgp_lock);
2667 wg_put_session(wgs, &psref);
2668 }
2669
2670 static struct mbuf *
2671 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
2672 {
2673 struct wg_msg wgm;
2674 size_t mbuflen;
2675 size_t msglen;
2676
2677 /*
2678 * Get the mbuf chain length. It is already guaranteed, by
2679 * wg_overudp_cb, to be large enough for a struct wg_msg.
2680 */
2681 mbuflen = m_length(m);
2682 KASSERT(mbuflen >= sizeof(struct wg_msg));
2683
2684 /*
2685 * Copy the message header (32-bit message type) out -- we'll
2686 * worry about contiguity and alignment later.
2687 */
2688 m_copydata(m, 0, sizeof(wgm), &wgm);
2689 switch (le32toh(wgm.wgm_type)) {
2690 case WG_MSG_TYPE_INIT:
2691 msglen = sizeof(struct wg_msg_init);
2692 break;
2693 case WG_MSG_TYPE_RESP:
2694 msglen = sizeof(struct wg_msg_resp);
2695 break;
2696 case WG_MSG_TYPE_COOKIE:
2697 msglen = sizeof(struct wg_msg_cookie);
2698 break;
2699 case WG_MSG_TYPE_DATA:
2700 msglen = sizeof(struct wg_msg_data);
2701 break;
2702 default:
2703 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
2704 "Unexpected msg type: %u\n", le32toh(wgm.wgm_type));
2705 goto error;
2706 }
2707
2708 /* Verify the mbuf chain is long enough for this type of message. */
2709 if (__predict_false(mbuflen < msglen)) {
2710 WG_DLOG("Invalid msg size: mbuflen=%lu type=%u\n", mbuflen,
2711 le32toh(wgm.wgm_type));
2712 goto error;
2713 }
2714
2715 /* Make the message header contiguous if necessary. */
2716 if (__predict_false(m->m_len < msglen)) {
2717 m = m_pullup(m, msglen);
2718 if (m == NULL)
2719 return NULL;
2720 }
2721
2722 return m;
2723
2724 error:
2725 m_freem(m);
2726 return NULL;
2727 }
2728
2729 static void
2730 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
2731 const struct sockaddr *src)
2732 {
2733 struct wg_msg *wgm;
2734
2735 m = wg_validate_msg_header(wg, m);
2736 if (__predict_false(m == NULL))
2737 return;
2738
2739 KASSERT(m->m_len >= sizeof(struct wg_msg));
2740 wgm = mtod(m, struct wg_msg *);
2741 switch (le32toh(wgm->wgm_type)) {
2742 case WG_MSG_TYPE_INIT:
2743 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
2744 break;
2745 case WG_MSG_TYPE_RESP:
2746 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
2747 break;
2748 case WG_MSG_TYPE_COOKIE:
2749 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
2750 break;
2751 case WG_MSG_TYPE_DATA:
2752 wg_handle_msg_data(wg, m, src);
2753 /* wg_handle_msg_data frees m for us */
2754 return;
2755 default:
2756 panic("invalid message type: %d", le32toh(wgm->wgm_type));
2757 }
2758
2759 m_freem(m);
2760 }
2761
2762 static void
2763 wg_receive_packets(struct wg_softc *wg, const int af)
2764 {
2765
2766 for (;;) {
2767 int error, flags;
2768 struct socket *so;
2769 struct mbuf *m = NULL;
2770 struct uio dummy_uio;
2771 struct mbuf *paddr = NULL;
2772 struct sockaddr *src;
2773
2774 so = wg_get_so_by_af(wg->wg_worker, af);
2775 flags = MSG_DONTWAIT;
2776 dummy_uio.uio_resid = 1000000000;
2777
2778 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
2779 &flags);
2780 if (error || m == NULL) {
2781 //if (error == EWOULDBLOCK)
2782 return;
2783 }
2784
2785 KASSERT(paddr != NULL);
2786 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
2787 src = mtod(paddr, struct sockaddr *);
2788
2789 wg_handle_packet(wg, m, src);
2790 }
2791 }
2792
2793 static void
2794 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
2795 {
2796
2797 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
2798 }
2799
2800 static void
2801 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
2802 {
2803
2804 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
2805 }
2806
2807 static void
2808 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
2809 {
2810 struct wg_session *wgs;
2811
2812 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
2813
2814 KASSERT(mutex_owned(wgp->wgp_lock));
2815
2816 if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
2817 WGLOG(LOG_DEBUG, "No endpoint available\n");
2818 /* XXX should do something? */
2819 return;
2820 }
2821
2822 wgs = wgp->wgp_session_stable;
2823 if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
2824 /* XXX What if the unstable session is already INIT_ACTIVE? */
2825 wg_send_handshake_msg_init(wg, wgp);
2826 } else {
2827 /* rekey */
2828 wgs = wgp->wgp_session_unstable;
2829 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2830 wg_send_handshake_msg_init(wg, wgp);
2831 }
2832 }
2833
2834 static void
2835 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
2836 {
2837 struct wg_session *wgs;
2838
2839 WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
2840
2841 KASSERT(mutex_owned(wgp->wgp_lock));
2842 KASSERT(wgp->wgp_handshake_start_time != 0);
2843
2844 wgs = wgp->wgp_session_unstable;
2845 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2846 return;
2847
2848 /*
2849 * XXX no real need to assign a new index here, but we do need
2850 * to transition to UNKNOWN temporarily
2851 */
2852 wg_put_session_index(wg, wgs);
2853
2854 /* [W] 6.4 Handshake Initiation Retransmission */
2855 if ((time_uptime - wgp->wgp_handshake_start_time) >
2856 wg_rekey_attempt_time) {
2857 /* Give up handshaking */
2858 wgp->wgp_handshake_start_time = 0;
2859 WG_TRACE("give up");
2860
2861 /*
2862 * If a new data packet comes, handshaking will be retried
2863 * and a new session would be established at that time,
2864 * however we don't want to send pending packets then.
2865 */
2866 wg_purge_pending_packets(wgp);
2867 return;
2868 }
2869
2870 wg_task_send_init_message(wg, wgp);
2871 }
2872
2873 static void
2874 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
2875 {
2876 struct wg_session *wgs, *wgs_prev;
2877
2878 KASSERT(mutex_owned(wgp->wgp_lock));
2879
2880 wgs = wgp->wgp_session_unstable;
2881 if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
2882 /* XXX Can this happen? */
2883 return;
2884
2885 wgs->wgs_state = WGS_STATE_ESTABLISHED;
2886 wgs->wgs_time_established = time_uptime;
2887 wgs->wgs_time_last_data_sent = 0;
2888 wgs->wgs_is_initiator = false;
2889 WG_TRACE("WGS_STATE_ESTABLISHED");
2890
2891 wg_swap_sessions(wgp);
2892 KASSERT(wgs == wgp->wgp_session_stable);
2893 wgs_prev = wgp->wgp_session_unstable;
2894 getnanotime(&wgp->wgp_last_handshake_time);
2895 wgp->wgp_handshake_start_time = 0;
2896 wgp->wgp_last_sent_mac1_valid = false;
2897 wgp->wgp_last_sent_cookie_valid = false;
2898
2899 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2900 /* Wait for wg_get_stable_session to drain. */
2901 pserialize_perform(wgp->wgp_psz);
2902
2903 /* Transition ESTABLISHED->DESTROYING. */
2904 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
2905
2906 /* We can't destroy the old session immediately */
2907 wg_schedule_session_dtor_timer(wgp);
2908 } else {
2909 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2910 "state=%d", wgs_prev->wgs_state);
2911 wg_clear_states(wgs_prev);
2912 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
2913 }
2914
2915 /* Anyway run a softint to flush pending packets */
2916 kpreempt_disable();
2917 softint_schedule(wgp->wgp_si);
2918 kpreempt_enable();
2919 }
2920
2921 static void
2922 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
2923 {
2924
2925 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
2926
2927 KASSERT(mutex_owned(wgp->wgp_lock));
2928
2929 if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
2930 pserialize_perform(wgp->wgp_psz);
2931 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
2932 wg_psref_class);
2933 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
2934 wg_psref_class);
2935 atomic_store_release(&wgp->wgp_endpoint_changing, 0);
2936 }
2937 }
2938
2939 static void
2940 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
2941 {
2942 struct wg_session *wgs;
2943
2944 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
2945
2946 KASSERT(mutex_owned(wgp->wgp_lock));
2947
2948 wgs = wgp->wgp_session_stable;
2949 if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
2950 return;
2951
2952 wg_send_keepalive_msg(wgp, wgs);
2953 }
2954
2955 static void
2956 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
2957 {
2958 struct wg_session *wgs;
2959
2960 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
2961
2962 KASSERT(mutex_owned(wgp->wgp_lock));
2963
2964 wgs = wgp->wgp_session_unstable;
2965 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
2966 wg_put_session_index(wg, wgs);
2967 }
2968 }
2969
2970 static void
2971 wg_process_peer_tasks(struct wg_softc *wg)
2972 {
2973 struct wg_peer *wgp;
2974 int s;
2975
2976 /* XXX should avoid checking all peers */
2977 s = pserialize_read_enter();
2978 WG_PEER_READER_FOREACH(wgp, wg) {
2979 struct psref psref;
2980 unsigned int tasks;
2981
2982 if (wgp->wgp_tasks == 0)
2983 continue;
2984
2985 wg_get_peer(wgp, &psref);
2986 pserialize_read_exit(s);
2987
2988 restart:
2989 tasks = atomic_swap_uint(&wgp->wgp_tasks, 0);
2990 KASSERT(tasks != 0);
2991
2992 WG_DLOG("tasks=%x\n", tasks);
2993
2994 mutex_enter(wgp->wgp_lock);
2995 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
2996 wg_task_send_init_message(wg, wgp);
2997 if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
2998 wg_task_retry_handshake(wg, wgp);
2999 if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
3000 wg_task_establish_session(wg, wgp);
3001 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
3002 wg_task_endpoint_changed(wg, wgp);
3003 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
3004 wg_task_send_keepalive_message(wg, wgp);
3005 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
3006 wg_task_destroy_prev_session(wg, wgp);
3007 mutex_exit(wgp->wgp_lock);
3008
3009 /* New tasks may be scheduled during processing tasks */
3010 WG_DLOG("wgp_tasks=%d\n", wgp->wgp_tasks);
3011 if (wgp->wgp_tasks != 0)
3012 goto restart;
3013
3014 s = pserialize_read_enter();
3015 wg_put_peer(wgp, &psref);
3016 }
3017 pserialize_read_exit(s);
3018 }
3019
3020 static void
3021 wg_worker(void *arg)
3022 {
3023 struct wg_softc *wg = arg;
3024 struct wg_worker *wgw = wg->wg_worker;
3025 bool todie = false;
3026
3027 KASSERT(wg != NULL);
3028 KASSERT(wgw != NULL);
3029
3030 while (!todie) {
3031 int reasons;
3032 int bound;
3033
3034 mutex_enter(&wgw->wgw_lock);
3035 /* New tasks may come during task handling */
3036 while ((reasons = wgw->wgw_wakeup_reasons) == 0 &&
3037 !(todie = wgw->wgw_todie))
3038 cv_wait(&wgw->wgw_cv, &wgw->wgw_lock);
3039 wgw->wgw_wakeup_reasons = 0;
3040 mutex_exit(&wgw->wgw_lock);
3041
3042 bound = curlwp_bind();
3043 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4))
3044 wg_receive_packets(wg, AF_INET);
3045 if (ISSET(reasons, WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6))
3046 wg_receive_packets(wg, AF_INET6);
3047 if (ISSET(reasons, WG_WAKEUP_REASON_PEER))
3048 wg_process_peer_tasks(wg);
3049 curlwp_bindx(bound);
3050 }
3051 kthread_exit(0);
3052 }
3053
3054 static void
3055 wg_wakeup_worker(struct wg_worker *wgw, const int reason)
3056 {
3057
3058 mutex_enter(&wgw->wgw_lock);
3059 wgw->wgw_wakeup_reasons |= reason;
3060 cv_broadcast(&wgw->wgw_cv);
3061 mutex_exit(&wgw->wgw_lock);
3062 }
3063
3064 static int
3065 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3066 {
3067 int error;
3068 struct wg_worker *wgw = wg->wg_worker;
3069 uint16_t old_port = wg->wg_listen_port;
3070
3071 if (port != 0 && old_port == port)
3072 return 0;
3073
3074 struct sockaddr_in _sin, *sin = &_sin;
3075 sin->sin_len = sizeof(*sin);
3076 sin->sin_family = AF_INET;
3077 sin->sin_addr.s_addr = INADDR_ANY;
3078 sin->sin_port = htons(port);
3079
3080 error = sobind(wgw->wgw_so4, sintosa(sin), curlwp);
3081 if (error != 0)
3082 return error;
3083
3084 #ifdef INET6
3085 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3086 sin6->sin6_len = sizeof(*sin6);
3087 sin6->sin6_family = AF_INET6;
3088 sin6->sin6_addr = in6addr_any;
3089 sin6->sin6_port = htons(port);
3090
3091 error = sobind(wgw->wgw_so6, sin6tosa(sin6), curlwp);
3092 if (error != 0)
3093 return error;
3094 #endif
3095
3096 wg->wg_listen_port = port;
3097
3098 return 0;
3099 }
3100
3101 static void
3102 wg_so_upcall(struct socket *so, void *arg, int events, int waitflag)
3103 {
3104 struct wg_worker *wgw = arg;
3105 int reason;
3106
3107 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3108 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV4 :
3109 WG_WAKEUP_REASON_RECEIVE_PACKETS_IPV6;
3110 wg_wakeup_worker(wgw, reason);
3111 }
3112
3113 static int
3114 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3115 struct sockaddr *src, void *arg)
3116 {
3117 struct wg_softc *wg = arg;
3118 struct wg_msg wgm;
3119 struct mbuf *m = *mp;
3120
3121 WG_TRACE("enter");
3122
3123 /* Verify the mbuf chain is long enough to have a wg msg header. */
3124 KASSERT(offset <= m_length(m));
3125 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3126 /* drop on the floor */
3127 m_freem(m);
3128 return -1;
3129 }
3130
3131 /*
3132 * Copy the message header (32-bit message type) out -- we'll
3133 * worry about contiguity and alignment later.
3134 */
3135 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3136 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3137
3138 /*
3139 * Handle DATA packets promptly as they arrive. Other packets
3140 * may require expensive public-key crypto and are not as
3141 * sensitive to latency, so defer them to the worker thread.
3142 */
3143 switch (le32toh(wgm.wgm_type)) {
3144 case WG_MSG_TYPE_DATA:
3145 /* handle immediately */
3146 m_adj(m, offset);
3147 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3148 m = m_pullup(m, sizeof(struct wg_msg_data));
3149 if (m == NULL)
3150 return -1;
3151 }
3152 wg_handle_msg_data(wg, m, src);
3153 *mp = NULL;
3154 return 1;
3155 case WG_MSG_TYPE_INIT:
3156 case WG_MSG_TYPE_RESP:
3157 case WG_MSG_TYPE_COOKIE:
3158 /* pass through to so_receive in wg_receive_packets */
3159 return 0;
3160 default:
3161 /* drop on the floor */
3162 m_freem(m);
3163 return -1;
3164 }
3165 }
3166
3167 static int
3168 wg_worker_socreate(struct wg_softc *wg, struct wg_worker *wgw, const int af,
3169 struct socket **sop)
3170 {
3171 int error;
3172 struct socket *so;
3173
3174 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3175 if (error != 0)
3176 return error;
3177
3178 solock(so);
3179 so->so_upcallarg = wgw;
3180 so->so_upcall = wg_so_upcall;
3181 so->so_rcv.sb_flags |= SB_UPCALL;
3182 if (af == AF_INET)
3183 in_pcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3184 #if INET6
3185 else
3186 in6_pcb_register_overudp_cb(sotoin6pcb(so), wg_overudp_cb, wg);
3187 #endif
3188 sounlock(so);
3189
3190 *sop = so;
3191
3192 return 0;
3193 }
3194
3195 static int
3196 wg_worker_init(struct wg_softc *wg)
3197 {
3198 int error;
3199 struct wg_worker *wgw;
3200 const char *ifname = wg->wg_if.if_xname;
3201 struct socket *so;
3202
3203 wgw = kmem_zalloc(sizeof(*wgw), KM_SLEEP);
3204
3205 mutex_init(&wgw->wgw_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3206 cv_init(&wgw->wgw_cv, ifname);
3207 wgw->wgw_todie = false;
3208 wgw->wgw_wakeup_reasons = 0;
3209
3210 error = wg_worker_socreate(wg, wgw, AF_INET, &so);
3211 if (error != 0)
3212 goto error;
3213 wgw->wgw_so4 = so;
3214 #ifdef INET6
3215 error = wg_worker_socreate(wg, wgw, AF_INET6, &so);
3216 if (error != 0)
3217 goto error;
3218 wgw->wgw_so6 = so;
3219 #endif
3220
3221 wg->wg_worker = wgw;
3222
3223 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE | KTHREAD_MUSTJOIN,
3224 NULL, wg_worker, wg, &wg->wg_worker_lwp, "%s", ifname);
3225 if (error != 0)
3226 goto error;
3227
3228 return 0;
3229
3230 error:
3231 #ifdef INET6
3232 if (wgw->wgw_so6 != NULL)
3233 soclose(wgw->wgw_so6);
3234 #endif
3235 if (wgw->wgw_so4 != NULL)
3236 soclose(wgw->wgw_so4);
3237 cv_destroy(&wgw->wgw_cv);
3238 mutex_destroy(&wgw->wgw_lock);
3239
3240 kmem_free(wgw, sizeof(*wgw));
3241
3242 return error;
3243 }
3244
3245 static void
3246 wg_worker_destroy(struct wg_softc *wg)
3247 {
3248 struct wg_worker *wgw = wg->wg_worker;
3249
3250 mutex_enter(&wgw->wgw_lock);
3251 wgw->wgw_todie = true;
3252 wgw->wgw_wakeup_reasons = 0;
3253 cv_broadcast(&wgw->wgw_cv);
3254 mutex_exit(&wgw->wgw_lock);
3255
3256 kthread_join(wg->wg_worker_lwp);
3257
3258 #ifdef INET6
3259 soclose(wgw->wgw_so6);
3260 #endif
3261 soclose(wgw->wgw_so4);
3262 cv_destroy(&wgw->wgw_cv);
3263 mutex_destroy(&wgw->wgw_lock);
3264 kmem_free(wg->wg_worker, sizeof(struct wg_worker));
3265 wg->wg_worker = NULL;
3266 }
3267
3268 static bool
3269 wg_session_hit_limits(struct wg_session *wgs)
3270 {
3271
3272 /*
3273 * [W] 6.2: Transport Message Limits
3274 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3275 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3276 * comes first, WireGuard will refuse to send any more transport data
3277 * messages using the current secure session, ..."
3278 */
3279 KASSERT(wgs->wgs_time_established != 0);
3280 if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
3281 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3282 return true;
3283 } else if (wg_session_get_send_counter(wgs) >
3284 wg_reject_after_messages) {
3285 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3286 return true;
3287 }
3288
3289 return false;
3290 }
3291
3292 static void
3293 wg_peer_softint(void *arg)
3294 {
3295 struct wg_peer *wgp = arg;
3296 struct wg_session *wgs;
3297 struct mbuf *m;
3298 struct psref psref;
3299
3300 if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3301 /* XXX how to treat? */
3302 WG_TRACE("skipped");
3303 return;
3304 }
3305 if (wg_session_hit_limits(wgs)) {
3306 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3307 goto out;
3308 }
3309 WG_TRACE("running");
3310
3311 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3312 wg_send_data_msg(wgp, wgs, m);
3313 }
3314 out:
3315 wg_put_session(wgs, &psref);
3316 }
3317
3318 static void
3319 wg_rekey_timer(void *arg)
3320 {
3321 struct wg_peer *wgp = arg;
3322
3323 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3324 }
3325
3326 static void
3327 wg_purge_pending_packets(struct wg_peer *wgp)
3328 {
3329 struct mbuf *m;
3330
3331 while ((m = pcq_get(wgp->wgp_q)) != NULL) {
3332 m_freem(m);
3333 }
3334 }
3335
3336 static void
3337 wg_handshake_timeout_timer(void *arg)
3338 {
3339 struct wg_peer *wgp = arg;
3340
3341 WG_TRACE("enter");
3342
3343 wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3344 }
3345
3346 static struct wg_peer *
3347 wg_alloc_peer(struct wg_softc *wg)
3348 {
3349 struct wg_peer *wgp;
3350
3351 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3352
3353 wgp->wgp_sc = wg;
3354 wgp->wgp_q = pcq_create(1024, KM_SLEEP);
3355 wgp->wgp_si = softint_establish(SOFTINT_NET, wg_peer_softint, wgp);
3356 callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
3357 callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
3358 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3359 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3360 wg_handshake_timeout_timer, wgp);
3361 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3362 callout_setfunc(&wgp->wgp_session_dtor_timer,
3363 wg_session_dtor_timer, wgp);
3364 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3365 wgp->wgp_endpoint_changing = false;
3366 wgp->wgp_endpoint_available = false;
3367 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3368 wgp->wgp_psz = pserialize_create();
3369 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3370
3371 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3372 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3373 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3374 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3375
3376 struct wg_session *wgs;
3377 wgp->wgp_session_stable =
3378 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3379 wgp->wgp_session_unstable =
3380 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3381 wgs = wgp->wgp_session_stable;
3382 wgs->wgs_peer = wgp;
3383 wgs->wgs_state = WGS_STATE_UNKNOWN;
3384 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3385 #ifndef __HAVE_ATOMIC64_LOADSTORE
3386 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3387 #endif
3388 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3389 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3390
3391 wgs = wgp->wgp_session_unstable;
3392 wgs->wgs_peer = wgp;
3393 wgs->wgs_state = WGS_STATE_UNKNOWN;
3394 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3395 #ifndef __HAVE_ATOMIC64_LOADSTORE
3396 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3397 #endif
3398 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3399 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3400
3401 return wgp;
3402 }
3403
3404 static void
3405 wg_destroy_peer(struct wg_peer *wgp)
3406 {
3407 struct wg_session *wgs;
3408 struct wg_softc *wg = wgp->wgp_sc;
3409
3410 /* Prevent new packets from this peer on any source address. */
3411 rw_enter(wg->wg_rwlock, RW_WRITER);
3412 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3413 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3414 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3415 struct radix_node *rn;
3416
3417 KASSERT(rnh != NULL);
3418 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3419 &wga->wga_sa_mask, rnh);
3420 if (rn == NULL) {
3421 char addrstr[128];
3422 sockaddr_format(&wga->wga_sa_addr, addrstr,
3423 sizeof(addrstr));
3424 WGLOG(LOG_WARNING, "Couldn't delete %s", addrstr);
3425 }
3426 }
3427 rw_exit(wg->wg_rwlock);
3428
3429 /* Purge pending packets. */
3430 wg_purge_pending_packets(wgp);
3431
3432 /* Halt all packet processing and timeouts. */
3433 softint_disestablish(wgp->wgp_si);
3434 callout_halt(&wgp->wgp_rekey_timer, NULL);
3435 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3436 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3437
3438 wgs = wgp->wgp_session_unstable;
3439 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3440 mutex_enter(wgp->wgp_lock);
3441 wg_destroy_session(wg, wgs);
3442 mutex_exit(wgp->wgp_lock);
3443 }
3444 mutex_destroy(&wgs->wgs_recvwin->lock);
3445 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3446 #ifndef __HAVE_ATOMIC64_LOADSTORE
3447 mutex_destroy(&wgs->wgs_send_counter_lock);
3448 #endif
3449 kmem_free(wgs, sizeof(*wgs));
3450
3451 wgs = wgp->wgp_session_stable;
3452 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3453 mutex_enter(wgp->wgp_lock);
3454 wg_destroy_session(wg, wgs);
3455 mutex_exit(wgp->wgp_lock);
3456 }
3457 mutex_destroy(&wgs->wgs_recvwin->lock);
3458 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3459 #ifndef __HAVE_ATOMIC64_LOADSTORE
3460 mutex_destroy(&wgs->wgs_send_counter_lock);
3461 #endif
3462 kmem_free(wgs, sizeof(*wgs));
3463
3464 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3465 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3466 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3467 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3468
3469 pserialize_destroy(wgp->wgp_psz);
3470 pcq_destroy(wgp->wgp_q);
3471 mutex_obj_free(wgp->wgp_lock);
3472
3473 kmem_free(wgp, sizeof(*wgp));
3474 }
3475
3476 static void
3477 wg_destroy_all_peers(struct wg_softc *wg)
3478 {
3479 struct wg_peer *wgp, *wgp0 __diagused;
3480 void *garbage_byname, *garbage_bypubkey;
3481
3482 restart:
3483 garbage_byname = garbage_bypubkey = NULL;
3484 mutex_enter(wg->wg_lock);
3485 WG_PEER_WRITER_FOREACH(wgp, wg) {
3486 if (wgp->wgp_name[0]) {
3487 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3488 strlen(wgp->wgp_name));
3489 KASSERT(wgp0 == wgp);
3490 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3491 }
3492 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3493 sizeof(wgp->wgp_pubkey));
3494 KASSERT(wgp0 == wgp);
3495 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3496 WG_PEER_WRITER_REMOVE(wgp);
3497 wg->wg_npeers--;
3498 mutex_enter(wgp->wgp_lock);
3499 pserialize_perform(wgp->wgp_psz);
3500 mutex_exit(wgp->wgp_lock);
3501 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3502 break;
3503 }
3504 mutex_exit(wg->wg_lock);
3505
3506 if (wgp == NULL)
3507 return;
3508
3509 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3510
3511 wg_destroy_peer(wgp);
3512 thmap_gc(wg->wg_peers_byname, garbage_byname);
3513 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3514
3515 goto restart;
3516 }
3517
3518 static int
3519 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3520 {
3521 struct wg_peer *wgp, *wgp0 __diagused;
3522 void *garbage_byname, *garbage_bypubkey;
3523
3524 mutex_enter(wg->wg_lock);
3525 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
3526 if (wgp != NULL) {
3527 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3528 sizeof(wgp->wgp_pubkey));
3529 KASSERT(wgp0 == wgp);
3530 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3531 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3532 WG_PEER_WRITER_REMOVE(wgp);
3533 wg->wg_npeers--;
3534 mutex_enter(wgp->wgp_lock);
3535 pserialize_perform(wgp->wgp_psz);
3536 mutex_exit(wgp->wgp_lock);
3537 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3538 }
3539 mutex_exit(wg->wg_lock);
3540
3541 if (wgp == NULL)
3542 return ENOENT;
3543
3544 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3545
3546 wg_destroy_peer(wgp);
3547 thmap_gc(wg->wg_peers_byname, garbage_byname);
3548 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3549
3550 return 0;
3551 }
3552
3553 static int
3554 wg_if_attach(struct wg_softc *wg)
3555 {
3556 int error;
3557
3558 wg->wg_if.if_addrlen = 0;
3559 wg->wg_if.if_mtu = WG_MTU;
3560 wg->wg_if.if_flags = IFF_MULTICAST;
3561 wg->wg_if.if_extflags = IFEF_NO_LINK_STATE_CHANGE;
3562 wg->wg_if.if_extflags |= IFEF_MPSAFE;
3563 wg->wg_if.if_ioctl = wg_ioctl;
3564 wg->wg_if.if_output = wg_output;
3565 wg->wg_if.if_init = wg_init;
3566 wg->wg_if.if_stop = wg_stop;
3567 wg->wg_if.if_type = IFT_OTHER;
3568 wg->wg_if.if_dlt = DLT_NULL;
3569 wg->wg_if.if_softc = wg;
3570 IFQ_SET_READY(&wg->wg_if.if_snd);
3571
3572 error = if_initialize(&wg->wg_if);
3573 if (error != 0)
3574 return error;
3575
3576 if_alloc_sadl(&wg->wg_if);
3577 if_register(&wg->wg_if);
3578
3579 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3580
3581 return 0;
3582 }
3583
3584 static int
3585 wg_clone_create(struct if_clone *ifc, int unit)
3586 {
3587 struct wg_softc *wg;
3588 int error;
3589
3590 wg = kmem_zalloc(sizeof(struct wg_softc), KM_SLEEP);
3591
3592 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3593
3594 error = wg_worker_init(wg);
3595 if (error != 0) {
3596 kmem_free(wg, sizeof(struct wg_softc));
3597 return error;
3598 }
3599
3600 rn_inithead((void **)&wg->wg_rtable_ipv4,
3601 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3602 #ifdef INET6
3603 rn_inithead((void **)&wg->wg_rtable_ipv6,
3604 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3605 #endif
3606
3607 PSLIST_INIT(&wg->wg_peers);
3608 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
3609 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
3610 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
3611 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3612 wg->wg_rwlock = rw_obj_alloc();
3613 wg->wg_ops = &wg_ops_rumpkernel;
3614
3615 error = wg_if_attach(wg);
3616 if (error != 0) {
3617 wg_worker_destroy(wg);
3618 if (wg->wg_rtable_ipv4 != NULL)
3619 free(wg->wg_rtable_ipv4, M_RTABLE);
3620 if (wg->wg_rtable_ipv6 != NULL)
3621 free(wg->wg_rtable_ipv6, M_RTABLE);
3622 PSLIST_DESTROY(&wg->wg_peers);
3623 mutex_obj_free(wg->wg_lock);
3624 thmap_destroy(wg->wg_sessions_byindex);
3625 thmap_destroy(wg->wg_peers_byname);
3626 thmap_destroy(wg->wg_peers_bypubkey);
3627 kmem_free(wg, sizeof(struct wg_softc));
3628 return error;
3629 }
3630
3631 mutex_enter(&wg_softcs.lock);
3632 LIST_INSERT_HEAD(&wg_softcs.list, wg, wg_list);
3633 mutex_exit(&wg_softcs.lock);
3634
3635 return 0;
3636 }
3637
3638 static int
3639 wg_clone_destroy(struct ifnet *ifp)
3640 {
3641 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
3642
3643 mutex_enter(&wg_softcs.lock);
3644 LIST_REMOVE(wg, wg_list);
3645 mutex_exit(&wg_softcs.lock);
3646
3647 #ifdef WG_RUMPKERNEL
3648 if (wg_user_mode(wg)) {
3649 rumpuser_wg_destroy(wg->wg_user);
3650 wg->wg_user = NULL;
3651 }
3652 #endif
3653
3654 bpf_detach(ifp);
3655 if_detach(ifp);
3656 wg_worker_destroy(wg);
3657 wg_destroy_all_peers(wg);
3658 if (wg->wg_rtable_ipv4 != NULL)
3659 free(wg->wg_rtable_ipv4, M_RTABLE);
3660 if (wg->wg_rtable_ipv6 != NULL)
3661 free(wg->wg_rtable_ipv6, M_RTABLE);
3662
3663 PSLIST_DESTROY(&wg->wg_peers);
3664 thmap_destroy(wg->wg_sessions_byindex);
3665 thmap_destroy(wg->wg_peers_byname);
3666 thmap_destroy(wg->wg_peers_bypubkey);
3667 mutex_obj_free(wg->wg_lock);
3668 rw_obj_free(wg->wg_rwlock);
3669
3670 kmem_free(wg, sizeof(struct wg_softc));
3671
3672 return 0;
3673 }
3674
3675 static struct wg_peer *
3676 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
3677 struct psref *psref)
3678 {
3679 struct radix_node_head *rnh;
3680 struct radix_node *rn;
3681 struct wg_peer *wgp = NULL;
3682 struct wg_allowedip *wga;
3683
3684 #ifdef WG_DEBUG_LOG
3685 char addrstr[128];
3686 sockaddr_format(sa, addrstr, sizeof(addrstr));
3687 WG_DLOG("sa=%s\n", addrstr);
3688 #endif
3689
3690 rw_enter(wg->wg_rwlock, RW_READER);
3691
3692 rnh = wg_rnh(wg, sa->sa_family);
3693 if (rnh == NULL)
3694 goto out;
3695
3696 rn = rnh->rnh_matchaddr(sa, rnh);
3697 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
3698 goto out;
3699
3700 WG_TRACE("success");
3701
3702 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
3703 wgp = wga->wga_peer;
3704 wg_get_peer(wgp, psref);
3705
3706 out:
3707 rw_exit(wg->wg_rwlock);
3708 return wgp;
3709 }
3710
3711 static void
3712 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
3713 struct wg_session *wgs, struct wg_msg_data *wgmd)
3714 {
3715
3716 memset(wgmd, 0, sizeof(*wgmd));
3717 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
3718 wgmd->wgmd_receiver = wgs->wgs_remote_index;
3719 /* [W] 5.4.6: msg.counter := Nm^send */
3720 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
3721 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
3722 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
3723 }
3724
3725 static int
3726 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
3727 const struct rtentry *rt)
3728 {
3729 struct wg_softc *wg = ifp->if_softc;
3730 struct wg_peer *wgp = NULL;
3731 struct wg_session *wgs = NULL;
3732 struct psref wgp_psref, wgs_psref;
3733 int bound;
3734 int error;
3735
3736 bound = curlwp_bind();
3737
3738 /* TODO make the nest limit configurable via sysctl */
3739 error = if_tunnel_check_nesting(ifp, m, 1);
3740 if (error) {
3741 WGLOG(LOG_ERR, "tunneling loop detected and packet dropped\n");
3742 goto out;
3743 }
3744
3745 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
3746
3747 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
3748
3749 m->m_flags &= ~(M_BCAST|M_MCAST);
3750
3751 wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
3752 if (wgp == NULL) {
3753 WG_TRACE("peer not found");
3754 error = EHOSTUNREACH;
3755 goto out;
3756 }
3757
3758 /* Clear checksum-offload flags. */
3759 m->m_pkthdr.csum_flags = 0;
3760 m->m_pkthdr.csum_data = 0;
3761
3762 if (!pcq_put(wgp->wgp_q, m)) {
3763 error = ENOBUFS;
3764 goto out;
3765 }
3766 m = NULL; /* consumed */
3767
3768 wgs = wg_get_stable_session(wgp, &wgs_psref);
3769 if (wgs != NULL && !wg_session_hit_limits(wgs)) {
3770 kpreempt_disable();
3771 softint_schedule(wgp->wgp_si);
3772 kpreempt_enable();
3773 WG_TRACE("softint scheduled");
3774 } else {
3775 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3776 WG_TRACE("softint NOT scheduled");
3777 }
3778 error = 0;
3779
3780 out:
3781 if (wgs != NULL)
3782 wg_put_session(wgs, &wgs_psref);
3783 if (wgp != NULL)
3784 wg_put_peer(wgp, &wgp_psref);
3785 if (m != NULL)
3786 m_freem(m);
3787 curlwp_bindx(bound);
3788 return error;
3789 }
3790
3791 static int
3792 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
3793 {
3794 struct psref psref;
3795 struct wg_sockaddr *wgsa;
3796 int error;
3797 struct socket *so;
3798
3799 wgsa = wg_get_endpoint_sa(wgp, &psref);
3800 so = wg_get_so_by_peer(wgp, wgsa);
3801 solock(so);
3802 if (wgsatosa(wgsa)->sa_family == AF_INET) {
3803 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
3804 } else {
3805 #ifdef INET6
3806 error = udp6_output(sotoin6pcb(so), m, wgsatosin6(wgsa),
3807 NULL, curlwp);
3808 #else
3809 m_freem(m);
3810 error = EPFNOSUPPORT;
3811 #endif
3812 }
3813 sounlock(so);
3814 wg_put_sa(wgp, wgsa, &psref);
3815
3816 return error;
3817 }
3818
3819 /* Inspired by pppoe_get_mbuf */
3820 static struct mbuf *
3821 wg_get_mbuf(size_t leading_len, size_t len)
3822 {
3823 struct mbuf *m;
3824
3825 KASSERT(leading_len <= MCLBYTES);
3826 KASSERT(len <= MCLBYTES - leading_len);
3827
3828 m = m_gethdr(M_DONTWAIT, MT_DATA);
3829 if (m == NULL)
3830 return NULL;
3831 if (len + leading_len > MHLEN) {
3832 m_clget(m, M_DONTWAIT);
3833 if ((m->m_flags & M_EXT) == 0) {
3834 m_free(m);
3835 return NULL;
3836 }
3837 }
3838 m->m_data += leading_len;
3839 m->m_pkthdr.len = m->m_len = len;
3840
3841 return m;
3842 }
3843
3844 static int
3845 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
3846 struct mbuf *m)
3847 {
3848 struct wg_softc *wg = wgp->wgp_sc;
3849 int error;
3850 size_t inner_len, padded_len, encrypted_len;
3851 char *padded_buf = NULL;
3852 size_t mlen;
3853 struct wg_msg_data *wgmd;
3854 bool free_padded_buf = false;
3855 struct mbuf *n;
3856 size_t leading_len = max_linkhdr + sizeof(struct ip6_hdr) +
3857 sizeof(struct udphdr);
3858
3859 mlen = m_length(m);
3860 inner_len = mlen;
3861 padded_len = roundup(mlen, 16);
3862 encrypted_len = padded_len + WG_AUTHTAG_LEN;
3863 WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
3864 inner_len, padded_len, encrypted_len);
3865 if (mlen != 0) {
3866 bool success;
3867 success = m_ensure_contig(&m, padded_len);
3868 if (success) {
3869 padded_buf = mtod(m, char *);
3870 } else {
3871 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
3872 if (padded_buf == NULL) {
3873 error = ENOBUFS;
3874 goto end;
3875 }
3876 free_padded_buf = true;
3877 m_copydata(m, 0, mlen, padded_buf);
3878 }
3879 memset(padded_buf + mlen, 0, padded_len - inner_len);
3880 }
3881
3882 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
3883 if (n == NULL) {
3884 error = ENOBUFS;
3885 goto end;
3886 }
3887 KASSERT(n->m_len >= sizeof(*wgmd));
3888 wgmd = mtod(n, struct wg_msg_data *);
3889 wg_fill_msg_data(wg, wgp, wgs, wgmd);
3890 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
3891 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
3892 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
3893 padded_buf, padded_len,
3894 NULL, 0);
3895
3896 error = wg->wg_ops->send_data_msg(wgp, n);
3897 if (error == 0) {
3898 struct ifnet *ifp = &wg->wg_if;
3899 if_statadd(ifp, if_obytes, mlen);
3900 if_statinc(ifp, if_opackets);
3901 if (wgs->wgs_is_initiator &&
3902 wgs->wgs_time_last_data_sent == 0) {
3903 /*
3904 * [W] 6.2 Transport Message Limits
3905 * "if a peer is the initiator of a current secure
3906 * session, WireGuard will send a handshake initiation
3907 * message to begin a new secure session if, after
3908 * transmitting a transport data message, the current
3909 * secure session is REKEY-AFTER-TIME seconds old,"
3910 */
3911 wg_schedule_rekey_timer(wgp);
3912 }
3913 wgs->wgs_time_last_data_sent = time_uptime;
3914 if (wg_session_get_send_counter(wgs) >=
3915 wg_rekey_after_messages) {
3916 /*
3917 * [W] 6.2 Transport Message Limits
3918 * "WireGuard will try to create a new session, by
3919 * sending a handshake initiation message (section
3920 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
3921 * transport data messages..."
3922 */
3923 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3924 }
3925 }
3926 end:
3927 m_freem(m);
3928 if (free_padded_buf)
3929 kmem_intr_free(padded_buf, padded_len);
3930 return error;
3931 }
3932
3933 static void
3934 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
3935 {
3936 pktqueue_t *pktq;
3937 size_t pktlen;
3938
3939 KASSERT(af == AF_INET || af == AF_INET6);
3940
3941 WG_TRACE("");
3942
3943 m_set_rcvif(m, ifp);
3944 pktlen = m->m_pkthdr.len;
3945
3946 bpf_mtap_af(ifp, af, m, BPF_D_IN);
3947
3948 switch (af) {
3949 case AF_INET:
3950 pktq = ip_pktq;
3951 break;
3952 #ifdef INET6
3953 case AF_INET6:
3954 pktq = ip6_pktq;
3955 break;
3956 #endif
3957 default:
3958 panic("invalid af=%d", af);
3959 }
3960
3961 const u_int h = curcpu()->ci_index;
3962 if (__predict_true(pktq_enqueue(pktq, m, h))) {
3963 if_statadd(ifp, if_ibytes, pktlen);
3964 if_statinc(ifp, if_ipackets);
3965 } else {
3966 m_freem(m);
3967 }
3968 }
3969
3970 static void
3971 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
3972 const uint8_t privkey[WG_STATIC_KEY_LEN])
3973 {
3974
3975 crypto_scalarmult_base(pubkey, privkey);
3976 }
3977
3978 static int
3979 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
3980 {
3981 struct radix_node_head *rnh;
3982 struct radix_node *rn;
3983 int error = 0;
3984
3985 rw_enter(wg->wg_rwlock, RW_WRITER);
3986 rnh = wg_rnh(wg, wga->wga_family);
3987 KASSERT(rnh != NULL);
3988 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
3989 wga->wga_nodes);
3990 rw_exit(wg->wg_rwlock);
3991
3992 if (rn == NULL)
3993 error = EEXIST;
3994
3995 return error;
3996 }
3997
3998 static int
3999 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
4000 struct wg_peer **wgpp)
4001 {
4002 int error = 0;
4003 const void *pubkey;
4004 size_t pubkey_len;
4005 const void *psk;
4006 size_t psk_len;
4007 const char *name = NULL;
4008
4009 if (prop_dictionary_get_string(peer, "name", &name)) {
4010 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
4011 error = EINVAL;
4012 goto out;
4013 }
4014 }
4015
4016 if (!prop_dictionary_get_data(peer, "public_key",
4017 &pubkey, &pubkey_len)) {
4018 error = EINVAL;
4019 goto out;
4020 }
4021 #ifdef WG_DEBUG_DUMP
4022 {
4023 char *hex = gethexdump(pubkey, pubkey_len);
4024 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n%s\n",
4025 pubkey, pubkey_len, hex);
4026 puthexdump(hex, pubkey, pubkey_len);
4027 }
4028 #endif
4029
4030 struct wg_peer *wgp = wg_alloc_peer(wg);
4031 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4032 if (name != NULL)
4033 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4034
4035 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4036 if (psk_len != sizeof(wgp->wgp_psk)) {
4037 error = EINVAL;
4038 goto out;
4039 }
4040 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4041 }
4042
4043 const void *addr;
4044 size_t addr_len;
4045 struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4046
4047 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4048 goto skip_endpoint;
4049 if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4050 addr_len > sizeof(*wgsatoss(wgsa))) {
4051 error = EINVAL;
4052 goto out;
4053 }
4054 memcpy(wgsatoss(wgsa), addr, addr_len);
4055 switch (wgsa_family(wgsa)) {
4056 case AF_INET:
4057 #ifdef INET6
4058 case AF_INET6:
4059 #endif
4060 break;
4061 default:
4062 error = EPFNOSUPPORT;
4063 goto out;
4064 }
4065 if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4066 error = EINVAL;
4067 goto out;
4068 }
4069 {
4070 char addrstr[128];
4071 sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4072 WG_DLOG("addr=%s\n", addrstr);
4073 }
4074 wgp->wgp_endpoint_available = true;
4075
4076 prop_array_t allowedips;
4077 skip_endpoint:
4078 allowedips = prop_dictionary_get(peer, "allowedips");
4079 if (allowedips == NULL)
4080 goto skip;
4081
4082 prop_object_iterator_t _it = prop_array_iterator(allowedips);
4083 prop_dictionary_t prop_allowedip;
4084 int j = 0;
4085 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4086 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4087
4088 if (!prop_dictionary_get_int(prop_allowedip, "family",
4089 &wga->wga_family))
4090 continue;
4091 if (!prop_dictionary_get_data(prop_allowedip, "ip",
4092 &addr, &addr_len))
4093 continue;
4094 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4095 &wga->wga_cidr))
4096 continue;
4097
4098 switch (wga->wga_family) {
4099 case AF_INET: {
4100 struct sockaddr_in sin;
4101 char addrstr[128];
4102 struct in_addr mask;
4103 struct sockaddr_in sin_mask;
4104
4105 if (addr_len != sizeof(struct in_addr))
4106 return EINVAL;
4107 memcpy(&wga->wga_addr4, addr, addr_len);
4108
4109 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4110 0);
4111 sockaddr_copy(&wga->wga_sa_addr,
4112 sizeof(sin), sintosa(&sin));
4113
4114 sockaddr_format(sintosa(&sin),
4115 addrstr, sizeof(addrstr));
4116 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4117
4118 in_len2mask(&mask, wga->wga_cidr);
4119 sockaddr_in_init(&sin_mask, &mask, 0);
4120 sockaddr_copy(&wga->wga_sa_mask,
4121 sizeof(sin_mask), sintosa(&sin_mask));
4122
4123 break;
4124 }
4125 #ifdef INET6
4126 case AF_INET6: {
4127 struct sockaddr_in6 sin6;
4128 char addrstr[128];
4129 struct in6_addr mask;
4130 struct sockaddr_in6 sin6_mask;
4131
4132 if (addr_len != sizeof(struct in6_addr))
4133 return EINVAL;
4134 memcpy(&wga->wga_addr6, addr, addr_len);
4135
4136 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4137 0, 0, 0);
4138 sockaddr_copy(&wga->wga_sa_addr,
4139 sizeof(sin6), sin6tosa(&sin6));
4140
4141 sockaddr_format(sin6tosa(&sin6),
4142 addrstr, sizeof(addrstr));
4143 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4144
4145 in6_prefixlen2mask(&mask, wga->wga_cidr);
4146 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4147 sockaddr_copy(&wga->wga_sa_mask,
4148 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4149
4150 break;
4151 }
4152 #endif
4153 default:
4154 error = EINVAL;
4155 goto out;
4156 }
4157 wga->wga_peer = wgp;
4158
4159 error = wg_rtable_add_route(wg, wga);
4160 if (error != 0)
4161 goto out;
4162
4163 j++;
4164 }
4165 wgp->wgp_n_allowedips = j;
4166 skip:
4167 *wgpp = wgp;
4168 out:
4169 return error;
4170 }
4171
4172 static int
4173 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4174 {
4175 int error;
4176 char *buf;
4177
4178 WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
4179 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4180 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4181 if (error != 0)
4182 return error;
4183 buf[ifd->ifd_len] = '\0';
4184 #ifdef WG_DEBUG_DUMP
4185 log(LOG_DEBUG, "%.*s\n",
4186 (int)MIN(INT_MAX, ifd->ifd_len),
4187 (const char *)buf);
4188 #endif
4189 *_buf = buf;
4190 return 0;
4191 }
4192
4193 static int
4194 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4195 {
4196 int error;
4197 prop_dictionary_t prop_dict;
4198 char *buf = NULL;
4199 const void *privkey;
4200 size_t privkey_len;
4201
4202 error = wg_alloc_prop_buf(&buf, ifd);
4203 if (error != 0)
4204 return error;
4205 error = EINVAL;
4206 prop_dict = prop_dictionary_internalize(buf);
4207 if (prop_dict == NULL)
4208 goto out;
4209 if (!prop_dictionary_get_data(prop_dict, "private_key",
4210 &privkey, &privkey_len))
4211 goto out;
4212 #ifdef WG_DEBUG_DUMP
4213 {
4214 char *hex = gethexdump(privkey, privkey_len);
4215 log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n%s\n",
4216 privkey, privkey_len, hex);
4217 puthexdump(hex, privkey, privkey_len);
4218 }
4219 #endif
4220 if (privkey_len != WG_STATIC_KEY_LEN)
4221 goto out;
4222 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4223 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4224 error = 0;
4225
4226 out:
4227 kmem_free(buf, ifd->ifd_len + 1);
4228 return error;
4229 }
4230
4231 static int
4232 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4233 {
4234 int error;
4235 prop_dictionary_t prop_dict;
4236 char *buf = NULL;
4237 uint16_t port;
4238
4239 error = wg_alloc_prop_buf(&buf, ifd);
4240 if (error != 0)
4241 return error;
4242 error = EINVAL;
4243 prop_dict = prop_dictionary_internalize(buf);
4244 if (prop_dict == NULL)
4245 goto out;
4246 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4247 goto out;
4248
4249 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4250
4251 out:
4252 kmem_free(buf, ifd->ifd_len + 1);
4253 return error;
4254 }
4255
4256 static int
4257 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4258 {
4259 int error;
4260 prop_dictionary_t prop_dict;
4261 char *buf = NULL;
4262 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4263
4264 error = wg_alloc_prop_buf(&buf, ifd);
4265 if (error != 0)
4266 return error;
4267 error = EINVAL;
4268 prop_dict = prop_dictionary_internalize(buf);
4269 if (prop_dict == NULL)
4270 goto out;
4271
4272 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4273 if (error != 0)
4274 goto out;
4275
4276 mutex_enter(wg->wg_lock);
4277 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4278 sizeof(wgp->wgp_pubkey)) != NULL ||
4279 (wgp->wgp_name[0] &&
4280 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4281 strlen(wgp->wgp_name)) != NULL)) {
4282 mutex_exit(wg->wg_lock);
4283 wg_destroy_peer(wgp);
4284 error = EEXIST;
4285 goto out;
4286 }
4287 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4288 sizeof(wgp->wgp_pubkey), wgp);
4289 KASSERT(wgp0 == wgp);
4290 if (wgp->wgp_name[0]) {
4291 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4292 strlen(wgp->wgp_name), wgp);
4293 KASSERT(wgp0 == wgp);
4294 }
4295 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4296 wg->wg_npeers++;
4297 mutex_exit(wg->wg_lock);
4298
4299 out:
4300 kmem_free(buf, ifd->ifd_len + 1);
4301 return error;
4302 }
4303
4304 static int
4305 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4306 {
4307 int error;
4308 prop_dictionary_t prop_dict;
4309 char *buf = NULL;
4310 const char *name;
4311
4312 error = wg_alloc_prop_buf(&buf, ifd);
4313 if (error != 0)
4314 return error;
4315 error = EINVAL;
4316 prop_dict = prop_dictionary_internalize(buf);
4317 if (prop_dict == NULL)
4318 goto out;
4319
4320 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4321 goto out;
4322 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4323 goto out;
4324
4325 error = wg_destroy_peer_name(wg, name);
4326 out:
4327 kmem_free(buf, ifd->ifd_len + 1);
4328 return error;
4329 }
4330
4331 static int
4332 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4333 {
4334 int error = ENOMEM;
4335 prop_dictionary_t prop_dict;
4336 prop_array_t peers = NULL;
4337 char *buf;
4338 struct wg_peer *wgp;
4339 int s, i;
4340
4341 prop_dict = prop_dictionary_create();
4342 if (prop_dict == NULL)
4343 goto error;
4344
4345 if (!prop_dictionary_set_data(prop_dict, "private_key", wg->wg_privkey,
4346 WG_STATIC_KEY_LEN))
4347 goto error;
4348
4349 if (wg->wg_listen_port != 0) {
4350 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4351 wg->wg_listen_port))
4352 goto error;
4353 }
4354
4355 if (wg->wg_npeers == 0)
4356 goto skip_peers;
4357
4358 peers = prop_array_create();
4359 if (peers == NULL)
4360 goto error;
4361
4362 s = pserialize_read_enter();
4363 i = 0;
4364 WG_PEER_READER_FOREACH(wgp, wg) {
4365 struct wg_sockaddr *wgsa;
4366 struct psref wgp_psref, wgsa_psref;
4367 prop_dictionary_t prop_peer;
4368
4369 wg_get_peer(wgp, &wgp_psref);
4370 pserialize_read_exit(s);
4371
4372 prop_peer = prop_dictionary_create();
4373 if (prop_peer == NULL)
4374 goto next;
4375
4376 if (strlen(wgp->wgp_name) > 0) {
4377 if (!prop_dictionary_set_string(prop_peer, "name",
4378 wgp->wgp_name))
4379 goto next;
4380 }
4381
4382 if (!prop_dictionary_set_data(prop_peer, "public_key",
4383 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4384 goto next;
4385
4386 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4387 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4388 sizeof(wgp->wgp_psk))) {
4389 if (!prop_dictionary_set_data(prop_peer,
4390 "preshared_key",
4391 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4392 goto next;
4393 }
4394
4395 wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
4396 CTASSERT(AF_UNSPEC == 0);
4397 if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
4398 !prop_dictionary_set_data(prop_peer, "endpoint",
4399 wgsatoss(wgsa),
4400 sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
4401 wg_put_sa(wgp, wgsa, &wgsa_psref);
4402 goto next;
4403 }
4404 wg_put_sa(wgp, wgsa, &wgsa_psref);
4405
4406 const struct timespec *t = &wgp->wgp_last_handshake_time;
4407
4408 if (!prop_dictionary_set_uint64(prop_peer,
4409 "last_handshake_time_sec", t->tv_sec))
4410 goto next;
4411 if (!prop_dictionary_set_uint32(prop_peer,
4412 "last_handshake_time_nsec", t->tv_nsec))
4413 goto next;
4414
4415 if (wgp->wgp_n_allowedips == 0)
4416 goto skip_allowedips;
4417
4418 prop_array_t allowedips = prop_array_create();
4419 if (allowedips == NULL)
4420 goto next;
4421 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4422 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4423 prop_dictionary_t prop_allowedip;
4424
4425 prop_allowedip = prop_dictionary_create();
4426 if (prop_allowedip == NULL)
4427 break;
4428
4429 if (!prop_dictionary_set_int(prop_allowedip, "family",
4430 wga->wga_family))
4431 goto _next;
4432 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4433 wga->wga_cidr))
4434 goto _next;
4435
4436 switch (wga->wga_family) {
4437 case AF_INET:
4438 if (!prop_dictionary_set_data(prop_allowedip,
4439 "ip", &wga->wga_addr4,
4440 sizeof(wga->wga_addr4)))
4441 goto _next;
4442 break;
4443 #ifdef INET6
4444 case AF_INET6:
4445 if (!prop_dictionary_set_data(prop_allowedip,
4446 "ip", &wga->wga_addr6,
4447 sizeof(wga->wga_addr6)))
4448 goto _next;
4449 break;
4450 #endif
4451 default:
4452 break;
4453 }
4454 prop_array_set(allowedips, j, prop_allowedip);
4455 _next:
4456 prop_object_release(prop_allowedip);
4457 }
4458 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4459 prop_object_release(allowedips);
4460
4461 skip_allowedips:
4462
4463 prop_array_set(peers, i, prop_peer);
4464 next:
4465 if (prop_peer)
4466 prop_object_release(prop_peer);
4467 i++;
4468
4469 s = pserialize_read_enter();
4470 wg_put_peer(wgp, &wgp_psref);
4471 }
4472 pserialize_read_exit(s);
4473
4474 prop_dictionary_set(prop_dict, "peers", peers);
4475 prop_object_release(peers);
4476 peers = NULL;
4477
4478 skip_peers:
4479 buf = prop_dictionary_externalize(prop_dict);
4480 if (buf == NULL)
4481 goto error;
4482 if (ifd->ifd_len < (strlen(buf) + 1)) {
4483 error = EINVAL;
4484 goto error;
4485 }
4486 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4487
4488 free(buf, 0);
4489 error:
4490 if (peers != NULL)
4491 prop_object_release(peers);
4492 if (prop_dict != NULL)
4493 prop_object_release(prop_dict);
4494
4495 return error;
4496 }
4497
4498 static int
4499 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4500 {
4501 struct wg_softc *wg = ifp->if_softc;
4502 struct ifreq *ifr = data;
4503 struct ifaddr *ifa = data;
4504 struct ifdrv *ifd = data;
4505 int error = 0;
4506
4507 switch (cmd) {
4508 case SIOCINITIFADDR:
4509 if (ifa->ifa_addr->sa_family != AF_LINK &&
4510 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
4511 (IFF_UP | IFF_RUNNING)) {
4512 ifp->if_flags |= IFF_UP;
4513 error = ifp->if_init(ifp);
4514 }
4515 return error;
4516 case SIOCADDMULTI:
4517 case SIOCDELMULTI:
4518 switch (ifr->ifr_addr.sa_family) {
4519 case AF_INET: /* IP supports Multicast */
4520 break;
4521 #ifdef INET6
4522 case AF_INET6: /* IP6 supports Multicast */
4523 break;
4524 #endif
4525 default: /* Other protocols doesn't support Multicast */
4526 error = EAFNOSUPPORT;
4527 break;
4528 }
4529 return error;
4530 case SIOCSDRVSPEC:
4531 switch (ifd->ifd_cmd) {
4532 case WG_IOCTL_SET_PRIVATE_KEY:
4533 error = wg_ioctl_set_private_key(wg, ifd);
4534 break;
4535 case WG_IOCTL_SET_LISTEN_PORT:
4536 error = wg_ioctl_set_listen_port(wg, ifd);
4537 break;
4538 case WG_IOCTL_ADD_PEER:
4539 error = wg_ioctl_add_peer(wg, ifd);
4540 break;
4541 case WG_IOCTL_DELETE_PEER:
4542 error = wg_ioctl_delete_peer(wg, ifd);
4543 break;
4544 default:
4545 error = EINVAL;
4546 break;
4547 }
4548 return error;
4549 case SIOCGDRVSPEC:
4550 return wg_ioctl_get(wg, ifd);
4551 case SIOCSIFFLAGS:
4552 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
4553 break;
4554 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4555 case IFF_RUNNING:
4556 /*
4557 * If interface is marked down and it is running,
4558 * then stop and disable it.
4559 */
4560 (*ifp->if_stop)(ifp, 1);
4561 break;
4562 case IFF_UP:
4563 /*
4564 * If interface is marked up and it is stopped, then
4565 * start it.
4566 */
4567 error = (*ifp->if_init)(ifp);
4568 break;
4569 default:
4570 break;
4571 }
4572 return error;
4573 #ifdef WG_RUMPKERNEL
4574 case SIOCSLINKSTR:
4575 error = wg_ioctl_linkstr(wg, ifd);
4576 if (error == 0)
4577 wg->wg_ops = &wg_ops_rumpuser;
4578 return error;
4579 #endif
4580 default:
4581 break;
4582 }
4583
4584 error = ifioctl_common(ifp, cmd, data);
4585
4586 #ifdef WG_RUMPKERNEL
4587 if (!wg_user_mode(wg))
4588 return error;
4589
4590 /* Do the same to the corresponding tun device on the host */
4591 /*
4592 * XXX Actually the command has not been handled yet. It
4593 * will be handled via pr_ioctl form doifioctl later.
4594 */
4595 switch (cmd) {
4596 case SIOCAIFADDR:
4597 case SIOCDIFADDR: {
4598 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
4599 struct in_aliasreq *ifra = &_ifra;
4600 KASSERT(error == ENOTTY);
4601 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4602 IFNAMSIZ);
4603 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
4604 if (error == 0)
4605 error = ENOTTY;
4606 break;
4607 }
4608 #ifdef INET6
4609 case SIOCAIFADDR_IN6:
4610 case SIOCDIFADDR_IN6: {
4611 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
4612 struct in6_aliasreq *ifra = &_ifra;
4613 KASSERT(error == ENOTTY);
4614 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4615 IFNAMSIZ);
4616 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
4617 if (error == 0)
4618 error = ENOTTY;
4619 break;
4620 }
4621 #endif
4622 }
4623 #endif /* WG_RUMPKERNEL */
4624
4625 return error;
4626 }
4627
4628 static int
4629 wg_init(struct ifnet *ifp)
4630 {
4631
4632 ifp->if_flags |= IFF_RUNNING;
4633
4634 /* TODO flush pending packets. */
4635 return 0;
4636 }
4637
4638 static void
4639 wg_stop(struct ifnet *ifp, int disable)
4640 {
4641
4642 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
4643 ifp->if_flags &= ~IFF_RUNNING;
4644
4645 /* Need to do something? */
4646 }
4647
4648 #ifdef WG_DEBUG_PARAMS
4649 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
4650 {
4651 const struct sysctlnode *node = NULL;
4652
4653 sysctl_createv(clog, 0, NULL, &node,
4654 CTLFLAG_PERMANENT,
4655 CTLTYPE_NODE, "wg",
4656 SYSCTL_DESCR("wg(4)"),
4657 NULL, 0, NULL, 0,
4658 CTL_NET, CTL_CREATE, CTL_EOL);
4659 sysctl_createv(clog, 0, &node, NULL,
4660 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4661 CTLTYPE_QUAD, "rekey_after_messages",
4662 SYSCTL_DESCR("session liftime by messages"),
4663 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
4664 sysctl_createv(clog, 0, &node, NULL,
4665 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4666 CTLTYPE_INT, "rekey_after_time",
4667 SYSCTL_DESCR("session liftime"),
4668 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
4669 sysctl_createv(clog, 0, &node, NULL,
4670 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4671 CTLTYPE_INT, "rekey_timeout",
4672 SYSCTL_DESCR("session handshake retry time"),
4673 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
4674 sysctl_createv(clog, 0, &node, NULL,
4675 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4676 CTLTYPE_INT, "rekey_attempt_time",
4677 SYSCTL_DESCR("session handshake timeout"),
4678 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
4679 sysctl_createv(clog, 0, &node, NULL,
4680 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4681 CTLTYPE_INT, "keepalive_timeout",
4682 SYSCTL_DESCR("keepalive timeout"),
4683 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
4684 sysctl_createv(clog, 0, &node, NULL,
4685 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4686 CTLTYPE_BOOL, "force_underload",
4687 SYSCTL_DESCR("force to detemine under load"),
4688 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
4689 }
4690 #endif
4691
4692 #ifdef WG_RUMPKERNEL
4693 static bool
4694 wg_user_mode(struct wg_softc *wg)
4695 {
4696
4697 return wg->wg_user != NULL;
4698 }
4699
4700 static int
4701 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
4702 {
4703 struct ifnet *ifp = &wg->wg_if;
4704 int error;
4705
4706 if (ifp->if_flags & IFF_UP)
4707 return EBUSY;
4708
4709 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
4710 /* XXX do nothing */
4711 return 0;
4712 } else if (ifd->ifd_cmd != 0) {
4713 return EINVAL;
4714 } else if (wg->wg_user != NULL) {
4715 return EBUSY;
4716 }
4717
4718 /* Assume \0 included */
4719 if (ifd->ifd_len > IFNAMSIZ) {
4720 return E2BIG;
4721 } else if (ifd->ifd_len < 1) {
4722 return EINVAL;
4723 }
4724
4725 char tun_name[IFNAMSIZ];
4726 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
4727 if (error != 0)
4728 return error;
4729
4730 if (strncmp(tun_name, "tun", 3) != 0)
4731 return EINVAL;
4732
4733 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
4734
4735 return error;
4736 }
4737
4738 static int
4739 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
4740 {
4741 int error;
4742 struct psref psref;
4743 struct wg_sockaddr *wgsa;
4744 struct wg_softc *wg = wgp->wgp_sc;
4745 struct iovec iov[1];
4746
4747 wgsa = wg_get_endpoint_sa(wgp, &psref);
4748
4749 iov[0].iov_base = mtod(m, void *);
4750 iov[0].iov_len = m->m_len;
4751
4752 /* Send messages to a peer via an ordinary socket. */
4753 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
4754
4755 wg_put_sa(wgp, wgsa, &psref);
4756
4757 m_freem(m);
4758
4759 return error;
4760 }
4761
4762 static void
4763 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
4764 {
4765 struct wg_softc *wg = ifp->if_softc;
4766 struct iovec iov[2];
4767 struct sockaddr_storage ss;
4768
4769 KASSERT(af == AF_INET || af == AF_INET6);
4770
4771 WG_TRACE("");
4772
4773 if (af == AF_INET) {
4774 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
4775 struct ip *ip;
4776
4777 KASSERT(m->m_len >= sizeof(struct ip));
4778 ip = mtod(m, struct ip *);
4779 sockaddr_in_init(sin, &ip->ip_dst, 0);
4780 } else {
4781 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
4782 struct ip6_hdr *ip6;
4783
4784 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
4785 ip6 = mtod(m, struct ip6_hdr *);
4786 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
4787 }
4788
4789 iov[0].iov_base = &ss;
4790 iov[0].iov_len = ss.ss_len;
4791 iov[1].iov_base = mtod(m, void *);
4792 iov[1].iov_len = m->m_len;
4793
4794 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4795
4796 /* Send decrypted packets to users via a tun. */
4797 rumpuser_wg_send_user(wg->wg_user, iov, 2);
4798
4799 m_freem(m);
4800 }
4801
4802 static int
4803 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
4804 {
4805 int error;
4806 uint16_t old_port = wg->wg_listen_port;
4807
4808 if (port != 0 && old_port == port)
4809 return 0;
4810
4811 error = rumpuser_wg_sock_bind(wg->wg_user, port);
4812 if (error == 0)
4813 wg->wg_listen_port = port;
4814 return error;
4815 }
4816
4817 /*
4818 * Receive user packets.
4819 */
4820 void
4821 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4822 {
4823 struct ifnet *ifp = &wg->wg_if;
4824 struct mbuf *m;
4825 const struct sockaddr *dst;
4826
4827 WG_TRACE("");
4828
4829 dst = iov[0].iov_base;
4830
4831 m = m_gethdr(M_DONTWAIT, MT_DATA);
4832 if (m == NULL)
4833 return;
4834 m->m_len = m->m_pkthdr.len = 0;
4835 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4836
4837 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4838 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4839
4840 (void)wg_output(ifp, m, dst, NULL);
4841 }
4842
4843 /*
4844 * Receive packets from a peer.
4845 */
4846 void
4847 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4848 {
4849 struct mbuf *m;
4850 const struct sockaddr *src;
4851
4852 WG_TRACE("");
4853
4854 src = iov[0].iov_base;
4855
4856 m = m_gethdr(M_DONTWAIT, MT_DATA);
4857 if (m == NULL)
4858 return;
4859 m->m_len = m->m_pkthdr.len = 0;
4860 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4861
4862 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4863 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4864
4865 wg_handle_packet(wg, m, src);
4866 }
4867 #endif /* WG_RUMPKERNEL */
4868
4869 /*
4870 * Module infrastructure
4871 */
4872 #include "if_module.h"
4873
4874 IF_MODULE(MODULE_CLASS_DRIVER, wg, "")
4875