Home | History | Annotate | Line # | Download | only in net
if_wg.c revision 1.56
      1 /*	$NetBSD: if_wg.c,v 1.56 2020/09/08 16:39:57 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * This network interface aims to implement the WireGuard protocol.
     34  * The implementation is based on the paper of WireGuard as of
     35  * 2018-06-30 [1].  The paper is referred in the source code with label
     36  * [W].  Also the specification of the Noise protocol framework as of
     37  * 2018-07-11 [2] is referred with label [N].
     38  *
     39  * [1] https://www.wireguard.com/papers/wireguard.pdf
     40  * [2] http://noiseprotocol.org/noise.pdf
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.56 2020/09/08 16:39:57 riastradh Exp $");
     45 
     46 #ifdef _KERNEL_OPT
     47 #include "opt_inet.h"
     48 #endif
     49 
     50 #include <sys/param.h>
     51 #include <sys/types.h>
     52 
     53 #include <sys/atomic.h>
     54 #include <sys/callout.h>
     55 #include <sys/cprng.h>
     56 #include <sys/cpu.h>
     57 #include <sys/device.h>
     58 #include <sys/domain.h>
     59 #include <sys/errno.h>
     60 #include <sys/intr.h>
     61 #include <sys/ioctl.h>
     62 #include <sys/kernel.h>
     63 #include <sys/kmem.h>
     64 #include <sys/mbuf.h>
     65 #include <sys/module.h>
     66 #include <sys/mutex.h>
     67 #include <sys/percpu.h>
     68 #include <sys/pserialize.h>
     69 #include <sys/psref.h>
     70 #include <sys/queue.h>
     71 #include <sys/rwlock.h>
     72 #include <sys/socket.h>
     73 #include <sys/socketvar.h>
     74 #include <sys/sockio.h>
     75 #include <sys/sysctl.h>
     76 #include <sys/syslog.h>
     77 #include <sys/systm.h>
     78 #include <sys/thmap.h>
     79 #include <sys/threadpool.h>
     80 #include <sys/time.h>
     81 #include <sys/timespec.h>
     82 #include <sys/workqueue.h>
     83 
     84 #include <net/bpf.h>
     85 #include <net/if.h>
     86 #include <net/if_types.h>
     87 #include <net/if_wg.h>
     88 #include <net/pktqueue.h>
     89 #include <net/route.h>
     90 
     91 #include <netinet/in.h>
     92 #include <netinet/in_pcb.h>
     93 #include <netinet/in_var.h>
     94 #include <netinet/ip.h>
     95 #include <netinet/ip_var.h>
     96 #include <netinet/udp.h>
     97 #include <netinet/udp_var.h>
     98 
     99 #ifdef INET6
    100 #include <netinet/ip6.h>
    101 #include <netinet6/in6_pcb.h>
    102 #include <netinet6/in6_var.h>
    103 #include <netinet6/ip6_var.h>
    104 #include <netinet6/udp6_var.h>
    105 #endif /* INET6 */
    106 
    107 #include <prop/proplib.h>
    108 
    109 #include <crypto/blake2/blake2s.h>
    110 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
    111 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
    112 #include <crypto/sodium/crypto_scalarmult.h>
    113 
    114 #include "ioconf.h"
    115 
    116 #ifdef WG_RUMPKERNEL
    117 #include "wg_user.h"
    118 #endif
    119 
    120 /*
    121  * Data structures
    122  * - struct wg_softc is an instance of wg interfaces
    123  *   - It has a list of peers (struct wg_peer)
    124  *   - It has a threadpool job that sends/receives handshake messages and
    125  *     runs event handlers
    126  *   - It has its own two routing tables: one is for IPv4 and the other IPv6
    127  * - struct wg_peer is a representative of a peer
    128  *   - It has a struct work to handle handshakes and timer tasks
    129  *   - It has a pair of session instances (struct wg_session)
    130  *   - It has a pair of endpoint instances (struct wg_sockaddr)
    131  *     - Normally one endpoint is used and the second one is used only on
    132  *       a peer migration (a change of peer's IP address)
    133  *   - It has a list of IP addresses and sub networks called allowedips
    134  *     (struct wg_allowedip)
    135  *     - A packets sent over a session is allowed if its destination matches
    136  *       any IP addresses or sub networks of the list
    137  * - struct wg_session represents a session of a secure tunnel with a peer
    138  *   - Two instances of sessions belong to a peer; a stable session and a
    139  *     unstable session
    140  *   - A handshake process of a session always starts with a unstable instance
    141  *   - Once a session is established, its instance becomes stable and the
    142  *     other becomes unstable instead
    143  *   - Data messages are always sent via a stable session
    144  *
    145  * Locking notes:
    146  * - wg interfaces (struct wg_softc, wg) is listed in wg_softcs.list and
    147  *   protected by wg_softcs.lock
    148  * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
    149  *   - Changes to the peer list are serialized by wg_lock
    150  *   - The peer list may be read with pserialize(9) and psref(9)
    151  *   - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
    152  *     => XXX replace by pserialize when routing table is psz-safe
    153  * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
    154  *   only in thread context and serializes:
    155  *   - the stable and unstable session pointers
    156  *   - all unstable session state
    157  * - Packet processing may be done in softint context:
    158  *   - The stable session can be read under pserialize(9) or psref(9)
    159  *     - The stable session is always ESTABLISHED
    160  *     - On a session swap, we must wait for all readers to release a
    161  *       reference to a stable session before changing wgs_state and
    162  *       session states
    163  * - Lock order: wg_lock -> wgp_lock
    164  */
    165 
    166 
    167 #define WGLOG(level, fmt, args...)					      \
    168 	log(level, "%s: " fmt, __func__, ##args)
    169 
    170 /* Debug options */
    171 #ifdef WG_DEBUG
    172 /* Output debug logs */
    173 #ifndef WG_DEBUG_LOG
    174 #define WG_DEBUG_LOG
    175 #endif
    176 /* Output trace logs */
    177 #ifndef WG_DEBUG_TRACE
    178 #define WG_DEBUG_TRACE
    179 #endif
    180 /* Output hash values, etc. */
    181 #ifndef WG_DEBUG_DUMP
    182 #define WG_DEBUG_DUMP
    183 #endif
    184 /* Make some internal parameters configurable for testing and debugging */
    185 #ifndef WG_DEBUG_PARAMS
    186 #define WG_DEBUG_PARAMS
    187 #endif
    188 #endif
    189 
    190 #ifdef WG_DEBUG_TRACE
    191 #define WG_TRACE(msg)							      \
    192 	log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
    193 #else
    194 #define WG_TRACE(msg)	__nothing
    195 #endif
    196 
    197 #ifdef WG_DEBUG_LOG
    198 #define WG_DLOG(fmt, args...)	log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
    199 #else
    200 #define WG_DLOG(fmt, args...)	__nothing
    201 #endif
    202 
    203 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...)	do {		\
    204 	if (ppsratecheck(&(wgprc)->wgprc_lasttime,			\
    205 	    &(wgprc)->wgprc_curpps, 1)) {				\
    206 		log(level, fmt, ##args);				\
    207 	}								\
    208 } while (0)
    209 
    210 #ifdef WG_DEBUG_PARAMS
    211 static bool wg_force_underload = false;
    212 #endif
    213 
    214 #ifdef WG_DEBUG_DUMP
    215 
    216 static char *
    217 gethexdump(const char *p, size_t n)
    218 {
    219 	char *buf;
    220 	size_t i;
    221 
    222 	if (n > SIZE_MAX/3 - 1)
    223 		return NULL;
    224 	buf = kmem_alloc(3*n + 1, KM_NOSLEEP);
    225 	if (buf == NULL)
    226 		return NULL;
    227 	for (i = 0; i < n; i++)
    228 		snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
    229 	return buf;
    230 }
    231 
    232 static void
    233 puthexdump(char *buf, const void *p, size_t n)
    234 {
    235 
    236 	if (buf == NULL)
    237 		return;
    238 	kmem_free(buf, 3*n + 1);
    239 }
    240 
    241 #ifdef WG_RUMPKERNEL
    242 static void
    243 wg_dump_buf(const char *func, const char *buf, const size_t size)
    244 {
    245 	char *hex = gethexdump(buf, size);
    246 
    247 	log(LOG_DEBUG, "%s: %s\n", func, hex ? hex : "(enomem)");
    248 	puthexdump(hex, buf, size);
    249 }
    250 #endif
    251 
    252 static void
    253 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
    254     const size_t size)
    255 {
    256 	char *hex = gethexdump(hash, size);
    257 
    258 	log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex ? hex : "(enomem)");
    259 	puthexdump(hex, hash, size);
    260 }
    261 
    262 #define WG_DUMP_HASH(name, hash) \
    263 	wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
    264 #define WG_DUMP_HASH48(name, hash) \
    265 	wg_dump_hash(__func__, name, hash, 48)
    266 #define WG_DUMP_BUF(buf, size) \
    267 	wg_dump_buf(__func__, buf, size)
    268 #else
    269 #define WG_DUMP_HASH(name, hash)	__nothing
    270 #define WG_DUMP_HASH48(name, hash)	__nothing
    271 #define WG_DUMP_BUF(buf, size)	__nothing
    272 #endif /* WG_DEBUG_DUMP */
    273 
    274 #define WG_MTU			1420
    275 #define WG_ALLOWEDIPS		16
    276 
    277 #define CURVE25519_KEY_LEN	32
    278 #define TAI64N_LEN		sizeof(uint32_t) * 3
    279 #define POLY1305_AUTHTAG_LEN	16
    280 #define HMAC_BLOCK_LEN		64
    281 
    282 /* [N] 4.1: "DHLEN must be 32 or greater."  WireGuard chooses 32. */
    283 /* [N] 4.3: Hash functions */
    284 #define NOISE_DHLEN		32
    285 /* [N] 4.3: "Must be 32 or 64."  WireGuard chooses 32. */
    286 #define NOISE_HASHLEN		32
    287 #define NOISE_BLOCKLEN		64
    288 #define NOISE_HKDF_OUTPUT_LEN	NOISE_HASHLEN
    289 /* [N] 5.1: "k" */
    290 #define NOISE_CIPHER_KEY_LEN	32
    291 /*
    292  * [N] 9.2: "psk"
    293  *          "... psk is a 32-byte secret value provided by the application."
    294  */
    295 #define NOISE_PRESHARED_KEY_LEN	32
    296 
    297 #define WG_STATIC_KEY_LEN	CURVE25519_KEY_LEN
    298 #define WG_TIMESTAMP_LEN	TAI64N_LEN
    299 
    300 #define WG_PRESHARED_KEY_LEN	NOISE_PRESHARED_KEY_LEN
    301 
    302 #define WG_COOKIE_LEN		16
    303 #define WG_MAC_LEN		16
    304 #define WG_RANDVAL_LEN		24
    305 
    306 #define WG_EPHEMERAL_KEY_LEN	CURVE25519_KEY_LEN
    307 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
    308 #define WG_CHAINING_KEY_LEN	NOISE_HASHLEN
    309 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
    310 #define WG_HASH_LEN		NOISE_HASHLEN
    311 #define WG_CIPHER_KEY_LEN	NOISE_CIPHER_KEY_LEN
    312 #define WG_DH_OUTPUT_LEN	NOISE_DHLEN
    313 #define WG_KDF_OUTPUT_LEN	NOISE_HKDF_OUTPUT_LEN
    314 #define WG_AUTHTAG_LEN		POLY1305_AUTHTAG_LEN
    315 #define WG_DATA_KEY_LEN		32
    316 #define WG_SALT_LEN		24
    317 
    318 /*
    319  * The protocol messages
    320  */
    321 struct wg_msg {
    322 	uint32_t	wgm_type;
    323 } __packed;
    324 
    325 /* [W] 5.4.2 First Message: Initiator to Responder */
    326 struct wg_msg_init {
    327 	uint32_t	wgmi_type;
    328 	uint32_t	wgmi_sender;
    329 	uint8_t		wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
    330 	uint8_t		wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
    331 	uint8_t		wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
    332 	uint8_t		wgmi_mac1[WG_MAC_LEN];
    333 	uint8_t		wgmi_mac2[WG_MAC_LEN];
    334 } __packed;
    335 
    336 /* [W] 5.4.3 Second Message: Responder to Initiator */
    337 struct wg_msg_resp {
    338 	uint32_t	wgmr_type;
    339 	uint32_t	wgmr_sender;
    340 	uint32_t	wgmr_receiver;
    341 	uint8_t		wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
    342 	uint8_t		wgmr_empty[0 + WG_AUTHTAG_LEN];
    343 	uint8_t		wgmr_mac1[WG_MAC_LEN];
    344 	uint8_t		wgmr_mac2[WG_MAC_LEN];
    345 } __packed;
    346 
    347 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
    348 struct wg_msg_data {
    349 	uint32_t	wgmd_type;
    350 	uint32_t	wgmd_receiver;
    351 	uint64_t	wgmd_counter;
    352 	uint32_t	wgmd_packet[0];
    353 } __packed;
    354 
    355 /* [W] 5.4.7 Under Load: Cookie Reply Message */
    356 struct wg_msg_cookie {
    357 	uint32_t	wgmc_type;
    358 	uint32_t	wgmc_receiver;
    359 	uint8_t		wgmc_salt[WG_SALT_LEN];
    360 	uint8_t		wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
    361 } __packed;
    362 
    363 #define WG_MSG_TYPE_INIT		1
    364 #define WG_MSG_TYPE_RESP		2
    365 #define WG_MSG_TYPE_COOKIE		3
    366 #define WG_MSG_TYPE_DATA		4
    367 #define WG_MSG_TYPE_MAX			WG_MSG_TYPE_DATA
    368 
    369 /* Sliding windows */
    370 
    371 #define	SLIWIN_BITS	2048u
    372 #define	SLIWIN_TYPE	uint32_t
    373 #define	SLIWIN_BPW	NBBY*sizeof(SLIWIN_TYPE)
    374 #define	SLIWIN_WORDS	howmany(SLIWIN_BITS, SLIWIN_BPW)
    375 #define	SLIWIN_NPKT	(SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
    376 
    377 struct sliwin {
    378 	SLIWIN_TYPE	B[SLIWIN_WORDS];
    379 	uint64_t	T;
    380 };
    381 
    382 static void
    383 sliwin_reset(struct sliwin *W)
    384 {
    385 
    386 	memset(W, 0, sizeof(*W));
    387 }
    388 
    389 static int
    390 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
    391 {
    392 
    393 	/*
    394 	 * If it's more than one window older than the highest sequence
    395 	 * number we've seen, reject.
    396 	 */
    397 #ifdef __HAVE_ATOMIC64_LOADSTORE
    398 	if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
    399 		return EAUTH;
    400 #endif
    401 
    402 	/*
    403 	 * Otherwise, we need to take the lock to decide, so don't
    404 	 * reject just yet.  Caller must serialize a call to
    405 	 * sliwin_update in this case.
    406 	 */
    407 	return 0;
    408 }
    409 
    410 static int
    411 sliwin_update(struct sliwin *W, uint64_t S)
    412 {
    413 	unsigned word, bit;
    414 
    415 	/*
    416 	 * If it's more than one window older than the highest sequence
    417 	 * number we've seen, reject.
    418 	 */
    419 	if (S + SLIWIN_NPKT < W->T)
    420 		return EAUTH;
    421 
    422 	/*
    423 	 * If it's higher than the highest sequence number we've seen,
    424 	 * advance the window.
    425 	 */
    426 	if (S > W->T) {
    427 		uint64_t i = W->T / SLIWIN_BPW;
    428 		uint64_t j = S / SLIWIN_BPW;
    429 		unsigned k;
    430 
    431 		for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
    432 			W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
    433 #ifdef __HAVE_ATOMIC64_LOADSTORE
    434 		atomic_store_relaxed(&W->T, S);
    435 #else
    436 		W->T = S;
    437 #endif
    438 	}
    439 
    440 	/* Test and set the bit -- if already set, reject.  */
    441 	word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
    442 	bit = S % SLIWIN_BPW;
    443 	if (W->B[word] & (1UL << bit))
    444 		return EAUTH;
    445 	W->B[word] |= 1UL << bit;
    446 
    447 	/* Accept!  */
    448 	return 0;
    449 }
    450 
    451 struct wg_session {
    452 	struct wg_peer	*wgs_peer;
    453 	struct psref_target
    454 			wgs_psref;
    455 
    456 	int		wgs_state;
    457 #define WGS_STATE_UNKNOWN	0
    458 #define WGS_STATE_INIT_ACTIVE	1
    459 #define WGS_STATE_INIT_PASSIVE	2
    460 #define WGS_STATE_ESTABLISHED	3
    461 #define WGS_STATE_DESTROYING	4
    462 
    463 	time_t		wgs_time_established;
    464 	time_t		wgs_time_last_data_sent;
    465 	bool		wgs_is_initiator;
    466 
    467 	uint32_t	wgs_local_index;
    468 	uint32_t	wgs_remote_index;
    469 #ifdef __HAVE_ATOMIC64_LOADSTORE
    470 	volatile uint64_t
    471 			wgs_send_counter;
    472 #else
    473 	kmutex_t	wgs_send_counter_lock;
    474 	uint64_t	wgs_send_counter;
    475 #endif
    476 
    477 	struct {
    478 		kmutex_t	lock;
    479 		struct sliwin	window;
    480 	}		*wgs_recvwin;
    481 
    482 	uint8_t		wgs_handshake_hash[WG_HASH_LEN];
    483 	uint8_t		wgs_chaining_key[WG_CHAINING_KEY_LEN];
    484 	uint8_t		wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
    485 	uint8_t		wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
    486 	uint8_t		wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
    487 	uint8_t		wgs_tkey_send[WG_DATA_KEY_LEN];
    488 	uint8_t		wgs_tkey_recv[WG_DATA_KEY_LEN];
    489 };
    490 
    491 struct wg_sockaddr {
    492 	union {
    493 		struct sockaddr_storage _ss;
    494 		struct sockaddr _sa;
    495 		struct sockaddr_in _sin;
    496 		struct sockaddr_in6 _sin6;
    497 	};
    498 	struct psref_target	wgsa_psref;
    499 };
    500 
    501 #define wgsatoss(wgsa)		(&(wgsa)->_ss)
    502 #define wgsatosa(wgsa)		(&(wgsa)->_sa)
    503 #define wgsatosin(wgsa)		(&(wgsa)->_sin)
    504 #define wgsatosin6(wgsa)	(&(wgsa)->_sin6)
    505 
    506 #define	wgsa_family(wgsa)	(wgsatosa(wgsa)->sa_family)
    507 
    508 struct wg_peer;
    509 struct wg_allowedip {
    510 	struct radix_node	wga_nodes[2];
    511 	struct wg_sockaddr	_wga_sa_addr;
    512 	struct wg_sockaddr	_wga_sa_mask;
    513 #define wga_sa_addr		_wga_sa_addr._sa
    514 #define wga_sa_mask		_wga_sa_mask._sa
    515 
    516 	int			wga_family;
    517 	uint8_t			wga_cidr;
    518 	union {
    519 		struct in_addr _ip4;
    520 		struct in6_addr _ip6;
    521 	} wga_addr;
    522 #define wga_addr4	wga_addr._ip4
    523 #define wga_addr6	wga_addr._ip6
    524 
    525 	struct wg_peer		*wga_peer;
    526 };
    527 
    528 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
    529 
    530 struct wg_ppsratecheck {
    531 	struct timeval		wgprc_lasttime;
    532 	int			wgprc_curpps;
    533 };
    534 
    535 struct wg_softc;
    536 struct wg_peer {
    537 	struct wg_softc		*wgp_sc;
    538 	char			wgp_name[WG_PEER_NAME_MAXLEN + 1];
    539 	struct pslist_entry	wgp_peerlist_entry;
    540 	pserialize_t		wgp_psz;
    541 	struct psref_target	wgp_psref;
    542 	kmutex_t		*wgp_lock;
    543 	kmutex_t		*wgp_intr_lock;
    544 
    545 	uint8_t	wgp_pubkey[WG_STATIC_KEY_LEN];
    546 	struct wg_sockaddr	*wgp_endpoint;
    547 	struct wg_sockaddr	*wgp_endpoint0;
    548 	volatile unsigned	wgp_endpoint_changing;
    549 	bool			wgp_endpoint_available;
    550 
    551 			/* The preshared key (optional) */
    552 	uint8_t		wgp_psk[WG_PRESHARED_KEY_LEN];
    553 
    554 	struct wg_session	*wgp_session_stable;
    555 	struct wg_session	*wgp_session_unstable;
    556 
    557 	/* first outgoing packet awaiting session initiation */
    558 	struct mbuf		*wgp_pending;
    559 
    560 	/* timestamp in big-endian */
    561 	wg_timestamp_t	wgp_timestamp_latest_init;
    562 
    563 	struct timespec		wgp_last_handshake_time;
    564 
    565 	callout_t		wgp_rekey_timer;
    566 	callout_t		wgp_handshake_timeout_timer;
    567 	callout_t		wgp_session_dtor_timer;
    568 
    569 	time_t			wgp_handshake_start_time;
    570 
    571 	int			wgp_n_allowedips;
    572 	struct wg_allowedip	wgp_allowedips[WG_ALLOWEDIPS];
    573 
    574 	time_t			wgp_latest_cookie_time;
    575 	uint8_t			wgp_latest_cookie[WG_COOKIE_LEN];
    576 	uint8_t			wgp_last_sent_mac1[WG_MAC_LEN];
    577 	bool			wgp_last_sent_mac1_valid;
    578 	uint8_t			wgp_last_sent_cookie[WG_COOKIE_LEN];
    579 	bool			wgp_last_sent_cookie_valid;
    580 
    581 	time_t			wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
    582 
    583 	time_t			wgp_last_genrandval_time;
    584 	uint32_t		wgp_randval;
    585 
    586 	struct wg_ppsratecheck	wgp_ppsratecheck;
    587 
    588 	struct work		wgp_work;
    589 	unsigned int		wgp_tasks;
    590 #define WGP_TASK_SEND_INIT_MESSAGE		__BIT(0)
    591 #define WGP_TASK_RETRY_HANDSHAKE		__BIT(1)
    592 #define WGP_TASK_ESTABLISH_SESSION		__BIT(2)
    593 #define WGP_TASK_ENDPOINT_CHANGED		__BIT(3)
    594 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE		__BIT(4)
    595 #define WGP_TASK_DESTROY_PREV_SESSION		__BIT(5)
    596 };
    597 
    598 struct wg_ops;
    599 
    600 struct wg_softc {
    601 	struct ifnet	wg_if;
    602 	LIST_ENTRY(wg_softc) wg_list;
    603 	kmutex_t	*wg_lock;
    604 	kmutex_t	*wg_intr_lock;
    605 	krwlock_t	*wg_rwlock;
    606 
    607 	uint8_t		wg_privkey[WG_STATIC_KEY_LEN];
    608 	uint8_t		wg_pubkey[WG_STATIC_KEY_LEN];
    609 
    610 	int		wg_npeers;
    611 	struct pslist_head	wg_peers;
    612 	struct thmap	*wg_peers_bypubkey;
    613 	struct thmap	*wg_peers_byname;
    614 	struct thmap	*wg_sessions_byindex;
    615 	uint16_t	wg_listen_port;
    616 
    617 	struct threadpool	*wg_threadpool;
    618 
    619 	struct threadpool_job	wg_job;
    620 	int			wg_upcalls;
    621 #define	WG_UPCALL_INET	__BIT(0)
    622 #define	WG_UPCALL_INET6	__BIT(1)
    623 
    624 #ifdef INET
    625 	struct socket		*wg_so4;
    626 	struct radix_node_head	*wg_rtable_ipv4;
    627 #endif
    628 #ifdef INET6
    629 	struct socket		*wg_so6;
    630 	struct radix_node_head	*wg_rtable_ipv6;
    631 #endif
    632 
    633 	struct wg_ppsratecheck	wg_ppsratecheck;
    634 
    635 	struct wg_ops		*wg_ops;
    636 
    637 #ifdef WG_RUMPKERNEL
    638 	struct wg_user		*wg_user;
    639 #endif
    640 };
    641 
    642 /* [W] 6.1 Preliminaries */
    643 #define WG_REKEY_AFTER_MESSAGES		(1ULL << 60)
    644 #define WG_REJECT_AFTER_MESSAGES	(UINT64_MAX - (1 << 13))
    645 #define WG_REKEY_AFTER_TIME		120
    646 #define WG_REJECT_AFTER_TIME		180
    647 #define WG_REKEY_ATTEMPT_TIME		 90
    648 #define WG_REKEY_TIMEOUT		  5
    649 #define WG_KEEPALIVE_TIMEOUT		 10
    650 
    651 #define WG_COOKIE_TIME			120
    652 #define WG_RANDVAL_TIME			(2 * 60)
    653 
    654 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
    655 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
    656 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
    657 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
    658 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
    659 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
    660 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
    661 
    662 static struct mbuf *
    663 		wg_get_mbuf(size_t, size_t);
    664 
    665 static int	wg_send_data_msg(struct wg_peer *, struct wg_session *,
    666 		    struct mbuf *);
    667 static int	wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
    668 		    const uint32_t, const uint8_t [], const struct sockaddr *);
    669 static int	wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
    670 		    struct wg_session *, const struct wg_msg_init *);
    671 static void	wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
    672 
    673 static struct wg_peer *
    674 		wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
    675 		    struct psref *);
    676 static struct wg_peer *
    677 		wg_lookup_peer_by_pubkey(struct wg_softc *,
    678 		    const uint8_t [], struct psref *);
    679 
    680 static struct wg_session *
    681 		wg_lookup_session_by_index(struct wg_softc *,
    682 		    const uint32_t, struct psref *);
    683 
    684 static void	wg_update_endpoint_if_necessary(struct wg_peer *,
    685 		    const struct sockaddr *);
    686 
    687 static void	wg_schedule_rekey_timer(struct wg_peer *);
    688 static void	wg_schedule_session_dtor_timer(struct wg_peer *);
    689 
    690 static bool	wg_is_underload(struct wg_softc *, struct wg_peer *, int);
    691 static void	wg_calculate_keys(struct wg_session *, const bool);
    692 
    693 static void	wg_clear_states(struct wg_session *);
    694 
    695 static void	wg_get_peer(struct wg_peer *, struct psref *);
    696 static void	wg_put_peer(struct wg_peer *, struct psref *);
    697 
    698 static int	wg_send_so(struct wg_peer *, struct mbuf *);
    699 static int	wg_send_udp(struct wg_peer *, struct mbuf *);
    700 static int	wg_output(struct ifnet *, struct mbuf *,
    701 			   const struct sockaddr *, const struct rtentry *);
    702 static void	wg_input(struct ifnet *, struct mbuf *, const int);
    703 static int	wg_ioctl(struct ifnet *, u_long, void *);
    704 static int	wg_bind_port(struct wg_softc *, const uint16_t);
    705 static int	wg_init(struct ifnet *);
    706 static void	wg_stop(struct ifnet *, int);
    707 
    708 static void	wg_peer_work(struct work *, void *);
    709 static void	wg_job(struct threadpool_job *);
    710 static void	wgintr(void *);
    711 static void	wg_purge_pending_packets(struct wg_peer *);
    712 
    713 static int	wg_clone_create(struct if_clone *, int);
    714 static int	wg_clone_destroy(struct ifnet *);
    715 
    716 struct wg_ops {
    717 	int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
    718 	int (*send_data_msg)(struct wg_peer *, struct mbuf *);
    719 	void (*input)(struct ifnet *, struct mbuf *, const int);
    720 	int (*bind_port)(struct wg_softc *, const uint16_t);
    721 };
    722 
    723 struct wg_ops wg_ops_rumpkernel = {
    724 	.send_hs_msg	= wg_send_so,
    725 	.send_data_msg	= wg_send_udp,
    726 	.input		= wg_input,
    727 	.bind_port	= wg_bind_port,
    728 };
    729 
    730 #ifdef WG_RUMPKERNEL
    731 static bool	wg_user_mode(struct wg_softc *);
    732 static int	wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
    733 
    734 static int	wg_send_user(struct wg_peer *, struct mbuf *);
    735 static void	wg_input_user(struct ifnet *, struct mbuf *, const int);
    736 static int	wg_bind_port_user(struct wg_softc *, const uint16_t);
    737 
    738 struct wg_ops wg_ops_rumpuser = {
    739 	.send_hs_msg	= wg_send_user,
    740 	.send_data_msg	= wg_send_user,
    741 	.input		= wg_input_user,
    742 	.bind_port	= wg_bind_port_user,
    743 };
    744 #endif
    745 
    746 #define WG_PEER_READER_FOREACH(wgp, wg)					\
    747 	PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    748 	    wgp_peerlist_entry)
    749 #define WG_PEER_WRITER_FOREACH(wgp, wg)					\
    750 	PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    751 	    wgp_peerlist_entry)
    752 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg)				\
    753 	PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
    754 #define WG_PEER_WRITER_REMOVE(wgp)					\
    755 	PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
    756 
    757 struct wg_route {
    758 	struct radix_node	wgr_nodes[2];
    759 	struct wg_peer		*wgr_peer;
    760 };
    761 
    762 static struct radix_node_head *
    763 wg_rnh(struct wg_softc *wg, const int family)
    764 {
    765 
    766 	switch (family) {
    767 		case AF_INET:
    768 			return wg->wg_rtable_ipv4;
    769 #ifdef INET6
    770 		case AF_INET6:
    771 			return wg->wg_rtable_ipv6;
    772 #endif
    773 		default:
    774 			return NULL;
    775 	}
    776 }
    777 
    778 
    779 /*
    780  * Global variables
    781  */
    782 LIST_HEAD(wg_sclist, wg_softc);
    783 static struct {
    784 	struct wg_sclist list;
    785 	kmutex_t lock;
    786 } wg_softcs __cacheline_aligned;
    787 
    788 struct psref_class *wg_psref_class __read_mostly;
    789 
    790 static struct if_clone wg_cloner =
    791     IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
    792 
    793 static struct pktqueue *wg_pktq __read_mostly;
    794 static struct workqueue *wg_wq __read_mostly;
    795 
    796 void wgattach(int);
    797 /* ARGSUSED */
    798 void
    799 wgattach(int count)
    800 {
    801 	/*
    802 	 * Nothing to do here, initialization is handled by the
    803 	 * module initialization code in wginit() below).
    804 	 */
    805 }
    806 
    807 static void
    808 wginit(void)
    809 {
    810 	int error __diagused;
    811 
    812 	wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
    813 
    814 	mutex_init(&wg_softcs.lock, MUTEX_DEFAULT, IPL_NONE);
    815 	LIST_INIT(&wg_softcs.list);
    816 
    817 	wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
    818 	KASSERT(wg_pktq != NULL);
    819 
    820 	error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
    821 	    PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
    822 	KASSERT(error == 0);
    823 
    824 	if_clone_attach(&wg_cloner);
    825 }
    826 
    827 static int
    828 wgdetach(void)
    829 {
    830 	int error = 0;
    831 
    832 	mutex_enter(&wg_softcs.lock);
    833 	if (!LIST_EMPTY(&wg_softcs.list)) {
    834 		mutex_exit(&wg_softcs.lock);
    835 		error = EBUSY;
    836 	}
    837 
    838 	if (error == 0) {
    839 		psref_class_destroy(wg_psref_class);
    840 
    841 		if_clone_detach(&wg_cloner);
    842 	}
    843 
    844 	return error;
    845 }
    846 
    847 static void
    848 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
    849     uint8_t hash[WG_HASH_LEN])
    850 {
    851 	/* [W] 5.4: CONSTRUCTION */
    852 	const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
    853 	/* [W] 5.4: IDENTIFIER */
    854 	const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
    855 	struct blake2s state;
    856 
    857 	blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
    858 	    signature, strlen(signature));
    859 
    860 	CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
    861 	memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
    862 
    863 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    864 	blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
    865 	blake2s_update(&state, id, strlen(id));
    866 	blake2s_final(&state, hash);
    867 
    868 	WG_DUMP_HASH("ckey", ckey);
    869 	WG_DUMP_HASH("hash", hash);
    870 }
    871 
    872 static void
    873 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
    874     const size_t inputsize)
    875 {
    876 	struct blake2s state;
    877 
    878 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    879 	blake2s_update(&state, hash, WG_HASH_LEN);
    880 	blake2s_update(&state, input, inputsize);
    881 	blake2s_final(&state, hash);
    882 }
    883 
    884 static void
    885 wg_algo_mac(uint8_t out[], const size_t outsize,
    886     const uint8_t key[], const size_t keylen,
    887     const uint8_t input1[], const size_t input1len,
    888     const uint8_t input2[], const size_t input2len)
    889 {
    890 	struct blake2s state;
    891 
    892 	blake2s_init(&state, outsize, key, keylen);
    893 
    894 	blake2s_update(&state, input1, input1len);
    895 	if (input2 != NULL)
    896 		blake2s_update(&state, input2, input2len);
    897 	blake2s_final(&state, out);
    898 }
    899 
    900 static void
    901 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
    902     const uint8_t input1[], const size_t input1len,
    903     const uint8_t input2[], const size_t input2len)
    904 {
    905 	struct blake2s state;
    906 	/* [W] 5.4: LABEL-MAC1 */
    907 	const char *label = "mac1----";
    908 	uint8_t key[WG_HASH_LEN];
    909 
    910 	blake2s_init(&state, sizeof(key), NULL, 0);
    911 	blake2s_update(&state, label, strlen(label));
    912 	blake2s_update(&state, input1, input1len);
    913 	blake2s_final(&state, key);
    914 
    915 	blake2s_init(&state, outsize, key, sizeof(key));
    916 	if (input2 != NULL)
    917 		blake2s_update(&state, input2, input2len);
    918 	blake2s_final(&state, out);
    919 }
    920 
    921 static void
    922 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
    923     const uint8_t input1[], const size_t input1len)
    924 {
    925 	struct blake2s state;
    926 	/* [W] 5.4: LABEL-COOKIE */
    927 	const char *label = "cookie--";
    928 
    929 	blake2s_init(&state, outsize, NULL, 0);
    930 	blake2s_update(&state, label, strlen(label));
    931 	blake2s_update(&state, input1, input1len);
    932 	blake2s_final(&state, out);
    933 }
    934 
    935 static void
    936 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
    937     uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
    938 {
    939 
    940 	CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
    941 
    942 	cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
    943 	crypto_scalarmult_base(pubkey, privkey);
    944 }
    945 
    946 static void
    947 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
    948     const uint8_t privkey[WG_STATIC_KEY_LEN],
    949     const uint8_t pubkey[WG_STATIC_KEY_LEN])
    950 {
    951 
    952 	CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
    953 
    954 	int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
    955 	KASSERT(ret == 0);
    956 }
    957 
    958 static void
    959 wg_algo_hmac(uint8_t out[], const size_t outlen,
    960     const uint8_t key[], const size_t keylen,
    961     const uint8_t in[], const size_t inlen)
    962 {
    963 #define IPAD	0x36
    964 #define OPAD	0x5c
    965 	uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
    966 	uint8_t ipad[HMAC_BLOCK_LEN];
    967 	uint8_t opad[HMAC_BLOCK_LEN];
    968 	int i;
    969 	struct blake2s state;
    970 
    971 	KASSERT(outlen == WG_HASH_LEN);
    972 	KASSERT(keylen <= HMAC_BLOCK_LEN);
    973 
    974 	memcpy(hmackey, key, keylen);
    975 
    976 	for (i = 0; i < sizeof(hmackey); i++) {
    977 		ipad[i] = hmackey[i] ^ IPAD;
    978 		opad[i] = hmackey[i] ^ OPAD;
    979 	}
    980 
    981 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    982 	blake2s_update(&state, ipad, sizeof(ipad));
    983 	blake2s_update(&state, in, inlen);
    984 	blake2s_final(&state, out);
    985 
    986 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    987 	blake2s_update(&state, opad, sizeof(opad));
    988 	blake2s_update(&state, out, WG_HASH_LEN);
    989 	blake2s_final(&state, out);
    990 #undef IPAD
    991 #undef OPAD
    992 }
    993 
    994 static void
    995 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
    996     uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
    997     const uint8_t input[], const size_t inputlen)
    998 {
    999 	uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
   1000 	uint8_t one[1];
   1001 
   1002 	/*
   1003 	 * [N] 4.3: "an input_key_material byte sequence with length
   1004 	 * either zero bytes, 32 bytes, or DHLEN bytes."
   1005 	 */
   1006 	KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
   1007 
   1008 	WG_DUMP_HASH("ckey", ckey);
   1009 	if (input != NULL)
   1010 		WG_DUMP_HASH("input", input);
   1011 	wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
   1012 	    input, inputlen);
   1013 	WG_DUMP_HASH("tmp1", tmp1);
   1014 	one[0] = 1;
   1015 	wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1016 	    one, sizeof(one));
   1017 	WG_DUMP_HASH("out1", out1);
   1018 	if (out2 == NULL)
   1019 		return;
   1020 	memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
   1021 	tmp2[WG_KDF_OUTPUT_LEN] = 2;
   1022 	wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1023 	    tmp2, sizeof(tmp2));
   1024 	WG_DUMP_HASH("out2", out2);
   1025 	if (out3 == NULL)
   1026 		return;
   1027 	memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
   1028 	tmp2[WG_KDF_OUTPUT_LEN] = 3;
   1029 	wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1030 	    tmp2, sizeof(tmp2));
   1031 	WG_DUMP_HASH("out3", out3);
   1032 }
   1033 
   1034 static void
   1035 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
   1036     uint8_t cipher_key[WG_CIPHER_KEY_LEN],
   1037     const uint8_t local_key[WG_STATIC_KEY_LEN],
   1038     const uint8_t remote_key[WG_STATIC_KEY_LEN])
   1039 {
   1040 	uint8_t dhout[WG_DH_OUTPUT_LEN];
   1041 
   1042 	wg_algo_dh(dhout, local_key, remote_key);
   1043 	wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
   1044 
   1045 	WG_DUMP_HASH("dhout", dhout);
   1046 	WG_DUMP_HASH("ckey", ckey);
   1047 	if (cipher_key != NULL)
   1048 		WG_DUMP_HASH("cipher_key", cipher_key);
   1049 }
   1050 
   1051 static void
   1052 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
   1053     const uint64_t counter, const uint8_t plain[], const size_t plainsize,
   1054     const uint8_t auth[], size_t authlen)
   1055 {
   1056 	uint8_t nonce[(32 + 64) / 8] = {0};
   1057 	long long unsigned int outsize;
   1058 	int error __diagused;
   1059 
   1060 	le64enc(&nonce[4], counter);
   1061 
   1062 	error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
   1063 	    plainsize, auth, authlen, NULL, nonce, key);
   1064 	KASSERT(error == 0);
   1065 	KASSERT(outsize == expected_outsize);
   1066 }
   1067 
   1068 static int
   1069 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
   1070     const uint64_t counter, const uint8_t encrypted[],
   1071     const size_t encryptedsize, const uint8_t auth[], size_t authlen)
   1072 {
   1073 	uint8_t nonce[(32 + 64) / 8] = {0};
   1074 	long long unsigned int outsize;
   1075 	int error;
   1076 
   1077 	le64enc(&nonce[4], counter);
   1078 
   1079 	error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1080 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1081 	if (error == 0)
   1082 		KASSERT(outsize == expected_outsize);
   1083 	return error;
   1084 }
   1085 
   1086 static void
   1087 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
   1088     const uint8_t key[], const uint8_t plain[], const size_t plainsize,
   1089     const uint8_t auth[], size_t authlen,
   1090     const uint8_t nonce[WG_SALT_LEN])
   1091 {
   1092 	long long unsigned int outsize;
   1093 	int error __diagused;
   1094 
   1095 	CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
   1096 	error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
   1097 	    plain, plainsize, auth, authlen, NULL, nonce, key);
   1098 	KASSERT(error == 0);
   1099 	KASSERT(outsize == expected_outsize);
   1100 }
   1101 
   1102 static int
   1103 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
   1104     const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
   1105     const uint8_t auth[], size_t authlen,
   1106     const uint8_t nonce[WG_SALT_LEN])
   1107 {
   1108 	long long unsigned int outsize;
   1109 	int error;
   1110 
   1111 	error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1112 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1113 	if (error == 0)
   1114 		KASSERT(outsize == expected_outsize);
   1115 	return error;
   1116 }
   1117 
   1118 static void
   1119 wg_algo_tai64n(wg_timestamp_t timestamp)
   1120 {
   1121 	struct timespec ts;
   1122 
   1123 	/* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
   1124 	getnanotime(&ts);
   1125 	/* TAI64 label in external TAI64 format */
   1126 	be32enc(timestamp, 0x40000000UL + (ts.tv_sec >> 32));
   1127 	/* second beginning from 1970 TAI */
   1128 	be32enc(timestamp + 4, ts.tv_sec & 0xffffffffU);
   1129 	/* nanosecond in big-endian format */
   1130 	be32enc(timestamp + 8, ts.tv_nsec);
   1131 }
   1132 
   1133 /*
   1134  * wg_get_stable_session(wgp, psref)
   1135  *
   1136  *	Get a passive reference to the current stable session, or
   1137  *	return NULL if there is no current stable session.
   1138  *
   1139  *	The pointer is always there but the session is not necessarily
   1140  *	ESTABLISHED; if it is not ESTABLISHED, return NULL.  However,
   1141  *	the session may transition from ESTABLISHED to DESTROYING while
   1142  *	holding the passive reference.
   1143  */
   1144 static struct wg_session *
   1145 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
   1146 {
   1147 	int s;
   1148 	struct wg_session *wgs;
   1149 
   1150 	s = pserialize_read_enter();
   1151 	wgs = atomic_load_consume(&wgp->wgp_session_stable);
   1152 	if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
   1153 		wgs = NULL;
   1154 	else
   1155 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   1156 	pserialize_read_exit(s);
   1157 
   1158 	return wgs;
   1159 }
   1160 
   1161 static void
   1162 wg_put_session(struct wg_session *wgs, struct psref *psref)
   1163 {
   1164 
   1165 	psref_release(psref, &wgs->wgs_psref, wg_psref_class);
   1166 }
   1167 
   1168 static void
   1169 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
   1170 {
   1171 	struct wg_peer *wgp = wgs->wgs_peer;
   1172 	struct wg_session *wgs0 __diagused;
   1173 	void *garbage;
   1174 
   1175 	KASSERT(mutex_owned(wgp->wgp_lock));
   1176 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1177 
   1178 	/* Remove the session from the table.  */
   1179 	wgs0 = thmap_del(wg->wg_sessions_byindex,
   1180 	    &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
   1181 	KASSERT(wgs0 == wgs);
   1182 	garbage = thmap_stage_gc(wg->wg_sessions_byindex);
   1183 
   1184 	/* Wait for passive references to drain.  */
   1185 	pserialize_perform(wgp->wgp_psz);
   1186 	psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
   1187 
   1188 	/* Free memory, zero state, and transition to UNKNOWN.  */
   1189 	thmap_gc(wg->wg_sessions_byindex, garbage);
   1190 	wg_clear_states(wgs);
   1191 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   1192 }
   1193 
   1194 /*
   1195  * wg_get_session_index(wg, wgs)
   1196  *
   1197  *	Choose a session index for wgs->wgs_local_index, and store it
   1198  *	in wg's table of sessions by index.
   1199  *
   1200  *	wgs must be the unstable session of its peer, and must be
   1201  *	transitioning out of the UNKNOWN state.
   1202  */
   1203 static void
   1204 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1205 {
   1206 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1207 	struct wg_session *wgs0;
   1208 	uint32_t index;
   1209 
   1210 	KASSERT(mutex_owned(wgp->wgp_lock));
   1211 	KASSERT(wgs == wgp->wgp_session_unstable);
   1212 	KASSERT(wgs->wgs_state == WGS_STATE_UNKNOWN);
   1213 
   1214 	do {
   1215 		/* Pick a uniform random index.  */
   1216 		index = cprng_strong32();
   1217 
   1218 		/* Try to take it.  */
   1219 		wgs->wgs_local_index = index;
   1220 		wgs0 = thmap_put(wg->wg_sessions_byindex,
   1221 		    &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
   1222 
   1223 		/* If someone else beat us, start over.  */
   1224 	} while (__predict_false(wgs0 != wgs));
   1225 }
   1226 
   1227 /*
   1228  * wg_put_session_index(wg, wgs)
   1229  *
   1230  *	Remove wgs from the table of sessions by index, wait for any
   1231  *	passive references to drain, and transition the session to the
   1232  *	UNKNOWN state.
   1233  *
   1234  *	wgs must be the unstable session of its peer, and must not be
   1235  *	UNKNOWN or ESTABLISHED.
   1236  */
   1237 static void
   1238 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1239 {
   1240 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1241 
   1242 	KASSERT(mutex_owned(wgp->wgp_lock));
   1243 	KASSERT(wgs == wgp->wgp_session_unstable);
   1244 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1245 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
   1246 
   1247 	wg_destroy_session(wg, wgs);
   1248 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   1249 }
   1250 
   1251 /*
   1252  * Handshake patterns
   1253  *
   1254  * [W] 5: "These messages use the "IK" pattern from Noise"
   1255  * [N] 7.5. Interactive handshake patterns (fundamental)
   1256  *     "The first character refers to the initiators static key:"
   1257  *     "I = Static key for initiator Immediately transmitted to responder,
   1258  *          despite reduced or absent identity hiding"
   1259  *     "The second character refers to the responders static key:"
   1260  *     "K = Static key for responder Known to initiator"
   1261  *     "IK:
   1262  *        <- s
   1263  *        ...
   1264  *        -> e, es, s, ss
   1265  *        <- e, ee, se"
   1266  * [N] 9.4. Pattern modifiers
   1267  *     "IKpsk2:
   1268  *        <- s
   1269  *        ...
   1270  *        -> e, es, s, ss
   1271  *        <- e, ee, se, psk"
   1272  */
   1273 static void
   1274 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
   1275     struct wg_session *wgs, struct wg_msg_init *wgmi)
   1276 {
   1277 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1278 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1279 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1280 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1281 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1282 
   1283 	KASSERT(mutex_owned(wgp->wgp_lock));
   1284 	KASSERT(wgs == wgp->wgp_session_unstable);
   1285 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
   1286 
   1287 	wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
   1288 	wgmi->wgmi_sender = wgs->wgs_local_index;
   1289 
   1290 	/* [W] 5.4.2: First Message: Initiator to Responder */
   1291 
   1292 	/* Ci := HASH(CONSTRUCTION) */
   1293 	/* Hi := HASH(Ci || IDENTIFIER) */
   1294 	wg_init_key_and_hash(ckey, hash);
   1295 	/* Hi := HASH(Hi || Sr^pub) */
   1296 	wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
   1297 
   1298 	WG_DUMP_HASH("hash", hash);
   1299 
   1300 	/* [N] 2.2: "e" */
   1301 	/* Ei^priv, Ei^pub := DH-GENERATE() */
   1302 	wg_algo_generate_keypair(pubkey, privkey);
   1303 	/* Ci := KDF1(Ci, Ei^pub) */
   1304 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1305 	/* msg.ephemeral := Ei^pub */
   1306 	memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
   1307 	/* Hi := HASH(Hi || msg.ephemeral) */
   1308 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1309 
   1310 	WG_DUMP_HASH("ckey", ckey);
   1311 	WG_DUMP_HASH("hash", hash);
   1312 
   1313 	/* [N] 2.2: "es" */
   1314 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1315 	wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
   1316 
   1317 	/* [N] 2.2: "s" */
   1318 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1319 	wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
   1320 	    cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1321 	    hash, sizeof(hash));
   1322 	/* Hi := HASH(Hi || msg.static) */
   1323 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1324 
   1325 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1326 
   1327 	/* [N] 2.2: "ss" */
   1328 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1329 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1330 
   1331 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1332 	wg_timestamp_t timestamp;
   1333 	wg_algo_tai64n(timestamp);
   1334 	wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1335 	    cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
   1336 	/* Hi := HASH(Hi || msg.timestamp) */
   1337 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1338 
   1339 	/* [W] 5.4.4 Cookie MACs */
   1340 	wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
   1341 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1342 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1343 	/* Need mac1 to decrypt a cookie from a cookie message */
   1344 	memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
   1345 	    sizeof(wgp->wgp_last_sent_mac1));
   1346 	wgp->wgp_last_sent_mac1_valid = true;
   1347 
   1348 	if (wgp->wgp_latest_cookie_time == 0 ||
   1349 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1350 		memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
   1351 	else {
   1352 		wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
   1353 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1354 		    (const uint8_t *)wgmi,
   1355 		    offsetof(struct wg_msg_init, wgmi_mac2),
   1356 		    NULL, 0);
   1357 	}
   1358 
   1359 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1360 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1361 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1362 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1363 	WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
   1364 }
   1365 
   1366 static void
   1367 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
   1368     const struct sockaddr *src)
   1369 {
   1370 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1371 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1372 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1373 	uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
   1374 	struct wg_peer *wgp;
   1375 	struct wg_session *wgs;
   1376 	int error, ret;
   1377 	struct psref psref_peer;
   1378 	uint8_t mac1[WG_MAC_LEN];
   1379 
   1380 	WG_TRACE("init msg received");
   1381 
   1382 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1383 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1384 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1385 
   1386 	/*
   1387 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1388 	 * "the responder, ..., must always reject messages with an invalid
   1389 	 *  msg.mac1"
   1390 	 */
   1391 	if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
   1392 		WG_DLOG("mac1 is invalid\n");
   1393 		return;
   1394 	}
   1395 
   1396 	/*
   1397 	 * [W] 5.4.2: First Message: Initiator to Responder
   1398 	 * "When the responder receives this message, it does the same
   1399 	 *  operations so that its final state variables are identical,
   1400 	 *  replacing the operands of the DH function to produce equivalent
   1401 	 *  values."
   1402 	 *  Note that the following comments of operations are just copies of
   1403 	 *  the initiator's ones.
   1404 	 */
   1405 
   1406 	/* Ci := HASH(CONSTRUCTION) */
   1407 	/* Hi := HASH(Ci || IDENTIFIER) */
   1408 	wg_init_key_and_hash(ckey, hash);
   1409 	/* Hi := HASH(Hi || Sr^pub) */
   1410 	wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
   1411 
   1412 	/* [N] 2.2: "e" */
   1413 	/* Ci := KDF1(Ci, Ei^pub) */
   1414 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
   1415 	    sizeof(wgmi->wgmi_ephemeral));
   1416 	/* Hi := HASH(Hi || msg.ephemeral) */
   1417 	wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
   1418 
   1419 	WG_DUMP_HASH("ckey", ckey);
   1420 
   1421 	/* [N] 2.2: "es" */
   1422 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1423 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
   1424 
   1425 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1426 
   1427 	/* [N] 2.2: "s" */
   1428 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1429 	error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
   1430 	    wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
   1431 	if (error != 0) {
   1432 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   1433 		    "wg_algo_aead_dec for secret key failed\n");
   1434 		return;
   1435 	}
   1436 	/* Hi := HASH(Hi || msg.static) */
   1437 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1438 
   1439 	wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
   1440 	if (wgp == NULL) {
   1441 		WG_DLOG("peer not found\n");
   1442 		return;
   1443 	}
   1444 
   1445 	/*
   1446 	 * Lock the peer to serialize access to cookie state.
   1447 	 *
   1448 	 * XXX Can we safely avoid holding the lock across DH?  Take it
   1449 	 * just to verify mac2 and then unlock/DH/lock?
   1450 	 */
   1451 	mutex_enter(wgp->wgp_lock);
   1452 
   1453 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
   1454 		WG_TRACE("under load");
   1455 		/*
   1456 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1457 		 * "the responder, ..., and when under load may reject messages
   1458 		 *  with an invalid msg.mac2.  If the responder receives a
   1459 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1460 		 *  and is under load, it may respond with a cookie reply
   1461 		 *  message"
   1462 		 */
   1463 		uint8_t zero[WG_MAC_LEN] = {0};
   1464 		if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
   1465 			WG_TRACE("sending a cookie message: no cookie included");
   1466 			(void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1467 			    wgmi->wgmi_mac1, src);
   1468 			goto out;
   1469 		}
   1470 		if (!wgp->wgp_last_sent_cookie_valid) {
   1471 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1472 			(void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1473 			    wgmi->wgmi_mac1, src);
   1474 			goto out;
   1475 		}
   1476 		uint8_t mac2[WG_MAC_LEN];
   1477 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1478 		    WG_COOKIE_LEN, (const uint8_t *)wgmi,
   1479 		    offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
   1480 		if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
   1481 			WG_DLOG("mac2 is invalid\n");
   1482 			goto out;
   1483 		}
   1484 		WG_TRACE("under load, but continue to sending");
   1485 	}
   1486 
   1487 	/* [N] 2.2: "ss" */
   1488 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1489 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1490 
   1491 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1492 	wg_timestamp_t timestamp;
   1493 	error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
   1494 	    wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1495 	    hash, sizeof(hash));
   1496 	if (error != 0) {
   1497 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1498 		    "wg_algo_aead_dec for timestamp failed\n");
   1499 		goto out;
   1500 	}
   1501 	/* Hi := HASH(Hi || msg.timestamp) */
   1502 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1503 
   1504 	/*
   1505 	 * [W] 5.1 "The responder keeps track of the greatest timestamp
   1506 	 *      received per peer and discards packets containing
   1507 	 *      timestamps less than or equal to it."
   1508 	 */
   1509 	ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
   1510 	    sizeof(timestamp));
   1511 	if (ret <= 0) {
   1512 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1513 		    "invalid init msg: timestamp is old\n");
   1514 		goto out;
   1515 	}
   1516 	memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
   1517 
   1518 	/*
   1519 	 * Message is good -- we're committing to handle it now, unless
   1520 	 * we were already initiating a session.
   1521 	 */
   1522 	wgs = wgp->wgp_session_unstable;
   1523 	switch (wgs->wgs_state) {
   1524 	case WGS_STATE_UNKNOWN:		/* new session initiated by peer */
   1525 		wg_get_session_index(wg, wgs);
   1526 		break;
   1527 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, drop */
   1528 		WG_TRACE("Session already initializing, ignoring the message");
   1529 		goto out;
   1530 	case WGS_STATE_INIT_PASSIVE:	/* peer is retrying, start over */
   1531 		WG_TRACE("Session already initializing, destroying old states");
   1532 		wg_clear_states(wgs);
   1533 		/* keep session index */
   1534 		break;
   1535 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1536 		panic("unstable session can't be established");
   1537 		break;
   1538 	case WGS_STATE_DESTROYING:	/* rekey initiated by peer */
   1539 		WG_TRACE("Session destroying, but force to clear");
   1540 		callout_stop(&wgp->wgp_session_dtor_timer);
   1541 		wg_clear_states(wgs);
   1542 		/* keep session index */
   1543 		break;
   1544 	default:
   1545 		panic("invalid session state: %d", wgs->wgs_state);
   1546 	}
   1547 	wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
   1548 
   1549 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1550 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1551 	memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
   1552 	    sizeof(wgmi->wgmi_ephemeral));
   1553 
   1554 	wg_update_endpoint_if_necessary(wgp, src);
   1555 
   1556 	(void)wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
   1557 
   1558 	wg_calculate_keys(wgs, false);
   1559 	wg_clear_states(wgs);
   1560 
   1561 out:
   1562 	mutex_exit(wgp->wgp_lock);
   1563 	wg_put_peer(wgp, &psref_peer);
   1564 }
   1565 
   1566 static struct socket *
   1567 wg_get_so_by_af(struct wg_softc *wg, const int af)
   1568 {
   1569 
   1570 	return (af == AF_INET) ? wg->wg_so4 : wg->wg_so6;
   1571 }
   1572 
   1573 static struct socket *
   1574 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
   1575 {
   1576 
   1577 	return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
   1578 }
   1579 
   1580 static struct wg_sockaddr *
   1581 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
   1582 {
   1583 	struct wg_sockaddr *wgsa;
   1584 	int s;
   1585 
   1586 	s = pserialize_read_enter();
   1587 	wgsa = atomic_load_consume(&wgp->wgp_endpoint);
   1588 	psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
   1589 	pserialize_read_exit(s);
   1590 
   1591 	return wgsa;
   1592 }
   1593 
   1594 static void
   1595 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
   1596 {
   1597 
   1598 	psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
   1599 }
   1600 
   1601 static int
   1602 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
   1603 {
   1604 	int error;
   1605 	struct socket *so;
   1606 	struct psref psref;
   1607 	struct wg_sockaddr *wgsa;
   1608 
   1609 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   1610 	so = wg_get_so_by_peer(wgp, wgsa);
   1611 	error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
   1612 	wg_put_sa(wgp, wgsa, &psref);
   1613 
   1614 	return error;
   1615 }
   1616 
   1617 static int
   1618 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
   1619 {
   1620 	int error;
   1621 	struct mbuf *m;
   1622 	struct wg_msg_init *wgmi;
   1623 	struct wg_session *wgs;
   1624 
   1625 	KASSERT(mutex_owned(wgp->wgp_lock));
   1626 
   1627 	wgs = wgp->wgp_session_unstable;
   1628 	/* XXX pull dispatch out into wg_task_send_init_message */
   1629 	switch (wgs->wgs_state) {
   1630 	case WGS_STATE_UNKNOWN:		/* new session initiated by us */
   1631 		wg_get_session_index(wg, wgs);
   1632 		break;
   1633 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, stop */
   1634 		WG_TRACE("Session already initializing, skip starting new one");
   1635 		return EBUSY;
   1636 	case WGS_STATE_INIT_PASSIVE:	/* peer was trying -- XXX what now? */
   1637 		WG_TRACE("Session already initializing, destroying old states");
   1638 		wg_clear_states(wgs);
   1639 		/* keep session index */
   1640 		break;
   1641 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1642 		panic("unstable session can't be established");
   1643 		break;
   1644 	case WGS_STATE_DESTROYING:	/* rekey initiated by us too early */
   1645 		WG_TRACE("Session destroying");
   1646 		/* XXX should wait? */
   1647 		return EBUSY;
   1648 	}
   1649 	wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
   1650 
   1651 	m = m_gethdr(M_WAIT, MT_DATA);
   1652 	m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
   1653 	wgmi = mtod(m, struct wg_msg_init *);
   1654 	wg_fill_msg_init(wg, wgp, wgs, wgmi);
   1655 
   1656 	error = wg->wg_ops->send_hs_msg(wgp, m);
   1657 	if (error == 0) {
   1658 		WG_TRACE("init msg sent");
   1659 
   1660 		if (wgp->wgp_handshake_start_time == 0)
   1661 			wgp->wgp_handshake_start_time = time_uptime;
   1662 		callout_schedule(&wgp->wgp_handshake_timeout_timer,
   1663 		    MIN(wg_rekey_timeout, INT_MAX/hz) * hz);
   1664 	} else {
   1665 		wg_put_session_index(wg, wgs);
   1666 		/* Initiation failed; toss packet waiting for it if any.  */
   1667 		if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL)
   1668 			m_freem(m);
   1669 	}
   1670 
   1671 	return error;
   1672 }
   1673 
   1674 static void
   1675 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   1676     struct wg_session *wgs, struct wg_msg_resp *wgmr,
   1677     const struct wg_msg_init *wgmi)
   1678 {
   1679 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   1680 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
   1681 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   1682 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1683 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1684 
   1685 	KASSERT(mutex_owned(wgp->wgp_lock));
   1686 	KASSERT(wgs == wgp->wgp_session_unstable);
   1687 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
   1688 
   1689 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   1690 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   1691 
   1692 	wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
   1693 	wgmr->wgmr_sender = wgs->wgs_local_index;
   1694 	wgmr->wgmr_receiver = wgmi->wgmi_sender;
   1695 
   1696 	/* [W] 5.4.3 Second Message: Responder to Initiator */
   1697 
   1698 	/* [N] 2.2: "e" */
   1699 	/* Er^priv, Er^pub := DH-GENERATE() */
   1700 	wg_algo_generate_keypair(pubkey, privkey);
   1701 	/* Cr := KDF1(Cr, Er^pub) */
   1702 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1703 	/* msg.ephemeral := Er^pub */
   1704 	memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
   1705 	/* Hr := HASH(Hr || msg.ephemeral) */
   1706 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1707 
   1708 	WG_DUMP_HASH("ckey", ckey);
   1709 	WG_DUMP_HASH("hash", hash);
   1710 
   1711 	/* [N] 2.2: "ee" */
   1712 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   1713 	wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
   1714 
   1715 	/* [N] 2.2: "se" */
   1716 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   1717 	wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
   1718 
   1719 	/* [N] 9.2: "psk" */
   1720     {
   1721 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   1722 	/* Cr, r, k := KDF3(Cr, Q) */
   1723 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   1724 	    sizeof(wgp->wgp_psk));
   1725 	/* Hr := HASH(Hr || r) */
   1726 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   1727     }
   1728 
   1729 	/* msg.empty := AEAD(k, 0, e, Hr) */
   1730 	wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
   1731 	    cipher_key, 0, NULL, 0, hash, sizeof(hash));
   1732 	/* Hr := HASH(Hr || msg.empty) */
   1733 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   1734 
   1735 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   1736 
   1737 	/* [W] 5.4.4: Cookie MACs */
   1738 	/* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
   1739 	wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
   1740 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1741 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   1742 	/* Need mac1 to decrypt a cookie from a cookie message */
   1743 	memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
   1744 	    sizeof(wgp->wgp_last_sent_mac1));
   1745 	wgp->wgp_last_sent_mac1_valid = true;
   1746 
   1747 	if (wgp->wgp_latest_cookie_time == 0 ||
   1748 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1749 		/* msg.mac2 := 0^16 */
   1750 		memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
   1751 	else {
   1752 		/* msg.mac2 := MAC(Lm, msg_b) */
   1753 		wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
   1754 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1755 		    (const uint8_t *)wgmr,
   1756 		    offsetof(struct wg_msg_resp, wgmr_mac2),
   1757 		    NULL, 0);
   1758 	}
   1759 
   1760 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1761 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1762 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1763 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1764 	wgs->wgs_remote_index = wgmi->wgmi_sender;
   1765 	WG_DLOG("sender=%x\n", wgs->wgs_local_index);
   1766 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   1767 }
   1768 
   1769 static void
   1770 wg_swap_sessions(struct wg_peer *wgp)
   1771 {
   1772 	struct wg_session *wgs, *wgs_prev;
   1773 
   1774 	KASSERT(mutex_owned(wgp->wgp_lock));
   1775 
   1776 	wgs = wgp->wgp_session_unstable;
   1777 	KASSERT(wgs->wgs_state == WGS_STATE_ESTABLISHED);
   1778 
   1779 	wgs_prev = wgp->wgp_session_stable;
   1780 	KASSERT(wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
   1781 	    wgs_prev->wgs_state == WGS_STATE_UNKNOWN);
   1782 	atomic_store_release(&wgp->wgp_session_stable, wgs);
   1783 	wgp->wgp_session_unstable = wgs_prev;
   1784 }
   1785 
   1786 static void
   1787 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
   1788     const struct sockaddr *src)
   1789 {
   1790 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   1791 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
   1792 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   1793 	struct wg_peer *wgp;
   1794 	struct wg_session *wgs;
   1795 	struct psref psref;
   1796 	int error;
   1797 	uint8_t mac1[WG_MAC_LEN];
   1798 	struct wg_session *wgs_prev;
   1799 	struct mbuf *m;
   1800 
   1801 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1802 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1803 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   1804 
   1805 	/*
   1806 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1807 	 * "the responder, ..., must always reject messages with an invalid
   1808 	 *  msg.mac1"
   1809 	 */
   1810 	if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
   1811 		WG_DLOG("mac1 is invalid\n");
   1812 		return;
   1813 	}
   1814 
   1815 	WG_TRACE("resp msg received");
   1816 	wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
   1817 	if (wgs == NULL) {
   1818 		WG_TRACE("No session found");
   1819 		return;
   1820 	}
   1821 
   1822 	wgp = wgs->wgs_peer;
   1823 
   1824 	mutex_enter(wgp->wgp_lock);
   1825 
   1826 	/* If we weren't waiting for a handshake response, drop it.  */
   1827 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
   1828 		WG_TRACE("peer sent spurious handshake response, ignoring");
   1829 		goto out;
   1830 	}
   1831 
   1832 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
   1833 		WG_TRACE("under load");
   1834 		/*
   1835 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1836 		 * "the responder, ..., and when under load may reject messages
   1837 		 *  with an invalid msg.mac2.  If the responder receives a
   1838 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1839 		 *  and is under load, it may respond with a cookie reply
   1840 		 *  message"
   1841 		 */
   1842 		uint8_t zero[WG_MAC_LEN] = {0};
   1843 		if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
   1844 			WG_TRACE("sending a cookie message: no cookie included");
   1845 			(void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   1846 			    wgmr->wgmr_mac1, src);
   1847 			goto out;
   1848 		}
   1849 		if (!wgp->wgp_last_sent_cookie_valid) {
   1850 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1851 			(void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   1852 			    wgmr->wgmr_mac1, src);
   1853 			goto out;
   1854 		}
   1855 		uint8_t mac2[WG_MAC_LEN];
   1856 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1857 		    WG_COOKIE_LEN, (const uint8_t *)wgmr,
   1858 		    offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
   1859 		if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
   1860 			WG_DLOG("mac2 is invalid\n");
   1861 			goto out;
   1862 		}
   1863 		WG_TRACE("under load, but continue to sending");
   1864 	}
   1865 
   1866 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   1867 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   1868 
   1869 	/*
   1870 	 * [W] 5.4.3 Second Message: Responder to Initiator
   1871 	 * "When the initiator receives this message, it does the same
   1872 	 *  operations so that its final state variables are identical,
   1873 	 *  replacing the operands of the DH function to produce equivalent
   1874 	 *  values."
   1875 	 *  Note that the following comments of operations are just copies of
   1876 	 *  the initiator's ones.
   1877 	 */
   1878 
   1879 	/* [N] 2.2: "e" */
   1880 	/* Cr := KDF1(Cr, Er^pub) */
   1881 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
   1882 	    sizeof(wgmr->wgmr_ephemeral));
   1883 	/* Hr := HASH(Hr || msg.ephemeral) */
   1884 	wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
   1885 
   1886 	WG_DUMP_HASH("ckey", ckey);
   1887 	WG_DUMP_HASH("hash", hash);
   1888 
   1889 	/* [N] 2.2: "ee" */
   1890 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   1891 	wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
   1892 	    wgmr->wgmr_ephemeral);
   1893 
   1894 	/* [N] 2.2: "se" */
   1895 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   1896 	wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
   1897 
   1898 	/* [N] 9.2: "psk" */
   1899     {
   1900 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   1901 	/* Cr, r, k := KDF3(Cr, Q) */
   1902 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   1903 	    sizeof(wgp->wgp_psk));
   1904 	/* Hr := HASH(Hr || r) */
   1905 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   1906     }
   1907 
   1908     {
   1909 	uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
   1910 	/* msg.empty := AEAD(k, 0, e, Hr) */
   1911 	error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
   1912 	    sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
   1913 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   1914 	if (error != 0) {
   1915 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1916 		    "wg_algo_aead_dec for empty message failed\n");
   1917 		goto out;
   1918 	}
   1919 	/* Hr := HASH(Hr || msg.empty) */
   1920 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   1921     }
   1922 
   1923 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
   1924 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
   1925 	wgs->wgs_remote_index = wgmr->wgmr_sender;
   1926 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   1927 
   1928 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
   1929 	wgs->wgs_state = WGS_STATE_ESTABLISHED;
   1930 	wgs->wgs_time_established = time_uptime;
   1931 	wgs->wgs_time_last_data_sent = 0;
   1932 	wgs->wgs_is_initiator = true;
   1933 	wg_calculate_keys(wgs, true);
   1934 	wg_clear_states(wgs);
   1935 	WG_TRACE("WGS_STATE_ESTABLISHED");
   1936 
   1937 	callout_stop(&wgp->wgp_handshake_timeout_timer);
   1938 
   1939 	wg_swap_sessions(wgp);
   1940 	KASSERT(wgs == wgp->wgp_session_stable);
   1941 	wgs_prev = wgp->wgp_session_unstable;
   1942 	getnanotime(&wgp->wgp_last_handshake_time);
   1943 	wgp->wgp_handshake_start_time = 0;
   1944 	wgp->wgp_last_sent_mac1_valid = false;
   1945 	wgp->wgp_last_sent_cookie_valid = false;
   1946 
   1947 	wg_schedule_rekey_timer(wgp);
   1948 
   1949 	wg_update_endpoint_if_necessary(wgp, src);
   1950 
   1951 	/*
   1952 	 * If we had a data packet queued up, send it; otherwise send a
   1953 	 * keepalive message -- either way we have to send something
   1954 	 * immediately or else the responder will never answer.
   1955 	 */
   1956 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   1957 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
   1958 
   1959 		M_SETCTX(m, wgp);
   1960 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   1961 			WGLOG(LOG_ERR, "pktq full, dropping\n");
   1962 			m_freem(m);
   1963 		}
   1964 	} else {
   1965 		wg_send_keepalive_msg(wgp, wgs);
   1966 	}
   1967 
   1968 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   1969 		/* Wait for wg_get_stable_session to drain.  */
   1970 		pserialize_perform(wgp->wgp_psz);
   1971 
   1972 		/* Transition ESTABLISHED->DESTROYING.  */
   1973 		wgs_prev->wgs_state = WGS_STATE_DESTROYING;
   1974 
   1975 		/* We can't destroy the old session immediately */
   1976 		wg_schedule_session_dtor_timer(wgp);
   1977 	} else {
   1978 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   1979 		    "state=%d", wgs_prev->wgs_state);
   1980 	}
   1981 
   1982 out:
   1983 	mutex_exit(wgp->wgp_lock);
   1984 	wg_put_session(wgs, &psref);
   1985 }
   1986 
   1987 static int
   1988 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   1989     struct wg_session *wgs, const struct wg_msg_init *wgmi)
   1990 {
   1991 	int error;
   1992 	struct mbuf *m;
   1993 	struct wg_msg_resp *wgmr;
   1994 
   1995 	KASSERT(mutex_owned(wgp->wgp_lock));
   1996 	KASSERT(wgs == wgp->wgp_session_unstable);
   1997 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
   1998 
   1999 	m = m_gethdr(M_WAIT, MT_DATA);
   2000 	m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
   2001 	wgmr = mtod(m, struct wg_msg_resp *);
   2002 	wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
   2003 
   2004 	error = wg->wg_ops->send_hs_msg(wgp, m);
   2005 	if (error == 0)
   2006 		WG_TRACE("resp msg sent");
   2007 	return error;
   2008 }
   2009 
   2010 static struct wg_peer *
   2011 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
   2012     const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
   2013 {
   2014 	struct wg_peer *wgp;
   2015 
   2016 	int s = pserialize_read_enter();
   2017 	wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
   2018 	if (wgp != NULL)
   2019 		wg_get_peer(wgp, psref);
   2020 	pserialize_read_exit(s);
   2021 
   2022 	return wgp;
   2023 }
   2024 
   2025 static void
   2026 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
   2027     struct wg_msg_cookie *wgmc, const uint32_t sender,
   2028     const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
   2029 {
   2030 	uint8_t cookie[WG_COOKIE_LEN];
   2031 	uint8_t key[WG_HASH_LEN];
   2032 	uint8_t addr[sizeof(struct in6_addr)];
   2033 	size_t addrlen;
   2034 	uint16_t uh_sport; /* be */
   2035 
   2036 	KASSERT(mutex_owned(wgp->wgp_lock));
   2037 
   2038 	wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
   2039 	wgmc->wgmc_receiver = sender;
   2040 	cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
   2041 
   2042 	/*
   2043 	 * [W] 5.4.7: Under Load: Cookie Reply Message
   2044 	 * "The secret variable, Rm, changes every two minutes to a
   2045 	 * random value"
   2046 	 */
   2047 	if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
   2048 		wgp->wgp_randval = cprng_strong32();
   2049 		wgp->wgp_last_genrandval_time = time_uptime;
   2050 	}
   2051 
   2052 	switch (src->sa_family) {
   2053 	case AF_INET: {
   2054 		const struct sockaddr_in *sin = satocsin(src);
   2055 		addrlen = sizeof(sin->sin_addr);
   2056 		memcpy(addr, &sin->sin_addr, addrlen);
   2057 		uh_sport = sin->sin_port;
   2058 		break;
   2059 	    }
   2060 #ifdef INET6
   2061 	case AF_INET6: {
   2062 		const struct sockaddr_in6 *sin6 = satocsin6(src);
   2063 		addrlen = sizeof(sin6->sin6_addr);
   2064 		memcpy(addr, &sin6->sin6_addr, addrlen);
   2065 		uh_sport = sin6->sin6_port;
   2066 		break;
   2067 	    }
   2068 #endif
   2069 	default:
   2070 		panic("invalid af=%d", src->sa_family);
   2071 	}
   2072 
   2073 	wg_algo_mac(cookie, sizeof(cookie),
   2074 	    (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
   2075 	    addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
   2076 	wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
   2077 	    sizeof(wg->wg_pubkey));
   2078 	wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
   2079 	    cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
   2080 
   2081 	/* Need to store to calculate mac2 */
   2082 	memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
   2083 	wgp->wgp_last_sent_cookie_valid = true;
   2084 }
   2085 
   2086 static int
   2087 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
   2088     const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
   2089     const struct sockaddr *src)
   2090 {
   2091 	int error;
   2092 	struct mbuf *m;
   2093 	struct wg_msg_cookie *wgmc;
   2094 
   2095 	KASSERT(mutex_owned(wgp->wgp_lock));
   2096 
   2097 	m = m_gethdr(M_WAIT, MT_DATA);
   2098 	m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
   2099 	wgmc = mtod(m, struct wg_msg_cookie *);
   2100 	wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
   2101 
   2102 	error = wg->wg_ops->send_hs_msg(wgp, m);
   2103 	if (error == 0)
   2104 		WG_TRACE("cookie msg sent");
   2105 	return error;
   2106 }
   2107 
   2108 static bool
   2109 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
   2110 {
   2111 #ifdef WG_DEBUG_PARAMS
   2112 	if (wg_force_underload)
   2113 		return true;
   2114 #endif
   2115 
   2116 	/*
   2117 	 * XXX we don't have a means of a load estimation.  The purpose of
   2118 	 * the mechanism is a DoS mitigation, so we consider frequent handshake
   2119 	 * messages as (a kind of) load; if a message of the same type comes
   2120 	 * to a peer within 1 second, we consider we are under load.
   2121 	 */
   2122 	time_t last = wgp->wgp_last_msg_received_time[msgtype];
   2123 	wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
   2124 	return (time_uptime - last) == 0;
   2125 }
   2126 
   2127 static void
   2128 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
   2129 {
   2130 
   2131 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2132 
   2133 	/*
   2134 	 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
   2135 	 */
   2136 	if (initiator) {
   2137 		wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
   2138 		    wgs->wgs_chaining_key, NULL, 0);
   2139 	} else {
   2140 		wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
   2141 		    wgs->wgs_chaining_key, NULL, 0);
   2142 	}
   2143 	WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
   2144 	WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
   2145 }
   2146 
   2147 static uint64_t
   2148 wg_session_get_send_counter(struct wg_session *wgs)
   2149 {
   2150 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2151 	return atomic_load_relaxed(&wgs->wgs_send_counter);
   2152 #else
   2153 	uint64_t send_counter;
   2154 
   2155 	mutex_enter(&wgs->wgs_send_counter_lock);
   2156 	send_counter = wgs->wgs_send_counter;
   2157 	mutex_exit(&wgs->wgs_send_counter_lock);
   2158 
   2159 	return send_counter;
   2160 #endif
   2161 }
   2162 
   2163 static uint64_t
   2164 wg_session_inc_send_counter(struct wg_session *wgs)
   2165 {
   2166 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2167 	return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
   2168 #else
   2169 	uint64_t send_counter;
   2170 
   2171 	mutex_enter(&wgs->wgs_send_counter_lock);
   2172 	send_counter = wgs->wgs_send_counter++;
   2173 	mutex_exit(&wgs->wgs_send_counter_lock);
   2174 
   2175 	return send_counter;
   2176 #endif
   2177 }
   2178 
   2179 static void
   2180 wg_clear_states(struct wg_session *wgs)
   2181 {
   2182 
   2183 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2184 
   2185 	wgs->wgs_send_counter = 0;
   2186 	sliwin_reset(&wgs->wgs_recvwin->window);
   2187 
   2188 #define wgs_clear(v)	explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
   2189 	wgs_clear(handshake_hash);
   2190 	wgs_clear(chaining_key);
   2191 	wgs_clear(ephemeral_key_pub);
   2192 	wgs_clear(ephemeral_key_priv);
   2193 	wgs_clear(ephemeral_key_peer);
   2194 #undef wgs_clear
   2195 }
   2196 
   2197 static struct wg_session *
   2198 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
   2199     struct psref *psref)
   2200 {
   2201 	struct wg_session *wgs;
   2202 
   2203 	int s = pserialize_read_enter();
   2204 	wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
   2205 	if (wgs != NULL) {
   2206 		KASSERT(atomic_load_relaxed(&wgs->wgs_state) !=
   2207 		    WGS_STATE_UNKNOWN);
   2208 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   2209 	}
   2210 	pserialize_read_exit(s);
   2211 
   2212 	return wgs;
   2213 }
   2214 
   2215 static void
   2216 wg_schedule_rekey_timer(struct wg_peer *wgp)
   2217 {
   2218 	int timeout = MIN(wg_rekey_after_time, INT_MAX/hz);
   2219 
   2220 	callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
   2221 }
   2222 
   2223 static void
   2224 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
   2225 {
   2226 	struct mbuf *m;
   2227 
   2228 	/*
   2229 	 * [W] 6.5 Passive Keepalive
   2230 	 * "A keepalive message is simply a transport data message with
   2231 	 *  a zero-length encapsulated encrypted inner-packet."
   2232 	 */
   2233 	m = m_gethdr(M_WAIT, MT_DATA);
   2234 	wg_send_data_msg(wgp, wgs, m);
   2235 }
   2236 
   2237 static bool
   2238 wg_need_to_send_init_message(struct wg_session *wgs)
   2239 {
   2240 	/*
   2241 	 * [W] 6.2 Transport Message Limits
   2242 	 * "if a peer is the initiator of a current secure session,
   2243 	 *  WireGuard will send a handshake initiation message to begin
   2244 	 *  a new secure session ... if after receiving a transport data
   2245 	 *  message, the current secure session is (REJECT-AFTER-TIME 
   2246 	 *  KEEPALIVE-TIMEOUT  REKEY-TIMEOUT) seconds old and it has
   2247 	 *  not yet acted upon this event."
   2248 	 */
   2249 	return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
   2250 	    (time_uptime - wgs->wgs_time_established) >=
   2251 	    (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
   2252 }
   2253 
   2254 static void
   2255 wg_schedule_peer_task(struct wg_peer *wgp, int task)
   2256 {
   2257 
   2258 	mutex_enter(wgp->wgp_intr_lock);
   2259 	WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
   2260 	if (wgp->wgp_tasks == 0)
   2261 		/*
   2262 		 * XXX If the current CPU is already loaded -- e.g., if
   2263 		 * there's already a bunch of handshakes queued up --
   2264 		 * consider tossing this over to another CPU to
   2265 		 * distribute the load.
   2266 		 */
   2267 		workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
   2268 	wgp->wgp_tasks |= task;
   2269 	mutex_exit(wgp->wgp_intr_lock);
   2270 }
   2271 
   2272 static void
   2273 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
   2274 {
   2275 	struct wg_sockaddr *wgsa_prev;
   2276 
   2277 	WG_TRACE("Changing endpoint");
   2278 
   2279 	memcpy(wgp->wgp_endpoint0, new, new->sa_len);
   2280 	wgsa_prev = wgp->wgp_endpoint;
   2281 	atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
   2282 	wgp->wgp_endpoint0 = wgsa_prev;
   2283 	atomic_store_release(&wgp->wgp_endpoint_available, true);
   2284 
   2285 	wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
   2286 }
   2287 
   2288 static bool
   2289 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
   2290 {
   2291 	uint16_t packet_len;
   2292 	const struct ip *ip;
   2293 
   2294 	if (__predict_false(decrypted_len < sizeof(struct ip)))
   2295 		return false;
   2296 
   2297 	ip = (const struct ip *)packet;
   2298 	if (ip->ip_v == 4)
   2299 		*af = AF_INET;
   2300 	else if (ip->ip_v == 6)
   2301 		*af = AF_INET6;
   2302 	else
   2303 		return false;
   2304 
   2305 	WG_DLOG("af=%d\n", *af);
   2306 
   2307 	if (*af == AF_INET) {
   2308 		packet_len = ntohs(ip->ip_len);
   2309 	} else {
   2310 		const struct ip6_hdr *ip6;
   2311 
   2312 		if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
   2313 			return false;
   2314 
   2315 		ip6 = (const struct ip6_hdr *)packet;
   2316 		packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
   2317 	}
   2318 
   2319 	WG_DLOG("packet_len=%u\n", packet_len);
   2320 	if (packet_len > decrypted_len)
   2321 		return false;
   2322 
   2323 	return true;
   2324 }
   2325 
   2326 static bool
   2327 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
   2328     int af, char *packet)
   2329 {
   2330 	struct sockaddr_storage ss;
   2331 	struct sockaddr *sa;
   2332 	struct psref psref;
   2333 	struct wg_peer *wgp;
   2334 	bool ok;
   2335 
   2336 	/*
   2337 	 * II CRYPTOKEY ROUTING
   2338 	 * "it will only accept it if its source IP resolves in the
   2339 	 *  table to the public key used in the secure session for
   2340 	 *  decrypting it."
   2341 	 */
   2342 
   2343 	if (af == AF_INET) {
   2344 		const struct ip *ip = (const struct ip *)packet;
   2345 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   2346 		sockaddr_in_init(sin, &ip->ip_src, 0);
   2347 		sa = sintosa(sin);
   2348 #ifdef INET6
   2349 	} else {
   2350 		const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
   2351 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   2352 		sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
   2353 		sa = sin6tosa(sin6);
   2354 #endif
   2355 	}
   2356 
   2357 	wgp = wg_pick_peer_by_sa(wg, sa, &psref);
   2358 	ok = (wgp == wgp_expected);
   2359 	if (wgp != NULL)
   2360 		wg_put_peer(wgp, &psref);
   2361 
   2362 	return ok;
   2363 }
   2364 
   2365 static void
   2366 wg_session_dtor_timer(void *arg)
   2367 {
   2368 	struct wg_peer *wgp = arg;
   2369 
   2370 	WG_TRACE("enter");
   2371 
   2372 	wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
   2373 }
   2374 
   2375 static void
   2376 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
   2377 {
   2378 
   2379 	/* 1 second grace period */
   2380 	callout_schedule(&wgp->wgp_session_dtor_timer, hz);
   2381 }
   2382 
   2383 static bool
   2384 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
   2385 {
   2386 	if (sa1->sa_family != sa2->sa_family)
   2387 		return false;
   2388 
   2389 	switch (sa1->sa_family) {
   2390 	case AF_INET:
   2391 		return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
   2392 	case AF_INET6:
   2393 		return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
   2394 	default:
   2395 		return true;
   2396 	}
   2397 }
   2398 
   2399 static void
   2400 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
   2401     const struct sockaddr *src)
   2402 {
   2403 	struct wg_sockaddr *wgsa;
   2404 	struct psref psref;
   2405 
   2406 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   2407 
   2408 #ifdef WG_DEBUG_LOG
   2409 	char oldaddr[128], newaddr[128];
   2410 	sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
   2411 	sockaddr_format(src, newaddr, sizeof(newaddr));
   2412 	WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
   2413 #endif
   2414 
   2415 	/*
   2416 	 * III: "Since the packet has authenticated correctly, the source IP of
   2417 	 * the outer UDP/IP packet is used to update the endpoint for peer..."
   2418 	 */
   2419 	if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
   2420 		!sockaddr_port_match(src, wgsatosa(wgsa)))) {
   2421 		/* XXX We can't change the endpoint twice in a short period */
   2422 		if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
   2423 			wg_change_endpoint(wgp, src);
   2424 		}
   2425 	}
   2426 
   2427 	wg_put_sa(wgp, wgsa, &psref);
   2428 }
   2429 
   2430 static void
   2431 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
   2432     const struct sockaddr *src)
   2433 {
   2434 	struct wg_msg_data *wgmd;
   2435 	char *encrypted_buf = NULL, *decrypted_buf;
   2436 	size_t encrypted_len, decrypted_len;
   2437 	struct wg_session *wgs;
   2438 	struct wg_peer *wgp;
   2439 	int state;
   2440 	size_t mlen;
   2441 	struct psref psref;
   2442 	int error, af;
   2443 	bool success, free_encrypted_buf = false, ok;
   2444 	struct mbuf *n;
   2445 
   2446 	KASSERT(m->m_len >= sizeof(struct wg_msg_data));
   2447 	wgmd = mtod(m, struct wg_msg_data *);
   2448 
   2449 	KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
   2450 	WG_TRACE("data");
   2451 
   2452 	/* Find the putative session, or drop.  */
   2453 	wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
   2454 	if (wgs == NULL) {
   2455 		WG_TRACE("No session found");
   2456 		m_freem(m);
   2457 		return;
   2458 	}
   2459 
   2460 	/*
   2461 	 * We are only ready to handle data when in INIT_PASSIVE,
   2462 	 * ESTABLISHED, or DESTROYING.  All transitions out of that
   2463 	 * state dissociate the session index and drain psrefs.
   2464 	 */
   2465 	state = atomic_load_relaxed(&wgs->wgs_state);
   2466 	switch (state) {
   2467 	case WGS_STATE_UNKNOWN:
   2468 		panic("wg session %p in unknown state has session index %u",
   2469 		    wgs, wgmd->wgmd_receiver);
   2470 	case WGS_STATE_INIT_ACTIVE:
   2471 		WG_TRACE("not yet ready for data");
   2472 		goto out;
   2473 	case WGS_STATE_INIT_PASSIVE:
   2474 	case WGS_STATE_ESTABLISHED:
   2475 	case WGS_STATE_DESTROYING:
   2476 		break;
   2477 	}
   2478 
   2479 	/*
   2480 	 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
   2481 	 * to update the endpoint if authentication succeeds.
   2482 	 */
   2483 	wgp = wgs->wgs_peer;
   2484 
   2485 	/*
   2486 	 * Reject outrageously wrong sequence numbers before doing any
   2487 	 * crypto work or taking any locks.
   2488 	 */
   2489 	error = sliwin_check_fast(&wgs->wgs_recvwin->window,
   2490 	    le64toh(wgmd->wgmd_counter));
   2491 	if (error) {
   2492 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2493 		    "out-of-window packet: %"PRIu64"\n",
   2494 		    le64toh(wgmd->wgmd_counter));
   2495 		goto out;
   2496 	}
   2497 
   2498 	/* Ensure the payload and authenticator are contiguous.  */
   2499 	mlen = m_length(m);
   2500 	encrypted_len = mlen - sizeof(*wgmd);
   2501 	if (encrypted_len < WG_AUTHTAG_LEN) {
   2502 		WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
   2503 		goto out;
   2504 	}
   2505 	success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
   2506 	if (success) {
   2507 		encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
   2508 	} else {
   2509 		encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
   2510 		if (encrypted_buf == NULL) {
   2511 			WG_DLOG("failed to allocate encrypted_buf\n");
   2512 			goto out;
   2513 		}
   2514 		m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
   2515 		free_encrypted_buf = true;
   2516 	}
   2517 	/* m_ensure_contig may change m regardless of its result */
   2518 	KASSERT(m->m_len >= sizeof(*wgmd));
   2519 	wgmd = mtod(m, struct wg_msg_data *);
   2520 
   2521 	/*
   2522 	 * Get a buffer for the plaintext.  Add WG_AUTHTAG_LEN to avoid
   2523 	 * a zero-length buffer (XXX).  Drop if plaintext is longer
   2524 	 * than MCLBYTES (XXX).
   2525 	 */
   2526 	decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
   2527 	if (decrypted_len > MCLBYTES) {
   2528 		/* FIXME handle larger data than MCLBYTES */
   2529 		WG_DLOG("couldn't handle larger data than MCLBYTES\n");
   2530 		goto out;
   2531 	}
   2532 	n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
   2533 	if (n == NULL) {
   2534 		WG_DLOG("wg_get_mbuf failed\n");
   2535 		goto out;
   2536 	}
   2537 	decrypted_buf = mtod(n, char *);
   2538 
   2539 	/* Decrypt and verify the packet.  */
   2540 	WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
   2541 	error = wg_algo_aead_dec(decrypted_buf,
   2542 	    encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
   2543 	    wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
   2544 	    encrypted_len, NULL, 0);
   2545 	if (error != 0) {
   2546 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2547 		    "failed to wg_algo_aead_dec\n");
   2548 		m_freem(n);
   2549 		goto out;
   2550 	}
   2551 	WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
   2552 
   2553 	/* Packet is genuine.  Reject it if a replay or just too old.  */
   2554 	mutex_enter(&wgs->wgs_recvwin->lock);
   2555 	error = sliwin_update(&wgs->wgs_recvwin->window,
   2556 	    le64toh(wgmd->wgmd_counter));
   2557 	mutex_exit(&wgs->wgs_recvwin->lock);
   2558 	if (error) {
   2559 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2560 		    "replay or out-of-window packet: %"PRIu64"\n",
   2561 		    le64toh(wgmd->wgmd_counter));
   2562 		m_freem(n);
   2563 		goto out;
   2564 	}
   2565 
   2566 	/* We're done with m now; free it and chuck the pointers.  */
   2567 	m_freem(m);
   2568 	m = NULL;
   2569 	wgmd = NULL;
   2570 
   2571 	/*
   2572 	 * Validate the encapsulated packet header and get the address
   2573 	 * family, or drop.
   2574 	 */
   2575 	ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
   2576 	if (!ok) {
   2577 		m_freem(n);
   2578 		goto out;
   2579 	}
   2580 
   2581 	/*
   2582 	 * The packet is genuine.  Update the peer's endpoint if the
   2583 	 * source address changed.
   2584 	 *
   2585 	 * XXX How to prevent DoS by replaying genuine packets from the
   2586 	 * wrong source address?
   2587 	 */
   2588 	wg_update_endpoint_if_necessary(wgp, src);
   2589 
   2590 	/* Submit it into our network stack if routable.  */
   2591 	ok = wg_validate_route(wg, wgp, af, decrypted_buf);
   2592 	if (ok) {
   2593 		wg->wg_ops->input(&wg->wg_if, n, af);
   2594 	} else {
   2595 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2596 		    "invalid source address\n");
   2597 		m_freem(n);
   2598 		/*
   2599 		 * The inner address is invalid however the session is valid
   2600 		 * so continue the session processing below.
   2601 		 */
   2602 	}
   2603 	n = NULL;
   2604 
   2605 	/* Update the state machine if necessary.  */
   2606 	if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
   2607 		/*
   2608 		 * We were waiting for the initiator to send their
   2609 		 * first data transport message, and that has happened.
   2610 		 * Schedule a task to establish this session.
   2611 		 */
   2612 		wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
   2613 	} else {
   2614 		if (__predict_false(wg_need_to_send_init_message(wgs))) {
   2615 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   2616 		}
   2617 		/*
   2618 		 * [W] 6.5 Passive Keepalive
   2619 		 * "If a peer has received a validly-authenticated transport
   2620 		 *  data message (section 5.4.6), but does not have any packets
   2621 		 *  itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
   2622 		 *  a keepalive message."
   2623 		 */
   2624 		WG_DLOG("time_uptime=%ju wgs_time_last_data_sent=%ju\n",
   2625 		    (uintmax_t)time_uptime,
   2626 		    (uintmax_t)wgs->wgs_time_last_data_sent);
   2627 		if ((time_uptime - wgs->wgs_time_last_data_sent) >=
   2628 		    wg_keepalive_timeout) {
   2629 			WG_TRACE("Schedule sending keepalive message");
   2630 			/*
   2631 			 * We can't send a keepalive message here to avoid
   2632 			 * a deadlock;  we already hold the solock of a socket
   2633 			 * that is used to send the message.
   2634 			 */
   2635 			wg_schedule_peer_task(wgp,
   2636 			    WGP_TASK_SEND_KEEPALIVE_MESSAGE);
   2637 		}
   2638 	}
   2639 out:
   2640 	wg_put_session(wgs, &psref);
   2641 	if (m != NULL)
   2642 		m_freem(m);
   2643 	if (free_encrypted_buf)
   2644 		kmem_intr_free(encrypted_buf, encrypted_len);
   2645 }
   2646 
   2647 static void
   2648 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
   2649 {
   2650 	struct wg_session *wgs;
   2651 	struct wg_peer *wgp;
   2652 	struct psref psref;
   2653 	int error;
   2654 	uint8_t key[WG_HASH_LEN];
   2655 	uint8_t cookie[WG_COOKIE_LEN];
   2656 
   2657 	WG_TRACE("cookie msg received");
   2658 
   2659 	/* Find the putative session.  */
   2660 	wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
   2661 	if (wgs == NULL) {
   2662 		WG_TRACE("No session found");
   2663 		return;
   2664 	}
   2665 
   2666 	/* Lock the peer so we can update the cookie state.  */
   2667 	wgp = wgs->wgs_peer;
   2668 	mutex_enter(wgp->wgp_lock);
   2669 
   2670 	if (!wgp->wgp_last_sent_mac1_valid) {
   2671 		WG_TRACE("No valid mac1 sent (or expired)");
   2672 		goto out;
   2673 	}
   2674 
   2675 	/* Decrypt the cookie and store it for later handshake retry.  */
   2676 	wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
   2677 	    sizeof(wgp->wgp_pubkey));
   2678 	error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
   2679 	    wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
   2680 	    wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
   2681 	    wgmc->wgmc_salt);
   2682 	if (error != 0) {
   2683 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2684 		    "wg_algo_aead_dec for cookie failed: error=%d\n", error);
   2685 		goto out;
   2686 	}
   2687 	/*
   2688 	 * [W] 6.6: Interaction with Cookie Reply System
   2689 	 * "it should simply store the decrypted cookie value from the cookie
   2690 	 *  reply message, and wait for the expiration of the REKEY-TIMEOUT
   2691 	 *  timer for retrying a handshake initiation message."
   2692 	 */
   2693 	wgp->wgp_latest_cookie_time = time_uptime;
   2694 	memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
   2695 out:
   2696 	mutex_exit(wgp->wgp_lock);
   2697 	wg_put_session(wgs, &psref);
   2698 }
   2699 
   2700 static struct mbuf *
   2701 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
   2702 {
   2703 	struct wg_msg wgm;
   2704 	size_t mbuflen;
   2705 	size_t msglen;
   2706 
   2707 	/*
   2708 	 * Get the mbuf chain length.  It is already guaranteed, by
   2709 	 * wg_overudp_cb, to be large enough for a struct wg_msg.
   2710 	 */
   2711 	mbuflen = m_length(m);
   2712 	KASSERT(mbuflen >= sizeof(struct wg_msg));
   2713 
   2714 	/*
   2715 	 * Copy the message header (32-bit message type) out -- we'll
   2716 	 * worry about contiguity and alignment later.
   2717 	 */
   2718 	m_copydata(m, 0, sizeof(wgm), &wgm);
   2719 	switch (le32toh(wgm.wgm_type)) {
   2720 	case WG_MSG_TYPE_INIT:
   2721 		msglen = sizeof(struct wg_msg_init);
   2722 		break;
   2723 	case WG_MSG_TYPE_RESP:
   2724 		msglen = sizeof(struct wg_msg_resp);
   2725 		break;
   2726 	case WG_MSG_TYPE_COOKIE:
   2727 		msglen = sizeof(struct wg_msg_cookie);
   2728 		break;
   2729 	case WG_MSG_TYPE_DATA:
   2730 		msglen = sizeof(struct wg_msg_data);
   2731 		break;
   2732 	default:
   2733 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   2734 		    "Unexpected msg type: %u\n", le32toh(wgm.wgm_type));
   2735 		goto error;
   2736 	}
   2737 
   2738 	/* Verify the mbuf chain is long enough for this type of message.  */
   2739 	if (__predict_false(mbuflen < msglen)) {
   2740 		WG_DLOG("Invalid msg size: mbuflen=%lu type=%u\n", mbuflen,
   2741 		    le32toh(wgm.wgm_type));
   2742 		goto error;
   2743 	}
   2744 
   2745 	/* Make the message header contiguous if necessary.  */
   2746 	if (__predict_false(m->m_len < msglen)) {
   2747 		m = m_pullup(m, msglen);
   2748 		if (m == NULL)
   2749 			return NULL;
   2750 	}
   2751 
   2752 	return m;
   2753 
   2754 error:
   2755 	m_freem(m);
   2756 	return NULL;
   2757 }
   2758 
   2759 static void
   2760 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
   2761     const struct sockaddr *src)
   2762 {
   2763 	struct wg_msg *wgm;
   2764 
   2765 	m = wg_validate_msg_header(wg, m);
   2766 	if (__predict_false(m == NULL))
   2767 		return;
   2768 
   2769 	KASSERT(m->m_len >= sizeof(struct wg_msg));
   2770 	wgm = mtod(m, struct wg_msg *);
   2771 	switch (le32toh(wgm->wgm_type)) {
   2772 	case WG_MSG_TYPE_INIT:
   2773 		wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
   2774 		break;
   2775 	case WG_MSG_TYPE_RESP:
   2776 		wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
   2777 		break;
   2778 	case WG_MSG_TYPE_COOKIE:
   2779 		wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
   2780 		break;
   2781 	case WG_MSG_TYPE_DATA:
   2782 		wg_handle_msg_data(wg, m, src);
   2783 		/* wg_handle_msg_data frees m for us */
   2784 		return;
   2785 	default:
   2786 		panic("invalid message type: %d", le32toh(wgm->wgm_type));
   2787 	}
   2788 
   2789 	m_freem(m);
   2790 }
   2791 
   2792 static void
   2793 wg_receive_packets(struct wg_softc *wg, const int af)
   2794 {
   2795 
   2796 	for (;;) {
   2797 		int error, flags;
   2798 		struct socket *so;
   2799 		struct mbuf *m = NULL;
   2800 		struct uio dummy_uio;
   2801 		struct mbuf *paddr = NULL;
   2802 		struct sockaddr *src;
   2803 
   2804 		so = wg_get_so_by_af(wg, af);
   2805 		flags = MSG_DONTWAIT;
   2806 		dummy_uio.uio_resid = 1000000000;
   2807 
   2808 		error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
   2809 		    &flags);
   2810 		if (error || m == NULL) {
   2811 			//if (error == EWOULDBLOCK)
   2812 			return;
   2813 		}
   2814 
   2815 		KASSERT(paddr != NULL);
   2816 		KASSERT(paddr->m_len >= sizeof(struct sockaddr));
   2817 		src = mtod(paddr, struct sockaddr *);
   2818 
   2819 		wg_handle_packet(wg, m, src);
   2820 	}
   2821 }
   2822 
   2823 static void
   2824 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
   2825 {
   2826 
   2827 	psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
   2828 }
   2829 
   2830 static void
   2831 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
   2832 {
   2833 
   2834 	psref_release(psref, &wgp->wgp_psref, wg_psref_class);
   2835 }
   2836 
   2837 static void
   2838 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
   2839 {
   2840 	struct wg_session *wgs;
   2841 
   2842 	WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
   2843 
   2844 	KASSERT(mutex_owned(wgp->wgp_lock));
   2845 
   2846 	if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
   2847 		WGLOG(LOG_DEBUG, "No endpoint available\n");
   2848 		/* XXX should do something? */
   2849 		return;
   2850 	}
   2851 
   2852 	wgs = wgp->wgp_session_stable;
   2853 	if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
   2854 		/* XXX What if the unstable session is already INIT_ACTIVE?  */
   2855 		wg_send_handshake_msg_init(wg, wgp);
   2856 	} else {
   2857 		/* rekey */
   2858 		wgs = wgp->wgp_session_unstable;
   2859 		if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   2860 			wg_send_handshake_msg_init(wg, wgp);
   2861 	}
   2862 }
   2863 
   2864 static void
   2865 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
   2866 {
   2867 	struct wg_session *wgs;
   2868 
   2869 	WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
   2870 
   2871 	KASSERT(mutex_owned(wgp->wgp_lock));
   2872 	KASSERT(wgp->wgp_handshake_start_time != 0);
   2873 
   2874 	wgs = wgp->wgp_session_unstable;
   2875 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   2876 		return;
   2877 
   2878 	/*
   2879 	 * XXX no real need to assign a new index here, but we do need
   2880 	 * to transition to UNKNOWN temporarily
   2881 	 */
   2882 	wg_put_session_index(wg, wgs);
   2883 
   2884 	/* [W] 6.4 Handshake Initiation Retransmission */
   2885 	if ((time_uptime - wgp->wgp_handshake_start_time) >
   2886 	    wg_rekey_attempt_time) {
   2887 		/* Give up handshaking */
   2888 		wgp->wgp_handshake_start_time = 0;
   2889 		WG_TRACE("give up");
   2890 
   2891 		/*
   2892 		 * If a new data packet comes, handshaking will be retried
   2893 		 * and a new session would be established at that time,
   2894 		 * however we don't want to send pending packets then.
   2895 		 */
   2896 		wg_purge_pending_packets(wgp);
   2897 		return;
   2898 	}
   2899 
   2900 	wg_task_send_init_message(wg, wgp);
   2901 }
   2902 
   2903 static void
   2904 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
   2905 {
   2906 	struct wg_session *wgs, *wgs_prev;
   2907 	struct mbuf *m;
   2908 
   2909 	KASSERT(mutex_owned(wgp->wgp_lock));
   2910 
   2911 	wgs = wgp->wgp_session_unstable;
   2912 	if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
   2913 		/* XXX Can this happen?  */
   2914 		return;
   2915 
   2916 	wgs->wgs_state = WGS_STATE_ESTABLISHED;
   2917 	wgs->wgs_time_established = time_uptime;
   2918 	wgs->wgs_time_last_data_sent = 0;
   2919 	wgs->wgs_is_initiator = false;
   2920 	WG_TRACE("WGS_STATE_ESTABLISHED");
   2921 
   2922 	wg_swap_sessions(wgp);
   2923 	KASSERT(wgs == wgp->wgp_session_stable);
   2924 	wgs_prev = wgp->wgp_session_unstable;
   2925 	getnanotime(&wgp->wgp_last_handshake_time);
   2926 	wgp->wgp_handshake_start_time = 0;
   2927 	wgp->wgp_last_sent_mac1_valid = false;
   2928 	wgp->wgp_last_sent_cookie_valid = false;
   2929 
   2930 	/* If we had a data packet queued up, send it.  */
   2931 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   2932 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
   2933 
   2934 		M_SETCTX(m, wgp);
   2935 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   2936 			WGLOG(LOG_ERR, "pktq full, dropping\n");
   2937 			m_freem(m);
   2938 		}
   2939 	}
   2940 
   2941 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   2942 		/* Wait for wg_get_stable_session to drain.  */
   2943 		pserialize_perform(wgp->wgp_psz);
   2944 
   2945 		/* Transition ESTABLISHED->DESTROYING.  */
   2946 		wgs_prev->wgs_state = WGS_STATE_DESTROYING;
   2947 
   2948 		/* We can't destroy the old session immediately */
   2949 		wg_schedule_session_dtor_timer(wgp);
   2950 	} else {
   2951 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   2952 		    "state=%d", wgs_prev->wgs_state);
   2953 		wg_clear_states(wgs_prev);
   2954 		wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
   2955 	}
   2956 }
   2957 
   2958 static void
   2959 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
   2960 {
   2961 
   2962 	WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
   2963 
   2964 	KASSERT(mutex_owned(wgp->wgp_lock));
   2965 
   2966 	if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
   2967 		pserialize_perform(wgp->wgp_psz);
   2968 		mutex_exit(wgp->wgp_lock);
   2969 		psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
   2970 		    wg_psref_class);
   2971 		psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
   2972 		    wg_psref_class);
   2973 		mutex_enter(wgp->wgp_lock);
   2974 		atomic_store_release(&wgp->wgp_endpoint_changing, 0);
   2975 	}
   2976 }
   2977 
   2978 static void
   2979 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
   2980 {
   2981 	struct wg_session *wgs;
   2982 
   2983 	WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
   2984 
   2985 	KASSERT(mutex_owned(wgp->wgp_lock));
   2986 
   2987 	wgs = wgp->wgp_session_stable;
   2988 	if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
   2989 		return;
   2990 
   2991 	wg_send_keepalive_msg(wgp, wgs);
   2992 }
   2993 
   2994 static void
   2995 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
   2996 {
   2997 	struct wg_session *wgs;
   2998 
   2999 	WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
   3000 
   3001 	KASSERT(mutex_owned(wgp->wgp_lock));
   3002 
   3003 	wgs = wgp->wgp_session_unstable;
   3004 	if (wgs->wgs_state == WGS_STATE_DESTROYING) {
   3005 		wg_put_session_index(wg, wgs);
   3006 	}
   3007 }
   3008 
   3009 static void
   3010 wg_peer_work(struct work *wk, void *cookie)
   3011 {
   3012 	struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
   3013 	struct wg_softc *wg = wgp->wgp_sc;
   3014 	int tasks;
   3015 
   3016 	mutex_enter(wgp->wgp_intr_lock);
   3017 	while ((tasks = wgp->wgp_tasks) != 0) {
   3018 		wgp->wgp_tasks = 0;
   3019 		mutex_exit(wgp->wgp_intr_lock);
   3020 
   3021 		mutex_enter(wgp->wgp_lock);
   3022 		if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
   3023 			wg_task_send_init_message(wg, wgp);
   3024 		if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
   3025 			wg_task_retry_handshake(wg, wgp);
   3026 		if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
   3027 			wg_task_establish_session(wg, wgp);
   3028 		if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
   3029 			wg_task_endpoint_changed(wg, wgp);
   3030 		if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
   3031 			wg_task_send_keepalive_message(wg, wgp);
   3032 		if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
   3033 			wg_task_destroy_prev_session(wg, wgp);
   3034 		mutex_exit(wgp->wgp_lock);
   3035 
   3036 		mutex_enter(wgp->wgp_intr_lock);
   3037 	}
   3038 	mutex_exit(wgp->wgp_intr_lock);
   3039 }
   3040 
   3041 static void
   3042 wg_job(struct threadpool_job *job)
   3043 {
   3044 	struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
   3045 	int bound, upcalls;
   3046 
   3047 	mutex_enter(wg->wg_intr_lock);
   3048 	while ((upcalls = wg->wg_upcalls) != 0) {
   3049 		wg->wg_upcalls = 0;
   3050 		mutex_exit(wg->wg_intr_lock);
   3051 		bound = curlwp_bind();
   3052 		if (ISSET(upcalls, WG_UPCALL_INET))
   3053 			wg_receive_packets(wg, AF_INET);
   3054 		if (ISSET(upcalls, WG_UPCALL_INET6))
   3055 			wg_receive_packets(wg, AF_INET6);
   3056 		curlwp_bindx(bound);
   3057 		mutex_enter(wg->wg_intr_lock);
   3058 	}
   3059 	threadpool_job_done(job);
   3060 	mutex_exit(wg->wg_intr_lock);
   3061 }
   3062 
   3063 static int
   3064 wg_bind_port(struct wg_softc *wg, const uint16_t port)
   3065 {
   3066 	int error;
   3067 	uint16_t old_port = wg->wg_listen_port;
   3068 
   3069 	if (port != 0 && old_port == port)
   3070 		return 0;
   3071 
   3072 	struct sockaddr_in _sin, *sin = &_sin;
   3073 	sin->sin_len = sizeof(*sin);
   3074 	sin->sin_family = AF_INET;
   3075 	sin->sin_addr.s_addr = INADDR_ANY;
   3076 	sin->sin_port = htons(port);
   3077 
   3078 	error = sobind(wg->wg_so4, sintosa(sin), curlwp);
   3079 	if (error != 0)
   3080 		return error;
   3081 
   3082 #ifdef INET6
   3083 	struct sockaddr_in6 _sin6, *sin6 = &_sin6;
   3084 	sin6->sin6_len = sizeof(*sin6);
   3085 	sin6->sin6_family = AF_INET6;
   3086 	sin6->sin6_addr = in6addr_any;
   3087 	sin6->sin6_port = htons(port);
   3088 
   3089 	error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
   3090 	if (error != 0)
   3091 		return error;
   3092 #endif
   3093 
   3094 	wg->wg_listen_port = port;
   3095 
   3096 	return 0;
   3097 }
   3098 
   3099 static void
   3100 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
   3101 {
   3102 	struct wg_softc *wg = cookie;
   3103 	int reason;
   3104 
   3105 	reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
   3106 	    WG_UPCALL_INET :
   3107 	    WG_UPCALL_INET6;
   3108 
   3109 	mutex_enter(wg->wg_intr_lock);
   3110 	wg->wg_upcalls |= reason;
   3111 	threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
   3112 	mutex_exit(wg->wg_intr_lock);
   3113 }
   3114 
   3115 static int
   3116 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
   3117     struct sockaddr *src, void *arg)
   3118 {
   3119 	struct wg_softc *wg = arg;
   3120 	struct wg_msg wgm;
   3121 	struct mbuf *m = *mp;
   3122 
   3123 	WG_TRACE("enter");
   3124 
   3125 	/* Verify the mbuf chain is long enough to have a wg msg header.  */
   3126 	KASSERT(offset <= m_length(m));
   3127 	if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
   3128 		/* drop on the floor */
   3129 		m_freem(m);
   3130 		return -1;
   3131 	}
   3132 
   3133 	/*
   3134 	 * Copy the message header (32-bit message type) out -- we'll
   3135 	 * worry about contiguity and alignment later.
   3136 	 */
   3137 	m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
   3138 	WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
   3139 
   3140 	/*
   3141 	 * Handle DATA packets promptly as they arrive.  Other packets
   3142 	 * may require expensive public-key crypto and are not as
   3143 	 * sensitive to latency, so defer them to the worker thread.
   3144 	 */
   3145 	switch (le32toh(wgm.wgm_type)) {
   3146 	case WG_MSG_TYPE_DATA:
   3147 		/* handle immediately */
   3148 		m_adj(m, offset);
   3149 		if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
   3150 			m = m_pullup(m, sizeof(struct wg_msg_data));
   3151 			if (m == NULL)
   3152 				return -1;
   3153 		}
   3154 		wg_handle_msg_data(wg, m, src);
   3155 		*mp = NULL;
   3156 		return 1;
   3157 	case WG_MSG_TYPE_INIT:
   3158 	case WG_MSG_TYPE_RESP:
   3159 	case WG_MSG_TYPE_COOKIE:
   3160 		/* pass through to so_receive in wg_receive_packets */
   3161 		return 0;
   3162 	default:
   3163 		/* drop on the floor */
   3164 		m_freem(m);
   3165 		return -1;
   3166 	}
   3167 }
   3168 
   3169 static int
   3170 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
   3171 {
   3172 	int error;
   3173 	struct socket *so;
   3174 
   3175 	error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
   3176 	if (error != 0)
   3177 		return error;
   3178 
   3179 	solock(so);
   3180 	so->so_upcallarg = wg;
   3181 	so->so_upcall = wg_so_upcall;
   3182 	so->so_rcv.sb_flags |= SB_UPCALL;
   3183 	if (af == AF_INET)
   3184 		in_pcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
   3185 #if INET6
   3186 	else
   3187 		in6_pcb_register_overudp_cb(sotoin6pcb(so), wg_overudp_cb, wg);
   3188 #endif
   3189 	sounlock(so);
   3190 
   3191 	*sop = so;
   3192 
   3193 	return 0;
   3194 }
   3195 
   3196 static bool
   3197 wg_session_hit_limits(struct wg_session *wgs)
   3198 {
   3199 
   3200 	/*
   3201 	 * [W] 6.2: Transport Message Limits
   3202 	 * "After REJECT-AFTER-MESSAGES transport data messages or after the
   3203 	 *  current secure session is REJECT-AFTER-TIME seconds old, whichever
   3204 	 *  comes first, WireGuard will refuse to send any more transport data
   3205 	 *  messages using the current secure session, ..."
   3206 	 */
   3207 	KASSERT(wgs->wgs_time_established != 0);
   3208 	if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
   3209 		WG_DLOG("The session hits REJECT_AFTER_TIME\n");
   3210 		return true;
   3211 	} else if (wg_session_get_send_counter(wgs) >
   3212 	    wg_reject_after_messages) {
   3213 		WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
   3214 		return true;
   3215 	}
   3216 
   3217 	return false;
   3218 }
   3219 
   3220 static void
   3221 wgintr(void *cookie)
   3222 {
   3223 	struct wg_peer *wgp;
   3224 	struct wg_session *wgs;
   3225 	struct mbuf *m;
   3226 	struct psref psref;
   3227 
   3228 	while ((m = pktq_dequeue(wg_pktq)) != NULL) {
   3229 		wgp = M_GETCTX(m, struct wg_peer *);
   3230 		if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
   3231 			WG_TRACE("no stable session");
   3232 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3233 			goto next0;
   3234 		}
   3235 		if (__predict_false(wg_session_hit_limits(wgs))) {
   3236 			WG_TRACE("stable session hit limits");
   3237 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3238 			goto next1;
   3239 		}
   3240 		wg_send_data_msg(wgp, wgs, m);
   3241 		m = NULL;	/* consumed */
   3242 next1:		wg_put_session(wgs, &psref);
   3243 next0:		if (m)
   3244 			m_freem(m);
   3245 		/* XXX Yield to avoid userland starvation?  */
   3246 	}
   3247 }
   3248 
   3249 static void
   3250 wg_rekey_timer(void *arg)
   3251 {
   3252 	struct wg_peer *wgp = arg;
   3253 
   3254 	wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3255 }
   3256 
   3257 static void
   3258 wg_purge_pending_packets(struct wg_peer *wgp)
   3259 {
   3260 	struct mbuf *m;
   3261 
   3262 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL)
   3263 		m_freem(m);
   3264 	pktq_barrier(wg_pktq);
   3265 }
   3266 
   3267 static void
   3268 wg_handshake_timeout_timer(void *arg)
   3269 {
   3270 	struct wg_peer *wgp = arg;
   3271 
   3272 	WG_TRACE("enter");
   3273 
   3274 	wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
   3275 }
   3276 
   3277 static struct wg_peer *
   3278 wg_alloc_peer(struct wg_softc *wg)
   3279 {
   3280 	struct wg_peer *wgp;
   3281 
   3282 	wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
   3283 
   3284 	wgp->wgp_sc = wg;
   3285 	callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
   3286 	callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
   3287 	callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
   3288 	callout_setfunc(&wgp->wgp_handshake_timeout_timer,
   3289 	    wg_handshake_timeout_timer, wgp);
   3290 	callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
   3291 	callout_setfunc(&wgp->wgp_session_dtor_timer,
   3292 	    wg_session_dtor_timer, wgp);
   3293 	PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
   3294 	wgp->wgp_endpoint_changing = false;
   3295 	wgp->wgp_endpoint_available = false;
   3296 	wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3297 	wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3298 	wgp->wgp_psz = pserialize_create();
   3299 	psref_target_init(&wgp->wgp_psref, wg_psref_class);
   3300 
   3301 	wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
   3302 	wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
   3303 	psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3304 	psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3305 
   3306 	struct wg_session *wgs;
   3307 	wgp->wgp_session_stable =
   3308 	    kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
   3309 	wgp->wgp_session_unstable =
   3310 	    kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
   3311 	wgs = wgp->wgp_session_stable;
   3312 	wgs->wgs_peer = wgp;
   3313 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3314 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3315 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3316 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3317 #endif
   3318 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3319 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3320 
   3321 	wgs = wgp->wgp_session_unstable;
   3322 	wgs->wgs_peer = wgp;
   3323 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3324 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3325 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3326 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3327 #endif
   3328 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3329 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3330 
   3331 	return wgp;
   3332 }
   3333 
   3334 static void
   3335 wg_destroy_peer(struct wg_peer *wgp)
   3336 {
   3337 	struct wg_session *wgs;
   3338 	struct wg_softc *wg = wgp->wgp_sc;
   3339 
   3340 	/* Prevent new packets from this peer on any source address.  */
   3341 	rw_enter(wg->wg_rwlock, RW_WRITER);
   3342 	for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
   3343 		struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
   3344 		struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
   3345 		struct radix_node *rn;
   3346 
   3347 		KASSERT(rnh != NULL);
   3348 		rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
   3349 		    &wga->wga_sa_mask, rnh);
   3350 		if (rn == NULL) {
   3351 			char addrstr[128];
   3352 			sockaddr_format(&wga->wga_sa_addr, addrstr,
   3353 			    sizeof(addrstr));
   3354 			WGLOG(LOG_WARNING, "Couldn't delete %s", addrstr);
   3355 		}
   3356 	}
   3357 	rw_exit(wg->wg_rwlock);
   3358 
   3359 	/* Purge pending packets.  */
   3360 	wg_purge_pending_packets(wgp);
   3361 
   3362 	/* Halt all packet processing and timeouts.  */
   3363 	callout_halt(&wgp->wgp_rekey_timer, NULL);
   3364 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
   3365 	callout_halt(&wgp->wgp_session_dtor_timer, NULL);
   3366 
   3367 	/* Wait for any queued work to complete.  */
   3368 	workqueue_wait(wg_wq, &wgp->wgp_work);
   3369 
   3370 	wgs = wgp->wgp_session_unstable;
   3371 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3372 		mutex_enter(wgp->wgp_lock);
   3373 		wg_destroy_session(wg, wgs);
   3374 		mutex_exit(wgp->wgp_lock);
   3375 	}
   3376 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3377 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3378 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3379 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3380 #endif
   3381 	kmem_free(wgs, sizeof(*wgs));
   3382 
   3383 	wgs = wgp->wgp_session_stable;
   3384 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3385 		mutex_enter(wgp->wgp_lock);
   3386 		wg_destroy_session(wg, wgs);
   3387 		mutex_exit(wgp->wgp_lock);
   3388 	}
   3389 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3390 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3391 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3392 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3393 #endif
   3394 	kmem_free(wgs, sizeof(*wgs));
   3395 
   3396 	psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3397 	psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3398 	kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
   3399 	kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
   3400 
   3401 	pserialize_destroy(wgp->wgp_psz);
   3402 	mutex_obj_free(wgp->wgp_intr_lock);
   3403 	mutex_obj_free(wgp->wgp_lock);
   3404 
   3405 	kmem_free(wgp, sizeof(*wgp));
   3406 }
   3407 
   3408 static void
   3409 wg_destroy_all_peers(struct wg_softc *wg)
   3410 {
   3411 	struct wg_peer *wgp, *wgp0 __diagused;
   3412 	void *garbage_byname, *garbage_bypubkey;
   3413 
   3414 restart:
   3415 	garbage_byname = garbage_bypubkey = NULL;
   3416 	mutex_enter(wg->wg_lock);
   3417 	WG_PEER_WRITER_FOREACH(wgp, wg) {
   3418 		if (wgp->wgp_name[0]) {
   3419 			wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
   3420 			    strlen(wgp->wgp_name));
   3421 			KASSERT(wgp0 == wgp);
   3422 			garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3423 		}
   3424 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3425 		    sizeof(wgp->wgp_pubkey));
   3426 		KASSERT(wgp0 == wgp);
   3427 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3428 		WG_PEER_WRITER_REMOVE(wgp);
   3429 		wg->wg_npeers--;
   3430 		mutex_enter(wgp->wgp_lock);
   3431 		pserialize_perform(wgp->wgp_psz);
   3432 		mutex_exit(wgp->wgp_lock);
   3433 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3434 		break;
   3435 	}
   3436 	mutex_exit(wg->wg_lock);
   3437 
   3438 	if (wgp == NULL)
   3439 		return;
   3440 
   3441 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3442 
   3443 	wg_destroy_peer(wgp);
   3444 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3445 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3446 
   3447 	goto restart;
   3448 }
   3449 
   3450 static int
   3451 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
   3452 {
   3453 	struct wg_peer *wgp, *wgp0 __diagused;
   3454 	void *garbage_byname, *garbage_bypubkey;
   3455 
   3456 	mutex_enter(wg->wg_lock);
   3457 	wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
   3458 	if (wgp != NULL) {
   3459 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3460 		    sizeof(wgp->wgp_pubkey));
   3461 		KASSERT(wgp0 == wgp);
   3462 		garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3463 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3464 		WG_PEER_WRITER_REMOVE(wgp);
   3465 		wg->wg_npeers--;
   3466 		mutex_enter(wgp->wgp_lock);
   3467 		pserialize_perform(wgp->wgp_psz);
   3468 		mutex_exit(wgp->wgp_lock);
   3469 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3470 	}
   3471 	mutex_exit(wg->wg_lock);
   3472 
   3473 	if (wgp == NULL)
   3474 		return ENOENT;
   3475 
   3476 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3477 
   3478 	wg_destroy_peer(wgp);
   3479 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3480 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3481 
   3482 	return 0;
   3483 }
   3484 
   3485 static int
   3486 wg_if_attach(struct wg_softc *wg)
   3487 {
   3488 	int error;
   3489 
   3490 	wg->wg_if.if_addrlen = 0;
   3491 	wg->wg_if.if_mtu = WG_MTU;
   3492 	wg->wg_if.if_flags = IFF_MULTICAST;
   3493 	wg->wg_if.if_extflags = IFEF_NO_LINK_STATE_CHANGE;
   3494 	wg->wg_if.if_extflags |= IFEF_MPSAFE;
   3495 	wg->wg_if.if_ioctl = wg_ioctl;
   3496 	wg->wg_if.if_output = wg_output;
   3497 	wg->wg_if.if_init = wg_init;
   3498 	wg->wg_if.if_stop = wg_stop;
   3499 	wg->wg_if.if_type = IFT_OTHER;
   3500 	wg->wg_if.if_dlt = DLT_NULL;
   3501 	wg->wg_if.if_softc = wg;
   3502 	IFQ_SET_READY(&wg->wg_if.if_snd);
   3503 
   3504 	error = if_initialize(&wg->wg_if);
   3505 	if (error != 0)
   3506 		return error;
   3507 
   3508 	if_alloc_sadl(&wg->wg_if);
   3509 	if_register(&wg->wg_if);
   3510 
   3511 	bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
   3512 
   3513 	return 0;
   3514 }
   3515 
   3516 static void
   3517 wg_if_detach(struct wg_softc *wg)
   3518 {
   3519 	struct ifnet *ifp = &wg->wg_if;
   3520 
   3521 	bpf_detach(ifp);
   3522 	if_detach(ifp);
   3523 }
   3524 
   3525 static int
   3526 wg_clone_create(struct if_clone *ifc, int unit)
   3527 {
   3528 	struct wg_softc *wg;
   3529 	int error;
   3530 
   3531 	wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
   3532 
   3533 	if_initname(&wg->wg_if, ifc->ifc_name, unit);
   3534 
   3535 	PSLIST_INIT(&wg->wg_peers);
   3536 	wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
   3537 	wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
   3538 	wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
   3539 	wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3540 	wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3541 	wg->wg_rwlock = rw_obj_alloc();
   3542 	threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
   3543 	    "%s", if_name(&wg->wg_if));
   3544 	wg->wg_ops = &wg_ops_rumpkernel;
   3545 
   3546 	error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
   3547 	if (error)
   3548 		goto fail0;
   3549 
   3550 #ifdef INET
   3551 	error = wg_socreate(wg, AF_INET, &wg->wg_so4);
   3552 	if (error)
   3553 		goto fail1;
   3554 	rn_inithead((void **)&wg->wg_rtable_ipv4,
   3555 	    offsetof(struct sockaddr_in, sin_addr) * NBBY);
   3556 #endif
   3557 #ifdef INET6
   3558 	error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
   3559 	if (error)
   3560 		goto fail2;
   3561 	rn_inithead((void **)&wg->wg_rtable_ipv6,
   3562 	    offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
   3563 #endif
   3564 
   3565 	error = wg_if_attach(wg);
   3566 	if (error)
   3567 		goto fail3;
   3568 
   3569 	mutex_enter(&wg_softcs.lock);
   3570 	LIST_INSERT_HEAD(&wg_softcs.list, wg, wg_list);
   3571 	mutex_exit(&wg_softcs.lock);
   3572 
   3573 	return 0;
   3574 
   3575 fail4: __unused
   3576 	mutex_enter(&wg_softcs.lock);
   3577 	LIST_REMOVE(wg, wg_list);
   3578 	mutex_exit(&wg_softcs.lock);
   3579 	wg_if_detach(wg);
   3580 fail3:	wg_destroy_all_peers(wg);
   3581 #ifdef INET6
   3582 	solock(wg->wg_so6);
   3583 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   3584 	sounlock(wg->wg_so6);
   3585 #endif
   3586 #ifdef INET
   3587 	solock(wg->wg_so4);
   3588 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   3589 	sounlock(wg->wg_so4);
   3590 #endif
   3591 	mutex_enter(wg->wg_intr_lock);
   3592 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   3593 	mutex_exit(wg->wg_intr_lock);
   3594 #ifdef INET6
   3595 	if (wg->wg_rtable_ipv6 != NULL)
   3596 		free(wg->wg_rtable_ipv6, M_RTABLE);
   3597 	soclose(wg->wg_so6);
   3598 fail2:
   3599 #endif
   3600 #ifdef INET
   3601 	if (wg->wg_rtable_ipv4 != NULL)
   3602 		free(wg->wg_rtable_ipv4, M_RTABLE);
   3603 	soclose(wg->wg_so4);
   3604 fail1:
   3605 #endif
   3606 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   3607 fail0:	threadpool_job_destroy(&wg->wg_job);
   3608 	rw_obj_free(wg->wg_rwlock);
   3609 	mutex_obj_free(wg->wg_intr_lock);
   3610 	mutex_obj_free(wg->wg_lock);
   3611 	thmap_destroy(wg->wg_sessions_byindex);
   3612 	thmap_destroy(wg->wg_peers_byname);
   3613 	thmap_destroy(wg->wg_peers_bypubkey);
   3614 	PSLIST_DESTROY(&wg->wg_peers);
   3615 	kmem_free(wg, sizeof(*wg));
   3616 	return error;
   3617 }
   3618 
   3619 static int
   3620 wg_clone_destroy(struct ifnet *ifp)
   3621 {
   3622 	struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
   3623 
   3624 #ifdef WG_RUMPKERNEL
   3625 	if (wg_user_mode(wg)) {
   3626 		rumpuser_wg_destroy(wg->wg_user);
   3627 		wg->wg_user = NULL;
   3628 	}
   3629 #endif
   3630 
   3631 	mutex_enter(&wg_softcs.lock);
   3632 	LIST_REMOVE(wg, wg_list);
   3633 	mutex_exit(&wg_softcs.lock);
   3634 	wg_if_detach(wg);
   3635 	wg_destroy_all_peers(wg);
   3636 #ifdef INET6
   3637 	solock(wg->wg_so6);
   3638 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   3639 	sounlock(wg->wg_so6);
   3640 #endif
   3641 #ifdef INET
   3642 	solock(wg->wg_so4);
   3643 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   3644 	sounlock(wg->wg_so4);
   3645 #endif
   3646 	mutex_enter(wg->wg_intr_lock);
   3647 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   3648 	mutex_exit(wg->wg_intr_lock);
   3649 #ifdef INET6
   3650 	if (wg->wg_rtable_ipv6 != NULL)
   3651 		free(wg->wg_rtable_ipv6, M_RTABLE);
   3652 	soclose(wg->wg_so6);
   3653 #endif
   3654 #ifdef INET
   3655 	if (wg->wg_rtable_ipv4 != NULL)
   3656 		free(wg->wg_rtable_ipv4, M_RTABLE);
   3657 	soclose(wg->wg_so4);
   3658 #endif
   3659 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   3660 	threadpool_job_destroy(&wg->wg_job);
   3661 	rw_obj_free(wg->wg_rwlock);
   3662 	mutex_obj_free(wg->wg_intr_lock);
   3663 	mutex_obj_free(wg->wg_lock);
   3664 	thmap_destroy(wg->wg_sessions_byindex);
   3665 	thmap_destroy(wg->wg_peers_byname);
   3666 	thmap_destroy(wg->wg_peers_bypubkey);
   3667 	PSLIST_DESTROY(&wg->wg_peers);
   3668 	kmem_free(wg, sizeof(*wg));
   3669 
   3670 	return 0;
   3671 }
   3672 
   3673 static struct wg_peer *
   3674 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
   3675     struct psref *psref)
   3676 {
   3677 	struct radix_node_head *rnh;
   3678 	struct radix_node *rn;
   3679 	struct wg_peer *wgp = NULL;
   3680 	struct wg_allowedip *wga;
   3681 
   3682 #ifdef WG_DEBUG_LOG
   3683 	char addrstr[128];
   3684 	sockaddr_format(sa, addrstr, sizeof(addrstr));
   3685 	WG_DLOG("sa=%s\n", addrstr);
   3686 #endif
   3687 
   3688 	rw_enter(wg->wg_rwlock, RW_READER);
   3689 
   3690 	rnh = wg_rnh(wg, sa->sa_family);
   3691 	if (rnh == NULL)
   3692 		goto out;
   3693 
   3694 	rn = rnh->rnh_matchaddr(sa, rnh);
   3695 	if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
   3696 		goto out;
   3697 
   3698 	WG_TRACE("success");
   3699 
   3700 	wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
   3701 	wgp = wga->wga_peer;
   3702 	wg_get_peer(wgp, psref);
   3703 
   3704 out:
   3705 	rw_exit(wg->wg_rwlock);
   3706 	return wgp;
   3707 }
   3708 
   3709 static void
   3710 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
   3711     struct wg_session *wgs, struct wg_msg_data *wgmd)
   3712 {
   3713 
   3714 	memset(wgmd, 0, sizeof(*wgmd));
   3715 	wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
   3716 	wgmd->wgmd_receiver = wgs->wgs_remote_index;
   3717 	/* [W] 5.4.6: msg.counter := Nm^send */
   3718 	/* [W] 5.4.6: Nm^send := Nm^send + 1 */
   3719 	wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
   3720 	WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
   3721 }
   3722 
   3723 static int
   3724 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
   3725     const struct rtentry *rt)
   3726 {
   3727 	struct wg_softc *wg = ifp->if_softc;
   3728 	struct wg_peer *wgp = NULL;
   3729 	struct wg_session *wgs = NULL;
   3730 	struct psref wgp_psref, wgs_psref;
   3731 	int bound;
   3732 	int error;
   3733 
   3734 	bound = curlwp_bind();
   3735 
   3736 	/* TODO make the nest limit configurable via sysctl */
   3737 	error = if_tunnel_check_nesting(ifp, m, 1);
   3738 	if (error) {
   3739 		WGLOG(LOG_ERR, "tunneling loop detected and packet dropped\n");
   3740 		goto out0;
   3741 	}
   3742 
   3743 	IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
   3744 
   3745 	bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
   3746 
   3747 	m->m_flags &= ~(M_BCAST|M_MCAST);
   3748 
   3749 	wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
   3750 	if (wgp == NULL) {
   3751 		WG_TRACE("peer not found");
   3752 		error = EHOSTUNREACH;
   3753 		goto out0;
   3754 	}
   3755 
   3756 	/* Clear checksum-offload flags. */
   3757 	m->m_pkthdr.csum_flags = 0;
   3758 	m->m_pkthdr.csum_data = 0;
   3759 
   3760 	/* Check whether there's an established session.  */
   3761 	wgs = wg_get_stable_session(wgp, &wgs_psref);
   3762 	if (wgs == NULL) {
   3763 		/*
   3764 		 * No established session.  If we're the first to try
   3765 		 * sending data, schedule a handshake and queue the
   3766 		 * packet for when the handshake is done; otherwise
   3767 		 * just drop the packet and let the ongoing handshake
   3768 		 * attempt continue.  We could queue more data packets
   3769 		 * but it's not clear that's worthwhile.
   3770 		 */
   3771 		if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
   3772 			m = NULL; /* consume */
   3773 			WG_TRACE("queued first packet; init handshake");
   3774 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3775 		} else {
   3776 			WG_TRACE("first packet already queued, dropping");
   3777 		}
   3778 		goto out1;
   3779 	}
   3780 
   3781 	/* There's an established session.  Toss it in the queue.  */
   3782 	kpreempt_disable();
   3783 	const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   3784 	M_SETCTX(m, wgp);
   3785 	if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   3786 		WGLOG(LOG_ERR, "pktq full, dropping\n");
   3787 		error = ENOBUFS;
   3788 		goto out2;
   3789 	}
   3790 	m = NULL;		/* consumed */
   3791 	error = 0;
   3792 out2:	kpreempt_enable();
   3793 
   3794 	wg_put_session(wgs, &wgs_psref);
   3795 out1:	wg_put_peer(wgp, &wgp_psref);
   3796 out0:	if (m)
   3797 		m_freem(m);
   3798 	curlwp_bindx(bound);
   3799 	return error;
   3800 }
   3801 
   3802 static int
   3803 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
   3804 {
   3805 	struct psref psref;
   3806 	struct wg_sockaddr *wgsa;
   3807 	int error;
   3808 	struct socket *so;
   3809 
   3810 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   3811 	so = wg_get_so_by_peer(wgp, wgsa);
   3812 	solock(so);
   3813 	if (wgsatosa(wgsa)->sa_family == AF_INET) {
   3814 		error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
   3815 	} else {
   3816 #ifdef INET6
   3817 		error = udp6_output(sotoin6pcb(so), m, wgsatosin6(wgsa),
   3818 		    NULL, curlwp);
   3819 #else
   3820 		m_freem(m);
   3821 		error = EPFNOSUPPORT;
   3822 #endif
   3823 	}
   3824 	sounlock(so);
   3825 	wg_put_sa(wgp, wgsa, &psref);
   3826 
   3827 	return error;
   3828 }
   3829 
   3830 /* Inspired by pppoe_get_mbuf */
   3831 static struct mbuf *
   3832 wg_get_mbuf(size_t leading_len, size_t len)
   3833 {
   3834 	struct mbuf *m;
   3835 
   3836 	KASSERT(leading_len <= MCLBYTES);
   3837 	KASSERT(len <= MCLBYTES - leading_len);
   3838 
   3839 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   3840 	if (m == NULL)
   3841 		return NULL;
   3842 	if (len + leading_len > MHLEN) {
   3843 		m_clget(m, M_DONTWAIT);
   3844 		if ((m->m_flags & M_EXT) == 0) {
   3845 			m_free(m);
   3846 			return NULL;
   3847 		}
   3848 	}
   3849 	m->m_data += leading_len;
   3850 	m->m_pkthdr.len = m->m_len = len;
   3851 
   3852 	return m;
   3853 }
   3854 
   3855 static int
   3856 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
   3857     struct mbuf *m)
   3858 {
   3859 	struct wg_softc *wg = wgp->wgp_sc;
   3860 	int error;
   3861 	size_t inner_len, padded_len, encrypted_len;
   3862 	char *padded_buf = NULL;
   3863 	size_t mlen;
   3864 	struct wg_msg_data *wgmd;
   3865 	bool free_padded_buf = false;
   3866 	struct mbuf *n;
   3867 	size_t leading_len = max_linkhdr + sizeof(struct ip6_hdr) +
   3868 	    sizeof(struct udphdr);
   3869 
   3870 	mlen = m_length(m);
   3871 	inner_len = mlen;
   3872 	padded_len = roundup(mlen, 16);
   3873 	encrypted_len = padded_len + WG_AUTHTAG_LEN;
   3874 	WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
   3875 	    inner_len, padded_len, encrypted_len);
   3876 	if (mlen != 0) {
   3877 		bool success;
   3878 		success = m_ensure_contig(&m, padded_len);
   3879 		if (success) {
   3880 			padded_buf = mtod(m, char *);
   3881 		} else {
   3882 			padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
   3883 			if (padded_buf == NULL) {
   3884 				error = ENOBUFS;
   3885 				goto end;
   3886 			}
   3887 			free_padded_buf = true;
   3888 			m_copydata(m, 0, mlen, padded_buf);
   3889 		}
   3890 		memset(padded_buf + mlen, 0, padded_len - inner_len);
   3891 	}
   3892 
   3893 	n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
   3894 	if (n == NULL) {
   3895 		error = ENOBUFS;
   3896 		goto end;
   3897 	}
   3898 	KASSERT(n->m_len >= sizeof(*wgmd));
   3899 	wgmd = mtod(n, struct wg_msg_data *);
   3900 	wg_fill_msg_data(wg, wgp, wgs, wgmd);
   3901 	/* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
   3902 	wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
   3903 	    wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
   3904 	    padded_buf, padded_len,
   3905 	    NULL, 0);
   3906 
   3907 	error = wg->wg_ops->send_data_msg(wgp, n);
   3908 	if (error == 0) {
   3909 		struct ifnet *ifp = &wg->wg_if;
   3910 		if_statadd(ifp, if_obytes, mlen);
   3911 		if_statinc(ifp, if_opackets);
   3912 		if (wgs->wgs_is_initiator &&
   3913 		    wgs->wgs_time_last_data_sent == 0) {
   3914 			/*
   3915 			 * [W] 6.2 Transport Message Limits
   3916 			 * "if a peer is the initiator of a current secure
   3917 			 *  session, WireGuard will send a handshake initiation
   3918 			 *  message to begin a new secure session if, after
   3919 			 *  transmitting a transport data message, the current
   3920 			 *  secure session is REKEY-AFTER-TIME seconds old,"
   3921 			 */
   3922 			wg_schedule_rekey_timer(wgp);
   3923 		}
   3924 		wgs->wgs_time_last_data_sent = time_uptime;
   3925 		if (wg_session_get_send_counter(wgs) >=
   3926 		    wg_rekey_after_messages) {
   3927 			/*
   3928 			 * [W] 6.2 Transport Message Limits
   3929 			 * "WireGuard will try to create a new session, by
   3930 			 *  sending a handshake initiation message (section
   3931 			 *  5.4.2), after it has sent REKEY-AFTER-MESSAGES
   3932 			 *  transport data messages..."
   3933 			 */
   3934 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3935 		}
   3936 	}
   3937 end:
   3938 	m_freem(m);
   3939 	if (free_padded_buf)
   3940 		kmem_intr_free(padded_buf, padded_len);
   3941 	return error;
   3942 }
   3943 
   3944 static void
   3945 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
   3946 {
   3947 	pktqueue_t *pktq;
   3948 	size_t pktlen;
   3949 
   3950 	KASSERT(af == AF_INET || af == AF_INET6);
   3951 
   3952 	WG_TRACE("");
   3953 
   3954 	m_set_rcvif(m, ifp);
   3955 	pktlen = m->m_pkthdr.len;
   3956 
   3957 	bpf_mtap_af(ifp, af, m, BPF_D_IN);
   3958 
   3959 	switch (af) {
   3960 	case AF_INET:
   3961 		pktq = ip_pktq;
   3962 		break;
   3963 #ifdef INET6
   3964 	case AF_INET6:
   3965 		pktq = ip6_pktq;
   3966 		break;
   3967 #endif
   3968 	default:
   3969 		panic("invalid af=%d", af);
   3970 	}
   3971 
   3972 	const u_int h = curcpu()->ci_index;
   3973 	if (__predict_true(pktq_enqueue(pktq, m, h))) {
   3974 		if_statadd(ifp, if_ibytes, pktlen);
   3975 		if_statinc(ifp, if_ipackets);
   3976 	} else {
   3977 		m_freem(m);
   3978 	}
   3979 }
   3980 
   3981 static void
   3982 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
   3983     const uint8_t privkey[WG_STATIC_KEY_LEN])
   3984 {
   3985 
   3986 	crypto_scalarmult_base(pubkey, privkey);
   3987 }
   3988 
   3989 static int
   3990 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
   3991 {
   3992 	struct radix_node_head *rnh;
   3993 	struct radix_node *rn;
   3994 	int error = 0;
   3995 
   3996 	rw_enter(wg->wg_rwlock, RW_WRITER);
   3997 	rnh = wg_rnh(wg, wga->wga_family);
   3998 	KASSERT(rnh != NULL);
   3999 	rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
   4000 	    wga->wga_nodes);
   4001 	rw_exit(wg->wg_rwlock);
   4002 
   4003 	if (rn == NULL)
   4004 		error = EEXIST;
   4005 
   4006 	return error;
   4007 }
   4008 
   4009 static int
   4010 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
   4011     struct wg_peer **wgpp)
   4012 {
   4013 	int error = 0;
   4014 	const void *pubkey;
   4015 	size_t pubkey_len;
   4016 	const void *psk;
   4017 	size_t psk_len;
   4018 	const char *name = NULL;
   4019 
   4020 	if (prop_dictionary_get_string(peer, "name", &name)) {
   4021 		if (strlen(name) > WG_PEER_NAME_MAXLEN) {
   4022 			error = EINVAL;
   4023 			goto out;
   4024 		}
   4025 	}
   4026 
   4027 	if (!prop_dictionary_get_data(peer, "public_key",
   4028 		&pubkey, &pubkey_len)) {
   4029 		error = EINVAL;
   4030 		goto out;
   4031 	}
   4032 #ifdef WG_DEBUG_DUMP
   4033     {
   4034 	char *hex = gethexdump(pubkey, pubkey_len);
   4035 	log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n%s\n",
   4036 	    pubkey, pubkey_len, hex);
   4037 	puthexdump(hex, pubkey, pubkey_len);
   4038     }
   4039 #endif
   4040 
   4041 	struct wg_peer *wgp = wg_alloc_peer(wg);
   4042 	memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
   4043 	if (name != NULL)
   4044 		strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
   4045 
   4046 	if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
   4047 		if (psk_len != sizeof(wgp->wgp_psk)) {
   4048 			error = EINVAL;
   4049 			goto out;
   4050 		}
   4051 		memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
   4052 	}
   4053 
   4054 	const void *addr;
   4055 	size_t addr_len;
   4056 	struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
   4057 
   4058 	if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
   4059 		goto skip_endpoint;
   4060 	if (addr_len < sizeof(*wgsatosa(wgsa)) ||
   4061 	    addr_len > sizeof(*wgsatoss(wgsa))) {
   4062 		error = EINVAL;
   4063 		goto out;
   4064 	}
   4065 	memcpy(wgsatoss(wgsa), addr, addr_len);
   4066 	switch (wgsa_family(wgsa)) {
   4067 	case AF_INET:
   4068 #ifdef INET6
   4069 	case AF_INET6:
   4070 #endif
   4071 		break;
   4072 	default:
   4073 		error = EPFNOSUPPORT;
   4074 		goto out;
   4075 	}
   4076 	if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
   4077 		error = EINVAL;
   4078 		goto out;
   4079 	}
   4080     {
   4081 	char addrstr[128];
   4082 	sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
   4083 	WG_DLOG("addr=%s\n", addrstr);
   4084     }
   4085 	wgp->wgp_endpoint_available = true;
   4086 
   4087 	prop_array_t allowedips;
   4088 skip_endpoint:
   4089 	allowedips = prop_dictionary_get(peer, "allowedips");
   4090 	if (allowedips == NULL)
   4091 		goto skip;
   4092 
   4093 	prop_object_iterator_t _it = prop_array_iterator(allowedips);
   4094 	prop_dictionary_t prop_allowedip;
   4095 	int j = 0;
   4096 	while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
   4097 		struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4098 
   4099 		if (!prop_dictionary_get_int(prop_allowedip, "family",
   4100 			&wga->wga_family))
   4101 			continue;
   4102 		if (!prop_dictionary_get_data(prop_allowedip, "ip",
   4103 			&addr, &addr_len))
   4104 			continue;
   4105 		if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
   4106 			&wga->wga_cidr))
   4107 			continue;
   4108 
   4109 		switch (wga->wga_family) {
   4110 		case AF_INET: {
   4111 			struct sockaddr_in sin;
   4112 			char addrstr[128];
   4113 			struct in_addr mask;
   4114 			struct sockaddr_in sin_mask;
   4115 
   4116 			if (addr_len != sizeof(struct in_addr))
   4117 				return EINVAL;
   4118 			memcpy(&wga->wga_addr4, addr, addr_len);
   4119 
   4120 			sockaddr_in_init(&sin, (const struct in_addr *)addr,
   4121 			    0);
   4122 			sockaddr_copy(&wga->wga_sa_addr,
   4123 			    sizeof(sin), sintosa(&sin));
   4124 
   4125 			sockaddr_format(sintosa(&sin),
   4126 			    addrstr, sizeof(addrstr));
   4127 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4128 
   4129 			in_len2mask(&mask, wga->wga_cidr);
   4130 			sockaddr_in_init(&sin_mask, &mask, 0);
   4131 			sockaddr_copy(&wga->wga_sa_mask,
   4132 			    sizeof(sin_mask), sintosa(&sin_mask));
   4133 
   4134 			break;
   4135 		    }
   4136 #ifdef INET6
   4137 		case AF_INET6: {
   4138 			struct sockaddr_in6 sin6;
   4139 			char addrstr[128];
   4140 			struct in6_addr mask;
   4141 			struct sockaddr_in6 sin6_mask;
   4142 
   4143 			if (addr_len != sizeof(struct in6_addr))
   4144 				return EINVAL;
   4145 			memcpy(&wga->wga_addr6, addr, addr_len);
   4146 
   4147 			sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
   4148 			    0, 0, 0);
   4149 			sockaddr_copy(&wga->wga_sa_addr,
   4150 			    sizeof(sin6), sin6tosa(&sin6));
   4151 
   4152 			sockaddr_format(sin6tosa(&sin6),
   4153 			    addrstr, sizeof(addrstr));
   4154 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4155 
   4156 			in6_prefixlen2mask(&mask, wga->wga_cidr);
   4157 			sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
   4158 			sockaddr_copy(&wga->wga_sa_mask,
   4159 			    sizeof(sin6_mask), sin6tosa(&sin6_mask));
   4160 
   4161 			break;
   4162 		    }
   4163 #endif
   4164 		default:
   4165 			error = EINVAL;
   4166 			goto out;
   4167 		}
   4168 		wga->wga_peer = wgp;
   4169 
   4170 		error = wg_rtable_add_route(wg, wga);
   4171 		if (error != 0)
   4172 			goto out;
   4173 
   4174 		j++;
   4175 	}
   4176 	wgp->wgp_n_allowedips = j;
   4177 skip:
   4178 	*wgpp = wgp;
   4179 out:
   4180 	return error;
   4181 }
   4182 
   4183 static int
   4184 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
   4185 {
   4186 	int error;
   4187 	char *buf;
   4188 
   4189 	WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
   4190 	buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
   4191 	error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
   4192 	if (error != 0)
   4193 		return error;
   4194 	buf[ifd->ifd_len] = '\0';
   4195 #ifdef WG_DEBUG_DUMP
   4196 	log(LOG_DEBUG, "%.*s\n",
   4197 	    (int)MIN(INT_MAX, ifd->ifd_len),
   4198 	    (const char *)buf);
   4199 #endif
   4200 	*_buf = buf;
   4201 	return 0;
   4202 }
   4203 
   4204 static int
   4205 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
   4206 {
   4207 	int error;
   4208 	prop_dictionary_t prop_dict;
   4209 	char *buf = NULL;
   4210 	const void *privkey;
   4211 	size_t privkey_len;
   4212 
   4213 	error = wg_alloc_prop_buf(&buf, ifd);
   4214 	if (error != 0)
   4215 		return error;
   4216 	error = EINVAL;
   4217 	prop_dict = prop_dictionary_internalize(buf);
   4218 	if (prop_dict == NULL)
   4219 		goto out;
   4220 	if (!prop_dictionary_get_data(prop_dict, "private_key",
   4221 		&privkey, &privkey_len))
   4222 		goto out;
   4223 #ifdef WG_DEBUG_DUMP
   4224     {
   4225 	char *hex = gethexdump(privkey, privkey_len);
   4226 	log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n%s\n",
   4227 	    privkey, privkey_len, hex);
   4228 	puthexdump(hex, privkey, privkey_len);
   4229     }
   4230 #endif
   4231 	if (privkey_len != WG_STATIC_KEY_LEN)
   4232 		goto out;
   4233 	memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
   4234 	wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
   4235 	error = 0;
   4236 
   4237 out:
   4238 	kmem_free(buf, ifd->ifd_len + 1);
   4239 	return error;
   4240 }
   4241 
   4242 static int
   4243 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
   4244 {
   4245 	int error;
   4246 	prop_dictionary_t prop_dict;
   4247 	char *buf = NULL;
   4248 	uint16_t port;
   4249 
   4250 	error = wg_alloc_prop_buf(&buf, ifd);
   4251 	if (error != 0)
   4252 		return error;
   4253 	error = EINVAL;
   4254 	prop_dict = prop_dictionary_internalize(buf);
   4255 	if (prop_dict == NULL)
   4256 		goto out;
   4257 	if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
   4258 		goto out;
   4259 
   4260 	error = wg->wg_ops->bind_port(wg, (uint16_t)port);
   4261 
   4262 out:
   4263 	kmem_free(buf, ifd->ifd_len + 1);
   4264 	return error;
   4265 }
   4266 
   4267 static int
   4268 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4269 {
   4270 	int error;
   4271 	prop_dictionary_t prop_dict;
   4272 	char *buf = NULL;
   4273 	struct wg_peer *wgp = NULL, *wgp0 __diagused;
   4274 
   4275 	error = wg_alloc_prop_buf(&buf, ifd);
   4276 	if (error != 0)
   4277 		return error;
   4278 	error = EINVAL;
   4279 	prop_dict = prop_dictionary_internalize(buf);
   4280 	if (prop_dict == NULL)
   4281 		goto out;
   4282 
   4283 	error = wg_handle_prop_peer(wg, prop_dict, &wgp);
   4284 	if (error != 0)
   4285 		goto out;
   4286 
   4287 	mutex_enter(wg->wg_lock);
   4288 	if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4289 		sizeof(wgp->wgp_pubkey)) != NULL ||
   4290 	    (wgp->wgp_name[0] &&
   4291 		thmap_get(wg->wg_peers_byname, wgp->wgp_name,
   4292 		    strlen(wgp->wgp_name)) != NULL)) {
   4293 		mutex_exit(wg->wg_lock);
   4294 		wg_destroy_peer(wgp);
   4295 		error = EEXIST;
   4296 		goto out;
   4297 	}
   4298 	wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4299 	    sizeof(wgp->wgp_pubkey), wgp);
   4300 	KASSERT(wgp0 == wgp);
   4301 	if (wgp->wgp_name[0]) {
   4302 		wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
   4303 		    strlen(wgp->wgp_name), wgp);
   4304 		KASSERT(wgp0 == wgp);
   4305 	}
   4306 	WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
   4307 	wg->wg_npeers++;
   4308 	mutex_exit(wg->wg_lock);
   4309 
   4310 out:
   4311 	kmem_free(buf, ifd->ifd_len + 1);
   4312 	return error;
   4313 }
   4314 
   4315 static int
   4316 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4317 {
   4318 	int error;
   4319 	prop_dictionary_t prop_dict;
   4320 	char *buf = NULL;
   4321 	const char *name;
   4322 
   4323 	error = wg_alloc_prop_buf(&buf, ifd);
   4324 	if (error != 0)
   4325 		return error;
   4326 	error = EINVAL;
   4327 	prop_dict = prop_dictionary_internalize(buf);
   4328 	if (prop_dict == NULL)
   4329 		goto out;
   4330 
   4331 	if (!prop_dictionary_get_string(prop_dict, "name", &name))
   4332 		goto out;
   4333 	if (strlen(name) > WG_PEER_NAME_MAXLEN)
   4334 		goto out;
   4335 
   4336 	error = wg_destroy_peer_name(wg, name);
   4337 out:
   4338 	kmem_free(buf, ifd->ifd_len + 1);
   4339 	return error;
   4340 }
   4341 
   4342 static int
   4343 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
   4344 {
   4345 	int error = ENOMEM;
   4346 	prop_dictionary_t prop_dict;
   4347 	prop_array_t peers = NULL;
   4348 	char *buf;
   4349 	struct wg_peer *wgp;
   4350 	int s, i;
   4351 
   4352 	prop_dict = prop_dictionary_create();
   4353 	if (prop_dict == NULL)
   4354 		goto error;
   4355 
   4356 	if (!prop_dictionary_set_data(prop_dict, "private_key", wg->wg_privkey,
   4357 		WG_STATIC_KEY_LEN))
   4358 		goto error;
   4359 
   4360 	if (wg->wg_listen_port != 0) {
   4361 		if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
   4362 			wg->wg_listen_port))
   4363 			goto error;
   4364 	}
   4365 
   4366 	if (wg->wg_npeers == 0)
   4367 		goto skip_peers;
   4368 
   4369 	peers = prop_array_create();
   4370 	if (peers == NULL)
   4371 		goto error;
   4372 
   4373 	s = pserialize_read_enter();
   4374 	i = 0;
   4375 	WG_PEER_READER_FOREACH(wgp, wg) {
   4376 		struct wg_sockaddr *wgsa;
   4377 		struct psref wgp_psref, wgsa_psref;
   4378 		prop_dictionary_t prop_peer;
   4379 
   4380 		wg_get_peer(wgp, &wgp_psref);
   4381 		pserialize_read_exit(s);
   4382 
   4383 		prop_peer = prop_dictionary_create();
   4384 		if (prop_peer == NULL)
   4385 			goto next;
   4386 
   4387 		if (strlen(wgp->wgp_name) > 0) {
   4388 			if (!prop_dictionary_set_string(prop_peer, "name",
   4389 				wgp->wgp_name))
   4390 				goto next;
   4391 		}
   4392 
   4393 		if (!prop_dictionary_set_data(prop_peer, "public_key",
   4394 			wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
   4395 			goto next;
   4396 
   4397 		uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
   4398 		if (!consttime_memequal(wgp->wgp_psk, psk_zero,
   4399 			sizeof(wgp->wgp_psk))) {
   4400 			if (!prop_dictionary_set_data(prop_peer,
   4401 				"preshared_key",
   4402 				wgp->wgp_psk, sizeof(wgp->wgp_psk)))
   4403 				goto next;
   4404 		}
   4405 
   4406 		wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
   4407 		CTASSERT(AF_UNSPEC == 0);
   4408 		if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
   4409 		    !prop_dictionary_set_data(prop_peer, "endpoint",
   4410 			wgsatoss(wgsa),
   4411 			sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
   4412 			wg_put_sa(wgp, wgsa, &wgsa_psref);
   4413 			goto next;
   4414 		}
   4415 		wg_put_sa(wgp, wgsa, &wgsa_psref);
   4416 
   4417 		const struct timespec *t = &wgp->wgp_last_handshake_time;
   4418 
   4419 		if (!prop_dictionary_set_uint64(prop_peer,
   4420 			"last_handshake_time_sec", t->tv_sec))
   4421 			goto next;
   4422 		if (!prop_dictionary_set_uint32(prop_peer,
   4423 			"last_handshake_time_nsec", t->tv_nsec))
   4424 			goto next;
   4425 
   4426 		if (wgp->wgp_n_allowedips == 0)
   4427 			goto skip_allowedips;
   4428 
   4429 		prop_array_t allowedips = prop_array_create();
   4430 		if (allowedips == NULL)
   4431 			goto next;
   4432 		for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
   4433 			struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4434 			prop_dictionary_t prop_allowedip;
   4435 
   4436 			prop_allowedip = prop_dictionary_create();
   4437 			if (prop_allowedip == NULL)
   4438 				break;
   4439 
   4440 			if (!prop_dictionary_set_int(prop_allowedip, "family",
   4441 				wga->wga_family))
   4442 				goto _next;
   4443 			if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
   4444 				wga->wga_cidr))
   4445 				goto _next;
   4446 
   4447 			switch (wga->wga_family) {
   4448 			case AF_INET:
   4449 				if (!prop_dictionary_set_data(prop_allowedip,
   4450 					"ip", &wga->wga_addr4,
   4451 					sizeof(wga->wga_addr4)))
   4452 					goto _next;
   4453 				break;
   4454 #ifdef INET6
   4455 			case AF_INET6:
   4456 				if (!prop_dictionary_set_data(prop_allowedip,
   4457 					"ip", &wga->wga_addr6,
   4458 					sizeof(wga->wga_addr6)))
   4459 					goto _next;
   4460 				break;
   4461 #endif
   4462 			default:
   4463 				break;
   4464 			}
   4465 			prop_array_set(allowedips, j, prop_allowedip);
   4466 		_next:
   4467 			prop_object_release(prop_allowedip);
   4468 		}
   4469 		prop_dictionary_set(prop_peer, "allowedips", allowedips);
   4470 		prop_object_release(allowedips);
   4471 
   4472 	skip_allowedips:
   4473 
   4474 		prop_array_set(peers, i, prop_peer);
   4475 	next:
   4476 		if (prop_peer)
   4477 			prop_object_release(prop_peer);
   4478 		i++;
   4479 
   4480 		s = pserialize_read_enter();
   4481 		wg_put_peer(wgp, &wgp_psref);
   4482 	}
   4483 	pserialize_read_exit(s);
   4484 
   4485 	prop_dictionary_set(prop_dict, "peers", peers);
   4486 	prop_object_release(peers);
   4487 	peers = NULL;
   4488 
   4489 skip_peers:
   4490 	buf = prop_dictionary_externalize(prop_dict);
   4491 	if (buf == NULL)
   4492 		goto error;
   4493 	if (ifd->ifd_len < (strlen(buf) + 1)) {
   4494 		error = EINVAL;
   4495 		goto error;
   4496 	}
   4497 	error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
   4498 
   4499 	free(buf, 0);
   4500 error:
   4501 	if (peers != NULL)
   4502 		prop_object_release(peers);
   4503 	if (prop_dict != NULL)
   4504 		prop_object_release(prop_dict);
   4505 
   4506 	return error;
   4507 }
   4508 
   4509 static int
   4510 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   4511 {
   4512 	struct wg_softc *wg = ifp->if_softc;
   4513 	struct ifreq *ifr = data;
   4514 	struct ifaddr *ifa = data;
   4515 	struct ifdrv *ifd = data;
   4516 	int error = 0;
   4517 
   4518 	switch (cmd) {
   4519 	case SIOCINITIFADDR:
   4520 		if (ifa->ifa_addr->sa_family != AF_LINK &&
   4521 		    (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   4522 		    (IFF_UP | IFF_RUNNING)) {
   4523 			ifp->if_flags |= IFF_UP;
   4524 			error = ifp->if_init(ifp);
   4525 		}
   4526 		return error;
   4527 	case SIOCADDMULTI:
   4528 	case SIOCDELMULTI:
   4529 		switch (ifr->ifr_addr.sa_family) {
   4530 		case AF_INET:	/* IP supports Multicast */
   4531 			break;
   4532 #ifdef INET6
   4533 		case AF_INET6:	/* IP6 supports Multicast */
   4534 			break;
   4535 #endif
   4536 		default:  /* Other protocols doesn't support Multicast */
   4537 			error = EAFNOSUPPORT;
   4538 			break;
   4539 		}
   4540 		return error;
   4541 	case SIOCSDRVSPEC:
   4542 		switch (ifd->ifd_cmd) {
   4543 		case WG_IOCTL_SET_PRIVATE_KEY:
   4544 			error = wg_ioctl_set_private_key(wg, ifd);
   4545 			break;
   4546 		case WG_IOCTL_SET_LISTEN_PORT:
   4547 			error = wg_ioctl_set_listen_port(wg, ifd);
   4548 			break;
   4549 		case WG_IOCTL_ADD_PEER:
   4550 			error = wg_ioctl_add_peer(wg, ifd);
   4551 			break;
   4552 		case WG_IOCTL_DELETE_PEER:
   4553 			error = wg_ioctl_delete_peer(wg, ifd);
   4554 			break;
   4555 		default:
   4556 			error = EINVAL;
   4557 			break;
   4558 		}
   4559 		return error;
   4560 	case SIOCGDRVSPEC:
   4561 		return wg_ioctl_get(wg, ifd);
   4562 	case SIOCSIFFLAGS:
   4563 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   4564 			break;
   4565 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   4566 		case IFF_RUNNING:
   4567 			/*
   4568 			 * If interface is marked down and it is running,
   4569 			 * then stop and disable it.
   4570 			 */
   4571 			(*ifp->if_stop)(ifp, 1);
   4572 			break;
   4573 		case IFF_UP:
   4574 			/*
   4575 			 * If interface is marked up and it is stopped, then
   4576 			 * start it.
   4577 			 */
   4578 			error = (*ifp->if_init)(ifp);
   4579 			break;
   4580 		default:
   4581 			break;
   4582 		}
   4583 		return error;
   4584 #ifdef WG_RUMPKERNEL
   4585 	case SIOCSLINKSTR:
   4586 		error = wg_ioctl_linkstr(wg, ifd);
   4587 		if (error == 0)
   4588 			wg->wg_ops = &wg_ops_rumpuser;
   4589 		return error;
   4590 #endif
   4591 	default:
   4592 		break;
   4593 	}
   4594 
   4595 	error = ifioctl_common(ifp, cmd, data);
   4596 
   4597 #ifdef WG_RUMPKERNEL
   4598 	if (!wg_user_mode(wg))
   4599 		return error;
   4600 
   4601 	/* Do the same to the corresponding tun device on the host */
   4602 	/*
   4603 	 * XXX Actually the command has not been handled yet.  It
   4604 	 *     will be handled via pr_ioctl form doifioctl later.
   4605 	 */
   4606 	switch (cmd) {
   4607 	case SIOCAIFADDR:
   4608 	case SIOCDIFADDR: {
   4609 		struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
   4610 		struct in_aliasreq *ifra = &_ifra;
   4611 		KASSERT(error == ENOTTY);
   4612 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   4613 		    IFNAMSIZ);
   4614 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
   4615 		if (error == 0)
   4616 			error = ENOTTY;
   4617 		break;
   4618 	}
   4619 #ifdef INET6
   4620 	case SIOCAIFADDR_IN6:
   4621 	case SIOCDIFADDR_IN6: {
   4622 		struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
   4623 		struct in6_aliasreq *ifra = &_ifra;
   4624 		KASSERT(error == ENOTTY);
   4625 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   4626 		    IFNAMSIZ);
   4627 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
   4628 		if (error == 0)
   4629 			error = ENOTTY;
   4630 		break;
   4631 	}
   4632 #endif
   4633 	}
   4634 #endif /* WG_RUMPKERNEL */
   4635 
   4636 	return error;
   4637 }
   4638 
   4639 static int
   4640 wg_init(struct ifnet *ifp)
   4641 {
   4642 
   4643 	ifp->if_flags |= IFF_RUNNING;
   4644 
   4645 	/* TODO flush pending packets. */
   4646 	return 0;
   4647 }
   4648 
   4649 static void
   4650 wg_stop(struct ifnet *ifp, int disable)
   4651 {
   4652 
   4653 	KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
   4654 	ifp->if_flags &= ~IFF_RUNNING;
   4655 
   4656 	/* Need to do something? */
   4657 }
   4658 
   4659 #ifdef WG_DEBUG_PARAMS
   4660 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
   4661 {
   4662 	const struct sysctlnode *node = NULL;
   4663 
   4664 	sysctl_createv(clog, 0, NULL, &node,
   4665 	    CTLFLAG_PERMANENT,
   4666 	    CTLTYPE_NODE, "wg",
   4667 	    SYSCTL_DESCR("wg(4)"),
   4668 	    NULL, 0, NULL, 0,
   4669 	    CTL_NET, CTL_CREATE, CTL_EOL);
   4670 	sysctl_createv(clog, 0, &node, NULL,
   4671 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4672 	    CTLTYPE_QUAD, "rekey_after_messages",
   4673 	    SYSCTL_DESCR("session liftime by messages"),
   4674 	    NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
   4675 	sysctl_createv(clog, 0, &node, NULL,
   4676 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4677 	    CTLTYPE_INT, "rekey_after_time",
   4678 	    SYSCTL_DESCR("session liftime"),
   4679 	    NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
   4680 	sysctl_createv(clog, 0, &node, NULL,
   4681 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4682 	    CTLTYPE_INT, "rekey_timeout",
   4683 	    SYSCTL_DESCR("session handshake retry time"),
   4684 	    NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
   4685 	sysctl_createv(clog, 0, &node, NULL,
   4686 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4687 	    CTLTYPE_INT, "rekey_attempt_time",
   4688 	    SYSCTL_DESCR("session handshake timeout"),
   4689 	    NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
   4690 	sysctl_createv(clog, 0, &node, NULL,
   4691 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4692 	    CTLTYPE_INT, "keepalive_timeout",
   4693 	    SYSCTL_DESCR("keepalive timeout"),
   4694 	    NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
   4695 	sysctl_createv(clog, 0, &node, NULL,
   4696 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4697 	    CTLTYPE_BOOL, "force_underload",
   4698 	    SYSCTL_DESCR("force to detemine under load"),
   4699 	    NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
   4700 }
   4701 #endif
   4702 
   4703 #ifdef WG_RUMPKERNEL
   4704 static bool
   4705 wg_user_mode(struct wg_softc *wg)
   4706 {
   4707 
   4708 	return wg->wg_user != NULL;
   4709 }
   4710 
   4711 static int
   4712 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
   4713 {
   4714 	struct ifnet *ifp = &wg->wg_if;
   4715 	int error;
   4716 
   4717 	if (ifp->if_flags & IFF_UP)
   4718 		return EBUSY;
   4719 
   4720 	if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
   4721 		/* XXX do nothing */
   4722 		return 0;
   4723 	} else if (ifd->ifd_cmd != 0) {
   4724 		return EINVAL;
   4725 	} else if (wg->wg_user != NULL) {
   4726 		return EBUSY;
   4727 	}
   4728 
   4729 	/* Assume \0 included */
   4730 	if (ifd->ifd_len > IFNAMSIZ) {
   4731 		return E2BIG;
   4732 	} else if (ifd->ifd_len < 1) {
   4733 		return EINVAL;
   4734 	}
   4735 
   4736 	char tun_name[IFNAMSIZ];
   4737 	error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
   4738 	if (error != 0)
   4739 		return error;
   4740 
   4741 	if (strncmp(tun_name, "tun", 3) != 0)
   4742 		return EINVAL;
   4743 
   4744 	error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
   4745 
   4746 	return error;
   4747 }
   4748 
   4749 static int
   4750 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
   4751 {
   4752 	int error;
   4753 	struct psref psref;
   4754 	struct wg_sockaddr *wgsa;
   4755 	struct wg_softc *wg = wgp->wgp_sc;
   4756 	struct iovec iov[1];
   4757 
   4758 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   4759 
   4760 	iov[0].iov_base = mtod(m, void *);
   4761 	iov[0].iov_len = m->m_len;
   4762 
   4763 	/* Send messages to a peer via an ordinary socket. */
   4764 	error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
   4765 
   4766 	wg_put_sa(wgp, wgsa, &psref);
   4767 
   4768 	m_freem(m);
   4769 
   4770 	return error;
   4771 }
   4772 
   4773 static void
   4774 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
   4775 {
   4776 	struct wg_softc *wg = ifp->if_softc;
   4777 	struct iovec iov[2];
   4778 	struct sockaddr_storage ss;
   4779 
   4780 	KASSERT(af == AF_INET || af == AF_INET6);
   4781 
   4782 	WG_TRACE("");
   4783 
   4784 	if (af == AF_INET) {
   4785 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   4786 		struct ip *ip;
   4787 
   4788 		KASSERT(m->m_len >= sizeof(struct ip));
   4789 		ip = mtod(m, struct ip *);
   4790 		sockaddr_in_init(sin, &ip->ip_dst, 0);
   4791 	} else {
   4792 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   4793 		struct ip6_hdr *ip6;
   4794 
   4795 		KASSERT(m->m_len >= sizeof(struct ip6_hdr));
   4796 		ip6 = mtod(m, struct ip6_hdr *);
   4797 		sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
   4798 	}
   4799 
   4800 	iov[0].iov_base = &ss;
   4801 	iov[0].iov_len = ss.ss_len;
   4802 	iov[1].iov_base = mtod(m, void *);
   4803 	iov[1].iov_len = m->m_len;
   4804 
   4805 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   4806 
   4807 	/* Send decrypted packets to users via a tun. */
   4808 	rumpuser_wg_send_user(wg->wg_user, iov, 2);
   4809 
   4810 	m_freem(m);
   4811 }
   4812 
   4813 static int
   4814 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
   4815 {
   4816 	int error;
   4817 	uint16_t old_port = wg->wg_listen_port;
   4818 
   4819 	if (port != 0 && old_port == port)
   4820 		return 0;
   4821 
   4822 	error = rumpuser_wg_sock_bind(wg->wg_user, port);
   4823 	if (error == 0)
   4824 		wg->wg_listen_port = port;
   4825 	return error;
   4826 }
   4827 
   4828 /*
   4829  * Receive user packets.
   4830  */
   4831 void
   4832 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   4833 {
   4834 	struct ifnet *ifp = &wg->wg_if;
   4835 	struct mbuf *m;
   4836 	const struct sockaddr *dst;
   4837 
   4838 	WG_TRACE("");
   4839 
   4840 	dst = iov[0].iov_base;
   4841 
   4842 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   4843 	if (m == NULL)
   4844 		return;
   4845 	m->m_len = m->m_pkthdr.len = 0;
   4846 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   4847 
   4848 	WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
   4849 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   4850 
   4851 	(void)wg_output(ifp, m, dst, NULL);
   4852 }
   4853 
   4854 /*
   4855  * Receive packets from a peer.
   4856  */
   4857 void
   4858 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   4859 {
   4860 	struct mbuf *m;
   4861 	const struct sockaddr *src;
   4862 
   4863 	WG_TRACE("");
   4864 
   4865 	src = iov[0].iov_base;
   4866 
   4867 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   4868 	if (m == NULL)
   4869 		return;
   4870 	m->m_len = m->m_pkthdr.len = 0;
   4871 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   4872 
   4873 	WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
   4874 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   4875 
   4876 	wg_handle_packet(wg, m, src);
   4877 }
   4878 #endif /* WG_RUMPKERNEL */
   4879 
   4880 /*
   4881  * Module infrastructure
   4882  */
   4883 #include "if_module.h"
   4884 
   4885 IF_MODULE(MODULE_CLASS_DRIVER, wg, "")
   4886