if_wg.c revision 1.59 1 /* $NetBSD: if_wg.c,v 1.59 2020/09/13 17:18:54 riastradh Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.59 2020/09/13 17:18:54 riastradh Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_inet.h"
48 #endif
49
50 #include <sys/param.h>
51 #include <sys/types.h>
52
53 #include <sys/atomic.h>
54 #include <sys/callout.h>
55 #include <sys/cprng.h>
56 #include <sys/cpu.h>
57 #include <sys/device.h>
58 #include <sys/domain.h>
59 #include <sys/errno.h>
60 #include <sys/intr.h>
61 #include <sys/ioctl.h>
62 #include <sys/kernel.h>
63 #include <sys/kmem.h>
64 #include <sys/mbuf.h>
65 #include <sys/module.h>
66 #include <sys/mutex.h>
67 #include <sys/once.h>
68 #include <sys/percpu.h>
69 #include <sys/pserialize.h>
70 #include <sys/psref.h>
71 #include <sys/queue.h>
72 #include <sys/rwlock.h>
73 #include <sys/socket.h>
74 #include <sys/socketvar.h>
75 #include <sys/sockio.h>
76 #include <sys/sysctl.h>
77 #include <sys/syslog.h>
78 #include <sys/systm.h>
79 #include <sys/thmap.h>
80 #include <sys/threadpool.h>
81 #include <sys/time.h>
82 #include <sys/timespec.h>
83 #include <sys/workqueue.h>
84
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_types.h>
88 #include <net/if_wg.h>
89 #include <net/pktqueue.h>
90 #include <net/route.h>
91
92 #include <netinet/in.h>
93 #include <netinet/in_pcb.h>
94 #include <netinet/in_var.h>
95 #include <netinet/ip.h>
96 #include <netinet/ip_var.h>
97 #include <netinet/udp.h>
98 #include <netinet/udp_var.h>
99
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #include <netinet6/udp6_var.h>
106 #endif /* INET6 */
107
108 #include <prop/proplib.h>
109
110 #include <crypto/blake2/blake2s.h>
111 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
112 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
113 #include <crypto/sodium/crypto_scalarmult.h>
114
115 #include "ioconf.h"
116
117 #ifdef WG_RUMPKERNEL
118 #include "wg_user.h"
119 #endif
120
121 /*
122 * Data structures
123 * - struct wg_softc is an instance of wg interfaces
124 * - It has a list of peers (struct wg_peer)
125 * - It has a threadpool job that sends/receives handshake messages and
126 * runs event handlers
127 * - It has its own two routing tables: one is for IPv4 and the other IPv6
128 * - struct wg_peer is a representative of a peer
129 * - It has a struct work to handle handshakes and timer tasks
130 * - It has a pair of session instances (struct wg_session)
131 * - It has a pair of endpoint instances (struct wg_sockaddr)
132 * - Normally one endpoint is used and the second one is used only on
133 * a peer migration (a change of peer's IP address)
134 * - It has a list of IP addresses and sub networks called allowedips
135 * (struct wg_allowedip)
136 * - A packets sent over a session is allowed if its destination matches
137 * any IP addresses or sub networks of the list
138 * - struct wg_session represents a session of a secure tunnel with a peer
139 * - Two instances of sessions belong to a peer; a stable session and a
140 * unstable session
141 * - A handshake process of a session always starts with a unstable instance
142 * - Once a session is established, its instance becomes stable and the
143 * other becomes unstable instead
144 * - Data messages are always sent via a stable session
145 *
146 * Locking notes:
147 * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
148 * - Changes to the peer list are serialized by wg_lock
149 * - The peer list may be read with pserialize(9) and psref(9)
150 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
151 * => XXX replace by pserialize when routing table is psz-safe
152 * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
153 * only in thread context and serializes:
154 * - the stable and unstable session pointers
155 * - all unstable session state
156 * - Packet processing may be done in softint context:
157 * - The stable session can be read under pserialize(9) or psref(9)
158 * - The stable session is always ESTABLISHED
159 * - On a session swap, we must wait for all readers to release a
160 * reference to a stable session before changing wgs_state and
161 * session states
162 * - Lock order: wg_lock -> wgp_lock
163 */
164
165
166 #define WGLOG(level, fmt, args...) \
167 log(level, "%s: " fmt, __func__, ##args)
168
169 /* Debug options */
170 #ifdef WG_DEBUG
171 /* Output debug logs */
172 #ifndef WG_DEBUG_LOG
173 #define WG_DEBUG_LOG
174 #endif
175 /* Output trace logs */
176 #ifndef WG_DEBUG_TRACE
177 #define WG_DEBUG_TRACE
178 #endif
179 /* Output hash values, etc. */
180 #ifndef WG_DEBUG_DUMP
181 #define WG_DEBUG_DUMP
182 #endif
183 /* Make some internal parameters configurable for testing and debugging */
184 #ifndef WG_DEBUG_PARAMS
185 #define WG_DEBUG_PARAMS
186 #endif
187 #endif
188
189 #ifdef WG_DEBUG_TRACE
190 #define WG_TRACE(msg) \
191 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
192 #else
193 #define WG_TRACE(msg) __nothing
194 #endif
195
196 #ifdef WG_DEBUG_LOG
197 #define WG_DLOG(fmt, args...) log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
198 #else
199 #define WG_DLOG(fmt, args...) __nothing
200 #endif
201
202 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
203 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
204 &(wgprc)->wgprc_curpps, 1)) { \
205 log(level, fmt, ##args); \
206 } \
207 } while (0)
208
209 #ifdef WG_DEBUG_PARAMS
210 static bool wg_force_underload = false;
211 #endif
212
213 #ifdef WG_DEBUG_DUMP
214
215 static char *
216 gethexdump(const char *p, size_t n)
217 {
218 char *buf;
219 size_t i;
220
221 if (n > SIZE_MAX/3 - 1)
222 return NULL;
223 buf = kmem_alloc(3*n + 1, KM_NOSLEEP);
224 if (buf == NULL)
225 return NULL;
226 for (i = 0; i < n; i++)
227 snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
228 return buf;
229 }
230
231 static void
232 puthexdump(char *buf, const void *p, size_t n)
233 {
234
235 if (buf == NULL)
236 return;
237 kmem_free(buf, 3*n + 1);
238 }
239
240 #ifdef WG_RUMPKERNEL
241 static void
242 wg_dump_buf(const char *func, const char *buf, const size_t size)
243 {
244 char *hex = gethexdump(buf, size);
245
246 log(LOG_DEBUG, "%s: %s\n", func, hex ? hex : "(enomem)");
247 puthexdump(hex, buf, size);
248 }
249 #endif
250
251 static void
252 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
253 const size_t size)
254 {
255 char *hex = gethexdump(hash, size);
256
257 log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex ? hex : "(enomem)");
258 puthexdump(hex, hash, size);
259 }
260
261 #define WG_DUMP_HASH(name, hash) \
262 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
263 #define WG_DUMP_HASH48(name, hash) \
264 wg_dump_hash(__func__, name, hash, 48)
265 #define WG_DUMP_BUF(buf, size) \
266 wg_dump_buf(__func__, buf, size)
267 #else
268 #define WG_DUMP_HASH(name, hash) __nothing
269 #define WG_DUMP_HASH48(name, hash) __nothing
270 #define WG_DUMP_BUF(buf, size) __nothing
271 #endif /* WG_DEBUG_DUMP */
272
273 #define WG_MTU 1420
274 #define WG_ALLOWEDIPS 16
275
276 #define CURVE25519_KEY_LEN 32
277 #define TAI64N_LEN sizeof(uint32_t) * 3
278 #define POLY1305_AUTHTAG_LEN 16
279 #define HMAC_BLOCK_LEN 64
280
281 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
282 /* [N] 4.3: Hash functions */
283 #define NOISE_DHLEN 32
284 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
285 #define NOISE_HASHLEN 32
286 #define NOISE_BLOCKLEN 64
287 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
288 /* [N] 5.1: "k" */
289 #define NOISE_CIPHER_KEY_LEN 32
290 /*
291 * [N] 9.2: "psk"
292 * "... psk is a 32-byte secret value provided by the application."
293 */
294 #define NOISE_PRESHARED_KEY_LEN 32
295
296 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
297 #define WG_TIMESTAMP_LEN TAI64N_LEN
298
299 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
300
301 #define WG_COOKIE_LEN 16
302 #define WG_MAC_LEN 16
303 #define WG_RANDVAL_LEN 24
304
305 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
306 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
307 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
308 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
309 #define WG_HASH_LEN NOISE_HASHLEN
310 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
311 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
312 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
313 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
314 #define WG_DATA_KEY_LEN 32
315 #define WG_SALT_LEN 24
316
317 /*
318 * The protocol messages
319 */
320 struct wg_msg {
321 uint32_t wgm_type;
322 } __packed;
323
324 /* [W] 5.4.2 First Message: Initiator to Responder */
325 struct wg_msg_init {
326 uint32_t wgmi_type;
327 uint32_t wgmi_sender;
328 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
329 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
330 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
331 uint8_t wgmi_mac1[WG_MAC_LEN];
332 uint8_t wgmi_mac2[WG_MAC_LEN];
333 } __packed;
334
335 /* [W] 5.4.3 Second Message: Responder to Initiator */
336 struct wg_msg_resp {
337 uint32_t wgmr_type;
338 uint32_t wgmr_sender;
339 uint32_t wgmr_receiver;
340 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
341 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
342 uint8_t wgmr_mac1[WG_MAC_LEN];
343 uint8_t wgmr_mac2[WG_MAC_LEN];
344 } __packed;
345
346 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
347 struct wg_msg_data {
348 uint32_t wgmd_type;
349 uint32_t wgmd_receiver;
350 uint64_t wgmd_counter;
351 uint32_t wgmd_packet[0];
352 } __packed;
353
354 /* [W] 5.4.7 Under Load: Cookie Reply Message */
355 struct wg_msg_cookie {
356 uint32_t wgmc_type;
357 uint32_t wgmc_receiver;
358 uint8_t wgmc_salt[WG_SALT_LEN];
359 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
360 } __packed;
361
362 #define WG_MSG_TYPE_INIT 1
363 #define WG_MSG_TYPE_RESP 2
364 #define WG_MSG_TYPE_COOKIE 3
365 #define WG_MSG_TYPE_DATA 4
366 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
367
368 /* Sliding windows */
369
370 #define SLIWIN_BITS 2048u
371 #define SLIWIN_TYPE uint32_t
372 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
373 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
374 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
375
376 struct sliwin {
377 SLIWIN_TYPE B[SLIWIN_WORDS];
378 uint64_t T;
379 };
380
381 static void
382 sliwin_reset(struct sliwin *W)
383 {
384
385 memset(W, 0, sizeof(*W));
386 }
387
388 static int
389 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
390 {
391
392 /*
393 * If it's more than one window older than the highest sequence
394 * number we've seen, reject.
395 */
396 #ifdef __HAVE_ATOMIC64_LOADSTORE
397 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
398 return EAUTH;
399 #endif
400
401 /*
402 * Otherwise, we need to take the lock to decide, so don't
403 * reject just yet. Caller must serialize a call to
404 * sliwin_update in this case.
405 */
406 return 0;
407 }
408
409 static int
410 sliwin_update(struct sliwin *W, uint64_t S)
411 {
412 unsigned word, bit;
413
414 /*
415 * If it's more than one window older than the highest sequence
416 * number we've seen, reject.
417 */
418 if (S + SLIWIN_NPKT < W->T)
419 return EAUTH;
420
421 /*
422 * If it's higher than the highest sequence number we've seen,
423 * advance the window.
424 */
425 if (S > W->T) {
426 uint64_t i = W->T / SLIWIN_BPW;
427 uint64_t j = S / SLIWIN_BPW;
428 unsigned k;
429
430 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
431 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
432 #ifdef __HAVE_ATOMIC64_LOADSTORE
433 atomic_store_relaxed(&W->T, S);
434 #else
435 W->T = S;
436 #endif
437 }
438
439 /* Test and set the bit -- if already set, reject. */
440 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
441 bit = S % SLIWIN_BPW;
442 if (W->B[word] & (1UL << bit))
443 return EAUTH;
444 W->B[word] |= 1UL << bit;
445
446 /* Accept! */
447 return 0;
448 }
449
450 struct wg_session {
451 struct wg_peer *wgs_peer;
452 struct psref_target
453 wgs_psref;
454
455 int wgs_state;
456 #define WGS_STATE_UNKNOWN 0
457 #define WGS_STATE_INIT_ACTIVE 1
458 #define WGS_STATE_INIT_PASSIVE 2
459 #define WGS_STATE_ESTABLISHED 3
460 #define WGS_STATE_DESTROYING 4
461
462 time_t wgs_time_established;
463 time_t wgs_time_last_data_sent;
464 bool wgs_is_initiator;
465
466 uint32_t wgs_local_index;
467 uint32_t wgs_remote_index;
468 #ifdef __HAVE_ATOMIC64_LOADSTORE
469 volatile uint64_t
470 wgs_send_counter;
471 #else
472 kmutex_t wgs_send_counter_lock;
473 uint64_t wgs_send_counter;
474 #endif
475
476 struct {
477 kmutex_t lock;
478 struct sliwin window;
479 } *wgs_recvwin;
480
481 uint8_t wgs_handshake_hash[WG_HASH_LEN];
482 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
483 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
484 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
485 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
486 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
487 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
488 };
489
490 struct wg_sockaddr {
491 union {
492 struct sockaddr_storage _ss;
493 struct sockaddr _sa;
494 struct sockaddr_in _sin;
495 struct sockaddr_in6 _sin6;
496 };
497 struct psref_target wgsa_psref;
498 };
499
500 #define wgsatoss(wgsa) (&(wgsa)->_ss)
501 #define wgsatosa(wgsa) (&(wgsa)->_sa)
502 #define wgsatosin(wgsa) (&(wgsa)->_sin)
503 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
504
505 #define wgsa_family(wgsa) (wgsatosa(wgsa)->sa_family)
506
507 struct wg_peer;
508 struct wg_allowedip {
509 struct radix_node wga_nodes[2];
510 struct wg_sockaddr _wga_sa_addr;
511 struct wg_sockaddr _wga_sa_mask;
512 #define wga_sa_addr _wga_sa_addr._sa
513 #define wga_sa_mask _wga_sa_mask._sa
514
515 int wga_family;
516 uint8_t wga_cidr;
517 union {
518 struct in_addr _ip4;
519 struct in6_addr _ip6;
520 } wga_addr;
521 #define wga_addr4 wga_addr._ip4
522 #define wga_addr6 wga_addr._ip6
523
524 struct wg_peer *wga_peer;
525 };
526
527 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
528
529 struct wg_ppsratecheck {
530 struct timeval wgprc_lasttime;
531 int wgprc_curpps;
532 };
533
534 struct wg_softc;
535 struct wg_peer {
536 struct wg_softc *wgp_sc;
537 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
538 struct pslist_entry wgp_peerlist_entry;
539 pserialize_t wgp_psz;
540 struct psref_target wgp_psref;
541 kmutex_t *wgp_lock;
542 kmutex_t *wgp_intr_lock;
543
544 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
545 struct wg_sockaddr *wgp_endpoint;
546 struct wg_sockaddr *wgp_endpoint0;
547 volatile unsigned wgp_endpoint_changing;
548 bool wgp_endpoint_available;
549
550 /* The preshared key (optional) */
551 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
552
553 struct wg_session *wgp_session_stable;
554 struct wg_session *wgp_session_unstable;
555
556 /* first outgoing packet awaiting session initiation */
557 struct mbuf *wgp_pending;
558
559 /* timestamp in big-endian */
560 wg_timestamp_t wgp_timestamp_latest_init;
561
562 struct timespec wgp_last_handshake_time;
563
564 callout_t wgp_rekey_timer;
565 callout_t wgp_handshake_timeout_timer;
566 callout_t wgp_session_dtor_timer;
567
568 time_t wgp_handshake_start_time;
569
570 int wgp_n_allowedips;
571 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
572
573 time_t wgp_latest_cookie_time;
574 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
575 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
576 bool wgp_last_sent_mac1_valid;
577 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
578 bool wgp_last_sent_cookie_valid;
579
580 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
581
582 time_t wgp_last_genrandval_time;
583 uint32_t wgp_randval;
584
585 struct wg_ppsratecheck wgp_ppsratecheck;
586
587 struct work wgp_work;
588 unsigned int wgp_tasks;
589 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
590 #define WGP_TASK_RETRY_HANDSHAKE __BIT(1)
591 #define WGP_TASK_ESTABLISH_SESSION __BIT(2)
592 #define WGP_TASK_ENDPOINT_CHANGED __BIT(3)
593 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(4)
594 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(5)
595 };
596
597 struct wg_ops;
598
599 struct wg_softc {
600 struct ifnet wg_if;
601 LIST_ENTRY(wg_softc) wg_list;
602 kmutex_t *wg_lock;
603 kmutex_t *wg_intr_lock;
604 krwlock_t *wg_rwlock;
605
606 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
607 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
608
609 int wg_npeers;
610 struct pslist_head wg_peers;
611 struct thmap *wg_peers_bypubkey;
612 struct thmap *wg_peers_byname;
613 struct thmap *wg_sessions_byindex;
614 uint16_t wg_listen_port;
615
616 struct threadpool *wg_threadpool;
617
618 struct threadpool_job wg_job;
619 int wg_upcalls;
620 #define WG_UPCALL_INET __BIT(0)
621 #define WG_UPCALL_INET6 __BIT(1)
622
623 #ifdef INET
624 struct socket *wg_so4;
625 struct radix_node_head *wg_rtable_ipv4;
626 #endif
627 #ifdef INET6
628 struct socket *wg_so6;
629 struct radix_node_head *wg_rtable_ipv6;
630 #endif
631
632 struct wg_ppsratecheck wg_ppsratecheck;
633
634 struct wg_ops *wg_ops;
635
636 #ifdef WG_RUMPKERNEL
637 struct wg_user *wg_user;
638 #endif
639 };
640
641 /* [W] 6.1 Preliminaries */
642 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
643 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
644 #define WG_REKEY_AFTER_TIME 120
645 #define WG_REJECT_AFTER_TIME 180
646 #define WG_REKEY_ATTEMPT_TIME 90
647 #define WG_REKEY_TIMEOUT 5
648 #define WG_KEEPALIVE_TIMEOUT 10
649
650 #define WG_COOKIE_TIME 120
651 #define WG_RANDVAL_TIME (2 * 60)
652
653 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
654 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
655 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
656 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
657 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
658 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
659 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
660
661 static struct mbuf *
662 wg_get_mbuf(size_t, size_t);
663
664 static int wg_send_data_msg(struct wg_peer *, struct wg_session *,
665 struct mbuf *);
666 static int wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
667 const uint32_t, const uint8_t [], const struct sockaddr *);
668 static int wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
669 struct wg_session *, const struct wg_msg_init *);
670 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
671
672 static struct wg_peer *
673 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
674 struct psref *);
675 static struct wg_peer *
676 wg_lookup_peer_by_pubkey(struct wg_softc *,
677 const uint8_t [], struct psref *);
678
679 static struct wg_session *
680 wg_lookup_session_by_index(struct wg_softc *,
681 const uint32_t, struct psref *);
682
683 static void wg_update_endpoint_if_necessary(struct wg_peer *,
684 const struct sockaddr *);
685
686 static void wg_schedule_rekey_timer(struct wg_peer *);
687 static void wg_schedule_session_dtor_timer(struct wg_peer *);
688
689 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
690 static void wg_calculate_keys(struct wg_session *, const bool);
691
692 static void wg_clear_states(struct wg_session *);
693
694 static void wg_get_peer(struct wg_peer *, struct psref *);
695 static void wg_put_peer(struct wg_peer *, struct psref *);
696
697 static int wg_send_so(struct wg_peer *, struct mbuf *);
698 static int wg_send_udp(struct wg_peer *, struct mbuf *);
699 static int wg_output(struct ifnet *, struct mbuf *,
700 const struct sockaddr *, const struct rtentry *);
701 static void wg_input(struct ifnet *, struct mbuf *, const int);
702 static int wg_ioctl(struct ifnet *, u_long, void *);
703 static int wg_bind_port(struct wg_softc *, const uint16_t);
704 static int wg_init(struct ifnet *);
705 static void wg_stop(struct ifnet *, int);
706
707 static void wg_peer_work(struct work *, void *);
708 static void wg_job(struct threadpool_job *);
709 static void wgintr(void *);
710 static void wg_purge_pending_packets(struct wg_peer *);
711
712 static int wg_clone_create(struct if_clone *, int);
713 static int wg_clone_destroy(struct ifnet *);
714
715 struct wg_ops {
716 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
717 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
718 void (*input)(struct ifnet *, struct mbuf *, const int);
719 int (*bind_port)(struct wg_softc *, const uint16_t);
720 };
721
722 struct wg_ops wg_ops_rumpkernel = {
723 .send_hs_msg = wg_send_so,
724 .send_data_msg = wg_send_udp,
725 .input = wg_input,
726 .bind_port = wg_bind_port,
727 };
728
729 #ifdef WG_RUMPKERNEL
730 static bool wg_user_mode(struct wg_softc *);
731 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
732
733 static int wg_send_user(struct wg_peer *, struct mbuf *);
734 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
735 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
736
737 struct wg_ops wg_ops_rumpuser = {
738 .send_hs_msg = wg_send_user,
739 .send_data_msg = wg_send_user,
740 .input = wg_input_user,
741 .bind_port = wg_bind_port_user,
742 };
743 #endif
744
745 #define WG_PEER_READER_FOREACH(wgp, wg) \
746 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
747 wgp_peerlist_entry)
748 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
749 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
750 wgp_peerlist_entry)
751 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
752 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
753 #define WG_PEER_WRITER_REMOVE(wgp) \
754 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
755
756 struct wg_route {
757 struct radix_node wgr_nodes[2];
758 struct wg_peer *wgr_peer;
759 };
760
761 static struct radix_node_head *
762 wg_rnh(struct wg_softc *wg, const int family)
763 {
764
765 switch (family) {
766 case AF_INET:
767 return wg->wg_rtable_ipv4;
768 #ifdef INET6
769 case AF_INET6:
770 return wg->wg_rtable_ipv6;
771 #endif
772 default:
773 return NULL;
774 }
775 }
776
777
778 /*
779 * Global variables
780 */
781 static volatile unsigned wg_count __cacheline_aligned;
782
783 struct psref_class *wg_psref_class __read_mostly;
784
785 static struct if_clone wg_cloner =
786 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
787
788 static struct pktqueue *wg_pktq __read_mostly;
789 static struct workqueue *wg_wq __read_mostly;
790
791 void wgattach(int);
792 /* ARGSUSED */
793 void
794 wgattach(int count)
795 {
796 /*
797 * Nothing to do here, initialization is handled by the
798 * module initialization code in wginit() below).
799 */
800 }
801
802 static void
803 wginit(void)
804 {
805
806 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
807
808 if_clone_attach(&wg_cloner);
809 }
810
811 /*
812 * XXX Kludge: This should just happen in wginit, but workqueue_create
813 * cannot be run until after CPUs have been detected, and wginit runs
814 * before configure.
815 */
816 static int
817 wginitqueues(void)
818 {
819 int error __diagused;
820
821 wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
822 KASSERT(wg_pktq != NULL);
823
824 error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
825 PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
826 KASSERT(error == 0);
827
828 return 0;
829 }
830
831 static void
832 wg_guarantee_initialized(void)
833 {
834 static ONCE_DECL(init);
835 int error __diagused;
836
837 error = RUN_ONCE(&init, wginitqueues);
838 KASSERT(error == 0);
839 }
840
841 static int
842 wg_count_inc(void)
843 {
844 unsigned o, n;
845
846 do {
847 o = atomic_load_relaxed(&wg_count);
848 if (o == UINT_MAX)
849 return ENFILE;
850 n = o + 1;
851 } while (atomic_cas_uint(&wg_count, o, n) != o);
852
853 return 0;
854 }
855
856 static void
857 wg_count_dec(void)
858 {
859 unsigned c __diagused;
860
861 c = atomic_dec_uint_nv(&wg_count);
862 KASSERT(c != UINT_MAX);
863 }
864
865 static int
866 wgdetach(void)
867 {
868
869 /* Prevent new interface creation. */
870 if_clone_detach(&wg_cloner);
871
872 /* Check whether there are any existing interfaces. */
873 if (atomic_load_relaxed(&wg_count)) {
874 /* Back out -- reattach the cloner. */
875 if_clone_attach(&wg_cloner);
876 return EBUSY;
877 }
878
879 /* No interfaces left. Nuke it. */
880 workqueue_destroy(wg_wq);
881 pktq_destroy(wg_pktq);
882 psref_class_destroy(wg_psref_class);
883
884 return 0;
885 }
886
887 static void
888 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
889 uint8_t hash[WG_HASH_LEN])
890 {
891 /* [W] 5.4: CONSTRUCTION */
892 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
893 /* [W] 5.4: IDENTIFIER */
894 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
895 struct blake2s state;
896
897 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
898 signature, strlen(signature));
899
900 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
901 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
902
903 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
904 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
905 blake2s_update(&state, id, strlen(id));
906 blake2s_final(&state, hash);
907
908 WG_DUMP_HASH("ckey", ckey);
909 WG_DUMP_HASH("hash", hash);
910 }
911
912 static void
913 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
914 const size_t inputsize)
915 {
916 struct blake2s state;
917
918 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
919 blake2s_update(&state, hash, WG_HASH_LEN);
920 blake2s_update(&state, input, inputsize);
921 blake2s_final(&state, hash);
922 }
923
924 static void
925 wg_algo_mac(uint8_t out[], const size_t outsize,
926 const uint8_t key[], const size_t keylen,
927 const uint8_t input1[], const size_t input1len,
928 const uint8_t input2[], const size_t input2len)
929 {
930 struct blake2s state;
931
932 blake2s_init(&state, outsize, key, keylen);
933
934 blake2s_update(&state, input1, input1len);
935 if (input2 != NULL)
936 blake2s_update(&state, input2, input2len);
937 blake2s_final(&state, out);
938 }
939
940 static void
941 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
942 const uint8_t input1[], const size_t input1len,
943 const uint8_t input2[], const size_t input2len)
944 {
945 struct blake2s state;
946 /* [W] 5.4: LABEL-MAC1 */
947 const char *label = "mac1----";
948 uint8_t key[WG_HASH_LEN];
949
950 blake2s_init(&state, sizeof(key), NULL, 0);
951 blake2s_update(&state, label, strlen(label));
952 blake2s_update(&state, input1, input1len);
953 blake2s_final(&state, key);
954
955 blake2s_init(&state, outsize, key, sizeof(key));
956 if (input2 != NULL)
957 blake2s_update(&state, input2, input2len);
958 blake2s_final(&state, out);
959 }
960
961 static void
962 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
963 const uint8_t input1[], const size_t input1len)
964 {
965 struct blake2s state;
966 /* [W] 5.4: LABEL-COOKIE */
967 const char *label = "cookie--";
968
969 blake2s_init(&state, outsize, NULL, 0);
970 blake2s_update(&state, label, strlen(label));
971 blake2s_update(&state, input1, input1len);
972 blake2s_final(&state, out);
973 }
974
975 static void
976 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
977 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
978 {
979
980 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
981
982 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
983 crypto_scalarmult_base(pubkey, privkey);
984 }
985
986 static void
987 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
988 const uint8_t privkey[WG_STATIC_KEY_LEN],
989 const uint8_t pubkey[WG_STATIC_KEY_LEN])
990 {
991
992 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
993
994 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
995 KASSERT(ret == 0);
996 }
997
998 static void
999 wg_algo_hmac(uint8_t out[], const size_t outlen,
1000 const uint8_t key[], const size_t keylen,
1001 const uint8_t in[], const size_t inlen)
1002 {
1003 #define IPAD 0x36
1004 #define OPAD 0x5c
1005 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
1006 uint8_t ipad[HMAC_BLOCK_LEN];
1007 uint8_t opad[HMAC_BLOCK_LEN];
1008 int i;
1009 struct blake2s state;
1010
1011 KASSERT(outlen == WG_HASH_LEN);
1012 KASSERT(keylen <= HMAC_BLOCK_LEN);
1013
1014 memcpy(hmackey, key, keylen);
1015
1016 for (i = 0; i < sizeof(hmackey); i++) {
1017 ipad[i] = hmackey[i] ^ IPAD;
1018 opad[i] = hmackey[i] ^ OPAD;
1019 }
1020
1021 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1022 blake2s_update(&state, ipad, sizeof(ipad));
1023 blake2s_update(&state, in, inlen);
1024 blake2s_final(&state, out);
1025
1026 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1027 blake2s_update(&state, opad, sizeof(opad));
1028 blake2s_update(&state, out, WG_HASH_LEN);
1029 blake2s_final(&state, out);
1030 #undef IPAD
1031 #undef OPAD
1032 }
1033
1034 static void
1035 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
1036 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
1037 const uint8_t input[], const size_t inputlen)
1038 {
1039 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
1040 uint8_t one[1];
1041
1042 /*
1043 * [N] 4.3: "an input_key_material byte sequence with length
1044 * either zero bytes, 32 bytes, or DHLEN bytes."
1045 */
1046 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
1047
1048 WG_DUMP_HASH("ckey", ckey);
1049 if (input != NULL)
1050 WG_DUMP_HASH("input", input);
1051 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
1052 input, inputlen);
1053 WG_DUMP_HASH("tmp1", tmp1);
1054 one[0] = 1;
1055 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1056 one, sizeof(one));
1057 WG_DUMP_HASH("out1", out1);
1058 if (out2 == NULL)
1059 return;
1060 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
1061 tmp2[WG_KDF_OUTPUT_LEN] = 2;
1062 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1063 tmp2, sizeof(tmp2));
1064 WG_DUMP_HASH("out2", out2);
1065 if (out3 == NULL)
1066 return;
1067 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
1068 tmp2[WG_KDF_OUTPUT_LEN] = 3;
1069 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1070 tmp2, sizeof(tmp2));
1071 WG_DUMP_HASH("out3", out3);
1072 }
1073
1074 static void
1075 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
1076 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1077 const uint8_t local_key[WG_STATIC_KEY_LEN],
1078 const uint8_t remote_key[WG_STATIC_KEY_LEN])
1079 {
1080 uint8_t dhout[WG_DH_OUTPUT_LEN];
1081
1082 wg_algo_dh(dhout, local_key, remote_key);
1083 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1084
1085 WG_DUMP_HASH("dhout", dhout);
1086 WG_DUMP_HASH("ckey", ckey);
1087 if (cipher_key != NULL)
1088 WG_DUMP_HASH("cipher_key", cipher_key);
1089 }
1090
1091 static void
1092 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1093 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1094 const uint8_t auth[], size_t authlen)
1095 {
1096 uint8_t nonce[(32 + 64) / 8] = {0};
1097 long long unsigned int outsize;
1098 int error __diagused;
1099
1100 le64enc(&nonce[4], counter);
1101
1102 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1103 plainsize, auth, authlen, NULL, nonce, key);
1104 KASSERT(error == 0);
1105 KASSERT(outsize == expected_outsize);
1106 }
1107
1108 static int
1109 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1110 const uint64_t counter, const uint8_t encrypted[],
1111 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1112 {
1113 uint8_t nonce[(32 + 64) / 8] = {0};
1114 long long unsigned int outsize;
1115 int error;
1116
1117 le64enc(&nonce[4], counter);
1118
1119 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1120 encrypted, encryptedsize, auth, authlen, nonce, key);
1121 if (error == 0)
1122 KASSERT(outsize == expected_outsize);
1123 return error;
1124 }
1125
1126 static void
1127 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1128 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1129 const uint8_t auth[], size_t authlen,
1130 const uint8_t nonce[WG_SALT_LEN])
1131 {
1132 long long unsigned int outsize;
1133 int error __diagused;
1134
1135 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1136 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1137 plain, plainsize, auth, authlen, NULL, nonce, key);
1138 KASSERT(error == 0);
1139 KASSERT(outsize == expected_outsize);
1140 }
1141
1142 static int
1143 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1144 const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
1145 const uint8_t auth[], size_t authlen,
1146 const uint8_t nonce[WG_SALT_LEN])
1147 {
1148 long long unsigned int outsize;
1149 int error;
1150
1151 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1152 encrypted, encryptedsize, auth, authlen, nonce, key);
1153 if (error == 0)
1154 KASSERT(outsize == expected_outsize);
1155 return error;
1156 }
1157
1158 static void
1159 wg_algo_tai64n(wg_timestamp_t timestamp)
1160 {
1161 struct timespec ts;
1162
1163 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1164 getnanotime(&ts);
1165 /* TAI64 label in external TAI64 format */
1166 be32enc(timestamp, 0x40000000UL + (ts.tv_sec >> 32));
1167 /* second beginning from 1970 TAI */
1168 be32enc(timestamp + 4, ts.tv_sec & 0xffffffffU);
1169 /* nanosecond in big-endian format */
1170 be32enc(timestamp + 8, ts.tv_nsec);
1171 }
1172
1173 /*
1174 * wg_get_stable_session(wgp, psref)
1175 *
1176 * Get a passive reference to the current stable session, or
1177 * return NULL if there is no current stable session.
1178 *
1179 * The pointer is always there but the session is not necessarily
1180 * ESTABLISHED; if it is not ESTABLISHED, return NULL. However,
1181 * the session may transition from ESTABLISHED to DESTROYING while
1182 * holding the passive reference.
1183 */
1184 static struct wg_session *
1185 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1186 {
1187 int s;
1188 struct wg_session *wgs;
1189
1190 s = pserialize_read_enter();
1191 wgs = atomic_load_consume(&wgp->wgp_session_stable);
1192 if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
1193 wgs = NULL;
1194 else
1195 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1196 pserialize_read_exit(s);
1197
1198 return wgs;
1199 }
1200
1201 static void
1202 wg_put_session(struct wg_session *wgs, struct psref *psref)
1203 {
1204
1205 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1206 }
1207
1208 static void
1209 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1210 {
1211 struct wg_peer *wgp = wgs->wgs_peer;
1212 struct wg_session *wgs0 __diagused;
1213 void *garbage;
1214
1215 KASSERT(mutex_owned(wgp->wgp_lock));
1216 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1217
1218 /* Remove the session from the table. */
1219 wgs0 = thmap_del(wg->wg_sessions_byindex,
1220 &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1221 KASSERT(wgs0 == wgs);
1222 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1223
1224 /* Wait for passive references to drain. */
1225 pserialize_perform(wgp->wgp_psz);
1226 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1227
1228 /* Free memory, zero state, and transition to UNKNOWN. */
1229 thmap_gc(wg->wg_sessions_byindex, garbage);
1230 wg_clear_states(wgs);
1231 wgs->wgs_state = WGS_STATE_UNKNOWN;
1232 }
1233
1234 /*
1235 * wg_get_session_index(wg, wgs)
1236 *
1237 * Choose a session index for wgs->wgs_local_index, and store it
1238 * in wg's table of sessions by index.
1239 *
1240 * wgs must be the unstable session of its peer, and must be
1241 * transitioning out of the UNKNOWN state.
1242 */
1243 static void
1244 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1245 {
1246 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1247 struct wg_session *wgs0;
1248 uint32_t index;
1249
1250 KASSERT(mutex_owned(wgp->wgp_lock));
1251 KASSERT(wgs == wgp->wgp_session_unstable);
1252 KASSERT(wgs->wgs_state == WGS_STATE_UNKNOWN);
1253
1254 do {
1255 /* Pick a uniform random index. */
1256 index = cprng_strong32();
1257
1258 /* Try to take it. */
1259 wgs->wgs_local_index = index;
1260 wgs0 = thmap_put(wg->wg_sessions_byindex,
1261 &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1262
1263 /* If someone else beat us, start over. */
1264 } while (__predict_false(wgs0 != wgs));
1265 }
1266
1267 /*
1268 * wg_put_session_index(wg, wgs)
1269 *
1270 * Remove wgs from the table of sessions by index, wait for any
1271 * passive references to drain, and transition the session to the
1272 * UNKNOWN state.
1273 *
1274 * wgs must be the unstable session of its peer, and must not be
1275 * UNKNOWN or ESTABLISHED.
1276 */
1277 static void
1278 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1279 {
1280 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1281
1282 KASSERT(mutex_owned(wgp->wgp_lock));
1283 KASSERT(wgs == wgp->wgp_session_unstable);
1284 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1285 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1286
1287 wg_destroy_session(wg, wgs);
1288 psref_target_init(&wgs->wgs_psref, wg_psref_class);
1289 }
1290
1291 /*
1292 * Handshake patterns
1293 *
1294 * [W] 5: "These messages use the "IK" pattern from Noise"
1295 * [N] 7.5. Interactive handshake patterns (fundamental)
1296 * "The first character refers to the initiators static key:"
1297 * "I = Static key for initiator Immediately transmitted to responder,
1298 * despite reduced or absent identity hiding"
1299 * "The second character refers to the responders static key:"
1300 * "K = Static key for responder Known to initiator"
1301 * "IK:
1302 * <- s
1303 * ...
1304 * -> e, es, s, ss
1305 * <- e, ee, se"
1306 * [N] 9.4. Pattern modifiers
1307 * "IKpsk2:
1308 * <- s
1309 * ...
1310 * -> e, es, s, ss
1311 * <- e, ee, se, psk"
1312 */
1313 static void
1314 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1315 struct wg_session *wgs, struct wg_msg_init *wgmi)
1316 {
1317 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1318 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1319 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1320 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1321 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1322
1323 KASSERT(mutex_owned(wgp->wgp_lock));
1324 KASSERT(wgs == wgp->wgp_session_unstable);
1325 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1326
1327 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1328 wgmi->wgmi_sender = wgs->wgs_local_index;
1329
1330 /* [W] 5.4.2: First Message: Initiator to Responder */
1331
1332 /* Ci := HASH(CONSTRUCTION) */
1333 /* Hi := HASH(Ci || IDENTIFIER) */
1334 wg_init_key_and_hash(ckey, hash);
1335 /* Hi := HASH(Hi || Sr^pub) */
1336 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1337
1338 WG_DUMP_HASH("hash", hash);
1339
1340 /* [N] 2.2: "e" */
1341 /* Ei^priv, Ei^pub := DH-GENERATE() */
1342 wg_algo_generate_keypair(pubkey, privkey);
1343 /* Ci := KDF1(Ci, Ei^pub) */
1344 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1345 /* msg.ephemeral := Ei^pub */
1346 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1347 /* Hi := HASH(Hi || msg.ephemeral) */
1348 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1349
1350 WG_DUMP_HASH("ckey", ckey);
1351 WG_DUMP_HASH("hash", hash);
1352
1353 /* [N] 2.2: "es" */
1354 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1355 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1356
1357 /* [N] 2.2: "s" */
1358 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1359 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1360 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1361 hash, sizeof(hash));
1362 /* Hi := HASH(Hi || msg.static) */
1363 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1364
1365 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1366
1367 /* [N] 2.2: "ss" */
1368 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1369 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1370
1371 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1372 wg_timestamp_t timestamp;
1373 wg_algo_tai64n(timestamp);
1374 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1375 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1376 /* Hi := HASH(Hi || msg.timestamp) */
1377 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1378
1379 /* [W] 5.4.4 Cookie MACs */
1380 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1381 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1382 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1383 /* Need mac1 to decrypt a cookie from a cookie message */
1384 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1385 sizeof(wgp->wgp_last_sent_mac1));
1386 wgp->wgp_last_sent_mac1_valid = true;
1387
1388 if (wgp->wgp_latest_cookie_time == 0 ||
1389 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1390 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1391 else {
1392 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1393 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1394 (const uint8_t *)wgmi,
1395 offsetof(struct wg_msg_init, wgmi_mac2),
1396 NULL, 0);
1397 }
1398
1399 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1400 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1401 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1402 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1403 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1404 }
1405
1406 static void
1407 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1408 const struct sockaddr *src)
1409 {
1410 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1411 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1412 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1413 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1414 struct wg_peer *wgp;
1415 struct wg_session *wgs;
1416 int error, ret;
1417 struct psref psref_peer;
1418 uint8_t mac1[WG_MAC_LEN];
1419
1420 WG_TRACE("init msg received");
1421
1422 wg_algo_mac_mac1(mac1, sizeof(mac1),
1423 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1424 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1425
1426 /*
1427 * [W] 5.3: Denial of Service Mitigation & Cookies
1428 * "the responder, ..., must always reject messages with an invalid
1429 * msg.mac1"
1430 */
1431 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1432 WG_DLOG("mac1 is invalid\n");
1433 return;
1434 }
1435
1436 /*
1437 * [W] 5.4.2: First Message: Initiator to Responder
1438 * "When the responder receives this message, it does the same
1439 * operations so that its final state variables are identical,
1440 * replacing the operands of the DH function to produce equivalent
1441 * values."
1442 * Note that the following comments of operations are just copies of
1443 * the initiator's ones.
1444 */
1445
1446 /* Ci := HASH(CONSTRUCTION) */
1447 /* Hi := HASH(Ci || IDENTIFIER) */
1448 wg_init_key_and_hash(ckey, hash);
1449 /* Hi := HASH(Hi || Sr^pub) */
1450 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1451
1452 /* [N] 2.2: "e" */
1453 /* Ci := KDF1(Ci, Ei^pub) */
1454 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1455 sizeof(wgmi->wgmi_ephemeral));
1456 /* Hi := HASH(Hi || msg.ephemeral) */
1457 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1458
1459 WG_DUMP_HASH("ckey", ckey);
1460
1461 /* [N] 2.2: "es" */
1462 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1463 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1464
1465 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1466
1467 /* [N] 2.2: "s" */
1468 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1469 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1470 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1471 if (error != 0) {
1472 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1473 "wg_algo_aead_dec for secret key failed\n");
1474 return;
1475 }
1476 /* Hi := HASH(Hi || msg.static) */
1477 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1478
1479 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1480 if (wgp == NULL) {
1481 WG_DLOG("peer not found\n");
1482 return;
1483 }
1484
1485 /*
1486 * Lock the peer to serialize access to cookie state.
1487 *
1488 * XXX Can we safely avoid holding the lock across DH? Take it
1489 * just to verify mac2 and then unlock/DH/lock?
1490 */
1491 mutex_enter(wgp->wgp_lock);
1492
1493 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1494 WG_TRACE("under load");
1495 /*
1496 * [W] 5.3: Denial of Service Mitigation & Cookies
1497 * "the responder, ..., and when under load may reject messages
1498 * with an invalid msg.mac2. If the responder receives a
1499 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1500 * and is under load, it may respond with a cookie reply
1501 * message"
1502 */
1503 uint8_t zero[WG_MAC_LEN] = {0};
1504 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1505 WG_TRACE("sending a cookie message: no cookie included");
1506 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1507 wgmi->wgmi_mac1, src);
1508 goto out;
1509 }
1510 if (!wgp->wgp_last_sent_cookie_valid) {
1511 WG_TRACE("sending a cookie message: no cookie sent ever");
1512 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1513 wgmi->wgmi_mac1, src);
1514 goto out;
1515 }
1516 uint8_t mac2[WG_MAC_LEN];
1517 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1518 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1519 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1520 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1521 WG_DLOG("mac2 is invalid\n");
1522 goto out;
1523 }
1524 WG_TRACE("under load, but continue to sending");
1525 }
1526
1527 /* [N] 2.2: "ss" */
1528 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1529 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1530
1531 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1532 wg_timestamp_t timestamp;
1533 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1534 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1535 hash, sizeof(hash));
1536 if (error != 0) {
1537 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1538 "wg_algo_aead_dec for timestamp failed\n");
1539 goto out;
1540 }
1541 /* Hi := HASH(Hi || msg.timestamp) */
1542 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1543
1544 /*
1545 * [W] 5.1 "The responder keeps track of the greatest timestamp
1546 * received per peer and discards packets containing
1547 * timestamps less than or equal to it."
1548 */
1549 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1550 sizeof(timestamp));
1551 if (ret <= 0) {
1552 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1553 "invalid init msg: timestamp is old\n");
1554 goto out;
1555 }
1556 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1557
1558 /*
1559 * Message is good -- we're committing to handle it now, unless
1560 * we were already initiating a session.
1561 */
1562 wgs = wgp->wgp_session_unstable;
1563 switch (wgs->wgs_state) {
1564 case WGS_STATE_UNKNOWN: /* new session initiated by peer */
1565 wg_get_session_index(wg, wgs);
1566 break;
1567 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, drop */
1568 WG_TRACE("Session already initializing, ignoring the message");
1569 goto out;
1570 case WGS_STATE_INIT_PASSIVE: /* peer is retrying, start over */
1571 WG_TRACE("Session already initializing, destroying old states");
1572 wg_clear_states(wgs);
1573 /* keep session index */
1574 break;
1575 case WGS_STATE_ESTABLISHED: /* can't happen */
1576 panic("unstable session can't be established");
1577 break;
1578 case WGS_STATE_DESTROYING: /* rekey initiated by peer */
1579 WG_TRACE("Session destroying, but force to clear");
1580 callout_stop(&wgp->wgp_session_dtor_timer);
1581 wg_clear_states(wgs);
1582 /* keep session index */
1583 break;
1584 default:
1585 panic("invalid session state: %d", wgs->wgs_state);
1586 }
1587 wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
1588
1589 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1590 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1591 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1592 sizeof(wgmi->wgmi_ephemeral));
1593
1594 wg_update_endpoint_if_necessary(wgp, src);
1595
1596 (void)wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1597
1598 wg_calculate_keys(wgs, false);
1599 wg_clear_states(wgs);
1600
1601 out:
1602 mutex_exit(wgp->wgp_lock);
1603 wg_put_peer(wgp, &psref_peer);
1604 }
1605
1606 static struct socket *
1607 wg_get_so_by_af(struct wg_softc *wg, const int af)
1608 {
1609
1610 return (af == AF_INET) ? wg->wg_so4 : wg->wg_so6;
1611 }
1612
1613 static struct socket *
1614 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1615 {
1616
1617 return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
1618 }
1619
1620 static struct wg_sockaddr *
1621 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1622 {
1623 struct wg_sockaddr *wgsa;
1624 int s;
1625
1626 s = pserialize_read_enter();
1627 wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1628 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1629 pserialize_read_exit(s);
1630
1631 return wgsa;
1632 }
1633
1634 static void
1635 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1636 {
1637
1638 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1639 }
1640
1641 static int
1642 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1643 {
1644 int error;
1645 struct socket *so;
1646 struct psref psref;
1647 struct wg_sockaddr *wgsa;
1648
1649 wgsa = wg_get_endpoint_sa(wgp, &psref);
1650 so = wg_get_so_by_peer(wgp, wgsa);
1651 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1652 wg_put_sa(wgp, wgsa, &psref);
1653
1654 return error;
1655 }
1656
1657 static int
1658 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1659 {
1660 int error;
1661 struct mbuf *m;
1662 struct wg_msg_init *wgmi;
1663 struct wg_session *wgs;
1664
1665 KASSERT(mutex_owned(wgp->wgp_lock));
1666
1667 wgs = wgp->wgp_session_unstable;
1668 /* XXX pull dispatch out into wg_task_send_init_message */
1669 switch (wgs->wgs_state) {
1670 case WGS_STATE_UNKNOWN: /* new session initiated by us */
1671 wg_get_session_index(wg, wgs);
1672 break;
1673 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, stop */
1674 WG_TRACE("Session already initializing, skip starting new one");
1675 return EBUSY;
1676 case WGS_STATE_INIT_PASSIVE: /* peer was trying -- XXX what now? */
1677 WG_TRACE("Session already initializing, destroying old states");
1678 wg_clear_states(wgs);
1679 /* keep session index */
1680 break;
1681 case WGS_STATE_ESTABLISHED: /* can't happen */
1682 panic("unstable session can't be established");
1683 break;
1684 case WGS_STATE_DESTROYING: /* rekey initiated by us too early */
1685 WG_TRACE("Session destroying");
1686 /* XXX should wait? */
1687 return EBUSY;
1688 }
1689 wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
1690
1691 m = m_gethdr(M_WAIT, MT_DATA);
1692 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1693 wgmi = mtod(m, struct wg_msg_init *);
1694 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1695
1696 error = wg->wg_ops->send_hs_msg(wgp, m);
1697 if (error == 0) {
1698 WG_TRACE("init msg sent");
1699
1700 if (wgp->wgp_handshake_start_time == 0)
1701 wgp->wgp_handshake_start_time = time_uptime;
1702 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1703 MIN(wg_rekey_timeout, INT_MAX/hz) * hz);
1704 } else {
1705 wg_put_session_index(wg, wgs);
1706 /* Initiation failed; toss packet waiting for it if any. */
1707 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL)
1708 m_freem(m);
1709 }
1710
1711 return error;
1712 }
1713
1714 static void
1715 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1716 struct wg_session *wgs, struct wg_msg_resp *wgmr,
1717 const struct wg_msg_init *wgmi)
1718 {
1719 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1720 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1721 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1722 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1723 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1724
1725 KASSERT(mutex_owned(wgp->wgp_lock));
1726 KASSERT(wgs == wgp->wgp_session_unstable);
1727 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1728
1729 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1730 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1731
1732 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
1733 wgmr->wgmr_sender = wgs->wgs_local_index;
1734 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1735
1736 /* [W] 5.4.3 Second Message: Responder to Initiator */
1737
1738 /* [N] 2.2: "e" */
1739 /* Er^priv, Er^pub := DH-GENERATE() */
1740 wg_algo_generate_keypair(pubkey, privkey);
1741 /* Cr := KDF1(Cr, Er^pub) */
1742 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1743 /* msg.ephemeral := Er^pub */
1744 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1745 /* Hr := HASH(Hr || msg.ephemeral) */
1746 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1747
1748 WG_DUMP_HASH("ckey", ckey);
1749 WG_DUMP_HASH("hash", hash);
1750
1751 /* [N] 2.2: "ee" */
1752 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1753 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1754
1755 /* [N] 2.2: "se" */
1756 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1757 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1758
1759 /* [N] 9.2: "psk" */
1760 {
1761 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1762 /* Cr, r, k := KDF3(Cr, Q) */
1763 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1764 sizeof(wgp->wgp_psk));
1765 /* Hr := HASH(Hr || r) */
1766 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1767 }
1768
1769 /* msg.empty := AEAD(k, 0, e, Hr) */
1770 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1771 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1772 /* Hr := HASH(Hr || msg.empty) */
1773 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1774
1775 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1776
1777 /* [W] 5.4.4: Cookie MACs */
1778 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1779 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1780 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1781 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1782 /* Need mac1 to decrypt a cookie from a cookie message */
1783 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1784 sizeof(wgp->wgp_last_sent_mac1));
1785 wgp->wgp_last_sent_mac1_valid = true;
1786
1787 if (wgp->wgp_latest_cookie_time == 0 ||
1788 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1789 /* msg.mac2 := 0^16 */
1790 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1791 else {
1792 /* msg.mac2 := MAC(Lm, msg_b) */
1793 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1794 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1795 (const uint8_t *)wgmr,
1796 offsetof(struct wg_msg_resp, wgmr_mac2),
1797 NULL, 0);
1798 }
1799
1800 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1801 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1802 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1803 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1804 wgs->wgs_remote_index = wgmi->wgmi_sender;
1805 WG_DLOG("sender=%x\n", wgs->wgs_local_index);
1806 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1807 }
1808
1809 static void
1810 wg_swap_sessions(struct wg_peer *wgp)
1811 {
1812 struct wg_session *wgs, *wgs_prev;
1813
1814 KASSERT(mutex_owned(wgp->wgp_lock));
1815
1816 wgs = wgp->wgp_session_unstable;
1817 KASSERT(wgs->wgs_state == WGS_STATE_ESTABLISHED);
1818
1819 wgs_prev = wgp->wgp_session_stable;
1820 KASSERT(wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
1821 wgs_prev->wgs_state == WGS_STATE_UNKNOWN);
1822 atomic_store_release(&wgp->wgp_session_stable, wgs);
1823 wgp->wgp_session_unstable = wgs_prev;
1824 }
1825
1826 static void
1827 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1828 const struct sockaddr *src)
1829 {
1830 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1831 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1832 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1833 struct wg_peer *wgp;
1834 struct wg_session *wgs;
1835 struct psref psref;
1836 int error;
1837 uint8_t mac1[WG_MAC_LEN];
1838 struct wg_session *wgs_prev;
1839 struct mbuf *m;
1840
1841 wg_algo_mac_mac1(mac1, sizeof(mac1),
1842 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1843 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1844
1845 /*
1846 * [W] 5.3: Denial of Service Mitigation & Cookies
1847 * "the responder, ..., must always reject messages with an invalid
1848 * msg.mac1"
1849 */
1850 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
1851 WG_DLOG("mac1 is invalid\n");
1852 return;
1853 }
1854
1855 WG_TRACE("resp msg received");
1856 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
1857 if (wgs == NULL) {
1858 WG_TRACE("No session found");
1859 return;
1860 }
1861
1862 wgp = wgs->wgs_peer;
1863
1864 mutex_enter(wgp->wgp_lock);
1865
1866 /* If we weren't waiting for a handshake response, drop it. */
1867 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
1868 WG_TRACE("peer sent spurious handshake response, ignoring");
1869 goto out;
1870 }
1871
1872 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
1873 WG_TRACE("under load");
1874 /*
1875 * [W] 5.3: Denial of Service Mitigation & Cookies
1876 * "the responder, ..., and when under load may reject messages
1877 * with an invalid msg.mac2. If the responder receives a
1878 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1879 * and is under load, it may respond with a cookie reply
1880 * message"
1881 */
1882 uint8_t zero[WG_MAC_LEN] = {0};
1883 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
1884 WG_TRACE("sending a cookie message: no cookie included");
1885 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1886 wgmr->wgmr_mac1, src);
1887 goto out;
1888 }
1889 if (!wgp->wgp_last_sent_cookie_valid) {
1890 WG_TRACE("sending a cookie message: no cookie sent ever");
1891 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1892 wgmr->wgmr_mac1, src);
1893 goto out;
1894 }
1895 uint8_t mac2[WG_MAC_LEN];
1896 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1897 WG_COOKIE_LEN, (const uint8_t *)wgmr,
1898 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
1899 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
1900 WG_DLOG("mac2 is invalid\n");
1901 goto out;
1902 }
1903 WG_TRACE("under load, but continue to sending");
1904 }
1905
1906 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1907 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1908
1909 /*
1910 * [W] 5.4.3 Second Message: Responder to Initiator
1911 * "When the initiator receives this message, it does the same
1912 * operations so that its final state variables are identical,
1913 * replacing the operands of the DH function to produce equivalent
1914 * values."
1915 * Note that the following comments of operations are just copies of
1916 * the initiator's ones.
1917 */
1918
1919 /* [N] 2.2: "e" */
1920 /* Cr := KDF1(Cr, Er^pub) */
1921 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
1922 sizeof(wgmr->wgmr_ephemeral));
1923 /* Hr := HASH(Hr || msg.ephemeral) */
1924 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
1925
1926 WG_DUMP_HASH("ckey", ckey);
1927 WG_DUMP_HASH("hash", hash);
1928
1929 /* [N] 2.2: "ee" */
1930 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1931 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
1932 wgmr->wgmr_ephemeral);
1933
1934 /* [N] 2.2: "se" */
1935 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1936 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
1937
1938 /* [N] 9.2: "psk" */
1939 {
1940 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1941 /* Cr, r, k := KDF3(Cr, Q) */
1942 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1943 sizeof(wgp->wgp_psk));
1944 /* Hr := HASH(Hr || r) */
1945 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1946 }
1947
1948 {
1949 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
1950 /* msg.empty := AEAD(k, 0, e, Hr) */
1951 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
1952 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
1953 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1954 if (error != 0) {
1955 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1956 "wg_algo_aead_dec for empty message failed\n");
1957 goto out;
1958 }
1959 /* Hr := HASH(Hr || msg.empty) */
1960 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1961 }
1962
1963 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
1964 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
1965 wgs->wgs_remote_index = wgmr->wgmr_sender;
1966 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1967
1968 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1969 wgs->wgs_state = WGS_STATE_ESTABLISHED;
1970 wgs->wgs_time_established = time_uptime;
1971 wgs->wgs_time_last_data_sent = 0;
1972 wgs->wgs_is_initiator = true;
1973 wg_calculate_keys(wgs, true);
1974 wg_clear_states(wgs);
1975 WG_TRACE("WGS_STATE_ESTABLISHED");
1976
1977 callout_stop(&wgp->wgp_handshake_timeout_timer);
1978
1979 wg_swap_sessions(wgp);
1980 KASSERT(wgs == wgp->wgp_session_stable);
1981 wgs_prev = wgp->wgp_session_unstable;
1982 getnanotime(&wgp->wgp_last_handshake_time);
1983 wgp->wgp_handshake_start_time = 0;
1984 wgp->wgp_last_sent_mac1_valid = false;
1985 wgp->wgp_last_sent_cookie_valid = false;
1986
1987 wg_schedule_rekey_timer(wgp);
1988
1989 wg_update_endpoint_if_necessary(wgp, src);
1990
1991 /*
1992 * If we had a data packet queued up, send it; otherwise send a
1993 * keepalive message -- either way we have to send something
1994 * immediately or else the responder will never answer.
1995 */
1996 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
1997 kpreempt_disable();
1998 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
1999 M_SETCTX(m, wgp);
2000 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
2001 WGLOG(LOG_ERR, "pktq full, dropping\n");
2002 m_freem(m);
2003 }
2004 kpreempt_enable();
2005 } else {
2006 wg_send_keepalive_msg(wgp, wgs);
2007 }
2008
2009 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2010 /* Wait for wg_get_stable_session to drain. */
2011 pserialize_perform(wgp->wgp_psz);
2012
2013 /* Transition ESTABLISHED->DESTROYING. */
2014 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
2015
2016 /* We can't destroy the old session immediately */
2017 wg_schedule_session_dtor_timer(wgp);
2018 } else {
2019 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2020 "state=%d", wgs_prev->wgs_state);
2021 }
2022
2023 out:
2024 mutex_exit(wgp->wgp_lock);
2025 wg_put_session(wgs, &psref);
2026 }
2027
2028 static int
2029 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
2030 struct wg_session *wgs, const struct wg_msg_init *wgmi)
2031 {
2032 int error;
2033 struct mbuf *m;
2034 struct wg_msg_resp *wgmr;
2035
2036 KASSERT(mutex_owned(wgp->wgp_lock));
2037 KASSERT(wgs == wgp->wgp_session_unstable);
2038 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
2039
2040 m = m_gethdr(M_WAIT, MT_DATA);
2041 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
2042 wgmr = mtod(m, struct wg_msg_resp *);
2043 wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
2044
2045 error = wg->wg_ops->send_hs_msg(wgp, m);
2046 if (error == 0)
2047 WG_TRACE("resp msg sent");
2048 return error;
2049 }
2050
2051 static struct wg_peer *
2052 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
2053 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
2054 {
2055 struct wg_peer *wgp;
2056
2057 int s = pserialize_read_enter();
2058 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
2059 if (wgp != NULL)
2060 wg_get_peer(wgp, psref);
2061 pserialize_read_exit(s);
2062
2063 return wgp;
2064 }
2065
2066 static void
2067 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
2068 struct wg_msg_cookie *wgmc, const uint32_t sender,
2069 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
2070 {
2071 uint8_t cookie[WG_COOKIE_LEN];
2072 uint8_t key[WG_HASH_LEN];
2073 uint8_t addr[sizeof(struct in6_addr)];
2074 size_t addrlen;
2075 uint16_t uh_sport; /* be */
2076
2077 KASSERT(mutex_owned(wgp->wgp_lock));
2078
2079 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
2080 wgmc->wgmc_receiver = sender;
2081 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
2082
2083 /*
2084 * [W] 5.4.7: Under Load: Cookie Reply Message
2085 * "The secret variable, Rm, changes every two minutes to a
2086 * random value"
2087 */
2088 if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
2089 wgp->wgp_randval = cprng_strong32();
2090 wgp->wgp_last_genrandval_time = time_uptime;
2091 }
2092
2093 switch (src->sa_family) {
2094 case AF_INET: {
2095 const struct sockaddr_in *sin = satocsin(src);
2096 addrlen = sizeof(sin->sin_addr);
2097 memcpy(addr, &sin->sin_addr, addrlen);
2098 uh_sport = sin->sin_port;
2099 break;
2100 }
2101 #ifdef INET6
2102 case AF_INET6: {
2103 const struct sockaddr_in6 *sin6 = satocsin6(src);
2104 addrlen = sizeof(sin6->sin6_addr);
2105 memcpy(addr, &sin6->sin6_addr, addrlen);
2106 uh_sport = sin6->sin6_port;
2107 break;
2108 }
2109 #endif
2110 default:
2111 panic("invalid af=%d", src->sa_family);
2112 }
2113
2114 wg_algo_mac(cookie, sizeof(cookie),
2115 (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
2116 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2117 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2118 sizeof(wg->wg_pubkey));
2119 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2120 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2121
2122 /* Need to store to calculate mac2 */
2123 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2124 wgp->wgp_last_sent_cookie_valid = true;
2125 }
2126
2127 static int
2128 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2129 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
2130 const struct sockaddr *src)
2131 {
2132 int error;
2133 struct mbuf *m;
2134 struct wg_msg_cookie *wgmc;
2135
2136 KASSERT(mutex_owned(wgp->wgp_lock));
2137
2138 m = m_gethdr(M_WAIT, MT_DATA);
2139 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2140 wgmc = mtod(m, struct wg_msg_cookie *);
2141 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2142
2143 error = wg->wg_ops->send_hs_msg(wgp, m);
2144 if (error == 0)
2145 WG_TRACE("cookie msg sent");
2146 return error;
2147 }
2148
2149 static bool
2150 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2151 {
2152 #ifdef WG_DEBUG_PARAMS
2153 if (wg_force_underload)
2154 return true;
2155 #endif
2156
2157 /*
2158 * XXX we don't have a means of a load estimation. The purpose of
2159 * the mechanism is a DoS mitigation, so we consider frequent handshake
2160 * messages as (a kind of) load; if a message of the same type comes
2161 * to a peer within 1 second, we consider we are under load.
2162 */
2163 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2164 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2165 return (time_uptime - last) == 0;
2166 }
2167
2168 static void
2169 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2170 {
2171
2172 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2173
2174 /*
2175 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2176 */
2177 if (initiator) {
2178 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2179 wgs->wgs_chaining_key, NULL, 0);
2180 } else {
2181 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2182 wgs->wgs_chaining_key, NULL, 0);
2183 }
2184 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2185 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2186 }
2187
2188 static uint64_t
2189 wg_session_get_send_counter(struct wg_session *wgs)
2190 {
2191 #ifdef __HAVE_ATOMIC64_LOADSTORE
2192 return atomic_load_relaxed(&wgs->wgs_send_counter);
2193 #else
2194 uint64_t send_counter;
2195
2196 mutex_enter(&wgs->wgs_send_counter_lock);
2197 send_counter = wgs->wgs_send_counter;
2198 mutex_exit(&wgs->wgs_send_counter_lock);
2199
2200 return send_counter;
2201 #endif
2202 }
2203
2204 static uint64_t
2205 wg_session_inc_send_counter(struct wg_session *wgs)
2206 {
2207 #ifdef __HAVE_ATOMIC64_LOADSTORE
2208 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2209 #else
2210 uint64_t send_counter;
2211
2212 mutex_enter(&wgs->wgs_send_counter_lock);
2213 send_counter = wgs->wgs_send_counter++;
2214 mutex_exit(&wgs->wgs_send_counter_lock);
2215
2216 return send_counter;
2217 #endif
2218 }
2219
2220 static void
2221 wg_clear_states(struct wg_session *wgs)
2222 {
2223
2224 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2225
2226 wgs->wgs_send_counter = 0;
2227 sliwin_reset(&wgs->wgs_recvwin->window);
2228
2229 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2230 wgs_clear(handshake_hash);
2231 wgs_clear(chaining_key);
2232 wgs_clear(ephemeral_key_pub);
2233 wgs_clear(ephemeral_key_priv);
2234 wgs_clear(ephemeral_key_peer);
2235 #undef wgs_clear
2236 }
2237
2238 static struct wg_session *
2239 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2240 struct psref *psref)
2241 {
2242 struct wg_session *wgs;
2243
2244 int s = pserialize_read_enter();
2245 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2246 if (wgs != NULL) {
2247 KASSERT(atomic_load_relaxed(&wgs->wgs_state) !=
2248 WGS_STATE_UNKNOWN);
2249 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2250 }
2251 pserialize_read_exit(s);
2252
2253 return wgs;
2254 }
2255
2256 static void
2257 wg_schedule_rekey_timer(struct wg_peer *wgp)
2258 {
2259 int timeout = MIN(wg_rekey_after_time, INT_MAX/hz);
2260
2261 callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
2262 }
2263
2264 static void
2265 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2266 {
2267 struct mbuf *m;
2268
2269 /*
2270 * [W] 6.5 Passive Keepalive
2271 * "A keepalive message is simply a transport data message with
2272 * a zero-length encapsulated encrypted inner-packet."
2273 */
2274 m = m_gethdr(M_WAIT, MT_DATA);
2275 wg_send_data_msg(wgp, wgs, m);
2276 }
2277
2278 static bool
2279 wg_need_to_send_init_message(struct wg_session *wgs)
2280 {
2281 /*
2282 * [W] 6.2 Transport Message Limits
2283 * "if a peer is the initiator of a current secure session,
2284 * WireGuard will send a handshake initiation message to begin
2285 * a new secure session ... if after receiving a transport data
2286 * message, the current secure session is (REJECT-AFTER-TIME
2287 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2288 * not yet acted upon this event."
2289 */
2290 return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
2291 (time_uptime - wgs->wgs_time_established) >=
2292 (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
2293 }
2294
2295 static void
2296 wg_schedule_peer_task(struct wg_peer *wgp, int task)
2297 {
2298
2299 mutex_enter(wgp->wgp_intr_lock);
2300 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2301 if (wgp->wgp_tasks == 0)
2302 /*
2303 * XXX If the current CPU is already loaded -- e.g., if
2304 * there's already a bunch of handshakes queued up --
2305 * consider tossing this over to another CPU to
2306 * distribute the load.
2307 */
2308 workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
2309 wgp->wgp_tasks |= task;
2310 mutex_exit(wgp->wgp_intr_lock);
2311 }
2312
2313 static void
2314 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2315 {
2316 struct wg_sockaddr *wgsa_prev;
2317
2318 WG_TRACE("Changing endpoint");
2319
2320 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2321 wgsa_prev = wgp->wgp_endpoint;
2322 atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2323 wgp->wgp_endpoint0 = wgsa_prev;
2324 atomic_store_release(&wgp->wgp_endpoint_available, true);
2325
2326 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2327 }
2328
2329 static bool
2330 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2331 {
2332 uint16_t packet_len;
2333 const struct ip *ip;
2334
2335 if (__predict_false(decrypted_len < sizeof(struct ip)))
2336 return false;
2337
2338 ip = (const struct ip *)packet;
2339 if (ip->ip_v == 4)
2340 *af = AF_INET;
2341 else if (ip->ip_v == 6)
2342 *af = AF_INET6;
2343 else
2344 return false;
2345
2346 WG_DLOG("af=%d\n", *af);
2347
2348 if (*af == AF_INET) {
2349 packet_len = ntohs(ip->ip_len);
2350 } else {
2351 const struct ip6_hdr *ip6;
2352
2353 if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
2354 return false;
2355
2356 ip6 = (const struct ip6_hdr *)packet;
2357 packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2358 }
2359
2360 WG_DLOG("packet_len=%u\n", packet_len);
2361 if (packet_len > decrypted_len)
2362 return false;
2363
2364 return true;
2365 }
2366
2367 static bool
2368 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2369 int af, char *packet)
2370 {
2371 struct sockaddr_storage ss;
2372 struct sockaddr *sa;
2373 struct psref psref;
2374 struct wg_peer *wgp;
2375 bool ok;
2376
2377 /*
2378 * II CRYPTOKEY ROUTING
2379 * "it will only accept it if its source IP resolves in the
2380 * table to the public key used in the secure session for
2381 * decrypting it."
2382 */
2383
2384 if (af == AF_INET) {
2385 const struct ip *ip = (const struct ip *)packet;
2386 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2387 sockaddr_in_init(sin, &ip->ip_src, 0);
2388 sa = sintosa(sin);
2389 #ifdef INET6
2390 } else {
2391 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2392 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2393 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2394 sa = sin6tosa(sin6);
2395 #endif
2396 }
2397
2398 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2399 ok = (wgp == wgp_expected);
2400 if (wgp != NULL)
2401 wg_put_peer(wgp, &psref);
2402
2403 return ok;
2404 }
2405
2406 static void
2407 wg_session_dtor_timer(void *arg)
2408 {
2409 struct wg_peer *wgp = arg;
2410
2411 WG_TRACE("enter");
2412
2413 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2414 }
2415
2416 static void
2417 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2418 {
2419
2420 /* 1 second grace period */
2421 callout_schedule(&wgp->wgp_session_dtor_timer, hz);
2422 }
2423
2424 static bool
2425 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2426 {
2427 if (sa1->sa_family != sa2->sa_family)
2428 return false;
2429
2430 switch (sa1->sa_family) {
2431 case AF_INET:
2432 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2433 case AF_INET6:
2434 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2435 default:
2436 return true;
2437 }
2438 }
2439
2440 static void
2441 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2442 const struct sockaddr *src)
2443 {
2444 struct wg_sockaddr *wgsa;
2445 struct psref psref;
2446
2447 wgsa = wg_get_endpoint_sa(wgp, &psref);
2448
2449 #ifdef WG_DEBUG_LOG
2450 char oldaddr[128], newaddr[128];
2451 sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2452 sockaddr_format(src, newaddr, sizeof(newaddr));
2453 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2454 #endif
2455
2456 /*
2457 * III: "Since the packet has authenticated correctly, the source IP of
2458 * the outer UDP/IP packet is used to update the endpoint for peer..."
2459 */
2460 if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2461 !sockaddr_port_match(src, wgsatosa(wgsa)))) {
2462 /* XXX We can't change the endpoint twice in a short period */
2463 if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2464 wg_change_endpoint(wgp, src);
2465 }
2466 }
2467
2468 wg_put_sa(wgp, wgsa, &psref);
2469 }
2470
2471 static void
2472 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2473 const struct sockaddr *src)
2474 {
2475 struct wg_msg_data *wgmd;
2476 char *encrypted_buf = NULL, *decrypted_buf;
2477 size_t encrypted_len, decrypted_len;
2478 struct wg_session *wgs;
2479 struct wg_peer *wgp;
2480 int state;
2481 size_t mlen;
2482 struct psref psref;
2483 int error, af;
2484 bool success, free_encrypted_buf = false, ok;
2485 struct mbuf *n;
2486
2487 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2488 wgmd = mtod(m, struct wg_msg_data *);
2489
2490 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2491 WG_TRACE("data");
2492
2493 /* Find the putative session, or drop. */
2494 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2495 if (wgs == NULL) {
2496 WG_TRACE("No session found");
2497 m_freem(m);
2498 return;
2499 }
2500
2501 /*
2502 * We are only ready to handle data when in INIT_PASSIVE,
2503 * ESTABLISHED, or DESTROYING. All transitions out of that
2504 * state dissociate the session index and drain psrefs.
2505 */
2506 state = atomic_load_relaxed(&wgs->wgs_state);
2507 switch (state) {
2508 case WGS_STATE_UNKNOWN:
2509 panic("wg session %p in unknown state has session index %u",
2510 wgs, wgmd->wgmd_receiver);
2511 case WGS_STATE_INIT_ACTIVE:
2512 WG_TRACE("not yet ready for data");
2513 goto out;
2514 case WGS_STATE_INIT_PASSIVE:
2515 case WGS_STATE_ESTABLISHED:
2516 case WGS_STATE_DESTROYING:
2517 break;
2518 }
2519
2520 /*
2521 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2522 * to update the endpoint if authentication succeeds.
2523 */
2524 wgp = wgs->wgs_peer;
2525
2526 /*
2527 * Reject outrageously wrong sequence numbers before doing any
2528 * crypto work or taking any locks.
2529 */
2530 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2531 le64toh(wgmd->wgmd_counter));
2532 if (error) {
2533 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2534 "out-of-window packet: %"PRIu64"\n",
2535 le64toh(wgmd->wgmd_counter));
2536 goto out;
2537 }
2538
2539 /* Ensure the payload and authenticator are contiguous. */
2540 mlen = m_length(m);
2541 encrypted_len = mlen - sizeof(*wgmd);
2542 if (encrypted_len < WG_AUTHTAG_LEN) {
2543 WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
2544 goto out;
2545 }
2546 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2547 if (success) {
2548 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2549 } else {
2550 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2551 if (encrypted_buf == NULL) {
2552 WG_DLOG("failed to allocate encrypted_buf\n");
2553 goto out;
2554 }
2555 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2556 free_encrypted_buf = true;
2557 }
2558 /* m_ensure_contig may change m regardless of its result */
2559 KASSERT(m->m_len >= sizeof(*wgmd));
2560 wgmd = mtod(m, struct wg_msg_data *);
2561
2562 /*
2563 * Get a buffer for the plaintext. Add WG_AUTHTAG_LEN to avoid
2564 * a zero-length buffer (XXX). Drop if plaintext is longer
2565 * than MCLBYTES (XXX).
2566 */
2567 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2568 if (decrypted_len > MCLBYTES) {
2569 /* FIXME handle larger data than MCLBYTES */
2570 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2571 goto out;
2572 }
2573 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2574 if (n == NULL) {
2575 WG_DLOG("wg_get_mbuf failed\n");
2576 goto out;
2577 }
2578 decrypted_buf = mtod(n, char *);
2579
2580 /* Decrypt and verify the packet. */
2581 WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
2582 error = wg_algo_aead_dec(decrypted_buf,
2583 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2584 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
2585 encrypted_len, NULL, 0);
2586 if (error != 0) {
2587 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2588 "failed to wg_algo_aead_dec\n");
2589 m_freem(n);
2590 goto out;
2591 }
2592 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2593
2594 /* Packet is genuine. Reject it if a replay or just too old. */
2595 mutex_enter(&wgs->wgs_recvwin->lock);
2596 error = sliwin_update(&wgs->wgs_recvwin->window,
2597 le64toh(wgmd->wgmd_counter));
2598 mutex_exit(&wgs->wgs_recvwin->lock);
2599 if (error) {
2600 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2601 "replay or out-of-window packet: %"PRIu64"\n",
2602 le64toh(wgmd->wgmd_counter));
2603 m_freem(n);
2604 goto out;
2605 }
2606
2607 /* We're done with m now; free it and chuck the pointers. */
2608 m_freem(m);
2609 m = NULL;
2610 wgmd = NULL;
2611
2612 /*
2613 * Validate the encapsulated packet header and get the address
2614 * family, or drop.
2615 */
2616 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2617 if (!ok) {
2618 m_freem(n);
2619 goto out;
2620 }
2621
2622 /*
2623 * The packet is genuine. Update the peer's endpoint if the
2624 * source address changed.
2625 *
2626 * XXX How to prevent DoS by replaying genuine packets from the
2627 * wrong source address?
2628 */
2629 wg_update_endpoint_if_necessary(wgp, src);
2630
2631 /* Submit it into our network stack if routable. */
2632 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2633 if (ok) {
2634 wg->wg_ops->input(&wg->wg_if, n, af);
2635 } else {
2636 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2637 "invalid source address\n");
2638 m_freem(n);
2639 /*
2640 * The inner address is invalid however the session is valid
2641 * so continue the session processing below.
2642 */
2643 }
2644 n = NULL;
2645
2646 /* Update the state machine if necessary. */
2647 if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
2648 /*
2649 * We were waiting for the initiator to send their
2650 * first data transport message, and that has happened.
2651 * Schedule a task to establish this session.
2652 */
2653 wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
2654 } else {
2655 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2656 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2657 }
2658 /*
2659 * [W] 6.5 Passive Keepalive
2660 * "If a peer has received a validly-authenticated transport
2661 * data message (section 5.4.6), but does not have any packets
2662 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2663 * a keepalive message."
2664 */
2665 WG_DLOG("time_uptime=%ju wgs_time_last_data_sent=%ju\n",
2666 (uintmax_t)time_uptime,
2667 (uintmax_t)wgs->wgs_time_last_data_sent);
2668 if ((time_uptime - wgs->wgs_time_last_data_sent) >=
2669 wg_keepalive_timeout) {
2670 WG_TRACE("Schedule sending keepalive message");
2671 /*
2672 * We can't send a keepalive message here to avoid
2673 * a deadlock; we already hold the solock of a socket
2674 * that is used to send the message.
2675 */
2676 wg_schedule_peer_task(wgp,
2677 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2678 }
2679 }
2680 out:
2681 wg_put_session(wgs, &psref);
2682 if (m != NULL)
2683 m_freem(m);
2684 if (free_encrypted_buf)
2685 kmem_intr_free(encrypted_buf, encrypted_len);
2686 }
2687
2688 static void
2689 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2690 {
2691 struct wg_session *wgs;
2692 struct wg_peer *wgp;
2693 struct psref psref;
2694 int error;
2695 uint8_t key[WG_HASH_LEN];
2696 uint8_t cookie[WG_COOKIE_LEN];
2697
2698 WG_TRACE("cookie msg received");
2699
2700 /* Find the putative session. */
2701 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2702 if (wgs == NULL) {
2703 WG_TRACE("No session found");
2704 return;
2705 }
2706
2707 /* Lock the peer so we can update the cookie state. */
2708 wgp = wgs->wgs_peer;
2709 mutex_enter(wgp->wgp_lock);
2710
2711 if (!wgp->wgp_last_sent_mac1_valid) {
2712 WG_TRACE("No valid mac1 sent (or expired)");
2713 goto out;
2714 }
2715
2716 /* Decrypt the cookie and store it for later handshake retry. */
2717 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
2718 sizeof(wgp->wgp_pubkey));
2719 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
2720 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
2721 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
2722 wgmc->wgmc_salt);
2723 if (error != 0) {
2724 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2725 "wg_algo_aead_dec for cookie failed: error=%d\n", error);
2726 goto out;
2727 }
2728 /*
2729 * [W] 6.6: Interaction with Cookie Reply System
2730 * "it should simply store the decrypted cookie value from the cookie
2731 * reply message, and wait for the expiration of the REKEY-TIMEOUT
2732 * timer for retrying a handshake initiation message."
2733 */
2734 wgp->wgp_latest_cookie_time = time_uptime;
2735 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
2736 out:
2737 mutex_exit(wgp->wgp_lock);
2738 wg_put_session(wgs, &psref);
2739 }
2740
2741 static struct mbuf *
2742 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
2743 {
2744 struct wg_msg wgm;
2745 size_t mbuflen;
2746 size_t msglen;
2747
2748 /*
2749 * Get the mbuf chain length. It is already guaranteed, by
2750 * wg_overudp_cb, to be large enough for a struct wg_msg.
2751 */
2752 mbuflen = m_length(m);
2753 KASSERT(mbuflen >= sizeof(struct wg_msg));
2754
2755 /*
2756 * Copy the message header (32-bit message type) out -- we'll
2757 * worry about contiguity and alignment later.
2758 */
2759 m_copydata(m, 0, sizeof(wgm), &wgm);
2760 switch (le32toh(wgm.wgm_type)) {
2761 case WG_MSG_TYPE_INIT:
2762 msglen = sizeof(struct wg_msg_init);
2763 break;
2764 case WG_MSG_TYPE_RESP:
2765 msglen = sizeof(struct wg_msg_resp);
2766 break;
2767 case WG_MSG_TYPE_COOKIE:
2768 msglen = sizeof(struct wg_msg_cookie);
2769 break;
2770 case WG_MSG_TYPE_DATA:
2771 msglen = sizeof(struct wg_msg_data);
2772 break;
2773 default:
2774 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
2775 "Unexpected msg type: %u\n", le32toh(wgm.wgm_type));
2776 goto error;
2777 }
2778
2779 /* Verify the mbuf chain is long enough for this type of message. */
2780 if (__predict_false(mbuflen < msglen)) {
2781 WG_DLOG("Invalid msg size: mbuflen=%lu type=%u\n", mbuflen,
2782 le32toh(wgm.wgm_type));
2783 goto error;
2784 }
2785
2786 /* Make the message header contiguous if necessary. */
2787 if (__predict_false(m->m_len < msglen)) {
2788 m = m_pullup(m, msglen);
2789 if (m == NULL)
2790 return NULL;
2791 }
2792
2793 return m;
2794
2795 error:
2796 m_freem(m);
2797 return NULL;
2798 }
2799
2800 static void
2801 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
2802 const struct sockaddr *src)
2803 {
2804 struct wg_msg *wgm;
2805
2806 m = wg_validate_msg_header(wg, m);
2807 if (__predict_false(m == NULL))
2808 return;
2809
2810 KASSERT(m->m_len >= sizeof(struct wg_msg));
2811 wgm = mtod(m, struct wg_msg *);
2812 switch (le32toh(wgm->wgm_type)) {
2813 case WG_MSG_TYPE_INIT:
2814 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
2815 break;
2816 case WG_MSG_TYPE_RESP:
2817 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
2818 break;
2819 case WG_MSG_TYPE_COOKIE:
2820 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
2821 break;
2822 case WG_MSG_TYPE_DATA:
2823 wg_handle_msg_data(wg, m, src);
2824 /* wg_handle_msg_data frees m for us */
2825 return;
2826 default:
2827 panic("invalid message type: %d", le32toh(wgm->wgm_type));
2828 }
2829
2830 m_freem(m);
2831 }
2832
2833 static void
2834 wg_receive_packets(struct wg_softc *wg, const int af)
2835 {
2836
2837 for (;;) {
2838 int error, flags;
2839 struct socket *so;
2840 struct mbuf *m = NULL;
2841 struct uio dummy_uio;
2842 struct mbuf *paddr = NULL;
2843 struct sockaddr *src;
2844
2845 so = wg_get_so_by_af(wg, af);
2846 flags = MSG_DONTWAIT;
2847 dummy_uio.uio_resid = 1000000000;
2848
2849 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
2850 &flags);
2851 if (error || m == NULL) {
2852 //if (error == EWOULDBLOCK)
2853 return;
2854 }
2855
2856 KASSERT(paddr != NULL);
2857 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
2858 src = mtod(paddr, struct sockaddr *);
2859
2860 wg_handle_packet(wg, m, src);
2861 }
2862 }
2863
2864 static void
2865 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
2866 {
2867
2868 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
2869 }
2870
2871 static void
2872 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
2873 {
2874
2875 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
2876 }
2877
2878 static void
2879 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
2880 {
2881 struct wg_session *wgs;
2882
2883 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
2884
2885 KASSERT(mutex_owned(wgp->wgp_lock));
2886
2887 if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
2888 WGLOG(LOG_DEBUG, "No endpoint available\n");
2889 /* XXX should do something? */
2890 return;
2891 }
2892
2893 wgs = wgp->wgp_session_stable;
2894 if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
2895 /* XXX What if the unstable session is already INIT_ACTIVE? */
2896 wg_send_handshake_msg_init(wg, wgp);
2897 } else {
2898 /* rekey */
2899 wgs = wgp->wgp_session_unstable;
2900 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2901 wg_send_handshake_msg_init(wg, wgp);
2902 }
2903 }
2904
2905 static void
2906 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
2907 {
2908 struct wg_session *wgs;
2909
2910 WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
2911
2912 KASSERT(mutex_owned(wgp->wgp_lock));
2913 KASSERT(wgp->wgp_handshake_start_time != 0);
2914
2915 wgs = wgp->wgp_session_unstable;
2916 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2917 return;
2918
2919 /*
2920 * XXX no real need to assign a new index here, but we do need
2921 * to transition to UNKNOWN temporarily
2922 */
2923 wg_put_session_index(wg, wgs);
2924
2925 /* [W] 6.4 Handshake Initiation Retransmission */
2926 if ((time_uptime - wgp->wgp_handshake_start_time) >
2927 wg_rekey_attempt_time) {
2928 /* Give up handshaking */
2929 wgp->wgp_handshake_start_time = 0;
2930 WG_TRACE("give up");
2931
2932 /*
2933 * If a new data packet comes, handshaking will be retried
2934 * and a new session would be established at that time,
2935 * however we don't want to send pending packets then.
2936 */
2937 wg_purge_pending_packets(wgp);
2938 return;
2939 }
2940
2941 wg_task_send_init_message(wg, wgp);
2942 }
2943
2944 static void
2945 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
2946 {
2947 struct wg_session *wgs, *wgs_prev;
2948 struct mbuf *m;
2949
2950 KASSERT(mutex_owned(wgp->wgp_lock));
2951
2952 wgs = wgp->wgp_session_unstable;
2953 if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
2954 /* XXX Can this happen? */
2955 return;
2956
2957 wgs->wgs_state = WGS_STATE_ESTABLISHED;
2958 wgs->wgs_time_established = time_uptime;
2959 wgs->wgs_time_last_data_sent = 0;
2960 wgs->wgs_is_initiator = false;
2961 WG_TRACE("WGS_STATE_ESTABLISHED");
2962
2963 wg_swap_sessions(wgp);
2964 KASSERT(wgs == wgp->wgp_session_stable);
2965 wgs_prev = wgp->wgp_session_unstable;
2966 getnanotime(&wgp->wgp_last_handshake_time);
2967 wgp->wgp_handshake_start_time = 0;
2968 wgp->wgp_last_sent_mac1_valid = false;
2969 wgp->wgp_last_sent_cookie_valid = false;
2970
2971 /* If we had a data packet queued up, send it. */
2972 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
2973 kpreempt_disable();
2974 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
2975 M_SETCTX(m, wgp);
2976 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
2977 WGLOG(LOG_ERR, "pktq full, dropping\n");
2978 m_freem(m);
2979 }
2980 kpreempt_enable();
2981 }
2982
2983 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2984 /* Wait for wg_get_stable_session to drain. */
2985 pserialize_perform(wgp->wgp_psz);
2986
2987 /* Transition ESTABLISHED->DESTROYING. */
2988 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
2989
2990 /* We can't destroy the old session immediately */
2991 wg_schedule_session_dtor_timer(wgp);
2992 } else {
2993 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2994 "state=%d", wgs_prev->wgs_state);
2995 wg_clear_states(wgs_prev);
2996 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
2997 }
2998 }
2999
3000 static void
3001 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
3002 {
3003
3004 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
3005
3006 KASSERT(mutex_owned(wgp->wgp_lock));
3007
3008 if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
3009 pserialize_perform(wgp->wgp_psz);
3010 mutex_exit(wgp->wgp_lock);
3011 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
3012 wg_psref_class);
3013 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
3014 wg_psref_class);
3015 mutex_enter(wgp->wgp_lock);
3016 atomic_store_release(&wgp->wgp_endpoint_changing, 0);
3017 }
3018 }
3019
3020 static void
3021 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
3022 {
3023 struct wg_session *wgs;
3024
3025 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
3026
3027 KASSERT(mutex_owned(wgp->wgp_lock));
3028
3029 wgs = wgp->wgp_session_stable;
3030 if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
3031 return;
3032
3033 wg_send_keepalive_msg(wgp, wgs);
3034 }
3035
3036 static void
3037 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
3038 {
3039 struct wg_session *wgs;
3040
3041 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
3042
3043 KASSERT(mutex_owned(wgp->wgp_lock));
3044
3045 wgs = wgp->wgp_session_unstable;
3046 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
3047 wg_put_session_index(wg, wgs);
3048 }
3049 }
3050
3051 static void
3052 wg_peer_work(struct work *wk, void *cookie)
3053 {
3054 struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
3055 struct wg_softc *wg = wgp->wgp_sc;
3056 int tasks;
3057
3058 mutex_enter(wgp->wgp_intr_lock);
3059 while ((tasks = wgp->wgp_tasks) != 0) {
3060 wgp->wgp_tasks = 0;
3061 mutex_exit(wgp->wgp_intr_lock);
3062
3063 mutex_enter(wgp->wgp_lock);
3064 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
3065 wg_task_send_init_message(wg, wgp);
3066 if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
3067 wg_task_retry_handshake(wg, wgp);
3068 if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
3069 wg_task_establish_session(wg, wgp);
3070 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
3071 wg_task_endpoint_changed(wg, wgp);
3072 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
3073 wg_task_send_keepalive_message(wg, wgp);
3074 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
3075 wg_task_destroy_prev_session(wg, wgp);
3076 mutex_exit(wgp->wgp_lock);
3077
3078 mutex_enter(wgp->wgp_intr_lock);
3079 }
3080 mutex_exit(wgp->wgp_intr_lock);
3081 }
3082
3083 static void
3084 wg_job(struct threadpool_job *job)
3085 {
3086 struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
3087 int bound, upcalls;
3088
3089 mutex_enter(wg->wg_intr_lock);
3090 while ((upcalls = wg->wg_upcalls) != 0) {
3091 wg->wg_upcalls = 0;
3092 mutex_exit(wg->wg_intr_lock);
3093 bound = curlwp_bind();
3094 if (ISSET(upcalls, WG_UPCALL_INET))
3095 wg_receive_packets(wg, AF_INET);
3096 if (ISSET(upcalls, WG_UPCALL_INET6))
3097 wg_receive_packets(wg, AF_INET6);
3098 curlwp_bindx(bound);
3099 mutex_enter(wg->wg_intr_lock);
3100 }
3101 threadpool_job_done(job);
3102 mutex_exit(wg->wg_intr_lock);
3103 }
3104
3105 static int
3106 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3107 {
3108 int error;
3109 uint16_t old_port = wg->wg_listen_port;
3110
3111 if (port != 0 && old_port == port)
3112 return 0;
3113
3114 struct sockaddr_in _sin, *sin = &_sin;
3115 sin->sin_len = sizeof(*sin);
3116 sin->sin_family = AF_INET;
3117 sin->sin_addr.s_addr = INADDR_ANY;
3118 sin->sin_port = htons(port);
3119
3120 error = sobind(wg->wg_so4, sintosa(sin), curlwp);
3121 if (error != 0)
3122 return error;
3123
3124 #ifdef INET6
3125 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3126 sin6->sin6_len = sizeof(*sin6);
3127 sin6->sin6_family = AF_INET6;
3128 sin6->sin6_addr = in6addr_any;
3129 sin6->sin6_port = htons(port);
3130
3131 error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
3132 if (error != 0)
3133 return error;
3134 #endif
3135
3136 wg->wg_listen_port = port;
3137
3138 return 0;
3139 }
3140
3141 static void
3142 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
3143 {
3144 struct wg_softc *wg = cookie;
3145 int reason;
3146
3147 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3148 WG_UPCALL_INET :
3149 WG_UPCALL_INET6;
3150
3151 mutex_enter(wg->wg_intr_lock);
3152 wg->wg_upcalls |= reason;
3153 threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
3154 mutex_exit(wg->wg_intr_lock);
3155 }
3156
3157 static int
3158 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3159 struct sockaddr *src, void *arg)
3160 {
3161 struct wg_softc *wg = arg;
3162 struct wg_msg wgm;
3163 struct mbuf *m = *mp;
3164
3165 WG_TRACE("enter");
3166
3167 /* Verify the mbuf chain is long enough to have a wg msg header. */
3168 KASSERT(offset <= m_length(m));
3169 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3170 /* drop on the floor */
3171 m_freem(m);
3172 return -1;
3173 }
3174
3175 /*
3176 * Copy the message header (32-bit message type) out -- we'll
3177 * worry about contiguity and alignment later.
3178 */
3179 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3180 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3181
3182 /*
3183 * Handle DATA packets promptly as they arrive. Other packets
3184 * may require expensive public-key crypto and are not as
3185 * sensitive to latency, so defer them to the worker thread.
3186 */
3187 switch (le32toh(wgm.wgm_type)) {
3188 case WG_MSG_TYPE_DATA:
3189 /* handle immediately */
3190 m_adj(m, offset);
3191 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3192 m = m_pullup(m, sizeof(struct wg_msg_data));
3193 if (m == NULL)
3194 return -1;
3195 }
3196 wg_handle_msg_data(wg, m, src);
3197 *mp = NULL;
3198 return 1;
3199 case WG_MSG_TYPE_INIT:
3200 case WG_MSG_TYPE_RESP:
3201 case WG_MSG_TYPE_COOKIE:
3202 /* pass through to so_receive in wg_receive_packets */
3203 return 0;
3204 default:
3205 /* drop on the floor */
3206 m_freem(m);
3207 return -1;
3208 }
3209 }
3210
3211 static int
3212 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
3213 {
3214 int error;
3215 struct socket *so;
3216
3217 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3218 if (error != 0)
3219 return error;
3220
3221 solock(so);
3222 so->so_upcallarg = wg;
3223 so->so_upcall = wg_so_upcall;
3224 so->so_rcv.sb_flags |= SB_UPCALL;
3225 if (af == AF_INET)
3226 in_pcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3227 #if INET6
3228 else
3229 in6_pcb_register_overudp_cb(sotoin6pcb(so), wg_overudp_cb, wg);
3230 #endif
3231 sounlock(so);
3232
3233 *sop = so;
3234
3235 return 0;
3236 }
3237
3238 static bool
3239 wg_session_hit_limits(struct wg_session *wgs)
3240 {
3241
3242 /*
3243 * [W] 6.2: Transport Message Limits
3244 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3245 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3246 * comes first, WireGuard will refuse to send any more transport data
3247 * messages using the current secure session, ..."
3248 */
3249 KASSERT(wgs->wgs_time_established != 0);
3250 if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
3251 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3252 return true;
3253 } else if (wg_session_get_send_counter(wgs) >
3254 wg_reject_after_messages) {
3255 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3256 return true;
3257 }
3258
3259 return false;
3260 }
3261
3262 static void
3263 wgintr(void *cookie)
3264 {
3265 struct wg_peer *wgp;
3266 struct wg_session *wgs;
3267 struct mbuf *m;
3268 struct psref psref;
3269
3270 while ((m = pktq_dequeue(wg_pktq)) != NULL) {
3271 wgp = M_GETCTX(m, struct wg_peer *);
3272 if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3273 WG_TRACE("no stable session");
3274 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3275 goto next0;
3276 }
3277 if (__predict_false(wg_session_hit_limits(wgs))) {
3278 WG_TRACE("stable session hit limits");
3279 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3280 goto next1;
3281 }
3282 wg_send_data_msg(wgp, wgs, m);
3283 m = NULL; /* consumed */
3284 next1: wg_put_session(wgs, &psref);
3285 next0: if (m)
3286 m_freem(m);
3287 /* XXX Yield to avoid userland starvation? */
3288 }
3289 }
3290
3291 static void
3292 wg_rekey_timer(void *arg)
3293 {
3294 struct wg_peer *wgp = arg;
3295
3296 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3297 }
3298
3299 static void
3300 wg_purge_pending_packets(struct wg_peer *wgp)
3301 {
3302 struct mbuf *m;
3303
3304 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL)
3305 m_freem(m);
3306 pktq_barrier(wg_pktq);
3307 }
3308
3309 static void
3310 wg_handshake_timeout_timer(void *arg)
3311 {
3312 struct wg_peer *wgp = arg;
3313
3314 WG_TRACE("enter");
3315
3316 wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3317 }
3318
3319 static struct wg_peer *
3320 wg_alloc_peer(struct wg_softc *wg)
3321 {
3322 struct wg_peer *wgp;
3323
3324 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3325
3326 wgp->wgp_sc = wg;
3327 callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
3328 callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
3329 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3330 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3331 wg_handshake_timeout_timer, wgp);
3332 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3333 callout_setfunc(&wgp->wgp_session_dtor_timer,
3334 wg_session_dtor_timer, wgp);
3335 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3336 wgp->wgp_endpoint_changing = false;
3337 wgp->wgp_endpoint_available = false;
3338 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3339 wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3340 wgp->wgp_psz = pserialize_create();
3341 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3342
3343 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3344 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3345 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3346 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3347
3348 struct wg_session *wgs;
3349 wgp->wgp_session_stable =
3350 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3351 wgp->wgp_session_unstable =
3352 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3353 wgs = wgp->wgp_session_stable;
3354 wgs->wgs_peer = wgp;
3355 wgs->wgs_state = WGS_STATE_UNKNOWN;
3356 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3357 #ifndef __HAVE_ATOMIC64_LOADSTORE
3358 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3359 #endif
3360 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3361 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3362
3363 wgs = wgp->wgp_session_unstable;
3364 wgs->wgs_peer = wgp;
3365 wgs->wgs_state = WGS_STATE_UNKNOWN;
3366 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3367 #ifndef __HAVE_ATOMIC64_LOADSTORE
3368 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3369 #endif
3370 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3371 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3372
3373 return wgp;
3374 }
3375
3376 static void
3377 wg_destroy_peer(struct wg_peer *wgp)
3378 {
3379 struct wg_session *wgs;
3380 struct wg_softc *wg = wgp->wgp_sc;
3381
3382 /* Prevent new packets from this peer on any source address. */
3383 rw_enter(wg->wg_rwlock, RW_WRITER);
3384 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3385 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3386 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3387 struct radix_node *rn;
3388
3389 KASSERT(rnh != NULL);
3390 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3391 &wga->wga_sa_mask, rnh);
3392 if (rn == NULL) {
3393 char addrstr[128];
3394 sockaddr_format(&wga->wga_sa_addr, addrstr,
3395 sizeof(addrstr));
3396 WGLOG(LOG_WARNING, "Couldn't delete %s", addrstr);
3397 }
3398 }
3399 rw_exit(wg->wg_rwlock);
3400
3401 /* Purge pending packets. */
3402 wg_purge_pending_packets(wgp);
3403
3404 /* Halt all packet processing and timeouts. */
3405 callout_halt(&wgp->wgp_rekey_timer, NULL);
3406 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3407 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3408
3409 /* Wait for any queued work to complete. */
3410 workqueue_wait(wg_wq, &wgp->wgp_work);
3411
3412 wgs = wgp->wgp_session_unstable;
3413 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3414 mutex_enter(wgp->wgp_lock);
3415 wg_destroy_session(wg, wgs);
3416 mutex_exit(wgp->wgp_lock);
3417 }
3418 mutex_destroy(&wgs->wgs_recvwin->lock);
3419 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3420 #ifndef __HAVE_ATOMIC64_LOADSTORE
3421 mutex_destroy(&wgs->wgs_send_counter_lock);
3422 #endif
3423 kmem_free(wgs, sizeof(*wgs));
3424
3425 wgs = wgp->wgp_session_stable;
3426 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3427 mutex_enter(wgp->wgp_lock);
3428 wg_destroy_session(wg, wgs);
3429 mutex_exit(wgp->wgp_lock);
3430 }
3431 mutex_destroy(&wgs->wgs_recvwin->lock);
3432 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3433 #ifndef __HAVE_ATOMIC64_LOADSTORE
3434 mutex_destroy(&wgs->wgs_send_counter_lock);
3435 #endif
3436 kmem_free(wgs, sizeof(*wgs));
3437
3438 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3439 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3440 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3441 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3442
3443 pserialize_destroy(wgp->wgp_psz);
3444 mutex_obj_free(wgp->wgp_intr_lock);
3445 mutex_obj_free(wgp->wgp_lock);
3446
3447 kmem_free(wgp, sizeof(*wgp));
3448 }
3449
3450 static void
3451 wg_destroy_all_peers(struct wg_softc *wg)
3452 {
3453 struct wg_peer *wgp, *wgp0 __diagused;
3454 void *garbage_byname, *garbage_bypubkey;
3455
3456 restart:
3457 garbage_byname = garbage_bypubkey = NULL;
3458 mutex_enter(wg->wg_lock);
3459 WG_PEER_WRITER_FOREACH(wgp, wg) {
3460 if (wgp->wgp_name[0]) {
3461 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3462 strlen(wgp->wgp_name));
3463 KASSERT(wgp0 == wgp);
3464 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3465 }
3466 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3467 sizeof(wgp->wgp_pubkey));
3468 KASSERT(wgp0 == wgp);
3469 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3470 WG_PEER_WRITER_REMOVE(wgp);
3471 wg->wg_npeers--;
3472 mutex_enter(wgp->wgp_lock);
3473 pserialize_perform(wgp->wgp_psz);
3474 mutex_exit(wgp->wgp_lock);
3475 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3476 break;
3477 }
3478 mutex_exit(wg->wg_lock);
3479
3480 if (wgp == NULL)
3481 return;
3482
3483 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3484
3485 wg_destroy_peer(wgp);
3486 thmap_gc(wg->wg_peers_byname, garbage_byname);
3487 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3488
3489 goto restart;
3490 }
3491
3492 static int
3493 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3494 {
3495 struct wg_peer *wgp, *wgp0 __diagused;
3496 void *garbage_byname, *garbage_bypubkey;
3497
3498 mutex_enter(wg->wg_lock);
3499 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
3500 if (wgp != NULL) {
3501 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3502 sizeof(wgp->wgp_pubkey));
3503 KASSERT(wgp0 == wgp);
3504 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3505 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3506 WG_PEER_WRITER_REMOVE(wgp);
3507 wg->wg_npeers--;
3508 mutex_enter(wgp->wgp_lock);
3509 pserialize_perform(wgp->wgp_psz);
3510 mutex_exit(wgp->wgp_lock);
3511 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3512 }
3513 mutex_exit(wg->wg_lock);
3514
3515 if (wgp == NULL)
3516 return ENOENT;
3517
3518 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3519
3520 wg_destroy_peer(wgp);
3521 thmap_gc(wg->wg_peers_byname, garbage_byname);
3522 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3523
3524 return 0;
3525 }
3526
3527 static int
3528 wg_if_attach(struct wg_softc *wg)
3529 {
3530 int error;
3531
3532 wg->wg_if.if_addrlen = 0;
3533 wg->wg_if.if_mtu = WG_MTU;
3534 wg->wg_if.if_flags = IFF_MULTICAST;
3535 wg->wg_if.if_extflags = IFEF_NO_LINK_STATE_CHANGE;
3536 wg->wg_if.if_extflags |= IFEF_MPSAFE;
3537 wg->wg_if.if_ioctl = wg_ioctl;
3538 wg->wg_if.if_output = wg_output;
3539 wg->wg_if.if_init = wg_init;
3540 wg->wg_if.if_stop = wg_stop;
3541 wg->wg_if.if_type = IFT_OTHER;
3542 wg->wg_if.if_dlt = DLT_NULL;
3543 wg->wg_if.if_softc = wg;
3544 IFQ_SET_READY(&wg->wg_if.if_snd);
3545
3546 error = if_initialize(&wg->wg_if);
3547 if (error != 0)
3548 return error;
3549
3550 if_alloc_sadl(&wg->wg_if);
3551 if_register(&wg->wg_if);
3552
3553 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3554
3555 return 0;
3556 }
3557
3558 static void
3559 wg_if_detach(struct wg_softc *wg)
3560 {
3561 struct ifnet *ifp = &wg->wg_if;
3562
3563 bpf_detach(ifp);
3564 if_detach(ifp);
3565 }
3566
3567 static int
3568 wg_clone_create(struct if_clone *ifc, int unit)
3569 {
3570 struct wg_softc *wg;
3571 int error;
3572
3573 wg_guarantee_initialized();
3574
3575 error = wg_count_inc();
3576 if (error)
3577 return error;
3578
3579 wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
3580
3581 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3582
3583 PSLIST_INIT(&wg->wg_peers);
3584 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
3585 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
3586 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
3587 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3588 wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3589 wg->wg_rwlock = rw_obj_alloc();
3590 threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
3591 "%s", if_name(&wg->wg_if));
3592 wg->wg_ops = &wg_ops_rumpkernel;
3593
3594 error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
3595 if (error)
3596 goto fail0;
3597
3598 #ifdef INET
3599 error = wg_socreate(wg, AF_INET, &wg->wg_so4);
3600 if (error)
3601 goto fail1;
3602 rn_inithead((void **)&wg->wg_rtable_ipv4,
3603 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3604 #endif
3605 #ifdef INET6
3606 error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
3607 if (error)
3608 goto fail2;
3609 rn_inithead((void **)&wg->wg_rtable_ipv6,
3610 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3611 #endif
3612
3613 error = wg_if_attach(wg);
3614 if (error)
3615 goto fail3;
3616
3617 return 0;
3618
3619 fail4: __unused
3620 wg_if_detach(wg);
3621 fail3: wg_destroy_all_peers(wg);
3622 #ifdef INET6
3623 solock(wg->wg_so6);
3624 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
3625 sounlock(wg->wg_so6);
3626 #endif
3627 #ifdef INET
3628 solock(wg->wg_so4);
3629 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
3630 sounlock(wg->wg_so4);
3631 #endif
3632 mutex_enter(wg->wg_intr_lock);
3633 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
3634 mutex_exit(wg->wg_intr_lock);
3635 #ifdef INET6
3636 if (wg->wg_rtable_ipv6 != NULL)
3637 free(wg->wg_rtable_ipv6, M_RTABLE);
3638 soclose(wg->wg_so6);
3639 fail2:
3640 #endif
3641 #ifdef INET
3642 if (wg->wg_rtable_ipv4 != NULL)
3643 free(wg->wg_rtable_ipv4, M_RTABLE);
3644 soclose(wg->wg_so4);
3645 fail1:
3646 #endif
3647 threadpool_put(wg->wg_threadpool, PRI_NONE);
3648 fail0: threadpool_job_destroy(&wg->wg_job);
3649 rw_obj_free(wg->wg_rwlock);
3650 mutex_obj_free(wg->wg_intr_lock);
3651 mutex_obj_free(wg->wg_lock);
3652 thmap_destroy(wg->wg_sessions_byindex);
3653 thmap_destroy(wg->wg_peers_byname);
3654 thmap_destroy(wg->wg_peers_bypubkey);
3655 PSLIST_DESTROY(&wg->wg_peers);
3656 kmem_free(wg, sizeof(*wg));
3657 wg_count_dec();
3658 return error;
3659 }
3660
3661 static int
3662 wg_clone_destroy(struct ifnet *ifp)
3663 {
3664 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
3665
3666 #ifdef WG_RUMPKERNEL
3667 if (wg_user_mode(wg)) {
3668 rumpuser_wg_destroy(wg->wg_user);
3669 wg->wg_user = NULL;
3670 }
3671 #endif
3672
3673 wg_if_detach(wg);
3674 wg_destroy_all_peers(wg);
3675 #ifdef INET6
3676 solock(wg->wg_so6);
3677 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
3678 sounlock(wg->wg_so6);
3679 #endif
3680 #ifdef INET
3681 solock(wg->wg_so4);
3682 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
3683 sounlock(wg->wg_so4);
3684 #endif
3685 mutex_enter(wg->wg_intr_lock);
3686 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
3687 mutex_exit(wg->wg_intr_lock);
3688 #ifdef INET6
3689 if (wg->wg_rtable_ipv6 != NULL)
3690 free(wg->wg_rtable_ipv6, M_RTABLE);
3691 soclose(wg->wg_so6);
3692 #endif
3693 #ifdef INET
3694 if (wg->wg_rtable_ipv4 != NULL)
3695 free(wg->wg_rtable_ipv4, M_RTABLE);
3696 soclose(wg->wg_so4);
3697 #endif
3698 threadpool_put(wg->wg_threadpool, PRI_NONE);
3699 threadpool_job_destroy(&wg->wg_job);
3700 rw_obj_free(wg->wg_rwlock);
3701 mutex_obj_free(wg->wg_intr_lock);
3702 mutex_obj_free(wg->wg_lock);
3703 thmap_destroy(wg->wg_sessions_byindex);
3704 thmap_destroy(wg->wg_peers_byname);
3705 thmap_destroy(wg->wg_peers_bypubkey);
3706 PSLIST_DESTROY(&wg->wg_peers);
3707 kmem_free(wg, sizeof(*wg));
3708 wg_count_dec();
3709
3710 return 0;
3711 }
3712
3713 static struct wg_peer *
3714 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
3715 struct psref *psref)
3716 {
3717 struct radix_node_head *rnh;
3718 struct radix_node *rn;
3719 struct wg_peer *wgp = NULL;
3720 struct wg_allowedip *wga;
3721
3722 #ifdef WG_DEBUG_LOG
3723 char addrstr[128];
3724 sockaddr_format(sa, addrstr, sizeof(addrstr));
3725 WG_DLOG("sa=%s\n", addrstr);
3726 #endif
3727
3728 rw_enter(wg->wg_rwlock, RW_READER);
3729
3730 rnh = wg_rnh(wg, sa->sa_family);
3731 if (rnh == NULL)
3732 goto out;
3733
3734 rn = rnh->rnh_matchaddr(sa, rnh);
3735 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
3736 goto out;
3737
3738 WG_TRACE("success");
3739
3740 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
3741 wgp = wga->wga_peer;
3742 wg_get_peer(wgp, psref);
3743
3744 out:
3745 rw_exit(wg->wg_rwlock);
3746 return wgp;
3747 }
3748
3749 static void
3750 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
3751 struct wg_session *wgs, struct wg_msg_data *wgmd)
3752 {
3753
3754 memset(wgmd, 0, sizeof(*wgmd));
3755 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
3756 wgmd->wgmd_receiver = wgs->wgs_remote_index;
3757 /* [W] 5.4.6: msg.counter := Nm^send */
3758 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
3759 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
3760 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
3761 }
3762
3763 static int
3764 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
3765 const struct rtentry *rt)
3766 {
3767 struct wg_softc *wg = ifp->if_softc;
3768 struct wg_peer *wgp = NULL;
3769 struct wg_session *wgs = NULL;
3770 struct psref wgp_psref, wgs_psref;
3771 int bound;
3772 int error;
3773
3774 bound = curlwp_bind();
3775
3776 /* TODO make the nest limit configurable via sysctl */
3777 error = if_tunnel_check_nesting(ifp, m, 1);
3778 if (error) {
3779 WGLOG(LOG_ERR, "tunneling loop detected and packet dropped\n");
3780 goto out0;
3781 }
3782
3783 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
3784
3785 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
3786
3787 m->m_flags &= ~(M_BCAST|M_MCAST);
3788
3789 wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
3790 if (wgp == NULL) {
3791 WG_TRACE("peer not found");
3792 error = EHOSTUNREACH;
3793 goto out0;
3794 }
3795
3796 /* Clear checksum-offload flags. */
3797 m->m_pkthdr.csum_flags = 0;
3798 m->m_pkthdr.csum_data = 0;
3799
3800 /* Check whether there's an established session. */
3801 wgs = wg_get_stable_session(wgp, &wgs_psref);
3802 if (wgs == NULL) {
3803 /*
3804 * No established session. If we're the first to try
3805 * sending data, schedule a handshake and queue the
3806 * packet for when the handshake is done; otherwise
3807 * just drop the packet and let the ongoing handshake
3808 * attempt continue. We could queue more data packets
3809 * but it's not clear that's worthwhile.
3810 */
3811 if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
3812 m = NULL; /* consume */
3813 WG_TRACE("queued first packet; init handshake");
3814 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3815 } else {
3816 WG_TRACE("first packet already queued, dropping");
3817 }
3818 goto out1;
3819 }
3820
3821 /* There's an established session. Toss it in the queue. */
3822 kpreempt_disable();
3823 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
3824 M_SETCTX(m, wgp);
3825 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
3826 WGLOG(LOG_ERR, "pktq full, dropping\n");
3827 error = ENOBUFS;
3828 goto out2;
3829 }
3830 m = NULL; /* consumed */
3831 error = 0;
3832 out2: kpreempt_enable();
3833
3834 wg_put_session(wgs, &wgs_psref);
3835 out1: wg_put_peer(wgp, &wgp_psref);
3836 out0: if (m)
3837 m_freem(m);
3838 curlwp_bindx(bound);
3839 return error;
3840 }
3841
3842 static int
3843 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
3844 {
3845 struct psref psref;
3846 struct wg_sockaddr *wgsa;
3847 int error;
3848 struct socket *so;
3849
3850 wgsa = wg_get_endpoint_sa(wgp, &psref);
3851 so = wg_get_so_by_peer(wgp, wgsa);
3852 solock(so);
3853 if (wgsatosa(wgsa)->sa_family == AF_INET) {
3854 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
3855 } else {
3856 #ifdef INET6
3857 error = udp6_output(sotoin6pcb(so), m, wgsatosin6(wgsa),
3858 NULL, curlwp);
3859 #else
3860 m_freem(m);
3861 error = EPFNOSUPPORT;
3862 #endif
3863 }
3864 sounlock(so);
3865 wg_put_sa(wgp, wgsa, &psref);
3866
3867 return error;
3868 }
3869
3870 /* Inspired by pppoe_get_mbuf */
3871 static struct mbuf *
3872 wg_get_mbuf(size_t leading_len, size_t len)
3873 {
3874 struct mbuf *m;
3875
3876 KASSERT(leading_len <= MCLBYTES);
3877 KASSERT(len <= MCLBYTES - leading_len);
3878
3879 m = m_gethdr(M_DONTWAIT, MT_DATA);
3880 if (m == NULL)
3881 return NULL;
3882 if (len + leading_len > MHLEN) {
3883 m_clget(m, M_DONTWAIT);
3884 if ((m->m_flags & M_EXT) == 0) {
3885 m_free(m);
3886 return NULL;
3887 }
3888 }
3889 m->m_data += leading_len;
3890 m->m_pkthdr.len = m->m_len = len;
3891
3892 return m;
3893 }
3894
3895 static int
3896 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
3897 struct mbuf *m)
3898 {
3899 struct wg_softc *wg = wgp->wgp_sc;
3900 int error;
3901 size_t inner_len, padded_len, encrypted_len;
3902 char *padded_buf = NULL;
3903 size_t mlen;
3904 struct wg_msg_data *wgmd;
3905 bool free_padded_buf = false;
3906 struct mbuf *n;
3907 size_t leading_len = max_linkhdr + sizeof(struct ip6_hdr) +
3908 sizeof(struct udphdr);
3909
3910 mlen = m_length(m);
3911 inner_len = mlen;
3912 padded_len = roundup(mlen, 16);
3913 encrypted_len = padded_len + WG_AUTHTAG_LEN;
3914 WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
3915 inner_len, padded_len, encrypted_len);
3916 if (mlen != 0) {
3917 bool success;
3918 success = m_ensure_contig(&m, padded_len);
3919 if (success) {
3920 padded_buf = mtod(m, char *);
3921 } else {
3922 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
3923 if (padded_buf == NULL) {
3924 error = ENOBUFS;
3925 goto end;
3926 }
3927 free_padded_buf = true;
3928 m_copydata(m, 0, mlen, padded_buf);
3929 }
3930 memset(padded_buf + mlen, 0, padded_len - inner_len);
3931 }
3932
3933 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
3934 if (n == NULL) {
3935 error = ENOBUFS;
3936 goto end;
3937 }
3938 KASSERT(n->m_len >= sizeof(*wgmd));
3939 wgmd = mtod(n, struct wg_msg_data *);
3940 wg_fill_msg_data(wg, wgp, wgs, wgmd);
3941 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
3942 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
3943 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
3944 padded_buf, padded_len,
3945 NULL, 0);
3946
3947 error = wg->wg_ops->send_data_msg(wgp, n);
3948 if (error == 0) {
3949 struct ifnet *ifp = &wg->wg_if;
3950 if_statadd(ifp, if_obytes, mlen);
3951 if_statinc(ifp, if_opackets);
3952 if (wgs->wgs_is_initiator &&
3953 wgs->wgs_time_last_data_sent == 0) {
3954 /*
3955 * [W] 6.2 Transport Message Limits
3956 * "if a peer is the initiator of a current secure
3957 * session, WireGuard will send a handshake initiation
3958 * message to begin a new secure session if, after
3959 * transmitting a transport data message, the current
3960 * secure session is REKEY-AFTER-TIME seconds old,"
3961 */
3962 wg_schedule_rekey_timer(wgp);
3963 }
3964 wgs->wgs_time_last_data_sent = time_uptime;
3965 if (wg_session_get_send_counter(wgs) >=
3966 wg_rekey_after_messages) {
3967 /*
3968 * [W] 6.2 Transport Message Limits
3969 * "WireGuard will try to create a new session, by
3970 * sending a handshake initiation message (section
3971 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
3972 * transport data messages..."
3973 */
3974 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3975 }
3976 }
3977 end:
3978 m_freem(m);
3979 if (free_padded_buf)
3980 kmem_intr_free(padded_buf, padded_len);
3981 return error;
3982 }
3983
3984 static void
3985 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
3986 {
3987 pktqueue_t *pktq;
3988 size_t pktlen;
3989
3990 KASSERT(af == AF_INET || af == AF_INET6);
3991
3992 WG_TRACE("");
3993
3994 m_set_rcvif(m, ifp);
3995 pktlen = m->m_pkthdr.len;
3996
3997 bpf_mtap_af(ifp, af, m, BPF_D_IN);
3998
3999 switch (af) {
4000 case AF_INET:
4001 pktq = ip_pktq;
4002 break;
4003 #ifdef INET6
4004 case AF_INET6:
4005 pktq = ip6_pktq;
4006 break;
4007 #endif
4008 default:
4009 panic("invalid af=%d", af);
4010 }
4011
4012 kpreempt_disable();
4013 const u_int h = curcpu()->ci_index;
4014 if (__predict_true(pktq_enqueue(pktq, m, h))) {
4015 if_statadd(ifp, if_ibytes, pktlen);
4016 if_statinc(ifp, if_ipackets);
4017 } else {
4018 m_freem(m);
4019 }
4020 kpreempt_enable();
4021 }
4022
4023 static void
4024 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
4025 const uint8_t privkey[WG_STATIC_KEY_LEN])
4026 {
4027
4028 crypto_scalarmult_base(pubkey, privkey);
4029 }
4030
4031 static int
4032 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
4033 {
4034 struct radix_node_head *rnh;
4035 struct radix_node *rn;
4036 int error = 0;
4037
4038 rw_enter(wg->wg_rwlock, RW_WRITER);
4039 rnh = wg_rnh(wg, wga->wga_family);
4040 KASSERT(rnh != NULL);
4041 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
4042 wga->wga_nodes);
4043 rw_exit(wg->wg_rwlock);
4044
4045 if (rn == NULL)
4046 error = EEXIST;
4047
4048 return error;
4049 }
4050
4051 static int
4052 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
4053 struct wg_peer **wgpp)
4054 {
4055 int error = 0;
4056 const void *pubkey;
4057 size_t pubkey_len;
4058 const void *psk;
4059 size_t psk_len;
4060 const char *name = NULL;
4061
4062 if (prop_dictionary_get_string(peer, "name", &name)) {
4063 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
4064 error = EINVAL;
4065 goto out;
4066 }
4067 }
4068
4069 if (!prop_dictionary_get_data(peer, "public_key",
4070 &pubkey, &pubkey_len)) {
4071 error = EINVAL;
4072 goto out;
4073 }
4074 #ifdef WG_DEBUG_DUMP
4075 {
4076 char *hex = gethexdump(pubkey, pubkey_len);
4077 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n%s\n",
4078 pubkey, pubkey_len, hex);
4079 puthexdump(hex, pubkey, pubkey_len);
4080 }
4081 #endif
4082
4083 struct wg_peer *wgp = wg_alloc_peer(wg);
4084 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4085 if (name != NULL)
4086 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4087
4088 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4089 if (psk_len != sizeof(wgp->wgp_psk)) {
4090 error = EINVAL;
4091 goto out;
4092 }
4093 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4094 }
4095
4096 const void *addr;
4097 size_t addr_len;
4098 struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4099
4100 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4101 goto skip_endpoint;
4102 if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4103 addr_len > sizeof(*wgsatoss(wgsa))) {
4104 error = EINVAL;
4105 goto out;
4106 }
4107 memcpy(wgsatoss(wgsa), addr, addr_len);
4108 switch (wgsa_family(wgsa)) {
4109 case AF_INET:
4110 #ifdef INET6
4111 case AF_INET6:
4112 #endif
4113 break;
4114 default:
4115 error = EPFNOSUPPORT;
4116 goto out;
4117 }
4118 if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4119 error = EINVAL;
4120 goto out;
4121 }
4122 {
4123 char addrstr[128];
4124 sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4125 WG_DLOG("addr=%s\n", addrstr);
4126 }
4127 wgp->wgp_endpoint_available = true;
4128
4129 prop_array_t allowedips;
4130 skip_endpoint:
4131 allowedips = prop_dictionary_get(peer, "allowedips");
4132 if (allowedips == NULL)
4133 goto skip;
4134
4135 prop_object_iterator_t _it = prop_array_iterator(allowedips);
4136 prop_dictionary_t prop_allowedip;
4137 int j = 0;
4138 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4139 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4140
4141 if (!prop_dictionary_get_int(prop_allowedip, "family",
4142 &wga->wga_family))
4143 continue;
4144 if (!prop_dictionary_get_data(prop_allowedip, "ip",
4145 &addr, &addr_len))
4146 continue;
4147 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4148 &wga->wga_cidr))
4149 continue;
4150
4151 switch (wga->wga_family) {
4152 case AF_INET: {
4153 struct sockaddr_in sin;
4154 char addrstr[128];
4155 struct in_addr mask;
4156 struct sockaddr_in sin_mask;
4157
4158 if (addr_len != sizeof(struct in_addr))
4159 return EINVAL;
4160 memcpy(&wga->wga_addr4, addr, addr_len);
4161
4162 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4163 0);
4164 sockaddr_copy(&wga->wga_sa_addr,
4165 sizeof(sin), sintosa(&sin));
4166
4167 sockaddr_format(sintosa(&sin),
4168 addrstr, sizeof(addrstr));
4169 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4170
4171 in_len2mask(&mask, wga->wga_cidr);
4172 sockaddr_in_init(&sin_mask, &mask, 0);
4173 sockaddr_copy(&wga->wga_sa_mask,
4174 sizeof(sin_mask), sintosa(&sin_mask));
4175
4176 break;
4177 }
4178 #ifdef INET6
4179 case AF_INET6: {
4180 struct sockaddr_in6 sin6;
4181 char addrstr[128];
4182 struct in6_addr mask;
4183 struct sockaddr_in6 sin6_mask;
4184
4185 if (addr_len != sizeof(struct in6_addr))
4186 return EINVAL;
4187 memcpy(&wga->wga_addr6, addr, addr_len);
4188
4189 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4190 0, 0, 0);
4191 sockaddr_copy(&wga->wga_sa_addr,
4192 sizeof(sin6), sin6tosa(&sin6));
4193
4194 sockaddr_format(sin6tosa(&sin6),
4195 addrstr, sizeof(addrstr));
4196 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4197
4198 in6_prefixlen2mask(&mask, wga->wga_cidr);
4199 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4200 sockaddr_copy(&wga->wga_sa_mask,
4201 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4202
4203 break;
4204 }
4205 #endif
4206 default:
4207 error = EINVAL;
4208 goto out;
4209 }
4210 wga->wga_peer = wgp;
4211
4212 error = wg_rtable_add_route(wg, wga);
4213 if (error != 0)
4214 goto out;
4215
4216 j++;
4217 }
4218 wgp->wgp_n_allowedips = j;
4219 skip:
4220 *wgpp = wgp;
4221 out:
4222 return error;
4223 }
4224
4225 static int
4226 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4227 {
4228 int error;
4229 char *buf;
4230
4231 WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
4232 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4233 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4234 if (error != 0)
4235 return error;
4236 buf[ifd->ifd_len] = '\0';
4237 #ifdef WG_DEBUG_DUMP
4238 log(LOG_DEBUG, "%.*s\n",
4239 (int)MIN(INT_MAX, ifd->ifd_len),
4240 (const char *)buf);
4241 #endif
4242 *_buf = buf;
4243 return 0;
4244 }
4245
4246 static int
4247 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4248 {
4249 int error;
4250 prop_dictionary_t prop_dict;
4251 char *buf = NULL;
4252 const void *privkey;
4253 size_t privkey_len;
4254
4255 error = wg_alloc_prop_buf(&buf, ifd);
4256 if (error != 0)
4257 return error;
4258 error = EINVAL;
4259 prop_dict = prop_dictionary_internalize(buf);
4260 if (prop_dict == NULL)
4261 goto out;
4262 if (!prop_dictionary_get_data(prop_dict, "private_key",
4263 &privkey, &privkey_len))
4264 goto out;
4265 #ifdef WG_DEBUG_DUMP
4266 {
4267 char *hex = gethexdump(privkey, privkey_len);
4268 log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n%s\n",
4269 privkey, privkey_len, hex);
4270 puthexdump(hex, privkey, privkey_len);
4271 }
4272 #endif
4273 if (privkey_len != WG_STATIC_KEY_LEN)
4274 goto out;
4275 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4276 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4277 error = 0;
4278
4279 out:
4280 kmem_free(buf, ifd->ifd_len + 1);
4281 return error;
4282 }
4283
4284 static int
4285 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4286 {
4287 int error;
4288 prop_dictionary_t prop_dict;
4289 char *buf = NULL;
4290 uint16_t port;
4291
4292 error = wg_alloc_prop_buf(&buf, ifd);
4293 if (error != 0)
4294 return error;
4295 error = EINVAL;
4296 prop_dict = prop_dictionary_internalize(buf);
4297 if (prop_dict == NULL)
4298 goto out;
4299 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4300 goto out;
4301
4302 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4303
4304 out:
4305 kmem_free(buf, ifd->ifd_len + 1);
4306 return error;
4307 }
4308
4309 static int
4310 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4311 {
4312 int error;
4313 prop_dictionary_t prop_dict;
4314 char *buf = NULL;
4315 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4316
4317 error = wg_alloc_prop_buf(&buf, ifd);
4318 if (error != 0)
4319 return error;
4320 error = EINVAL;
4321 prop_dict = prop_dictionary_internalize(buf);
4322 if (prop_dict == NULL)
4323 goto out;
4324
4325 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4326 if (error != 0)
4327 goto out;
4328
4329 mutex_enter(wg->wg_lock);
4330 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4331 sizeof(wgp->wgp_pubkey)) != NULL ||
4332 (wgp->wgp_name[0] &&
4333 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4334 strlen(wgp->wgp_name)) != NULL)) {
4335 mutex_exit(wg->wg_lock);
4336 wg_destroy_peer(wgp);
4337 error = EEXIST;
4338 goto out;
4339 }
4340 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4341 sizeof(wgp->wgp_pubkey), wgp);
4342 KASSERT(wgp0 == wgp);
4343 if (wgp->wgp_name[0]) {
4344 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4345 strlen(wgp->wgp_name), wgp);
4346 KASSERT(wgp0 == wgp);
4347 }
4348 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4349 wg->wg_npeers++;
4350 mutex_exit(wg->wg_lock);
4351
4352 out:
4353 kmem_free(buf, ifd->ifd_len + 1);
4354 return error;
4355 }
4356
4357 static int
4358 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4359 {
4360 int error;
4361 prop_dictionary_t prop_dict;
4362 char *buf = NULL;
4363 const char *name;
4364
4365 error = wg_alloc_prop_buf(&buf, ifd);
4366 if (error != 0)
4367 return error;
4368 error = EINVAL;
4369 prop_dict = prop_dictionary_internalize(buf);
4370 if (prop_dict == NULL)
4371 goto out;
4372
4373 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4374 goto out;
4375 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4376 goto out;
4377
4378 error = wg_destroy_peer_name(wg, name);
4379 out:
4380 kmem_free(buf, ifd->ifd_len + 1);
4381 return error;
4382 }
4383
4384 static int
4385 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4386 {
4387 int error = ENOMEM;
4388 prop_dictionary_t prop_dict;
4389 prop_array_t peers = NULL;
4390 char *buf;
4391 struct wg_peer *wgp;
4392 int s, i;
4393
4394 prop_dict = prop_dictionary_create();
4395 if (prop_dict == NULL)
4396 goto error;
4397
4398 if (!prop_dictionary_set_data(prop_dict, "private_key", wg->wg_privkey,
4399 WG_STATIC_KEY_LEN))
4400 goto error;
4401
4402 if (wg->wg_listen_port != 0) {
4403 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4404 wg->wg_listen_port))
4405 goto error;
4406 }
4407
4408 if (wg->wg_npeers == 0)
4409 goto skip_peers;
4410
4411 peers = prop_array_create();
4412 if (peers == NULL)
4413 goto error;
4414
4415 s = pserialize_read_enter();
4416 i = 0;
4417 WG_PEER_READER_FOREACH(wgp, wg) {
4418 struct wg_sockaddr *wgsa;
4419 struct psref wgp_psref, wgsa_psref;
4420 prop_dictionary_t prop_peer;
4421
4422 wg_get_peer(wgp, &wgp_psref);
4423 pserialize_read_exit(s);
4424
4425 prop_peer = prop_dictionary_create();
4426 if (prop_peer == NULL)
4427 goto next;
4428
4429 if (strlen(wgp->wgp_name) > 0) {
4430 if (!prop_dictionary_set_string(prop_peer, "name",
4431 wgp->wgp_name))
4432 goto next;
4433 }
4434
4435 if (!prop_dictionary_set_data(prop_peer, "public_key",
4436 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4437 goto next;
4438
4439 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4440 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4441 sizeof(wgp->wgp_psk))) {
4442 if (!prop_dictionary_set_data(prop_peer,
4443 "preshared_key",
4444 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4445 goto next;
4446 }
4447
4448 wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
4449 CTASSERT(AF_UNSPEC == 0);
4450 if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
4451 !prop_dictionary_set_data(prop_peer, "endpoint",
4452 wgsatoss(wgsa),
4453 sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
4454 wg_put_sa(wgp, wgsa, &wgsa_psref);
4455 goto next;
4456 }
4457 wg_put_sa(wgp, wgsa, &wgsa_psref);
4458
4459 const struct timespec *t = &wgp->wgp_last_handshake_time;
4460
4461 if (!prop_dictionary_set_uint64(prop_peer,
4462 "last_handshake_time_sec", t->tv_sec))
4463 goto next;
4464 if (!prop_dictionary_set_uint32(prop_peer,
4465 "last_handshake_time_nsec", t->tv_nsec))
4466 goto next;
4467
4468 if (wgp->wgp_n_allowedips == 0)
4469 goto skip_allowedips;
4470
4471 prop_array_t allowedips = prop_array_create();
4472 if (allowedips == NULL)
4473 goto next;
4474 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4475 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4476 prop_dictionary_t prop_allowedip;
4477
4478 prop_allowedip = prop_dictionary_create();
4479 if (prop_allowedip == NULL)
4480 break;
4481
4482 if (!prop_dictionary_set_int(prop_allowedip, "family",
4483 wga->wga_family))
4484 goto _next;
4485 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4486 wga->wga_cidr))
4487 goto _next;
4488
4489 switch (wga->wga_family) {
4490 case AF_INET:
4491 if (!prop_dictionary_set_data(prop_allowedip,
4492 "ip", &wga->wga_addr4,
4493 sizeof(wga->wga_addr4)))
4494 goto _next;
4495 break;
4496 #ifdef INET6
4497 case AF_INET6:
4498 if (!prop_dictionary_set_data(prop_allowedip,
4499 "ip", &wga->wga_addr6,
4500 sizeof(wga->wga_addr6)))
4501 goto _next;
4502 break;
4503 #endif
4504 default:
4505 break;
4506 }
4507 prop_array_set(allowedips, j, prop_allowedip);
4508 _next:
4509 prop_object_release(prop_allowedip);
4510 }
4511 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4512 prop_object_release(allowedips);
4513
4514 skip_allowedips:
4515
4516 prop_array_set(peers, i, prop_peer);
4517 next:
4518 if (prop_peer)
4519 prop_object_release(prop_peer);
4520 i++;
4521
4522 s = pserialize_read_enter();
4523 wg_put_peer(wgp, &wgp_psref);
4524 }
4525 pserialize_read_exit(s);
4526
4527 prop_dictionary_set(prop_dict, "peers", peers);
4528 prop_object_release(peers);
4529 peers = NULL;
4530
4531 skip_peers:
4532 buf = prop_dictionary_externalize(prop_dict);
4533 if (buf == NULL)
4534 goto error;
4535 if (ifd->ifd_len < (strlen(buf) + 1)) {
4536 error = EINVAL;
4537 goto error;
4538 }
4539 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4540
4541 free(buf, 0);
4542 error:
4543 if (peers != NULL)
4544 prop_object_release(peers);
4545 if (prop_dict != NULL)
4546 prop_object_release(prop_dict);
4547
4548 return error;
4549 }
4550
4551 static int
4552 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4553 {
4554 struct wg_softc *wg = ifp->if_softc;
4555 struct ifreq *ifr = data;
4556 struct ifaddr *ifa = data;
4557 struct ifdrv *ifd = data;
4558 int error = 0;
4559
4560 switch (cmd) {
4561 case SIOCINITIFADDR:
4562 if (ifa->ifa_addr->sa_family != AF_LINK &&
4563 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
4564 (IFF_UP | IFF_RUNNING)) {
4565 ifp->if_flags |= IFF_UP;
4566 error = ifp->if_init(ifp);
4567 }
4568 return error;
4569 case SIOCADDMULTI:
4570 case SIOCDELMULTI:
4571 switch (ifr->ifr_addr.sa_family) {
4572 case AF_INET: /* IP supports Multicast */
4573 break;
4574 #ifdef INET6
4575 case AF_INET6: /* IP6 supports Multicast */
4576 break;
4577 #endif
4578 default: /* Other protocols doesn't support Multicast */
4579 error = EAFNOSUPPORT;
4580 break;
4581 }
4582 return error;
4583 case SIOCSDRVSPEC:
4584 switch (ifd->ifd_cmd) {
4585 case WG_IOCTL_SET_PRIVATE_KEY:
4586 error = wg_ioctl_set_private_key(wg, ifd);
4587 break;
4588 case WG_IOCTL_SET_LISTEN_PORT:
4589 error = wg_ioctl_set_listen_port(wg, ifd);
4590 break;
4591 case WG_IOCTL_ADD_PEER:
4592 error = wg_ioctl_add_peer(wg, ifd);
4593 break;
4594 case WG_IOCTL_DELETE_PEER:
4595 error = wg_ioctl_delete_peer(wg, ifd);
4596 break;
4597 default:
4598 error = EINVAL;
4599 break;
4600 }
4601 return error;
4602 case SIOCGDRVSPEC:
4603 return wg_ioctl_get(wg, ifd);
4604 case SIOCSIFFLAGS:
4605 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
4606 break;
4607 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4608 case IFF_RUNNING:
4609 /*
4610 * If interface is marked down and it is running,
4611 * then stop and disable it.
4612 */
4613 (*ifp->if_stop)(ifp, 1);
4614 break;
4615 case IFF_UP:
4616 /*
4617 * If interface is marked up and it is stopped, then
4618 * start it.
4619 */
4620 error = (*ifp->if_init)(ifp);
4621 break;
4622 default:
4623 break;
4624 }
4625 return error;
4626 #ifdef WG_RUMPKERNEL
4627 case SIOCSLINKSTR:
4628 error = wg_ioctl_linkstr(wg, ifd);
4629 if (error == 0)
4630 wg->wg_ops = &wg_ops_rumpuser;
4631 return error;
4632 #endif
4633 default:
4634 break;
4635 }
4636
4637 error = ifioctl_common(ifp, cmd, data);
4638
4639 #ifdef WG_RUMPKERNEL
4640 if (!wg_user_mode(wg))
4641 return error;
4642
4643 /* Do the same to the corresponding tun device on the host */
4644 /*
4645 * XXX Actually the command has not been handled yet. It
4646 * will be handled via pr_ioctl form doifioctl later.
4647 */
4648 switch (cmd) {
4649 case SIOCAIFADDR:
4650 case SIOCDIFADDR: {
4651 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
4652 struct in_aliasreq *ifra = &_ifra;
4653 KASSERT(error == ENOTTY);
4654 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4655 IFNAMSIZ);
4656 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
4657 if (error == 0)
4658 error = ENOTTY;
4659 break;
4660 }
4661 #ifdef INET6
4662 case SIOCAIFADDR_IN6:
4663 case SIOCDIFADDR_IN6: {
4664 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
4665 struct in6_aliasreq *ifra = &_ifra;
4666 KASSERT(error == ENOTTY);
4667 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4668 IFNAMSIZ);
4669 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
4670 if (error == 0)
4671 error = ENOTTY;
4672 break;
4673 }
4674 #endif
4675 }
4676 #endif /* WG_RUMPKERNEL */
4677
4678 return error;
4679 }
4680
4681 static int
4682 wg_init(struct ifnet *ifp)
4683 {
4684
4685 ifp->if_flags |= IFF_RUNNING;
4686
4687 /* TODO flush pending packets. */
4688 return 0;
4689 }
4690
4691 static void
4692 wg_stop(struct ifnet *ifp, int disable)
4693 {
4694
4695 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
4696 ifp->if_flags &= ~IFF_RUNNING;
4697
4698 /* Need to do something? */
4699 }
4700
4701 #ifdef WG_DEBUG_PARAMS
4702 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
4703 {
4704 const struct sysctlnode *node = NULL;
4705
4706 sysctl_createv(clog, 0, NULL, &node,
4707 CTLFLAG_PERMANENT,
4708 CTLTYPE_NODE, "wg",
4709 SYSCTL_DESCR("wg(4)"),
4710 NULL, 0, NULL, 0,
4711 CTL_NET, CTL_CREATE, CTL_EOL);
4712 sysctl_createv(clog, 0, &node, NULL,
4713 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4714 CTLTYPE_QUAD, "rekey_after_messages",
4715 SYSCTL_DESCR("session liftime by messages"),
4716 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
4717 sysctl_createv(clog, 0, &node, NULL,
4718 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4719 CTLTYPE_INT, "rekey_after_time",
4720 SYSCTL_DESCR("session liftime"),
4721 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
4722 sysctl_createv(clog, 0, &node, NULL,
4723 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4724 CTLTYPE_INT, "rekey_timeout",
4725 SYSCTL_DESCR("session handshake retry time"),
4726 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
4727 sysctl_createv(clog, 0, &node, NULL,
4728 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4729 CTLTYPE_INT, "rekey_attempt_time",
4730 SYSCTL_DESCR("session handshake timeout"),
4731 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
4732 sysctl_createv(clog, 0, &node, NULL,
4733 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4734 CTLTYPE_INT, "keepalive_timeout",
4735 SYSCTL_DESCR("keepalive timeout"),
4736 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
4737 sysctl_createv(clog, 0, &node, NULL,
4738 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4739 CTLTYPE_BOOL, "force_underload",
4740 SYSCTL_DESCR("force to detemine under load"),
4741 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
4742 }
4743 #endif
4744
4745 #ifdef WG_RUMPKERNEL
4746 static bool
4747 wg_user_mode(struct wg_softc *wg)
4748 {
4749
4750 return wg->wg_user != NULL;
4751 }
4752
4753 static int
4754 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
4755 {
4756 struct ifnet *ifp = &wg->wg_if;
4757 int error;
4758
4759 if (ifp->if_flags & IFF_UP)
4760 return EBUSY;
4761
4762 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
4763 /* XXX do nothing */
4764 return 0;
4765 } else if (ifd->ifd_cmd != 0) {
4766 return EINVAL;
4767 } else if (wg->wg_user != NULL) {
4768 return EBUSY;
4769 }
4770
4771 /* Assume \0 included */
4772 if (ifd->ifd_len > IFNAMSIZ) {
4773 return E2BIG;
4774 } else if (ifd->ifd_len < 1) {
4775 return EINVAL;
4776 }
4777
4778 char tun_name[IFNAMSIZ];
4779 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
4780 if (error != 0)
4781 return error;
4782
4783 if (strncmp(tun_name, "tun", 3) != 0)
4784 return EINVAL;
4785
4786 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
4787
4788 return error;
4789 }
4790
4791 static int
4792 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
4793 {
4794 int error;
4795 struct psref psref;
4796 struct wg_sockaddr *wgsa;
4797 struct wg_softc *wg = wgp->wgp_sc;
4798 struct iovec iov[1];
4799
4800 wgsa = wg_get_endpoint_sa(wgp, &psref);
4801
4802 iov[0].iov_base = mtod(m, void *);
4803 iov[0].iov_len = m->m_len;
4804
4805 /* Send messages to a peer via an ordinary socket. */
4806 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
4807
4808 wg_put_sa(wgp, wgsa, &psref);
4809
4810 m_freem(m);
4811
4812 return error;
4813 }
4814
4815 static void
4816 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
4817 {
4818 struct wg_softc *wg = ifp->if_softc;
4819 struct iovec iov[2];
4820 struct sockaddr_storage ss;
4821
4822 KASSERT(af == AF_INET || af == AF_INET6);
4823
4824 WG_TRACE("");
4825
4826 if (af == AF_INET) {
4827 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
4828 struct ip *ip;
4829
4830 KASSERT(m->m_len >= sizeof(struct ip));
4831 ip = mtod(m, struct ip *);
4832 sockaddr_in_init(sin, &ip->ip_dst, 0);
4833 } else {
4834 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
4835 struct ip6_hdr *ip6;
4836
4837 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
4838 ip6 = mtod(m, struct ip6_hdr *);
4839 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
4840 }
4841
4842 iov[0].iov_base = &ss;
4843 iov[0].iov_len = ss.ss_len;
4844 iov[1].iov_base = mtod(m, void *);
4845 iov[1].iov_len = m->m_len;
4846
4847 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4848
4849 /* Send decrypted packets to users via a tun. */
4850 rumpuser_wg_send_user(wg->wg_user, iov, 2);
4851
4852 m_freem(m);
4853 }
4854
4855 static int
4856 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
4857 {
4858 int error;
4859 uint16_t old_port = wg->wg_listen_port;
4860
4861 if (port != 0 && old_port == port)
4862 return 0;
4863
4864 error = rumpuser_wg_sock_bind(wg->wg_user, port);
4865 if (error == 0)
4866 wg->wg_listen_port = port;
4867 return error;
4868 }
4869
4870 /*
4871 * Receive user packets.
4872 */
4873 void
4874 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4875 {
4876 struct ifnet *ifp = &wg->wg_if;
4877 struct mbuf *m;
4878 const struct sockaddr *dst;
4879
4880 WG_TRACE("");
4881
4882 dst = iov[0].iov_base;
4883
4884 m = m_gethdr(M_DONTWAIT, MT_DATA);
4885 if (m == NULL)
4886 return;
4887 m->m_len = m->m_pkthdr.len = 0;
4888 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4889
4890 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4891 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4892
4893 (void)wg_output(ifp, m, dst, NULL);
4894 }
4895
4896 /*
4897 * Receive packets from a peer.
4898 */
4899 void
4900 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4901 {
4902 struct mbuf *m;
4903 const struct sockaddr *src;
4904
4905 WG_TRACE("");
4906
4907 src = iov[0].iov_base;
4908
4909 m = m_gethdr(M_DONTWAIT, MT_DATA);
4910 if (m == NULL)
4911 return;
4912 m->m_len = m->m_pkthdr.len = 0;
4913 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4914
4915 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4916 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4917
4918 wg_handle_packet(wg, m, src);
4919 }
4920 #endif /* WG_RUMPKERNEL */
4921
4922 /*
4923 * Module infrastructure
4924 */
4925 #include "if_module.h"
4926
4927 IF_MODULE(MODULE_CLASS_DRIVER, wg, "")
4928