Home | History | Annotate | Line # | Download | only in net
if_wg.c revision 1.62
      1 /*	$NetBSD: if_wg.c,v 1.62 2020/11/11 18:08:34 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * This network interface aims to implement the WireGuard protocol.
     34  * The implementation is based on the paper of WireGuard as of
     35  * 2018-06-30 [1].  The paper is referred in the source code with label
     36  * [W].  Also the specification of the Noise protocol framework as of
     37  * 2018-07-11 [2] is referred with label [N].
     38  *
     39  * [1] https://www.wireguard.com/papers/wireguard.pdf
     40  * [2] http://noiseprotocol.org/noise.pdf
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.62 2020/11/11 18:08:34 riastradh Exp $");
     45 
     46 #ifdef _KERNEL_OPT
     47 #include "opt_altq_enabled.h"
     48 #include "opt_inet.h"
     49 #endif
     50 
     51 #include <sys/param.h>
     52 #include <sys/types.h>
     53 
     54 #include <sys/atomic.h>
     55 #include <sys/callout.h>
     56 #include <sys/cprng.h>
     57 #include <sys/cpu.h>
     58 #include <sys/device.h>
     59 #include <sys/domain.h>
     60 #include <sys/errno.h>
     61 #include <sys/intr.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/kernel.h>
     64 #include <sys/kmem.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/module.h>
     67 #include <sys/mutex.h>
     68 #include <sys/once.h>
     69 #include <sys/percpu.h>
     70 #include <sys/pserialize.h>
     71 #include <sys/psref.h>
     72 #include <sys/queue.h>
     73 #include <sys/rwlock.h>
     74 #include <sys/socket.h>
     75 #include <sys/socketvar.h>
     76 #include <sys/sockio.h>
     77 #include <sys/sysctl.h>
     78 #include <sys/syslog.h>
     79 #include <sys/systm.h>
     80 #include <sys/thmap.h>
     81 #include <sys/threadpool.h>
     82 #include <sys/time.h>
     83 #include <sys/timespec.h>
     84 #include <sys/workqueue.h>
     85 
     86 #include <net/bpf.h>
     87 #include <net/if.h>
     88 #include <net/if_types.h>
     89 #include <net/if_wg.h>
     90 #include <net/pktqueue.h>
     91 #include <net/route.h>
     92 
     93 #include <netinet/in.h>
     94 #include <netinet/in_pcb.h>
     95 #include <netinet/in_var.h>
     96 #include <netinet/ip.h>
     97 #include <netinet/ip_var.h>
     98 #include <netinet/udp.h>
     99 #include <netinet/udp_var.h>
    100 
    101 #ifdef INET6
    102 #include <netinet/ip6.h>
    103 #include <netinet6/in6_pcb.h>
    104 #include <netinet6/in6_var.h>
    105 #include <netinet6/ip6_var.h>
    106 #include <netinet6/udp6_var.h>
    107 #endif /* INET6 */
    108 
    109 #include <prop/proplib.h>
    110 
    111 #include <crypto/blake2/blake2s.h>
    112 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
    113 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
    114 #include <crypto/sodium/crypto_scalarmult.h>
    115 
    116 #include "ioconf.h"
    117 
    118 #ifdef WG_RUMPKERNEL
    119 #include "wg_user.h"
    120 #endif
    121 
    122 /*
    123  * Data structures
    124  * - struct wg_softc is an instance of wg interfaces
    125  *   - It has a list of peers (struct wg_peer)
    126  *   - It has a threadpool job that sends/receives handshake messages and
    127  *     runs event handlers
    128  *   - It has its own two routing tables: one is for IPv4 and the other IPv6
    129  * - struct wg_peer is a representative of a peer
    130  *   - It has a struct work to handle handshakes and timer tasks
    131  *   - It has a pair of session instances (struct wg_session)
    132  *   - It has a pair of endpoint instances (struct wg_sockaddr)
    133  *     - Normally one endpoint is used and the second one is used only on
    134  *       a peer migration (a change of peer's IP address)
    135  *   - It has a list of IP addresses and sub networks called allowedips
    136  *     (struct wg_allowedip)
    137  *     - A packets sent over a session is allowed if its destination matches
    138  *       any IP addresses or sub networks of the list
    139  * - struct wg_session represents a session of a secure tunnel with a peer
    140  *   - Two instances of sessions belong to a peer; a stable session and a
    141  *     unstable session
    142  *   - A handshake process of a session always starts with a unstable instance
    143  *   - Once a session is established, its instance becomes stable and the
    144  *     other becomes unstable instead
    145  *   - Data messages are always sent via a stable session
    146  *
    147  * Locking notes:
    148  * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
    149  *   - Changes to the peer list are serialized by wg_lock
    150  *   - The peer list may be read with pserialize(9) and psref(9)
    151  *   - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
    152  *     => XXX replace by pserialize when routing table is psz-safe
    153  * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
    154  *   only in thread context and serializes:
    155  *   - the stable and unstable session pointers
    156  *   - all unstable session state
    157  * - Packet processing may be done in softint context:
    158  *   - The stable session can be read under pserialize(9) or psref(9)
    159  *     - The stable session is always ESTABLISHED
    160  *     - On a session swap, we must wait for all readers to release a
    161  *       reference to a stable session before changing wgs_state and
    162  *       session states
    163  * - Lock order: wg_lock -> wgp_lock
    164  */
    165 
    166 
    167 #define WGLOG(level, fmt, args...)					      \
    168 	log(level, "%s: " fmt, __func__, ##args)
    169 
    170 /* Debug options */
    171 #ifdef WG_DEBUG
    172 /* Output debug logs */
    173 #ifndef WG_DEBUG_LOG
    174 #define WG_DEBUG_LOG
    175 #endif
    176 /* Output trace logs */
    177 #ifndef WG_DEBUG_TRACE
    178 #define WG_DEBUG_TRACE
    179 #endif
    180 /* Output hash values, etc. */
    181 #ifndef WG_DEBUG_DUMP
    182 #define WG_DEBUG_DUMP
    183 #endif
    184 /* Make some internal parameters configurable for testing and debugging */
    185 #ifndef WG_DEBUG_PARAMS
    186 #define WG_DEBUG_PARAMS
    187 #endif
    188 #endif
    189 
    190 #ifdef WG_DEBUG_TRACE
    191 #define WG_TRACE(msg)							      \
    192 	log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
    193 #else
    194 #define WG_TRACE(msg)	__nothing
    195 #endif
    196 
    197 #ifdef WG_DEBUG_LOG
    198 #define WG_DLOG(fmt, args...)	log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
    199 #else
    200 #define WG_DLOG(fmt, args...)	__nothing
    201 #endif
    202 
    203 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...)	do {		\
    204 	if (ppsratecheck(&(wgprc)->wgprc_lasttime,			\
    205 	    &(wgprc)->wgprc_curpps, 1)) {				\
    206 		log(level, fmt, ##args);				\
    207 	}								\
    208 } while (0)
    209 
    210 #ifdef WG_DEBUG_PARAMS
    211 static bool wg_force_underload = false;
    212 #endif
    213 
    214 #ifdef WG_DEBUG_DUMP
    215 
    216 static char *
    217 gethexdump(const char *p, size_t n)
    218 {
    219 	char *buf;
    220 	size_t i;
    221 
    222 	if (n > SIZE_MAX/3 - 1)
    223 		return NULL;
    224 	buf = kmem_alloc(3*n + 1, KM_NOSLEEP);
    225 	if (buf == NULL)
    226 		return NULL;
    227 	for (i = 0; i < n; i++)
    228 		snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
    229 	return buf;
    230 }
    231 
    232 static void
    233 puthexdump(char *buf, const void *p, size_t n)
    234 {
    235 
    236 	if (buf == NULL)
    237 		return;
    238 	kmem_free(buf, 3*n + 1);
    239 }
    240 
    241 #ifdef WG_RUMPKERNEL
    242 static void
    243 wg_dump_buf(const char *func, const char *buf, const size_t size)
    244 {
    245 	char *hex = gethexdump(buf, size);
    246 
    247 	log(LOG_DEBUG, "%s: %s\n", func, hex ? hex : "(enomem)");
    248 	puthexdump(hex, buf, size);
    249 }
    250 #endif
    251 
    252 static void
    253 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
    254     const size_t size)
    255 {
    256 	char *hex = gethexdump(hash, size);
    257 
    258 	log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex ? hex : "(enomem)");
    259 	puthexdump(hex, hash, size);
    260 }
    261 
    262 #define WG_DUMP_HASH(name, hash) \
    263 	wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
    264 #define WG_DUMP_HASH48(name, hash) \
    265 	wg_dump_hash(__func__, name, hash, 48)
    266 #define WG_DUMP_BUF(buf, size) \
    267 	wg_dump_buf(__func__, buf, size)
    268 #else
    269 #define WG_DUMP_HASH(name, hash)	__nothing
    270 #define WG_DUMP_HASH48(name, hash)	__nothing
    271 #define WG_DUMP_BUF(buf, size)	__nothing
    272 #endif /* WG_DEBUG_DUMP */
    273 
    274 #define WG_MTU			1420
    275 #define WG_ALLOWEDIPS		16
    276 
    277 #define CURVE25519_KEY_LEN	32
    278 #define TAI64N_LEN		sizeof(uint32_t) * 3
    279 #define POLY1305_AUTHTAG_LEN	16
    280 #define HMAC_BLOCK_LEN		64
    281 
    282 /* [N] 4.1: "DHLEN must be 32 or greater."  WireGuard chooses 32. */
    283 /* [N] 4.3: Hash functions */
    284 #define NOISE_DHLEN		32
    285 /* [N] 4.3: "Must be 32 or 64."  WireGuard chooses 32. */
    286 #define NOISE_HASHLEN		32
    287 #define NOISE_BLOCKLEN		64
    288 #define NOISE_HKDF_OUTPUT_LEN	NOISE_HASHLEN
    289 /* [N] 5.1: "k" */
    290 #define NOISE_CIPHER_KEY_LEN	32
    291 /*
    292  * [N] 9.2: "psk"
    293  *          "... psk is a 32-byte secret value provided by the application."
    294  */
    295 #define NOISE_PRESHARED_KEY_LEN	32
    296 
    297 #define WG_STATIC_KEY_LEN	CURVE25519_KEY_LEN
    298 #define WG_TIMESTAMP_LEN	TAI64N_LEN
    299 
    300 #define WG_PRESHARED_KEY_LEN	NOISE_PRESHARED_KEY_LEN
    301 
    302 #define WG_COOKIE_LEN		16
    303 #define WG_MAC_LEN		16
    304 #define WG_RANDVAL_LEN		24
    305 
    306 #define WG_EPHEMERAL_KEY_LEN	CURVE25519_KEY_LEN
    307 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
    308 #define WG_CHAINING_KEY_LEN	NOISE_HASHLEN
    309 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
    310 #define WG_HASH_LEN		NOISE_HASHLEN
    311 #define WG_CIPHER_KEY_LEN	NOISE_CIPHER_KEY_LEN
    312 #define WG_DH_OUTPUT_LEN	NOISE_DHLEN
    313 #define WG_KDF_OUTPUT_LEN	NOISE_HKDF_OUTPUT_LEN
    314 #define WG_AUTHTAG_LEN		POLY1305_AUTHTAG_LEN
    315 #define WG_DATA_KEY_LEN		32
    316 #define WG_SALT_LEN		24
    317 
    318 /*
    319  * The protocol messages
    320  */
    321 struct wg_msg {
    322 	uint32_t	wgm_type;
    323 } __packed;
    324 
    325 /* [W] 5.4.2 First Message: Initiator to Responder */
    326 struct wg_msg_init {
    327 	uint32_t	wgmi_type;
    328 	uint32_t	wgmi_sender;
    329 	uint8_t		wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
    330 	uint8_t		wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
    331 	uint8_t		wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
    332 	uint8_t		wgmi_mac1[WG_MAC_LEN];
    333 	uint8_t		wgmi_mac2[WG_MAC_LEN];
    334 } __packed;
    335 
    336 /* [W] 5.4.3 Second Message: Responder to Initiator */
    337 struct wg_msg_resp {
    338 	uint32_t	wgmr_type;
    339 	uint32_t	wgmr_sender;
    340 	uint32_t	wgmr_receiver;
    341 	uint8_t		wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
    342 	uint8_t		wgmr_empty[0 + WG_AUTHTAG_LEN];
    343 	uint8_t		wgmr_mac1[WG_MAC_LEN];
    344 	uint8_t		wgmr_mac2[WG_MAC_LEN];
    345 } __packed;
    346 
    347 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
    348 struct wg_msg_data {
    349 	uint32_t	wgmd_type;
    350 	uint32_t	wgmd_receiver;
    351 	uint64_t	wgmd_counter;
    352 	uint32_t	wgmd_packet[0];
    353 } __packed;
    354 
    355 /* [W] 5.4.7 Under Load: Cookie Reply Message */
    356 struct wg_msg_cookie {
    357 	uint32_t	wgmc_type;
    358 	uint32_t	wgmc_receiver;
    359 	uint8_t		wgmc_salt[WG_SALT_LEN];
    360 	uint8_t		wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
    361 } __packed;
    362 
    363 #define WG_MSG_TYPE_INIT		1
    364 #define WG_MSG_TYPE_RESP		2
    365 #define WG_MSG_TYPE_COOKIE		3
    366 #define WG_MSG_TYPE_DATA		4
    367 #define WG_MSG_TYPE_MAX			WG_MSG_TYPE_DATA
    368 
    369 /* Sliding windows */
    370 
    371 #define	SLIWIN_BITS	2048u
    372 #define	SLIWIN_TYPE	uint32_t
    373 #define	SLIWIN_BPW	NBBY*sizeof(SLIWIN_TYPE)
    374 #define	SLIWIN_WORDS	howmany(SLIWIN_BITS, SLIWIN_BPW)
    375 #define	SLIWIN_NPKT	(SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
    376 
    377 struct sliwin {
    378 	SLIWIN_TYPE	B[SLIWIN_WORDS];
    379 	uint64_t	T;
    380 };
    381 
    382 static void
    383 sliwin_reset(struct sliwin *W)
    384 {
    385 
    386 	memset(W, 0, sizeof(*W));
    387 }
    388 
    389 static int
    390 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
    391 {
    392 
    393 	/*
    394 	 * If it's more than one window older than the highest sequence
    395 	 * number we've seen, reject.
    396 	 */
    397 #ifdef __HAVE_ATOMIC64_LOADSTORE
    398 	if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
    399 		return EAUTH;
    400 #endif
    401 
    402 	/*
    403 	 * Otherwise, we need to take the lock to decide, so don't
    404 	 * reject just yet.  Caller must serialize a call to
    405 	 * sliwin_update in this case.
    406 	 */
    407 	return 0;
    408 }
    409 
    410 static int
    411 sliwin_update(struct sliwin *W, uint64_t S)
    412 {
    413 	unsigned word, bit;
    414 
    415 	/*
    416 	 * If it's more than one window older than the highest sequence
    417 	 * number we've seen, reject.
    418 	 */
    419 	if (S + SLIWIN_NPKT < W->T)
    420 		return EAUTH;
    421 
    422 	/*
    423 	 * If it's higher than the highest sequence number we've seen,
    424 	 * advance the window.
    425 	 */
    426 	if (S > W->T) {
    427 		uint64_t i = W->T / SLIWIN_BPW;
    428 		uint64_t j = S / SLIWIN_BPW;
    429 		unsigned k;
    430 
    431 		for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
    432 			W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
    433 #ifdef __HAVE_ATOMIC64_LOADSTORE
    434 		atomic_store_relaxed(&W->T, S);
    435 #else
    436 		W->T = S;
    437 #endif
    438 	}
    439 
    440 	/* Test and set the bit -- if already set, reject.  */
    441 	word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
    442 	bit = S % SLIWIN_BPW;
    443 	if (W->B[word] & (1UL << bit))
    444 		return EAUTH;
    445 	W->B[word] |= 1UL << bit;
    446 
    447 	/* Accept!  */
    448 	return 0;
    449 }
    450 
    451 struct wg_session {
    452 	struct wg_peer	*wgs_peer;
    453 	struct psref_target
    454 			wgs_psref;
    455 
    456 	int		wgs_state;
    457 #define WGS_STATE_UNKNOWN	0
    458 #define WGS_STATE_INIT_ACTIVE	1
    459 #define WGS_STATE_INIT_PASSIVE	2
    460 #define WGS_STATE_ESTABLISHED	3
    461 #define WGS_STATE_DESTROYING	4
    462 
    463 	time_t		wgs_time_established;
    464 	time_t		wgs_time_last_data_sent;
    465 	bool		wgs_is_initiator;
    466 
    467 	uint32_t	wgs_local_index;
    468 	uint32_t	wgs_remote_index;
    469 #ifdef __HAVE_ATOMIC64_LOADSTORE
    470 	volatile uint64_t
    471 			wgs_send_counter;
    472 #else
    473 	kmutex_t	wgs_send_counter_lock;
    474 	uint64_t	wgs_send_counter;
    475 #endif
    476 
    477 	struct {
    478 		kmutex_t	lock;
    479 		struct sliwin	window;
    480 	}		*wgs_recvwin;
    481 
    482 	uint8_t		wgs_handshake_hash[WG_HASH_LEN];
    483 	uint8_t		wgs_chaining_key[WG_CHAINING_KEY_LEN];
    484 	uint8_t		wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
    485 	uint8_t		wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
    486 	uint8_t		wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
    487 	uint8_t		wgs_tkey_send[WG_DATA_KEY_LEN];
    488 	uint8_t		wgs_tkey_recv[WG_DATA_KEY_LEN];
    489 };
    490 
    491 struct wg_sockaddr {
    492 	union {
    493 		struct sockaddr_storage _ss;
    494 		struct sockaddr _sa;
    495 		struct sockaddr_in _sin;
    496 		struct sockaddr_in6 _sin6;
    497 	};
    498 	struct psref_target	wgsa_psref;
    499 };
    500 
    501 #define wgsatoss(wgsa)		(&(wgsa)->_ss)
    502 #define wgsatosa(wgsa)		(&(wgsa)->_sa)
    503 #define wgsatosin(wgsa)		(&(wgsa)->_sin)
    504 #define wgsatosin6(wgsa)	(&(wgsa)->_sin6)
    505 
    506 #define	wgsa_family(wgsa)	(wgsatosa(wgsa)->sa_family)
    507 
    508 struct wg_peer;
    509 struct wg_allowedip {
    510 	struct radix_node	wga_nodes[2];
    511 	struct wg_sockaddr	_wga_sa_addr;
    512 	struct wg_sockaddr	_wga_sa_mask;
    513 #define wga_sa_addr		_wga_sa_addr._sa
    514 #define wga_sa_mask		_wga_sa_mask._sa
    515 
    516 	int			wga_family;
    517 	uint8_t			wga_cidr;
    518 	union {
    519 		struct in_addr _ip4;
    520 		struct in6_addr _ip6;
    521 	} wga_addr;
    522 #define wga_addr4	wga_addr._ip4
    523 #define wga_addr6	wga_addr._ip6
    524 
    525 	struct wg_peer		*wga_peer;
    526 };
    527 
    528 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
    529 
    530 struct wg_ppsratecheck {
    531 	struct timeval		wgprc_lasttime;
    532 	int			wgprc_curpps;
    533 };
    534 
    535 struct wg_softc;
    536 struct wg_peer {
    537 	struct wg_softc		*wgp_sc;
    538 	char			wgp_name[WG_PEER_NAME_MAXLEN + 1];
    539 	struct pslist_entry	wgp_peerlist_entry;
    540 	pserialize_t		wgp_psz;
    541 	struct psref_target	wgp_psref;
    542 	kmutex_t		*wgp_lock;
    543 	kmutex_t		*wgp_intr_lock;
    544 
    545 	uint8_t	wgp_pubkey[WG_STATIC_KEY_LEN];
    546 	struct wg_sockaddr	*wgp_endpoint;
    547 	struct wg_sockaddr	*wgp_endpoint0;
    548 	volatile unsigned	wgp_endpoint_changing;
    549 	bool			wgp_endpoint_available;
    550 
    551 			/* The preshared key (optional) */
    552 	uint8_t		wgp_psk[WG_PRESHARED_KEY_LEN];
    553 
    554 	struct wg_session	*wgp_session_stable;
    555 	struct wg_session	*wgp_session_unstable;
    556 
    557 	/* first outgoing packet awaiting session initiation */
    558 	struct mbuf		*wgp_pending;
    559 
    560 	/* timestamp in big-endian */
    561 	wg_timestamp_t	wgp_timestamp_latest_init;
    562 
    563 	struct timespec		wgp_last_handshake_time;
    564 
    565 	callout_t		wgp_rekey_timer;
    566 	callout_t		wgp_handshake_timeout_timer;
    567 	callout_t		wgp_session_dtor_timer;
    568 
    569 	time_t			wgp_handshake_start_time;
    570 
    571 	int			wgp_n_allowedips;
    572 	struct wg_allowedip	wgp_allowedips[WG_ALLOWEDIPS];
    573 
    574 	time_t			wgp_latest_cookie_time;
    575 	uint8_t			wgp_latest_cookie[WG_COOKIE_LEN];
    576 	uint8_t			wgp_last_sent_mac1[WG_MAC_LEN];
    577 	bool			wgp_last_sent_mac1_valid;
    578 	uint8_t			wgp_last_sent_cookie[WG_COOKIE_LEN];
    579 	bool			wgp_last_sent_cookie_valid;
    580 
    581 	time_t			wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
    582 
    583 	time_t			wgp_last_genrandval_time;
    584 	uint32_t		wgp_randval;
    585 
    586 	struct wg_ppsratecheck	wgp_ppsratecheck;
    587 
    588 	struct work		wgp_work;
    589 	unsigned int		wgp_tasks;
    590 #define WGP_TASK_SEND_INIT_MESSAGE		__BIT(0)
    591 #define WGP_TASK_RETRY_HANDSHAKE		__BIT(1)
    592 #define WGP_TASK_ESTABLISH_SESSION		__BIT(2)
    593 #define WGP_TASK_ENDPOINT_CHANGED		__BIT(3)
    594 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE		__BIT(4)
    595 #define WGP_TASK_DESTROY_PREV_SESSION		__BIT(5)
    596 };
    597 
    598 struct wg_ops;
    599 
    600 struct wg_softc {
    601 	struct ifnet	wg_if;
    602 	LIST_ENTRY(wg_softc) wg_list;
    603 	kmutex_t	*wg_lock;
    604 	kmutex_t	*wg_intr_lock;
    605 	krwlock_t	*wg_rwlock;
    606 
    607 	uint8_t		wg_privkey[WG_STATIC_KEY_LEN];
    608 	uint8_t		wg_pubkey[WG_STATIC_KEY_LEN];
    609 
    610 	int		wg_npeers;
    611 	struct pslist_head	wg_peers;
    612 	struct thmap	*wg_peers_bypubkey;
    613 	struct thmap	*wg_peers_byname;
    614 	struct thmap	*wg_sessions_byindex;
    615 	uint16_t	wg_listen_port;
    616 
    617 	struct threadpool	*wg_threadpool;
    618 
    619 	struct threadpool_job	wg_job;
    620 	int			wg_upcalls;
    621 #define	WG_UPCALL_INET	__BIT(0)
    622 #define	WG_UPCALL_INET6	__BIT(1)
    623 
    624 #ifdef INET
    625 	struct socket		*wg_so4;
    626 	struct radix_node_head	*wg_rtable_ipv4;
    627 #endif
    628 #ifdef INET6
    629 	struct socket		*wg_so6;
    630 	struct radix_node_head	*wg_rtable_ipv6;
    631 #endif
    632 
    633 	struct wg_ppsratecheck	wg_ppsratecheck;
    634 
    635 	struct wg_ops		*wg_ops;
    636 
    637 #ifdef WG_RUMPKERNEL
    638 	struct wg_user		*wg_user;
    639 #endif
    640 };
    641 
    642 /* [W] 6.1 Preliminaries */
    643 #define WG_REKEY_AFTER_MESSAGES		(1ULL << 60)
    644 #define WG_REJECT_AFTER_MESSAGES	(UINT64_MAX - (1 << 13))
    645 #define WG_REKEY_AFTER_TIME		120
    646 #define WG_REJECT_AFTER_TIME		180
    647 #define WG_REKEY_ATTEMPT_TIME		 90
    648 #define WG_REKEY_TIMEOUT		  5
    649 #define WG_KEEPALIVE_TIMEOUT		 10
    650 
    651 #define WG_COOKIE_TIME			120
    652 #define WG_RANDVAL_TIME			(2 * 60)
    653 
    654 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
    655 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
    656 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
    657 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
    658 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
    659 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
    660 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
    661 
    662 static struct mbuf *
    663 		wg_get_mbuf(size_t, size_t);
    664 
    665 static int	wg_send_data_msg(struct wg_peer *, struct wg_session *,
    666 		    struct mbuf *);
    667 static int	wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
    668 		    const uint32_t, const uint8_t [], const struct sockaddr *);
    669 static int	wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
    670 		    struct wg_session *, const struct wg_msg_init *);
    671 static void	wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
    672 
    673 static struct wg_peer *
    674 		wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
    675 		    struct psref *);
    676 static struct wg_peer *
    677 		wg_lookup_peer_by_pubkey(struct wg_softc *,
    678 		    const uint8_t [], struct psref *);
    679 
    680 static struct wg_session *
    681 		wg_lookup_session_by_index(struct wg_softc *,
    682 		    const uint32_t, struct psref *);
    683 
    684 static void	wg_update_endpoint_if_necessary(struct wg_peer *,
    685 		    const struct sockaddr *);
    686 
    687 static void	wg_schedule_rekey_timer(struct wg_peer *);
    688 static void	wg_schedule_session_dtor_timer(struct wg_peer *);
    689 
    690 static bool	wg_is_underload(struct wg_softc *, struct wg_peer *, int);
    691 static void	wg_calculate_keys(struct wg_session *, const bool);
    692 
    693 static void	wg_clear_states(struct wg_session *);
    694 
    695 static void	wg_get_peer(struct wg_peer *, struct psref *);
    696 static void	wg_put_peer(struct wg_peer *, struct psref *);
    697 
    698 static int	wg_send_so(struct wg_peer *, struct mbuf *);
    699 static int	wg_send_udp(struct wg_peer *, struct mbuf *);
    700 static int	wg_output(struct ifnet *, struct mbuf *,
    701 			   const struct sockaddr *, const struct rtentry *);
    702 static void	wg_input(struct ifnet *, struct mbuf *, const int);
    703 static int	wg_ioctl(struct ifnet *, u_long, void *);
    704 static int	wg_bind_port(struct wg_softc *, const uint16_t);
    705 static int	wg_init(struct ifnet *);
    706 #ifdef ALTQ
    707 static void	wg_start(struct ifnet *);
    708 #endif
    709 static void	wg_stop(struct ifnet *, int);
    710 
    711 static void	wg_peer_work(struct work *, void *);
    712 static void	wg_job(struct threadpool_job *);
    713 static void	wgintr(void *);
    714 static void	wg_purge_pending_packets(struct wg_peer *);
    715 
    716 static int	wg_clone_create(struct if_clone *, int);
    717 static int	wg_clone_destroy(struct ifnet *);
    718 
    719 struct wg_ops {
    720 	int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
    721 	int (*send_data_msg)(struct wg_peer *, struct mbuf *);
    722 	void (*input)(struct ifnet *, struct mbuf *, const int);
    723 	int (*bind_port)(struct wg_softc *, const uint16_t);
    724 };
    725 
    726 struct wg_ops wg_ops_rumpkernel = {
    727 	.send_hs_msg	= wg_send_so,
    728 	.send_data_msg	= wg_send_udp,
    729 	.input		= wg_input,
    730 	.bind_port	= wg_bind_port,
    731 };
    732 
    733 #ifdef WG_RUMPKERNEL
    734 static bool	wg_user_mode(struct wg_softc *);
    735 static int	wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
    736 
    737 static int	wg_send_user(struct wg_peer *, struct mbuf *);
    738 static void	wg_input_user(struct ifnet *, struct mbuf *, const int);
    739 static int	wg_bind_port_user(struct wg_softc *, const uint16_t);
    740 
    741 struct wg_ops wg_ops_rumpuser = {
    742 	.send_hs_msg	= wg_send_user,
    743 	.send_data_msg	= wg_send_user,
    744 	.input		= wg_input_user,
    745 	.bind_port	= wg_bind_port_user,
    746 };
    747 #endif
    748 
    749 #define WG_PEER_READER_FOREACH(wgp, wg)					\
    750 	PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    751 	    wgp_peerlist_entry)
    752 #define WG_PEER_WRITER_FOREACH(wgp, wg)					\
    753 	PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    754 	    wgp_peerlist_entry)
    755 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg)				\
    756 	PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
    757 #define WG_PEER_WRITER_REMOVE(wgp)					\
    758 	PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
    759 
    760 struct wg_route {
    761 	struct radix_node	wgr_nodes[2];
    762 	struct wg_peer		*wgr_peer;
    763 };
    764 
    765 static struct radix_node_head *
    766 wg_rnh(struct wg_softc *wg, const int family)
    767 {
    768 
    769 	switch (family) {
    770 		case AF_INET:
    771 			return wg->wg_rtable_ipv4;
    772 #ifdef INET6
    773 		case AF_INET6:
    774 			return wg->wg_rtable_ipv6;
    775 #endif
    776 		default:
    777 			return NULL;
    778 	}
    779 }
    780 
    781 
    782 /*
    783  * Global variables
    784  */
    785 static volatile unsigned wg_count __cacheline_aligned;
    786 
    787 struct psref_class *wg_psref_class __read_mostly;
    788 
    789 static struct if_clone wg_cloner =
    790     IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
    791 
    792 static struct pktqueue *wg_pktq __read_mostly;
    793 static struct workqueue *wg_wq __read_mostly;
    794 
    795 void wgattach(int);
    796 /* ARGSUSED */
    797 void
    798 wgattach(int count)
    799 {
    800 	/*
    801 	 * Nothing to do here, initialization is handled by the
    802 	 * module initialization code in wginit() below).
    803 	 */
    804 }
    805 
    806 static void
    807 wginit(void)
    808 {
    809 
    810 	wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
    811 
    812 	if_clone_attach(&wg_cloner);
    813 }
    814 
    815 /*
    816  * XXX Kludge: This should just happen in wginit, but workqueue_create
    817  * cannot be run until after CPUs have been detected, and wginit runs
    818  * before configure.
    819  */
    820 static int
    821 wginitqueues(void)
    822 {
    823 	int error __diagused;
    824 
    825 	wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
    826 	KASSERT(wg_pktq != NULL);
    827 
    828 	error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
    829 	    PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
    830 	KASSERT(error == 0);
    831 
    832 	return 0;
    833 }
    834 
    835 static void
    836 wg_guarantee_initialized(void)
    837 {
    838 	static ONCE_DECL(init);
    839 	int error __diagused;
    840 
    841 	error = RUN_ONCE(&init, wginitqueues);
    842 	KASSERT(error == 0);
    843 }
    844 
    845 static int
    846 wg_count_inc(void)
    847 {
    848 	unsigned o, n;
    849 
    850 	do {
    851 		o = atomic_load_relaxed(&wg_count);
    852 		if (o == UINT_MAX)
    853 			return ENFILE;
    854 		n = o + 1;
    855 	} while (atomic_cas_uint(&wg_count, o, n) != o);
    856 
    857 	return 0;
    858 }
    859 
    860 static void
    861 wg_count_dec(void)
    862 {
    863 	unsigned c __diagused;
    864 
    865 	c = atomic_dec_uint_nv(&wg_count);
    866 	KASSERT(c != UINT_MAX);
    867 }
    868 
    869 static int
    870 wgdetach(void)
    871 {
    872 
    873 	/* Prevent new interface creation.  */
    874 	if_clone_detach(&wg_cloner);
    875 
    876 	/* Check whether there are any existing interfaces.  */
    877 	if (atomic_load_relaxed(&wg_count)) {
    878 		/* Back out -- reattach the cloner.  */
    879 		if_clone_attach(&wg_cloner);
    880 		return EBUSY;
    881 	}
    882 
    883 	/* No interfaces left.  Nuke it.  */
    884 	workqueue_destroy(wg_wq);
    885 	pktq_destroy(wg_pktq);
    886 	psref_class_destroy(wg_psref_class);
    887 
    888 	return 0;
    889 }
    890 
    891 static void
    892 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
    893     uint8_t hash[WG_HASH_LEN])
    894 {
    895 	/* [W] 5.4: CONSTRUCTION */
    896 	const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
    897 	/* [W] 5.4: IDENTIFIER */
    898 	const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
    899 	struct blake2s state;
    900 
    901 	blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
    902 	    signature, strlen(signature));
    903 
    904 	CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
    905 	memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
    906 
    907 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    908 	blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
    909 	blake2s_update(&state, id, strlen(id));
    910 	blake2s_final(&state, hash);
    911 
    912 	WG_DUMP_HASH("ckey", ckey);
    913 	WG_DUMP_HASH("hash", hash);
    914 }
    915 
    916 static void
    917 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
    918     const size_t inputsize)
    919 {
    920 	struct blake2s state;
    921 
    922 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    923 	blake2s_update(&state, hash, WG_HASH_LEN);
    924 	blake2s_update(&state, input, inputsize);
    925 	blake2s_final(&state, hash);
    926 }
    927 
    928 static void
    929 wg_algo_mac(uint8_t out[], const size_t outsize,
    930     const uint8_t key[], const size_t keylen,
    931     const uint8_t input1[], const size_t input1len,
    932     const uint8_t input2[], const size_t input2len)
    933 {
    934 	struct blake2s state;
    935 
    936 	blake2s_init(&state, outsize, key, keylen);
    937 
    938 	blake2s_update(&state, input1, input1len);
    939 	if (input2 != NULL)
    940 		blake2s_update(&state, input2, input2len);
    941 	blake2s_final(&state, out);
    942 }
    943 
    944 static void
    945 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
    946     const uint8_t input1[], const size_t input1len,
    947     const uint8_t input2[], const size_t input2len)
    948 {
    949 	struct blake2s state;
    950 	/* [W] 5.4: LABEL-MAC1 */
    951 	const char *label = "mac1----";
    952 	uint8_t key[WG_HASH_LEN];
    953 
    954 	blake2s_init(&state, sizeof(key), NULL, 0);
    955 	blake2s_update(&state, label, strlen(label));
    956 	blake2s_update(&state, input1, input1len);
    957 	blake2s_final(&state, key);
    958 
    959 	blake2s_init(&state, outsize, key, sizeof(key));
    960 	if (input2 != NULL)
    961 		blake2s_update(&state, input2, input2len);
    962 	blake2s_final(&state, out);
    963 }
    964 
    965 static void
    966 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
    967     const uint8_t input1[], const size_t input1len)
    968 {
    969 	struct blake2s state;
    970 	/* [W] 5.4: LABEL-COOKIE */
    971 	const char *label = "cookie--";
    972 
    973 	blake2s_init(&state, outsize, NULL, 0);
    974 	blake2s_update(&state, label, strlen(label));
    975 	blake2s_update(&state, input1, input1len);
    976 	blake2s_final(&state, out);
    977 }
    978 
    979 static void
    980 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
    981     uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
    982 {
    983 
    984 	CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
    985 
    986 	cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
    987 	crypto_scalarmult_base(pubkey, privkey);
    988 }
    989 
    990 static void
    991 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
    992     const uint8_t privkey[WG_STATIC_KEY_LEN],
    993     const uint8_t pubkey[WG_STATIC_KEY_LEN])
    994 {
    995 
    996 	CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
    997 
    998 	int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
    999 	KASSERT(ret == 0);
   1000 }
   1001 
   1002 static void
   1003 wg_algo_hmac(uint8_t out[], const size_t outlen,
   1004     const uint8_t key[], const size_t keylen,
   1005     const uint8_t in[], const size_t inlen)
   1006 {
   1007 #define IPAD	0x36
   1008 #define OPAD	0x5c
   1009 	uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
   1010 	uint8_t ipad[HMAC_BLOCK_LEN];
   1011 	uint8_t opad[HMAC_BLOCK_LEN];
   1012 	int i;
   1013 	struct blake2s state;
   1014 
   1015 	KASSERT(outlen == WG_HASH_LEN);
   1016 	KASSERT(keylen <= HMAC_BLOCK_LEN);
   1017 
   1018 	memcpy(hmackey, key, keylen);
   1019 
   1020 	for (i = 0; i < sizeof(hmackey); i++) {
   1021 		ipad[i] = hmackey[i] ^ IPAD;
   1022 		opad[i] = hmackey[i] ^ OPAD;
   1023 	}
   1024 
   1025 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1026 	blake2s_update(&state, ipad, sizeof(ipad));
   1027 	blake2s_update(&state, in, inlen);
   1028 	blake2s_final(&state, out);
   1029 
   1030 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1031 	blake2s_update(&state, opad, sizeof(opad));
   1032 	blake2s_update(&state, out, WG_HASH_LEN);
   1033 	blake2s_final(&state, out);
   1034 #undef IPAD
   1035 #undef OPAD
   1036 }
   1037 
   1038 static void
   1039 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
   1040     uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
   1041     const uint8_t input[], const size_t inputlen)
   1042 {
   1043 	uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
   1044 	uint8_t one[1];
   1045 
   1046 	/*
   1047 	 * [N] 4.3: "an input_key_material byte sequence with length
   1048 	 * either zero bytes, 32 bytes, or DHLEN bytes."
   1049 	 */
   1050 	KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
   1051 
   1052 	WG_DUMP_HASH("ckey", ckey);
   1053 	if (input != NULL)
   1054 		WG_DUMP_HASH("input", input);
   1055 	wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
   1056 	    input, inputlen);
   1057 	WG_DUMP_HASH("tmp1", tmp1);
   1058 	one[0] = 1;
   1059 	wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1060 	    one, sizeof(one));
   1061 	WG_DUMP_HASH("out1", out1);
   1062 	if (out2 == NULL)
   1063 		return;
   1064 	memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
   1065 	tmp2[WG_KDF_OUTPUT_LEN] = 2;
   1066 	wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1067 	    tmp2, sizeof(tmp2));
   1068 	WG_DUMP_HASH("out2", out2);
   1069 	if (out3 == NULL)
   1070 		return;
   1071 	memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
   1072 	tmp2[WG_KDF_OUTPUT_LEN] = 3;
   1073 	wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1074 	    tmp2, sizeof(tmp2));
   1075 	WG_DUMP_HASH("out3", out3);
   1076 }
   1077 
   1078 static void
   1079 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
   1080     uint8_t cipher_key[WG_CIPHER_KEY_LEN],
   1081     const uint8_t local_key[WG_STATIC_KEY_LEN],
   1082     const uint8_t remote_key[WG_STATIC_KEY_LEN])
   1083 {
   1084 	uint8_t dhout[WG_DH_OUTPUT_LEN];
   1085 
   1086 	wg_algo_dh(dhout, local_key, remote_key);
   1087 	wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
   1088 
   1089 	WG_DUMP_HASH("dhout", dhout);
   1090 	WG_DUMP_HASH("ckey", ckey);
   1091 	if (cipher_key != NULL)
   1092 		WG_DUMP_HASH("cipher_key", cipher_key);
   1093 }
   1094 
   1095 static void
   1096 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
   1097     const uint64_t counter, const uint8_t plain[], const size_t plainsize,
   1098     const uint8_t auth[], size_t authlen)
   1099 {
   1100 	uint8_t nonce[(32 + 64) / 8] = {0};
   1101 	long long unsigned int outsize;
   1102 	int error __diagused;
   1103 
   1104 	le64enc(&nonce[4], counter);
   1105 
   1106 	error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
   1107 	    plainsize, auth, authlen, NULL, nonce, key);
   1108 	KASSERT(error == 0);
   1109 	KASSERT(outsize == expected_outsize);
   1110 }
   1111 
   1112 static int
   1113 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
   1114     const uint64_t counter, const uint8_t encrypted[],
   1115     const size_t encryptedsize, const uint8_t auth[], size_t authlen)
   1116 {
   1117 	uint8_t nonce[(32 + 64) / 8] = {0};
   1118 	long long unsigned int outsize;
   1119 	int error;
   1120 
   1121 	le64enc(&nonce[4], counter);
   1122 
   1123 	error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1124 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1125 	if (error == 0)
   1126 		KASSERT(outsize == expected_outsize);
   1127 	return error;
   1128 }
   1129 
   1130 static void
   1131 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
   1132     const uint8_t key[], const uint8_t plain[], const size_t plainsize,
   1133     const uint8_t auth[], size_t authlen,
   1134     const uint8_t nonce[WG_SALT_LEN])
   1135 {
   1136 	long long unsigned int outsize;
   1137 	int error __diagused;
   1138 
   1139 	CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
   1140 	error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
   1141 	    plain, plainsize, auth, authlen, NULL, nonce, key);
   1142 	KASSERT(error == 0);
   1143 	KASSERT(outsize == expected_outsize);
   1144 }
   1145 
   1146 static int
   1147 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
   1148     const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
   1149     const uint8_t auth[], size_t authlen,
   1150     const uint8_t nonce[WG_SALT_LEN])
   1151 {
   1152 	long long unsigned int outsize;
   1153 	int error;
   1154 
   1155 	error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1156 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1157 	if (error == 0)
   1158 		KASSERT(outsize == expected_outsize);
   1159 	return error;
   1160 }
   1161 
   1162 static void
   1163 wg_algo_tai64n(wg_timestamp_t timestamp)
   1164 {
   1165 	struct timespec ts;
   1166 
   1167 	/* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
   1168 	getnanotime(&ts);
   1169 	/* TAI64 label in external TAI64 format */
   1170 	be32enc(timestamp, 0x40000000UL + (ts.tv_sec >> 32));
   1171 	/* second beginning from 1970 TAI */
   1172 	be32enc(timestamp + 4, ts.tv_sec & 0xffffffffU);
   1173 	/* nanosecond in big-endian format */
   1174 	be32enc(timestamp + 8, ts.tv_nsec);
   1175 }
   1176 
   1177 /*
   1178  * wg_get_stable_session(wgp, psref)
   1179  *
   1180  *	Get a passive reference to the current stable session, or
   1181  *	return NULL if there is no current stable session.
   1182  *
   1183  *	The pointer is always there but the session is not necessarily
   1184  *	ESTABLISHED; if it is not ESTABLISHED, return NULL.  However,
   1185  *	the session may transition from ESTABLISHED to DESTROYING while
   1186  *	holding the passive reference.
   1187  */
   1188 static struct wg_session *
   1189 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
   1190 {
   1191 	int s;
   1192 	struct wg_session *wgs;
   1193 
   1194 	s = pserialize_read_enter();
   1195 	wgs = atomic_load_consume(&wgp->wgp_session_stable);
   1196 	if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
   1197 		wgs = NULL;
   1198 	else
   1199 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   1200 	pserialize_read_exit(s);
   1201 
   1202 	return wgs;
   1203 }
   1204 
   1205 static void
   1206 wg_put_session(struct wg_session *wgs, struct psref *psref)
   1207 {
   1208 
   1209 	psref_release(psref, &wgs->wgs_psref, wg_psref_class);
   1210 }
   1211 
   1212 static void
   1213 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
   1214 {
   1215 	struct wg_peer *wgp = wgs->wgs_peer;
   1216 	struct wg_session *wgs0 __diagused;
   1217 	void *garbage;
   1218 
   1219 	KASSERT(mutex_owned(wgp->wgp_lock));
   1220 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1221 
   1222 	/* Remove the session from the table.  */
   1223 	wgs0 = thmap_del(wg->wg_sessions_byindex,
   1224 	    &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
   1225 	KASSERT(wgs0 == wgs);
   1226 	garbage = thmap_stage_gc(wg->wg_sessions_byindex);
   1227 
   1228 	/* Wait for passive references to drain.  */
   1229 	pserialize_perform(wgp->wgp_psz);
   1230 	psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
   1231 
   1232 	/* Free memory, zero state, and transition to UNKNOWN.  */
   1233 	thmap_gc(wg->wg_sessions_byindex, garbage);
   1234 	wg_clear_states(wgs);
   1235 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   1236 }
   1237 
   1238 /*
   1239  * wg_get_session_index(wg, wgs)
   1240  *
   1241  *	Choose a session index for wgs->wgs_local_index, and store it
   1242  *	in wg's table of sessions by index.
   1243  *
   1244  *	wgs must be the unstable session of its peer, and must be
   1245  *	transitioning out of the UNKNOWN state.
   1246  */
   1247 static void
   1248 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1249 {
   1250 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1251 	struct wg_session *wgs0;
   1252 	uint32_t index;
   1253 
   1254 	KASSERT(mutex_owned(wgp->wgp_lock));
   1255 	KASSERT(wgs == wgp->wgp_session_unstable);
   1256 	KASSERT(wgs->wgs_state == WGS_STATE_UNKNOWN);
   1257 
   1258 	do {
   1259 		/* Pick a uniform random index.  */
   1260 		index = cprng_strong32();
   1261 
   1262 		/* Try to take it.  */
   1263 		wgs->wgs_local_index = index;
   1264 		wgs0 = thmap_put(wg->wg_sessions_byindex,
   1265 		    &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
   1266 
   1267 		/* If someone else beat us, start over.  */
   1268 	} while (__predict_false(wgs0 != wgs));
   1269 }
   1270 
   1271 /*
   1272  * wg_put_session_index(wg, wgs)
   1273  *
   1274  *	Remove wgs from the table of sessions by index, wait for any
   1275  *	passive references to drain, and transition the session to the
   1276  *	UNKNOWN state.
   1277  *
   1278  *	wgs must be the unstable session of its peer, and must not be
   1279  *	UNKNOWN or ESTABLISHED.
   1280  */
   1281 static void
   1282 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1283 {
   1284 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1285 
   1286 	KASSERT(mutex_owned(wgp->wgp_lock));
   1287 	KASSERT(wgs == wgp->wgp_session_unstable);
   1288 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1289 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
   1290 
   1291 	wg_destroy_session(wg, wgs);
   1292 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   1293 }
   1294 
   1295 /*
   1296  * Handshake patterns
   1297  *
   1298  * [W] 5: "These messages use the "IK" pattern from Noise"
   1299  * [N] 7.5. Interactive handshake patterns (fundamental)
   1300  *     "The first character refers to the initiators static key:"
   1301  *     "I = Static key for initiator Immediately transmitted to responder,
   1302  *          despite reduced or absent identity hiding"
   1303  *     "The second character refers to the responders static key:"
   1304  *     "K = Static key for responder Known to initiator"
   1305  *     "IK:
   1306  *        <- s
   1307  *        ...
   1308  *        -> e, es, s, ss
   1309  *        <- e, ee, se"
   1310  * [N] 9.4. Pattern modifiers
   1311  *     "IKpsk2:
   1312  *        <- s
   1313  *        ...
   1314  *        -> e, es, s, ss
   1315  *        <- e, ee, se, psk"
   1316  */
   1317 static void
   1318 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
   1319     struct wg_session *wgs, struct wg_msg_init *wgmi)
   1320 {
   1321 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1322 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1323 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1324 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1325 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1326 
   1327 	KASSERT(mutex_owned(wgp->wgp_lock));
   1328 	KASSERT(wgs == wgp->wgp_session_unstable);
   1329 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
   1330 
   1331 	wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
   1332 	wgmi->wgmi_sender = wgs->wgs_local_index;
   1333 
   1334 	/* [W] 5.4.2: First Message: Initiator to Responder */
   1335 
   1336 	/* Ci := HASH(CONSTRUCTION) */
   1337 	/* Hi := HASH(Ci || IDENTIFIER) */
   1338 	wg_init_key_and_hash(ckey, hash);
   1339 	/* Hi := HASH(Hi || Sr^pub) */
   1340 	wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
   1341 
   1342 	WG_DUMP_HASH("hash", hash);
   1343 
   1344 	/* [N] 2.2: "e" */
   1345 	/* Ei^priv, Ei^pub := DH-GENERATE() */
   1346 	wg_algo_generate_keypair(pubkey, privkey);
   1347 	/* Ci := KDF1(Ci, Ei^pub) */
   1348 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1349 	/* msg.ephemeral := Ei^pub */
   1350 	memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
   1351 	/* Hi := HASH(Hi || msg.ephemeral) */
   1352 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1353 
   1354 	WG_DUMP_HASH("ckey", ckey);
   1355 	WG_DUMP_HASH("hash", hash);
   1356 
   1357 	/* [N] 2.2: "es" */
   1358 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1359 	wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
   1360 
   1361 	/* [N] 2.2: "s" */
   1362 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1363 	wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
   1364 	    cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1365 	    hash, sizeof(hash));
   1366 	/* Hi := HASH(Hi || msg.static) */
   1367 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1368 
   1369 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1370 
   1371 	/* [N] 2.2: "ss" */
   1372 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1373 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1374 
   1375 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1376 	wg_timestamp_t timestamp;
   1377 	wg_algo_tai64n(timestamp);
   1378 	wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1379 	    cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
   1380 	/* Hi := HASH(Hi || msg.timestamp) */
   1381 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1382 
   1383 	/* [W] 5.4.4 Cookie MACs */
   1384 	wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
   1385 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1386 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1387 	/* Need mac1 to decrypt a cookie from a cookie message */
   1388 	memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
   1389 	    sizeof(wgp->wgp_last_sent_mac1));
   1390 	wgp->wgp_last_sent_mac1_valid = true;
   1391 
   1392 	if (wgp->wgp_latest_cookie_time == 0 ||
   1393 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1394 		memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
   1395 	else {
   1396 		wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
   1397 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1398 		    (const uint8_t *)wgmi,
   1399 		    offsetof(struct wg_msg_init, wgmi_mac2),
   1400 		    NULL, 0);
   1401 	}
   1402 
   1403 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1404 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1405 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1406 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1407 	WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
   1408 }
   1409 
   1410 static void
   1411 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
   1412     const struct sockaddr *src)
   1413 {
   1414 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1415 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1416 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1417 	uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
   1418 	struct wg_peer *wgp;
   1419 	struct wg_session *wgs;
   1420 	int error, ret;
   1421 	struct psref psref_peer;
   1422 	uint8_t mac1[WG_MAC_LEN];
   1423 
   1424 	WG_TRACE("init msg received");
   1425 
   1426 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1427 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1428 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1429 
   1430 	/*
   1431 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1432 	 * "the responder, ..., must always reject messages with an invalid
   1433 	 *  msg.mac1"
   1434 	 */
   1435 	if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
   1436 		WG_DLOG("mac1 is invalid\n");
   1437 		return;
   1438 	}
   1439 
   1440 	/*
   1441 	 * [W] 5.4.2: First Message: Initiator to Responder
   1442 	 * "When the responder receives this message, it does the same
   1443 	 *  operations so that its final state variables are identical,
   1444 	 *  replacing the operands of the DH function to produce equivalent
   1445 	 *  values."
   1446 	 *  Note that the following comments of operations are just copies of
   1447 	 *  the initiator's ones.
   1448 	 */
   1449 
   1450 	/* Ci := HASH(CONSTRUCTION) */
   1451 	/* Hi := HASH(Ci || IDENTIFIER) */
   1452 	wg_init_key_and_hash(ckey, hash);
   1453 	/* Hi := HASH(Hi || Sr^pub) */
   1454 	wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
   1455 
   1456 	/* [N] 2.2: "e" */
   1457 	/* Ci := KDF1(Ci, Ei^pub) */
   1458 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
   1459 	    sizeof(wgmi->wgmi_ephemeral));
   1460 	/* Hi := HASH(Hi || msg.ephemeral) */
   1461 	wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
   1462 
   1463 	WG_DUMP_HASH("ckey", ckey);
   1464 
   1465 	/* [N] 2.2: "es" */
   1466 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1467 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
   1468 
   1469 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1470 
   1471 	/* [N] 2.2: "s" */
   1472 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1473 	error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
   1474 	    wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
   1475 	if (error != 0) {
   1476 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   1477 		    "wg_algo_aead_dec for secret key failed\n");
   1478 		return;
   1479 	}
   1480 	/* Hi := HASH(Hi || msg.static) */
   1481 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1482 
   1483 	wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
   1484 	if (wgp == NULL) {
   1485 		WG_DLOG("peer not found\n");
   1486 		return;
   1487 	}
   1488 
   1489 	/*
   1490 	 * Lock the peer to serialize access to cookie state.
   1491 	 *
   1492 	 * XXX Can we safely avoid holding the lock across DH?  Take it
   1493 	 * just to verify mac2 and then unlock/DH/lock?
   1494 	 */
   1495 	mutex_enter(wgp->wgp_lock);
   1496 
   1497 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
   1498 		WG_TRACE("under load");
   1499 		/*
   1500 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1501 		 * "the responder, ..., and when under load may reject messages
   1502 		 *  with an invalid msg.mac2.  If the responder receives a
   1503 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1504 		 *  and is under load, it may respond with a cookie reply
   1505 		 *  message"
   1506 		 */
   1507 		uint8_t zero[WG_MAC_LEN] = {0};
   1508 		if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
   1509 			WG_TRACE("sending a cookie message: no cookie included");
   1510 			(void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1511 			    wgmi->wgmi_mac1, src);
   1512 			goto out;
   1513 		}
   1514 		if (!wgp->wgp_last_sent_cookie_valid) {
   1515 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1516 			(void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1517 			    wgmi->wgmi_mac1, src);
   1518 			goto out;
   1519 		}
   1520 		uint8_t mac2[WG_MAC_LEN];
   1521 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1522 		    WG_COOKIE_LEN, (const uint8_t *)wgmi,
   1523 		    offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
   1524 		if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
   1525 			WG_DLOG("mac2 is invalid\n");
   1526 			goto out;
   1527 		}
   1528 		WG_TRACE("under load, but continue to sending");
   1529 	}
   1530 
   1531 	/* [N] 2.2: "ss" */
   1532 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1533 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1534 
   1535 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1536 	wg_timestamp_t timestamp;
   1537 	error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
   1538 	    wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1539 	    hash, sizeof(hash));
   1540 	if (error != 0) {
   1541 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1542 		    "wg_algo_aead_dec for timestamp failed\n");
   1543 		goto out;
   1544 	}
   1545 	/* Hi := HASH(Hi || msg.timestamp) */
   1546 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1547 
   1548 	/*
   1549 	 * [W] 5.1 "The responder keeps track of the greatest timestamp
   1550 	 *      received per peer and discards packets containing
   1551 	 *      timestamps less than or equal to it."
   1552 	 */
   1553 	ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
   1554 	    sizeof(timestamp));
   1555 	if (ret <= 0) {
   1556 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1557 		    "invalid init msg: timestamp is old\n");
   1558 		goto out;
   1559 	}
   1560 	memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
   1561 
   1562 	/*
   1563 	 * Message is good -- we're committing to handle it now, unless
   1564 	 * we were already initiating a session.
   1565 	 */
   1566 	wgs = wgp->wgp_session_unstable;
   1567 	switch (wgs->wgs_state) {
   1568 	case WGS_STATE_UNKNOWN:		/* new session initiated by peer */
   1569 		wg_get_session_index(wg, wgs);
   1570 		break;
   1571 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, drop */
   1572 		WG_TRACE("Session already initializing, ignoring the message");
   1573 		goto out;
   1574 	case WGS_STATE_INIT_PASSIVE:	/* peer is retrying, start over */
   1575 		WG_TRACE("Session already initializing, destroying old states");
   1576 		wg_clear_states(wgs);
   1577 		/* keep session index */
   1578 		break;
   1579 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1580 		panic("unstable session can't be established");
   1581 		break;
   1582 	case WGS_STATE_DESTROYING:	/* rekey initiated by peer */
   1583 		WG_TRACE("Session destroying, but force to clear");
   1584 		callout_stop(&wgp->wgp_session_dtor_timer);
   1585 		wg_clear_states(wgs);
   1586 		/* keep session index */
   1587 		break;
   1588 	default:
   1589 		panic("invalid session state: %d", wgs->wgs_state);
   1590 	}
   1591 	wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
   1592 
   1593 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1594 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1595 	memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
   1596 	    sizeof(wgmi->wgmi_ephemeral));
   1597 
   1598 	wg_update_endpoint_if_necessary(wgp, src);
   1599 
   1600 	(void)wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
   1601 
   1602 	wg_calculate_keys(wgs, false);
   1603 	wg_clear_states(wgs);
   1604 
   1605 out:
   1606 	mutex_exit(wgp->wgp_lock);
   1607 	wg_put_peer(wgp, &psref_peer);
   1608 }
   1609 
   1610 static struct socket *
   1611 wg_get_so_by_af(struct wg_softc *wg, const int af)
   1612 {
   1613 
   1614 	switch (af) {
   1615 #ifdef INET
   1616 	case AF_INET:
   1617 		return wg->wg_so4;
   1618 #endif
   1619 #ifdef INET6
   1620 	case AF_INET6:
   1621 		return wg->wg_so6;
   1622 #endif
   1623 	default:
   1624 		panic("wg: no such af: %d", af);
   1625 	}
   1626 }
   1627 
   1628 static struct socket *
   1629 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
   1630 {
   1631 
   1632 	return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
   1633 }
   1634 
   1635 static struct wg_sockaddr *
   1636 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
   1637 {
   1638 	struct wg_sockaddr *wgsa;
   1639 	int s;
   1640 
   1641 	s = pserialize_read_enter();
   1642 	wgsa = atomic_load_consume(&wgp->wgp_endpoint);
   1643 	psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
   1644 	pserialize_read_exit(s);
   1645 
   1646 	return wgsa;
   1647 }
   1648 
   1649 static void
   1650 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
   1651 {
   1652 
   1653 	psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
   1654 }
   1655 
   1656 static int
   1657 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
   1658 {
   1659 	int error;
   1660 	struct socket *so;
   1661 	struct psref psref;
   1662 	struct wg_sockaddr *wgsa;
   1663 
   1664 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   1665 	so = wg_get_so_by_peer(wgp, wgsa);
   1666 	error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
   1667 	wg_put_sa(wgp, wgsa, &psref);
   1668 
   1669 	return error;
   1670 }
   1671 
   1672 static int
   1673 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
   1674 {
   1675 	int error;
   1676 	struct mbuf *m;
   1677 	struct wg_msg_init *wgmi;
   1678 	struct wg_session *wgs;
   1679 
   1680 	KASSERT(mutex_owned(wgp->wgp_lock));
   1681 
   1682 	wgs = wgp->wgp_session_unstable;
   1683 	/* XXX pull dispatch out into wg_task_send_init_message */
   1684 	switch (wgs->wgs_state) {
   1685 	case WGS_STATE_UNKNOWN:		/* new session initiated by us */
   1686 		wg_get_session_index(wg, wgs);
   1687 		break;
   1688 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, stop */
   1689 		WG_TRACE("Session already initializing, skip starting new one");
   1690 		return EBUSY;
   1691 	case WGS_STATE_INIT_PASSIVE:	/* peer was trying -- XXX what now? */
   1692 		WG_TRACE("Session already initializing, destroying old states");
   1693 		wg_clear_states(wgs);
   1694 		/* keep session index */
   1695 		break;
   1696 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1697 		panic("unstable session can't be established");
   1698 		break;
   1699 	case WGS_STATE_DESTROYING:	/* rekey initiated by us too early */
   1700 		WG_TRACE("Session destroying");
   1701 		/* XXX should wait? */
   1702 		return EBUSY;
   1703 	}
   1704 	wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
   1705 
   1706 	m = m_gethdr(M_WAIT, MT_DATA);
   1707 	m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
   1708 	wgmi = mtod(m, struct wg_msg_init *);
   1709 	wg_fill_msg_init(wg, wgp, wgs, wgmi);
   1710 
   1711 	error = wg->wg_ops->send_hs_msg(wgp, m);
   1712 	if (error == 0) {
   1713 		WG_TRACE("init msg sent");
   1714 
   1715 		if (wgp->wgp_handshake_start_time == 0)
   1716 			wgp->wgp_handshake_start_time = time_uptime;
   1717 		callout_schedule(&wgp->wgp_handshake_timeout_timer,
   1718 		    MIN(wg_rekey_timeout, INT_MAX/hz) * hz);
   1719 	} else {
   1720 		wg_put_session_index(wg, wgs);
   1721 		/* Initiation failed; toss packet waiting for it if any.  */
   1722 		if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL)
   1723 			m_freem(m);
   1724 	}
   1725 
   1726 	return error;
   1727 }
   1728 
   1729 static void
   1730 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   1731     struct wg_session *wgs, struct wg_msg_resp *wgmr,
   1732     const struct wg_msg_init *wgmi)
   1733 {
   1734 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   1735 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
   1736 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   1737 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1738 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1739 
   1740 	KASSERT(mutex_owned(wgp->wgp_lock));
   1741 	KASSERT(wgs == wgp->wgp_session_unstable);
   1742 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
   1743 
   1744 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   1745 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   1746 
   1747 	wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
   1748 	wgmr->wgmr_sender = wgs->wgs_local_index;
   1749 	wgmr->wgmr_receiver = wgmi->wgmi_sender;
   1750 
   1751 	/* [W] 5.4.3 Second Message: Responder to Initiator */
   1752 
   1753 	/* [N] 2.2: "e" */
   1754 	/* Er^priv, Er^pub := DH-GENERATE() */
   1755 	wg_algo_generate_keypair(pubkey, privkey);
   1756 	/* Cr := KDF1(Cr, Er^pub) */
   1757 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1758 	/* msg.ephemeral := Er^pub */
   1759 	memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
   1760 	/* Hr := HASH(Hr || msg.ephemeral) */
   1761 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1762 
   1763 	WG_DUMP_HASH("ckey", ckey);
   1764 	WG_DUMP_HASH("hash", hash);
   1765 
   1766 	/* [N] 2.2: "ee" */
   1767 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   1768 	wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
   1769 
   1770 	/* [N] 2.2: "se" */
   1771 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   1772 	wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
   1773 
   1774 	/* [N] 9.2: "psk" */
   1775     {
   1776 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   1777 	/* Cr, r, k := KDF3(Cr, Q) */
   1778 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   1779 	    sizeof(wgp->wgp_psk));
   1780 	/* Hr := HASH(Hr || r) */
   1781 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   1782     }
   1783 
   1784 	/* msg.empty := AEAD(k, 0, e, Hr) */
   1785 	wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
   1786 	    cipher_key, 0, NULL, 0, hash, sizeof(hash));
   1787 	/* Hr := HASH(Hr || msg.empty) */
   1788 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   1789 
   1790 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   1791 
   1792 	/* [W] 5.4.4: Cookie MACs */
   1793 	/* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
   1794 	wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
   1795 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1796 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   1797 	/* Need mac1 to decrypt a cookie from a cookie message */
   1798 	memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
   1799 	    sizeof(wgp->wgp_last_sent_mac1));
   1800 	wgp->wgp_last_sent_mac1_valid = true;
   1801 
   1802 	if (wgp->wgp_latest_cookie_time == 0 ||
   1803 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1804 		/* msg.mac2 := 0^16 */
   1805 		memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
   1806 	else {
   1807 		/* msg.mac2 := MAC(Lm, msg_b) */
   1808 		wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
   1809 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1810 		    (const uint8_t *)wgmr,
   1811 		    offsetof(struct wg_msg_resp, wgmr_mac2),
   1812 		    NULL, 0);
   1813 	}
   1814 
   1815 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1816 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1817 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1818 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1819 	wgs->wgs_remote_index = wgmi->wgmi_sender;
   1820 	WG_DLOG("sender=%x\n", wgs->wgs_local_index);
   1821 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   1822 }
   1823 
   1824 static void
   1825 wg_swap_sessions(struct wg_peer *wgp)
   1826 {
   1827 	struct wg_session *wgs, *wgs_prev;
   1828 
   1829 	KASSERT(mutex_owned(wgp->wgp_lock));
   1830 
   1831 	wgs = wgp->wgp_session_unstable;
   1832 	KASSERT(wgs->wgs_state == WGS_STATE_ESTABLISHED);
   1833 
   1834 	wgs_prev = wgp->wgp_session_stable;
   1835 	KASSERT(wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
   1836 	    wgs_prev->wgs_state == WGS_STATE_UNKNOWN);
   1837 	atomic_store_release(&wgp->wgp_session_stable, wgs);
   1838 	wgp->wgp_session_unstable = wgs_prev;
   1839 }
   1840 
   1841 static void
   1842 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
   1843     const struct sockaddr *src)
   1844 {
   1845 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   1846 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
   1847 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   1848 	struct wg_peer *wgp;
   1849 	struct wg_session *wgs;
   1850 	struct psref psref;
   1851 	int error;
   1852 	uint8_t mac1[WG_MAC_LEN];
   1853 	struct wg_session *wgs_prev;
   1854 	struct mbuf *m;
   1855 
   1856 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1857 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1858 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   1859 
   1860 	/*
   1861 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1862 	 * "the responder, ..., must always reject messages with an invalid
   1863 	 *  msg.mac1"
   1864 	 */
   1865 	if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
   1866 		WG_DLOG("mac1 is invalid\n");
   1867 		return;
   1868 	}
   1869 
   1870 	WG_TRACE("resp msg received");
   1871 	wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
   1872 	if (wgs == NULL) {
   1873 		WG_TRACE("No session found");
   1874 		return;
   1875 	}
   1876 
   1877 	wgp = wgs->wgs_peer;
   1878 
   1879 	mutex_enter(wgp->wgp_lock);
   1880 
   1881 	/* If we weren't waiting for a handshake response, drop it.  */
   1882 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
   1883 		WG_TRACE("peer sent spurious handshake response, ignoring");
   1884 		goto out;
   1885 	}
   1886 
   1887 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
   1888 		WG_TRACE("under load");
   1889 		/*
   1890 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1891 		 * "the responder, ..., and when under load may reject messages
   1892 		 *  with an invalid msg.mac2.  If the responder receives a
   1893 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1894 		 *  and is under load, it may respond with a cookie reply
   1895 		 *  message"
   1896 		 */
   1897 		uint8_t zero[WG_MAC_LEN] = {0};
   1898 		if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
   1899 			WG_TRACE("sending a cookie message: no cookie included");
   1900 			(void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   1901 			    wgmr->wgmr_mac1, src);
   1902 			goto out;
   1903 		}
   1904 		if (!wgp->wgp_last_sent_cookie_valid) {
   1905 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1906 			(void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   1907 			    wgmr->wgmr_mac1, src);
   1908 			goto out;
   1909 		}
   1910 		uint8_t mac2[WG_MAC_LEN];
   1911 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1912 		    WG_COOKIE_LEN, (const uint8_t *)wgmr,
   1913 		    offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
   1914 		if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
   1915 			WG_DLOG("mac2 is invalid\n");
   1916 			goto out;
   1917 		}
   1918 		WG_TRACE("under load, but continue to sending");
   1919 	}
   1920 
   1921 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   1922 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   1923 
   1924 	/*
   1925 	 * [W] 5.4.3 Second Message: Responder to Initiator
   1926 	 * "When the initiator receives this message, it does the same
   1927 	 *  operations so that its final state variables are identical,
   1928 	 *  replacing the operands of the DH function to produce equivalent
   1929 	 *  values."
   1930 	 *  Note that the following comments of operations are just copies of
   1931 	 *  the initiator's ones.
   1932 	 */
   1933 
   1934 	/* [N] 2.2: "e" */
   1935 	/* Cr := KDF1(Cr, Er^pub) */
   1936 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
   1937 	    sizeof(wgmr->wgmr_ephemeral));
   1938 	/* Hr := HASH(Hr || msg.ephemeral) */
   1939 	wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
   1940 
   1941 	WG_DUMP_HASH("ckey", ckey);
   1942 	WG_DUMP_HASH("hash", hash);
   1943 
   1944 	/* [N] 2.2: "ee" */
   1945 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   1946 	wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
   1947 	    wgmr->wgmr_ephemeral);
   1948 
   1949 	/* [N] 2.2: "se" */
   1950 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   1951 	wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
   1952 
   1953 	/* [N] 9.2: "psk" */
   1954     {
   1955 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   1956 	/* Cr, r, k := KDF3(Cr, Q) */
   1957 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   1958 	    sizeof(wgp->wgp_psk));
   1959 	/* Hr := HASH(Hr || r) */
   1960 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   1961     }
   1962 
   1963     {
   1964 	uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
   1965 	/* msg.empty := AEAD(k, 0, e, Hr) */
   1966 	error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
   1967 	    sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
   1968 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   1969 	if (error != 0) {
   1970 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1971 		    "wg_algo_aead_dec for empty message failed\n");
   1972 		goto out;
   1973 	}
   1974 	/* Hr := HASH(Hr || msg.empty) */
   1975 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   1976     }
   1977 
   1978 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
   1979 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
   1980 	wgs->wgs_remote_index = wgmr->wgmr_sender;
   1981 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   1982 
   1983 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
   1984 	wgs->wgs_state = WGS_STATE_ESTABLISHED;
   1985 	wgs->wgs_time_established = time_uptime;
   1986 	wgs->wgs_time_last_data_sent = 0;
   1987 	wgs->wgs_is_initiator = true;
   1988 	wg_calculate_keys(wgs, true);
   1989 	wg_clear_states(wgs);
   1990 	WG_TRACE("WGS_STATE_ESTABLISHED");
   1991 
   1992 	callout_stop(&wgp->wgp_handshake_timeout_timer);
   1993 
   1994 	wg_swap_sessions(wgp);
   1995 	KASSERT(wgs == wgp->wgp_session_stable);
   1996 	wgs_prev = wgp->wgp_session_unstable;
   1997 	getnanotime(&wgp->wgp_last_handshake_time);
   1998 	wgp->wgp_handshake_start_time = 0;
   1999 	wgp->wgp_last_sent_mac1_valid = false;
   2000 	wgp->wgp_last_sent_cookie_valid = false;
   2001 
   2002 	wg_schedule_rekey_timer(wgp);
   2003 
   2004 	wg_update_endpoint_if_necessary(wgp, src);
   2005 
   2006 	/*
   2007 	 * If we had a data packet queued up, send it; otherwise send a
   2008 	 * keepalive message -- either way we have to send something
   2009 	 * immediately or else the responder will never answer.
   2010 	 */
   2011 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   2012 		kpreempt_disable();
   2013 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
   2014 		M_SETCTX(m, wgp);
   2015 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   2016 			WGLOG(LOG_ERR, "pktq full, dropping\n");
   2017 			m_freem(m);
   2018 		}
   2019 		kpreempt_enable();
   2020 	} else {
   2021 		wg_send_keepalive_msg(wgp, wgs);
   2022 	}
   2023 
   2024 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   2025 		/* Wait for wg_get_stable_session to drain.  */
   2026 		pserialize_perform(wgp->wgp_psz);
   2027 
   2028 		/* Transition ESTABLISHED->DESTROYING.  */
   2029 		wgs_prev->wgs_state = WGS_STATE_DESTROYING;
   2030 
   2031 		/* We can't destroy the old session immediately */
   2032 		wg_schedule_session_dtor_timer(wgp);
   2033 	} else {
   2034 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   2035 		    "state=%d", wgs_prev->wgs_state);
   2036 	}
   2037 
   2038 out:
   2039 	mutex_exit(wgp->wgp_lock);
   2040 	wg_put_session(wgs, &psref);
   2041 }
   2042 
   2043 static int
   2044 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   2045     struct wg_session *wgs, const struct wg_msg_init *wgmi)
   2046 {
   2047 	int error;
   2048 	struct mbuf *m;
   2049 	struct wg_msg_resp *wgmr;
   2050 
   2051 	KASSERT(mutex_owned(wgp->wgp_lock));
   2052 	KASSERT(wgs == wgp->wgp_session_unstable);
   2053 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
   2054 
   2055 	m = m_gethdr(M_WAIT, MT_DATA);
   2056 	m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
   2057 	wgmr = mtod(m, struct wg_msg_resp *);
   2058 	wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
   2059 
   2060 	error = wg->wg_ops->send_hs_msg(wgp, m);
   2061 	if (error == 0)
   2062 		WG_TRACE("resp msg sent");
   2063 	return error;
   2064 }
   2065 
   2066 static struct wg_peer *
   2067 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
   2068     const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
   2069 {
   2070 	struct wg_peer *wgp;
   2071 
   2072 	int s = pserialize_read_enter();
   2073 	wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
   2074 	if (wgp != NULL)
   2075 		wg_get_peer(wgp, psref);
   2076 	pserialize_read_exit(s);
   2077 
   2078 	return wgp;
   2079 }
   2080 
   2081 static void
   2082 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
   2083     struct wg_msg_cookie *wgmc, const uint32_t sender,
   2084     const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
   2085 {
   2086 	uint8_t cookie[WG_COOKIE_LEN];
   2087 	uint8_t key[WG_HASH_LEN];
   2088 	uint8_t addr[sizeof(struct in6_addr)];
   2089 	size_t addrlen;
   2090 	uint16_t uh_sport; /* be */
   2091 
   2092 	KASSERT(mutex_owned(wgp->wgp_lock));
   2093 
   2094 	wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
   2095 	wgmc->wgmc_receiver = sender;
   2096 	cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
   2097 
   2098 	/*
   2099 	 * [W] 5.4.7: Under Load: Cookie Reply Message
   2100 	 * "The secret variable, Rm, changes every two minutes to a
   2101 	 * random value"
   2102 	 */
   2103 	if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
   2104 		wgp->wgp_randval = cprng_strong32();
   2105 		wgp->wgp_last_genrandval_time = time_uptime;
   2106 	}
   2107 
   2108 	switch (src->sa_family) {
   2109 	case AF_INET: {
   2110 		const struct sockaddr_in *sin = satocsin(src);
   2111 		addrlen = sizeof(sin->sin_addr);
   2112 		memcpy(addr, &sin->sin_addr, addrlen);
   2113 		uh_sport = sin->sin_port;
   2114 		break;
   2115 	    }
   2116 #ifdef INET6
   2117 	case AF_INET6: {
   2118 		const struct sockaddr_in6 *sin6 = satocsin6(src);
   2119 		addrlen = sizeof(sin6->sin6_addr);
   2120 		memcpy(addr, &sin6->sin6_addr, addrlen);
   2121 		uh_sport = sin6->sin6_port;
   2122 		break;
   2123 	    }
   2124 #endif
   2125 	default:
   2126 		panic("invalid af=%d", src->sa_family);
   2127 	}
   2128 
   2129 	wg_algo_mac(cookie, sizeof(cookie),
   2130 	    (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
   2131 	    addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
   2132 	wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
   2133 	    sizeof(wg->wg_pubkey));
   2134 	wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
   2135 	    cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
   2136 
   2137 	/* Need to store to calculate mac2 */
   2138 	memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
   2139 	wgp->wgp_last_sent_cookie_valid = true;
   2140 }
   2141 
   2142 static int
   2143 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
   2144     const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
   2145     const struct sockaddr *src)
   2146 {
   2147 	int error;
   2148 	struct mbuf *m;
   2149 	struct wg_msg_cookie *wgmc;
   2150 
   2151 	KASSERT(mutex_owned(wgp->wgp_lock));
   2152 
   2153 	m = m_gethdr(M_WAIT, MT_DATA);
   2154 	m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
   2155 	wgmc = mtod(m, struct wg_msg_cookie *);
   2156 	wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
   2157 
   2158 	error = wg->wg_ops->send_hs_msg(wgp, m);
   2159 	if (error == 0)
   2160 		WG_TRACE("cookie msg sent");
   2161 	return error;
   2162 }
   2163 
   2164 static bool
   2165 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
   2166 {
   2167 #ifdef WG_DEBUG_PARAMS
   2168 	if (wg_force_underload)
   2169 		return true;
   2170 #endif
   2171 
   2172 	/*
   2173 	 * XXX we don't have a means of a load estimation.  The purpose of
   2174 	 * the mechanism is a DoS mitigation, so we consider frequent handshake
   2175 	 * messages as (a kind of) load; if a message of the same type comes
   2176 	 * to a peer within 1 second, we consider we are under load.
   2177 	 */
   2178 	time_t last = wgp->wgp_last_msg_received_time[msgtype];
   2179 	wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
   2180 	return (time_uptime - last) == 0;
   2181 }
   2182 
   2183 static void
   2184 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
   2185 {
   2186 
   2187 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2188 
   2189 	/*
   2190 	 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
   2191 	 */
   2192 	if (initiator) {
   2193 		wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
   2194 		    wgs->wgs_chaining_key, NULL, 0);
   2195 	} else {
   2196 		wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
   2197 		    wgs->wgs_chaining_key, NULL, 0);
   2198 	}
   2199 	WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
   2200 	WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
   2201 }
   2202 
   2203 static uint64_t
   2204 wg_session_get_send_counter(struct wg_session *wgs)
   2205 {
   2206 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2207 	return atomic_load_relaxed(&wgs->wgs_send_counter);
   2208 #else
   2209 	uint64_t send_counter;
   2210 
   2211 	mutex_enter(&wgs->wgs_send_counter_lock);
   2212 	send_counter = wgs->wgs_send_counter;
   2213 	mutex_exit(&wgs->wgs_send_counter_lock);
   2214 
   2215 	return send_counter;
   2216 #endif
   2217 }
   2218 
   2219 static uint64_t
   2220 wg_session_inc_send_counter(struct wg_session *wgs)
   2221 {
   2222 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2223 	return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
   2224 #else
   2225 	uint64_t send_counter;
   2226 
   2227 	mutex_enter(&wgs->wgs_send_counter_lock);
   2228 	send_counter = wgs->wgs_send_counter++;
   2229 	mutex_exit(&wgs->wgs_send_counter_lock);
   2230 
   2231 	return send_counter;
   2232 #endif
   2233 }
   2234 
   2235 static void
   2236 wg_clear_states(struct wg_session *wgs)
   2237 {
   2238 
   2239 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2240 
   2241 	wgs->wgs_send_counter = 0;
   2242 	sliwin_reset(&wgs->wgs_recvwin->window);
   2243 
   2244 #define wgs_clear(v)	explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
   2245 	wgs_clear(handshake_hash);
   2246 	wgs_clear(chaining_key);
   2247 	wgs_clear(ephemeral_key_pub);
   2248 	wgs_clear(ephemeral_key_priv);
   2249 	wgs_clear(ephemeral_key_peer);
   2250 #undef wgs_clear
   2251 }
   2252 
   2253 static struct wg_session *
   2254 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
   2255     struct psref *psref)
   2256 {
   2257 	struct wg_session *wgs;
   2258 
   2259 	int s = pserialize_read_enter();
   2260 	wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
   2261 	if (wgs != NULL) {
   2262 		KASSERT(atomic_load_relaxed(&wgs->wgs_state) !=
   2263 		    WGS_STATE_UNKNOWN);
   2264 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   2265 	}
   2266 	pserialize_read_exit(s);
   2267 
   2268 	return wgs;
   2269 }
   2270 
   2271 static void
   2272 wg_schedule_rekey_timer(struct wg_peer *wgp)
   2273 {
   2274 	int timeout = MIN(wg_rekey_after_time, INT_MAX/hz);
   2275 
   2276 	callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
   2277 }
   2278 
   2279 static void
   2280 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
   2281 {
   2282 	struct mbuf *m;
   2283 
   2284 	/*
   2285 	 * [W] 6.5 Passive Keepalive
   2286 	 * "A keepalive message is simply a transport data message with
   2287 	 *  a zero-length encapsulated encrypted inner-packet."
   2288 	 */
   2289 	m = m_gethdr(M_WAIT, MT_DATA);
   2290 	wg_send_data_msg(wgp, wgs, m);
   2291 }
   2292 
   2293 static bool
   2294 wg_need_to_send_init_message(struct wg_session *wgs)
   2295 {
   2296 	/*
   2297 	 * [W] 6.2 Transport Message Limits
   2298 	 * "if a peer is the initiator of a current secure session,
   2299 	 *  WireGuard will send a handshake initiation message to begin
   2300 	 *  a new secure session ... if after receiving a transport data
   2301 	 *  message, the current secure session is (REJECT-AFTER-TIME 
   2302 	 *  KEEPALIVE-TIMEOUT  REKEY-TIMEOUT) seconds old and it has
   2303 	 *  not yet acted upon this event."
   2304 	 */
   2305 	return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
   2306 	    (time_uptime - wgs->wgs_time_established) >=
   2307 	    (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
   2308 }
   2309 
   2310 static void
   2311 wg_schedule_peer_task(struct wg_peer *wgp, int task)
   2312 {
   2313 
   2314 	mutex_enter(wgp->wgp_intr_lock);
   2315 	WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
   2316 	if (wgp->wgp_tasks == 0)
   2317 		/*
   2318 		 * XXX If the current CPU is already loaded -- e.g., if
   2319 		 * there's already a bunch of handshakes queued up --
   2320 		 * consider tossing this over to another CPU to
   2321 		 * distribute the load.
   2322 		 */
   2323 		workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
   2324 	wgp->wgp_tasks |= task;
   2325 	mutex_exit(wgp->wgp_intr_lock);
   2326 }
   2327 
   2328 static void
   2329 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
   2330 {
   2331 	struct wg_sockaddr *wgsa_prev;
   2332 
   2333 	WG_TRACE("Changing endpoint");
   2334 
   2335 	memcpy(wgp->wgp_endpoint0, new, new->sa_len);
   2336 	wgsa_prev = wgp->wgp_endpoint;
   2337 	atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
   2338 	wgp->wgp_endpoint0 = wgsa_prev;
   2339 	atomic_store_release(&wgp->wgp_endpoint_available, true);
   2340 
   2341 	wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
   2342 }
   2343 
   2344 static bool
   2345 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
   2346 {
   2347 	uint16_t packet_len;
   2348 	const struct ip *ip;
   2349 
   2350 	if (__predict_false(decrypted_len < sizeof(struct ip)))
   2351 		return false;
   2352 
   2353 	ip = (const struct ip *)packet;
   2354 	if (ip->ip_v == 4)
   2355 		*af = AF_INET;
   2356 	else if (ip->ip_v == 6)
   2357 		*af = AF_INET6;
   2358 	else
   2359 		return false;
   2360 
   2361 	WG_DLOG("af=%d\n", *af);
   2362 
   2363 	switch (*af) {
   2364 #ifdef INET
   2365 	case AF_INET:
   2366 		packet_len = ntohs(ip->ip_len);
   2367 		break;
   2368 #endif
   2369 #ifdef INET6
   2370 	case AF_INET6: {
   2371 		const struct ip6_hdr *ip6;
   2372 
   2373 		if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
   2374 			return false;
   2375 
   2376 		ip6 = (const struct ip6_hdr *)packet;
   2377 		packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
   2378 		break;
   2379 	}
   2380 #endif
   2381 	default:
   2382 		return false;
   2383 	}
   2384 
   2385 	WG_DLOG("packet_len=%u\n", packet_len);
   2386 	if (packet_len > decrypted_len)
   2387 		return false;
   2388 
   2389 	return true;
   2390 }
   2391 
   2392 static bool
   2393 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
   2394     int af, char *packet)
   2395 {
   2396 	struct sockaddr_storage ss;
   2397 	struct sockaddr *sa;
   2398 	struct psref psref;
   2399 	struct wg_peer *wgp;
   2400 	bool ok;
   2401 
   2402 	/*
   2403 	 * II CRYPTOKEY ROUTING
   2404 	 * "it will only accept it if its source IP resolves in the
   2405 	 *  table to the public key used in the secure session for
   2406 	 *  decrypting it."
   2407 	 */
   2408 
   2409 	if (af == AF_INET) {
   2410 		const struct ip *ip = (const struct ip *)packet;
   2411 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   2412 		sockaddr_in_init(sin, &ip->ip_src, 0);
   2413 		sa = sintosa(sin);
   2414 #ifdef INET6
   2415 	} else {
   2416 		const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
   2417 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   2418 		sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
   2419 		sa = sin6tosa(sin6);
   2420 #endif
   2421 	}
   2422 
   2423 	wgp = wg_pick_peer_by_sa(wg, sa, &psref);
   2424 	ok = (wgp == wgp_expected);
   2425 	if (wgp != NULL)
   2426 		wg_put_peer(wgp, &psref);
   2427 
   2428 	return ok;
   2429 }
   2430 
   2431 static void
   2432 wg_session_dtor_timer(void *arg)
   2433 {
   2434 	struct wg_peer *wgp = arg;
   2435 
   2436 	WG_TRACE("enter");
   2437 
   2438 	wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
   2439 }
   2440 
   2441 static void
   2442 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
   2443 {
   2444 
   2445 	/* 1 second grace period */
   2446 	callout_schedule(&wgp->wgp_session_dtor_timer, hz);
   2447 }
   2448 
   2449 static bool
   2450 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
   2451 {
   2452 	if (sa1->sa_family != sa2->sa_family)
   2453 		return false;
   2454 
   2455 	switch (sa1->sa_family) {
   2456 #ifdef INET
   2457 	case AF_INET:
   2458 		return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
   2459 #endif
   2460 #ifdef INET6
   2461 	case AF_INET6:
   2462 		return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
   2463 #endif
   2464 	default:
   2465 		return false;
   2466 	}
   2467 }
   2468 
   2469 static void
   2470 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
   2471     const struct sockaddr *src)
   2472 {
   2473 	struct wg_sockaddr *wgsa;
   2474 	struct psref psref;
   2475 
   2476 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   2477 
   2478 #ifdef WG_DEBUG_LOG
   2479 	char oldaddr[128], newaddr[128];
   2480 	sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
   2481 	sockaddr_format(src, newaddr, sizeof(newaddr));
   2482 	WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
   2483 #endif
   2484 
   2485 	/*
   2486 	 * III: "Since the packet has authenticated correctly, the source IP of
   2487 	 * the outer UDP/IP packet is used to update the endpoint for peer..."
   2488 	 */
   2489 	if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
   2490 		!sockaddr_port_match(src, wgsatosa(wgsa)))) {
   2491 		/* XXX We can't change the endpoint twice in a short period */
   2492 		if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
   2493 			wg_change_endpoint(wgp, src);
   2494 		}
   2495 	}
   2496 
   2497 	wg_put_sa(wgp, wgsa, &psref);
   2498 }
   2499 
   2500 static void
   2501 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
   2502     const struct sockaddr *src)
   2503 {
   2504 	struct wg_msg_data *wgmd;
   2505 	char *encrypted_buf = NULL, *decrypted_buf;
   2506 	size_t encrypted_len, decrypted_len;
   2507 	struct wg_session *wgs;
   2508 	struct wg_peer *wgp;
   2509 	int state;
   2510 	size_t mlen;
   2511 	struct psref psref;
   2512 	int error, af;
   2513 	bool success, free_encrypted_buf = false, ok;
   2514 	struct mbuf *n;
   2515 
   2516 	KASSERT(m->m_len >= sizeof(struct wg_msg_data));
   2517 	wgmd = mtod(m, struct wg_msg_data *);
   2518 
   2519 	KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
   2520 	WG_TRACE("data");
   2521 
   2522 	/* Find the putative session, or drop.  */
   2523 	wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
   2524 	if (wgs == NULL) {
   2525 		WG_TRACE("No session found");
   2526 		m_freem(m);
   2527 		return;
   2528 	}
   2529 
   2530 	/*
   2531 	 * We are only ready to handle data when in INIT_PASSIVE,
   2532 	 * ESTABLISHED, or DESTROYING.  All transitions out of that
   2533 	 * state dissociate the session index and drain psrefs.
   2534 	 */
   2535 	state = atomic_load_relaxed(&wgs->wgs_state);
   2536 	switch (state) {
   2537 	case WGS_STATE_UNKNOWN:
   2538 		panic("wg session %p in unknown state has session index %u",
   2539 		    wgs, wgmd->wgmd_receiver);
   2540 	case WGS_STATE_INIT_ACTIVE:
   2541 		WG_TRACE("not yet ready for data");
   2542 		goto out;
   2543 	case WGS_STATE_INIT_PASSIVE:
   2544 	case WGS_STATE_ESTABLISHED:
   2545 	case WGS_STATE_DESTROYING:
   2546 		break;
   2547 	}
   2548 
   2549 	/*
   2550 	 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
   2551 	 * to update the endpoint if authentication succeeds.
   2552 	 */
   2553 	wgp = wgs->wgs_peer;
   2554 
   2555 	/*
   2556 	 * Reject outrageously wrong sequence numbers before doing any
   2557 	 * crypto work or taking any locks.
   2558 	 */
   2559 	error = sliwin_check_fast(&wgs->wgs_recvwin->window,
   2560 	    le64toh(wgmd->wgmd_counter));
   2561 	if (error) {
   2562 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2563 		    "out-of-window packet: %"PRIu64"\n",
   2564 		    le64toh(wgmd->wgmd_counter));
   2565 		goto out;
   2566 	}
   2567 
   2568 	/* Ensure the payload and authenticator are contiguous.  */
   2569 	mlen = m_length(m);
   2570 	encrypted_len = mlen - sizeof(*wgmd);
   2571 	if (encrypted_len < WG_AUTHTAG_LEN) {
   2572 		WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
   2573 		goto out;
   2574 	}
   2575 	success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
   2576 	if (success) {
   2577 		encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
   2578 	} else {
   2579 		encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
   2580 		if (encrypted_buf == NULL) {
   2581 			WG_DLOG("failed to allocate encrypted_buf\n");
   2582 			goto out;
   2583 		}
   2584 		m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
   2585 		free_encrypted_buf = true;
   2586 	}
   2587 	/* m_ensure_contig may change m regardless of its result */
   2588 	KASSERT(m->m_len >= sizeof(*wgmd));
   2589 	wgmd = mtod(m, struct wg_msg_data *);
   2590 
   2591 	/*
   2592 	 * Get a buffer for the plaintext.  Add WG_AUTHTAG_LEN to avoid
   2593 	 * a zero-length buffer (XXX).  Drop if plaintext is longer
   2594 	 * than MCLBYTES (XXX).
   2595 	 */
   2596 	decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
   2597 	if (decrypted_len > MCLBYTES) {
   2598 		/* FIXME handle larger data than MCLBYTES */
   2599 		WG_DLOG("couldn't handle larger data than MCLBYTES\n");
   2600 		goto out;
   2601 	}
   2602 	n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
   2603 	if (n == NULL) {
   2604 		WG_DLOG("wg_get_mbuf failed\n");
   2605 		goto out;
   2606 	}
   2607 	decrypted_buf = mtod(n, char *);
   2608 
   2609 	/* Decrypt and verify the packet.  */
   2610 	WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
   2611 	error = wg_algo_aead_dec(decrypted_buf,
   2612 	    encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
   2613 	    wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
   2614 	    encrypted_len, NULL, 0);
   2615 	if (error != 0) {
   2616 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2617 		    "failed to wg_algo_aead_dec\n");
   2618 		m_freem(n);
   2619 		goto out;
   2620 	}
   2621 	WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
   2622 
   2623 	/* Packet is genuine.  Reject it if a replay or just too old.  */
   2624 	mutex_enter(&wgs->wgs_recvwin->lock);
   2625 	error = sliwin_update(&wgs->wgs_recvwin->window,
   2626 	    le64toh(wgmd->wgmd_counter));
   2627 	mutex_exit(&wgs->wgs_recvwin->lock);
   2628 	if (error) {
   2629 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2630 		    "replay or out-of-window packet: %"PRIu64"\n",
   2631 		    le64toh(wgmd->wgmd_counter));
   2632 		m_freem(n);
   2633 		goto out;
   2634 	}
   2635 
   2636 	/* We're done with m now; free it and chuck the pointers.  */
   2637 	m_freem(m);
   2638 	m = NULL;
   2639 	wgmd = NULL;
   2640 
   2641 	/*
   2642 	 * Validate the encapsulated packet header and get the address
   2643 	 * family, or drop.
   2644 	 */
   2645 	ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
   2646 	if (!ok) {
   2647 		m_freem(n);
   2648 		goto out;
   2649 	}
   2650 
   2651 	/*
   2652 	 * The packet is genuine.  Update the peer's endpoint if the
   2653 	 * source address changed.
   2654 	 *
   2655 	 * XXX How to prevent DoS by replaying genuine packets from the
   2656 	 * wrong source address?
   2657 	 */
   2658 	wg_update_endpoint_if_necessary(wgp, src);
   2659 
   2660 	/* Submit it into our network stack if routable.  */
   2661 	ok = wg_validate_route(wg, wgp, af, decrypted_buf);
   2662 	if (ok) {
   2663 		wg->wg_ops->input(&wg->wg_if, n, af);
   2664 	} else {
   2665 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2666 		    "invalid source address\n");
   2667 		m_freem(n);
   2668 		/*
   2669 		 * The inner address is invalid however the session is valid
   2670 		 * so continue the session processing below.
   2671 		 */
   2672 	}
   2673 	n = NULL;
   2674 
   2675 	/* Update the state machine if necessary.  */
   2676 	if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
   2677 		/*
   2678 		 * We were waiting for the initiator to send their
   2679 		 * first data transport message, and that has happened.
   2680 		 * Schedule a task to establish this session.
   2681 		 */
   2682 		wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
   2683 	} else {
   2684 		if (__predict_false(wg_need_to_send_init_message(wgs))) {
   2685 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   2686 		}
   2687 		/*
   2688 		 * [W] 6.5 Passive Keepalive
   2689 		 * "If a peer has received a validly-authenticated transport
   2690 		 *  data message (section 5.4.6), but does not have any packets
   2691 		 *  itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
   2692 		 *  a keepalive message."
   2693 		 */
   2694 		WG_DLOG("time_uptime=%ju wgs_time_last_data_sent=%ju\n",
   2695 		    (uintmax_t)time_uptime,
   2696 		    (uintmax_t)wgs->wgs_time_last_data_sent);
   2697 		if ((time_uptime - wgs->wgs_time_last_data_sent) >=
   2698 		    wg_keepalive_timeout) {
   2699 			WG_TRACE("Schedule sending keepalive message");
   2700 			/*
   2701 			 * We can't send a keepalive message here to avoid
   2702 			 * a deadlock;  we already hold the solock of a socket
   2703 			 * that is used to send the message.
   2704 			 */
   2705 			wg_schedule_peer_task(wgp,
   2706 			    WGP_TASK_SEND_KEEPALIVE_MESSAGE);
   2707 		}
   2708 	}
   2709 out:
   2710 	wg_put_session(wgs, &psref);
   2711 	if (m != NULL)
   2712 		m_freem(m);
   2713 	if (free_encrypted_buf)
   2714 		kmem_intr_free(encrypted_buf, encrypted_len);
   2715 }
   2716 
   2717 static void
   2718 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
   2719 {
   2720 	struct wg_session *wgs;
   2721 	struct wg_peer *wgp;
   2722 	struct psref psref;
   2723 	int error;
   2724 	uint8_t key[WG_HASH_LEN];
   2725 	uint8_t cookie[WG_COOKIE_LEN];
   2726 
   2727 	WG_TRACE("cookie msg received");
   2728 
   2729 	/* Find the putative session.  */
   2730 	wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
   2731 	if (wgs == NULL) {
   2732 		WG_TRACE("No session found");
   2733 		return;
   2734 	}
   2735 
   2736 	/* Lock the peer so we can update the cookie state.  */
   2737 	wgp = wgs->wgs_peer;
   2738 	mutex_enter(wgp->wgp_lock);
   2739 
   2740 	if (!wgp->wgp_last_sent_mac1_valid) {
   2741 		WG_TRACE("No valid mac1 sent (or expired)");
   2742 		goto out;
   2743 	}
   2744 
   2745 	/* Decrypt the cookie and store it for later handshake retry.  */
   2746 	wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
   2747 	    sizeof(wgp->wgp_pubkey));
   2748 	error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
   2749 	    wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
   2750 	    wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
   2751 	    wgmc->wgmc_salt);
   2752 	if (error != 0) {
   2753 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2754 		    "wg_algo_aead_dec for cookie failed: error=%d\n", error);
   2755 		goto out;
   2756 	}
   2757 	/*
   2758 	 * [W] 6.6: Interaction with Cookie Reply System
   2759 	 * "it should simply store the decrypted cookie value from the cookie
   2760 	 *  reply message, and wait for the expiration of the REKEY-TIMEOUT
   2761 	 *  timer for retrying a handshake initiation message."
   2762 	 */
   2763 	wgp->wgp_latest_cookie_time = time_uptime;
   2764 	memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
   2765 out:
   2766 	mutex_exit(wgp->wgp_lock);
   2767 	wg_put_session(wgs, &psref);
   2768 }
   2769 
   2770 static struct mbuf *
   2771 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
   2772 {
   2773 	struct wg_msg wgm;
   2774 	size_t mbuflen;
   2775 	size_t msglen;
   2776 
   2777 	/*
   2778 	 * Get the mbuf chain length.  It is already guaranteed, by
   2779 	 * wg_overudp_cb, to be large enough for a struct wg_msg.
   2780 	 */
   2781 	mbuflen = m_length(m);
   2782 	KASSERT(mbuflen >= sizeof(struct wg_msg));
   2783 
   2784 	/*
   2785 	 * Copy the message header (32-bit message type) out -- we'll
   2786 	 * worry about contiguity and alignment later.
   2787 	 */
   2788 	m_copydata(m, 0, sizeof(wgm), &wgm);
   2789 	switch (le32toh(wgm.wgm_type)) {
   2790 	case WG_MSG_TYPE_INIT:
   2791 		msglen = sizeof(struct wg_msg_init);
   2792 		break;
   2793 	case WG_MSG_TYPE_RESP:
   2794 		msglen = sizeof(struct wg_msg_resp);
   2795 		break;
   2796 	case WG_MSG_TYPE_COOKIE:
   2797 		msglen = sizeof(struct wg_msg_cookie);
   2798 		break;
   2799 	case WG_MSG_TYPE_DATA:
   2800 		msglen = sizeof(struct wg_msg_data);
   2801 		break;
   2802 	default:
   2803 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   2804 		    "Unexpected msg type: %u\n", le32toh(wgm.wgm_type));
   2805 		goto error;
   2806 	}
   2807 
   2808 	/* Verify the mbuf chain is long enough for this type of message.  */
   2809 	if (__predict_false(mbuflen < msglen)) {
   2810 		WG_DLOG("Invalid msg size: mbuflen=%lu type=%u\n", mbuflen,
   2811 		    le32toh(wgm.wgm_type));
   2812 		goto error;
   2813 	}
   2814 
   2815 	/* Make the message header contiguous if necessary.  */
   2816 	if (__predict_false(m->m_len < msglen)) {
   2817 		m = m_pullup(m, msglen);
   2818 		if (m == NULL)
   2819 			return NULL;
   2820 	}
   2821 
   2822 	return m;
   2823 
   2824 error:
   2825 	m_freem(m);
   2826 	return NULL;
   2827 }
   2828 
   2829 static void
   2830 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
   2831     const struct sockaddr *src)
   2832 {
   2833 	struct wg_msg *wgm;
   2834 
   2835 	m = wg_validate_msg_header(wg, m);
   2836 	if (__predict_false(m == NULL))
   2837 		return;
   2838 
   2839 	KASSERT(m->m_len >= sizeof(struct wg_msg));
   2840 	wgm = mtod(m, struct wg_msg *);
   2841 	switch (le32toh(wgm->wgm_type)) {
   2842 	case WG_MSG_TYPE_INIT:
   2843 		wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
   2844 		break;
   2845 	case WG_MSG_TYPE_RESP:
   2846 		wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
   2847 		break;
   2848 	case WG_MSG_TYPE_COOKIE:
   2849 		wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
   2850 		break;
   2851 	case WG_MSG_TYPE_DATA:
   2852 		wg_handle_msg_data(wg, m, src);
   2853 		/* wg_handle_msg_data frees m for us */
   2854 		return;
   2855 	default:
   2856 		panic("invalid message type: %d", le32toh(wgm->wgm_type));
   2857 	}
   2858 
   2859 	m_freem(m);
   2860 }
   2861 
   2862 static void
   2863 wg_receive_packets(struct wg_softc *wg, const int af)
   2864 {
   2865 
   2866 	for (;;) {
   2867 		int error, flags;
   2868 		struct socket *so;
   2869 		struct mbuf *m = NULL;
   2870 		struct uio dummy_uio;
   2871 		struct mbuf *paddr = NULL;
   2872 		struct sockaddr *src;
   2873 
   2874 		so = wg_get_so_by_af(wg, af);
   2875 		flags = MSG_DONTWAIT;
   2876 		dummy_uio.uio_resid = 1000000000;
   2877 
   2878 		error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
   2879 		    &flags);
   2880 		if (error || m == NULL) {
   2881 			//if (error == EWOULDBLOCK)
   2882 			return;
   2883 		}
   2884 
   2885 		KASSERT(paddr != NULL);
   2886 		KASSERT(paddr->m_len >= sizeof(struct sockaddr));
   2887 		src = mtod(paddr, struct sockaddr *);
   2888 
   2889 		wg_handle_packet(wg, m, src);
   2890 	}
   2891 }
   2892 
   2893 static void
   2894 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
   2895 {
   2896 
   2897 	psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
   2898 }
   2899 
   2900 static void
   2901 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
   2902 {
   2903 
   2904 	psref_release(psref, &wgp->wgp_psref, wg_psref_class);
   2905 }
   2906 
   2907 static void
   2908 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
   2909 {
   2910 	struct wg_session *wgs;
   2911 
   2912 	WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
   2913 
   2914 	KASSERT(mutex_owned(wgp->wgp_lock));
   2915 
   2916 	if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
   2917 		WGLOG(LOG_DEBUG, "No endpoint available\n");
   2918 		/* XXX should do something? */
   2919 		return;
   2920 	}
   2921 
   2922 	wgs = wgp->wgp_session_stable;
   2923 	if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
   2924 		/* XXX What if the unstable session is already INIT_ACTIVE?  */
   2925 		wg_send_handshake_msg_init(wg, wgp);
   2926 	} else {
   2927 		/* rekey */
   2928 		wgs = wgp->wgp_session_unstable;
   2929 		if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   2930 			wg_send_handshake_msg_init(wg, wgp);
   2931 	}
   2932 }
   2933 
   2934 static void
   2935 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
   2936 {
   2937 	struct wg_session *wgs;
   2938 
   2939 	WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
   2940 
   2941 	KASSERT(mutex_owned(wgp->wgp_lock));
   2942 	KASSERT(wgp->wgp_handshake_start_time != 0);
   2943 
   2944 	wgs = wgp->wgp_session_unstable;
   2945 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   2946 		return;
   2947 
   2948 	/*
   2949 	 * XXX no real need to assign a new index here, but we do need
   2950 	 * to transition to UNKNOWN temporarily
   2951 	 */
   2952 	wg_put_session_index(wg, wgs);
   2953 
   2954 	/* [W] 6.4 Handshake Initiation Retransmission */
   2955 	if ((time_uptime - wgp->wgp_handshake_start_time) >
   2956 	    wg_rekey_attempt_time) {
   2957 		/* Give up handshaking */
   2958 		wgp->wgp_handshake_start_time = 0;
   2959 		WG_TRACE("give up");
   2960 
   2961 		/*
   2962 		 * If a new data packet comes, handshaking will be retried
   2963 		 * and a new session would be established at that time,
   2964 		 * however we don't want to send pending packets then.
   2965 		 */
   2966 		wg_purge_pending_packets(wgp);
   2967 		return;
   2968 	}
   2969 
   2970 	wg_task_send_init_message(wg, wgp);
   2971 }
   2972 
   2973 static void
   2974 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
   2975 {
   2976 	struct wg_session *wgs, *wgs_prev;
   2977 	struct mbuf *m;
   2978 
   2979 	KASSERT(mutex_owned(wgp->wgp_lock));
   2980 
   2981 	wgs = wgp->wgp_session_unstable;
   2982 	if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
   2983 		/* XXX Can this happen?  */
   2984 		return;
   2985 
   2986 	wgs->wgs_state = WGS_STATE_ESTABLISHED;
   2987 	wgs->wgs_time_established = time_uptime;
   2988 	wgs->wgs_time_last_data_sent = 0;
   2989 	wgs->wgs_is_initiator = false;
   2990 	WG_TRACE("WGS_STATE_ESTABLISHED");
   2991 
   2992 	wg_swap_sessions(wgp);
   2993 	KASSERT(wgs == wgp->wgp_session_stable);
   2994 	wgs_prev = wgp->wgp_session_unstable;
   2995 	getnanotime(&wgp->wgp_last_handshake_time);
   2996 	wgp->wgp_handshake_start_time = 0;
   2997 	wgp->wgp_last_sent_mac1_valid = false;
   2998 	wgp->wgp_last_sent_cookie_valid = false;
   2999 
   3000 	/* If we had a data packet queued up, send it.  */
   3001 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   3002 		kpreempt_disable();
   3003 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
   3004 		M_SETCTX(m, wgp);
   3005 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   3006 			WGLOG(LOG_ERR, "pktq full, dropping\n");
   3007 			m_freem(m);
   3008 		}
   3009 		kpreempt_enable();
   3010 	}
   3011 
   3012 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   3013 		/* Wait for wg_get_stable_session to drain.  */
   3014 		pserialize_perform(wgp->wgp_psz);
   3015 
   3016 		/* Transition ESTABLISHED->DESTROYING.  */
   3017 		wgs_prev->wgs_state = WGS_STATE_DESTROYING;
   3018 
   3019 		/* We can't destroy the old session immediately */
   3020 		wg_schedule_session_dtor_timer(wgp);
   3021 	} else {
   3022 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   3023 		    "state=%d", wgs_prev->wgs_state);
   3024 		wg_clear_states(wgs_prev);
   3025 		wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
   3026 	}
   3027 }
   3028 
   3029 static void
   3030 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
   3031 {
   3032 
   3033 	WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
   3034 
   3035 	KASSERT(mutex_owned(wgp->wgp_lock));
   3036 
   3037 	if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
   3038 		pserialize_perform(wgp->wgp_psz);
   3039 		mutex_exit(wgp->wgp_lock);
   3040 		psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
   3041 		    wg_psref_class);
   3042 		psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
   3043 		    wg_psref_class);
   3044 		mutex_enter(wgp->wgp_lock);
   3045 		atomic_store_release(&wgp->wgp_endpoint_changing, 0);
   3046 	}
   3047 }
   3048 
   3049 static void
   3050 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
   3051 {
   3052 	struct wg_session *wgs;
   3053 
   3054 	WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
   3055 
   3056 	KASSERT(mutex_owned(wgp->wgp_lock));
   3057 
   3058 	wgs = wgp->wgp_session_stable;
   3059 	if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
   3060 		return;
   3061 
   3062 	wg_send_keepalive_msg(wgp, wgs);
   3063 }
   3064 
   3065 static void
   3066 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
   3067 {
   3068 	struct wg_session *wgs;
   3069 
   3070 	WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
   3071 
   3072 	KASSERT(mutex_owned(wgp->wgp_lock));
   3073 
   3074 	wgs = wgp->wgp_session_unstable;
   3075 	if (wgs->wgs_state == WGS_STATE_DESTROYING) {
   3076 		wg_put_session_index(wg, wgs);
   3077 	}
   3078 }
   3079 
   3080 static void
   3081 wg_peer_work(struct work *wk, void *cookie)
   3082 {
   3083 	struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
   3084 	struct wg_softc *wg = wgp->wgp_sc;
   3085 	int tasks;
   3086 
   3087 	mutex_enter(wgp->wgp_intr_lock);
   3088 	while ((tasks = wgp->wgp_tasks) != 0) {
   3089 		wgp->wgp_tasks = 0;
   3090 		mutex_exit(wgp->wgp_intr_lock);
   3091 
   3092 		mutex_enter(wgp->wgp_lock);
   3093 		if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
   3094 			wg_task_send_init_message(wg, wgp);
   3095 		if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
   3096 			wg_task_retry_handshake(wg, wgp);
   3097 		if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
   3098 			wg_task_establish_session(wg, wgp);
   3099 		if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
   3100 			wg_task_endpoint_changed(wg, wgp);
   3101 		if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
   3102 			wg_task_send_keepalive_message(wg, wgp);
   3103 		if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
   3104 			wg_task_destroy_prev_session(wg, wgp);
   3105 		mutex_exit(wgp->wgp_lock);
   3106 
   3107 		mutex_enter(wgp->wgp_intr_lock);
   3108 	}
   3109 	mutex_exit(wgp->wgp_intr_lock);
   3110 }
   3111 
   3112 static void
   3113 wg_job(struct threadpool_job *job)
   3114 {
   3115 	struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
   3116 	int bound, upcalls;
   3117 
   3118 	mutex_enter(wg->wg_intr_lock);
   3119 	while ((upcalls = wg->wg_upcalls) != 0) {
   3120 		wg->wg_upcalls = 0;
   3121 		mutex_exit(wg->wg_intr_lock);
   3122 		bound = curlwp_bind();
   3123 		if (ISSET(upcalls, WG_UPCALL_INET))
   3124 			wg_receive_packets(wg, AF_INET);
   3125 		if (ISSET(upcalls, WG_UPCALL_INET6))
   3126 			wg_receive_packets(wg, AF_INET6);
   3127 		curlwp_bindx(bound);
   3128 		mutex_enter(wg->wg_intr_lock);
   3129 	}
   3130 	threadpool_job_done(job);
   3131 	mutex_exit(wg->wg_intr_lock);
   3132 }
   3133 
   3134 static int
   3135 wg_bind_port(struct wg_softc *wg, const uint16_t port)
   3136 {
   3137 	int error;
   3138 	uint16_t old_port = wg->wg_listen_port;
   3139 
   3140 	if (port != 0 && old_port == port)
   3141 		return 0;
   3142 
   3143 	struct sockaddr_in _sin, *sin = &_sin;
   3144 	sin->sin_len = sizeof(*sin);
   3145 	sin->sin_family = AF_INET;
   3146 	sin->sin_addr.s_addr = INADDR_ANY;
   3147 	sin->sin_port = htons(port);
   3148 
   3149 	error = sobind(wg->wg_so4, sintosa(sin), curlwp);
   3150 	if (error != 0)
   3151 		return error;
   3152 
   3153 #ifdef INET6
   3154 	struct sockaddr_in6 _sin6, *sin6 = &_sin6;
   3155 	sin6->sin6_len = sizeof(*sin6);
   3156 	sin6->sin6_family = AF_INET6;
   3157 	sin6->sin6_addr = in6addr_any;
   3158 	sin6->sin6_port = htons(port);
   3159 
   3160 	error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
   3161 	if (error != 0)
   3162 		return error;
   3163 #endif
   3164 
   3165 	wg->wg_listen_port = port;
   3166 
   3167 	return 0;
   3168 }
   3169 
   3170 static void
   3171 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
   3172 {
   3173 	struct wg_softc *wg = cookie;
   3174 	int reason;
   3175 
   3176 	reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
   3177 	    WG_UPCALL_INET :
   3178 	    WG_UPCALL_INET6;
   3179 
   3180 	mutex_enter(wg->wg_intr_lock);
   3181 	wg->wg_upcalls |= reason;
   3182 	threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
   3183 	mutex_exit(wg->wg_intr_lock);
   3184 }
   3185 
   3186 static int
   3187 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
   3188     struct sockaddr *src, void *arg)
   3189 {
   3190 	struct wg_softc *wg = arg;
   3191 	struct wg_msg wgm;
   3192 	struct mbuf *m = *mp;
   3193 
   3194 	WG_TRACE("enter");
   3195 
   3196 	/* Verify the mbuf chain is long enough to have a wg msg header.  */
   3197 	KASSERT(offset <= m_length(m));
   3198 	if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
   3199 		/* drop on the floor */
   3200 		m_freem(m);
   3201 		return -1;
   3202 	}
   3203 
   3204 	/*
   3205 	 * Copy the message header (32-bit message type) out -- we'll
   3206 	 * worry about contiguity and alignment later.
   3207 	 */
   3208 	m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
   3209 	WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
   3210 
   3211 	/*
   3212 	 * Handle DATA packets promptly as they arrive.  Other packets
   3213 	 * may require expensive public-key crypto and are not as
   3214 	 * sensitive to latency, so defer them to the worker thread.
   3215 	 */
   3216 	switch (le32toh(wgm.wgm_type)) {
   3217 	case WG_MSG_TYPE_DATA:
   3218 		/* handle immediately */
   3219 		m_adj(m, offset);
   3220 		if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
   3221 			m = m_pullup(m, sizeof(struct wg_msg_data));
   3222 			if (m == NULL)
   3223 				return -1;
   3224 		}
   3225 		wg_handle_msg_data(wg, m, src);
   3226 		*mp = NULL;
   3227 		return 1;
   3228 	case WG_MSG_TYPE_INIT:
   3229 	case WG_MSG_TYPE_RESP:
   3230 	case WG_MSG_TYPE_COOKIE:
   3231 		/* pass through to so_receive in wg_receive_packets */
   3232 		return 0;
   3233 	default:
   3234 		/* drop on the floor */
   3235 		m_freem(m);
   3236 		return -1;
   3237 	}
   3238 }
   3239 
   3240 static int
   3241 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
   3242 {
   3243 	int error;
   3244 	struct socket *so;
   3245 
   3246 	error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
   3247 	if (error != 0)
   3248 		return error;
   3249 
   3250 	solock(so);
   3251 	so->so_upcallarg = wg;
   3252 	so->so_upcall = wg_so_upcall;
   3253 	so->so_rcv.sb_flags |= SB_UPCALL;
   3254 	if (af == AF_INET)
   3255 		in_pcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
   3256 #if INET6
   3257 	else
   3258 		in6_pcb_register_overudp_cb(sotoin6pcb(so), wg_overudp_cb, wg);
   3259 #endif
   3260 	sounlock(so);
   3261 
   3262 	*sop = so;
   3263 
   3264 	return 0;
   3265 }
   3266 
   3267 static bool
   3268 wg_session_hit_limits(struct wg_session *wgs)
   3269 {
   3270 
   3271 	/*
   3272 	 * [W] 6.2: Transport Message Limits
   3273 	 * "After REJECT-AFTER-MESSAGES transport data messages or after the
   3274 	 *  current secure session is REJECT-AFTER-TIME seconds old, whichever
   3275 	 *  comes first, WireGuard will refuse to send any more transport data
   3276 	 *  messages using the current secure session, ..."
   3277 	 */
   3278 	KASSERT(wgs->wgs_time_established != 0);
   3279 	if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
   3280 		WG_DLOG("The session hits REJECT_AFTER_TIME\n");
   3281 		return true;
   3282 	} else if (wg_session_get_send_counter(wgs) >
   3283 	    wg_reject_after_messages) {
   3284 		WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
   3285 		return true;
   3286 	}
   3287 
   3288 	return false;
   3289 }
   3290 
   3291 static void
   3292 wgintr(void *cookie)
   3293 {
   3294 	struct wg_peer *wgp;
   3295 	struct wg_session *wgs;
   3296 	struct mbuf *m;
   3297 	struct psref psref;
   3298 
   3299 	while ((m = pktq_dequeue(wg_pktq)) != NULL) {
   3300 		wgp = M_GETCTX(m, struct wg_peer *);
   3301 		if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
   3302 			WG_TRACE("no stable session");
   3303 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3304 			goto next0;
   3305 		}
   3306 		if (__predict_false(wg_session_hit_limits(wgs))) {
   3307 			WG_TRACE("stable session hit limits");
   3308 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3309 			goto next1;
   3310 		}
   3311 		wg_send_data_msg(wgp, wgs, m);
   3312 		m = NULL;	/* consumed */
   3313 next1:		wg_put_session(wgs, &psref);
   3314 next0:		if (m)
   3315 			m_freem(m);
   3316 		/* XXX Yield to avoid userland starvation?  */
   3317 	}
   3318 }
   3319 
   3320 static void
   3321 wg_rekey_timer(void *arg)
   3322 {
   3323 	struct wg_peer *wgp = arg;
   3324 
   3325 	wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3326 }
   3327 
   3328 static void
   3329 wg_purge_pending_packets(struct wg_peer *wgp)
   3330 {
   3331 	struct mbuf *m;
   3332 
   3333 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL)
   3334 		m_freem(m);
   3335 	pktq_barrier(wg_pktq);
   3336 }
   3337 
   3338 static void
   3339 wg_handshake_timeout_timer(void *arg)
   3340 {
   3341 	struct wg_peer *wgp = arg;
   3342 
   3343 	WG_TRACE("enter");
   3344 
   3345 	wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
   3346 }
   3347 
   3348 static struct wg_peer *
   3349 wg_alloc_peer(struct wg_softc *wg)
   3350 {
   3351 	struct wg_peer *wgp;
   3352 
   3353 	wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
   3354 
   3355 	wgp->wgp_sc = wg;
   3356 	callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
   3357 	callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
   3358 	callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
   3359 	callout_setfunc(&wgp->wgp_handshake_timeout_timer,
   3360 	    wg_handshake_timeout_timer, wgp);
   3361 	callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
   3362 	callout_setfunc(&wgp->wgp_session_dtor_timer,
   3363 	    wg_session_dtor_timer, wgp);
   3364 	PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
   3365 	wgp->wgp_endpoint_changing = false;
   3366 	wgp->wgp_endpoint_available = false;
   3367 	wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3368 	wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3369 	wgp->wgp_psz = pserialize_create();
   3370 	psref_target_init(&wgp->wgp_psref, wg_psref_class);
   3371 
   3372 	wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
   3373 	wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
   3374 	psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3375 	psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3376 
   3377 	struct wg_session *wgs;
   3378 	wgp->wgp_session_stable =
   3379 	    kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
   3380 	wgp->wgp_session_unstable =
   3381 	    kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
   3382 	wgs = wgp->wgp_session_stable;
   3383 	wgs->wgs_peer = wgp;
   3384 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3385 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3386 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3387 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3388 #endif
   3389 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3390 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3391 
   3392 	wgs = wgp->wgp_session_unstable;
   3393 	wgs->wgs_peer = wgp;
   3394 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3395 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3396 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3397 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3398 #endif
   3399 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3400 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3401 
   3402 	return wgp;
   3403 }
   3404 
   3405 static void
   3406 wg_destroy_peer(struct wg_peer *wgp)
   3407 {
   3408 	struct wg_session *wgs;
   3409 	struct wg_softc *wg = wgp->wgp_sc;
   3410 
   3411 	/* Prevent new packets from this peer on any source address.  */
   3412 	rw_enter(wg->wg_rwlock, RW_WRITER);
   3413 	for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
   3414 		struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
   3415 		struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
   3416 		struct radix_node *rn;
   3417 
   3418 		KASSERT(rnh != NULL);
   3419 		rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
   3420 		    &wga->wga_sa_mask, rnh);
   3421 		if (rn == NULL) {
   3422 			char addrstr[128];
   3423 			sockaddr_format(&wga->wga_sa_addr, addrstr,
   3424 			    sizeof(addrstr));
   3425 			WGLOG(LOG_WARNING, "Couldn't delete %s", addrstr);
   3426 		}
   3427 	}
   3428 	rw_exit(wg->wg_rwlock);
   3429 
   3430 	/* Purge pending packets.  */
   3431 	wg_purge_pending_packets(wgp);
   3432 
   3433 	/* Halt all packet processing and timeouts.  */
   3434 	callout_halt(&wgp->wgp_rekey_timer, NULL);
   3435 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
   3436 	callout_halt(&wgp->wgp_session_dtor_timer, NULL);
   3437 
   3438 	/* Wait for any queued work to complete.  */
   3439 	workqueue_wait(wg_wq, &wgp->wgp_work);
   3440 
   3441 	wgs = wgp->wgp_session_unstable;
   3442 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3443 		mutex_enter(wgp->wgp_lock);
   3444 		wg_destroy_session(wg, wgs);
   3445 		mutex_exit(wgp->wgp_lock);
   3446 	}
   3447 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3448 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3449 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3450 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3451 #endif
   3452 	kmem_free(wgs, sizeof(*wgs));
   3453 
   3454 	wgs = wgp->wgp_session_stable;
   3455 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3456 		mutex_enter(wgp->wgp_lock);
   3457 		wg_destroy_session(wg, wgs);
   3458 		mutex_exit(wgp->wgp_lock);
   3459 	}
   3460 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3461 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3462 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3463 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3464 #endif
   3465 	kmem_free(wgs, sizeof(*wgs));
   3466 
   3467 	psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3468 	psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3469 	kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
   3470 	kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
   3471 
   3472 	pserialize_destroy(wgp->wgp_psz);
   3473 	mutex_obj_free(wgp->wgp_intr_lock);
   3474 	mutex_obj_free(wgp->wgp_lock);
   3475 
   3476 	kmem_free(wgp, sizeof(*wgp));
   3477 }
   3478 
   3479 static void
   3480 wg_destroy_all_peers(struct wg_softc *wg)
   3481 {
   3482 	struct wg_peer *wgp, *wgp0 __diagused;
   3483 	void *garbage_byname, *garbage_bypubkey;
   3484 
   3485 restart:
   3486 	garbage_byname = garbage_bypubkey = NULL;
   3487 	mutex_enter(wg->wg_lock);
   3488 	WG_PEER_WRITER_FOREACH(wgp, wg) {
   3489 		if (wgp->wgp_name[0]) {
   3490 			wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
   3491 			    strlen(wgp->wgp_name));
   3492 			KASSERT(wgp0 == wgp);
   3493 			garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3494 		}
   3495 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3496 		    sizeof(wgp->wgp_pubkey));
   3497 		KASSERT(wgp0 == wgp);
   3498 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3499 		WG_PEER_WRITER_REMOVE(wgp);
   3500 		wg->wg_npeers--;
   3501 		mutex_enter(wgp->wgp_lock);
   3502 		pserialize_perform(wgp->wgp_psz);
   3503 		mutex_exit(wgp->wgp_lock);
   3504 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3505 		break;
   3506 	}
   3507 	mutex_exit(wg->wg_lock);
   3508 
   3509 	if (wgp == NULL)
   3510 		return;
   3511 
   3512 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3513 
   3514 	wg_destroy_peer(wgp);
   3515 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3516 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3517 
   3518 	goto restart;
   3519 }
   3520 
   3521 static int
   3522 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
   3523 {
   3524 	struct wg_peer *wgp, *wgp0 __diagused;
   3525 	void *garbage_byname, *garbage_bypubkey;
   3526 
   3527 	mutex_enter(wg->wg_lock);
   3528 	wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
   3529 	if (wgp != NULL) {
   3530 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3531 		    sizeof(wgp->wgp_pubkey));
   3532 		KASSERT(wgp0 == wgp);
   3533 		garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3534 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3535 		WG_PEER_WRITER_REMOVE(wgp);
   3536 		wg->wg_npeers--;
   3537 		if (wg->wg_npeers == 0)
   3538 			if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
   3539 		mutex_enter(wgp->wgp_lock);
   3540 		pserialize_perform(wgp->wgp_psz);
   3541 		mutex_exit(wgp->wgp_lock);
   3542 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3543 	}
   3544 	mutex_exit(wg->wg_lock);
   3545 
   3546 	if (wgp == NULL)
   3547 		return ENOENT;
   3548 
   3549 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3550 
   3551 	wg_destroy_peer(wgp);
   3552 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3553 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3554 
   3555 	return 0;
   3556 }
   3557 
   3558 static int
   3559 wg_if_attach(struct wg_softc *wg)
   3560 {
   3561 	int error;
   3562 
   3563 	wg->wg_if.if_addrlen = 0;
   3564 	wg->wg_if.if_mtu = WG_MTU;
   3565 	wg->wg_if.if_flags = IFF_MULTICAST;
   3566 	wg->wg_if.if_extflags = IFEF_MPSAFE;
   3567 	wg->wg_if.if_ioctl = wg_ioctl;
   3568 	wg->wg_if.if_output = wg_output;
   3569 	wg->wg_if.if_init = wg_init;
   3570 #ifdef ALTQ
   3571 	wg->wg_if.if_start = wg_start;
   3572 #endif
   3573 	wg->wg_if.if_stop = wg_stop;
   3574 	wg->wg_if.if_type = IFT_OTHER;
   3575 	wg->wg_if.if_dlt = DLT_NULL;
   3576 	wg->wg_if.if_softc = wg;
   3577 #ifdef ALTQ
   3578 	IFQ_SET_READY(&wg->wg_if.if_snd);
   3579 #endif
   3580 
   3581 	error = if_initialize(&wg->wg_if);
   3582 	if (error != 0)
   3583 		return error;
   3584 
   3585 	wg->wg_if.if_link_state = LINK_STATE_DOWN;
   3586 	if_alloc_sadl(&wg->wg_if);
   3587 	if_register(&wg->wg_if);
   3588 
   3589 	bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
   3590 
   3591 	return 0;
   3592 }
   3593 
   3594 static void
   3595 wg_if_detach(struct wg_softc *wg)
   3596 {
   3597 	struct ifnet *ifp = &wg->wg_if;
   3598 
   3599 	bpf_detach(ifp);
   3600 	if_detach(ifp);
   3601 }
   3602 
   3603 static int
   3604 wg_clone_create(struct if_clone *ifc, int unit)
   3605 {
   3606 	struct wg_softc *wg;
   3607 	int error;
   3608 
   3609 	wg_guarantee_initialized();
   3610 
   3611 	error = wg_count_inc();
   3612 	if (error)
   3613 		return error;
   3614 
   3615 	wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
   3616 
   3617 	if_initname(&wg->wg_if, ifc->ifc_name, unit);
   3618 
   3619 	PSLIST_INIT(&wg->wg_peers);
   3620 	wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
   3621 	wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
   3622 	wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
   3623 	wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3624 	wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3625 	wg->wg_rwlock = rw_obj_alloc();
   3626 	threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
   3627 	    "%s", if_name(&wg->wg_if));
   3628 	wg->wg_ops = &wg_ops_rumpkernel;
   3629 
   3630 	error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
   3631 	if (error)
   3632 		goto fail0;
   3633 
   3634 #ifdef INET
   3635 	error = wg_socreate(wg, AF_INET, &wg->wg_so4);
   3636 	if (error)
   3637 		goto fail1;
   3638 	rn_inithead((void **)&wg->wg_rtable_ipv4,
   3639 	    offsetof(struct sockaddr_in, sin_addr) * NBBY);
   3640 #endif
   3641 #ifdef INET6
   3642 	error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
   3643 	if (error)
   3644 		goto fail2;
   3645 	rn_inithead((void **)&wg->wg_rtable_ipv6,
   3646 	    offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
   3647 #endif
   3648 
   3649 	error = wg_if_attach(wg);
   3650 	if (error)
   3651 		goto fail3;
   3652 
   3653 	return 0;
   3654 
   3655 fail4: __unused
   3656 	wg_if_detach(wg);
   3657 fail3:	wg_destroy_all_peers(wg);
   3658 #ifdef INET6
   3659 	solock(wg->wg_so6);
   3660 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   3661 	sounlock(wg->wg_so6);
   3662 #endif
   3663 #ifdef INET
   3664 	solock(wg->wg_so4);
   3665 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   3666 	sounlock(wg->wg_so4);
   3667 #endif
   3668 	mutex_enter(wg->wg_intr_lock);
   3669 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   3670 	mutex_exit(wg->wg_intr_lock);
   3671 #ifdef INET6
   3672 	if (wg->wg_rtable_ipv6 != NULL)
   3673 		free(wg->wg_rtable_ipv6, M_RTABLE);
   3674 	soclose(wg->wg_so6);
   3675 fail2:
   3676 #endif
   3677 #ifdef INET
   3678 	if (wg->wg_rtable_ipv4 != NULL)
   3679 		free(wg->wg_rtable_ipv4, M_RTABLE);
   3680 	soclose(wg->wg_so4);
   3681 fail1:
   3682 #endif
   3683 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   3684 fail0:	threadpool_job_destroy(&wg->wg_job);
   3685 	rw_obj_free(wg->wg_rwlock);
   3686 	mutex_obj_free(wg->wg_intr_lock);
   3687 	mutex_obj_free(wg->wg_lock);
   3688 	thmap_destroy(wg->wg_sessions_byindex);
   3689 	thmap_destroy(wg->wg_peers_byname);
   3690 	thmap_destroy(wg->wg_peers_bypubkey);
   3691 	PSLIST_DESTROY(&wg->wg_peers);
   3692 	kmem_free(wg, sizeof(*wg));
   3693 	wg_count_dec();
   3694 	return error;
   3695 }
   3696 
   3697 static int
   3698 wg_clone_destroy(struct ifnet *ifp)
   3699 {
   3700 	struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
   3701 
   3702 #ifdef WG_RUMPKERNEL
   3703 	if (wg_user_mode(wg)) {
   3704 		rumpuser_wg_destroy(wg->wg_user);
   3705 		wg->wg_user = NULL;
   3706 	}
   3707 #endif
   3708 
   3709 	wg_if_detach(wg);
   3710 	wg_destroy_all_peers(wg);
   3711 #ifdef INET6
   3712 	solock(wg->wg_so6);
   3713 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   3714 	sounlock(wg->wg_so6);
   3715 #endif
   3716 #ifdef INET
   3717 	solock(wg->wg_so4);
   3718 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   3719 	sounlock(wg->wg_so4);
   3720 #endif
   3721 	mutex_enter(wg->wg_intr_lock);
   3722 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   3723 	mutex_exit(wg->wg_intr_lock);
   3724 #ifdef INET6
   3725 	if (wg->wg_rtable_ipv6 != NULL)
   3726 		free(wg->wg_rtable_ipv6, M_RTABLE);
   3727 	soclose(wg->wg_so6);
   3728 #endif
   3729 #ifdef INET
   3730 	if (wg->wg_rtable_ipv4 != NULL)
   3731 		free(wg->wg_rtable_ipv4, M_RTABLE);
   3732 	soclose(wg->wg_so4);
   3733 #endif
   3734 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   3735 	threadpool_job_destroy(&wg->wg_job);
   3736 	rw_obj_free(wg->wg_rwlock);
   3737 	mutex_obj_free(wg->wg_intr_lock);
   3738 	mutex_obj_free(wg->wg_lock);
   3739 	thmap_destroy(wg->wg_sessions_byindex);
   3740 	thmap_destroy(wg->wg_peers_byname);
   3741 	thmap_destroy(wg->wg_peers_bypubkey);
   3742 	PSLIST_DESTROY(&wg->wg_peers);
   3743 	kmem_free(wg, sizeof(*wg));
   3744 	wg_count_dec();
   3745 
   3746 	return 0;
   3747 }
   3748 
   3749 static struct wg_peer *
   3750 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
   3751     struct psref *psref)
   3752 {
   3753 	struct radix_node_head *rnh;
   3754 	struct radix_node *rn;
   3755 	struct wg_peer *wgp = NULL;
   3756 	struct wg_allowedip *wga;
   3757 
   3758 #ifdef WG_DEBUG_LOG
   3759 	char addrstr[128];
   3760 	sockaddr_format(sa, addrstr, sizeof(addrstr));
   3761 	WG_DLOG("sa=%s\n", addrstr);
   3762 #endif
   3763 
   3764 	rw_enter(wg->wg_rwlock, RW_READER);
   3765 
   3766 	rnh = wg_rnh(wg, sa->sa_family);
   3767 	if (rnh == NULL)
   3768 		goto out;
   3769 
   3770 	rn = rnh->rnh_matchaddr(sa, rnh);
   3771 	if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
   3772 		goto out;
   3773 
   3774 	WG_TRACE("success");
   3775 
   3776 	wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
   3777 	wgp = wga->wga_peer;
   3778 	wg_get_peer(wgp, psref);
   3779 
   3780 out:
   3781 	rw_exit(wg->wg_rwlock);
   3782 	return wgp;
   3783 }
   3784 
   3785 static void
   3786 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
   3787     struct wg_session *wgs, struct wg_msg_data *wgmd)
   3788 {
   3789 
   3790 	memset(wgmd, 0, sizeof(*wgmd));
   3791 	wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
   3792 	wgmd->wgmd_receiver = wgs->wgs_remote_index;
   3793 	/* [W] 5.4.6: msg.counter := Nm^send */
   3794 	/* [W] 5.4.6: Nm^send := Nm^send + 1 */
   3795 	wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
   3796 	WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
   3797 }
   3798 
   3799 static int
   3800 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
   3801     const struct rtentry *rt)
   3802 {
   3803 	struct wg_softc *wg = ifp->if_softc;
   3804 	struct wg_peer *wgp = NULL;
   3805 	struct wg_session *wgs = NULL;
   3806 	struct psref wgp_psref, wgs_psref;
   3807 	int bound;
   3808 	int error;
   3809 
   3810 	bound = curlwp_bind();
   3811 
   3812 	/* TODO make the nest limit configurable via sysctl */
   3813 	error = if_tunnel_check_nesting(ifp, m, 1);
   3814 	if (error) {
   3815 		WGLOG(LOG_ERR, "tunneling loop detected and packet dropped\n");
   3816 		goto out0;
   3817 	}
   3818 
   3819 #ifdef ALTQ
   3820 	bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
   3821 	    & ALTQF_ENABLED;
   3822 	if (altq)
   3823 		IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
   3824 #endif
   3825 
   3826 	bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
   3827 
   3828 	m->m_flags &= ~(M_BCAST|M_MCAST);
   3829 
   3830 	wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
   3831 	if (wgp == NULL) {
   3832 		WG_TRACE("peer not found");
   3833 		error = EHOSTUNREACH;
   3834 		goto out0;
   3835 	}
   3836 
   3837 	/* Clear checksum-offload flags. */
   3838 	m->m_pkthdr.csum_flags = 0;
   3839 	m->m_pkthdr.csum_data = 0;
   3840 
   3841 	/* Check whether there's an established session.  */
   3842 	wgs = wg_get_stable_session(wgp, &wgs_psref);
   3843 	if (wgs == NULL) {
   3844 		/*
   3845 		 * No established session.  If we're the first to try
   3846 		 * sending data, schedule a handshake and queue the
   3847 		 * packet for when the handshake is done; otherwise
   3848 		 * just drop the packet and let the ongoing handshake
   3849 		 * attempt continue.  We could queue more data packets
   3850 		 * but it's not clear that's worthwhile.
   3851 		 */
   3852 		if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
   3853 			m = NULL; /* consume */
   3854 			WG_TRACE("queued first packet; init handshake");
   3855 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3856 		} else {
   3857 			WG_TRACE("first packet already queued, dropping");
   3858 		}
   3859 		goto out1;
   3860 	}
   3861 
   3862 	/* There's an established session.  Toss it in the queue.  */
   3863 #ifdef ALTQ
   3864 	if (altq) {
   3865 		mutex_enter(ifp->if_snd.ifq_lock);
   3866 		if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   3867 			M_SETCTX(m, wgp);
   3868 			ALTQ_ENQUEUE(&ifp->if_snd, m, error);
   3869 			m = NULL; /* consume */
   3870 		}
   3871 		mutex_exit(ifp->if_snd.ifq_lock);
   3872 		if (m == NULL) {
   3873 			wg_start(ifp);
   3874 			goto out2;
   3875 		}
   3876 	}
   3877 #endif
   3878 	kpreempt_disable();
   3879 	const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   3880 	M_SETCTX(m, wgp);
   3881 	if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   3882 		WGLOG(LOG_ERR, "pktq full, dropping\n");
   3883 		error = ENOBUFS;
   3884 		goto out3;
   3885 	}
   3886 	m = NULL;		/* consumed */
   3887 	error = 0;
   3888 out3:	kpreempt_enable();
   3889 
   3890 #ifdef ALTQ
   3891 out2:
   3892 #endif
   3893 	wg_put_session(wgs, &wgs_psref);
   3894 out1:	wg_put_peer(wgp, &wgp_psref);
   3895 out0:	if (m)
   3896 		m_freem(m);
   3897 	curlwp_bindx(bound);
   3898 	return error;
   3899 }
   3900 
   3901 static int
   3902 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
   3903 {
   3904 	struct psref psref;
   3905 	struct wg_sockaddr *wgsa;
   3906 	int error;
   3907 	struct socket *so;
   3908 
   3909 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   3910 	so = wg_get_so_by_peer(wgp, wgsa);
   3911 	solock(so);
   3912 	if (wgsatosa(wgsa)->sa_family == AF_INET) {
   3913 		error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
   3914 	} else {
   3915 #ifdef INET6
   3916 		error = udp6_output(sotoin6pcb(so), m, wgsatosin6(wgsa),
   3917 		    NULL, curlwp);
   3918 #else
   3919 		m_freem(m);
   3920 		error = EPFNOSUPPORT;
   3921 #endif
   3922 	}
   3923 	sounlock(so);
   3924 	wg_put_sa(wgp, wgsa, &psref);
   3925 
   3926 	return error;
   3927 }
   3928 
   3929 /* Inspired by pppoe_get_mbuf */
   3930 static struct mbuf *
   3931 wg_get_mbuf(size_t leading_len, size_t len)
   3932 {
   3933 	struct mbuf *m;
   3934 
   3935 	KASSERT(leading_len <= MCLBYTES);
   3936 	KASSERT(len <= MCLBYTES - leading_len);
   3937 
   3938 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   3939 	if (m == NULL)
   3940 		return NULL;
   3941 	if (len + leading_len > MHLEN) {
   3942 		m_clget(m, M_DONTWAIT);
   3943 		if ((m->m_flags & M_EXT) == 0) {
   3944 			m_free(m);
   3945 			return NULL;
   3946 		}
   3947 	}
   3948 	m->m_data += leading_len;
   3949 	m->m_pkthdr.len = m->m_len = len;
   3950 
   3951 	return m;
   3952 }
   3953 
   3954 static int
   3955 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
   3956     struct mbuf *m)
   3957 {
   3958 	struct wg_softc *wg = wgp->wgp_sc;
   3959 	int error;
   3960 	size_t inner_len, padded_len, encrypted_len;
   3961 	char *padded_buf = NULL;
   3962 	size_t mlen;
   3963 	struct wg_msg_data *wgmd;
   3964 	bool free_padded_buf = false;
   3965 	struct mbuf *n;
   3966 	size_t leading_len = max_hdr + sizeof(struct udphdr);
   3967 
   3968 	mlen = m_length(m);
   3969 	inner_len = mlen;
   3970 	padded_len = roundup(mlen, 16);
   3971 	encrypted_len = padded_len + WG_AUTHTAG_LEN;
   3972 	WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
   3973 	    inner_len, padded_len, encrypted_len);
   3974 	if (mlen != 0) {
   3975 		bool success;
   3976 		success = m_ensure_contig(&m, padded_len);
   3977 		if (success) {
   3978 			padded_buf = mtod(m, char *);
   3979 		} else {
   3980 			padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
   3981 			if (padded_buf == NULL) {
   3982 				error = ENOBUFS;
   3983 				goto end;
   3984 			}
   3985 			free_padded_buf = true;
   3986 			m_copydata(m, 0, mlen, padded_buf);
   3987 		}
   3988 		memset(padded_buf + mlen, 0, padded_len - inner_len);
   3989 	}
   3990 
   3991 	n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
   3992 	if (n == NULL) {
   3993 		error = ENOBUFS;
   3994 		goto end;
   3995 	}
   3996 	KASSERT(n->m_len >= sizeof(*wgmd));
   3997 	wgmd = mtod(n, struct wg_msg_data *);
   3998 	wg_fill_msg_data(wg, wgp, wgs, wgmd);
   3999 	/* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
   4000 	wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
   4001 	    wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
   4002 	    padded_buf, padded_len,
   4003 	    NULL, 0);
   4004 
   4005 	error = wg->wg_ops->send_data_msg(wgp, n);
   4006 	if (error == 0) {
   4007 		struct ifnet *ifp = &wg->wg_if;
   4008 		if_statadd(ifp, if_obytes, mlen);
   4009 		if_statinc(ifp, if_opackets);
   4010 		if (wgs->wgs_is_initiator &&
   4011 		    wgs->wgs_time_last_data_sent == 0) {
   4012 			/*
   4013 			 * [W] 6.2 Transport Message Limits
   4014 			 * "if a peer is the initiator of a current secure
   4015 			 *  session, WireGuard will send a handshake initiation
   4016 			 *  message to begin a new secure session if, after
   4017 			 *  transmitting a transport data message, the current
   4018 			 *  secure session is REKEY-AFTER-TIME seconds old,"
   4019 			 */
   4020 			wg_schedule_rekey_timer(wgp);
   4021 		}
   4022 		wgs->wgs_time_last_data_sent = time_uptime;
   4023 		if (wg_session_get_send_counter(wgs) >=
   4024 		    wg_rekey_after_messages) {
   4025 			/*
   4026 			 * [W] 6.2 Transport Message Limits
   4027 			 * "WireGuard will try to create a new session, by
   4028 			 *  sending a handshake initiation message (section
   4029 			 *  5.4.2), after it has sent REKEY-AFTER-MESSAGES
   4030 			 *  transport data messages..."
   4031 			 */
   4032 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   4033 		}
   4034 	}
   4035 end:
   4036 	m_freem(m);
   4037 	if (free_padded_buf)
   4038 		kmem_intr_free(padded_buf, padded_len);
   4039 	return error;
   4040 }
   4041 
   4042 static void
   4043 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
   4044 {
   4045 	pktqueue_t *pktq;
   4046 	size_t pktlen;
   4047 
   4048 	KASSERT(af == AF_INET || af == AF_INET6);
   4049 
   4050 	WG_TRACE("");
   4051 
   4052 	m_set_rcvif(m, ifp);
   4053 	pktlen = m->m_pkthdr.len;
   4054 
   4055 	bpf_mtap_af(ifp, af, m, BPF_D_IN);
   4056 
   4057 	switch (af) {
   4058 	case AF_INET:
   4059 		pktq = ip_pktq;
   4060 		break;
   4061 #ifdef INET6
   4062 	case AF_INET6:
   4063 		pktq = ip6_pktq;
   4064 		break;
   4065 #endif
   4066 	default:
   4067 		panic("invalid af=%d", af);
   4068 	}
   4069 
   4070 	kpreempt_disable();
   4071 	const u_int h = curcpu()->ci_index;
   4072 	if (__predict_true(pktq_enqueue(pktq, m, h))) {
   4073 		if_statadd(ifp, if_ibytes, pktlen);
   4074 		if_statinc(ifp, if_ipackets);
   4075 	} else {
   4076 		m_freem(m);
   4077 	}
   4078 	kpreempt_enable();
   4079 }
   4080 
   4081 static void
   4082 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
   4083     const uint8_t privkey[WG_STATIC_KEY_LEN])
   4084 {
   4085 
   4086 	crypto_scalarmult_base(pubkey, privkey);
   4087 }
   4088 
   4089 static int
   4090 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
   4091 {
   4092 	struct radix_node_head *rnh;
   4093 	struct radix_node *rn;
   4094 	int error = 0;
   4095 
   4096 	rw_enter(wg->wg_rwlock, RW_WRITER);
   4097 	rnh = wg_rnh(wg, wga->wga_family);
   4098 	KASSERT(rnh != NULL);
   4099 	rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
   4100 	    wga->wga_nodes);
   4101 	rw_exit(wg->wg_rwlock);
   4102 
   4103 	if (rn == NULL)
   4104 		error = EEXIST;
   4105 
   4106 	return error;
   4107 }
   4108 
   4109 static int
   4110 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
   4111     struct wg_peer **wgpp)
   4112 {
   4113 	int error = 0;
   4114 	const void *pubkey;
   4115 	size_t pubkey_len;
   4116 	const void *psk;
   4117 	size_t psk_len;
   4118 	const char *name = NULL;
   4119 
   4120 	if (prop_dictionary_get_string(peer, "name", &name)) {
   4121 		if (strlen(name) > WG_PEER_NAME_MAXLEN) {
   4122 			error = EINVAL;
   4123 			goto out;
   4124 		}
   4125 	}
   4126 
   4127 	if (!prop_dictionary_get_data(peer, "public_key",
   4128 		&pubkey, &pubkey_len)) {
   4129 		error = EINVAL;
   4130 		goto out;
   4131 	}
   4132 #ifdef WG_DEBUG_DUMP
   4133     {
   4134 	char *hex = gethexdump(pubkey, pubkey_len);
   4135 	log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n%s\n",
   4136 	    pubkey, pubkey_len, hex);
   4137 	puthexdump(hex, pubkey, pubkey_len);
   4138     }
   4139 #endif
   4140 
   4141 	struct wg_peer *wgp = wg_alloc_peer(wg);
   4142 	memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
   4143 	if (name != NULL)
   4144 		strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
   4145 
   4146 	if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
   4147 		if (psk_len != sizeof(wgp->wgp_psk)) {
   4148 			error = EINVAL;
   4149 			goto out;
   4150 		}
   4151 		memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
   4152 	}
   4153 
   4154 	const void *addr;
   4155 	size_t addr_len;
   4156 	struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
   4157 
   4158 	if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
   4159 		goto skip_endpoint;
   4160 	if (addr_len < sizeof(*wgsatosa(wgsa)) ||
   4161 	    addr_len > sizeof(*wgsatoss(wgsa))) {
   4162 		error = EINVAL;
   4163 		goto out;
   4164 	}
   4165 	memcpy(wgsatoss(wgsa), addr, addr_len);
   4166 	switch (wgsa_family(wgsa)) {
   4167 	case AF_INET:
   4168 #ifdef INET6
   4169 	case AF_INET6:
   4170 #endif
   4171 		break;
   4172 	default:
   4173 		error = EPFNOSUPPORT;
   4174 		goto out;
   4175 	}
   4176 	if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
   4177 		error = EINVAL;
   4178 		goto out;
   4179 	}
   4180     {
   4181 	char addrstr[128];
   4182 	sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
   4183 	WG_DLOG("addr=%s\n", addrstr);
   4184     }
   4185 	wgp->wgp_endpoint_available = true;
   4186 
   4187 	prop_array_t allowedips;
   4188 skip_endpoint:
   4189 	allowedips = prop_dictionary_get(peer, "allowedips");
   4190 	if (allowedips == NULL)
   4191 		goto skip;
   4192 
   4193 	prop_object_iterator_t _it = prop_array_iterator(allowedips);
   4194 	prop_dictionary_t prop_allowedip;
   4195 	int j = 0;
   4196 	while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
   4197 		struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4198 
   4199 		if (!prop_dictionary_get_int(prop_allowedip, "family",
   4200 			&wga->wga_family))
   4201 			continue;
   4202 		if (!prop_dictionary_get_data(prop_allowedip, "ip",
   4203 			&addr, &addr_len))
   4204 			continue;
   4205 		if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
   4206 			&wga->wga_cidr))
   4207 			continue;
   4208 
   4209 		switch (wga->wga_family) {
   4210 		case AF_INET: {
   4211 			struct sockaddr_in sin;
   4212 			char addrstr[128];
   4213 			struct in_addr mask;
   4214 			struct sockaddr_in sin_mask;
   4215 
   4216 			if (addr_len != sizeof(struct in_addr))
   4217 				return EINVAL;
   4218 			memcpy(&wga->wga_addr4, addr, addr_len);
   4219 
   4220 			sockaddr_in_init(&sin, (const struct in_addr *)addr,
   4221 			    0);
   4222 			sockaddr_copy(&wga->wga_sa_addr,
   4223 			    sizeof(sin), sintosa(&sin));
   4224 
   4225 			sockaddr_format(sintosa(&sin),
   4226 			    addrstr, sizeof(addrstr));
   4227 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4228 
   4229 			in_len2mask(&mask, wga->wga_cidr);
   4230 			sockaddr_in_init(&sin_mask, &mask, 0);
   4231 			sockaddr_copy(&wga->wga_sa_mask,
   4232 			    sizeof(sin_mask), sintosa(&sin_mask));
   4233 
   4234 			break;
   4235 		    }
   4236 #ifdef INET6
   4237 		case AF_INET6: {
   4238 			struct sockaddr_in6 sin6;
   4239 			char addrstr[128];
   4240 			struct in6_addr mask;
   4241 			struct sockaddr_in6 sin6_mask;
   4242 
   4243 			if (addr_len != sizeof(struct in6_addr))
   4244 				return EINVAL;
   4245 			memcpy(&wga->wga_addr6, addr, addr_len);
   4246 
   4247 			sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
   4248 			    0, 0, 0);
   4249 			sockaddr_copy(&wga->wga_sa_addr,
   4250 			    sizeof(sin6), sin6tosa(&sin6));
   4251 
   4252 			sockaddr_format(sin6tosa(&sin6),
   4253 			    addrstr, sizeof(addrstr));
   4254 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4255 
   4256 			in6_prefixlen2mask(&mask, wga->wga_cidr);
   4257 			sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
   4258 			sockaddr_copy(&wga->wga_sa_mask,
   4259 			    sizeof(sin6_mask), sin6tosa(&sin6_mask));
   4260 
   4261 			break;
   4262 		    }
   4263 #endif
   4264 		default:
   4265 			error = EINVAL;
   4266 			goto out;
   4267 		}
   4268 		wga->wga_peer = wgp;
   4269 
   4270 		error = wg_rtable_add_route(wg, wga);
   4271 		if (error != 0)
   4272 			goto out;
   4273 
   4274 		j++;
   4275 	}
   4276 	wgp->wgp_n_allowedips = j;
   4277 skip:
   4278 	*wgpp = wgp;
   4279 out:
   4280 	return error;
   4281 }
   4282 
   4283 static int
   4284 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
   4285 {
   4286 	int error;
   4287 	char *buf;
   4288 
   4289 	WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
   4290 	buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
   4291 	error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
   4292 	if (error != 0)
   4293 		return error;
   4294 	buf[ifd->ifd_len] = '\0';
   4295 #ifdef WG_DEBUG_DUMP
   4296 	log(LOG_DEBUG, "%.*s\n",
   4297 	    (int)MIN(INT_MAX, ifd->ifd_len),
   4298 	    (const char *)buf);
   4299 #endif
   4300 	*_buf = buf;
   4301 	return 0;
   4302 }
   4303 
   4304 static int
   4305 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
   4306 {
   4307 	int error;
   4308 	prop_dictionary_t prop_dict;
   4309 	char *buf = NULL;
   4310 	const void *privkey;
   4311 	size_t privkey_len;
   4312 
   4313 	error = wg_alloc_prop_buf(&buf, ifd);
   4314 	if (error != 0)
   4315 		return error;
   4316 	error = EINVAL;
   4317 	prop_dict = prop_dictionary_internalize(buf);
   4318 	if (prop_dict == NULL)
   4319 		goto out;
   4320 	if (!prop_dictionary_get_data(prop_dict, "private_key",
   4321 		&privkey, &privkey_len))
   4322 		goto out;
   4323 #ifdef WG_DEBUG_DUMP
   4324     {
   4325 	char *hex = gethexdump(privkey, privkey_len);
   4326 	log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n%s\n",
   4327 	    privkey, privkey_len, hex);
   4328 	puthexdump(hex, privkey, privkey_len);
   4329     }
   4330 #endif
   4331 	if (privkey_len != WG_STATIC_KEY_LEN)
   4332 		goto out;
   4333 	memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
   4334 	wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
   4335 	error = 0;
   4336 
   4337 out:
   4338 	kmem_free(buf, ifd->ifd_len + 1);
   4339 	return error;
   4340 }
   4341 
   4342 static int
   4343 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
   4344 {
   4345 	int error;
   4346 	prop_dictionary_t prop_dict;
   4347 	char *buf = NULL;
   4348 	uint16_t port;
   4349 
   4350 	error = wg_alloc_prop_buf(&buf, ifd);
   4351 	if (error != 0)
   4352 		return error;
   4353 	error = EINVAL;
   4354 	prop_dict = prop_dictionary_internalize(buf);
   4355 	if (prop_dict == NULL)
   4356 		goto out;
   4357 	if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
   4358 		goto out;
   4359 
   4360 	error = wg->wg_ops->bind_port(wg, (uint16_t)port);
   4361 
   4362 out:
   4363 	kmem_free(buf, ifd->ifd_len + 1);
   4364 	return error;
   4365 }
   4366 
   4367 static int
   4368 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4369 {
   4370 	int error;
   4371 	prop_dictionary_t prop_dict;
   4372 	char *buf = NULL;
   4373 	struct wg_peer *wgp = NULL, *wgp0 __diagused;
   4374 
   4375 	error = wg_alloc_prop_buf(&buf, ifd);
   4376 	if (error != 0)
   4377 		return error;
   4378 	error = EINVAL;
   4379 	prop_dict = prop_dictionary_internalize(buf);
   4380 	if (prop_dict == NULL)
   4381 		goto out;
   4382 
   4383 	error = wg_handle_prop_peer(wg, prop_dict, &wgp);
   4384 	if (error != 0)
   4385 		goto out;
   4386 
   4387 	mutex_enter(wg->wg_lock);
   4388 	if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4389 		sizeof(wgp->wgp_pubkey)) != NULL ||
   4390 	    (wgp->wgp_name[0] &&
   4391 		thmap_get(wg->wg_peers_byname, wgp->wgp_name,
   4392 		    strlen(wgp->wgp_name)) != NULL)) {
   4393 		mutex_exit(wg->wg_lock);
   4394 		wg_destroy_peer(wgp);
   4395 		error = EEXIST;
   4396 		goto out;
   4397 	}
   4398 	wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4399 	    sizeof(wgp->wgp_pubkey), wgp);
   4400 	KASSERT(wgp0 == wgp);
   4401 	if (wgp->wgp_name[0]) {
   4402 		wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
   4403 		    strlen(wgp->wgp_name), wgp);
   4404 		KASSERT(wgp0 == wgp);
   4405 	}
   4406 	WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
   4407 	wg->wg_npeers++;
   4408 	mutex_exit(wg->wg_lock);
   4409 
   4410 	if_link_state_change(&wg->wg_if, LINK_STATE_UP);
   4411 
   4412 out:
   4413 	kmem_free(buf, ifd->ifd_len + 1);
   4414 	return error;
   4415 }
   4416 
   4417 static int
   4418 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4419 {
   4420 	int error;
   4421 	prop_dictionary_t prop_dict;
   4422 	char *buf = NULL;
   4423 	const char *name;
   4424 
   4425 	error = wg_alloc_prop_buf(&buf, ifd);
   4426 	if (error != 0)
   4427 		return error;
   4428 	error = EINVAL;
   4429 	prop_dict = prop_dictionary_internalize(buf);
   4430 	if (prop_dict == NULL)
   4431 		goto out;
   4432 
   4433 	if (!prop_dictionary_get_string(prop_dict, "name", &name))
   4434 		goto out;
   4435 	if (strlen(name) > WG_PEER_NAME_MAXLEN)
   4436 		goto out;
   4437 
   4438 	error = wg_destroy_peer_name(wg, name);
   4439 out:
   4440 	kmem_free(buf, ifd->ifd_len + 1);
   4441 	return error;
   4442 }
   4443 
   4444 static int
   4445 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
   4446 {
   4447 	int error = ENOMEM;
   4448 	prop_dictionary_t prop_dict;
   4449 	prop_array_t peers = NULL;
   4450 	char *buf;
   4451 	struct wg_peer *wgp;
   4452 	int s, i;
   4453 
   4454 	prop_dict = prop_dictionary_create();
   4455 	if (prop_dict == NULL)
   4456 		goto error;
   4457 
   4458 	if (!prop_dictionary_set_data(prop_dict, "private_key", wg->wg_privkey,
   4459 		WG_STATIC_KEY_LEN))
   4460 		goto error;
   4461 
   4462 	if (wg->wg_listen_port != 0) {
   4463 		if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
   4464 			wg->wg_listen_port))
   4465 			goto error;
   4466 	}
   4467 
   4468 	if (wg->wg_npeers == 0)
   4469 		goto skip_peers;
   4470 
   4471 	peers = prop_array_create();
   4472 	if (peers == NULL)
   4473 		goto error;
   4474 
   4475 	s = pserialize_read_enter();
   4476 	i = 0;
   4477 	WG_PEER_READER_FOREACH(wgp, wg) {
   4478 		struct wg_sockaddr *wgsa;
   4479 		struct psref wgp_psref, wgsa_psref;
   4480 		prop_dictionary_t prop_peer;
   4481 
   4482 		wg_get_peer(wgp, &wgp_psref);
   4483 		pserialize_read_exit(s);
   4484 
   4485 		prop_peer = prop_dictionary_create();
   4486 		if (prop_peer == NULL)
   4487 			goto next;
   4488 
   4489 		if (strlen(wgp->wgp_name) > 0) {
   4490 			if (!prop_dictionary_set_string(prop_peer, "name",
   4491 				wgp->wgp_name))
   4492 				goto next;
   4493 		}
   4494 
   4495 		if (!prop_dictionary_set_data(prop_peer, "public_key",
   4496 			wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
   4497 			goto next;
   4498 
   4499 		uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
   4500 		if (!consttime_memequal(wgp->wgp_psk, psk_zero,
   4501 			sizeof(wgp->wgp_psk))) {
   4502 			if (!prop_dictionary_set_data(prop_peer,
   4503 				"preshared_key",
   4504 				wgp->wgp_psk, sizeof(wgp->wgp_psk)))
   4505 				goto next;
   4506 		}
   4507 
   4508 		wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
   4509 		CTASSERT(AF_UNSPEC == 0);
   4510 		if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
   4511 		    !prop_dictionary_set_data(prop_peer, "endpoint",
   4512 			wgsatoss(wgsa),
   4513 			sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
   4514 			wg_put_sa(wgp, wgsa, &wgsa_psref);
   4515 			goto next;
   4516 		}
   4517 		wg_put_sa(wgp, wgsa, &wgsa_psref);
   4518 
   4519 		const struct timespec *t = &wgp->wgp_last_handshake_time;
   4520 
   4521 		if (!prop_dictionary_set_uint64(prop_peer,
   4522 			"last_handshake_time_sec", t->tv_sec))
   4523 			goto next;
   4524 		if (!prop_dictionary_set_uint32(prop_peer,
   4525 			"last_handshake_time_nsec", t->tv_nsec))
   4526 			goto next;
   4527 
   4528 		if (wgp->wgp_n_allowedips == 0)
   4529 			goto skip_allowedips;
   4530 
   4531 		prop_array_t allowedips = prop_array_create();
   4532 		if (allowedips == NULL)
   4533 			goto next;
   4534 		for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
   4535 			struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4536 			prop_dictionary_t prop_allowedip;
   4537 
   4538 			prop_allowedip = prop_dictionary_create();
   4539 			if (prop_allowedip == NULL)
   4540 				break;
   4541 
   4542 			if (!prop_dictionary_set_int(prop_allowedip, "family",
   4543 				wga->wga_family))
   4544 				goto _next;
   4545 			if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
   4546 				wga->wga_cidr))
   4547 				goto _next;
   4548 
   4549 			switch (wga->wga_family) {
   4550 			case AF_INET:
   4551 				if (!prop_dictionary_set_data(prop_allowedip,
   4552 					"ip", &wga->wga_addr4,
   4553 					sizeof(wga->wga_addr4)))
   4554 					goto _next;
   4555 				break;
   4556 #ifdef INET6
   4557 			case AF_INET6:
   4558 				if (!prop_dictionary_set_data(prop_allowedip,
   4559 					"ip", &wga->wga_addr6,
   4560 					sizeof(wga->wga_addr6)))
   4561 					goto _next;
   4562 				break;
   4563 #endif
   4564 			default:
   4565 				break;
   4566 			}
   4567 			prop_array_set(allowedips, j, prop_allowedip);
   4568 		_next:
   4569 			prop_object_release(prop_allowedip);
   4570 		}
   4571 		prop_dictionary_set(prop_peer, "allowedips", allowedips);
   4572 		prop_object_release(allowedips);
   4573 
   4574 	skip_allowedips:
   4575 
   4576 		prop_array_set(peers, i, prop_peer);
   4577 	next:
   4578 		if (prop_peer)
   4579 			prop_object_release(prop_peer);
   4580 		i++;
   4581 
   4582 		s = pserialize_read_enter();
   4583 		wg_put_peer(wgp, &wgp_psref);
   4584 	}
   4585 	pserialize_read_exit(s);
   4586 
   4587 	prop_dictionary_set(prop_dict, "peers", peers);
   4588 	prop_object_release(peers);
   4589 	peers = NULL;
   4590 
   4591 skip_peers:
   4592 	buf = prop_dictionary_externalize(prop_dict);
   4593 	if (buf == NULL)
   4594 		goto error;
   4595 	if (ifd->ifd_len < (strlen(buf) + 1)) {
   4596 		error = EINVAL;
   4597 		goto error;
   4598 	}
   4599 	error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
   4600 
   4601 	free(buf, 0);
   4602 error:
   4603 	if (peers != NULL)
   4604 		prop_object_release(peers);
   4605 	if (prop_dict != NULL)
   4606 		prop_object_release(prop_dict);
   4607 
   4608 	return error;
   4609 }
   4610 
   4611 static int
   4612 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   4613 {
   4614 	struct wg_softc *wg = ifp->if_softc;
   4615 	struct ifreq *ifr = data;
   4616 	struct ifaddr *ifa = data;
   4617 	struct ifdrv *ifd = data;
   4618 	int error = 0;
   4619 
   4620 	switch (cmd) {
   4621 	case SIOCINITIFADDR:
   4622 		if (ifa->ifa_addr->sa_family != AF_LINK &&
   4623 		    (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   4624 		    (IFF_UP | IFF_RUNNING)) {
   4625 			ifp->if_flags |= IFF_UP;
   4626 			error = ifp->if_init(ifp);
   4627 		}
   4628 		return error;
   4629 	case SIOCADDMULTI:
   4630 	case SIOCDELMULTI:
   4631 		switch (ifr->ifr_addr.sa_family) {
   4632 		case AF_INET:	/* IP supports Multicast */
   4633 			break;
   4634 #ifdef INET6
   4635 		case AF_INET6:	/* IP6 supports Multicast */
   4636 			break;
   4637 #endif
   4638 		default:  /* Other protocols doesn't support Multicast */
   4639 			error = EAFNOSUPPORT;
   4640 			break;
   4641 		}
   4642 		return error;
   4643 	case SIOCSDRVSPEC:
   4644 		switch (ifd->ifd_cmd) {
   4645 		case WG_IOCTL_SET_PRIVATE_KEY:
   4646 			error = wg_ioctl_set_private_key(wg, ifd);
   4647 			break;
   4648 		case WG_IOCTL_SET_LISTEN_PORT:
   4649 			error = wg_ioctl_set_listen_port(wg, ifd);
   4650 			break;
   4651 		case WG_IOCTL_ADD_PEER:
   4652 			error = wg_ioctl_add_peer(wg, ifd);
   4653 			break;
   4654 		case WG_IOCTL_DELETE_PEER:
   4655 			error = wg_ioctl_delete_peer(wg, ifd);
   4656 			break;
   4657 		default:
   4658 			error = EINVAL;
   4659 			break;
   4660 		}
   4661 		return error;
   4662 	case SIOCGDRVSPEC:
   4663 		return wg_ioctl_get(wg, ifd);
   4664 	case SIOCSIFFLAGS:
   4665 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   4666 			break;
   4667 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   4668 		case IFF_RUNNING:
   4669 			/*
   4670 			 * If interface is marked down and it is running,
   4671 			 * then stop and disable it.
   4672 			 */
   4673 			(*ifp->if_stop)(ifp, 1);
   4674 			break;
   4675 		case IFF_UP:
   4676 			/*
   4677 			 * If interface is marked up and it is stopped, then
   4678 			 * start it.
   4679 			 */
   4680 			error = (*ifp->if_init)(ifp);
   4681 			break;
   4682 		default:
   4683 			break;
   4684 		}
   4685 		return error;
   4686 #ifdef WG_RUMPKERNEL
   4687 	case SIOCSLINKSTR:
   4688 		error = wg_ioctl_linkstr(wg, ifd);
   4689 		if (error == 0)
   4690 			wg->wg_ops = &wg_ops_rumpuser;
   4691 		return error;
   4692 #endif
   4693 	default:
   4694 		break;
   4695 	}
   4696 
   4697 	error = ifioctl_common(ifp, cmd, data);
   4698 
   4699 #ifdef WG_RUMPKERNEL
   4700 	if (!wg_user_mode(wg))
   4701 		return error;
   4702 
   4703 	/* Do the same to the corresponding tun device on the host */
   4704 	/*
   4705 	 * XXX Actually the command has not been handled yet.  It
   4706 	 *     will be handled via pr_ioctl form doifioctl later.
   4707 	 */
   4708 	switch (cmd) {
   4709 	case SIOCAIFADDR:
   4710 	case SIOCDIFADDR: {
   4711 		struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
   4712 		struct in_aliasreq *ifra = &_ifra;
   4713 		KASSERT(error == ENOTTY);
   4714 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   4715 		    IFNAMSIZ);
   4716 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
   4717 		if (error == 0)
   4718 			error = ENOTTY;
   4719 		break;
   4720 	}
   4721 #ifdef INET6
   4722 	case SIOCAIFADDR_IN6:
   4723 	case SIOCDIFADDR_IN6: {
   4724 		struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
   4725 		struct in6_aliasreq *ifra = &_ifra;
   4726 		KASSERT(error == ENOTTY);
   4727 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   4728 		    IFNAMSIZ);
   4729 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
   4730 		if (error == 0)
   4731 			error = ENOTTY;
   4732 		break;
   4733 	}
   4734 #endif
   4735 	}
   4736 #endif /* WG_RUMPKERNEL */
   4737 
   4738 	return error;
   4739 }
   4740 
   4741 static int
   4742 wg_init(struct ifnet *ifp)
   4743 {
   4744 
   4745 	ifp->if_flags |= IFF_RUNNING;
   4746 
   4747 	/* TODO flush pending packets. */
   4748 	return 0;
   4749 }
   4750 
   4751 #ifdef ALTQ
   4752 static void
   4753 wg_start(struct ifnet *ifp)
   4754 {
   4755 	struct mbuf *m;
   4756 
   4757 	for (;;) {
   4758 		IFQ_DEQUEUE(&ifp->if_snd, m);
   4759 		if (m == NULL)
   4760 			break;
   4761 
   4762 		kpreempt_disable();
   4763 		const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   4764 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   4765 			WGLOG(LOG_ERR, "pktq full, dropping\n");
   4766 			m_freem(m);
   4767 		}
   4768 		kpreempt_enable();
   4769 	}
   4770 }
   4771 #endif
   4772 
   4773 static void
   4774 wg_stop(struct ifnet *ifp, int disable)
   4775 {
   4776 
   4777 	KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
   4778 	ifp->if_flags &= ~IFF_RUNNING;
   4779 
   4780 	/* Need to do something? */
   4781 }
   4782 
   4783 #ifdef WG_DEBUG_PARAMS
   4784 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
   4785 {
   4786 	const struct sysctlnode *node = NULL;
   4787 
   4788 	sysctl_createv(clog, 0, NULL, &node,
   4789 	    CTLFLAG_PERMANENT,
   4790 	    CTLTYPE_NODE, "wg",
   4791 	    SYSCTL_DESCR("wg(4)"),
   4792 	    NULL, 0, NULL, 0,
   4793 	    CTL_NET, CTL_CREATE, CTL_EOL);
   4794 	sysctl_createv(clog, 0, &node, NULL,
   4795 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4796 	    CTLTYPE_QUAD, "rekey_after_messages",
   4797 	    SYSCTL_DESCR("session liftime by messages"),
   4798 	    NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
   4799 	sysctl_createv(clog, 0, &node, NULL,
   4800 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4801 	    CTLTYPE_INT, "rekey_after_time",
   4802 	    SYSCTL_DESCR("session liftime"),
   4803 	    NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
   4804 	sysctl_createv(clog, 0, &node, NULL,
   4805 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4806 	    CTLTYPE_INT, "rekey_timeout",
   4807 	    SYSCTL_DESCR("session handshake retry time"),
   4808 	    NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
   4809 	sysctl_createv(clog, 0, &node, NULL,
   4810 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4811 	    CTLTYPE_INT, "rekey_attempt_time",
   4812 	    SYSCTL_DESCR("session handshake timeout"),
   4813 	    NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
   4814 	sysctl_createv(clog, 0, &node, NULL,
   4815 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4816 	    CTLTYPE_INT, "keepalive_timeout",
   4817 	    SYSCTL_DESCR("keepalive timeout"),
   4818 	    NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
   4819 	sysctl_createv(clog, 0, &node, NULL,
   4820 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4821 	    CTLTYPE_BOOL, "force_underload",
   4822 	    SYSCTL_DESCR("force to detemine under load"),
   4823 	    NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
   4824 }
   4825 #endif
   4826 
   4827 #ifdef WG_RUMPKERNEL
   4828 static bool
   4829 wg_user_mode(struct wg_softc *wg)
   4830 {
   4831 
   4832 	return wg->wg_user != NULL;
   4833 }
   4834 
   4835 static int
   4836 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
   4837 {
   4838 	struct ifnet *ifp = &wg->wg_if;
   4839 	int error;
   4840 
   4841 	if (ifp->if_flags & IFF_UP)
   4842 		return EBUSY;
   4843 
   4844 	if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
   4845 		/* XXX do nothing */
   4846 		return 0;
   4847 	} else if (ifd->ifd_cmd != 0) {
   4848 		return EINVAL;
   4849 	} else if (wg->wg_user != NULL) {
   4850 		return EBUSY;
   4851 	}
   4852 
   4853 	/* Assume \0 included */
   4854 	if (ifd->ifd_len > IFNAMSIZ) {
   4855 		return E2BIG;
   4856 	} else if (ifd->ifd_len < 1) {
   4857 		return EINVAL;
   4858 	}
   4859 
   4860 	char tun_name[IFNAMSIZ];
   4861 	error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
   4862 	if (error != 0)
   4863 		return error;
   4864 
   4865 	if (strncmp(tun_name, "tun", 3) != 0)
   4866 		return EINVAL;
   4867 
   4868 	error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
   4869 
   4870 	return error;
   4871 }
   4872 
   4873 static int
   4874 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
   4875 {
   4876 	int error;
   4877 	struct psref psref;
   4878 	struct wg_sockaddr *wgsa;
   4879 	struct wg_softc *wg = wgp->wgp_sc;
   4880 	struct iovec iov[1];
   4881 
   4882 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   4883 
   4884 	iov[0].iov_base = mtod(m, void *);
   4885 	iov[0].iov_len = m->m_len;
   4886 
   4887 	/* Send messages to a peer via an ordinary socket. */
   4888 	error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
   4889 
   4890 	wg_put_sa(wgp, wgsa, &psref);
   4891 
   4892 	m_freem(m);
   4893 
   4894 	return error;
   4895 }
   4896 
   4897 static void
   4898 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
   4899 {
   4900 	struct wg_softc *wg = ifp->if_softc;
   4901 	struct iovec iov[2];
   4902 	struct sockaddr_storage ss;
   4903 
   4904 	KASSERT(af == AF_INET || af == AF_INET6);
   4905 
   4906 	WG_TRACE("");
   4907 
   4908 	if (af == AF_INET) {
   4909 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   4910 		struct ip *ip;
   4911 
   4912 		KASSERT(m->m_len >= sizeof(struct ip));
   4913 		ip = mtod(m, struct ip *);
   4914 		sockaddr_in_init(sin, &ip->ip_dst, 0);
   4915 	} else {
   4916 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   4917 		struct ip6_hdr *ip6;
   4918 
   4919 		KASSERT(m->m_len >= sizeof(struct ip6_hdr));
   4920 		ip6 = mtod(m, struct ip6_hdr *);
   4921 		sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
   4922 	}
   4923 
   4924 	iov[0].iov_base = &ss;
   4925 	iov[0].iov_len = ss.ss_len;
   4926 	iov[1].iov_base = mtod(m, void *);
   4927 	iov[1].iov_len = m->m_len;
   4928 
   4929 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   4930 
   4931 	/* Send decrypted packets to users via a tun. */
   4932 	rumpuser_wg_send_user(wg->wg_user, iov, 2);
   4933 
   4934 	m_freem(m);
   4935 }
   4936 
   4937 static int
   4938 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
   4939 {
   4940 	int error;
   4941 	uint16_t old_port = wg->wg_listen_port;
   4942 
   4943 	if (port != 0 && old_port == port)
   4944 		return 0;
   4945 
   4946 	error = rumpuser_wg_sock_bind(wg->wg_user, port);
   4947 	if (error == 0)
   4948 		wg->wg_listen_port = port;
   4949 	return error;
   4950 }
   4951 
   4952 /*
   4953  * Receive user packets.
   4954  */
   4955 void
   4956 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   4957 {
   4958 	struct ifnet *ifp = &wg->wg_if;
   4959 	struct mbuf *m;
   4960 	const struct sockaddr *dst;
   4961 
   4962 	WG_TRACE("");
   4963 
   4964 	dst = iov[0].iov_base;
   4965 
   4966 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   4967 	if (m == NULL)
   4968 		return;
   4969 	m->m_len = m->m_pkthdr.len = 0;
   4970 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   4971 
   4972 	WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
   4973 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   4974 
   4975 	(void)wg_output(ifp, m, dst, NULL);
   4976 }
   4977 
   4978 /*
   4979  * Receive packets from a peer.
   4980  */
   4981 void
   4982 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   4983 {
   4984 	struct mbuf *m;
   4985 	const struct sockaddr *src;
   4986 
   4987 	WG_TRACE("");
   4988 
   4989 	src = iov[0].iov_base;
   4990 
   4991 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   4992 	if (m == NULL)
   4993 		return;
   4994 	m->m_len = m->m_pkthdr.len = 0;
   4995 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   4996 
   4997 	WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
   4998 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   4999 
   5000 	wg_handle_packet(wg, m, src);
   5001 }
   5002 #endif /* WG_RUMPKERNEL */
   5003 
   5004 /*
   5005  * Module infrastructure
   5006  */
   5007 #include "if_module.h"
   5008 
   5009 IF_MODULE(MODULE_CLASS_DRIVER, wg, "")
   5010