if_wg.c revision 1.74 1 /* $NetBSD: if_wg.c,v 1.74 2023/01/05 20:32:18 christos Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.74 2023/01/05 20:32:18 christos Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_altq_enabled.h"
48 #include "opt_inet.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/atomic.h>
55 #include <sys/callout.h>
56 #include <sys/cprng.h>
57 #include <sys/cpu.h>
58 #include <sys/device.h>
59 #include <sys/domain.h>
60 #include <sys/errno.h>
61 #include <sys/intr.h>
62 #include <sys/ioctl.h>
63 #include <sys/kernel.h>
64 #include <sys/kmem.h>
65 #include <sys/mbuf.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/once.h>
69 #include <sys/percpu.h>
70 #include <sys/pserialize.h>
71 #include <sys/psref.h>
72 #include <sys/queue.h>
73 #include <sys/rwlock.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/systm.h>
80 #include <sys/thmap.h>
81 #include <sys/threadpool.h>
82 #include <sys/time.h>
83 #include <sys/timespec.h>
84 #include <sys/workqueue.h>
85
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_types.h>
89 #include <net/if_wg.h>
90 #include <net/pktqueue.h>
91 #include <net/route.h>
92
93 #include <netinet/in.h>
94 #include <netinet/in_pcb.h>
95 #include <netinet/in_var.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_var.h>
98 #include <netinet/udp.h>
99 #include <netinet/udp_var.h>
100
101 #ifdef INET6
102 #include <netinet/ip6.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet6/in6_var.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet6/udp6_var.h>
107 #endif /* INET6 */
108
109 #include <prop/proplib.h>
110
111 #include <crypto/blake2/blake2s.h>
112 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
113 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
114 #include <crypto/sodium/crypto_scalarmult.h>
115
116 #include "ioconf.h"
117
118 #ifdef WG_RUMPKERNEL
119 #include "wg_user.h"
120 #endif
121
122 /*
123 * Data structures
124 * - struct wg_softc is an instance of wg interfaces
125 * - It has a list of peers (struct wg_peer)
126 * - It has a threadpool job that sends/receives handshake messages and
127 * runs event handlers
128 * - It has its own two routing tables: one is for IPv4 and the other IPv6
129 * - struct wg_peer is a representative of a peer
130 * - It has a struct work to handle handshakes and timer tasks
131 * - It has a pair of session instances (struct wg_session)
132 * - It has a pair of endpoint instances (struct wg_sockaddr)
133 * - Normally one endpoint is used and the second one is used only on
134 * a peer migration (a change of peer's IP address)
135 * - It has a list of IP addresses and sub networks called allowedips
136 * (struct wg_allowedip)
137 * - A packets sent over a session is allowed if its destination matches
138 * any IP addresses or sub networks of the list
139 * - struct wg_session represents a session of a secure tunnel with a peer
140 * - Two instances of sessions belong to a peer; a stable session and a
141 * unstable session
142 * - A handshake process of a session always starts with a unstable instance
143 * - Once a session is established, its instance becomes stable and the
144 * other becomes unstable instead
145 * - Data messages are always sent via a stable session
146 *
147 * Locking notes:
148 * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
149 * - Changes to the peer list are serialized by wg_lock
150 * - The peer list may be read with pserialize(9) and psref(9)
151 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
152 * => XXX replace by pserialize when routing table is psz-safe
153 * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
154 * only in thread context and serializes:
155 * - the stable and unstable session pointers
156 * - all unstable session state
157 * - Packet processing may be done in softint context:
158 * - The stable session can be read under pserialize(9) or psref(9)
159 * - The stable session is always ESTABLISHED
160 * - On a session swap, we must wait for all readers to release a
161 * reference to a stable session before changing wgs_state and
162 * session states
163 * - Lock order: wg_lock -> wgp_lock
164 */
165
166
167 #define WGLOG(level, fmt, args...) \
168 log(level, "%s: " fmt, __func__, ##args)
169
170 /* Debug options */
171 #ifdef WG_DEBUG
172 /* Output debug logs */
173 #ifndef WG_DEBUG_LOG
174 #define WG_DEBUG_LOG
175 #endif
176 /* Output trace logs */
177 #ifndef WG_DEBUG_TRACE
178 #define WG_DEBUG_TRACE
179 #endif
180 /* Output hash values, etc. */
181 #ifndef WG_DEBUG_DUMP
182 #define WG_DEBUG_DUMP
183 #endif
184 /* Make some internal parameters configurable for testing and debugging */
185 #ifndef WG_DEBUG_PARAMS
186 #define WG_DEBUG_PARAMS
187 #endif
188 #endif
189
190 #ifdef WG_DEBUG_TRACE
191 #define WG_TRACE(msg) \
192 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
193 #else
194 #define WG_TRACE(msg) __nothing
195 #endif
196
197 #ifdef WG_DEBUG_LOG
198 #define WG_DLOG(fmt, args...) log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
199 #else
200 #define WG_DLOG(fmt, args...) __nothing
201 #endif
202
203 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
204 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
205 &(wgprc)->wgprc_curpps, 1)) { \
206 log(level, fmt, ##args); \
207 } \
208 } while (0)
209
210 #ifdef WG_DEBUG_PARAMS
211 static bool wg_force_underload = false;
212 #endif
213
214 #ifdef WG_DEBUG_DUMP
215
216 static char *
217 gethexdump(const char *p, size_t n)
218 {
219 char *buf;
220 size_t i;
221
222 if (n > SIZE_MAX/3 - 1)
223 return NULL;
224 buf = kmem_alloc(3*n + 1, KM_NOSLEEP);
225 if (buf == NULL)
226 return NULL;
227 for (i = 0; i < n; i++)
228 snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
229 return buf;
230 }
231
232 static void
233 puthexdump(char *buf, const void *p, size_t n)
234 {
235
236 if (buf == NULL)
237 return;
238 kmem_free(buf, 3*n + 1);
239 }
240
241 #ifdef WG_RUMPKERNEL
242 static void
243 wg_dump_buf(const char *func, const char *buf, const size_t size)
244 {
245 char *hex = gethexdump(buf, size);
246
247 log(LOG_DEBUG, "%s: %s\n", func, hex ? hex : "(enomem)");
248 puthexdump(hex, buf, size);
249 }
250 #endif
251
252 static void
253 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
254 const size_t size)
255 {
256 char *hex = gethexdump(hash, size);
257
258 log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex ? hex : "(enomem)");
259 puthexdump(hex, hash, size);
260 }
261
262 #define WG_DUMP_HASH(name, hash) \
263 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
264 #define WG_DUMP_HASH48(name, hash) \
265 wg_dump_hash(__func__, name, hash, 48)
266 #define WG_DUMP_BUF(buf, size) \
267 wg_dump_buf(__func__, buf, size)
268 #else
269 #define WG_DUMP_HASH(name, hash) __nothing
270 #define WG_DUMP_HASH48(name, hash) __nothing
271 #define WG_DUMP_BUF(buf, size) __nothing
272 #endif /* WG_DEBUG_DUMP */
273
274 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-termintaed */
275 #define WG_MAX_PROPLEN 32766
276
277 #define WG_MTU 1420
278 #define WG_ALLOWEDIPS 16
279
280 #define CURVE25519_KEY_LEN 32
281 #define TAI64N_LEN sizeof(uint32_t) * 3
282 #define POLY1305_AUTHTAG_LEN 16
283 #define HMAC_BLOCK_LEN 64
284
285 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
286 /* [N] 4.3: Hash functions */
287 #define NOISE_DHLEN 32
288 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
289 #define NOISE_HASHLEN 32
290 #define NOISE_BLOCKLEN 64
291 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
292 /* [N] 5.1: "k" */
293 #define NOISE_CIPHER_KEY_LEN 32
294 /*
295 * [N] 9.2: "psk"
296 * "... psk is a 32-byte secret value provided by the application."
297 */
298 #define NOISE_PRESHARED_KEY_LEN 32
299
300 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
301 #define WG_TIMESTAMP_LEN TAI64N_LEN
302
303 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
304
305 #define WG_COOKIE_LEN 16
306 #define WG_MAC_LEN 16
307 #define WG_RANDVAL_LEN 24
308
309 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
310 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
311 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
312 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
313 #define WG_HASH_LEN NOISE_HASHLEN
314 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
315 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
316 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
317 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
318 #define WG_DATA_KEY_LEN 32
319 #define WG_SALT_LEN 24
320
321 /*
322 * The protocol messages
323 */
324 struct wg_msg {
325 uint32_t wgm_type;
326 } __packed;
327
328 /* [W] 5.4.2 First Message: Initiator to Responder */
329 struct wg_msg_init {
330 uint32_t wgmi_type;
331 uint32_t wgmi_sender;
332 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
333 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
334 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
335 uint8_t wgmi_mac1[WG_MAC_LEN];
336 uint8_t wgmi_mac2[WG_MAC_LEN];
337 } __packed;
338
339 /* [W] 5.4.3 Second Message: Responder to Initiator */
340 struct wg_msg_resp {
341 uint32_t wgmr_type;
342 uint32_t wgmr_sender;
343 uint32_t wgmr_receiver;
344 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
345 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
346 uint8_t wgmr_mac1[WG_MAC_LEN];
347 uint8_t wgmr_mac2[WG_MAC_LEN];
348 } __packed;
349
350 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
351 struct wg_msg_data {
352 uint32_t wgmd_type;
353 uint32_t wgmd_receiver;
354 uint64_t wgmd_counter;
355 uint32_t wgmd_packet[0];
356 } __packed;
357
358 /* [W] 5.4.7 Under Load: Cookie Reply Message */
359 struct wg_msg_cookie {
360 uint32_t wgmc_type;
361 uint32_t wgmc_receiver;
362 uint8_t wgmc_salt[WG_SALT_LEN];
363 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
364 } __packed;
365
366 #define WG_MSG_TYPE_INIT 1
367 #define WG_MSG_TYPE_RESP 2
368 #define WG_MSG_TYPE_COOKIE 3
369 #define WG_MSG_TYPE_DATA 4
370 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
371
372 /* Sliding windows */
373
374 #define SLIWIN_BITS 2048u
375 #define SLIWIN_TYPE uint32_t
376 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
377 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
378 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
379
380 struct sliwin {
381 SLIWIN_TYPE B[SLIWIN_WORDS];
382 uint64_t T;
383 };
384
385 static void
386 sliwin_reset(struct sliwin *W)
387 {
388
389 memset(W, 0, sizeof(*W));
390 }
391
392 static int
393 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
394 {
395
396 /*
397 * If it's more than one window older than the highest sequence
398 * number we've seen, reject.
399 */
400 #ifdef __HAVE_ATOMIC64_LOADSTORE
401 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
402 return EAUTH;
403 #endif
404
405 /*
406 * Otherwise, we need to take the lock to decide, so don't
407 * reject just yet. Caller must serialize a call to
408 * sliwin_update in this case.
409 */
410 return 0;
411 }
412
413 static int
414 sliwin_update(struct sliwin *W, uint64_t S)
415 {
416 unsigned word, bit;
417
418 /*
419 * If it's more than one window older than the highest sequence
420 * number we've seen, reject.
421 */
422 if (S + SLIWIN_NPKT < W->T)
423 return EAUTH;
424
425 /*
426 * If it's higher than the highest sequence number we've seen,
427 * advance the window.
428 */
429 if (S > W->T) {
430 uint64_t i = W->T / SLIWIN_BPW;
431 uint64_t j = S / SLIWIN_BPW;
432 unsigned k;
433
434 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
435 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
436 #ifdef __HAVE_ATOMIC64_LOADSTORE
437 atomic_store_relaxed(&W->T, S);
438 #else
439 W->T = S;
440 #endif
441 }
442
443 /* Test and set the bit -- if already set, reject. */
444 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
445 bit = S % SLIWIN_BPW;
446 if (W->B[word] & (1UL << bit))
447 return EAUTH;
448 W->B[word] |= 1U << bit;
449
450 /* Accept! */
451 return 0;
452 }
453
454 struct wg_session {
455 struct wg_peer *wgs_peer;
456 struct psref_target
457 wgs_psref;
458
459 int wgs_state;
460 #define WGS_STATE_UNKNOWN 0
461 #define WGS_STATE_INIT_ACTIVE 1
462 #define WGS_STATE_INIT_PASSIVE 2
463 #define WGS_STATE_ESTABLISHED 3
464 #define WGS_STATE_DESTROYING 4
465
466 time_t wgs_time_established;
467 time_t wgs_time_last_data_sent;
468 bool wgs_is_initiator;
469
470 uint32_t wgs_local_index;
471 uint32_t wgs_remote_index;
472 #ifdef __HAVE_ATOMIC64_LOADSTORE
473 volatile uint64_t
474 wgs_send_counter;
475 #else
476 kmutex_t wgs_send_counter_lock;
477 uint64_t wgs_send_counter;
478 #endif
479
480 struct {
481 kmutex_t lock;
482 struct sliwin window;
483 } *wgs_recvwin;
484
485 uint8_t wgs_handshake_hash[WG_HASH_LEN];
486 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
487 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
488 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
489 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
490 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
491 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
492 };
493
494 struct wg_sockaddr {
495 union {
496 struct sockaddr_storage _ss;
497 struct sockaddr _sa;
498 struct sockaddr_in _sin;
499 struct sockaddr_in6 _sin6;
500 };
501 struct psref_target wgsa_psref;
502 };
503
504 #define wgsatoss(wgsa) (&(wgsa)->_ss)
505 #define wgsatosa(wgsa) (&(wgsa)->_sa)
506 #define wgsatosin(wgsa) (&(wgsa)->_sin)
507 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
508
509 #define wgsa_family(wgsa) (wgsatosa(wgsa)->sa_family)
510
511 struct wg_peer;
512 struct wg_allowedip {
513 struct radix_node wga_nodes[2];
514 struct wg_sockaddr _wga_sa_addr;
515 struct wg_sockaddr _wga_sa_mask;
516 #define wga_sa_addr _wga_sa_addr._sa
517 #define wga_sa_mask _wga_sa_mask._sa
518
519 int wga_family;
520 uint8_t wga_cidr;
521 union {
522 struct in_addr _ip4;
523 struct in6_addr _ip6;
524 } wga_addr;
525 #define wga_addr4 wga_addr._ip4
526 #define wga_addr6 wga_addr._ip6
527
528 struct wg_peer *wga_peer;
529 };
530
531 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
532
533 struct wg_ppsratecheck {
534 struct timeval wgprc_lasttime;
535 int wgprc_curpps;
536 };
537
538 struct wg_softc;
539 struct wg_peer {
540 struct wg_softc *wgp_sc;
541 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
542 struct pslist_entry wgp_peerlist_entry;
543 pserialize_t wgp_psz;
544 struct psref_target wgp_psref;
545 kmutex_t *wgp_lock;
546 kmutex_t *wgp_intr_lock;
547
548 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
549 struct wg_sockaddr *wgp_endpoint;
550 struct wg_sockaddr *wgp_endpoint0;
551 volatile unsigned wgp_endpoint_changing;
552 bool wgp_endpoint_available;
553
554 /* The preshared key (optional) */
555 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
556
557 struct wg_session *wgp_session_stable;
558 struct wg_session *wgp_session_unstable;
559
560 /* first outgoing packet awaiting session initiation */
561 struct mbuf *wgp_pending;
562
563 /* timestamp in big-endian */
564 wg_timestamp_t wgp_timestamp_latest_init;
565
566 struct timespec wgp_last_handshake_time;
567
568 callout_t wgp_rekey_timer;
569 callout_t wgp_handshake_timeout_timer;
570 callout_t wgp_session_dtor_timer;
571
572 time_t wgp_handshake_start_time;
573
574 int wgp_n_allowedips;
575 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
576
577 time_t wgp_latest_cookie_time;
578 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
579 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
580 bool wgp_last_sent_mac1_valid;
581 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
582 bool wgp_last_sent_cookie_valid;
583
584 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
585
586 time_t wgp_last_genrandval_time;
587 uint32_t wgp_randval;
588
589 struct wg_ppsratecheck wgp_ppsratecheck;
590
591 struct work wgp_work;
592 unsigned int wgp_tasks;
593 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
594 #define WGP_TASK_RETRY_HANDSHAKE __BIT(1)
595 #define WGP_TASK_ESTABLISH_SESSION __BIT(2)
596 #define WGP_TASK_ENDPOINT_CHANGED __BIT(3)
597 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(4)
598 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(5)
599 };
600
601 struct wg_ops;
602
603 struct wg_softc {
604 struct ifnet wg_if;
605 LIST_ENTRY(wg_softc) wg_list;
606 kmutex_t *wg_lock;
607 kmutex_t *wg_intr_lock;
608 krwlock_t *wg_rwlock;
609
610 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
611 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
612
613 int wg_npeers;
614 struct pslist_head wg_peers;
615 struct thmap *wg_peers_bypubkey;
616 struct thmap *wg_peers_byname;
617 struct thmap *wg_sessions_byindex;
618 uint16_t wg_listen_port;
619
620 struct threadpool *wg_threadpool;
621
622 struct threadpool_job wg_job;
623 int wg_upcalls;
624 #define WG_UPCALL_INET __BIT(0)
625 #define WG_UPCALL_INET6 __BIT(1)
626
627 #ifdef INET
628 struct socket *wg_so4;
629 struct radix_node_head *wg_rtable_ipv4;
630 #endif
631 #ifdef INET6
632 struct socket *wg_so6;
633 struct radix_node_head *wg_rtable_ipv6;
634 #endif
635
636 struct wg_ppsratecheck wg_ppsratecheck;
637
638 struct wg_ops *wg_ops;
639
640 #ifdef WG_RUMPKERNEL
641 struct wg_user *wg_user;
642 #endif
643 };
644
645 /* [W] 6.1 Preliminaries */
646 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
647 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
648 #define WG_REKEY_AFTER_TIME 120
649 #define WG_REJECT_AFTER_TIME 180
650 #define WG_REKEY_ATTEMPT_TIME 90
651 #define WG_REKEY_TIMEOUT 5
652 #define WG_KEEPALIVE_TIMEOUT 10
653
654 #define WG_COOKIE_TIME 120
655 #define WG_RANDVAL_TIME (2 * 60)
656
657 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
658 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
659 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
660 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
661 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
662 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
663 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
664
665 static struct mbuf *
666 wg_get_mbuf(size_t, size_t);
667
668 static int wg_send_data_msg(struct wg_peer *, struct wg_session *,
669 struct mbuf *);
670 static int wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
671 const uint32_t, const uint8_t [], const struct sockaddr *);
672 static int wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
673 struct wg_session *, const struct wg_msg_init *);
674 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
675
676 static struct wg_peer *
677 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
678 struct psref *);
679 static struct wg_peer *
680 wg_lookup_peer_by_pubkey(struct wg_softc *,
681 const uint8_t [], struct psref *);
682
683 static struct wg_session *
684 wg_lookup_session_by_index(struct wg_softc *,
685 const uint32_t, struct psref *);
686
687 static void wg_update_endpoint_if_necessary(struct wg_peer *,
688 const struct sockaddr *);
689
690 static void wg_schedule_rekey_timer(struct wg_peer *);
691 static void wg_schedule_session_dtor_timer(struct wg_peer *);
692
693 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
694 static void wg_calculate_keys(struct wg_session *, const bool);
695
696 static void wg_clear_states(struct wg_session *);
697
698 static void wg_get_peer(struct wg_peer *, struct psref *);
699 static void wg_put_peer(struct wg_peer *, struct psref *);
700
701 static int wg_send_so(struct wg_peer *, struct mbuf *);
702 static int wg_send_udp(struct wg_peer *, struct mbuf *);
703 static int wg_output(struct ifnet *, struct mbuf *,
704 const struct sockaddr *, const struct rtentry *);
705 static void wg_input(struct ifnet *, struct mbuf *, const int);
706 static int wg_ioctl(struct ifnet *, u_long, void *);
707 static int wg_bind_port(struct wg_softc *, const uint16_t);
708 static int wg_init(struct ifnet *);
709 #ifdef ALTQ
710 static void wg_start(struct ifnet *);
711 #endif
712 static void wg_stop(struct ifnet *, int);
713
714 static void wg_peer_work(struct work *, void *);
715 static void wg_job(struct threadpool_job *);
716 static void wgintr(void *);
717 static void wg_purge_pending_packets(struct wg_peer *);
718
719 static int wg_clone_create(struct if_clone *, int);
720 static int wg_clone_destroy(struct ifnet *);
721
722 struct wg_ops {
723 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
724 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
725 void (*input)(struct ifnet *, struct mbuf *, const int);
726 int (*bind_port)(struct wg_softc *, const uint16_t);
727 };
728
729 struct wg_ops wg_ops_rumpkernel = {
730 .send_hs_msg = wg_send_so,
731 .send_data_msg = wg_send_udp,
732 .input = wg_input,
733 .bind_port = wg_bind_port,
734 };
735
736 #ifdef WG_RUMPKERNEL
737 static bool wg_user_mode(struct wg_softc *);
738 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
739
740 static int wg_send_user(struct wg_peer *, struct mbuf *);
741 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
742 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
743
744 struct wg_ops wg_ops_rumpuser = {
745 .send_hs_msg = wg_send_user,
746 .send_data_msg = wg_send_user,
747 .input = wg_input_user,
748 .bind_port = wg_bind_port_user,
749 };
750 #endif
751
752 #define WG_PEER_READER_FOREACH(wgp, wg) \
753 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
754 wgp_peerlist_entry)
755 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
756 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
757 wgp_peerlist_entry)
758 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
759 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
760 #define WG_PEER_WRITER_REMOVE(wgp) \
761 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
762
763 struct wg_route {
764 struct radix_node wgr_nodes[2];
765 struct wg_peer *wgr_peer;
766 };
767
768 static struct radix_node_head *
769 wg_rnh(struct wg_softc *wg, const int family)
770 {
771
772 switch (family) {
773 case AF_INET:
774 return wg->wg_rtable_ipv4;
775 #ifdef INET6
776 case AF_INET6:
777 return wg->wg_rtable_ipv6;
778 #endif
779 default:
780 return NULL;
781 }
782 }
783
784
785 /*
786 * Global variables
787 */
788 static volatile unsigned wg_count __cacheline_aligned;
789
790 struct psref_class *wg_psref_class __read_mostly;
791
792 static struct if_clone wg_cloner =
793 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
794
795 static struct pktqueue *wg_pktq __read_mostly;
796 static struct workqueue *wg_wq __read_mostly;
797
798 void wgattach(int);
799 /* ARGSUSED */
800 void
801 wgattach(int count)
802 {
803 /*
804 * Nothing to do here, initialization is handled by the
805 * module initialization code in wginit() below).
806 */
807 }
808
809 static void
810 wginit(void)
811 {
812
813 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
814
815 if_clone_attach(&wg_cloner);
816 }
817
818 /*
819 * XXX Kludge: This should just happen in wginit, but workqueue_create
820 * cannot be run until after CPUs have been detected, and wginit runs
821 * before configure.
822 */
823 static int
824 wginitqueues(void)
825 {
826 int error __diagused;
827
828 wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
829 KASSERT(wg_pktq != NULL);
830
831 error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
832 PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
833 KASSERT(error == 0);
834
835 return 0;
836 }
837
838 static void
839 wg_guarantee_initialized(void)
840 {
841 static ONCE_DECL(init);
842 int error __diagused;
843
844 error = RUN_ONCE(&init, wginitqueues);
845 KASSERT(error == 0);
846 }
847
848 static int
849 wg_count_inc(void)
850 {
851 unsigned o, n;
852
853 do {
854 o = atomic_load_relaxed(&wg_count);
855 if (o == UINT_MAX)
856 return ENFILE;
857 n = o + 1;
858 } while (atomic_cas_uint(&wg_count, o, n) != o);
859
860 return 0;
861 }
862
863 static void
864 wg_count_dec(void)
865 {
866 unsigned c __diagused;
867
868 c = atomic_dec_uint_nv(&wg_count);
869 KASSERT(c != UINT_MAX);
870 }
871
872 static int
873 wgdetach(void)
874 {
875
876 /* Prevent new interface creation. */
877 if_clone_detach(&wg_cloner);
878
879 /* Check whether there are any existing interfaces. */
880 if (atomic_load_relaxed(&wg_count)) {
881 /* Back out -- reattach the cloner. */
882 if_clone_attach(&wg_cloner);
883 return EBUSY;
884 }
885
886 /* No interfaces left. Nuke it. */
887 workqueue_destroy(wg_wq);
888 pktq_destroy(wg_pktq);
889 psref_class_destroy(wg_psref_class);
890
891 return 0;
892 }
893
894 static void
895 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
896 uint8_t hash[WG_HASH_LEN])
897 {
898 /* [W] 5.4: CONSTRUCTION */
899 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
900 /* [W] 5.4: IDENTIFIER */
901 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
902 struct blake2s state;
903
904 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
905 signature, strlen(signature));
906
907 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
908 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
909
910 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
911 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
912 blake2s_update(&state, id, strlen(id));
913 blake2s_final(&state, hash);
914
915 WG_DUMP_HASH("ckey", ckey);
916 WG_DUMP_HASH("hash", hash);
917 }
918
919 static void
920 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
921 const size_t inputsize)
922 {
923 struct blake2s state;
924
925 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
926 blake2s_update(&state, hash, WG_HASH_LEN);
927 blake2s_update(&state, input, inputsize);
928 blake2s_final(&state, hash);
929 }
930
931 static void
932 wg_algo_mac(uint8_t out[], const size_t outsize,
933 const uint8_t key[], const size_t keylen,
934 const uint8_t input1[], const size_t input1len,
935 const uint8_t input2[], const size_t input2len)
936 {
937 struct blake2s state;
938
939 blake2s_init(&state, outsize, key, keylen);
940
941 blake2s_update(&state, input1, input1len);
942 if (input2 != NULL)
943 blake2s_update(&state, input2, input2len);
944 blake2s_final(&state, out);
945 }
946
947 static void
948 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
949 const uint8_t input1[], const size_t input1len,
950 const uint8_t input2[], const size_t input2len)
951 {
952 struct blake2s state;
953 /* [W] 5.4: LABEL-MAC1 */
954 const char *label = "mac1----";
955 uint8_t key[WG_HASH_LEN];
956
957 blake2s_init(&state, sizeof(key), NULL, 0);
958 blake2s_update(&state, label, strlen(label));
959 blake2s_update(&state, input1, input1len);
960 blake2s_final(&state, key);
961
962 blake2s_init(&state, outsize, key, sizeof(key));
963 if (input2 != NULL)
964 blake2s_update(&state, input2, input2len);
965 blake2s_final(&state, out);
966 }
967
968 static void
969 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
970 const uint8_t input1[], const size_t input1len)
971 {
972 struct blake2s state;
973 /* [W] 5.4: LABEL-COOKIE */
974 const char *label = "cookie--";
975
976 blake2s_init(&state, outsize, NULL, 0);
977 blake2s_update(&state, label, strlen(label));
978 blake2s_update(&state, input1, input1len);
979 blake2s_final(&state, out);
980 }
981
982 static void
983 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
984 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
985 {
986
987 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
988
989 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
990 crypto_scalarmult_base(pubkey, privkey);
991 }
992
993 static void
994 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
995 const uint8_t privkey[WG_STATIC_KEY_LEN],
996 const uint8_t pubkey[WG_STATIC_KEY_LEN])
997 {
998
999 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1000
1001 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
1002 KASSERT(ret == 0);
1003 }
1004
1005 static void
1006 wg_algo_hmac(uint8_t out[], const size_t outlen,
1007 const uint8_t key[], const size_t keylen,
1008 const uint8_t in[], const size_t inlen)
1009 {
1010 #define IPAD 0x36
1011 #define OPAD 0x5c
1012 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
1013 uint8_t ipad[HMAC_BLOCK_LEN];
1014 uint8_t opad[HMAC_BLOCK_LEN];
1015 size_t i;
1016 struct blake2s state;
1017
1018 KASSERT(outlen == WG_HASH_LEN);
1019 KASSERT(keylen <= HMAC_BLOCK_LEN);
1020
1021 memcpy(hmackey, key, keylen);
1022
1023 for (i = 0; i < sizeof(hmackey); i++) {
1024 ipad[i] = hmackey[i] ^ IPAD;
1025 opad[i] = hmackey[i] ^ OPAD;
1026 }
1027
1028 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1029 blake2s_update(&state, ipad, sizeof(ipad));
1030 blake2s_update(&state, in, inlen);
1031 blake2s_final(&state, out);
1032
1033 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1034 blake2s_update(&state, opad, sizeof(opad));
1035 blake2s_update(&state, out, WG_HASH_LEN);
1036 blake2s_final(&state, out);
1037 #undef IPAD
1038 #undef OPAD
1039 }
1040
1041 static void
1042 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
1043 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
1044 const uint8_t input[], const size_t inputlen)
1045 {
1046 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
1047 uint8_t one[1];
1048
1049 /*
1050 * [N] 4.3: "an input_key_material byte sequence with length
1051 * either zero bytes, 32 bytes, or DHLEN bytes."
1052 */
1053 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
1054
1055 WG_DUMP_HASH("ckey", ckey);
1056 if (input != NULL)
1057 WG_DUMP_HASH("input", input);
1058 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
1059 input, inputlen);
1060 WG_DUMP_HASH("tmp1", tmp1);
1061 one[0] = 1;
1062 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1063 one, sizeof(one));
1064 WG_DUMP_HASH("out1", out1);
1065 if (out2 == NULL)
1066 return;
1067 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
1068 tmp2[WG_KDF_OUTPUT_LEN] = 2;
1069 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1070 tmp2, sizeof(tmp2));
1071 WG_DUMP_HASH("out2", out2);
1072 if (out3 == NULL)
1073 return;
1074 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
1075 tmp2[WG_KDF_OUTPUT_LEN] = 3;
1076 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1077 tmp2, sizeof(tmp2));
1078 WG_DUMP_HASH("out3", out3);
1079 }
1080
1081 static void __noinline
1082 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
1083 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1084 const uint8_t local_key[WG_STATIC_KEY_LEN],
1085 const uint8_t remote_key[WG_STATIC_KEY_LEN])
1086 {
1087 uint8_t dhout[WG_DH_OUTPUT_LEN];
1088
1089 wg_algo_dh(dhout, local_key, remote_key);
1090 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1091
1092 WG_DUMP_HASH("dhout", dhout);
1093 WG_DUMP_HASH("ckey", ckey);
1094 if (cipher_key != NULL)
1095 WG_DUMP_HASH("cipher_key", cipher_key);
1096 }
1097
1098 static void
1099 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1100 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1101 const uint8_t auth[], size_t authlen)
1102 {
1103 uint8_t nonce[(32 + 64) / 8] = {0};
1104 long long unsigned int outsize;
1105 int error __diagused;
1106
1107 le64enc(&nonce[4], counter);
1108
1109 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1110 plainsize, auth, authlen, NULL, nonce, key);
1111 KASSERT(error == 0);
1112 KASSERT(outsize == expected_outsize);
1113 }
1114
1115 static int
1116 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1117 const uint64_t counter, const uint8_t encrypted[],
1118 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1119 {
1120 uint8_t nonce[(32 + 64) / 8] = {0};
1121 long long unsigned int outsize;
1122 int error;
1123
1124 le64enc(&nonce[4], counter);
1125
1126 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1127 encrypted, encryptedsize, auth, authlen, nonce, key);
1128 if (error == 0)
1129 KASSERT(outsize == expected_outsize);
1130 return error;
1131 }
1132
1133 static void
1134 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1135 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1136 const uint8_t auth[], size_t authlen,
1137 const uint8_t nonce[WG_SALT_LEN])
1138 {
1139 long long unsigned int outsize;
1140 int error __diagused;
1141
1142 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1143 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1144 plain, plainsize, auth, authlen, NULL, nonce, key);
1145 KASSERT(error == 0);
1146 KASSERT(outsize == expected_outsize);
1147 }
1148
1149 static int
1150 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1151 const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
1152 const uint8_t auth[], size_t authlen,
1153 const uint8_t nonce[WG_SALT_LEN])
1154 {
1155 long long unsigned int outsize;
1156 int error;
1157
1158 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1159 encrypted, encryptedsize, auth, authlen, nonce, key);
1160 if (error == 0)
1161 KASSERT(outsize == expected_outsize);
1162 return error;
1163 }
1164
1165 static void
1166 wg_algo_tai64n(wg_timestamp_t timestamp)
1167 {
1168 struct timespec ts;
1169
1170 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1171 getnanotime(&ts);
1172 /* TAI64 label in external TAI64 format */
1173 be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
1174 /* second beginning from 1970 TAI */
1175 be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
1176 /* nanosecond in big-endian format */
1177 be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
1178 }
1179
1180 /*
1181 * wg_get_stable_session(wgp, psref)
1182 *
1183 * Get a passive reference to the current stable session, or
1184 * return NULL if there is no current stable session.
1185 *
1186 * The pointer is always there but the session is not necessarily
1187 * ESTABLISHED; if it is not ESTABLISHED, return NULL. However,
1188 * the session may transition from ESTABLISHED to DESTROYING while
1189 * holding the passive reference.
1190 */
1191 static struct wg_session *
1192 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1193 {
1194 int s;
1195 struct wg_session *wgs;
1196
1197 s = pserialize_read_enter();
1198 wgs = atomic_load_consume(&wgp->wgp_session_stable);
1199 if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
1200 wgs = NULL;
1201 else
1202 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1203 pserialize_read_exit(s);
1204
1205 return wgs;
1206 }
1207
1208 static void
1209 wg_put_session(struct wg_session *wgs, struct psref *psref)
1210 {
1211
1212 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1213 }
1214
1215 static void
1216 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1217 {
1218 struct wg_peer *wgp = wgs->wgs_peer;
1219 struct wg_session *wgs0 __diagused;
1220 void *garbage;
1221
1222 KASSERT(mutex_owned(wgp->wgp_lock));
1223 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1224
1225 /* Remove the session from the table. */
1226 wgs0 = thmap_del(wg->wg_sessions_byindex,
1227 &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1228 KASSERT(wgs0 == wgs);
1229 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1230
1231 /* Wait for passive references to drain. */
1232 pserialize_perform(wgp->wgp_psz);
1233 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1234
1235 /* Free memory, zero state, and transition to UNKNOWN. */
1236 thmap_gc(wg->wg_sessions_byindex, garbage);
1237 wg_clear_states(wgs);
1238 wgs->wgs_state = WGS_STATE_UNKNOWN;
1239 }
1240
1241 /*
1242 * wg_get_session_index(wg, wgs)
1243 *
1244 * Choose a session index for wgs->wgs_local_index, and store it
1245 * in wg's table of sessions by index.
1246 *
1247 * wgs must be the unstable session of its peer, and must be
1248 * transitioning out of the UNKNOWN state.
1249 */
1250 static void
1251 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1252 {
1253 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1254 struct wg_session *wgs0;
1255 uint32_t index;
1256
1257 KASSERT(mutex_owned(wgp->wgp_lock));
1258 KASSERT(wgs == wgp->wgp_session_unstable);
1259 KASSERT(wgs->wgs_state == WGS_STATE_UNKNOWN);
1260
1261 do {
1262 /* Pick a uniform random index. */
1263 index = cprng_strong32();
1264
1265 /* Try to take it. */
1266 wgs->wgs_local_index = index;
1267 wgs0 = thmap_put(wg->wg_sessions_byindex,
1268 &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1269
1270 /* If someone else beat us, start over. */
1271 } while (__predict_false(wgs0 != wgs));
1272 }
1273
1274 /*
1275 * wg_put_session_index(wg, wgs)
1276 *
1277 * Remove wgs from the table of sessions by index, wait for any
1278 * passive references to drain, and transition the session to the
1279 * UNKNOWN state.
1280 *
1281 * wgs must be the unstable session of its peer, and must not be
1282 * UNKNOWN or ESTABLISHED.
1283 */
1284 static void
1285 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1286 {
1287 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1288
1289 KASSERT(mutex_owned(wgp->wgp_lock));
1290 KASSERT(wgs == wgp->wgp_session_unstable);
1291 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1292 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1293
1294 wg_destroy_session(wg, wgs);
1295 psref_target_init(&wgs->wgs_psref, wg_psref_class);
1296 }
1297
1298 /*
1299 * Handshake patterns
1300 *
1301 * [W] 5: "These messages use the "IK" pattern from Noise"
1302 * [N] 7.5. Interactive handshake patterns (fundamental)
1303 * "The first character refers to the initiators static key:"
1304 * "I = Static key for initiator Immediately transmitted to responder,
1305 * despite reduced or absent identity hiding"
1306 * "The second character refers to the responders static key:"
1307 * "K = Static key for responder Known to initiator"
1308 * "IK:
1309 * <- s
1310 * ...
1311 * -> e, es, s, ss
1312 * <- e, ee, se"
1313 * [N] 9.4. Pattern modifiers
1314 * "IKpsk2:
1315 * <- s
1316 * ...
1317 * -> e, es, s, ss
1318 * <- e, ee, se, psk"
1319 */
1320 static void
1321 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1322 struct wg_session *wgs, struct wg_msg_init *wgmi)
1323 {
1324 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1325 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1326 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1327 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1328 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1329
1330 KASSERT(mutex_owned(wgp->wgp_lock));
1331 KASSERT(wgs == wgp->wgp_session_unstable);
1332 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1333
1334 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1335 wgmi->wgmi_sender = wgs->wgs_local_index;
1336
1337 /* [W] 5.4.2: First Message: Initiator to Responder */
1338
1339 /* Ci := HASH(CONSTRUCTION) */
1340 /* Hi := HASH(Ci || IDENTIFIER) */
1341 wg_init_key_and_hash(ckey, hash);
1342 /* Hi := HASH(Hi || Sr^pub) */
1343 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1344
1345 WG_DUMP_HASH("hash", hash);
1346
1347 /* [N] 2.2: "e" */
1348 /* Ei^priv, Ei^pub := DH-GENERATE() */
1349 wg_algo_generate_keypair(pubkey, privkey);
1350 /* Ci := KDF1(Ci, Ei^pub) */
1351 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1352 /* msg.ephemeral := Ei^pub */
1353 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1354 /* Hi := HASH(Hi || msg.ephemeral) */
1355 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1356
1357 WG_DUMP_HASH("ckey", ckey);
1358 WG_DUMP_HASH("hash", hash);
1359
1360 /* [N] 2.2: "es" */
1361 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1362 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1363
1364 /* [N] 2.2: "s" */
1365 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1366 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1367 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1368 hash, sizeof(hash));
1369 /* Hi := HASH(Hi || msg.static) */
1370 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1371
1372 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1373
1374 /* [N] 2.2: "ss" */
1375 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1376 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1377
1378 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1379 wg_timestamp_t timestamp;
1380 wg_algo_tai64n(timestamp);
1381 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1382 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1383 /* Hi := HASH(Hi || msg.timestamp) */
1384 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1385
1386 /* [W] 5.4.4 Cookie MACs */
1387 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1388 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1389 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1390 /* Need mac1 to decrypt a cookie from a cookie message */
1391 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1392 sizeof(wgp->wgp_last_sent_mac1));
1393 wgp->wgp_last_sent_mac1_valid = true;
1394
1395 if (wgp->wgp_latest_cookie_time == 0 ||
1396 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1397 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1398 else {
1399 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1400 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1401 (const uint8_t *)wgmi,
1402 offsetof(struct wg_msg_init, wgmi_mac2),
1403 NULL, 0);
1404 }
1405
1406 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1407 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1408 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1409 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1410 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1411 }
1412
1413 static void __noinline
1414 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1415 const struct sockaddr *src)
1416 {
1417 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1418 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1419 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1420 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1421 struct wg_peer *wgp;
1422 struct wg_session *wgs;
1423 int error, ret;
1424 struct psref psref_peer;
1425 uint8_t mac1[WG_MAC_LEN];
1426
1427 WG_TRACE("init msg received");
1428
1429 wg_algo_mac_mac1(mac1, sizeof(mac1),
1430 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1431 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1432
1433 /*
1434 * [W] 5.3: Denial of Service Mitigation & Cookies
1435 * "the responder, ..., must always reject messages with an invalid
1436 * msg.mac1"
1437 */
1438 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1439 WG_DLOG("mac1 is invalid\n");
1440 return;
1441 }
1442
1443 /*
1444 * [W] 5.4.2: First Message: Initiator to Responder
1445 * "When the responder receives this message, it does the same
1446 * operations so that its final state variables are identical,
1447 * replacing the operands of the DH function to produce equivalent
1448 * values."
1449 * Note that the following comments of operations are just copies of
1450 * the initiator's ones.
1451 */
1452
1453 /* Ci := HASH(CONSTRUCTION) */
1454 /* Hi := HASH(Ci || IDENTIFIER) */
1455 wg_init_key_and_hash(ckey, hash);
1456 /* Hi := HASH(Hi || Sr^pub) */
1457 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1458
1459 /* [N] 2.2: "e" */
1460 /* Ci := KDF1(Ci, Ei^pub) */
1461 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1462 sizeof(wgmi->wgmi_ephemeral));
1463 /* Hi := HASH(Hi || msg.ephemeral) */
1464 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1465
1466 WG_DUMP_HASH("ckey", ckey);
1467
1468 /* [N] 2.2: "es" */
1469 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1470 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1471
1472 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1473
1474 /* [N] 2.2: "s" */
1475 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1476 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1477 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1478 if (error != 0) {
1479 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1480 "wg_algo_aead_dec for secret key failed\n");
1481 return;
1482 }
1483 /* Hi := HASH(Hi || msg.static) */
1484 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1485
1486 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1487 if (wgp == NULL) {
1488 WG_DLOG("peer not found\n");
1489 return;
1490 }
1491
1492 /*
1493 * Lock the peer to serialize access to cookie state.
1494 *
1495 * XXX Can we safely avoid holding the lock across DH? Take it
1496 * just to verify mac2 and then unlock/DH/lock?
1497 */
1498 mutex_enter(wgp->wgp_lock);
1499
1500 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1501 WG_TRACE("under load");
1502 /*
1503 * [W] 5.3: Denial of Service Mitigation & Cookies
1504 * "the responder, ..., and when under load may reject messages
1505 * with an invalid msg.mac2. If the responder receives a
1506 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1507 * and is under load, it may respond with a cookie reply
1508 * message"
1509 */
1510 uint8_t zero[WG_MAC_LEN] = {0};
1511 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1512 WG_TRACE("sending a cookie message: no cookie included");
1513 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1514 wgmi->wgmi_mac1, src);
1515 goto out;
1516 }
1517 if (!wgp->wgp_last_sent_cookie_valid) {
1518 WG_TRACE("sending a cookie message: no cookie sent ever");
1519 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1520 wgmi->wgmi_mac1, src);
1521 goto out;
1522 }
1523 uint8_t mac2[WG_MAC_LEN];
1524 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1525 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1526 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1527 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1528 WG_DLOG("mac2 is invalid\n");
1529 goto out;
1530 }
1531 WG_TRACE("under load, but continue to sending");
1532 }
1533
1534 /* [N] 2.2: "ss" */
1535 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1536 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1537
1538 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1539 wg_timestamp_t timestamp;
1540 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1541 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1542 hash, sizeof(hash));
1543 if (error != 0) {
1544 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1545 "wg_algo_aead_dec for timestamp failed\n");
1546 goto out;
1547 }
1548 /* Hi := HASH(Hi || msg.timestamp) */
1549 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1550
1551 /*
1552 * [W] 5.1 "The responder keeps track of the greatest timestamp
1553 * received per peer and discards packets containing
1554 * timestamps less than or equal to it."
1555 */
1556 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1557 sizeof(timestamp));
1558 if (ret <= 0) {
1559 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1560 "invalid init msg: timestamp is old\n");
1561 goto out;
1562 }
1563 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1564
1565 /*
1566 * Message is good -- we're committing to handle it now, unless
1567 * we were already initiating a session.
1568 */
1569 wgs = wgp->wgp_session_unstable;
1570 switch (wgs->wgs_state) {
1571 case WGS_STATE_UNKNOWN: /* new session initiated by peer */
1572 wg_get_session_index(wg, wgs);
1573 break;
1574 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, drop */
1575 WG_TRACE("Session already initializing, ignoring the message");
1576 goto out;
1577 case WGS_STATE_INIT_PASSIVE: /* peer is retrying, start over */
1578 WG_TRACE("Session already initializing, destroying old states");
1579 wg_clear_states(wgs);
1580 /* keep session index */
1581 break;
1582 case WGS_STATE_ESTABLISHED: /* can't happen */
1583 panic("unstable session can't be established");
1584 break;
1585 case WGS_STATE_DESTROYING: /* rekey initiated by peer */
1586 WG_TRACE("Session destroying, but force to clear");
1587 callout_stop(&wgp->wgp_session_dtor_timer);
1588 wg_clear_states(wgs);
1589 /* keep session index */
1590 break;
1591 default:
1592 panic("invalid session state: %d", wgs->wgs_state);
1593 }
1594 wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
1595
1596 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1597 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1598 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1599 sizeof(wgmi->wgmi_ephemeral));
1600
1601 wg_update_endpoint_if_necessary(wgp, src);
1602
1603 (void)wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1604
1605 wg_calculate_keys(wgs, false);
1606 wg_clear_states(wgs);
1607
1608 out:
1609 mutex_exit(wgp->wgp_lock);
1610 wg_put_peer(wgp, &psref_peer);
1611 }
1612
1613 static struct socket *
1614 wg_get_so_by_af(struct wg_softc *wg, const int af)
1615 {
1616
1617 switch (af) {
1618 #ifdef INET
1619 case AF_INET:
1620 return wg->wg_so4;
1621 #endif
1622 #ifdef INET6
1623 case AF_INET6:
1624 return wg->wg_so6;
1625 #endif
1626 default:
1627 panic("wg: no such af: %d", af);
1628 }
1629 }
1630
1631 static struct socket *
1632 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1633 {
1634
1635 return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
1636 }
1637
1638 static struct wg_sockaddr *
1639 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1640 {
1641 struct wg_sockaddr *wgsa;
1642 int s;
1643
1644 s = pserialize_read_enter();
1645 wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1646 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1647 pserialize_read_exit(s);
1648
1649 return wgsa;
1650 }
1651
1652 static void
1653 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1654 {
1655
1656 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1657 }
1658
1659 static int
1660 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1661 {
1662 int error;
1663 struct socket *so;
1664 struct psref psref;
1665 struct wg_sockaddr *wgsa;
1666
1667 wgsa = wg_get_endpoint_sa(wgp, &psref);
1668 so = wg_get_so_by_peer(wgp, wgsa);
1669 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1670 wg_put_sa(wgp, wgsa, &psref);
1671
1672 return error;
1673 }
1674
1675 static int
1676 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1677 {
1678 int error;
1679 struct mbuf *m;
1680 struct wg_msg_init *wgmi;
1681 struct wg_session *wgs;
1682
1683 KASSERT(mutex_owned(wgp->wgp_lock));
1684
1685 wgs = wgp->wgp_session_unstable;
1686 /* XXX pull dispatch out into wg_task_send_init_message */
1687 switch (wgs->wgs_state) {
1688 case WGS_STATE_UNKNOWN: /* new session initiated by us */
1689 wg_get_session_index(wg, wgs);
1690 break;
1691 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, stop */
1692 WG_TRACE("Session already initializing, skip starting new one");
1693 return EBUSY;
1694 case WGS_STATE_INIT_PASSIVE: /* peer was trying -- XXX what now? */
1695 WG_TRACE("Session already initializing, destroying old states");
1696 wg_clear_states(wgs);
1697 /* keep session index */
1698 break;
1699 case WGS_STATE_ESTABLISHED: /* can't happen */
1700 panic("unstable session can't be established");
1701 break;
1702 case WGS_STATE_DESTROYING: /* rekey initiated by us too early */
1703 WG_TRACE("Session destroying");
1704 /* XXX should wait? */
1705 return EBUSY;
1706 }
1707 wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
1708
1709 m = m_gethdr(M_WAIT, MT_DATA);
1710 if (sizeof(*wgmi) > MHLEN) {
1711 m_clget(m, M_WAIT);
1712 CTASSERT(sizeof(*wgmi) <= MCLBYTES);
1713 }
1714 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1715 wgmi = mtod(m, struct wg_msg_init *);
1716 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1717
1718 error = wg->wg_ops->send_hs_msg(wgp, m);
1719 if (error == 0) {
1720 WG_TRACE("init msg sent");
1721
1722 if (wgp->wgp_handshake_start_time == 0)
1723 wgp->wgp_handshake_start_time = time_uptime;
1724 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1725 MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
1726 } else {
1727 wg_put_session_index(wg, wgs);
1728 /* Initiation failed; toss packet waiting for it if any. */
1729 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL)
1730 m_freem(m);
1731 }
1732
1733 return error;
1734 }
1735
1736 static void
1737 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1738 struct wg_session *wgs, struct wg_msg_resp *wgmr,
1739 const struct wg_msg_init *wgmi)
1740 {
1741 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1742 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1743 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1744 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1745 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1746
1747 KASSERT(mutex_owned(wgp->wgp_lock));
1748 KASSERT(wgs == wgp->wgp_session_unstable);
1749 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1750
1751 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1752 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1753
1754 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
1755 wgmr->wgmr_sender = wgs->wgs_local_index;
1756 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1757
1758 /* [W] 5.4.3 Second Message: Responder to Initiator */
1759
1760 /* [N] 2.2: "e" */
1761 /* Er^priv, Er^pub := DH-GENERATE() */
1762 wg_algo_generate_keypair(pubkey, privkey);
1763 /* Cr := KDF1(Cr, Er^pub) */
1764 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1765 /* msg.ephemeral := Er^pub */
1766 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1767 /* Hr := HASH(Hr || msg.ephemeral) */
1768 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1769
1770 WG_DUMP_HASH("ckey", ckey);
1771 WG_DUMP_HASH("hash", hash);
1772
1773 /* [N] 2.2: "ee" */
1774 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1775 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1776
1777 /* [N] 2.2: "se" */
1778 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1779 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1780
1781 /* [N] 9.2: "psk" */
1782 {
1783 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1784 /* Cr, r, k := KDF3(Cr, Q) */
1785 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1786 sizeof(wgp->wgp_psk));
1787 /* Hr := HASH(Hr || r) */
1788 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1789 }
1790
1791 /* msg.empty := AEAD(k, 0, e, Hr) */
1792 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1793 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1794 /* Hr := HASH(Hr || msg.empty) */
1795 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1796
1797 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1798
1799 /* [W] 5.4.4: Cookie MACs */
1800 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1801 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1802 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1803 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1804 /* Need mac1 to decrypt a cookie from a cookie message */
1805 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1806 sizeof(wgp->wgp_last_sent_mac1));
1807 wgp->wgp_last_sent_mac1_valid = true;
1808
1809 if (wgp->wgp_latest_cookie_time == 0 ||
1810 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1811 /* msg.mac2 := 0^16 */
1812 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1813 else {
1814 /* msg.mac2 := MAC(Lm, msg_b) */
1815 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1816 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1817 (const uint8_t *)wgmr,
1818 offsetof(struct wg_msg_resp, wgmr_mac2),
1819 NULL, 0);
1820 }
1821
1822 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1823 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1824 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1825 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1826 wgs->wgs_remote_index = wgmi->wgmi_sender;
1827 WG_DLOG("sender=%x\n", wgs->wgs_local_index);
1828 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1829 }
1830
1831 static void
1832 wg_swap_sessions(struct wg_peer *wgp)
1833 {
1834 struct wg_session *wgs, *wgs_prev;
1835
1836 KASSERT(mutex_owned(wgp->wgp_lock));
1837
1838 wgs = wgp->wgp_session_unstable;
1839 KASSERT(wgs->wgs_state == WGS_STATE_ESTABLISHED);
1840
1841 wgs_prev = wgp->wgp_session_stable;
1842 KASSERT(wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
1843 wgs_prev->wgs_state == WGS_STATE_UNKNOWN);
1844 atomic_store_release(&wgp->wgp_session_stable, wgs);
1845 wgp->wgp_session_unstable = wgs_prev;
1846 }
1847
1848 static void __noinline
1849 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1850 const struct sockaddr *src)
1851 {
1852 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1853 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1854 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1855 struct wg_peer *wgp;
1856 struct wg_session *wgs;
1857 struct psref psref;
1858 int error;
1859 uint8_t mac1[WG_MAC_LEN];
1860 struct wg_session *wgs_prev;
1861 struct mbuf *m;
1862
1863 wg_algo_mac_mac1(mac1, sizeof(mac1),
1864 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1865 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1866
1867 /*
1868 * [W] 5.3: Denial of Service Mitigation & Cookies
1869 * "the responder, ..., must always reject messages with an invalid
1870 * msg.mac1"
1871 */
1872 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
1873 WG_DLOG("mac1 is invalid\n");
1874 return;
1875 }
1876
1877 WG_TRACE("resp msg received");
1878 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
1879 if (wgs == NULL) {
1880 WG_TRACE("No session found");
1881 return;
1882 }
1883
1884 wgp = wgs->wgs_peer;
1885
1886 mutex_enter(wgp->wgp_lock);
1887
1888 /* If we weren't waiting for a handshake response, drop it. */
1889 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
1890 WG_TRACE("peer sent spurious handshake response, ignoring");
1891 goto out;
1892 }
1893
1894 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
1895 WG_TRACE("under load");
1896 /*
1897 * [W] 5.3: Denial of Service Mitigation & Cookies
1898 * "the responder, ..., and when under load may reject messages
1899 * with an invalid msg.mac2. If the responder receives a
1900 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1901 * and is under load, it may respond with a cookie reply
1902 * message"
1903 */
1904 uint8_t zero[WG_MAC_LEN] = {0};
1905 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
1906 WG_TRACE("sending a cookie message: no cookie included");
1907 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1908 wgmr->wgmr_mac1, src);
1909 goto out;
1910 }
1911 if (!wgp->wgp_last_sent_cookie_valid) {
1912 WG_TRACE("sending a cookie message: no cookie sent ever");
1913 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1914 wgmr->wgmr_mac1, src);
1915 goto out;
1916 }
1917 uint8_t mac2[WG_MAC_LEN];
1918 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1919 WG_COOKIE_LEN, (const uint8_t *)wgmr,
1920 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
1921 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
1922 WG_DLOG("mac2 is invalid\n");
1923 goto out;
1924 }
1925 WG_TRACE("under load, but continue to sending");
1926 }
1927
1928 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1929 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1930
1931 /*
1932 * [W] 5.4.3 Second Message: Responder to Initiator
1933 * "When the initiator receives this message, it does the same
1934 * operations so that its final state variables are identical,
1935 * replacing the operands of the DH function to produce equivalent
1936 * values."
1937 * Note that the following comments of operations are just copies of
1938 * the initiator's ones.
1939 */
1940
1941 /* [N] 2.2: "e" */
1942 /* Cr := KDF1(Cr, Er^pub) */
1943 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
1944 sizeof(wgmr->wgmr_ephemeral));
1945 /* Hr := HASH(Hr || msg.ephemeral) */
1946 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
1947
1948 WG_DUMP_HASH("ckey", ckey);
1949 WG_DUMP_HASH("hash", hash);
1950
1951 /* [N] 2.2: "ee" */
1952 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1953 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
1954 wgmr->wgmr_ephemeral);
1955
1956 /* [N] 2.2: "se" */
1957 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1958 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
1959
1960 /* [N] 9.2: "psk" */
1961 {
1962 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1963 /* Cr, r, k := KDF3(Cr, Q) */
1964 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1965 sizeof(wgp->wgp_psk));
1966 /* Hr := HASH(Hr || r) */
1967 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1968 }
1969
1970 {
1971 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
1972 /* msg.empty := AEAD(k, 0, e, Hr) */
1973 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
1974 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
1975 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1976 if (error != 0) {
1977 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1978 "wg_algo_aead_dec for empty message failed\n");
1979 goto out;
1980 }
1981 /* Hr := HASH(Hr || msg.empty) */
1982 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1983 }
1984
1985 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
1986 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
1987 wgs->wgs_remote_index = wgmr->wgmr_sender;
1988 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1989
1990 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1991 wgs->wgs_state = WGS_STATE_ESTABLISHED;
1992 wgs->wgs_time_established = time_uptime;
1993 wgs->wgs_time_last_data_sent = 0;
1994 wgs->wgs_is_initiator = true;
1995 wg_calculate_keys(wgs, true);
1996 wg_clear_states(wgs);
1997 WG_TRACE("WGS_STATE_ESTABLISHED");
1998
1999 callout_stop(&wgp->wgp_handshake_timeout_timer);
2000
2001 wg_swap_sessions(wgp);
2002 KASSERT(wgs == wgp->wgp_session_stable);
2003 wgs_prev = wgp->wgp_session_unstable;
2004 getnanotime(&wgp->wgp_last_handshake_time);
2005 wgp->wgp_handshake_start_time = 0;
2006 wgp->wgp_last_sent_mac1_valid = false;
2007 wgp->wgp_last_sent_cookie_valid = false;
2008
2009 wg_schedule_rekey_timer(wgp);
2010
2011 wg_update_endpoint_if_necessary(wgp, src);
2012
2013 /*
2014 * If we had a data packet queued up, send it; otherwise send a
2015 * keepalive message -- either way we have to send something
2016 * immediately or else the responder will never answer.
2017 */
2018 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
2019 kpreempt_disable();
2020 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
2021 M_SETCTX(m, wgp);
2022 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
2023 WGLOG(LOG_ERR, "pktq full, dropping\n");
2024 m_freem(m);
2025 }
2026 kpreempt_enable();
2027 } else {
2028 wg_send_keepalive_msg(wgp, wgs);
2029 }
2030
2031 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2032 /* Wait for wg_get_stable_session to drain. */
2033 pserialize_perform(wgp->wgp_psz);
2034
2035 /* Transition ESTABLISHED->DESTROYING. */
2036 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
2037
2038 /* We can't destroy the old session immediately */
2039 wg_schedule_session_dtor_timer(wgp);
2040 } else {
2041 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2042 "state=%d", wgs_prev->wgs_state);
2043 }
2044
2045 out:
2046 mutex_exit(wgp->wgp_lock);
2047 wg_put_session(wgs, &psref);
2048 }
2049
2050 static int
2051 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
2052 struct wg_session *wgs, const struct wg_msg_init *wgmi)
2053 {
2054 int error;
2055 struct mbuf *m;
2056 struct wg_msg_resp *wgmr;
2057
2058 KASSERT(mutex_owned(wgp->wgp_lock));
2059 KASSERT(wgs == wgp->wgp_session_unstable);
2060 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
2061
2062 m = m_gethdr(M_WAIT, MT_DATA);
2063 if (sizeof(*wgmr) > MHLEN) {
2064 m_clget(m, M_WAIT);
2065 CTASSERT(sizeof(*wgmr) <= MCLBYTES);
2066 }
2067 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
2068 wgmr = mtod(m, struct wg_msg_resp *);
2069 wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
2070
2071 error = wg->wg_ops->send_hs_msg(wgp, m);
2072 if (error == 0)
2073 WG_TRACE("resp msg sent");
2074 return error;
2075 }
2076
2077 static struct wg_peer *
2078 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
2079 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
2080 {
2081 struct wg_peer *wgp;
2082
2083 int s = pserialize_read_enter();
2084 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
2085 if (wgp != NULL)
2086 wg_get_peer(wgp, psref);
2087 pserialize_read_exit(s);
2088
2089 return wgp;
2090 }
2091
2092 static void
2093 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
2094 struct wg_msg_cookie *wgmc, const uint32_t sender,
2095 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
2096 {
2097 uint8_t cookie[WG_COOKIE_LEN];
2098 uint8_t key[WG_HASH_LEN];
2099 uint8_t addr[sizeof(struct in6_addr)];
2100 size_t addrlen;
2101 uint16_t uh_sport; /* be */
2102
2103 KASSERT(mutex_owned(wgp->wgp_lock));
2104
2105 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
2106 wgmc->wgmc_receiver = sender;
2107 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
2108
2109 /*
2110 * [W] 5.4.7: Under Load: Cookie Reply Message
2111 * "The secret variable, Rm, changes every two minutes to a
2112 * random value"
2113 */
2114 if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
2115 wgp->wgp_randval = cprng_strong32();
2116 wgp->wgp_last_genrandval_time = time_uptime;
2117 }
2118
2119 switch (src->sa_family) {
2120 case AF_INET: {
2121 const struct sockaddr_in *sin = satocsin(src);
2122 addrlen = sizeof(sin->sin_addr);
2123 memcpy(addr, &sin->sin_addr, addrlen);
2124 uh_sport = sin->sin_port;
2125 break;
2126 }
2127 #ifdef INET6
2128 case AF_INET6: {
2129 const struct sockaddr_in6 *sin6 = satocsin6(src);
2130 addrlen = sizeof(sin6->sin6_addr);
2131 memcpy(addr, &sin6->sin6_addr, addrlen);
2132 uh_sport = sin6->sin6_port;
2133 break;
2134 }
2135 #endif
2136 default:
2137 panic("invalid af=%d", src->sa_family);
2138 }
2139
2140 wg_algo_mac(cookie, sizeof(cookie),
2141 (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
2142 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2143 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2144 sizeof(wg->wg_pubkey));
2145 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2146 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2147
2148 /* Need to store to calculate mac2 */
2149 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2150 wgp->wgp_last_sent_cookie_valid = true;
2151 }
2152
2153 static int
2154 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2155 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
2156 const struct sockaddr *src)
2157 {
2158 int error;
2159 struct mbuf *m;
2160 struct wg_msg_cookie *wgmc;
2161
2162 KASSERT(mutex_owned(wgp->wgp_lock));
2163
2164 m = m_gethdr(M_WAIT, MT_DATA);
2165 if (sizeof(*wgmc) > MHLEN) {
2166 m_clget(m, M_WAIT);
2167 CTASSERT(sizeof(*wgmc) <= MCLBYTES);
2168 }
2169 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2170 wgmc = mtod(m, struct wg_msg_cookie *);
2171 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2172
2173 error = wg->wg_ops->send_hs_msg(wgp, m);
2174 if (error == 0)
2175 WG_TRACE("cookie msg sent");
2176 return error;
2177 }
2178
2179 static bool
2180 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2181 {
2182 #ifdef WG_DEBUG_PARAMS
2183 if (wg_force_underload)
2184 return true;
2185 #endif
2186
2187 /*
2188 * XXX we don't have a means of a load estimation. The purpose of
2189 * the mechanism is a DoS mitigation, so we consider frequent handshake
2190 * messages as (a kind of) load; if a message of the same type comes
2191 * to a peer within 1 second, we consider we are under load.
2192 */
2193 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2194 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2195 return (time_uptime - last) == 0;
2196 }
2197
2198 static void
2199 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2200 {
2201
2202 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2203
2204 /*
2205 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2206 */
2207 if (initiator) {
2208 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2209 wgs->wgs_chaining_key, NULL, 0);
2210 } else {
2211 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2212 wgs->wgs_chaining_key, NULL, 0);
2213 }
2214 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2215 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2216 }
2217
2218 static uint64_t
2219 wg_session_get_send_counter(struct wg_session *wgs)
2220 {
2221 #ifdef __HAVE_ATOMIC64_LOADSTORE
2222 return atomic_load_relaxed(&wgs->wgs_send_counter);
2223 #else
2224 uint64_t send_counter;
2225
2226 mutex_enter(&wgs->wgs_send_counter_lock);
2227 send_counter = wgs->wgs_send_counter;
2228 mutex_exit(&wgs->wgs_send_counter_lock);
2229
2230 return send_counter;
2231 #endif
2232 }
2233
2234 static uint64_t
2235 wg_session_inc_send_counter(struct wg_session *wgs)
2236 {
2237 #ifdef __HAVE_ATOMIC64_LOADSTORE
2238 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2239 #else
2240 uint64_t send_counter;
2241
2242 mutex_enter(&wgs->wgs_send_counter_lock);
2243 send_counter = wgs->wgs_send_counter++;
2244 mutex_exit(&wgs->wgs_send_counter_lock);
2245
2246 return send_counter;
2247 #endif
2248 }
2249
2250 static void
2251 wg_clear_states(struct wg_session *wgs)
2252 {
2253
2254 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2255
2256 wgs->wgs_send_counter = 0;
2257 sliwin_reset(&wgs->wgs_recvwin->window);
2258
2259 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2260 wgs_clear(handshake_hash);
2261 wgs_clear(chaining_key);
2262 wgs_clear(ephemeral_key_pub);
2263 wgs_clear(ephemeral_key_priv);
2264 wgs_clear(ephemeral_key_peer);
2265 #undef wgs_clear
2266 }
2267
2268 static struct wg_session *
2269 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2270 struct psref *psref)
2271 {
2272 struct wg_session *wgs;
2273
2274 int s = pserialize_read_enter();
2275 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2276 if (wgs != NULL) {
2277 KASSERT(atomic_load_relaxed(&wgs->wgs_state) !=
2278 WGS_STATE_UNKNOWN);
2279 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2280 }
2281 pserialize_read_exit(s);
2282
2283 return wgs;
2284 }
2285
2286 static void
2287 wg_schedule_rekey_timer(struct wg_peer *wgp)
2288 {
2289 int timeout = MIN(wg_rekey_after_time, (unsigned)(INT_MAX / hz));
2290
2291 callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
2292 }
2293
2294 static void
2295 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2296 {
2297 struct mbuf *m;
2298
2299 /*
2300 * [W] 6.5 Passive Keepalive
2301 * "A keepalive message is simply a transport data message with
2302 * a zero-length encapsulated encrypted inner-packet."
2303 */
2304 m = m_gethdr(M_WAIT, MT_DATA);
2305 wg_send_data_msg(wgp, wgs, m);
2306 }
2307
2308 static bool
2309 wg_need_to_send_init_message(struct wg_session *wgs)
2310 {
2311 /*
2312 * [W] 6.2 Transport Message Limits
2313 * "if a peer is the initiator of a current secure session,
2314 * WireGuard will send a handshake initiation message to begin
2315 * a new secure session ... if after receiving a transport data
2316 * message, the current secure session is (REJECT-AFTER-TIME
2317 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2318 * not yet acted upon this event."
2319 */
2320 return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
2321 (time_uptime - wgs->wgs_time_established) >=
2322 (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
2323 }
2324
2325 static void
2326 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
2327 {
2328
2329 mutex_enter(wgp->wgp_intr_lock);
2330 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2331 if (wgp->wgp_tasks == 0)
2332 /*
2333 * XXX If the current CPU is already loaded -- e.g., if
2334 * there's already a bunch of handshakes queued up --
2335 * consider tossing this over to another CPU to
2336 * distribute the load.
2337 */
2338 workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
2339 wgp->wgp_tasks |= task;
2340 mutex_exit(wgp->wgp_intr_lock);
2341 }
2342
2343 static void
2344 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2345 {
2346 struct wg_sockaddr *wgsa_prev;
2347
2348 WG_TRACE("Changing endpoint");
2349
2350 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2351 wgsa_prev = wgp->wgp_endpoint;
2352 atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2353 wgp->wgp_endpoint0 = wgsa_prev;
2354 atomic_store_release(&wgp->wgp_endpoint_available, true);
2355
2356 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2357 }
2358
2359 static bool
2360 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2361 {
2362 uint16_t packet_len;
2363 const struct ip *ip;
2364
2365 if (__predict_false(decrypted_len < sizeof(struct ip)))
2366 return false;
2367
2368 ip = (const struct ip *)packet;
2369 if (ip->ip_v == 4)
2370 *af = AF_INET;
2371 else if (ip->ip_v == 6)
2372 *af = AF_INET6;
2373 else
2374 return false;
2375
2376 WG_DLOG("af=%d\n", *af);
2377
2378 switch (*af) {
2379 #ifdef INET
2380 case AF_INET:
2381 packet_len = ntohs(ip->ip_len);
2382 break;
2383 #endif
2384 #ifdef INET6
2385 case AF_INET6: {
2386 const struct ip6_hdr *ip6;
2387
2388 if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
2389 return false;
2390
2391 ip6 = (const struct ip6_hdr *)packet;
2392 packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2393 break;
2394 }
2395 #endif
2396 default:
2397 return false;
2398 }
2399
2400 WG_DLOG("packet_len=%u\n", packet_len);
2401 if (packet_len > decrypted_len)
2402 return false;
2403
2404 return true;
2405 }
2406
2407 static bool
2408 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2409 int af, char *packet)
2410 {
2411 struct sockaddr_storage ss;
2412 struct sockaddr *sa;
2413 struct psref psref;
2414 struct wg_peer *wgp;
2415 bool ok;
2416
2417 /*
2418 * II CRYPTOKEY ROUTING
2419 * "it will only accept it if its source IP resolves in the
2420 * table to the public key used in the secure session for
2421 * decrypting it."
2422 */
2423
2424 if (af == AF_INET) {
2425 const struct ip *ip = (const struct ip *)packet;
2426 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2427 sockaddr_in_init(sin, &ip->ip_src, 0);
2428 sa = sintosa(sin);
2429 #ifdef INET6
2430 } else {
2431 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2432 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2433 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2434 sa = sin6tosa(sin6);
2435 #endif
2436 }
2437
2438 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2439 ok = (wgp == wgp_expected);
2440 if (wgp != NULL)
2441 wg_put_peer(wgp, &psref);
2442
2443 return ok;
2444 }
2445
2446 static void
2447 wg_session_dtor_timer(void *arg)
2448 {
2449 struct wg_peer *wgp = arg;
2450
2451 WG_TRACE("enter");
2452
2453 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2454 }
2455
2456 static void
2457 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2458 {
2459
2460 /* 1 second grace period */
2461 callout_schedule(&wgp->wgp_session_dtor_timer, hz);
2462 }
2463
2464 static bool
2465 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2466 {
2467 if (sa1->sa_family != sa2->sa_family)
2468 return false;
2469
2470 switch (sa1->sa_family) {
2471 #ifdef INET
2472 case AF_INET:
2473 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2474 #endif
2475 #ifdef INET6
2476 case AF_INET6:
2477 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2478 #endif
2479 default:
2480 return false;
2481 }
2482 }
2483
2484 static void
2485 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2486 const struct sockaddr *src)
2487 {
2488 struct wg_sockaddr *wgsa;
2489 struct psref psref;
2490
2491 wgsa = wg_get_endpoint_sa(wgp, &psref);
2492
2493 #ifdef WG_DEBUG_LOG
2494 char oldaddr[128], newaddr[128];
2495 sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2496 sockaddr_format(src, newaddr, sizeof(newaddr));
2497 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2498 #endif
2499
2500 /*
2501 * III: "Since the packet has authenticated correctly, the source IP of
2502 * the outer UDP/IP packet is used to update the endpoint for peer..."
2503 */
2504 if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2505 !sockaddr_port_match(src, wgsatosa(wgsa)))) {
2506 /* XXX We can't change the endpoint twice in a short period */
2507 if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2508 wg_change_endpoint(wgp, src);
2509 }
2510 }
2511
2512 wg_put_sa(wgp, wgsa, &psref);
2513 }
2514
2515 static void __noinline
2516 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2517 const struct sockaddr *src)
2518 {
2519 struct wg_msg_data *wgmd;
2520 char *encrypted_buf = NULL, *decrypted_buf;
2521 size_t encrypted_len, decrypted_len;
2522 struct wg_session *wgs;
2523 struct wg_peer *wgp;
2524 int state;
2525 size_t mlen;
2526 struct psref psref;
2527 int error, af;
2528 bool success, free_encrypted_buf = false, ok;
2529 struct mbuf *n;
2530
2531 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2532 wgmd = mtod(m, struct wg_msg_data *);
2533
2534 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2535 WG_TRACE("data");
2536
2537 /* Find the putative session, or drop. */
2538 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2539 if (wgs == NULL) {
2540 WG_TRACE("No session found");
2541 m_freem(m);
2542 return;
2543 }
2544
2545 /*
2546 * We are only ready to handle data when in INIT_PASSIVE,
2547 * ESTABLISHED, or DESTROYING. All transitions out of that
2548 * state dissociate the session index and drain psrefs.
2549 */
2550 state = atomic_load_relaxed(&wgs->wgs_state);
2551 switch (state) {
2552 case WGS_STATE_UNKNOWN:
2553 panic("wg session %p in unknown state has session index %u",
2554 wgs, wgmd->wgmd_receiver);
2555 case WGS_STATE_INIT_ACTIVE:
2556 WG_TRACE("not yet ready for data");
2557 goto out;
2558 case WGS_STATE_INIT_PASSIVE:
2559 case WGS_STATE_ESTABLISHED:
2560 case WGS_STATE_DESTROYING:
2561 break;
2562 }
2563
2564 /*
2565 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2566 * to update the endpoint if authentication succeeds.
2567 */
2568 wgp = wgs->wgs_peer;
2569
2570 /*
2571 * Reject outrageously wrong sequence numbers before doing any
2572 * crypto work or taking any locks.
2573 */
2574 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2575 le64toh(wgmd->wgmd_counter));
2576 if (error) {
2577 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2578 "out-of-window packet: %"PRIu64"\n",
2579 le64toh(wgmd->wgmd_counter));
2580 goto out;
2581 }
2582
2583 /* Ensure the payload and authenticator are contiguous. */
2584 mlen = m_length(m);
2585 encrypted_len = mlen - sizeof(*wgmd);
2586 if (encrypted_len < WG_AUTHTAG_LEN) {
2587 WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
2588 goto out;
2589 }
2590 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2591 if (success) {
2592 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2593 } else {
2594 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2595 if (encrypted_buf == NULL) {
2596 WG_DLOG("failed to allocate encrypted_buf\n");
2597 goto out;
2598 }
2599 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2600 free_encrypted_buf = true;
2601 }
2602 /* m_ensure_contig may change m regardless of its result */
2603 KASSERT(m->m_len >= sizeof(*wgmd));
2604 wgmd = mtod(m, struct wg_msg_data *);
2605
2606 /*
2607 * Get a buffer for the plaintext. Add WG_AUTHTAG_LEN to avoid
2608 * a zero-length buffer (XXX). Drop if plaintext is longer
2609 * than MCLBYTES (XXX).
2610 */
2611 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2612 if (decrypted_len > MCLBYTES) {
2613 /* FIXME handle larger data than MCLBYTES */
2614 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2615 goto out;
2616 }
2617 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2618 if (n == NULL) {
2619 WG_DLOG("wg_get_mbuf failed\n");
2620 goto out;
2621 }
2622 decrypted_buf = mtod(n, char *);
2623
2624 /* Decrypt and verify the packet. */
2625 WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
2626 error = wg_algo_aead_dec(decrypted_buf,
2627 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2628 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
2629 encrypted_len, NULL, 0);
2630 if (error != 0) {
2631 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2632 "failed to wg_algo_aead_dec\n");
2633 m_freem(n);
2634 goto out;
2635 }
2636 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2637
2638 /* Packet is genuine. Reject it if a replay or just too old. */
2639 mutex_enter(&wgs->wgs_recvwin->lock);
2640 error = sliwin_update(&wgs->wgs_recvwin->window,
2641 le64toh(wgmd->wgmd_counter));
2642 mutex_exit(&wgs->wgs_recvwin->lock);
2643 if (error) {
2644 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2645 "replay or out-of-window packet: %"PRIu64"\n",
2646 le64toh(wgmd->wgmd_counter));
2647 m_freem(n);
2648 goto out;
2649 }
2650
2651 /* We're done with m now; free it and chuck the pointers. */
2652 m_freem(m);
2653 m = NULL;
2654 wgmd = NULL;
2655
2656 /*
2657 * Validate the encapsulated packet header and get the address
2658 * family, or drop.
2659 */
2660 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2661 if (!ok) {
2662 m_freem(n);
2663 goto out;
2664 }
2665
2666 /*
2667 * The packet is genuine. Update the peer's endpoint if the
2668 * source address changed.
2669 *
2670 * XXX How to prevent DoS by replaying genuine packets from the
2671 * wrong source address?
2672 */
2673 wg_update_endpoint_if_necessary(wgp, src);
2674
2675 /* Submit it into our network stack if routable. */
2676 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2677 if (ok) {
2678 wg->wg_ops->input(&wg->wg_if, n, af);
2679 } else {
2680 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2681 "invalid source address\n");
2682 m_freem(n);
2683 /*
2684 * The inner address is invalid however the session is valid
2685 * so continue the session processing below.
2686 */
2687 }
2688 n = NULL;
2689
2690 /* Update the state machine if necessary. */
2691 if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
2692 /*
2693 * We were waiting for the initiator to send their
2694 * first data transport message, and that has happened.
2695 * Schedule a task to establish this session.
2696 */
2697 wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
2698 } else {
2699 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2700 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2701 }
2702 /*
2703 * [W] 6.5 Passive Keepalive
2704 * "If a peer has received a validly-authenticated transport
2705 * data message (section 5.4.6), but does not have any packets
2706 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2707 * a keepalive message."
2708 */
2709 WG_DLOG("time_uptime=%ju wgs_time_last_data_sent=%ju\n",
2710 (uintmax_t)time_uptime,
2711 (uintmax_t)wgs->wgs_time_last_data_sent);
2712 if ((time_uptime - wgs->wgs_time_last_data_sent) >=
2713 wg_keepalive_timeout) {
2714 WG_TRACE("Schedule sending keepalive message");
2715 /*
2716 * We can't send a keepalive message here to avoid
2717 * a deadlock; we already hold the solock of a socket
2718 * that is used to send the message.
2719 */
2720 wg_schedule_peer_task(wgp,
2721 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2722 }
2723 }
2724 out:
2725 wg_put_session(wgs, &psref);
2726 if (m != NULL)
2727 m_freem(m);
2728 if (free_encrypted_buf)
2729 kmem_intr_free(encrypted_buf, encrypted_len);
2730 }
2731
2732 static void __noinline
2733 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2734 {
2735 struct wg_session *wgs;
2736 struct wg_peer *wgp;
2737 struct psref psref;
2738 int error;
2739 uint8_t key[WG_HASH_LEN];
2740 uint8_t cookie[WG_COOKIE_LEN];
2741
2742 WG_TRACE("cookie msg received");
2743
2744 /* Find the putative session. */
2745 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2746 if (wgs == NULL) {
2747 WG_TRACE("No session found");
2748 return;
2749 }
2750
2751 /* Lock the peer so we can update the cookie state. */
2752 wgp = wgs->wgs_peer;
2753 mutex_enter(wgp->wgp_lock);
2754
2755 if (!wgp->wgp_last_sent_mac1_valid) {
2756 WG_TRACE("No valid mac1 sent (or expired)");
2757 goto out;
2758 }
2759
2760 /* Decrypt the cookie and store it for later handshake retry. */
2761 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
2762 sizeof(wgp->wgp_pubkey));
2763 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
2764 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
2765 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
2766 wgmc->wgmc_salt);
2767 if (error != 0) {
2768 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2769 "wg_algo_aead_dec for cookie failed: error=%d\n", error);
2770 goto out;
2771 }
2772 /*
2773 * [W] 6.6: Interaction with Cookie Reply System
2774 * "it should simply store the decrypted cookie value from the cookie
2775 * reply message, and wait for the expiration of the REKEY-TIMEOUT
2776 * timer for retrying a handshake initiation message."
2777 */
2778 wgp->wgp_latest_cookie_time = time_uptime;
2779 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
2780 out:
2781 mutex_exit(wgp->wgp_lock);
2782 wg_put_session(wgs, &psref);
2783 }
2784
2785 static struct mbuf *
2786 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
2787 {
2788 struct wg_msg wgm;
2789 size_t mbuflen;
2790 size_t msglen;
2791
2792 /*
2793 * Get the mbuf chain length. It is already guaranteed, by
2794 * wg_overudp_cb, to be large enough for a struct wg_msg.
2795 */
2796 mbuflen = m_length(m);
2797 KASSERT(mbuflen >= sizeof(struct wg_msg));
2798
2799 /*
2800 * Copy the message header (32-bit message type) out -- we'll
2801 * worry about contiguity and alignment later.
2802 */
2803 m_copydata(m, 0, sizeof(wgm), &wgm);
2804 switch (le32toh(wgm.wgm_type)) {
2805 case WG_MSG_TYPE_INIT:
2806 msglen = sizeof(struct wg_msg_init);
2807 break;
2808 case WG_MSG_TYPE_RESP:
2809 msglen = sizeof(struct wg_msg_resp);
2810 break;
2811 case WG_MSG_TYPE_COOKIE:
2812 msglen = sizeof(struct wg_msg_cookie);
2813 break;
2814 case WG_MSG_TYPE_DATA:
2815 msglen = sizeof(struct wg_msg_data);
2816 break;
2817 default:
2818 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
2819 "Unexpected msg type: %u\n", le32toh(wgm.wgm_type));
2820 goto error;
2821 }
2822
2823 /* Verify the mbuf chain is long enough for this type of message. */
2824 if (__predict_false(mbuflen < msglen)) {
2825 WG_DLOG("Invalid msg size: mbuflen=%lu type=%u\n", mbuflen,
2826 le32toh(wgm.wgm_type));
2827 goto error;
2828 }
2829
2830 /* Make the message header contiguous if necessary. */
2831 if (__predict_false(m->m_len < msglen)) {
2832 m = m_pullup(m, msglen);
2833 if (m == NULL)
2834 return NULL;
2835 }
2836
2837 return m;
2838
2839 error:
2840 m_freem(m);
2841 return NULL;
2842 }
2843
2844 static void
2845 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
2846 const struct sockaddr *src)
2847 {
2848 struct wg_msg *wgm;
2849
2850 m = wg_validate_msg_header(wg, m);
2851 if (__predict_false(m == NULL))
2852 return;
2853
2854 KASSERT(m->m_len >= sizeof(struct wg_msg));
2855 wgm = mtod(m, struct wg_msg *);
2856 switch (le32toh(wgm->wgm_type)) {
2857 case WG_MSG_TYPE_INIT:
2858 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
2859 break;
2860 case WG_MSG_TYPE_RESP:
2861 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
2862 break;
2863 case WG_MSG_TYPE_COOKIE:
2864 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
2865 break;
2866 case WG_MSG_TYPE_DATA:
2867 wg_handle_msg_data(wg, m, src);
2868 /* wg_handle_msg_data frees m for us */
2869 return;
2870 default:
2871 panic("invalid message type: %d", le32toh(wgm->wgm_type));
2872 }
2873
2874 m_freem(m);
2875 }
2876
2877 static void
2878 wg_receive_packets(struct wg_softc *wg, const int af)
2879 {
2880
2881 for (;;) {
2882 int error, flags;
2883 struct socket *so;
2884 struct mbuf *m = NULL;
2885 struct uio dummy_uio;
2886 struct mbuf *paddr = NULL;
2887 struct sockaddr *src;
2888
2889 so = wg_get_so_by_af(wg, af);
2890 flags = MSG_DONTWAIT;
2891 dummy_uio.uio_resid = 1000000000;
2892
2893 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
2894 &flags);
2895 if (error || m == NULL) {
2896 //if (error == EWOULDBLOCK)
2897 return;
2898 }
2899
2900 KASSERT(paddr != NULL);
2901 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
2902 src = mtod(paddr, struct sockaddr *);
2903
2904 wg_handle_packet(wg, m, src);
2905 }
2906 }
2907
2908 static void
2909 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
2910 {
2911
2912 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
2913 }
2914
2915 static void
2916 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
2917 {
2918
2919 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
2920 }
2921
2922 static void
2923 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
2924 {
2925 struct wg_session *wgs;
2926
2927 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
2928
2929 KASSERT(mutex_owned(wgp->wgp_lock));
2930
2931 if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
2932 WGLOG(LOG_DEBUG, "No endpoint available\n");
2933 /* XXX should do something? */
2934 return;
2935 }
2936
2937 wgs = wgp->wgp_session_stable;
2938 if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
2939 /* XXX What if the unstable session is already INIT_ACTIVE? */
2940 wg_send_handshake_msg_init(wg, wgp);
2941 } else {
2942 /* rekey */
2943 wgs = wgp->wgp_session_unstable;
2944 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2945 wg_send_handshake_msg_init(wg, wgp);
2946 }
2947 }
2948
2949 static void
2950 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
2951 {
2952 struct wg_session *wgs;
2953
2954 WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
2955
2956 KASSERT(mutex_owned(wgp->wgp_lock));
2957 KASSERT(wgp->wgp_handshake_start_time != 0);
2958
2959 wgs = wgp->wgp_session_unstable;
2960 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2961 return;
2962
2963 /*
2964 * XXX no real need to assign a new index here, but we do need
2965 * to transition to UNKNOWN temporarily
2966 */
2967 wg_put_session_index(wg, wgs);
2968
2969 /* [W] 6.4 Handshake Initiation Retransmission */
2970 if ((time_uptime - wgp->wgp_handshake_start_time) >
2971 wg_rekey_attempt_time) {
2972 /* Give up handshaking */
2973 wgp->wgp_handshake_start_time = 0;
2974 WG_TRACE("give up");
2975
2976 /*
2977 * If a new data packet comes, handshaking will be retried
2978 * and a new session would be established at that time,
2979 * however we don't want to send pending packets then.
2980 */
2981 wg_purge_pending_packets(wgp);
2982 return;
2983 }
2984
2985 wg_task_send_init_message(wg, wgp);
2986 }
2987
2988 static void
2989 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
2990 {
2991 struct wg_session *wgs, *wgs_prev;
2992 struct mbuf *m;
2993
2994 KASSERT(mutex_owned(wgp->wgp_lock));
2995
2996 wgs = wgp->wgp_session_unstable;
2997 if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
2998 /* XXX Can this happen? */
2999 return;
3000
3001 wgs->wgs_state = WGS_STATE_ESTABLISHED;
3002 wgs->wgs_time_established = time_uptime;
3003 wgs->wgs_time_last_data_sent = 0;
3004 wgs->wgs_is_initiator = false;
3005 WG_TRACE("WGS_STATE_ESTABLISHED");
3006
3007 wg_swap_sessions(wgp);
3008 KASSERT(wgs == wgp->wgp_session_stable);
3009 wgs_prev = wgp->wgp_session_unstable;
3010 getnanotime(&wgp->wgp_last_handshake_time);
3011 wgp->wgp_handshake_start_time = 0;
3012 wgp->wgp_last_sent_mac1_valid = false;
3013 wgp->wgp_last_sent_cookie_valid = false;
3014
3015 /* If we had a data packet queued up, send it. */
3016 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
3017 kpreempt_disable();
3018 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
3019 M_SETCTX(m, wgp);
3020 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
3021 WGLOG(LOG_ERR, "pktq full, dropping\n");
3022 m_freem(m);
3023 }
3024 kpreempt_enable();
3025 }
3026
3027 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
3028 /* Wait for wg_get_stable_session to drain. */
3029 pserialize_perform(wgp->wgp_psz);
3030
3031 /* Transition ESTABLISHED->DESTROYING. */
3032 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
3033
3034 /* We can't destroy the old session immediately */
3035 wg_schedule_session_dtor_timer(wgp);
3036 } else {
3037 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
3038 "state=%d", wgs_prev->wgs_state);
3039 wg_clear_states(wgs_prev);
3040 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
3041 }
3042 }
3043
3044 static void
3045 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
3046 {
3047
3048 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
3049
3050 KASSERT(mutex_owned(wgp->wgp_lock));
3051
3052 if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
3053 pserialize_perform(wgp->wgp_psz);
3054 mutex_exit(wgp->wgp_lock);
3055 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
3056 wg_psref_class);
3057 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
3058 wg_psref_class);
3059 mutex_enter(wgp->wgp_lock);
3060 atomic_store_release(&wgp->wgp_endpoint_changing, 0);
3061 }
3062 }
3063
3064 static void
3065 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
3066 {
3067 struct wg_session *wgs;
3068
3069 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
3070
3071 KASSERT(mutex_owned(wgp->wgp_lock));
3072
3073 wgs = wgp->wgp_session_stable;
3074 if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
3075 return;
3076
3077 wg_send_keepalive_msg(wgp, wgs);
3078 }
3079
3080 static void
3081 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
3082 {
3083 struct wg_session *wgs;
3084
3085 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
3086
3087 KASSERT(mutex_owned(wgp->wgp_lock));
3088
3089 wgs = wgp->wgp_session_unstable;
3090 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
3091 wg_put_session_index(wg, wgs);
3092 }
3093 }
3094
3095 static void
3096 wg_peer_work(struct work *wk, void *cookie)
3097 {
3098 struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
3099 struct wg_softc *wg = wgp->wgp_sc;
3100 unsigned int tasks;
3101
3102 mutex_enter(wgp->wgp_intr_lock);
3103 while ((tasks = wgp->wgp_tasks) != 0) {
3104 wgp->wgp_tasks = 0;
3105 mutex_exit(wgp->wgp_intr_lock);
3106
3107 mutex_enter(wgp->wgp_lock);
3108 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
3109 wg_task_send_init_message(wg, wgp);
3110 if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
3111 wg_task_retry_handshake(wg, wgp);
3112 if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
3113 wg_task_establish_session(wg, wgp);
3114 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
3115 wg_task_endpoint_changed(wg, wgp);
3116 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
3117 wg_task_send_keepalive_message(wg, wgp);
3118 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
3119 wg_task_destroy_prev_session(wg, wgp);
3120 mutex_exit(wgp->wgp_lock);
3121
3122 mutex_enter(wgp->wgp_intr_lock);
3123 }
3124 mutex_exit(wgp->wgp_intr_lock);
3125 }
3126
3127 static void
3128 wg_job(struct threadpool_job *job)
3129 {
3130 struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
3131 int bound, upcalls;
3132
3133 mutex_enter(wg->wg_intr_lock);
3134 while ((upcalls = wg->wg_upcalls) != 0) {
3135 wg->wg_upcalls = 0;
3136 mutex_exit(wg->wg_intr_lock);
3137 bound = curlwp_bind();
3138 if (ISSET(upcalls, WG_UPCALL_INET))
3139 wg_receive_packets(wg, AF_INET);
3140 if (ISSET(upcalls, WG_UPCALL_INET6))
3141 wg_receive_packets(wg, AF_INET6);
3142 curlwp_bindx(bound);
3143 mutex_enter(wg->wg_intr_lock);
3144 }
3145 threadpool_job_done(job);
3146 mutex_exit(wg->wg_intr_lock);
3147 }
3148
3149 static int
3150 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3151 {
3152 int error;
3153 uint16_t old_port = wg->wg_listen_port;
3154
3155 if (port != 0 && old_port == port)
3156 return 0;
3157
3158 struct sockaddr_in _sin, *sin = &_sin;
3159 sin->sin_len = sizeof(*sin);
3160 sin->sin_family = AF_INET;
3161 sin->sin_addr.s_addr = INADDR_ANY;
3162 sin->sin_port = htons(port);
3163
3164 error = sobind(wg->wg_so4, sintosa(sin), curlwp);
3165 if (error != 0)
3166 return error;
3167
3168 #ifdef INET6
3169 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3170 sin6->sin6_len = sizeof(*sin6);
3171 sin6->sin6_family = AF_INET6;
3172 sin6->sin6_addr = in6addr_any;
3173 sin6->sin6_port = htons(port);
3174
3175 error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
3176 if (error != 0)
3177 return error;
3178 #endif
3179
3180 wg->wg_listen_port = port;
3181
3182 return 0;
3183 }
3184
3185 static void
3186 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
3187 {
3188 struct wg_softc *wg = cookie;
3189 int reason;
3190
3191 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3192 WG_UPCALL_INET :
3193 WG_UPCALL_INET6;
3194
3195 mutex_enter(wg->wg_intr_lock);
3196 wg->wg_upcalls |= reason;
3197 threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
3198 mutex_exit(wg->wg_intr_lock);
3199 }
3200
3201 static int
3202 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3203 struct sockaddr *src, void *arg)
3204 {
3205 struct wg_softc *wg = arg;
3206 struct wg_msg wgm;
3207 struct mbuf *m = *mp;
3208
3209 WG_TRACE("enter");
3210
3211 /* Verify the mbuf chain is long enough to have a wg msg header. */
3212 KASSERT(offset <= m_length(m));
3213 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3214 /* drop on the floor */
3215 m_freem(m);
3216 return -1;
3217 }
3218
3219 /*
3220 * Copy the message header (32-bit message type) out -- we'll
3221 * worry about contiguity and alignment later.
3222 */
3223 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3224 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3225
3226 /*
3227 * Handle DATA packets promptly as they arrive. Other packets
3228 * may require expensive public-key crypto and are not as
3229 * sensitive to latency, so defer them to the worker thread.
3230 */
3231 switch (le32toh(wgm.wgm_type)) {
3232 case WG_MSG_TYPE_DATA:
3233 /* handle immediately */
3234 m_adj(m, offset);
3235 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3236 m = m_pullup(m, sizeof(struct wg_msg_data));
3237 if (m == NULL)
3238 return -1;
3239 }
3240 wg_handle_msg_data(wg, m, src);
3241 *mp = NULL;
3242 return 1;
3243 case WG_MSG_TYPE_INIT:
3244 case WG_MSG_TYPE_RESP:
3245 case WG_MSG_TYPE_COOKIE:
3246 /* pass through to so_receive in wg_receive_packets */
3247 return 0;
3248 default:
3249 /* drop on the floor */
3250 m_freem(m);
3251 return -1;
3252 }
3253 }
3254
3255 static int
3256 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
3257 {
3258 int error;
3259 struct socket *so;
3260
3261 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3262 if (error != 0)
3263 return error;
3264
3265 solock(so);
3266 so->so_upcallarg = wg;
3267 so->so_upcall = wg_so_upcall;
3268 so->so_rcv.sb_flags |= SB_UPCALL;
3269 inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3270 sounlock(so);
3271
3272 *sop = so;
3273
3274 return 0;
3275 }
3276
3277 static bool
3278 wg_session_hit_limits(struct wg_session *wgs)
3279 {
3280
3281 /*
3282 * [W] 6.2: Transport Message Limits
3283 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3284 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3285 * comes first, WireGuard will refuse to send any more transport data
3286 * messages using the current secure session, ..."
3287 */
3288 KASSERT(wgs->wgs_time_established != 0);
3289 if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
3290 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3291 return true;
3292 } else if (wg_session_get_send_counter(wgs) >
3293 wg_reject_after_messages) {
3294 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3295 return true;
3296 }
3297
3298 return false;
3299 }
3300
3301 static void
3302 wgintr(void *cookie)
3303 {
3304 struct wg_peer *wgp;
3305 struct wg_session *wgs;
3306 struct mbuf *m;
3307 struct psref psref;
3308
3309 while ((m = pktq_dequeue(wg_pktq)) != NULL) {
3310 wgp = M_GETCTX(m, struct wg_peer *);
3311 if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3312 WG_TRACE("no stable session");
3313 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3314 goto next0;
3315 }
3316 if (__predict_false(wg_session_hit_limits(wgs))) {
3317 WG_TRACE("stable session hit limits");
3318 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3319 goto next1;
3320 }
3321 wg_send_data_msg(wgp, wgs, m);
3322 m = NULL; /* consumed */
3323 next1: wg_put_session(wgs, &psref);
3324 next0: if (m)
3325 m_freem(m);
3326 /* XXX Yield to avoid userland starvation? */
3327 }
3328 }
3329
3330 static void
3331 wg_rekey_timer(void *arg)
3332 {
3333 struct wg_peer *wgp = arg;
3334
3335 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3336 }
3337
3338 static void
3339 wg_purge_pending_packets(struct wg_peer *wgp)
3340 {
3341 struct mbuf *m;
3342
3343 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL)
3344 m_freem(m);
3345 pktq_barrier(wg_pktq);
3346 }
3347
3348 static void
3349 wg_handshake_timeout_timer(void *arg)
3350 {
3351 struct wg_peer *wgp = arg;
3352
3353 WG_TRACE("enter");
3354
3355 wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3356 }
3357
3358 static struct wg_peer *
3359 wg_alloc_peer(struct wg_softc *wg)
3360 {
3361 struct wg_peer *wgp;
3362
3363 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3364
3365 wgp->wgp_sc = wg;
3366 callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
3367 callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
3368 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3369 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3370 wg_handshake_timeout_timer, wgp);
3371 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3372 callout_setfunc(&wgp->wgp_session_dtor_timer,
3373 wg_session_dtor_timer, wgp);
3374 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3375 wgp->wgp_endpoint_changing = false;
3376 wgp->wgp_endpoint_available = false;
3377 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3378 wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3379 wgp->wgp_psz = pserialize_create();
3380 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3381
3382 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3383 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3384 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3385 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3386
3387 struct wg_session *wgs;
3388 wgp->wgp_session_stable =
3389 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3390 wgp->wgp_session_unstable =
3391 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3392 wgs = wgp->wgp_session_stable;
3393 wgs->wgs_peer = wgp;
3394 wgs->wgs_state = WGS_STATE_UNKNOWN;
3395 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3396 #ifndef __HAVE_ATOMIC64_LOADSTORE
3397 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3398 #endif
3399 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3400 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3401
3402 wgs = wgp->wgp_session_unstable;
3403 wgs->wgs_peer = wgp;
3404 wgs->wgs_state = WGS_STATE_UNKNOWN;
3405 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3406 #ifndef __HAVE_ATOMIC64_LOADSTORE
3407 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3408 #endif
3409 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3410 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3411
3412 return wgp;
3413 }
3414
3415 static void
3416 wg_destroy_peer(struct wg_peer *wgp)
3417 {
3418 struct wg_session *wgs;
3419 struct wg_softc *wg = wgp->wgp_sc;
3420
3421 /* Prevent new packets from this peer on any source address. */
3422 rw_enter(wg->wg_rwlock, RW_WRITER);
3423 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3424 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3425 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3426 struct radix_node *rn;
3427
3428 KASSERT(rnh != NULL);
3429 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3430 &wga->wga_sa_mask, rnh);
3431 if (rn == NULL) {
3432 char addrstr[128];
3433 sockaddr_format(&wga->wga_sa_addr, addrstr,
3434 sizeof(addrstr));
3435 WGLOG(LOG_WARNING, "Couldn't delete %s", addrstr);
3436 }
3437 }
3438 rw_exit(wg->wg_rwlock);
3439
3440 /* Purge pending packets. */
3441 wg_purge_pending_packets(wgp);
3442
3443 /* Halt all packet processing and timeouts. */
3444 callout_halt(&wgp->wgp_rekey_timer, NULL);
3445 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3446 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3447
3448 /* Wait for any queued work to complete. */
3449 workqueue_wait(wg_wq, &wgp->wgp_work);
3450
3451 wgs = wgp->wgp_session_unstable;
3452 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3453 mutex_enter(wgp->wgp_lock);
3454 wg_destroy_session(wg, wgs);
3455 mutex_exit(wgp->wgp_lock);
3456 }
3457 mutex_destroy(&wgs->wgs_recvwin->lock);
3458 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3459 #ifndef __HAVE_ATOMIC64_LOADSTORE
3460 mutex_destroy(&wgs->wgs_send_counter_lock);
3461 #endif
3462 kmem_free(wgs, sizeof(*wgs));
3463
3464 wgs = wgp->wgp_session_stable;
3465 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3466 mutex_enter(wgp->wgp_lock);
3467 wg_destroy_session(wg, wgs);
3468 mutex_exit(wgp->wgp_lock);
3469 }
3470 mutex_destroy(&wgs->wgs_recvwin->lock);
3471 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3472 #ifndef __HAVE_ATOMIC64_LOADSTORE
3473 mutex_destroy(&wgs->wgs_send_counter_lock);
3474 #endif
3475 kmem_free(wgs, sizeof(*wgs));
3476
3477 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3478 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3479 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3480 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3481
3482 pserialize_destroy(wgp->wgp_psz);
3483 mutex_obj_free(wgp->wgp_intr_lock);
3484 mutex_obj_free(wgp->wgp_lock);
3485
3486 kmem_free(wgp, sizeof(*wgp));
3487 }
3488
3489 static void
3490 wg_destroy_all_peers(struct wg_softc *wg)
3491 {
3492 struct wg_peer *wgp, *wgp0 __diagused;
3493 void *garbage_byname, *garbage_bypubkey;
3494
3495 restart:
3496 garbage_byname = garbage_bypubkey = NULL;
3497 mutex_enter(wg->wg_lock);
3498 WG_PEER_WRITER_FOREACH(wgp, wg) {
3499 if (wgp->wgp_name[0]) {
3500 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3501 strlen(wgp->wgp_name));
3502 KASSERT(wgp0 == wgp);
3503 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3504 }
3505 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3506 sizeof(wgp->wgp_pubkey));
3507 KASSERT(wgp0 == wgp);
3508 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3509 WG_PEER_WRITER_REMOVE(wgp);
3510 wg->wg_npeers--;
3511 mutex_enter(wgp->wgp_lock);
3512 pserialize_perform(wgp->wgp_psz);
3513 mutex_exit(wgp->wgp_lock);
3514 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3515 break;
3516 }
3517 mutex_exit(wg->wg_lock);
3518
3519 if (wgp == NULL)
3520 return;
3521
3522 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3523
3524 wg_destroy_peer(wgp);
3525 thmap_gc(wg->wg_peers_byname, garbage_byname);
3526 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3527
3528 goto restart;
3529 }
3530
3531 static int
3532 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3533 {
3534 struct wg_peer *wgp, *wgp0 __diagused;
3535 void *garbage_byname, *garbage_bypubkey;
3536
3537 mutex_enter(wg->wg_lock);
3538 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
3539 if (wgp != NULL) {
3540 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3541 sizeof(wgp->wgp_pubkey));
3542 KASSERT(wgp0 == wgp);
3543 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3544 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3545 WG_PEER_WRITER_REMOVE(wgp);
3546 wg->wg_npeers--;
3547 if (wg->wg_npeers == 0)
3548 if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
3549 mutex_enter(wgp->wgp_lock);
3550 pserialize_perform(wgp->wgp_psz);
3551 mutex_exit(wgp->wgp_lock);
3552 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3553 }
3554 mutex_exit(wg->wg_lock);
3555
3556 if (wgp == NULL)
3557 return ENOENT;
3558
3559 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3560
3561 wg_destroy_peer(wgp);
3562 thmap_gc(wg->wg_peers_byname, garbage_byname);
3563 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3564
3565 return 0;
3566 }
3567
3568 static int
3569 wg_if_attach(struct wg_softc *wg)
3570 {
3571
3572 wg->wg_if.if_addrlen = 0;
3573 wg->wg_if.if_mtu = WG_MTU;
3574 wg->wg_if.if_flags = IFF_MULTICAST;
3575 wg->wg_if.if_extflags = IFEF_MPSAFE;
3576 wg->wg_if.if_ioctl = wg_ioctl;
3577 wg->wg_if.if_output = wg_output;
3578 wg->wg_if.if_init = wg_init;
3579 #ifdef ALTQ
3580 wg->wg_if.if_start = wg_start;
3581 #endif
3582 wg->wg_if.if_stop = wg_stop;
3583 wg->wg_if.if_type = IFT_OTHER;
3584 wg->wg_if.if_dlt = DLT_NULL;
3585 wg->wg_if.if_softc = wg;
3586 #ifdef ALTQ
3587 IFQ_SET_READY(&wg->wg_if.if_snd);
3588 #endif
3589 if_initialize(&wg->wg_if);
3590
3591 wg->wg_if.if_link_state = LINK_STATE_DOWN;
3592 if_alloc_sadl(&wg->wg_if);
3593 if_register(&wg->wg_if);
3594
3595 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3596
3597 return 0;
3598 }
3599
3600 static void
3601 wg_if_detach(struct wg_softc *wg)
3602 {
3603 struct ifnet *ifp = &wg->wg_if;
3604
3605 bpf_detach(ifp);
3606 if_detach(ifp);
3607 }
3608
3609 static int
3610 wg_clone_create(struct if_clone *ifc, int unit)
3611 {
3612 struct wg_softc *wg;
3613 int error;
3614
3615 wg_guarantee_initialized();
3616
3617 error = wg_count_inc();
3618 if (error)
3619 return error;
3620
3621 wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
3622
3623 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3624
3625 PSLIST_INIT(&wg->wg_peers);
3626 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
3627 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
3628 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
3629 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3630 wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3631 wg->wg_rwlock = rw_obj_alloc();
3632 threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
3633 "%s", if_name(&wg->wg_if));
3634 wg->wg_ops = &wg_ops_rumpkernel;
3635
3636 error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
3637 if (error)
3638 goto fail0;
3639
3640 #ifdef INET
3641 error = wg_socreate(wg, AF_INET, &wg->wg_so4);
3642 if (error)
3643 goto fail1;
3644 rn_inithead((void **)&wg->wg_rtable_ipv4,
3645 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3646 #endif
3647 #ifdef INET6
3648 error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
3649 if (error)
3650 goto fail2;
3651 rn_inithead((void **)&wg->wg_rtable_ipv6,
3652 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3653 #endif
3654
3655 error = wg_if_attach(wg);
3656 if (error)
3657 goto fail3;
3658
3659 return 0;
3660
3661 fail4: __unused
3662 wg_if_detach(wg);
3663 fail3: wg_destroy_all_peers(wg);
3664 #ifdef INET6
3665 solock(wg->wg_so6);
3666 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
3667 sounlock(wg->wg_so6);
3668 #endif
3669 #ifdef INET
3670 solock(wg->wg_so4);
3671 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
3672 sounlock(wg->wg_so4);
3673 #endif
3674 mutex_enter(wg->wg_intr_lock);
3675 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
3676 mutex_exit(wg->wg_intr_lock);
3677 #ifdef INET6
3678 if (wg->wg_rtable_ipv6 != NULL)
3679 free(wg->wg_rtable_ipv6, M_RTABLE);
3680 soclose(wg->wg_so6);
3681 fail2:
3682 #endif
3683 #ifdef INET
3684 if (wg->wg_rtable_ipv4 != NULL)
3685 free(wg->wg_rtable_ipv4, M_RTABLE);
3686 soclose(wg->wg_so4);
3687 fail1:
3688 #endif
3689 threadpool_put(wg->wg_threadpool, PRI_NONE);
3690 fail0: threadpool_job_destroy(&wg->wg_job);
3691 rw_obj_free(wg->wg_rwlock);
3692 mutex_obj_free(wg->wg_intr_lock);
3693 mutex_obj_free(wg->wg_lock);
3694 thmap_destroy(wg->wg_sessions_byindex);
3695 thmap_destroy(wg->wg_peers_byname);
3696 thmap_destroy(wg->wg_peers_bypubkey);
3697 PSLIST_DESTROY(&wg->wg_peers);
3698 kmem_free(wg, sizeof(*wg));
3699 wg_count_dec();
3700 return error;
3701 }
3702
3703 static int
3704 wg_clone_destroy(struct ifnet *ifp)
3705 {
3706 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
3707
3708 #ifdef WG_RUMPKERNEL
3709 if (wg_user_mode(wg)) {
3710 rumpuser_wg_destroy(wg->wg_user);
3711 wg->wg_user = NULL;
3712 }
3713 #endif
3714
3715 wg_if_detach(wg);
3716 wg_destroy_all_peers(wg);
3717 #ifdef INET6
3718 solock(wg->wg_so6);
3719 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
3720 sounlock(wg->wg_so6);
3721 #endif
3722 #ifdef INET
3723 solock(wg->wg_so4);
3724 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
3725 sounlock(wg->wg_so4);
3726 #endif
3727 mutex_enter(wg->wg_intr_lock);
3728 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
3729 mutex_exit(wg->wg_intr_lock);
3730 #ifdef INET6
3731 if (wg->wg_rtable_ipv6 != NULL)
3732 free(wg->wg_rtable_ipv6, M_RTABLE);
3733 soclose(wg->wg_so6);
3734 #endif
3735 #ifdef INET
3736 if (wg->wg_rtable_ipv4 != NULL)
3737 free(wg->wg_rtable_ipv4, M_RTABLE);
3738 soclose(wg->wg_so4);
3739 #endif
3740 threadpool_put(wg->wg_threadpool, PRI_NONE);
3741 threadpool_job_destroy(&wg->wg_job);
3742 rw_obj_free(wg->wg_rwlock);
3743 mutex_obj_free(wg->wg_intr_lock);
3744 mutex_obj_free(wg->wg_lock);
3745 thmap_destroy(wg->wg_sessions_byindex);
3746 thmap_destroy(wg->wg_peers_byname);
3747 thmap_destroy(wg->wg_peers_bypubkey);
3748 PSLIST_DESTROY(&wg->wg_peers);
3749 kmem_free(wg, sizeof(*wg));
3750 wg_count_dec();
3751
3752 return 0;
3753 }
3754
3755 static struct wg_peer *
3756 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
3757 struct psref *psref)
3758 {
3759 struct radix_node_head *rnh;
3760 struct radix_node *rn;
3761 struct wg_peer *wgp = NULL;
3762 struct wg_allowedip *wga;
3763
3764 #ifdef WG_DEBUG_LOG
3765 char addrstr[128];
3766 sockaddr_format(sa, addrstr, sizeof(addrstr));
3767 WG_DLOG("sa=%s\n", addrstr);
3768 #endif
3769
3770 rw_enter(wg->wg_rwlock, RW_READER);
3771
3772 rnh = wg_rnh(wg, sa->sa_family);
3773 if (rnh == NULL)
3774 goto out;
3775
3776 rn = rnh->rnh_matchaddr(sa, rnh);
3777 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
3778 goto out;
3779
3780 WG_TRACE("success");
3781
3782 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
3783 wgp = wga->wga_peer;
3784 wg_get_peer(wgp, psref);
3785
3786 out:
3787 rw_exit(wg->wg_rwlock);
3788 return wgp;
3789 }
3790
3791 static void
3792 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
3793 struct wg_session *wgs, struct wg_msg_data *wgmd)
3794 {
3795
3796 memset(wgmd, 0, sizeof(*wgmd));
3797 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
3798 wgmd->wgmd_receiver = wgs->wgs_remote_index;
3799 /* [W] 5.4.6: msg.counter := Nm^send */
3800 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
3801 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
3802 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
3803 }
3804
3805 static int
3806 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
3807 const struct rtentry *rt)
3808 {
3809 struct wg_softc *wg = ifp->if_softc;
3810 struct wg_peer *wgp = NULL;
3811 struct wg_session *wgs = NULL;
3812 struct psref wgp_psref, wgs_psref;
3813 int bound;
3814 int error;
3815
3816 bound = curlwp_bind();
3817
3818 /* TODO make the nest limit configurable via sysctl */
3819 error = if_tunnel_check_nesting(ifp, m, 1);
3820 if (error) {
3821 WGLOG(LOG_ERR, "tunneling loop detected and packet dropped\n");
3822 goto out0;
3823 }
3824
3825 #ifdef ALTQ
3826 bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
3827 & ALTQF_ENABLED;
3828 if (altq)
3829 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
3830 #endif
3831
3832 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
3833
3834 m->m_flags &= ~(M_BCAST|M_MCAST);
3835
3836 wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
3837 if (wgp == NULL) {
3838 WG_TRACE("peer not found");
3839 error = EHOSTUNREACH;
3840 goto out0;
3841 }
3842
3843 /* Clear checksum-offload flags. */
3844 m->m_pkthdr.csum_flags = 0;
3845 m->m_pkthdr.csum_data = 0;
3846
3847 /* Check whether there's an established session. */
3848 wgs = wg_get_stable_session(wgp, &wgs_psref);
3849 if (wgs == NULL) {
3850 /*
3851 * No established session. If we're the first to try
3852 * sending data, schedule a handshake and queue the
3853 * packet for when the handshake is done; otherwise
3854 * just drop the packet and let the ongoing handshake
3855 * attempt continue. We could queue more data packets
3856 * but it's not clear that's worthwhile.
3857 */
3858 if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
3859 m = NULL; /* consume */
3860 WG_TRACE("queued first packet; init handshake");
3861 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3862 } else {
3863 WG_TRACE("first packet already queued, dropping");
3864 }
3865 goto out1;
3866 }
3867
3868 /* There's an established session. Toss it in the queue. */
3869 #ifdef ALTQ
3870 if (altq) {
3871 mutex_enter(ifp->if_snd.ifq_lock);
3872 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3873 M_SETCTX(m, wgp);
3874 ALTQ_ENQUEUE(&ifp->if_snd, m, error);
3875 m = NULL; /* consume */
3876 }
3877 mutex_exit(ifp->if_snd.ifq_lock);
3878 if (m == NULL) {
3879 wg_start(ifp);
3880 goto out2;
3881 }
3882 }
3883 #endif
3884 kpreempt_disable();
3885 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
3886 M_SETCTX(m, wgp);
3887 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
3888 WGLOG(LOG_ERR, "pktq full, dropping\n");
3889 error = ENOBUFS;
3890 goto out3;
3891 }
3892 m = NULL; /* consumed */
3893 error = 0;
3894 out3: kpreempt_enable();
3895
3896 #ifdef ALTQ
3897 out2:
3898 #endif
3899 wg_put_session(wgs, &wgs_psref);
3900 out1: wg_put_peer(wgp, &wgp_psref);
3901 out0: if (m)
3902 m_freem(m);
3903 curlwp_bindx(bound);
3904 return error;
3905 }
3906
3907 static int
3908 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
3909 {
3910 struct psref psref;
3911 struct wg_sockaddr *wgsa;
3912 int error;
3913 struct socket *so;
3914
3915 wgsa = wg_get_endpoint_sa(wgp, &psref);
3916 so = wg_get_so_by_peer(wgp, wgsa);
3917 solock(so);
3918 if (wgsatosa(wgsa)->sa_family == AF_INET) {
3919 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
3920 } else {
3921 #ifdef INET6
3922 error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
3923 NULL, curlwp);
3924 #else
3925 m_freem(m);
3926 error = EPFNOSUPPORT;
3927 #endif
3928 }
3929 sounlock(so);
3930 wg_put_sa(wgp, wgsa, &psref);
3931
3932 return error;
3933 }
3934
3935 /* Inspired by pppoe_get_mbuf */
3936 static struct mbuf *
3937 wg_get_mbuf(size_t leading_len, size_t len)
3938 {
3939 struct mbuf *m;
3940
3941 KASSERT(leading_len <= MCLBYTES);
3942 KASSERT(len <= MCLBYTES - leading_len);
3943
3944 m = m_gethdr(M_DONTWAIT, MT_DATA);
3945 if (m == NULL)
3946 return NULL;
3947 if (len + leading_len > MHLEN) {
3948 m_clget(m, M_DONTWAIT);
3949 if ((m->m_flags & M_EXT) == 0) {
3950 m_free(m);
3951 return NULL;
3952 }
3953 }
3954 m->m_data += leading_len;
3955 m->m_pkthdr.len = m->m_len = len;
3956
3957 return m;
3958 }
3959
3960 static int
3961 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
3962 struct mbuf *m)
3963 {
3964 struct wg_softc *wg = wgp->wgp_sc;
3965 int error;
3966 size_t inner_len, padded_len, encrypted_len;
3967 char *padded_buf = NULL;
3968 size_t mlen;
3969 struct wg_msg_data *wgmd;
3970 bool free_padded_buf = false;
3971 struct mbuf *n;
3972 size_t leading_len = max_hdr + sizeof(struct udphdr);
3973
3974 mlen = m_length(m);
3975 inner_len = mlen;
3976 padded_len = roundup(mlen, 16);
3977 encrypted_len = padded_len + WG_AUTHTAG_LEN;
3978 WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
3979 inner_len, padded_len, encrypted_len);
3980 if (mlen != 0) {
3981 bool success;
3982 success = m_ensure_contig(&m, padded_len);
3983 if (success) {
3984 padded_buf = mtod(m, char *);
3985 } else {
3986 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
3987 if (padded_buf == NULL) {
3988 error = ENOBUFS;
3989 goto end;
3990 }
3991 free_padded_buf = true;
3992 m_copydata(m, 0, mlen, padded_buf);
3993 }
3994 memset(padded_buf + mlen, 0, padded_len - inner_len);
3995 }
3996
3997 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
3998 if (n == NULL) {
3999 error = ENOBUFS;
4000 goto end;
4001 }
4002 KASSERT(n->m_len >= sizeof(*wgmd));
4003 wgmd = mtod(n, struct wg_msg_data *);
4004 wg_fill_msg_data(wg, wgp, wgs, wgmd);
4005 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
4006 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
4007 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4008 padded_buf, padded_len,
4009 NULL, 0);
4010
4011 error = wg->wg_ops->send_data_msg(wgp, n);
4012 if (error == 0) {
4013 struct ifnet *ifp = &wg->wg_if;
4014 if_statadd(ifp, if_obytes, mlen);
4015 if_statinc(ifp, if_opackets);
4016 if (wgs->wgs_is_initiator &&
4017 wgs->wgs_time_last_data_sent == 0) {
4018 /*
4019 * [W] 6.2 Transport Message Limits
4020 * "if a peer is the initiator of a current secure
4021 * session, WireGuard will send a handshake initiation
4022 * message to begin a new secure session if, after
4023 * transmitting a transport data message, the current
4024 * secure session is REKEY-AFTER-TIME seconds old,"
4025 */
4026 wg_schedule_rekey_timer(wgp);
4027 }
4028 wgs->wgs_time_last_data_sent = time_uptime;
4029 if (wg_session_get_send_counter(wgs) >=
4030 wg_rekey_after_messages) {
4031 /*
4032 * [W] 6.2 Transport Message Limits
4033 * "WireGuard will try to create a new session, by
4034 * sending a handshake initiation message (section
4035 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
4036 * transport data messages..."
4037 */
4038 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4039 }
4040 }
4041 end:
4042 m_freem(m);
4043 if (free_padded_buf)
4044 kmem_intr_free(padded_buf, padded_len);
4045 return error;
4046 }
4047
4048 static void
4049 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
4050 {
4051 pktqueue_t *pktq;
4052 size_t pktlen;
4053
4054 KASSERT(af == AF_INET || af == AF_INET6);
4055
4056 WG_TRACE("");
4057
4058 m_set_rcvif(m, ifp);
4059 pktlen = m->m_pkthdr.len;
4060
4061 bpf_mtap_af(ifp, af, m, BPF_D_IN);
4062
4063 switch (af) {
4064 case AF_INET:
4065 pktq = ip_pktq;
4066 break;
4067 #ifdef INET6
4068 case AF_INET6:
4069 pktq = ip6_pktq;
4070 break;
4071 #endif
4072 default:
4073 panic("invalid af=%d", af);
4074 }
4075
4076 kpreempt_disable();
4077 const u_int h = curcpu()->ci_index;
4078 if (__predict_true(pktq_enqueue(pktq, m, h))) {
4079 if_statadd(ifp, if_ibytes, pktlen);
4080 if_statinc(ifp, if_ipackets);
4081 } else {
4082 m_freem(m);
4083 }
4084 kpreempt_enable();
4085 }
4086
4087 static void
4088 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
4089 const uint8_t privkey[WG_STATIC_KEY_LEN])
4090 {
4091
4092 crypto_scalarmult_base(pubkey, privkey);
4093 }
4094
4095 static int
4096 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
4097 {
4098 struct radix_node_head *rnh;
4099 struct radix_node *rn;
4100 int error = 0;
4101
4102 rw_enter(wg->wg_rwlock, RW_WRITER);
4103 rnh = wg_rnh(wg, wga->wga_family);
4104 KASSERT(rnh != NULL);
4105 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
4106 wga->wga_nodes);
4107 rw_exit(wg->wg_rwlock);
4108
4109 if (rn == NULL)
4110 error = EEXIST;
4111
4112 return error;
4113 }
4114
4115 static int
4116 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
4117 struct wg_peer **wgpp)
4118 {
4119 int error = 0;
4120 const void *pubkey;
4121 size_t pubkey_len;
4122 const void *psk;
4123 size_t psk_len;
4124 const char *name = NULL;
4125
4126 if (prop_dictionary_get_string(peer, "name", &name)) {
4127 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
4128 error = EINVAL;
4129 goto out;
4130 }
4131 }
4132
4133 if (!prop_dictionary_get_data(peer, "public_key",
4134 &pubkey, &pubkey_len)) {
4135 error = EINVAL;
4136 goto out;
4137 }
4138 #ifdef WG_DEBUG_DUMP
4139 {
4140 char *hex = gethexdump(pubkey, pubkey_len);
4141 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n%s\n",
4142 pubkey, pubkey_len, hex);
4143 puthexdump(hex, pubkey, pubkey_len);
4144 }
4145 #endif
4146
4147 struct wg_peer *wgp = wg_alloc_peer(wg);
4148 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4149 if (name != NULL)
4150 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4151
4152 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4153 if (psk_len != sizeof(wgp->wgp_psk)) {
4154 error = EINVAL;
4155 goto out;
4156 }
4157 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4158 }
4159
4160 const void *addr;
4161 size_t addr_len;
4162 struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4163
4164 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4165 goto skip_endpoint;
4166 if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4167 addr_len > sizeof(*wgsatoss(wgsa))) {
4168 error = EINVAL;
4169 goto out;
4170 }
4171 memcpy(wgsatoss(wgsa), addr, addr_len);
4172 switch (wgsa_family(wgsa)) {
4173 case AF_INET:
4174 #ifdef INET6
4175 case AF_INET6:
4176 #endif
4177 break;
4178 default:
4179 error = EPFNOSUPPORT;
4180 goto out;
4181 }
4182 if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4183 error = EINVAL;
4184 goto out;
4185 }
4186 {
4187 char addrstr[128];
4188 sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4189 WG_DLOG("addr=%s\n", addrstr);
4190 }
4191 wgp->wgp_endpoint_available = true;
4192
4193 prop_array_t allowedips;
4194 skip_endpoint:
4195 allowedips = prop_dictionary_get(peer, "allowedips");
4196 if (allowedips == NULL)
4197 goto skip;
4198
4199 prop_object_iterator_t _it = prop_array_iterator(allowedips);
4200 prop_dictionary_t prop_allowedip;
4201 int j = 0;
4202 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4203 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4204
4205 if (!prop_dictionary_get_int(prop_allowedip, "family",
4206 &wga->wga_family))
4207 continue;
4208 if (!prop_dictionary_get_data(prop_allowedip, "ip",
4209 &addr, &addr_len))
4210 continue;
4211 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4212 &wga->wga_cidr))
4213 continue;
4214
4215 switch (wga->wga_family) {
4216 case AF_INET: {
4217 struct sockaddr_in sin;
4218 char addrstr[128];
4219 struct in_addr mask;
4220 struct sockaddr_in sin_mask;
4221
4222 if (addr_len != sizeof(struct in_addr))
4223 return EINVAL;
4224 memcpy(&wga->wga_addr4, addr, addr_len);
4225
4226 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4227 0);
4228 sockaddr_copy(&wga->wga_sa_addr,
4229 sizeof(sin), sintosa(&sin));
4230
4231 sockaddr_format(sintosa(&sin),
4232 addrstr, sizeof(addrstr));
4233 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4234
4235 in_len2mask(&mask, wga->wga_cidr);
4236 sockaddr_in_init(&sin_mask, &mask, 0);
4237 sockaddr_copy(&wga->wga_sa_mask,
4238 sizeof(sin_mask), sintosa(&sin_mask));
4239
4240 break;
4241 }
4242 #ifdef INET6
4243 case AF_INET6: {
4244 struct sockaddr_in6 sin6;
4245 char addrstr[128];
4246 struct in6_addr mask;
4247 struct sockaddr_in6 sin6_mask;
4248
4249 if (addr_len != sizeof(struct in6_addr))
4250 return EINVAL;
4251 memcpy(&wga->wga_addr6, addr, addr_len);
4252
4253 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4254 0, 0, 0);
4255 sockaddr_copy(&wga->wga_sa_addr,
4256 sizeof(sin6), sin6tosa(&sin6));
4257
4258 sockaddr_format(sin6tosa(&sin6),
4259 addrstr, sizeof(addrstr));
4260 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4261
4262 in6_prefixlen2mask(&mask, wga->wga_cidr);
4263 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4264 sockaddr_copy(&wga->wga_sa_mask,
4265 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4266
4267 break;
4268 }
4269 #endif
4270 default:
4271 error = EINVAL;
4272 goto out;
4273 }
4274 wga->wga_peer = wgp;
4275
4276 error = wg_rtable_add_route(wg, wga);
4277 if (error != 0)
4278 goto out;
4279
4280 j++;
4281 }
4282 wgp->wgp_n_allowedips = j;
4283 skip:
4284 *wgpp = wgp;
4285 out:
4286 return error;
4287 }
4288
4289 static int
4290 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4291 {
4292 int error;
4293 char *buf;
4294
4295 WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
4296 if (ifd->ifd_len >= WG_MAX_PROPLEN)
4297 return E2BIG;
4298 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4299 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4300 if (error != 0)
4301 return error;
4302 buf[ifd->ifd_len] = '\0';
4303 #ifdef WG_DEBUG_DUMP
4304 log(LOG_DEBUG, "%.*s\n",
4305 (int)MIN(INT_MAX, ifd->ifd_len),
4306 (const char *)buf);
4307 #endif
4308 *_buf = buf;
4309 return 0;
4310 }
4311
4312 static int
4313 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4314 {
4315 int error;
4316 prop_dictionary_t prop_dict;
4317 char *buf = NULL;
4318 const void *privkey;
4319 size_t privkey_len;
4320
4321 error = wg_alloc_prop_buf(&buf, ifd);
4322 if (error != 0)
4323 return error;
4324 error = EINVAL;
4325 prop_dict = prop_dictionary_internalize(buf);
4326 if (prop_dict == NULL)
4327 goto out;
4328 if (!prop_dictionary_get_data(prop_dict, "private_key",
4329 &privkey, &privkey_len))
4330 goto out;
4331 #ifdef WG_DEBUG_DUMP
4332 {
4333 char *hex = gethexdump(privkey, privkey_len);
4334 log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n%s\n",
4335 privkey, privkey_len, hex);
4336 puthexdump(hex, privkey, privkey_len);
4337 }
4338 #endif
4339 if (privkey_len != WG_STATIC_KEY_LEN)
4340 goto out;
4341 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4342 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4343 error = 0;
4344
4345 out:
4346 kmem_free(buf, ifd->ifd_len + 1);
4347 return error;
4348 }
4349
4350 static int
4351 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4352 {
4353 int error;
4354 prop_dictionary_t prop_dict;
4355 char *buf = NULL;
4356 uint16_t port;
4357
4358 error = wg_alloc_prop_buf(&buf, ifd);
4359 if (error != 0)
4360 return error;
4361 error = EINVAL;
4362 prop_dict = prop_dictionary_internalize(buf);
4363 if (prop_dict == NULL)
4364 goto out;
4365 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4366 goto out;
4367
4368 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4369
4370 out:
4371 kmem_free(buf, ifd->ifd_len + 1);
4372 return error;
4373 }
4374
4375 static int
4376 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4377 {
4378 int error;
4379 prop_dictionary_t prop_dict;
4380 char *buf = NULL;
4381 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4382
4383 error = wg_alloc_prop_buf(&buf, ifd);
4384 if (error != 0)
4385 return error;
4386 error = EINVAL;
4387 prop_dict = prop_dictionary_internalize(buf);
4388 if (prop_dict == NULL)
4389 goto out;
4390
4391 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4392 if (error != 0)
4393 goto out;
4394
4395 mutex_enter(wg->wg_lock);
4396 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4397 sizeof(wgp->wgp_pubkey)) != NULL ||
4398 (wgp->wgp_name[0] &&
4399 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4400 strlen(wgp->wgp_name)) != NULL)) {
4401 mutex_exit(wg->wg_lock);
4402 wg_destroy_peer(wgp);
4403 error = EEXIST;
4404 goto out;
4405 }
4406 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4407 sizeof(wgp->wgp_pubkey), wgp);
4408 KASSERT(wgp0 == wgp);
4409 if (wgp->wgp_name[0]) {
4410 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4411 strlen(wgp->wgp_name), wgp);
4412 KASSERT(wgp0 == wgp);
4413 }
4414 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4415 wg->wg_npeers++;
4416 mutex_exit(wg->wg_lock);
4417
4418 if_link_state_change(&wg->wg_if, LINK_STATE_UP);
4419
4420 out:
4421 kmem_free(buf, ifd->ifd_len + 1);
4422 return error;
4423 }
4424
4425 static int
4426 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4427 {
4428 int error;
4429 prop_dictionary_t prop_dict;
4430 char *buf = NULL;
4431 const char *name;
4432
4433 error = wg_alloc_prop_buf(&buf, ifd);
4434 if (error != 0)
4435 return error;
4436 error = EINVAL;
4437 prop_dict = prop_dictionary_internalize(buf);
4438 if (prop_dict == NULL)
4439 goto out;
4440
4441 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4442 goto out;
4443 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4444 goto out;
4445
4446 error = wg_destroy_peer_name(wg, name);
4447 out:
4448 kmem_free(buf, ifd->ifd_len + 1);
4449 return error;
4450 }
4451
4452 static bool
4453 wg_is_authorized(struct wg_softc *wg, u_long cmd)
4454 {
4455 int au = cmd == SIOCGDRVSPEC ?
4456 KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
4457 KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
4458 return kauth_authorize_network(kauth_cred_get(),
4459 KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
4460 (void *)cmd, NULL) == 0;
4461 }
4462
4463 static int
4464 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4465 {
4466 int error = ENOMEM;
4467 prop_dictionary_t prop_dict;
4468 prop_array_t peers = NULL;
4469 char *buf;
4470 struct wg_peer *wgp;
4471 int s, i;
4472
4473 prop_dict = prop_dictionary_create();
4474 if (prop_dict == NULL)
4475 goto error;
4476
4477 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4478 if (!prop_dictionary_set_data(prop_dict, "private_key",
4479 wg->wg_privkey, WG_STATIC_KEY_LEN))
4480 goto error;
4481 }
4482
4483 if (wg->wg_listen_port != 0) {
4484 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4485 wg->wg_listen_port))
4486 goto error;
4487 }
4488
4489 if (wg->wg_npeers == 0)
4490 goto skip_peers;
4491
4492 peers = prop_array_create();
4493 if (peers == NULL)
4494 goto error;
4495
4496 s = pserialize_read_enter();
4497 i = 0;
4498 WG_PEER_READER_FOREACH(wgp, wg) {
4499 struct wg_sockaddr *wgsa;
4500 struct psref wgp_psref, wgsa_psref;
4501 prop_dictionary_t prop_peer;
4502
4503 wg_get_peer(wgp, &wgp_psref);
4504 pserialize_read_exit(s);
4505
4506 prop_peer = prop_dictionary_create();
4507 if (prop_peer == NULL)
4508 goto next;
4509
4510 if (strlen(wgp->wgp_name) > 0) {
4511 if (!prop_dictionary_set_string(prop_peer, "name",
4512 wgp->wgp_name))
4513 goto next;
4514 }
4515
4516 if (!prop_dictionary_set_data(prop_peer, "public_key",
4517 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4518 goto next;
4519
4520 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4521 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4522 sizeof(wgp->wgp_psk))) {
4523 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4524 if (!prop_dictionary_set_data(prop_peer,
4525 "preshared_key",
4526 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4527 goto next;
4528 }
4529 }
4530
4531 wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
4532 CTASSERT(AF_UNSPEC == 0);
4533 if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
4534 !prop_dictionary_set_data(prop_peer, "endpoint",
4535 wgsatoss(wgsa),
4536 sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
4537 wg_put_sa(wgp, wgsa, &wgsa_psref);
4538 goto next;
4539 }
4540 wg_put_sa(wgp, wgsa, &wgsa_psref);
4541
4542 const struct timespec *t = &wgp->wgp_last_handshake_time;
4543
4544 if (!prop_dictionary_set_uint64(prop_peer,
4545 "last_handshake_time_sec", (uint64_t)t->tv_sec))
4546 goto next;
4547 if (!prop_dictionary_set_uint32(prop_peer,
4548 "last_handshake_time_nsec", (uint32_t)t->tv_nsec))
4549 goto next;
4550
4551 if (wgp->wgp_n_allowedips == 0)
4552 goto skip_allowedips;
4553
4554 prop_array_t allowedips = prop_array_create();
4555 if (allowedips == NULL)
4556 goto next;
4557 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4558 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4559 prop_dictionary_t prop_allowedip;
4560
4561 prop_allowedip = prop_dictionary_create();
4562 if (prop_allowedip == NULL)
4563 break;
4564
4565 if (!prop_dictionary_set_int(prop_allowedip, "family",
4566 wga->wga_family))
4567 goto _next;
4568 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4569 wga->wga_cidr))
4570 goto _next;
4571
4572 switch (wga->wga_family) {
4573 case AF_INET:
4574 if (!prop_dictionary_set_data(prop_allowedip,
4575 "ip", &wga->wga_addr4,
4576 sizeof(wga->wga_addr4)))
4577 goto _next;
4578 break;
4579 #ifdef INET6
4580 case AF_INET6:
4581 if (!prop_dictionary_set_data(prop_allowedip,
4582 "ip", &wga->wga_addr6,
4583 sizeof(wga->wga_addr6)))
4584 goto _next;
4585 break;
4586 #endif
4587 default:
4588 break;
4589 }
4590 prop_array_set(allowedips, j, prop_allowedip);
4591 _next:
4592 prop_object_release(prop_allowedip);
4593 }
4594 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4595 prop_object_release(allowedips);
4596
4597 skip_allowedips:
4598
4599 prop_array_set(peers, i, prop_peer);
4600 next:
4601 if (prop_peer)
4602 prop_object_release(prop_peer);
4603 i++;
4604
4605 s = pserialize_read_enter();
4606 wg_put_peer(wgp, &wgp_psref);
4607 }
4608 pserialize_read_exit(s);
4609
4610 prop_dictionary_set(prop_dict, "peers", peers);
4611 prop_object_release(peers);
4612 peers = NULL;
4613
4614 skip_peers:
4615 buf = prop_dictionary_externalize(prop_dict);
4616 if (buf == NULL)
4617 goto error;
4618 if (ifd->ifd_len < (strlen(buf) + 1)) {
4619 error = EINVAL;
4620 goto error;
4621 }
4622 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4623
4624 free(buf, 0);
4625 error:
4626 if (peers != NULL)
4627 prop_object_release(peers);
4628 if (prop_dict != NULL)
4629 prop_object_release(prop_dict);
4630
4631 return error;
4632 }
4633
4634 static int
4635 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4636 {
4637 struct wg_softc *wg = ifp->if_softc;
4638 struct ifreq *ifr = data;
4639 struct ifaddr *ifa = data;
4640 struct ifdrv *ifd = data;
4641 int error = 0;
4642
4643 switch (cmd) {
4644 case SIOCINITIFADDR:
4645 if (ifa->ifa_addr->sa_family != AF_LINK &&
4646 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
4647 (IFF_UP | IFF_RUNNING)) {
4648 ifp->if_flags |= IFF_UP;
4649 error = if_init(ifp);
4650 }
4651 return error;
4652 case SIOCADDMULTI:
4653 case SIOCDELMULTI:
4654 switch (ifr->ifr_addr.sa_family) {
4655 case AF_INET: /* IP supports Multicast */
4656 break;
4657 #ifdef INET6
4658 case AF_INET6: /* IP6 supports Multicast */
4659 break;
4660 #endif
4661 default: /* Other protocols doesn't support Multicast */
4662 error = EAFNOSUPPORT;
4663 break;
4664 }
4665 return error;
4666 case SIOCSDRVSPEC:
4667 if (!wg_is_authorized(wg, cmd)) {
4668 return EPERM;
4669 }
4670 switch (ifd->ifd_cmd) {
4671 case WG_IOCTL_SET_PRIVATE_KEY:
4672 error = wg_ioctl_set_private_key(wg, ifd);
4673 break;
4674 case WG_IOCTL_SET_LISTEN_PORT:
4675 error = wg_ioctl_set_listen_port(wg, ifd);
4676 break;
4677 case WG_IOCTL_ADD_PEER:
4678 error = wg_ioctl_add_peer(wg, ifd);
4679 break;
4680 case WG_IOCTL_DELETE_PEER:
4681 error = wg_ioctl_delete_peer(wg, ifd);
4682 break;
4683 default:
4684 error = EINVAL;
4685 break;
4686 }
4687 return error;
4688 case SIOCGDRVSPEC:
4689 return wg_ioctl_get(wg, ifd);
4690 case SIOCSIFFLAGS:
4691 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
4692 break;
4693 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4694 case IFF_RUNNING:
4695 /*
4696 * If interface is marked down and it is running,
4697 * then stop and disable it.
4698 */
4699 if_stop(ifp, 1);
4700 break;
4701 case IFF_UP:
4702 /*
4703 * If interface is marked up and it is stopped, then
4704 * start it.
4705 */
4706 error = if_init(ifp);
4707 break;
4708 default:
4709 break;
4710 }
4711 return error;
4712 #ifdef WG_RUMPKERNEL
4713 case SIOCSLINKSTR:
4714 error = wg_ioctl_linkstr(wg, ifd);
4715 if (error == 0)
4716 wg->wg_ops = &wg_ops_rumpuser;
4717 return error;
4718 #endif
4719 default:
4720 break;
4721 }
4722
4723 error = ifioctl_common(ifp, cmd, data);
4724
4725 #ifdef WG_RUMPKERNEL
4726 if (!wg_user_mode(wg))
4727 return error;
4728
4729 /* Do the same to the corresponding tun device on the host */
4730 /*
4731 * XXX Actually the command has not been handled yet. It
4732 * will be handled via pr_ioctl form doifioctl later.
4733 */
4734 switch (cmd) {
4735 case SIOCAIFADDR:
4736 case SIOCDIFADDR: {
4737 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
4738 struct in_aliasreq *ifra = &_ifra;
4739 KASSERT(error == ENOTTY);
4740 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4741 IFNAMSIZ);
4742 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
4743 if (error == 0)
4744 error = ENOTTY;
4745 break;
4746 }
4747 #ifdef INET6
4748 case SIOCAIFADDR_IN6:
4749 case SIOCDIFADDR_IN6: {
4750 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
4751 struct in6_aliasreq *ifra = &_ifra;
4752 KASSERT(error == ENOTTY);
4753 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4754 IFNAMSIZ);
4755 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
4756 if (error == 0)
4757 error = ENOTTY;
4758 break;
4759 }
4760 #endif
4761 }
4762 #endif /* WG_RUMPKERNEL */
4763
4764 return error;
4765 }
4766
4767 static int
4768 wg_init(struct ifnet *ifp)
4769 {
4770
4771 ifp->if_flags |= IFF_RUNNING;
4772
4773 /* TODO flush pending packets. */
4774 return 0;
4775 }
4776
4777 #ifdef ALTQ
4778 static void
4779 wg_start(struct ifnet *ifp)
4780 {
4781 struct mbuf *m;
4782
4783 for (;;) {
4784 IFQ_DEQUEUE(&ifp->if_snd, m);
4785 if (m == NULL)
4786 break;
4787
4788 kpreempt_disable();
4789 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
4790 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
4791 WGLOG(LOG_ERR, "pktq full, dropping\n");
4792 m_freem(m);
4793 }
4794 kpreempt_enable();
4795 }
4796 }
4797 #endif
4798
4799 static void
4800 wg_stop(struct ifnet *ifp, int disable)
4801 {
4802
4803 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
4804 ifp->if_flags &= ~IFF_RUNNING;
4805
4806 /* Need to do something? */
4807 }
4808
4809 #ifdef WG_DEBUG_PARAMS
4810 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
4811 {
4812 const struct sysctlnode *node = NULL;
4813
4814 sysctl_createv(clog, 0, NULL, &node,
4815 CTLFLAG_PERMANENT,
4816 CTLTYPE_NODE, "wg",
4817 SYSCTL_DESCR("wg(4)"),
4818 NULL, 0, NULL, 0,
4819 CTL_NET, CTL_CREATE, CTL_EOL);
4820 sysctl_createv(clog, 0, &node, NULL,
4821 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4822 CTLTYPE_QUAD, "rekey_after_messages",
4823 SYSCTL_DESCR("session liftime by messages"),
4824 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
4825 sysctl_createv(clog, 0, &node, NULL,
4826 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4827 CTLTYPE_INT, "rekey_after_time",
4828 SYSCTL_DESCR("session liftime"),
4829 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
4830 sysctl_createv(clog, 0, &node, NULL,
4831 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4832 CTLTYPE_INT, "rekey_timeout",
4833 SYSCTL_DESCR("session handshake retry time"),
4834 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
4835 sysctl_createv(clog, 0, &node, NULL,
4836 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4837 CTLTYPE_INT, "rekey_attempt_time",
4838 SYSCTL_DESCR("session handshake timeout"),
4839 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
4840 sysctl_createv(clog, 0, &node, NULL,
4841 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4842 CTLTYPE_INT, "keepalive_timeout",
4843 SYSCTL_DESCR("keepalive timeout"),
4844 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
4845 sysctl_createv(clog, 0, &node, NULL,
4846 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4847 CTLTYPE_BOOL, "force_underload",
4848 SYSCTL_DESCR("force to detemine under load"),
4849 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
4850 }
4851 #endif
4852
4853 #ifdef WG_RUMPKERNEL
4854 static bool
4855 wg_user_mode(struct wg_softc *wg)
4856 {
4857
4858 return wg->wg_user != NULL;
4859 }
4860
4861 static int
4862 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
4863 {
4864 struct ifnet *ifp = &wg->wg_if;
4865 int error;
4866
4867 if (ifp->if_flags & IFF_UP)
4868 return EBUSY;
4869
4870 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
4871 /* XXX do nothing */
4872 return 0;
4873 } else if (ifd->ifd_cmd != 0) {
4874 return EINVAL;
4875 } else if (wg->wg_user != NULL) {
4876 return EBUSY;
4877 }
4878
4879 /* Assume \0 included */
4880 if (ifd->ifd_len > IFNAMSIZ) {
4881 return E2BIG;
4882 } else if (ifd->ifd_len < 1) {
4883 return EINVAL;
4884 }
4885
4886 char tun_name[IFNAMSIZ];
4887 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
4888 if (error != 0)
4889 return error;
4890
4891 if (strncmp(tun_name, "tun", 3) != 0)
4892 return EINVAL;
4893
4894 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
4895
4896 return error;
4897 }
4898
4899 static int
4900 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
4901 {
4902 int error;
4903 struct psref psref;
4904 struct wg_sockaddr *wgsa;
4905 struct wg_softc *wg = wgp->wgp_sc;
4906 struct iovec iov[1];
4907
4908 wgsa = wg_get_endpoint_sa(wgp, &psref);
4909
4910 iov[0].iov_base = mtod(m, void *);
4911 iov[0].iov_len = m->m_len;
4912
4913 /* Send messages to a peer via an ordinary socket. */
4914 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
4915
4916 wg_put_sa(wgp, wgsa, &psref);
4917
4918 m_freem(m);
4919
4920 return error;
4921 }
4922
4923 static void
4924 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
4925 {
4926 struct wg_softc *wg = ifp->if_softc;
4927 struct iovec iov[2];
4928 struct sockaddr_storage ss;
4929
4930 KASSERT(af == AF_INET || af == AF_INET6);
4931
4932 WG_TRACE("");
4933
4934 if (af == AF_INET) {
4935 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
4936 struct ip *ip;
4937
4938 KASSERT(m->m_len >= sizeof(struct ip));
4939 ip = mtod(m, struct ip *);
4940 sockaddr_in_init(sin, &ip->ip_dst, 0);
4941 } else {
4942 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
4943 struct ip6_hdr *ip6;
4944
4945 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
4946 ip6 = mtod(m, struct ip6_hdr *);
4947 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
4948 }
4949
4950 iov[0].iov_base = &ss;
4951 iov[0].iov_len = ss.ss_len;
4952 iov[1].iov_base = mtod(m, void *);
4953 iov[1].iov_len = m->m_len;
4954
4955 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4956
4957 /* Send decrypted packets to users via a tun. */
4958 rumpuser_wg_send_user(wg->wg_user, iov, 2);
4959
4960 m_freem(m);
4961 }
4962
4963 static int
4964 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
4965 {
4966 int error;
4967 uint16_t old_port = wg->wg_listen_port;
4968
4969 if (port != 0 && old_port == port)
4970 return 0;
4971
4972 error = rumpuser_wg_sock_bind(wg->wg_user, port);
4973 if (error == 0)
4974 wg->wg_listen_port = port;
4975 return error;
4976 }
4977
4978 /*
4979 * Receive user packets.
4980 */
4981 void
4982 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
4983 {
4984 struct ifnet *ifp = &wg->wg_if;
4985 struct mbuf *m;
4986 const struct sockaddr *dst;
4987
4988 WG_TRACE("");
4989
4990 dst = iov[0].iov_base;
4991
4992 m = m_gethdr(M_DONTWAIT, MT_DATA);
4993 if (m == NULL)
4994 return;
4995 m->m_len = m->m_pkthdr.len = 0;
4996 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
4997
4998 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
4999 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5000
5001 (void)wg_output(ifp, m, dst, NULL);
5002 }
5003
5004 /*
5005 * Receive packets from a peer.
5006 */
5007 void
5008 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5009 {
5010 struct mbuf *m;
5011 const struct sockaddr *src;
5012
5013 WG_TRACE("");
5014
5015 src = iov[0].iov_base;
5016
5017 m = m_gethdr(M_DONTWAIT, MT_DATA);
5018 if (m == NULL)
5019 return;
5020 m->m_len = m->m_pkthdr.len = 0;
5021 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5022
5023 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
5024 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5025
5026 wg_handle_packet(wg, m, src);
5027 }
5028 #endif /* WG_RUMPKERNEL */
5029
5030 /*
5031 * Module infrastructure
5032 */
5033 #include "if_module.h"
5034
5035 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
5036