if_wg.c revision 1.76 1 /* $NetBSD: if_wg.c,v 1.76 2023/04/11 14:03:46 jakllsch Exp $ */
2
3 /*
4 * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * This network interface aims to implement the WireGuard protocol.
34 * The implementation is based on the paper of WireGuard as of
35 * 2018-06-30 [1]. The paper is referred in the source code with label
36 * [W]. Also the specification of the Noise protocol framework as of
37 * 2018-07-11 [2] is referred with label [N].
38 *
39 * [1] https://www.wireguard.com/papers/wireguard.pdf
40 * [2] http://noiseprotocol.org/noise.pdf
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.76 2023/04/11 14:03:46 jakllsch Exp $");
45
46 #ifdef _KERNEL_OPT
47 #include "opt_altq_enabled.h"
48 #include "opt_inet.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/atomic.h>
55 #include <sys/callout.h>
56 #include <sys/cprng.h>
57 #include <sys/cpu.h>
58 #include <sys/device.h>
59 #include <sys/domain.h>
60 #include <sys/errno.h>
61 #include <sys/intr.h>
62 #include <sys/ioctl.h>
63 #include <sys/kernel.h>
64 #include <sys/kmem.h>
65 #include <sys/mbuf.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/once.h>
69 #include <sys/percpu.h>
70 #include <sys/pserialize.h>
71 #include <sys/psref.h>
72 #include <sys/queue.h>
73 #include <sys/rwlock.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/systm.h>
80 #include <sys/thmap.h>
81 #include <sys/threadpool.h>
82 #include <sys/time.h>
83 #include <sys/timespec.h>
84 #include <sys/workqueue.h>
85
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_types.h>
89 #include <net/if_wg.h>
90 #include <net/pktqueue.h>
91 #include <net/route.h>
92
93 #include <netinet/in.h>
94 #include <netinet/in_pcb.h>
95 #include <netinet/in_var.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_var.h>
98 #include <netinet/udp.h>
99 #include <netinet/udp_var.h>
100
101 #ifdef INET6
102 #include <netinet/ip6.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet6/in6_var.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet6/udp6_var.h>
107 #endif /* INET6 */
108
109 #include <prop/proplib.h>
110
111 #include <crypto/blake2/blake2s.h>
112 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
113 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
114 #include <crypto/sodium/crypto_scalarmult.h>
115
116 #include "ioconf.h"
117
118 #ifdef WG_RUMPKERNEL
119 #include "wg_user.h"
120 #endif
121
122 /*
123 * Data structures
124 * - struct wg_softc is an instance of wg interfaces
125 * - It has a list of peers (struct wg_peer)
126 * - It has a threadpool job that sends/receives handshake messages and
127 * runs event handlers
128 * - It has its own two routing tables: one is for IPv4 and the other IPv6
129 * - struct wg_peer is a representative of a peer
130 * - It has a struct work to handle handshakes and timer tasks
131 * - It has a pair of session instances (struct wg_session)
132 * - It has a pair of endpoint instances (struct wg_sockaddr)
133 * - Normally one endpoint is used and the second one is used only on
134 * a peer migration (a change of peer's IP address)
135 * - It has a list of IP addresses and sub networks called allowedips
136 * (struct wg_allowedip)
137 * - A packets sent over a session is allowed if its destination matches
138 * any IP addresses or sub networks of the list
139 * - struct wg_session represents a session of a secure tunnel with a peer
140 * - Two instances of sessions belong to a peer; a stable session and a
141 * unstable session
142 * - A handshake process of a session always starts with a unstable instance
143 * - Once a session is established, its instance becomes stable and the
144 * other becomes unstable instead
145 * - Data messages are always sent via a stable session
146 *
147 * Locking notes:
148 * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
149 * - Changes to the peer list are serialized by wg_lock
150 * - The peer list may be read with pserialize(9) and psref(9)
151 * - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
152 * => XXX replace by pserialize when routing table is psz-safe
153 * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
154 * only in thread context and serializes:
155 * - the stable and unstable session pointers
156 * - all unstable session state
157 * - Packet processing may be done in softint context:
158 * - The stable session can be read under pserialize(9) or psref(9)
159 * - The stable session is always ESTABLISHED
160 * - On a session swap, we must wait for all readers to release a
161 * reference to a stable session before changing wgs_state and
162 * session states
163 * - Lock order: wg_lock -> wgp_lock
164 */
165
166
167 #define WGLOG(level, fmt, args...) \
168 log(level, "%s: " fmt, __func__, ##args)
169
170 /* Debug options */
171 #ifdef WG_DEBUG
172 /* Output debug logs */
173 #ifndef WG_DEBUG_LOG
174 #define WG_DEBUG_LOG
175 #endif
176 /* Output trace logs */
177 #ifndef WG_DEBUG_TRACE
178 #define WG_DEBUG_TRACE
179 #endif
180 /* Output hash values, etc. */
181 #ifndef WG_DEBUG_DUMP
182 #define WG_DEBUG_DUMP
183 #endif
184 /* Make some internal parameters configurable for testing and debugging */
185 #ifndef WG_DEBUG_PARAMS
186 #define WG_DEBUG_PARAMS
187 #endif
188 #endif
189
190 #ifdef WG_DEBUG_TRACE
191 #define WG_TRACE(msg) \
192 log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
193 #else
194 #define WG_TRACE(msg) __nothing
195 #endif
196
197 #ifdef WG_DEBUG_LOG
198 #define WG_DLOG(fmt, args...) log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
199 #else
200 #define WG_DLOG(fmt, args...) __nothing
201 #endif
202
203 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...) do { \
204 if (ppsratecheck(&(wgprc)->wgprc_lasttime, \
205 &(wgprc)->wgprc_curpps, 1)) { \
206 log(level, fmt, ##args); \
207 } \
208 } while (0)
209
210 #ifdef WG_DEBUG_PARAMS
211 static bool wg_force_underload = false;
212 #endif
213
214 #ifdef WG_DEBUG_DUMP
215
216 static char *
217 gethexdump(const char *p, size_t n)
218 {
219 char *buf;
220 size_t i;
221
222 if (n > SIZE_MAX/3 - 1)
223 return NULL;
224 buf = kmem_alloc(3*n + 1, KM_NOSLEEP);
225 if (buf == NULL)
226 return NULL;
227 for (i = 0; i < n; i++)
228 snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
229 return buf;
230 }
231
232 static void
233 puthexdump(char *buf, const void *p, size_t n)
234 {
235
236 if (buf == NULL)
237 return;
238 kmem_free(buf, 3*n + 1);
239 }
240
241 #ifdef WG_RUMPKERNEL
242 static void
243 wg_dump_buf(const char *func, const char *buf, const size_t size)
244 {
245 char *hex = gethexdump(buf, size);
246
247 log(LOG_DEBUG, "%s: %s\n", func, hex ? hex : "(enomem)");
248 puthexdump(hex, buf, size);
249 }
250 #endif
251
252 static void
253 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
254 const size_t size)
255 {
256 char *hex = gethexdump(hash, size);
257
258 log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex ? hex : "(enomem)");
259 puthexdump(hex, hash, size);
260 }
261
262 #define WG_DUMP_HASH(name, hash) \
263 wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
264 #define WG_DUMP_HASH48(name, hash) \
265 wg_dump_hash(__func__, name, hash, 48)
266 #define WG_DUMP_BUF(buf, size) \
267 wg_dump_buf(__func__, buf, size)
268 #else
269 #define WG_DUMP_HASH(name, hash) __nothing
270 #define WG_DUMP_HASH48(name, hash) __nothing
271 #define WG_DUMP_BUF(buf, size) __nothing
272 #endif /* WG_DEBUG_DUMP */
273
274 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
275 #define WG_MAX_PROPLEN 32766
276
277 #define WG_MTU 1420
278 #define WG_ALLOWEDIPS 16
279
280 #define CURVE25519_KEY_LEN 32
281 #define TAI64N_LEN sizeof(uint32_t) * 3
282 #define POLY1305_AUTHTAG_LEN 16
283 #define HMAC_BLOCK_LEN 64
284
285 /* [N] 4.1: "DHLEN must be 32 or greater." WireGuard chooses 32. */
286 /* [N] 4.3: Hash functions */
287 #define NOISE_DHLEN 32
288 /* [N] 4.3: "Must be 32 or 64." WireGuard chooses 32. */
289 #define NOISE_HASHLEN 32
290 #define NOISE_BLOCKLEN 64
291 #define NOISE_HKDF_OUTPUT_LEN NOISE_HASHLEN
292 /* [N] 5.1: "k" */
293 #define NOISE_CIPHER_KEY_LEN 32
294 /*
295 * [N] 9.2: "psk"
296 * "... psk is a 32-byte secret value provided by the application."
297 */
298 #define NOISE_PRESHARED_KEY_LEN 32
299
300 #define WG_STATIC_KEY_LEN CURVE25519_KEY_LEN
301 #define WG_TIMESTAMP_LEN TAI64N_LEN
302
303 #define WG_PRESHARED_KEY_LEN NOISE_PRESHARED_KEY_LEN
304
305 #define WG_COOKIE_LEN 16
306 #define WG_MAC_LEN 16
307 #define WG_RANDVAL_LEN 24
308
309 #define WG_EPHEMERAL_KEY_LEN CURVE25519_KEY_LEN
310 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
311 #define WG_CHAINING_KEY_LEN NOISE_HASHLEN
312 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
313 #define WG_HASH_LEN NOISE_HASHLEN
314 #define WG_CIPHER_KEY_LEN NOISE_CIPHER_KEY_LEN
315 #define WG_DH_OUTPUT_LEN NOISE_DHLEN
316 #define WG_KDF_OUTPUT_LEN NOISE_HKDF_OUTPUT_LEN
317 #define WG_AUTHTAG_LEN POLY1305_AUTHTAG_LEN
318 #define WG_DATA_KEY_LEN 32
319 #define WG_SALT_LEN 24
320
321 /*
322 * The protocol messages
323 */
324 struct wg_msg {
325 uint32_t wgm_type;
326 } __packed;
327
328 /* [W] 5.4.2 First Message: Initiator to Responder */
329 struct wg_msg_init {
330 uint32_t wgmi_type;
331 uint32_t wgmi_sender;
332 uint8_t wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
333 uint8_t wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
334 uint8_t wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
335 uint8_t wgmi_mac1[WG_MAC_LEN];
336 uint8_t wgmi_mac2[WG_MAC_LEN];
337 } __packed;
338
339 /* [W] 5.4.3 Second Message: Responder to Initiator */
340 struct wg_msg_resp {
341 uint32_t wgmr_type;
342 uint32_t wgmr_sender;
343 uint32_t wgmr_receiver;
344 uint8_t wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
345 uint8_t wgmr_empty[0 + WG_AUTHTAG_LEN];
346 uint8_t wgmr_mac1[WG_MAC_LEN];
347 uint8_t wgmr_mac2[WG_MAC_LEN];
348 } __packed;
349
350 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
351 struct wg_msg_data {
352 uint32_t wgmd_type;
353 uint32_t wgmd_receiver;
354 uint64_t wgmd_counter;
355 uint32_t wgmd_packet[0];
356 } __packed;
357
358 /* [W] 5.4.7 Under Load: Cookie Reply Message */
359 struct wg_msg_cookie {
360 uint32_t wgmc_type;
361 uint32_t wgmc_receiver;
362 uint8_t wgmc_salt[WG_SALT_LEN];
363 uint8_t wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
364 } __packed;
365
366 #define WG_MSG_TYPE_INIT 1
367 #define WG_MSG_TYPE_RESP 2
368 #define WG_MSG_TYPE_COOKIE 3
369 #define WG_MSG_TYPE_DATA 4
370 #define WG_MSG_TYPE_MAX WG_MSG_TYPE_DATA
371
372 /* Sliding windows */
373
374 #define SLIWIN_BITS 2048u
375 #define SLIWIN_TYPE uint32_t
376 #define SLIWIN_BPW NBBY*sizeof(SLIWIN_TYPE)
377 #define SLIWIN_WORDS howmany(SLIWIN_BITS, SLIWIN_BPW)
378 #define SLIWIN_NPKT (SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
379
380 struct sliwin {
381 SLIWIN_TYPE B[SLIWIN_WORDS];
382 uint64_t T;
383 };
384
385 static void
386 sliwin_reset(struct sliwin *W)
387 {
388
389 memset(W, 0, sizeof(*W));
390 }
391
392 static int
393 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
394 {
395
396 /*
397 * If it's more than one window older than the highest sequence
398 * number we've seen, reject.
399 */
400 #ifdef __HAVE_ATOMIC64_LOADSTORE
401 if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
402 return EAUTH;
403 #endif
404
405 /*
406 * Otherwise, we need to take the lock to decide, so don't
407 * reject just yet. Caller must serialize a call to
408 * sliwin_update in this case.
409 */
410 return 0;
411 }
412
413 static int
414 sliwin_update(struct sliwin *W, uint64_t S)
415 {
416 unsigned word, bit;
417
418 /*
419 * If it's more than one window older than the highest sequence
420 * number we've seen, reject.
421 */
422 if (S + SLIWIN_NPKT < W->T)
423 return EAUTH;
424
425 /*
426 * If it's higher than the highest sequence number we've seen,
427 * advance the window.
428 */
429 if (S > W->T) {
430 uint64_t i = W->T / SLIWIN_BPW;
431 uint64_t j = S / SLIWIN_BPW;
432 unsigned k;
433
434 for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
435 W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
436 #ifdef __HAVE_ATOMIC64_LOADSTORE
437 atomic_store_relaxed(&W->T, S);
438 #else
439 W->T = S;
440 #endif
441 }
442
443 /* Test and set the bit -- if already set, reject. */
444 word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
445 bit = S % SLIWIN_BPW;
446 if (W->B[word] & (1UL << bit))
447 return EAUTH;
448 W->B[word] |= 1U << bit;
449
450 /* Accept! */
451 return 0;
452 }
453
454 struct wg_session {
455 struct wg_peer *wgs_peer;
456 struct psref_target
457 wgs_psref;
458
459 int wgs_state;
460 #define WGS_STATE_UNKNOWN 0
461 #define WGS_STATE_INIT_ACTIVE 1
462 #define WGS_STATE_INIT_PASSIVE 2
463 #define WGS_STATE_ESTABLISHED 3
464 #define WGS_STATE_DESTROYING 4
465
466 time_t wgs_time_established;
467 time_t wgs_time_last_data_sent;
468 bool wgs_is_initiator;
469
470 uint32_t wgs_local_index;
471 uint32_t wgs_remote_index;
472 #ifdef __HAVE_ATOMIC64_LOADSTORE
473 volatile uint64_t
474 wgs_send_counter;
475 #else
476 kmutex_t wgs_send_counter_lock;
477 uint64_t wgs_send_counter;
478 #endif
479
480 struct {
481 kmutex_t lock;
482 struct sliwin window;
483 } *wgs_recvwin;
484
485 uint8_t wgs_handshake_hash[WG_HASH_LEN];
486 uint8_t wgs_chaining_key[WG_CHAINING_KEY_LEN];
487 uint8_t wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
488 uint8_t wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
489 uint8_t wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
490 uint8_t wgs_tkey_send[WG_DATA_KEY_LEN];
491 uint8_t wgs_tkey_recv[WG_DATA_KEY_LEN];
492 };
493
494 struct wg_sockaddr {
495 union {
496 struct sockaddr_storage _ss;
497 struct sockaddr _sa;
498 struct sockaddr_in _sin;
499 struct sockaddr_in6 _sin6;
500 };
501 struct psref_target wgsa_psref;
502 };
503
504 #define wgsatoss(wgsa) (&(wgsa)->_ss)
505 #define wgsatosa(wgsa) (&(wgsa)->_sa)
506 #define wgsatosin(wgsa) (&(wgsa)->_sin)
507 #define wgsatosin6(wgsa) (&(wgsa)->_sin6)
508
509 #define wgsa_family(wgsa) (wgsatosa(wgsa)->sa_family)
510
511 struct wg_peer;
512 struct wg_allowedip {
513 struct radix_node wga_nodes[2];
514 struct wg_sockaddr _wga_sa_addr;
515 struct wg_sockaddr _wga_sa_mask;
516 #define wga_sa_addr _wga_sa_addr._sa
517 #define wga_sa_mask _wga_sa_mask._sa
518
519 int wga_family;
520 uint8_t wga_cidr;
521 union {
522 struct in_addr _ip4;
523 struct in6_addr _ip6;
524 } wga_addr;
525 #define wga_addr4 wga_addr._ip4
526 #define wga_addr6 wga_addr._ip6
527
528 struct wg_peer *wga_peer;
529 };
530
531 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
532
533 struct wg_ppsratecheck {
534 struct timeval wgprc_lasttime;
535 int wgprc_curpps;
536 };
537
538 struct wg_softc;
539 struct wg_peer {
540 struct wg_softc *wgp_sc;
541 char wgp_name[WG_PEER_NAME_MAXLEN + 1];
542 struct pslist_entry wgp_peerlist_entry;
543 pserialize_t wgp_psz;
544 struct psref_target wgp_psref;
545 kmutex_t *wgp_lock;
546 kmutex_t *wgp_intr_lock;
547
548 uint8_t wgp_pubkey[WG_STATIC_KEY_LEN];
549 struct wg_sockaddr *wgp_endpoint;
550 struct wg_sockaddr *wgp_endpoint0;
551 volatile unsigned wgp_endpoint_changing;
552 bool wgp_endpoint_available;
553
554 /* The preshared key (optional) */
555 uint8_t wgp_psk[WG_PRESHARED_KEY_LEN];
556
557 struct wg_session *wgp_session_stable;
558 struct wg_session *wgp_session_unstable;
559
560 /* first outgoing packet awaiting session initiation */
561 struct mbuf *wgp_pending;
562
563 /* timestamp in big-endian */
564 wg_timestamp_t wgp_timestamp_latest_init;
565
566 struct timespec wgp_last_handshake_time;
567
568 callout_t wgp_rekey_timer;
569 callout_t wgp_handshake_timeout_timer;
570 callout_t wgp_session_dtor_timer;
571
572 time_t wgp_handshake_start_time;
573
574 int wgp_n_allowedips;
575 struct wg_allowedip wgp_allowedips[WG_ALLOWEDIPS];
576
577 time_t wgp_latest_cookie_time;
578 uint8_t wgp_latest_cookie[WG_COOKIE_LEN];
579 uint8_t wgp_last_sent_mac1[WG_MAC_LEN];
580 bool wgp_last_sent_mac1_valid;
581 uint8_t wgp_last_sent_cookie[WG_COOKIE_LEN];
582 bool wgp_last_sent_cookie_valid;
583
584 time_t wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
585
586 time_t wgp_last_genrandval_time;
587 uint32_t wgp_randval;
588
589 struct wg_ppsratecheck wgp_ppsratecheck;
590
591 struct work wgp_work;
592 unsigned int wgp_tasks;
593 #define WGP_TASK_SEND_INIT_MESSAGE __BIT(0)
594 #define WGP_TASK_RETRY_HANDSHAKE __BIT(1)
595 #define WGP_TASK_ESTABLISH_SESSION __BIT(2)
596 #define WGP_TASK_ENDPOINT_CHANGED __BIT(3)
597 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE __BIT(4)
598 #define WGP_TASK_DESTROY_PREV_SESSION __BIT(5)
599 };
600
601 struct wg_ops;
602
603 struct wg_softc {
604 struct ifnet wg_if;
605 LIST_ENTRY(wg_softc) wg_list;
606 kmutex_t *wg_lock;
607 kmutex_t *wg_intr_lock;
608 krwlock_t *wg_rwlock;
609
610 uint8_t wg_privkey[WG_STATIC_KEY_LEN];
611 uint8_t wg_pubkey[WG_STATIC_KEY_LEN];
612
613 int wg_npeers;
614 struct pslist_head wg_peers;
615 struct thmap *wg_peers_bypubkey;
616 struct thmap *wg_peers_byname;
617 struct thmap *wg_sessions_byindex;
618 uint16_t wg_listen_port;
619
620 struct threadpool *wg_threadpool;
621
622 struct threadpool_job wg_job;
623 int wg_upcalls;
624 #define WG_UPCALL_INET __BIT(0)
625 #define WG_UPCALL_INET6 __BIT(1)
626
627 #ifdef INET
628 struct socket *wg_so4;
629 struct radix_node_head *wg_rtable_ipv4;
630 #endif
631 #ifdef INET6
632 struct socket *wg_so6;
633 struct radix_node_head *wg_rtable_ipv6;
634 #endif
635
636 struct wg_ppsratecheck wg_ppsratecheck;
637
638 struct wg_ops *wg_ops;
639
640 #ifdef WG_RUMPKERNEL
641 struct wg_user *wg_user;
642 #endif
643 };
644
645 /* [W] 6.1 Preliminaries */
646 #define WG_REKEY_AFTER_MESSAGES (1ULL << 60)
647 #define WG_REJECT_AFTER_MESSAGES (UINT64_MAX - (1 << 13))
648 #define WG_REKEY_AFTER_TIME 120
649 #define WG_REJECT_AFTER_TIME 180
650 #define WG_REKEY_ATTEMPT_TIME 90
651 #define WG_REKEY_TIMEOUT 5
652 #define WG_KEEPALIVE_TIMEOUT 10
653
654 #define WG_COOKIE_TIME 120
655 #define WG_RANDVAL_TIME (2 * 60)
656
657 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
658 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
659 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
660 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
661 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
662 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
663 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
664
665 static struct mbuf *
666 wg_get_mbuf(size_t, size_t);
667
668 static int wg_send_data_msg(struct wg_peer *, struct wg_session *,
669 struct mbuf *);
670 static int wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
671 const uint32_t, const uint8_t [], const struct sockaddr *);
672 static int wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
673 struct wg_session *, const struct wg_msg_init *);
674 static void wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
675
676 static struct wg_peer *
677 wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
678 struct psref *);
679 static struct wg_peer *
680 wg_lookup_peer_by_pubkey(struct wg_softc *,
681 const uint8_t [], struct psref *);
682
683 static struct wg_session *
684 wg_lookup_session_by_index(struct wg_softc *,
685 const uint32_t, struct psref *);
686
687 static void wg_update_endpoint_if_necessary(struct wg_peer *,
688 const struct sockaddr *);
689
690 static void wg_schedule_rekey_timer(struct wg_peer *);
691 static void wg_schedule_session_dtor_timer(struct wg_peer *);
692
693 static bool wg_is_underload(struct wg_softc *, struct wg_peer *, int);
694 static void wg_calculate_keys(struct wg_session *, const bool);
695
696 static void wg_clear_states(struct wg_session *);
697
698 static void wg_get_peer(struct wg_peer *, struct psref *);
699 static void wg_put_peer(struct wg_peer *, struct psref *);
700
701 static int wg_send_so(struct wg_peer *, struct mbuf *);
702 static int wg_send_udp(struct wg_peer *, struct mbuf *);
703 static int wg_output(struct ifnet *, struct mbuf *,
704 const struct sockaddr *, const struct rtentry *);
705 static void wg_input(struct ifnet *, struct mbuf *, const int);
706 static int wg_ioctl(struct ifnet *, u_long, void *);
707 static int wg_bind_port(struct wg_softc *, const uint16_t);
708 static int wg_init(struct ifnet *);
709 #ifdef ALTQ
710 static void wg_start(struct ifnet *);
711 #endif
712 static void wg_stop(struct ifnet *, int);
713
714 static void wg_peer_work(struct work *, void *);
715 static void wg_job(struct threadpool_job *);
716 static void wgintr(void *);
717 static void wg_purge_pending_packets(struct wg_peer *);
718
719 static int wg_clone_create(struct if_clone *, int);
720 static int wg_clone_destroy(struct ifnet *);
721
722 struct wg_ops {
723 int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
724 int (*send_data_msg)(struct wg_peer *, struct mbuf *);
725 void (*input)(struct ifnet *, struct mbuf *, const int);
726 int (*bind_port)(struct wg_softc *, const uint16_t);
727 };
728
729 struct wg_ops wg_ops_rumpkernel = {
730 .send_hs_msg = wg_send_so,
731 .send_data_msg = wg_send_udp,
732 .input = wg_input,
733 .bind_port = wg_bind_port,
734 };
735
736 #ifdef WG_RUMPKERNEL
737 static bool wg_user_mode(struct wg_softc *);
738 static int wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
739
740 static int wg_send_user(struct wg_peer *, struct mbuf *);
741 static void wg_input_user(struct ifnet *, struct mbuf *, const int);
742 static int wg_bind_port_user(struct wg_softc *, const uint16_t);
743
744 struct wg_ops wg_ops_rumpuser = {
745 .send_hs_msg = wg_send_user,
746 .send_data_msg = wg_send_user,
747 .input = wg_input_user,
748 .bind_port = wg_bind_port_user,
749 };
750 #endif
751
752 #define WG_PEER_READER_FOREACH(wgp, wg) \
753 PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
754 wgp_peerlist_entry)
755 #define WG_PEER_WRITER_FOREACH(wgp, wg) \
756 PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer, \
757 wgp_peerlist_entry)
758 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg) \
759 PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
760 #define WG_PEER_WRITER_REMOVE(wgp) \
761 PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
762
763 struct wg_route {
764 struct radix_node wgr_nodes[2];
765 struct wg_peer *wgr_peer;
766 };
767
768 static struct radix_node_head *
769 wg_rnh(struct wg_softc *wg, const int family)
770 {
771
772 switch (family) {
773 case AF_INET:
774 return wg->wg_rtable_ipv4;
775 #ifdef INET6
776 case AF_INET6:
777 return wg->wg_rtable_ipv6;
778 #endif
779 default:
780 return NULL;
781 }
782 }
783
784
785 /*
786 * Global variables
787 */
788 static volatile unsigned wg_count __cacheline_aligned;
789
790 struct psref_class *wg_psref_class __read_mostly;
791
792 static struct if_clone wg_cloner =
793 IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
794
795 static struct pktqueue *wg_pktq __read_mostly;
796 static struct workqueue *wg_wq __read_mostly;
797
798 void wgattach(int);
799 /* ARGSUSED */
800 void
801 wgattach(int count)
802 {
803 /*
804 * Nothing to do here, initialization is handled by the
805 * module initialization code in wginit() below).
806 */
807 }
808
809 static void
810 wginit(void)
811 {
812
813 wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
814
815 if_clone_attach(&wg_cloner);
816 }
817
818 /*
819 * XXX Kludge: This should just happen in wginit, but workqueue_create
820 * cannot be run until after CPUs have been detected, and wginit runs
821 * before configure.
822 */
823 static int
824 wginitqueues(void)
825 {
826 int error __diagused;
827
828 wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
829 KASSERT(wg_pktq != NULL);
830
831 error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
832 PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
833 KASSERT(error == 0);
834
835 return 0;
836 }
837
838 static void
839 wg_guarantee_initialized(void)
840 {
841 static ONCE_DECL(init);
842 int error __diagused;
843
844 error = RUN_ONCE(&init, wginitqueues);
845 KASSERT(error == 0);
846 }
847
848 static int
849 wg_count_inc(void)
850 {
851 unsigned o, n;
852
853 do {
854 o = atomic_load_relaxed(&wg_count);
855 if (o == UINT_MAX)
856 return ENFILE;
857 n = o + 1;
858 } while (atomic_cas_uint(&wg_count, o, n) != o);
859
860 return 0;
861 }
862
863 static void
864 wg_count_dec(void)
865 {
866 unsigned c __diagused;
867
868 c = atomic_dec_uint_nv(&wg_count);
869 KASSERT(c != UINT_MAX);
870 }
871
872 static int
873 wgdetach(void)
874 {
875
876 /* Prevent new interface creation. */
877 if_clone_detach(&wg_cloner);
878
879 /* Check whether there are any existing interfaces. */
880 if (atomic_load_relaxed(&wg_count)) {
881 /* Back out -- reattach the cloner. */
882 if_clone_attach(&wg_cloner);
883 return EBUSY;
884 }
885
886 /* No interfaces left. Nuke it. */
887 workqueue_destroy(wg_wq);
888 pktq_destroy(wg_pktq);
889 psref_class_destroy(wg_psref_class);
890
891 return 0;
892 }
893
894 static void
895 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
896 uint8_t hash[WG_HASH_LEN])
897 {
898 /* [W] 5.4: CONSTRUCTION */
899 const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
900 /* [W] 5.4: IDENTIFIER */
901 const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
902 struct blake2s state;
903
904 blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
905 signature, strlen(signature));
906
907 CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
908 memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
909
910 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
911 blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
912 blake2s_update(&state, id, strlen(id));
913 blake2s_final(&state, hash);
914
915 WG_DUMP_HASH("ckey", ckey);
916 WG_DUMP_HASH("hash", hash);
917 }
918
919 static void
920 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
921 const size_t inputsize)
922 {
923 struct blake2s state;
924
925 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
926 blake2s_update(&state, hash, WG_HASH_LEN);
927 blake2s_update(&state, input, inputsize);
928 blake2s_final(&state, hash);
929 }
930
931 static void
932 wg_algo_mac(uint8_t out[], const size_t outsize,
933 const uint8_t key[], const size_t keylen,
934 const uint8_t input1[], const size_t input1len,
935 const uint8_t input2[], const size_t input2len)
936 {
937 struct blake2s state;
938
939 blake2s_init(&state, outsize, key, keylen);
940
941 blake2s_update(&state, input1, input1len);
942 if (input2 != NULL)
943 blake2s_update(&state, input2, input2len);
944 blake2s_final(&state, out);
945 }
946
947 static void
948 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
949 const uint8_t input1[], const size_t input1len,
950 const uint8_t input2[], const size_t input2len)
951 {
952 struct blake2s state;
953 /* [W] 5.4: LABEL-MAC1 */
954 const char *label = "mac1----";
955 uint8_t key[WG_HASH_LEN];
956
957 blake2s_init(&state, sizeof(key), NULL, 0);
958 blake2s_update(&state, label, strlen(label));
959 blake2s_update(&state, input1, input1len);
960 blake2s_final(&state, key);
961
962 blake2s_init(&state, outsize, key, sizeof(key));
963 if (input2 != NULL)
964 blake2s_update(&state, input2, input2len);
965 blake2s_final(&state, out);
966 }
967
968 static void
969 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
970 const uint8_t input1[], const size_t input1len)
971 {
972 struct blake2s state;
973 /* [W] 5.4: LABEL-COOKIE */
974 const char *label = "cookie--";
975
976 blake2s_init(&state, outsize, NULL, 0);
977 blake2s_update(&state, label, strlen(label));
978 blake2s_update(&state, input1, input1len);
979 blake2s_final(&state, out);
980 }
981
982 static void
983 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
984 uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
985 {
986
987 CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
988
989 cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
990 crypto_scalarmult_base(pubkey, privkey);
991 }
992
993 static void
994 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
995 const uint8_t privkey[WG_STATIC_KEY_LEN],
996 const uint8_t pubkey[WG_STATIC_KEY_LEN])
997 {
998
999 CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1000
1001 int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
1002 KASSERT(ret == 0);
1003 }
1004
1005 static void
1006 wg_algo_hmac(uint8_t out[], const size_t outlen,
1007 const uint8_t key[], const size_t keylen,
1008 const uint8_t in[], const size_t inlen)
1009 {
1010 #define IPAD 0x36
1011 #define OPAD 0x5c
1012 uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
1013 uint8_t ipad[HMAC_BLOCK_LEN];
1014 uint8_t opad[HMAC_BLOCK_LEN];
1015 size_t i;
1016 struct blake2s state;
1017
1018 KASSERT(outlen == WG_HASH_LEN);
1019 KASSERT(keylen <= HMAC_BLOCK_LEN);
1020
1021 memcpy(hmackey, key, keylen);
1022
1023 for (i = 0; i < sizeof(hmackey); i++) {
1024 ipad[i] = hmackey[i] ^ IPAD;
1025 opad[i] = hmackey[i] ^ OPAD;
1026 }
1027
1028 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1029 blake2s_update(&state, ipad, sizeof(ipad));
1030 blake2s_update(&state, in, inlen);
1031 blake2s_final(&state, out);
1032
1033 blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1034 blake2s_update(&state, opad, sizeof(opad));
1035 blake2s_update(&state, out, WG_HASH_LEN);
1036 blake2s_final(&state, out);
1037 #undef IPAD
1038 #undef OPAD
1039 }
1040
1041 static void
1042 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
1043 uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
1044 const uint8_t input[], const size_t inputlen)
1045 {
1046 uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
1047 uint8_t one[1];
1048
1049 /*
1050 * [N] 4.3: "an input_key_material byte sequence with length
1051 * either zero bytes, 32 bytes, or DHLEN bytes."
1052 */
1053 KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
1054
1055 WG_DUMP_HASH("ckey", ckey);
1056 if (input != NULL)
1057 WG_DUMP_HASH("input", input);
1058 wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
1059 input, inputlen);
1060 WG_DUMP_HASH("tmp1", tmp1);
1061 one[0] = 1;
1062 wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1063 one, sizeof(one));
1064 WG_DUMP_HASH("out1", out1);
1065 if (out2 == NULL)
1066 return;
1067 memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
1068 tmp2[WG_KDF_OUTPUT_LEN] = 2;
1069 wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1070 tmp2, sizeof(tmp2));
1071 WG_DUMP_HASH("out2", out2);
1072 if (out3 == NULL)
1073 return;
1074 memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
1075 tmp2[WG_KDF_OUTPUT_LEN] = 3;
1076 wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1077 tmp2, sizeof(tmp2));
1078 WG_DUMP_HASH("out3", out3);
1079 }
1080
1081 static void __noinline
1082 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
1083 uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1084 const uint8_t local_key[WG_STATIC_KEY_LEN],
1085 const uint8_t remote_key[WG_STATIC_KEY_LEN])
1086 {
1087 uint8_t dhout[WG_DH_OUTPUT_LEN];
1088
1089 wg_algo_dh(dhout, local_key, remote_key);
1090 wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1091
1092 WG_DUMP_HASH("dhout", dhout);
1093 WG_DUMP_HASH("ckey", ckey);
1094 if (cipher_key != NULL)
1095 WG_DUMP_HASH("cipher_key", cipher_key);
1096 }
1097
1098 static void
1099 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1100 const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1101 const uint8_t auth[], size_t authlen)
1102 {
1103 uint8_t nonce[(32 + 64) / 8] = {0};
1104 long long unsigned int outsize;
1105 int error __diagused;
1106
1107 le64enc(&nonce[4], counter);
1108
1109 error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1110 plainsize, auth, authlen, NULL, nonce, key);
1111 KASSERT(error == 0);
1112 KASSERT(outsize == expected_outsize);
1113 }
1114
1115 static int
1116 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1117 const uint64_t counter, const uint8_t encrypted[],
1118 const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1119 {
1120 uint8_t nonce[(32 + 64) / 8] = {0};
1121 long long unsigned int outsize;
1122 int error;
1123
1124 le64enc(&nonce[4], counter);
1125
1126 error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1127 encrypted, encryptedsize, auth, authlen, nonce, key);
1128 if (error == 0)
1129 KASSERT(outsize == expected_outsize);
1130 return error;
1131 }
1132
1133 static void
1134 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1135 const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1136 const uint8_t auth[], size_t authlen,
1137 const uint8_t nonce[WG_SALT_LEN])
1138 {
1139 long long unsigned int outsize;
1140 int error __diagused;
1141
1142 CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1143 error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1144 plain, plainsize, auth, authlen, NULL, nonce, key);
1145 KASSERT(error == 0);
1146 KASSERT(outsize == expected_outsize);
1147 }
1148
1149 static int
1150 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1151 const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
1152 const uint8_t auth[], size_t authlen,
1153 const uint8_t nonce[WG_SALT_LEN])
1154 {
1155 long long unsigned int outsize;
1156 int error;
1157
1158 error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1159 encrypted, encryptedsize, auth, authlen, nonce, key);
1160 if (error == 0)
1161 KASSERT(outsize == expected_outsize);
1162 return error;
1163 }
1164
1165 static void
1166 wg_algo_tai64n(wg_timestamp_t timestamp)
1167 {
1168 struct timespec ts;
1169
1170 /* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1171 getnanotime(&ts);
1172 /* TAI64 label in external TAI64 format */
1173 be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
1174 /* second beginning from 1970 TAI */
1175 be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
1176 /* nanosecond in big-endian format */
1177 be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
1178 }
1179
1180 /*
1181 * wg_get_stable_session(wgp, psref)
1182 *
1183 * Get a passive reference to the current stable session, or
1184 * return NULL if there is no current stable session.
1185 *
1186 * The pointer is always there but the session is not necessarily
1187 * ESTABLISHED; if it is not ESTABLISHED, return NULL. However,
1188 * the session may transition from ESTABLISHED to DESTROYING while
1189 * holding the passive reference.
1190 */
1191 static struct wg_session *
1192 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1193 {
1194 int s;
1195 struct wg_session *wgs;
1196
1197 s = pserialize_read_enter();
1198 wgs = atomic_load_consume(&wgp->wgp_session_stable);
1199 if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
1200 wgs = NULL;
1201 else
1202 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1203 pserialize_read_exit(s);
1204
1205 return wgs;
1206 }
1207
1208 static void
1209 wg_put_session(struct wg_session *wgs, struct psref *psref)
1210 {
1211
1212 psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1213 }
1214
1215 static void
1216 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1217 {
1218 struct wg_peer *wgp = wgs->wgs_peer;
1219 struct wg_session *wgs0 __diagused;
1220 void *garbage;
1221
1222 KASSERT(mutex_owned(wgp->wgp_lock));
1223 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1224
1225 /* Remove the session from the table. */
1226 wgs0 = thmap_del(wg->wg_sessions_byindex,
1227 &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1228 KASSERT(wgs0 == wgs);
1229 garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1230
1231 /* Wait for passive references to drain. */
1232 pserialize_perform(wgp->wgp_psz);
1233 psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1234
1235 /* Free memory, zero state, and transition to UNKNOWN. */
1236 thmap_gc(wg->wg_sessions_byindex, garbage);
1237 wg_clear_states(wgs);
1238 wgs->wgs_state = WGS_STATE_UNKNOWN;
1239 }
1240
1241 /*
1242 * wg_get_session_index(wg, wgs)
1243 *
1244 * Choose a session index for wgs->wgs_local_index, and store it
1245 * in wg's table of sessions by index.
1246 *
1247 * wgs must be the unstable session of its peer, and must be
1248 * transitioning out of the UNKNOWN state.
1249 */
1250 static void
1251 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1252 {
1253 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1254 struct wg_session *wgs0;
1255 uint32_t index;
1256
1257 KASSERT(mutex_owned(wgp->wgp_lock));
1258 KASSERT(wgs == wgp->wgp_session_unstable);
1259 KASSERT(wgs->wgs_state == WGS_STATE_UNKNOWN);
1260
1261 do {
1262 /* Pick a uniform random index. */
1263 index = cprng_strong32();
1264
1265 /* Try to take it. */
1266 wgs->wgs_local_index = index;
1267 wgs0 = thmap_put(wg->wg_sessions_byindex,
1268 &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1269
1270 /* If someone else beat us, start over. */
1271 } while (__predict_false(wgs0 != wgs));
1272 }
1273
1274 /*
1275 * wg_put_session_index(wg, wgs)
1276 *
1277 * Remove wgs from the table of sessions by index, wait for any
1278 * passive references to drain, and transition the session to the
1279 * UNKNOWN state.
1280 *
1281 * wgs must be the unstable session of its peer, and must not be
1282 * UNKNOWN or ESTABLISHED.
1283 */
1284 static void
1285 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1286 {
1287 struct wg_peer *wgp __diagused = wgs->wgs_peer;
1288
1289 KASSERT(mutex_owned(wgp->wgp_lock));
1290 KASSERT(wgs == wgp->wgp_session_unstable);
1291 KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1292 KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1293
1294 wg_destroy_session(wg, wgs);
1295 psref_target_init(&wgs->wgs_psref, wg_psref_class);
1296 }
1297
1298 /*
1299 * Handshake patterns
1300 *
1301 * [W] 5: "These messages use the "IK" pattern from Noise"
1302 * [N] 7.5. Interactive handshake patterns (fundamental)
1303 * "The first character refers to the initiators static key:"
1304 * "I = Static key for initiator Immediately transmitted to responder,
1305 * despite reduced or absent identity hiding"
1306 * "The second character refers to the responders static key:"
1307 * "K = Static key for responder Known to initiator"
1308 * "IK:
1309 * <- s
1310 * ...
1311 * -> e, es, s, ss
1312 * <- e, ee, se"
1313 * [N] 9.4. Pattern modifiers
1314 * "IKpsk2:
1315 * <- s
1316 * ...
1317 * -> e, es, s, ss
1318 * <- e, ee, se, psk"
1319 */
1320 static void
1321 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1322 struct wg_session *wgs, struct wg_msg_init *wgmi)
1323 {
1324 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1325 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1326 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1327 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1328 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1329
1330 KASSERT(mutex_owned(wgp->wgp_lock));
1331 KASSERT(wgs == wgp->wgp_session_unstable);
1332 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1333
1334 wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1335 wgmi->wgmi_sender = wgs->wgs_local_index;
1336
1337 /* [W] 5.4.2: First Message: Initiator to Responder */
1338
1339 /* Ci := HASH(CONSTRUCTION) */
1340 /* Hi := HASH(Ci || IDENTIFIER) */
1341 wg_init_key_and_hash(ckey, hash);
1342 /* Hi := HASH(Hi || Sr^pub) */
1343 wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1344
1345 WG_DUMP_HASH("hash", hash);
1346
1347 /* [N] 2.2: "e" */
1348 /* Ei^priv, Ei^pub := DH-GENERATE() */
1349 wg_algo_generate_keypair(pubkey, privkey);
1350 /* Ci := KDF1(Ci, Ei^pub) */
1351 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1352 /* msg.ephemeral := Ei^pub */
1353 memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1354 /* Hi := HASH(Hi || msg.ephemeral) */
1355 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1356
1357 WG_DUMP_HASH("ckey", ckey);
1358 WG_DUMP_HASH("hash", hash);
1359
1360 /* [N] 2.2: "es" */
1361 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1362 wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1363
1364 /* [N] 2.2: "s" */
1365 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1366 wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1367 cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1368 hash, sizeof(hash));
1369 /* Hi := HASH(Hi || msg.static) */
1370 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1371
1372 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1373
1374 /* [N] 2.2: "ss" */
1375 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1376 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1377
1378 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1379 wg_timestamp_t timestamp;
1380 wg_algo_tai64n(timestamp);
1381 wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1382 cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1383 /* Hi := HASH(Hi || msg.timestamp) */
1384 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1385
1386 /* [W] 5.4.4 Cookie MACs */
1387 wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1388 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1389 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1390 /* Need mac1 to decrypt a cookie from a cookie message */
1391 memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1392 sizeof(wgp->wgp_last_sent_mac1));
1393 wgp->wgp_last_sent_mac1_valid = true;
1394
1395 if (wgp->wgp_latest_cookie_time == 0 ||
1396 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1397 memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1398 else {
1399 wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1400 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1401 (const uint8_t *)wgmi,
1402 offsetof(struct wg_msg_init, wgmi_mac2),
1403 NULL, 0);
1404 }
1405
1406 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1407 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1408 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1409 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1410 WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1411 }
1412
1413 static void __noinline
1414 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1415 const struct sockaddr *src)
1416 {
1417 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1418 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1419 uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1420 uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1421 struct wg_peer *wgp;
1422 struct wg_session *wgs;
1423 int error, ret;
1424 struct psref psref_peer;
1425 uint8_t mac1[WG_MAC_LEN];
1426
1427 WG_TRACE("init msg received");
1428
1429 wg_algo_mac_mac1(mac1, sizeof(mac1),
1430 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1431 (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1432
1433 /*
1434 * [W] 5.3: Denial of Service Mitigation & Cookies
1435 * "the responder, ..., must always reject messages with an invalid
1436 * msg.mac1"
1437 */
1438 if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1439 WG_DLOG("mac1 is invalid\n");
1440 return;
1441 }
1442
1443 /*
1444 * [W] 5.4.2: First Message: Initiator to Responder
1445 * "When the responder receives this message, it does the same
1446 * operations so that its final state variables are identical,
1447 * replacing the operands of the DH function to produce equivalent
1448 * values."
1449 * Note that the following comments of operations are just copies of
1450 * the initiator's ones.
1451 */
1452
1453 /* Ci := HASH(CONSTRUCTION) */
1454 /* Hi := HASH(Ci || IDENTIFIER) */
1455 wg_init_key_and_hash(ckey, hash);
1456 /* Hi := HASH(Hi || Sr^pub) */
1457 wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1458
1459 /* [N] 2.2: "e" */
1460 /* Ci := KDF1(Ci, Ei^pub) */
1461 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1462 sizeof(wgmi->wgmi_ephemeral));
1463 /* Hi := HASH(Hi || msg.ephemeral) */
1464 wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1465
1466 WG_DUMP_HASH("ckey", ckey);
1467
1468 /* [N] 2.2: "es" */
1469 /* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1470 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1471
1472 WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1473
1474 /* [N] 2.2: "s" */
1475 /* msg.static := AEAD(k, 0, Si^pub, Hi) */
1476 error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1477 wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1478 if (error != 0) {
1479 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1480 "%s: wg_algo_aead_dec for secret key failed\n",
1481 if_name(&wg->wg_if));
1482 return;
1483 }
1484 /* Hi := HASH(Hi || msg.static) */
1485 wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1486
1487 wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1488 if (wgp == NULL) {
1489 WG_DLOG("peer not found\n");
1490 return;
1491 }
1492
1493 /*
1494 * Lock the peer to serialize access to cookie state.
1495 *
1496 * XXX Can we safely avoid holding the lock across DH? Take it
1497 * just to verify mac2 and then unlock/DH/lock?
1498 */
1499 mutex_enter(wgp->wgp_lock);
1500
1501 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1502 WG_TRACE("under load");
1503 /*
1504 * [W] 5.3: Denial of Service Mitigation & Cookies
1505 * "the responder, ..., and when under load may reject messages
1506 * with an invalid msg.mac2. If the responder receives a
1507 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1508 * and is under load, it may respond with a cookie reply
1509 * message"
1510 */
1511 uint8_t zero[WG_MAC_LEN] = {0};
1512 if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1513 WG_TRACE("sending a cookie message: no cookie included");
1514 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1515 wgmi->wgmi_mac1, src);
1516 goto out;
1517 }
1518 if (!wgp->wgp_last_sent_cookie_valid) {
1519 WG_TRACE("sending a cookie message: no cookie sent ever");
1520 (void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1521 wgmi->wgmi_mac1, src);
1522 goto out;
1523 }
1524 uint8_t mac2[WG_MAC_LEN];
1525 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1526 WG_COOKIE_LEN, (const uint8_t *)wgmi,
1527 offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1528 if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1529 WG_DLOG("mac2 is invalid\n");
1530 goto out;
1531 }
1532 WG_TRACE("under load, but continue to sending");
1533 }
1534
1535 /* [N] 2.2: "ss" */
1536 /* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1537 wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1538
1539 /* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1540 wg_timestamp_t timestamp;
1541 error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1542 wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1543 hash, sizeof(hash));
1544 if (error != 0) {
1545 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1546 "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
1547 if_name(&wg->wg_if), wgp->wgp_name);
1548 goto out;
1549 }
1550 /* Hi := HASH(Hi || msg.timestamp) */
1551 wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1552
1553 /*
1554 * [W] 5.1 "The responder keeps track of the greatest timestamp
1555 * received per peer and discards packets containing
1556 * timestamps less than or equal to it."
1557 */
1558 ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1559 sizeof(timestamp));
1560 if (ret <= 0) {
1561 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1562 "%s: peer %s: invalid init msg: timestamp is old\n",
1563 if_name(&wg->wg_if), wgp->wgp_name);
1564 goto out;
1565 }
1566 memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1567
1568 /*
1569 * Message is good -- we're committing to handle it now, unless
1570 * we were already initiating a session.
1571 */
1572 wgs = wgp->wgp_session_unstable;
1573 switch (wgs->wgs_state) {
1574 case WGS_STATE_UNKNOWN: /* new session initiated by peer */
1575 wg_get_session_index(wg, wgs);
1576 break;
1577 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, drop */
1578 WG_TRACE("Session already initializing, ignoring the message");
1579 goto out;
1580 case WGS_STATE_INIT_PASSIVE: /* peer is retrying, start over */
1581 WG_TRACE("Session already initializing, destroying old states");
1582 wg_clear_states(wgs);
1583 /* keep session index */
1584 break;
1585 case WGS_STATE_ESTABLISHED: /* can't happen */
1586 panic("unstable session can't be established");
1587 break;
1588 case WGS_STATE_DESTROYING: /* rekey initiated by peer */
1589 WG_TRACE("Session destroying, but force to clear");
1590 callout_stop(&wgp->wgp_session_dtor_timer);
1591 wg_clear_states(wgs);
1592 /* keep session index */
1593 break;
1594 default:
1595 panic("invalid session state: %d", wgs->wgs_state);
1596 }
1597 wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
1598
1599 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1600 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1601 memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1602 sizeof(wgmi->wgmi_ephemeral));
1603
1604 wg_update_endpoint_if_necessary(wgp, src);
1605
1606 (void)wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1607
1608 wg_calculate_keys(wgs, false);
1609 wg_clear_states(wgs);
1610
1611 out:
1612 mutex_exit(wgp->wgp_lock);
1613 wg_put_peer(wgp, &psref_peer);
1614 }
1615
1616 static struct socket *
1617 wg_get_so_by_af(struct wg_softc *wg, const int af)
1618 {
1619
1620 switch (af) {
1621 #ifdef INET
1622 case AF_INET:
1623 return wg->wg_so4;
1624 #endif
1625 #ifdef INET6
1626 case AF_INET6:
1627 return wg->wg_so6;
1628 #endif
1629 default:
1630 panic("wg: no such af: %d", af);
1631 }
1632 }
1633
1634 static struct socket *
1635 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1636 {
1637
1638 return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
1639 }
1640
1641 static struct wg_sockaddr *
1642 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1643 {
1644 struct wg_sockaddr *wgsa;
1645 int s;
1646
1647 s = pserialize_read_enter();
1648 wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1649 psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1650 pserialize_read_exit(s);
1651
1652 return wgsa;
1653 }
1654
1655 static void
1656 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1657 {
1658
1659 psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1660 }
1661
1662 static int
1663 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1664 {
1665 int error;
1666 struct socket *so;
1667 struct psref psref;
1668 struct wg_sockaddr *wgsa;
1669
1670 wgsa = wg_get_endpoint_sa(wgp, &psref);
1671 so = wg_get_so_by_peer(wgp, wgsa);
1672 error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1673 wg_put_sa(wgp, wgsa, &psref);
1674
1675 return error;
1676 }
1677
1678 static int
1679 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1680 {
1681 int error;
1682 struct mbuf *m;
1683 struct wg_msg_init *wgmi;
1684 struct wg_session *wgs;
1685
1686 KASSERT(mutex_owned(wgp->wgp_lock));
1687
1688 wgs = wgp->wgp_session_unstable;
1689 /* XXX pull dispatch out into wg_task_send_init_message */
1690 switch (wgs->wgs_state) {
1691 case WGS_STATE_UNKNOWN: /* new session initiated by us */
1692 wg_get_session_index(wg, wgs);
1693 break;
1694 case WGS_STATE_INIT_ACTIVE: /* we're already initiating, stop */
1695 WG_TRACE("Session already initializing, skip starting new one");
1696 return EBUSY;
1697 case WGS_STATE_INIT_PASSIVE: /* peer was trying -- XXX what now? */
1698 WG_TRACE("Session already initializing, destroying old states");
1699 wg_clear_states(wgs);
1700 /* keep session index */
1701 break;
1702 case WGS_STATE_ESTABLISHED: /* can't happen */
1703 panic("unstable session can't be established");
1704 break;
1705 case WGS_STATE_DESTROYING: /* rekey initiated by us too early */
1706 WG_TRACE("Session destroying");
1707 /* XXX should wait? */
1708 return EBUSY;
1709 }
1710 wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
1711
1712 m = m_gethdr(M_WAIT, MT_DATA);
1713 if (sizeof(*wgmi) > MHLEN) {
1714 m_clget(m, M_WAIT);
1715 CTASSERT(sizeof(*wgmi) <= MCLBYTES);
1716 }
1717 m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1718 wgmi = mtod(m, struct wg_msg_init *);
1719 wg_fill_msg_init(wg, wgp, wgs, wgmi);
1720
1721 error = wg->wg_ops->send_hs_msg(wgp, m);
1722 if (error == 0) {
1723 WG_TRACE("init msg sent");
1724
1725 if (wgp->wgp_handshake_start_time == 0)
1726 wgp->wgp_handshake_start_time = time_uptime;
1727 callout_schedule(&wgp->wgp_handshake_timeout_timer,
1728 MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
1729 } else {
1730 wg_put_session_index(wg, wgs);
1731 /* Initiation failed; toss packet waiting for it if any. */
1732 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL)
1733 m_freem(m);
1734 }
1735
1736 return error;
1737 }
1738
1739 static void
1740 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1741 struct wg_session *wgs, struct wg_msg_resp *wgmr,
1742 const struct wg_msg_init *wgmi)
1743 {
1744 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1745 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1746 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1747 uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1748 uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1749
1750 KASSERT(mutex_owned(wgp->wgp_lock));
1751 KASSERT(wgs == wgp->wgp_session_unstable);
1752 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1753
1754 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1755 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1756
1757 wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
1758 wgmr->wgmr_sender = wgs->wgs_local_index;
1759 wgmr->wgmr_receiver = wgmi->wgmi_sender;
1760
1761 /* [W] 5.4.3 Second Message: Responder to Initiator */
1762
1763 /* [N] 2.2: "e" */
1764 /* Er^priv, Er^pub := DH-GENERATE() */
1765 wg_algo_generate_keypair(pubkey, privkey);
1766 /* Cr := KDF1(Cr, Er^pub) */
1767 wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1768 /* msg.ephemeral := Er^pub */
1769 memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1770 /* Hr := HASH(Hr || msg.ephemeral) */
1771 wg_algo_hash(hash, pubkey, sizeof(pubkey));
1772
1773 WG_DUMP_HASH("ckey", ckey);
1774 WG_DUMP_HASH("hash", hash);
1775
1776 /* [N] 2.2: "ee" */
1777 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1778 wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1779
1780 /* [N] 2.2: "se" */
1781 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1782 wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1783
1784 /* [N] 9.2: "psk" */
1785 {
1786 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1787 /* Cr, r, k := KDF3(Cr, Q) */
1788 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1789 sizeof(wgp->wgp_psk));
1790 /* Hr := HASH(Hr || r) */
1791 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1792 }
1793
1794 /* msg.empty := AEAD(k, 0, e, Hr) */
1795 wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1796 cipher_key, 0, NULL, 0, hash, sizeof(hash));
1797 /* Hr := HASH(Hr || msg.empty) */
1798 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1799
1800 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1801
1802 /* [W] 5.4.4: Cookie MACs */
1803 /* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1804 wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1805 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1806 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1807 /* Need mac1 to decrypt a cookie from a cookie message */
1808 memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1809 sizeof(wgp->wgp_last_sent_mac1));
1810 wgp->wgp_last_sent_mac1_valid = true;
1811
1812 if (wgp->wgp_latest_cookie_time == 0 ||
1813 (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1814 /* msg.mac2 := 0^16 */
1815 memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1816 else {
1817 /* msg.mac2 := MAC(Lm, msg_b) */
1818 wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1819 wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1820 (const uint8_t *)wgmr,
1821 offsetof(struct wg_msg_resp, wgmr_mac2),
1822 NULL, 0);
1823 }
1824
1825 memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1826 memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1827 memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1828 memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1829 wgs->wgs_remote_index = wgmi->wgmi_sender;
1830 WG_DLOG("sender=%x\n", wgs->wgs_local_index);
1831 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1832 }
1833
1834 static void
1835 wg_swap_sessions(struct wg_peer *wgp)
1836 {
1837 struct wg_session *wgs, *wgs_prev;
1838
1839 KASSERT(mutex_owned(wgp->wgp_lock));
1840
1841 wgs = wgp->wgp_session_unstable;
1842 KASSERT(wgs->wgs_state == WGS_STATE_ESTABLISHED);
1843
1844 wgs_prev = wgp->wgp_session_stable;
1845 KASSERT(wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
1846 wgs_prev->wgs_state == WGS_STATE_UNKNOWN);
1847 atomic_store_release(&wgp->wgp_session_stable, wgs);
1848 wgp->wgp_session_unstable = wgs_prev;
1849 }
1850
1851 static void __noinline
1852 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1853 const struct sockaddr *src)
1854 {
1855 uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1856 uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1857 uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1858 struct wg_peer *wgp;
1859 struct wg_session *wgs;
1860 struct psref psref;
1861 int error;
1862 uint8_t mac1[WG_MAC_LEN];
1863 struct wg_session *wgs_prev;
1864 struct mbuf *m;
1865
1866 wg_algo_mac_mac1(mac1, sizeof(mac1),
1867 wg->wg_pubkey, sizeof(wg->wg_pubkey),
1868 (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1869
1870 /*
1871 * [W] 5.3: Denial of Service Mitigation & Cookies
1872 * "the responder, ..., must always reject messages with an invalid
1873 * msg.mac1"
1874 */
1875 if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
1876 WG_DLOG("mac1 is invalid\n");
1877 return;
1878 }
1879
1880 WG_TRACE("resp msg received");
1881 wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
1882 if (wgs == NULL) {
1883 WG_TRACE("No session found");
1884 return;
1885 }
1886
1887 wgp = wgs->wgs_peer;
1888
1889 mutex_enter(wgp->wgp_lock);
1890
1891 /* If we weren't waiting for a handshake response, drop it. */
1892 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
1893 WG_TRACE("peer sent spurious handshake response, ignoring");
1894 goto out;
1895 }
1896
1897 if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
1898 WG_TRACE("under load");
1899 /*
1900 * [W] 5.3: Denial of Service Mitigation & Cookies
1901 * "the responder, ..., and when under load may reject messages
1902 * with an invalid msg.mac2. If the responder receives a
1903 * message with a valid msg.mac1 yet with an invalid msg.mac2,
1904 * and is under load, it may respond with a cookie reply
1905 * message"
1906 */
1907 uint8_t zero[WG_MAC_LEN] = {0};
1908 if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
1909 WG_TRACE("sending a cookie message: no cookie included");
1910 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1911 wgmr->wgmr_mac1, src);
1912 goto out;
1913 }
1914 if (!wgp->wgp_last_sent_cookie_valid) {
1915 WG_TRACE("sending a cookie message: no cookie sent ever");
1916 (void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1917 wgmr->wgmr_mac1, src);
1918 goto out;
1919 }
1920 uint8_t mac2[WG_MAC_LEN];
1921 wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1922 WG_COOKIE_LEN, (const uint8_t *)wgmr,
1923 offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
1924 if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
1925 WG_DLOG("mac2 is invalid\n");
1926 goto out;
1927 }
1928 WG_TRACE("under load, but continue to sending");
1929 }
1930
1931 memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1932 memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1933
1934 /*
1935 * [W] 5.4.3 Second Message: Responder to Initiator
1936 * "When the initiator receives this message, it does the same
1937 * operations so that its final state variables are identical,
1938 * replacing the operands of the DH function to produce equivalent
1939 * values."
1940 * Note that the following comments of operations are just copies of
1941 * the initiator's ones.
1942 */
1943
1944 /* [N] 2.2: "e" */
1945 /* Cr := KDF1(Cr, Er^pub) */
1946 wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
1947 sizeof(wgmr->wgmr_ephemeral));
1948 /* Hr := HASH(Hr || msg.ephemeral) */
1949 wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
1950
1951 WG_DUMP_HASH("ckey", ckey);
1952 WG_DUMP_HASH("hash", hash);
1953
1954 /* [N] 2.2: "ee" */
1955 /* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1956 wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
1957 wgmr->wgmr_ephemeral);
1958
1959 /* [N] 2.2: "se" */
1960 /* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1961 wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
1962
1963 /* [N] 9.2: "psk" */
1964 {
1965 uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1966 /* Cr, r, k := KDF3(Cr, Q) */
1967 wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1968 sizeof(wgp->wgp_psk));
1969 /* Hr := HASH(Hr || r) */
1970 wg_algo_hash(hash, kdfout, sizeof(kdfout));
1971 }
1972
1973 {
1974 uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
1975 /* msg.empty := AEAD(k, 0, e, Hr) */
1976 error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
1977 sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
1978 WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1979 if (error != 0) {
1980 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1981 "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
1982 if_name(&wg->wg_if), wgp->wgp_name);
1983 goto out;
1984 }
1985 /* Hr := HASH(Hr || msg.empty) */
1986 wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1987 }
1988
1989 memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
1990 memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
1991 wgs->wgs_remote_index = wgmr->wgmr_sender;
1992 WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1993
1994 KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1995 wgs->wgs_state = WGS_STATE_ESTABLISHED;
1996 wgs->wgs_time_established = time_uptime;
1997 wgs->wgs_time_last_data_sent = 0;
1998 wgs->wgs_is_initiator = true;
1999 wg_calculate_keys(wgs, true);
2000 wg_clear_states(wgs);
2001 WG_TRACE("WGS_STATE_ESTABLISHED");
2002
2003 callout_stop(&wgp->wgp_handshake_timeout_timer);
2004
2005 wg_swap_sessions(wgp);
2006 KASSERT(wgs == wgp->wgp_session_stable);
2007 wgs_prev = wgp->wgp_session_unstable;
2008 getnanotime(&wgp->wgp_last_handshake_time);
2009 wgp->wgp_handshake_start_time = 0;
2010 wgp->wgp_last_sent_mac1_valid = false;
2011 wgp->wgp_last_sent_cookie_valid = false;
2012
2013 wg_schedule_rekey_timer(wgp);
2014
2015 wg_update_endpoint_if_necessary(wgp, src);
2016
2017 /*
2018 * If we had a data packet queued up, send it; otherwise send a
2019 * keepalive message -- either way we have to send something
2020 * immediately or else the responder will never answer.
2021 */
2022 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
2023 kpreempt_disable();
2024 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
2025 M_SETCTX(m, wgp);
2026 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
2027 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
2028 if_name(&wg->wg_if));
2029 m_freem(m);
2030 }
2031 kpreempt_enable();
2032 } else {
2033 wg_send_keepalive_msg(wgp, wgs);
2034 }
2035
2036 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2037 /* Wait for wg_get_stable_session to drain. */
2038 pserialize_perform(wgp->wgp_psz);
2039
2040 /* Transition ESTABLISHED->DESTROYING. */
2041 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
2042
2043 /* We can't destroy the old session immediately */
2044 wg_schedule_session_dtor_timer(wgp);
2045 } else {
2046 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2047 "state=%d", wgs_prev->wgs_state);
2048 }
2049
2050 out:
2051 mutex_exit(wgp->wgp_lock);
2052 wg_put_session(wgs, &psref);
2053 }
2054
2055 static int
2056 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
2057 struct wg_session *wgs, const struct wg_msg_init *wgmi)
2058 {
2059 int error;
2060 struct mbuf *m;
2061 struct wg_msg_resp *wgmr;
2062
2063 KASSERT(mutex_owned(wgp->wgp_lock));
2064 KASSERT(wgs == wgp->wgp_session_unstable);
2065 KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
2066
2067 m = m_gethdr(M_WAIT, MT_DATA);
2068 if (sizeof(*wgmr) > MHLEN) {
2069 m_clget(m, M_WAIT);
2070 CTASSERT(sizeof(*wgmr) <= MCLBYTES);
2071 }
2072 m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
2073 wgmr = mtod(m, struct wg_msg_resp *);
2074 wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
2075
2076 error = wg->wg_ops->send_hs_msg(wgp, m);
2077 if (error == 0)
2078 WG_TRACE("resp msg sent");
2079 return error;
2080 }
2081
2082 static struct wg_peer *
2083 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
2084 const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
2085 {
2086 struct wg_peer *wgp;
2087
2088 int s = pserialize_read_enter();
2089 wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
2090 if (wgp != NULL)
2091 wg_get_peer(wgp, psref);
2092 pserialize_read_exit(s);
2093
2094 return wgp;
2095 }
2096
2097 static void
2098 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
2099 struct wg_msg_cookie *wgmc, const uint32_t sender,
2100 const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
2101 {
2102 uint8_t cookie[WG_COOKIE_LEN];
2103 uint8_t key[WG_HASH_LEN];
2104 uint8_t addr[sizeof(struct in6_addr)];
2105 size_t addrlen;
2106 uint16_t uh_sport; /* be */
2107
2108 KASSERT(mutex_owned(wgp->wgp_lock));
2109
2110 wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
2111 wgmc->wgmc_receiver = sender;
2112 cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
2113
2114 /*
2115 * [W] 5.4.7: Under Load: Cookie Reply Message
2116 * "The secret variable, Rm, changes every two minutes to a
2117 * random value"
2118 */
2119 if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
2120 wgp->wgp_randval = cprng_strong32();
2121 wgp->wgp_last_genrandval_time = time_uptime;
2122 }
2123
2124 switch (src->sa_family) {
2125 case AF_INET: {
2126 const struct sockaddr_in *sin = satocsin(src);
2127 addrlen = sizeof(sin->sin_addr);
2128 memcpy(addr, &sin->sin_addr, addrlen);
2129 uh_sport = sin->sin_port;
2130 break;
2131 }
2132 #ifdef INET6
2133 case AF_INET6: {
2134 const struct sockaddr_in6 *sin6 = satocsin6(src);
2135 addrlen = sizeof(sin6->sin6_addr);
2136 memcpy(addr, &sin6->sin6_addr, addrlen);
2137 uh_sport = sin6->sin6_port;
2138 break;
2139 }
2140 #endif
2141 default:
2142 panic("invalid af=%d", src->sa_family);
2143 }
2144
2145 wg_algo_mac(cookie, sizeof(cookie),
2146 (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
2147 addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2148 wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2149 sizeof(wg->wg_pubkey));
2150 wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2151 cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2152
2153 /* Need to store to calculate mac2 */
2154 memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2155 wgp->wgp_last_sent_cookie_valid = true;
2156 }
2157
2158 static int
2159 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2160 const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
2161 const struct sockaddr *src)
2162 {
2163 int error;
2164 struct mbuf *m;
2165 struct wg_msg_cookie *wgmc;
2166
2167 KASSERT(mutex_owned(wgp->wgp_lock));
2168
2169 m = m_gethdr(M_WAIT, MT_DATA);
2170 if (sizeof(*wgmc) > MHLEN) {
2171 m_clget(m, M_WAIT);
2172 CTASSERT(sizeof(*wgmc) <= MCLBYTES);
2173 }
2174 m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2175 wgmc = mtod(m, struct wg_msg_cookie *);
2176 wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2177
2178 error = wg->wg_ops->send_hs_msg(wgp, m);
2179 if (error == 0)
2180 WG_TRACE("cookie msg sent");
2181 return error;
2182 }
2183
2184 static bool
2185 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2186 {
2187 #ifdef WG_DEBUG_PARAMS
2188 if (wg_force_underload)
2189 return true;
2190 #endif
2191
2192 /*
2193 * XXX we don't have a means of a load estimation. The purpose of
2194 * the mechanism is a DoS mitigation, so we consider frequent handshake
2195 * messages as (a kind of) load; if a message of the same type comes
2196 * to a peer within 1 second, we consider we are under load.
2197 */
2198 time_t last = wgp->wgp_last_msg_received_time[msgtype];
2199 wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2200 return (time_uptime - last) == 0;
2201 }
2202
2203 static void
2204 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2205 {
2206
2207 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2208
2209 /*
2210 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2211 */
2212 if (initiator) {
2213 wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2214 wgs->wgs_chaining_key, NULL, 0);
2215 } else {
2216 wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2217 wgs->wgs_chaining_key, NULL, 0);
2218 }
2219 WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2220 WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2221 }
2222
2223 static uint64_t
2224 wg_session_get_send_counter(struct wg_session *wgs)
2225 {
2226 #ifdef __HAVE_ATOMIC64_LOADSTORE
2227 return atomic_load_relaxed(&wgs->wgs_send_counter);
2228 #else
2229 uint64_t send_counter;
2230
2231 mutex_enter(&wgs->wgs_send_counter_lock);
2232 send_counter = wgs->wgs_send_counter;
2233 mutex_exit(&wgs->wgs_send_counter_lock);
2234
2235 return send_counter;
2236 #endif
2237 }
2238
2239 static uint64_t
2240 wg_session_inc_send_counter(struct wg_session *wgs)
2241 {
2242 #ifdef __HAVE_ATOMIC64_LOADSTORE
2243 return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2244 #else
2245 uint64_t send_counter;
2246
2247 mutex_enter(&wgs->wgs_send_counter_lock);
2248 send_counter = wgs->wgs_send_counter++;
2249 mutex_exit(&wgs->wgs_send_counter_lock);
2250
2251 return send_counter;
2252 #endif
2253 }
2254
2255 static void
2256 wg_clear_states(struct wg_session *wgs)
2257 {
2258
2259 KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2260
2261 wgs->wgs_send_counter = 0;
2262 sliwin_reset(&wgs->wgs_recvwin->window);
2263
2264 #define wgs_clear(v) explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2265 wgs_clear(handshake_hash);
2266 wgs_clear(chaining_key);
2267 wgs_clear(ephemeral_key_pub);
2268 wgs_clear(ephemeral_key_priv);
2269 wgs_clear(ephemeral_key_peer);
2270 #undef wgs_clear
2271 }
2272
2273 static struct wg_session *
2274 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2275 struct psref *psref)
2276 {
2277 struct wg_session *wgs;
2278
2279 int s = pserialize_read_enter();
2280 wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2281 if (wgs != NULL) {
2282 KASSERT(atomic_load_relaxed(&wgs->wgs_state) !=
2283 WGS_STATE_UNKNOWN);
2284 psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2285 }
2286 pserialize_read_exit(s);
2287
2288 return wgs;
2289 }
2290
2291 static void
2292 wg_schedule_rekey_timer(struct wg_peer *wgp)
2293 {
2294 int timeout = MIN(wg_rekey_after_time, (unsigned)(INT_MAX / hz));
2295
2296 callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
2297 }
2298
2299 static void
2300 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2301 {
2302 struct mbuf *m;
2303
2304 /*
2305 * [W] 6.5 Passive Keepalive
2306 * "A keepalive message is simply a transport data message with
2307 * a zero-length encapsulated encrypted inner-packet."
2308 */
2309 m = m_gethdr(M_WAIT, MT_DATA);
2310 wg_send_data_msg(wgp, wgs, m);
2311 }
2312
2313 static bool
2314 wg_need_to_send_init_message(struct wg_session *wgs)
2315 {
2316 /*
2317 * [W] 6.2 Transport Message Limits
2318 * "if a peer is the initiator of a current secure session,
2319 * WireGuard will send a handshake initiation message to begin
2320 * a new secure session ... if after receiving a transport data
2321 * message, the current secure session is (REJECT-AFTER-TIME
2322 * KEEPALIVE-TIMEOUT REKEY-TIMEOUT) seconds old and it has
2323 * not yet acted upon this event."
2324 */
2325 return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
2326 (time_uptime - wgs->wgs_time_established) >=
2327 (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
2328 }
2329
2330 static void
2331 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
2332 {
2333
2334 mutex_enter(wgp->wgp_intr_lock);
2335 WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2336 if (wgp->wgp_tasks == 0)
2337 /*
2338 * XXX If the current CPU is already loaded -- e.g., if
2339 * there's already a bunch of handshakes queued up --
2340 * consider tossing this over to another CPU to
2341 * distribute the load.
2342 */
2343 workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
2344 wgp->wgp_tasks |= task;
2345 mutex_exit(wgp->wgp_intr_lock);
2346 }
2347
2348 static void
2349 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2350 {
2351 struct wg_sockaddr *wgsa_prev;
2352
2353 WG_TRACE("Changing endpoint");
2354
2355 memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2356 wgsa_prev = wgp->wgp_endpoint;
2357 atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2358 wgp->wgp_endpoint0 = wgsa_prev;
2359 atomic_store_release(&wgp->wgp_endpoint_available, true);
2360
2361 wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2362 }
2363
2364 static bool
2365 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2366 {
2367 uint16_t packet_len;
2368 const struct ip *ip;
2369
2370 if (__predict_false(decrypted_len < sizeof(struct ip)))
2371 return false;
2372
2373 ip = (const struct ip *)packet;
2374 if (ip->ip_v == 4)
2375 *af = AF_INET;
2376 else if (ip->ip_v == 6)
2377 *af = AF_INET6;
2378 else
2379 return false;
2380
2381 WG_DLOG("af=%d\n", *af);
2382
2383 switch (*af) {
2384 #ifdef INET
2385 case AF_INET:
2386 packet_len = ntohs(ip->ip_len);
2387 break;
2388 #endif
2389 #ifdef INET6
2390 case AF_INET6: {
2391 const struct ip6_hdr *ip6;
2392
2393 if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
2394 return false;
2395
2396 ip6 = (const struct ip6_hdr *)packet;
2397 packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2398 break;
2399 }
2400 #endif
2401 default:
2402 return false;
2403 }
2404
2405 WG_DLOG("packet_len=%u\n", packet_len);
2406 if (packet_len > decrypted_len)
2407 return false;
2408
2409 return true;
2410 }
2411
2412 static bool
2413 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2414 int af, char *packet)
2415 {
2416 struct sockaddr_storage ss;
2417 struct sockaddr *sa;
2418 struct psref psref;
2419 struct wg_peer *wgp;
2420 bool ok;
2421
2422 /*
2423 * II CRYPTOKEY ROUTING
2424 * "it will only accept it if its source IP resolves in the
2425 * table to the public key used in the secure session for
2426 * decrypting it."
2427 */
2428
2429 if (af == AF_INET) {
2430 const struct ip *ip = (const struct ip *)packet;
2431 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2432 sockaddr_in_init(sin, &ip->ip_src, 0);
2433 sa = sintosa(sin);
2434 #ifdef INET6
2435 } else {
2436 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2437 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2438 sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2439 sa = sin6tosa(sin6);
2440 #endif
2441 }
2442
2443 wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2444 ok = (wgp == wgp_expected);
2445 if (wgp != NULL)
2446 wg_put_peer(wgp, &psref);
2447
2448 return ok;
2449 }
2450
2451 static void
2452 wg_session_dtor_timer(void *arg)
2453 {
2454 struct wg_peer *wgp = arg;
2455
2456 WG_TRACE("enter");
2457
2458 wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2459 }
2460
2461 static void
2462 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2463 {
2464
2465 /* 1 second grace period */
2466 callout_schedule(&wgp->wgp_session_dtor_timer, hz);
2467 }
2468
2469 static bool
2470 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2471 {
2472 if (sa1->sa_family != sa2->sa_family)
2473 return false;
2474
2475 switch (sa1->sa_family) {
2476 #ifdef INET
2477 case AF_INET:
2478 return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2479 #endif
2480 #ifdef INET6
2481 case AF_INET6:
2482 return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2483 #endif
2484 default:
2485 return false;
2486 }
2487 }
2488
2489 static void
2490 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2491 const struct sockaddr *src)
2492 {
2493 struct wg_sockaddr *wgsa;
2494 struct psref psref;
2495
2496 wgsa = wg_get_endpoint_sa(wgp, &psref);
2497
2498 #ifdef WG_DEBUG_LOG
2499 char oldaddr[128], newaddr[128];
2500 sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2501 sockaddr_format(src, newaddr, sizeof(newaddr));
2502 WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2503 #endif
2504
2505 /*
2506 * III: "Since the packet has authenticated correctly, the source IP of
2507 * the outer UDP/IP packet is used to update the endpoint for peer..."
2508 */
2509 if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2510 !sockaddr_port_match(src, wgsatosa(wgsa)))) {
2511 /* XXX We can't change the endpoint twice in a short period */
2512 if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2513 wg_change_endpoint(wgp, src);
2514 }
2515 }
2516
2517 wg_put_sa(wgp, wgsa, &psref);
2518 }
2519
2520 static void __noinline
2521 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2522 const struct sockaddr *src)
2523 {
2524 struct wg_msg_data *wgmd;
2525 char *encrypted_buf = NULL, *decrypted_buf;
2526 size_t encrypted_len, decrypted_len;
2527 struct wg_session *wgs;
2528 struct wg_peer *wgp;
2529 int state;
2530 size_t mlen;
2531 struct psref psref;
2532 int error, af;
2533 bool success, free_encrypted_buf = false, ok;
2534 struct mbuf *n;
2535
2536 KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2537 wgmd = mtod(m, struct wg_msg_data *);
2538
2539 KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2540 WG_TRACE("data");
2541
2542 /* Find the putative session, or drop. */
2543 wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2544 if (wgs == NULL) {
2545 WG_TRACE("No session found");
2546 m_freem(m);
2547 return;
2548 }
2549
2550 /*
2551 * We are only ready to handle data when in INIT_PASSIVE,
2552 * ESTABLISHED, or DESTROYING. All transitions out of that
2553 * state dissociate the session index and drain psrefs.
2554 */
2555 state = atomic_load_relaxed(&wgs->wgs_state);
2556 switch (state) {
2557 case WGS_STATE_UNKNOWN:
2558 panic("wg session %p in unknown state has session index %u",
2559 wgs, wgmd->wgmd_receiver);
2560 case WGS_STATE_INIT_ACTIVE:
2561 WG_TRACE("not yet ready for data");
2562 goto out;
2563 case WGS_STATE_INIT_PASSIVE:
2564 case WGS_STATE_ESTABLISHED:
2565 case WGS_STATE_DESTROYING:
2566 break;
2567 }
2568
2569 /*
2570 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2571 * to update the endpoint if authentication succeeds.
2572 */
2573 wgp = wgs->wgs_peer;
2574
2575 /*
2576 * Reject outrageously wrong sequence numbers before doing any
2577 * crypto work or taking any locks.
2578 */
2579 error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2580 le64toh(wgmd->wgmd_counter));
2581 if (error) {
2582 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2583 "%s: peer %s: out-of-window packet: %"PRIu64"\n",
2584 if_name(&wg->wg_if), wgp->wgp_name,
2585 le64toh(wgmd->wgmd_counter));
2586 goto out;
2587 }
2588
2589 /* Ensure the payload and authenticator are contiguous. */
2590 mlen = m_length(m);
2591 encrypted_len = mlen - sizeof(*wgmd);
2592 if (encrypted_len < WG_AUTHTAG_LEN) {
2593 WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
2594 goto out;
2595 }
2596 success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2597 if (success) {
2598 encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2599 } else {
2600 encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2601 if (encrypted_buf == NULL) {
2602 WG_DLOG("failed to allocate encrypted_buf\n");
2603 goto out;
2604 }
2605 m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2606 free_encrypted_buf = true;
2607 }
2608 /* m_ensure_contig may change m regardless of its result */
2609 KASSERT(m->m_len >= sizeof(*wgmd));
2610 wgmd = mtod(m, struct wg_msg_data *);
2611
2612 /*
2613 * Get a buffer for the plaintext. Add WG_AUTHTAG_LEN to avoid
2614 * a zero-length buffer (XXX). Drop if plaintext is longer
2615 * than MCLBYTES (XXX).
2616 */
2617 decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2618 if (decrypted_len > MCLBYTES) {
2619 /* FIXME handle larger data than MCLBYTES */
2620 WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2621 goto out;
2622 }
2623 n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2624 if (n == NULL) {
2625 WG_DLOG("wg_get_mbuf failed\n");
2626 goto out;
2627 }
2628 decrypted_buf = mtod(n, char *);
2629
2630 /* Decrypt and verify the packet. */
2631 WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
2632 error = wg_algo_aead_dec(decrypted_buf,
2633 encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2634 wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
2635 encrypted_len, NULL, 0);
2636 if (error != 0) {
2637 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2638 "%s: peer %s: failed to wg_algo_aead_dec\n",
2639 if_name(&wg->wg_if), wgp->wgp_name);
2640 m_freem(n);
2641 goto out;
2642 }
2643 WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2644
2645 /* Packet is genuine. Reject it if a replay or just too old. */
2646 mutex_enter(&wgs->wgs_recvwin->lock);
2647 error = sliwin_update(&wgs->wgs_recvwin->window,
2648 le64toh(wgmd->wgmd_counter));
2649 mutex_exit(&wgs->wgs_recvwin->lock);
2650 if (error) {
2651 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2652 "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
2653 if_name(&wg->wg_if), wgp->wgp_name,
2654 le64toh(wgmd->wgmd_counter));
2655 m_freem(n);
2656 goto out;
2657 }
2658
2659 /* We're done with m now; free it and chuck the pointers. */
2660 m_freem(m);
2661 m = NULL;
2662 wgmd = NULL;
2663
2664 /*
2665 * Validate the encapsulated packet header and get the address
2666 * family, or drop.
2667 */
2668 ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2669 if (!ok) {
2670 m_freem(n);
2671 goto out;
2672 }
2673
2674 /*
2675 * The packet is genuine. Update the peer's endpoint if the
2676 * source address changed.
2677 *
2678 * XXX How to prevent DoS by replaying genuine packets from the
2679 * wrong source address?
2680 */
2681 wg_update_endpoint_if_necessary(wgp, src);
2682
2683 /* Submit it into our network stack if routable. */
2684 ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2685 if (ok) {
2686 wg->wg_ops->input(&wg->wg_if, n, af);
2687 } else {
2688 char addrstr[INET6_ADDRSTRLEN];
2689 memset(addrstr, 0, sizeof(addrstr));
2690 if (af == AF_INET) {
2691 const struct ip *ip = (const struct ip *)decrypted_buf;
2692 IN_PRINT(addrstr, &ip->ip_src);
2693 #ifdef INET6
2694 } else if (af == AF_INET6) {
2695 const struct ip6_hdr *ip6 =
2696 (const struct ip6_hdr *)decrypted_buf;
2697 IN6_PRINT(addrstr, &ip6->ip6_src);
2698 #endif
2699 }
2700 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2701 "%s: peer %s: invalid source address (%s)\n",
2702 if_name(&wg->wg_if), wgp->wgp_name, addrstr);
2703 m_freem(n);
2704 /*
2705 * The inner address is invalid however the session is valid
2706 * so continue the session processing below.
2707 */
2708 }
2709 n = NULL;
2710
2711 /* Update the state machine if necessary. */
2712 if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
2713 /*
2714 * We were waiting for the initiator to send their
2715 * first data transport message, and that has happened.
2716 * Schedule a task to establish this session.
2717 */
2718 wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
2719 } else {
2720 if (__predict_false(wg_need_to_send_init_message(wgs))) {
2721 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2722 }
2723 /*
2724 * [W] 6.5 Passive Keepalive
2725 * "If a peer has received a validly-authenticated transport
2726 * data message (section 5.4.6), but does not have any packets
2727 * itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2728 * a keepalive message."
2729 */
2730 WG_DLOG("time_uptime=%ju wgs_time_last_data_sent=%ju\n",
2731 (uintmax_t)time_uptime,
2732 (uintmax_t)wgs->wgs_time_last_data_sent);
2733 if ((time_uptime - wgs->wgs_time_last_data_sent) >=
2734 wg_keepalive_timeout) {
2735 WG_TRACE("Schedule sending keepalive message");
2736 /*
2737 * We can't send a keepalive message here to avoid
2738 * a deadlock; we already hold the solock of a socket
2739 * that is used to send the message.
2740 */
2741 wg_schedule_peer_task(wgp,
2742 WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2743 }
2744 }
2745 out:
2746 wg_put_session(wgs, &psref);
2747 if (m != NULL)
2748 m_freem(m);
2749 if (free_encrypted_buf)
2750 kmem_intr_free(encrypted_buf, encrypted_len);
2751 }
2752
2753 static void __noinline
2754 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2755 {
2756 struct wg_session *wgs;
2757 struct wg_peer *wgp;
2758 struct psref psref;
2759 int error;
2760 uint8_t key[WG_HASH_LEN];
2761 uint8_t cookie[WG_COOKIE_LEN];
2762
2763 WG_TRACE("cookie msg received");
2764
2765 /* Find the putative session. */
2766 wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2767 if (wgs == NULL) {
2768 WG_TRACE("No session found");
2769 return;
2770 }
2771
2772 /* Lock the peer so we can update the cookie state. */
2773 wgp = wgs->wgs_peer;
2774 mutex_enter(wgp->wgp_lock);
2775
2776 if (!wgp->wgp_last_sent_mac1_valid) {
2777 WG_TRACE("No valid mac1 sent (or expired)");
2778 goto out;
2779 }
2780
2781 /* Decrypt the cookie and store it for later handshake retry. */
2782 wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
2783 sizeof(wgp->wgp_pubkey));
2784 error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
2785 wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
2786 wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
2787 wgmc->wgmc_salt);
2788 if (error != 0) {
2789 WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2790 "%s: peer %s: wg_algo_aead_dec for cookie failed: "
2791 "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
2792 goto out;
2793 }
2794 /*
2795 * [W] 6.6: Interaction with Cookie Reply System
2796 * "it should simply store the decrypted cookie value from the cookie
2797 * reply message, and wait for the expiration of the REKEY-TIMEOUT
2798 * timer for retrying a handshake initiation message."
2799 */
2800 wgp->wgp_latest_cookie_time = time_uptime;
2801 memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
2802 out:
2803 mutex_exit(wgp->wgp_lock);
2804 wg_put_session(wgs, &psref);
2805 }
2806
2807 static struct mbuf *
2808 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
2809 {
2810 struct wg_msg wgm;
2811 size_t mbuflen;
2812 size_t msglen;
2813
2814 /*
2815 * Get the mbuf chain length. It is already guaranteed, by
2816 * wg_overudp_cb, to be large enough for a struct wg_msg.
2817 */
2818 mbuflen = m_length(m);
2819 KASSERT(mbuflen >= sizeof(struct wg_msg));
2820
2821 /*
2822 * Copy the message header (32-bit message type) out -- we'll
2823 * worry about contiguity and alignment later.
2824 */
2825 m_copydata(m, 0, sizeof(wgm), &wgm);
2826 switch (le32toh(wgm.wgm_type)) {
2827 case WG_MSG_TYPE_INIT:
2828 msglen = sizeof(struct wg_msg_init);
2829 break;
2830 case WG_MSG_TYPE_RESP:
2831 msglen = sizeof(struct wg_msg_resp);
2832 break;
2833 case WG_MSG_TYPE_COOKIE:
2834 msglen = sizeof(struct wg_msg_cookie);
2835 break;
2836 case WG_MSG_TYPE_DATA:
2837 msglen = sizeof(struct wg_msg_data);
2838 break;
2839 default:
2840 WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
2841 "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
2842 le32toh(wgm.wgm_type));
2843 goto error;
2844 }
2845
2846 /* Verify the mbuf chain is long enough for this type of message. */
2847 if (__predict_false(mbuflen < msglen)) {
2848 WG_DLOG("Invalid msg size: mbuflen=%lu type=%u\n", mbuflen,
2849 le32toh(wgm.wgm_type));
2850 goto error;
2851 }
2852
2853 /* Make the message header contiguous if necessary. */
2854 if (__predict_false(m->m_len < msglen)) {
2855 m = m_pullup(m, msglen);
2856 if (m == NULL)
2857 return NULL;
2858 }
2859
2860 return m;
2861
2862 error:
2863 m_freem(m);
2864 return NULL;
2865 }
2866
2867 static void
2868 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
2869 const struct sockaddr *src)
2870 {
2871 struct wg_msg *wgm;
2872
2873 m = wg_validate_msg_header(wg, m);
2874 if (__predict_false(m == NULL))
2875 return;
2876
2877 KASSERT(m->m_len >= sizeof(struct wg_msg));
2878 wgm = mtod(m, struct wg_msg *);
2879 switch (le32toh(wgm->wgm_type)) {
2880 case WG_MSG_TYPE_INIT:
2881 wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
2882 break;
2883 case WG_MSG_TYPE_RESP:
2884 wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
2885 break;
2886 case WG_MSG_TYPE_COOKIE:
2887 wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
2888 break;
2889 case WG_MSG_TYPE_DATA:
2890 wg_handle_msg_data(wg, m, src);
2891 /* wg_handle_msg_data frees m for us */
2892 return;
2893 default:
2894 panic("invalid message type: %d", le32toh(wgm->wgm_type));
2895 }
2896
2897 m_freem(m);
2898 }
2899
2900 static void
2901 wg_receive_packets(struct wg_softc *wg, const int af)
2902 {
2903
2904 for (;;) {
2905 int error, flags;
2906 struct socket *so;
2907 struct mbuf *m = NULL;
2908 struct uio dummy_uio;
2909 struct mbuf *paddr = NULL;
2910 struct sockaddr *src;
2911
2912 so = wg_get_so_by_af(wg, af);
2913 flags = MSG_DONTWAIT;
2914 dummy_uio.uio_resid = 1000000000;
2915
2916 error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
2917 &flags);
2918 if (error || m == NULL) {
2919 //if (error == EWOULDBLOCK)
2920 return;
2921 }
2922
2923 KASSERT(paddr != NULL);
2924 KASSERT(paddr->m_len >= sizeof(struct sockaddr));
2925 src = mtod(paddr, struct sockaddr *);
2926
2927 wg_handle_packet(wg, m, src);
2928 }
2929 }
2930
2931 static void
2932 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
2933 {
2934
2935 psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
2936 }
2937
2938 static void
2939 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
2940 {
2941
2942 psref_release(psref, &wgp->wgp_psref, wg_psref_class);
2943 }
2944
2945 static void
2946 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
2947 {
2948 struct wg_session *wgs;
2949
2950 WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
2951
2952 KASSERT(mutex_owned(wgp->wgp_lock));
2953
2954 if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
2955 WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
2956 if_name(&wg->wg_if));
2957 /* XXX should do something? */
2958 return;
2959 }
2960
2961 wgs = wgp->wgp_session_stable;
2962 if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
2963 /* XXX What if the unstable session is already INIT_ACTIVE? */
2964 wg_send_handshake_msg_init(wg, wgp);
2965 } else {
2966 /* rekey */
2967 wgs = wgp->wgp_session_unstable;
2968 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2969 wg_send_handshake_msg_init(wg, wgp);
2970 }
2971 }
2972
2973 static void
2974 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
2975 {
2976 struct wg_session *wgs;
2977
2978 WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
2979
2980 KASSERT(mutex_owned(wgp->wgp_lock));
2981 KASSERT(wgp->wgp_handshake_start_time != 0);
2982
2983 wgs = wgp->wgp_session_unstable;
2984 if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2985 return;
2986
2987 /*
2988 * XXX no real need to assign a new index here, but we do need
2989 * to transition to UNKNOWN temporarily
2990 */
2991 wg_put_session_index(wg, wgs);
2992
2993 /* [W] 6.4 Handshake Initiation Retransmission */
2994 if ((time_uptime - wgp->wgp_handshake_start_time) >
2995 wg_rekey_attempt_time) {
2996 /* Give up handshaking */
2997 wgp->wgp_handshake_start_time = 0;
2998 WG_TRACE("give up");
2999
3000 /*
3001 * If a new data packet comes, handshaking will be retried
3002 * and a new session would be established at that time,
3003 * however we don't want to send pending packets then.
3004 */
3005 wg_purge_pending_packets(wgp);
3006 return;
3007 }
3008
3009 wg_task_send_init_message(wg, wgp);
3010 }
3011
3012 static void
3013 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
3014 {
3015 struct wg_session *wgs, *wgs_prev;
3016 struct mbuf *m;
3017
3018 KASSERT(mutex_owned(wgp->wgp_lock));
3019
3020 wgs = wgp->wgp_session_unstable;
3021 if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
3022 /* XXX Can this happen? */
3023 return;
3024
3025 wgs->wgs_state = WGS_STATE_ESTABLISHED;
3026 wgs->wgs_time_established = time_uptime;
3027 wgs->wgs_time_last_data_sent = 0;
3028 wgs->wgs_is_initiator = false;
3029 WG_TRACE("WGS_STATE_ESTABLISHED");
3030
3031 wg_swap_sessions(wgp);
3032 KASSERT(wgs == wgp->wgp_session_stable);
3033 wgs_prev = wgp->wgp_session_unstable;
3034 getnanotime(&wgp->wgp_last_handshake_time);
3035 wgp->wgp_handshake_start_time = 0;
3036 wgp->wgp_last_sent_mac1_valid = false;
3037 wgp->wgp_last_sent_cookie_valid = false;
3038
3039 /* If we had a data packet queued up, send it. */
3040 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
3041 kpreempt_disable();
3042 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
3043 M_SETCTX(m, wgp);
3044 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
3045 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
3046 if_name(&wg->wg_if));
3047 m_freem(m);
3048 }
3049 kpreempt_enable();
3050 }
3051
3052 if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
3053 /* Wait for wg_get_stable_session to drain. */
3054 pserialize_perform(wgp->wgp_psz);
3055
3056 /* Transition ESTABLISHED->DESTROYING. */
3057 wgs_prev->wgs_state = WGS_STATE_DESTROYING;
3058
3059 /* We can't destroy the old session immediately */
3060 wg_schedule_session_dtor_timer(wgp);
3061 } else {
3062 KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
3063 "state=%d", wgs_prev->wgs_state);
3064 wg_clear_states(wgs_prev);
3065 wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
3066 }
3067 }
3068
3069 static void
3070 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
3071 {
3072
3073 WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
3074
3075 KASSERT(mutex_owned(wgp->wgp_lock));
3076
3077 if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
3078 pserialize_perform(wgp->wgp_psz);
3079 mutex_exit(wgp->wgp_lock);
3080 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
3081 wg_psref_class);
3082 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
3083 wg_psref_class);
3084 mutex_enter(wgp->wgp_lock);
3085 atomic_store_release(&wgp->wgp_endpoint_changing, 0);
3086 }
3087 }
3088
3089 static void
3090 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
3091 {
3092 struct wg_session *wgs;
3093
3094 WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
3095
3096 KASSERT(mutex_owned(wgp->wgp_lock));
3097
3098 wgs = wgp->wgp_session_stable;
3099 if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
3100 return;
3101
3102 wg_send_keepalive_msg(wgp, wgs);
3103 }
3104
3105 static void
3106 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
3107 {
3108 struct wg_session *wgs;
3109
3110 WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
3111
3112 KASSERT(mutex_owned(wgp->wgp_lock));
3113
3114 wgs = wgp->wgp_session_unstable;
3115 if (wgs->wgs_state == WGS_STATE_DESTROYING) {
3116 wg_put_session_index(wg, wgs);
3117 }
3118 }
3119
3120 static void
3121 wg_peer_work(struct work *wk, void *cookie)
3122 {
3123 struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
3124 struct wg_softc *wg = wgp->wgp_sc;
3125 unsigned int tasks;
3126
3127 mutex_enter(wgp->wgp_intr_lock);
3128 while ((tasks = wgp->wgp_tasks) != 0) {
3129 wgp->wgp_tasks = 0;
3130 mutex_exit(wgp->wgp_intr_lock);
3131
3132 mutex_enter(wgp->wgp_lock);
3133 if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
3134 wg_task_send_init_message(wg, wgp);
3135 if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
3136 wg_task_retry_handshake(wg, wgp);
3137 if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
3138 wg_task_establish_session(wg, wgp);
3139 if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
3140 wg_task_endpoint_changed(wg, wgp);
3141 if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
3142 wg_task_send_keepalive_message(wg, wgp);
3143 if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
3144 wg_task_destroy_prev_session(wg, wgp);
3145 mutex_exit(wgp->wgp_lock);
3146
3147 mutex_enter(wgp->wgp_intr_lock);
3148 }
3149 mutex_exit(wgp->wgp_intr_lock);
3150 }
3151
3152 static void
3153 wg_job(struct threadpool_job *job)
3154 {
3155 struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
3156 int bound, upcalls;
3157
3158 mutex_enter(wg->wg_intr_lock);
3159 while ((upcalls = wg->wg_upcalls) != 0) {
3160 wg->wg_upcalls = 0;
3161 mutex_exit(wg->wg_intr_lock);
3162 bound = curlwp_bind();
3163 if (ISSET(upcalls, WG_UPCALL_INET))
3164 wg_receive_packets(wg, AF_INET);
3165 if (ISSET(upcalls, WG_UPCALL_INET6))
3166 wg_receive_packets(wg, AF_INET6);
3167 curlwp_bindx(bound);
3168 mutex_enter(wg->wg_intr_lock);
3169 }
3170 threadpool_job_done(job);
3171 mutex_exit(wg->wg_intr_lock);
3172 }
3173
3174 static int
3175 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3176 {
3177 int error;
3178 uint16_t old_port = wg->wg_listen_port;
3179
3180 if (port != 0 && old_port == port)
3181 return 0;
3182
3183 struct sockaddr_in _sin, *sin = &_sin;
3184 sin->sin_len = sizeof(*sin);
3185 sin->sin_family = AF_INET;
3186 sin->sin_addr.s_addr = INADDR_ANY;
3187 sin->sin_port = htons(port);
3188
3189 error = sobind(wg->wg_so4, sintosa(sin), curlwp);
3190 if (error != 0)
3191 return error;
3192
3193 #ifdef INET6
3194 struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3195 sin6->sin6_len = sizeof(*sin6);
3196 sin6->sin6_family = AF_INET6;
3197 sin6->sin6_addr = in6addr_any;
3198 sin6->sin6_port = htons(port);
3199
3200 error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
3201 if (error != 0)
3202 return error;
3203 #endif
3204
3205 wg->wg_listen_port = port;
3206
3207 return 0;
3208 }
3209
3210 static void
3211 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
3212 {
3213 struct wg_softc *wg = cookie;
3214 int reason;
3215
3216 reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3217 WG_UPCALL_INET :
3218 WG_UPCALL_INET6;
3219
3220 mutex_enter(wg->wg_intr_lock);
3221 wg->wg_upcalls |= reason;
3222 threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
3223 mutex_exit(wg->wg_intr_lock);
3224 }
3225
3226 static int
3227 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3228 struct sockaddr *src, void *arg)
3229 {
3230 struct wg_softc *wg = arg;
3231 struct wg_msg wgm;
3232 struct mbuf *m = *mp;
3233
3234 WG_TRACE("enter");
3235
3236 /* Verify the mbuf chain is long enough to have a wg msg header. */
3237 KASSERT(offset <= m_length(m));
3238 if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3239 /* drop on the floor */
3240 m_freem(m);
3241 return -1;
3242 }
3243
3244 /*
3245 * Copy the message header (32-bit message type) out -- we'll
3246 * worry about contiguity and alignment later.
3247 */
3248 m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3249 WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3250
3251 /*
3252 * Handle DATA packets promptly as they arrive. Other packets
3253 * may require expensive public-key crypto and are not as
3254 * sensitive to latency, so defer them to the worker thread.
3255 */
3256 switch (le32toh(wgm.wgm_type)) {
3257 case WG_MSG_TYPE_DATA:
3258 /* handle immediately */
3259 m_adj(m, offset);
3260 if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3261 m = m_pullup(m, sizeof(struct wg_msg_data));
3262 if (m == NULL)
3263 return -1;
3264 }
3265 wg_handle_msg_data(wg, m, src);
3266 *mp = NULL;
3267 return 1;
3268 case WG_MSG_TYPE_INIT:
3269 case WG_MSG_TYPE_RESP:
3270 case WG_MSG_TYPE_COOKIE:
3271 /* pass through to so_receive in wg_receive_packets */
3272 return 0;
3273 default:
3274 /* drop on the floor */
3275 m_freem(m);
3276 return -1;
3277 }
3278 }
3279
3280 static int
3281 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
3282 {
3283 int error;
3284 struct socket *so;
3285
3286 error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3287 if (error != 0)
3288 return error;
3289
3290 solock(so);
3291 so->so_upcallarg = wg;
3292 so->so_upcall = wg_so_upcall;
3293 so->so_rcv.sb_flags |= SB_UPCALL;
3294 inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3295 sounlock(so);
3296
3297 *sop = so;
3298
3299 return 0;
3300 }
3301
3302 static bool
3303 wg_session_hit_limits(struct wg_session *wgs)
3304 {
3305
3306 /*
3307 * [W] 6.2: Transport Message Limits
3308 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3309 * current secure session is REJECT-AFTER-TIME seconds old, whichever
3310 * comes first, WireGuard will refuse to send any more transport data
3311 * messages using the current secure session, ..."
3312 */
3313 KASSERT(wgs->wgs_time_established != 0);
3314 if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
3315 WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3316 return true;
3317 } else if (wg_session_get_send_counter(wgs) >
3318 wg_reject_after_messages) {
3319 WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3320 return true;
3321 }
3322
3323 return false;
3324 }
3325
3326 static void
3327 wgintr(void *cookie)
3328 {
3329 struct wg_peer *wgp;
3330 struct wg_session *wgs;
3331 struct mbuf *m;
3332 struct psref psref;
3333
3334 while ((m = pktq_dequeue(wg_pktq)) != NULL) {
3335 wgp = M_GETCTX(m, struct wg_peer *);
3336 if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3337 WG_TRACE("no stable session");
3338 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3339 goto next0;
3340 }
3341 if (__predict_false(wg_session_hit_limits(wgs))) {
3342 WG_TRACE("stable session hit limits");
3343 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3344 goto next1;
3345 }
3346 wg_send_data_msg(wgp, wgs, m);
3347 m = NULL; /* consumed */
3348 next1: wg_put_session(wgs, &psref);
3349 next0: if (m)
3350 m_freem(m);
3351 /* XXX Yield to avoid userland starvation? */
3352 }
3353 }
3354
3355 static void
3356 wg_rekey_timer(void *arg)
3357 {
3358 struct wg_peer *wgp = arg;
3359
3360 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3361 }
3362
3363 static void
3364 wg_purge_pending_packets(struct wg_peer *wgp)
3365 {
3366 struct mbuf *m;
3367
3368 if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL)
3369 m_freem(m);
3370 pktq_barrier(wg_pktq);
3371 }
3372
3373 static void
3374 wg_handshake_timeout_timer(void *arg)
3375 {
3376 struct wg_peer *wgp = arg;
3377
3378 WG_TRACE("enter");
3379
3380 wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3381 }
3382
3383 static struct wg_peer *
3384 wg_alloc_peer(struct wg_softc *wg)
3385 {
3386 struct wg_peer *wgp;
3387
3388 wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3389
3390 wgp->wgp_sc = wg;
3391 callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
3392 callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
3393 callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3394 callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3395 wg_handshake_timeout_timer, wgp);
3396 callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3397 callout_setfunc(&wgp->wgp_session_dtor_timer,
3398 wg_session_dtor_timer, wgp);
3399 PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3400 wgp->wgp_endpoint_changing = false;
3401 wgp->wgp_endpoint_available = false;
3402 wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3403 wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3404 wgp->wgp_psz = pserialize_create();
3405 psref_target_init(&wgp->wgp_psref, wg_psref_class);
3406
3407 wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3408 wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3409 psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3410 psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3411
3412 struct wg_session *wgs;
3413 wgp->wgp_session_stable =
3414 kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3415 wgp->wgp_session_unstable =
3416 kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3417 wgs = wgp->wgp_session_stable;
3418 wgs->wgs_peer = wgp;
3419 wgs->wgs_state = WGS_STATE_UNKNOWN;
3420 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3421 #ifndef __HAVE_ATOMIC64_LOADSTORE
3422 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3423 #endif
3424 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3425 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3426
3427 wgs = wgp->wgp_session_unstable;
3428 wgs->wgs_peer = wgp;
3429 wgs->wgs_state = WGS_STATE_UNKNOWN;
3430 psref_target_init(&wgs->wgs_psref, wg_psref_class);
3431 #ifndef __HAVE_ATOMIC64_LOADSTORE
3432 mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3433 #endif
3434 wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3435 mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3436
3437 return wgp;
3438 }
3439
3440 static void
3441 wg_destroy_peer(struct wg_peer *wgp)
3442 {
3443 struct wg_session *wgs;
3444 struct wg_softc *wg = wgp->wgp_sc;
3445
3446 /* Prevent new packets from this peer on any source address. */
3447 rw_enter(wg->wg_rwlock, RW_WRITER);
3448 for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3449 struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3450 struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3451 struct radix_node *rn;
3452
3453 KASSERT(rnh != NULL);
3454 rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3455 &wga->wga_sa_mask, rnh);
3456 if (rn == NULL) {
3457 char addrstr[128];
3458 sockaddr_format(&wga->wga_sa_addr, addrstr,
3459 sizeof(addrstr));
3460 WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
3461 if_name(&wg->wg_if), addrstr);
3462 }
3463 }
3464 rw_exit(wg->wg_rwlock);
3465
3466 /* Purge pending packets. */
3467 wg_purge_pending_packets(wgp);
3468
3469 /* Halt all packet processing and timeouts. */
3470 callout_halt(&wgp->wgp_rekey_timer, NULL);
3471 callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3472 callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3473
3474 /* Wait for any queued work to complete. */
3475 workqueue_wait(wg_wq, &wgp->wgp_work);
3476
3477 wgs = wgp->wgp_session_unstable;
3478 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3479 mutex_enter(wgp->wgp_lock);
3480 wg_destroy_session(wg, wgs);
3481 mutex_exit(wgp->wgp_lock);
3482 }
3483 mutex_destroy(&wgs->wgs_recvwin->lock);
3484 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3485 #ifndef __HAVE_ATOMIC64_LOADSTORE
3486 mutex_destroy(&wgs->wgs_send_counter_lock);
3487 #endif
3488 kmem_free(wgs, sizeof(*wgs));
3489
3490 wgs = wgp->wgp_session_stable;
3491 if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3492 mutex_enter(wgp->wgp_lock);
3493 wg_destroy_session(wg, wgs);
3494 mutex_exit(wgp->wgp_lock);
3495 }
3496 mutex_destroy(&wgs->wgs_recvwin->lock);
3497 kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3498 #ifndef __HAVE_ATOMIC64_LOADSTORE
3499 mutex_destroy(&wgs->wgs_send_counter_lock);
3500 #endif
3501 kmem_free(wgs, sizeof(*wgs));
3502
3503 psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3504 psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3505 kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3506 kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3507
3508 pserialize_destroy(wgp->wgp_psz);
3509 mutex_obj_free(wgp->wgp_intr_lock);
3510 mutex_obj_free(wgp->wgp_lock);
3511
3512 kmem_free(wgp, sizeof(*wgp));
3513 }
3514
3515 static void
3516 wg_destroy_all_peers(struct wg_softc *wg)
3517 {
3518 struct wg_peer *wgp, *wgp0 __diagused;
3519 void *garbage_byname, *garbage_bypubkey;
3520
3521 restart:
3522 garbage_byname = garbage_bypubkey = NULL;
3523 mutex_enter(wg->wg_lock);
3524 WG_PEER_WRITER_FOREACH(wgp, wg) {
3525 if (wgp->wgp_name[0]) {
3526 wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3527 strlen(wgp->wgp_name));
3528 KASSERT(wgp0 == wgp);
3529 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3530 }
3531 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3532 sizeof(wgp->wgp_pubkey));
3533 KASSERT(wgp0 == wgp);
3534 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3535 WG_PEER_WRITER_REMOVE(wgp);
3536 wg->wg_npeers--;
3537 mutex_enter(wgp->wgp_lock);
3538 pserialize_perform(wgp->wgp_psz);
3539 mutex_exit(wgp->wgp_lock);
3540 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3541 break;
3542 }
3543 mutex_exit(wg->wg_lock);
3544
3545 if (wgp == NULL)
3546 return;
3547
3548 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3549
3550 wg_destroy_peer(wgp);
3551 thmap_gc(wg->wg_peers_byname, garbage_byname);
3552 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3553
3554 goto restart;
3555 }
3556
3557 static int
3558 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3559 {
3560 struct wg_peer *wgp, *wgp0 __diagused;
3561 void *garbage_byname, *garbage_bypubkey;
3562
3563 mutex_enter(wg->wg_lock);
3564 wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
3565 if (wgp != NULL) {
3566 wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3567 sizeof(wgp->wgp_pubkey));
3568 KASSERT(wgp0 == wgp);
3569 garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3570 garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3571 WG_PEER_WRITER_REMOVE(wgp);
3572 wg->wg_npeers--;
3573 if (wg->wg_npeers == 0)
3574 if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
3575 mutex_enter(wgp->wgp_lock);
3576 pserialize_perform(wgp->wgp_psz);
3577 mutex_exit(wgp->wgp_lock);
3578 PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3579 }
3580 mutex_exit(wg->wg_lock);
3581
3582 if (wgp == NULL)
3583 return ENOENT;
3584
3585 psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3586
3587 wg_destroy_peer(wgp);
3588 thmap_gc(wg->wg_peers_byname, garbage_byname);
3589 thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3590
3591 return 0;
3592 }
3593
3594 static int
3595 wg_if_attach(struct wg_softc *wg)
3596 {
3597
3598 wg->wg_if.if_addrlen = 0;
3599 wg->wg_if.if_mtu = WG_MTU;
3600 wg->wg_if.if_flags = IFF_MULTICAST;
3601 wg->wg_if.if_extflags = IFEF_MPSAFE;
3602 wg->wg_if.if_ioctl = wg_ioctl;
3603 wg->wg_if.if_output = wg_output;
3604 wg->wg_if.if_init = wg_init;
3605 #ifdef ALTQ
3606 wg->wg_if.if_start = wg_start;
3607 #endif
3608 wg->wg_if.if_stop = wg_stop;
3609 wg->wg_if.if_type = IFT_OTHER;
3610 wg->wg_if.if_dlt = DLT_NULL;
3611 wg->wg_if.if_softc = wg;
3612 #ifdef ALTQ
3613 IFQ_SET_READY(&wg->wg_if.if_snd);
3614 #endif
3615 if_initialize(&wg->wg_if);
3616
3617 wg->wg_if.if_link_state = LINK_STATE_DOWN;
3618 if_alloc_sadl(&wg->wg_if);
3619 if_register(&wg->wg_if);
3620
3621 bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3622
3623 return 0;
3624 }
3625
3626 static void
3627 wg_if_detach(struct wg_softc *wg)
3628 {
3629 struct ifnet *ifp = &wg->wg_if;
3630
3631 bpf_detach(ifp);
3632 if_detach(ifp);
3633 }
3634
3635 static int
3636 wg_clone_create(struct if_clone *ifc, int unit)
3637 {
3638 struct wg_softc *wg;
3639 int error;
3640
3641 wg_guarantee_initialized();
3642
3643 error = wg_count_inc();
3644 if (error)
3645 return error;
3646
3647 wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
3648
3649 if_initname(&wg->wg_if, ifc->ifc_name, unit);
3650
3651 PSLIST_INIT(&wg->wg_peers);
3652 wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
3653 wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
3654 wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
3655 wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3656 wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3657 wg->wg_rwlock = rw_obj_alloc();
3658 threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
3659 "%s", if_name(&wg->wg_if));
3660 wg->wg_ops = &wg_ops_rumpkernel;
3661
3662 error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
3663 if (error)
3664 goto fail0;
3665
3666 #ifdef INET
3667 error = wg_socreate(wg, AF_INET, &wg->wg_so4);
3668 if (error)
3669 goto fail1;
3670 rn_inithead((void **)&wg->wg_rtable_ipv4,
3671 offsetof(struct sockaddr_in, sin_addr) * NBBY);
3672 #endif
3673 #ifdef INET6
3674 error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
3675 if (error)
3676 goto fail2;
3677 rn_inithead((void **)&wg->wg_rtable_ipv6,
3678 offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3679 #endif
3680
3681 error = wg_if_attach(wg);
3682 if (error)
3683 goto fail3;
3684
3685 return 0;
3686
3687 fail4: __unused
3688 wg_if_detach(wg);
3689 fail3: wg_destroy_all_peers(wg);
3690 #ifdef INET6
3691 solock(wg->wg_so6);
3692 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
3693 sounlock(wg->wg_so6);
3694 #endif
3695 #ifdef INET
3696 solock(wg->wg_so4);
3697 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
3698 sounlock(wg->wg_so4);
3699 #endif
3700 mutex_enter(wg->wg_intr_lock);
3701 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
3702 mutex_exit(wg->wg_intr_lock);
3703 #ifdef INET6
3704 if (wg->wg_rtable_ipv6 != NULL)
3705 free(wg->wg_rtable_ipv6, M_RTABLE);
3706 soclose(wg->wg_so6);
3707 fail2:
3708 #endif
3709 #ifdef INET
3710 if (wg->wg_rtable_ipv4 != NULL)
3711 free(wg->wg_rtable_ipv4, M_RTABLE);
3712 soclose(wg->wg_so4);
3713 fail1:
3714 #endif
3715 threadpool_put(wg->wg_threadpool, PRI_NONE);
3716 fail0: threadpool_job_destroy(&wg->wg_job);
3717 rw_obj_free(wg->wg_rwlock);
3718 mutex_obj_free(wg->wg_intr_lock);
3719 mutex_obj_free(wg->wg_lock);
3720 thmap_destroy(wg->wg_sessions_byindex);
3721 thmap_destroy(wg->wg_peers_byname);
3722 thmap_destroy(wg->wg_peers_bypubkey);
3723 PSLIST_DESTROY(&wg->wg_peers);
3724 kmem_free(wg, sizeof(*wg));
3725 wg_count_dec();
3726 return error;
3727 }
3728
3729 static int
3730 wg_clone_destroy(struct ifnet *ifp)
3731 {
3732 struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
3733
3734 #ifdef WG_RUMPKERNEL
3735 if (wg_user_mode(wg)) {
3736 rumpuser_wg_destroy(wg->wg_user);
3737 wg->wg_user = NULL;
3738 }
3739 #endif
3740
3741 wg_if_detach(wg);
3742 wg_destroy_all_peers(wg);
3743 #ifdef INET6
3744 solock(wg->wg_so6);
3745 wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
3746 sounlock(wg->wg_so6);
3747 #endif
3748 #ifdef INET
3749 solock(wg->wg_so4);
3750 wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
3751 sounlock(wg->wg_so4);
3752 #endif
3753 mutex_enter(wg->wg_intr_lock);
3754 threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
3755 mutex_exit(wg->wg_intr_lock);
3756 #ifdef INET6
3757 if (wg->wg_rtable_ipv6 != NULL)
3758 free(wg->wg_rtable_ipv6, M_RTABLE);
3759 soclose(wg->wg_so6);
3760 #endif
3761 #ifdef INET
3762 if (wg->wg_rtable_ipv4 != NULL)
3763 free(wg->wg_rtable_ipv4, M_RTABLE);
3764 soclose(wg->wg_so4);
3765 #endif
3766 threadpool_put(wg->wg_threadpool, PRI_NONE);
3767 threadpool_job_destroy(&wg->wg_job);
3768 rw_obj_free(wg->wg_rwlock);
3769 mutex_obj_free(wg->wg_intr_lock);
3770 mutex_obj_free(wg->wg_lock);
3771 thmap_destroy(wg->wg_sessions_byindex);
3772 thmap_destroy(wg->wg_peers_byname);
3773 thmap_destroy(wg->wg_peers_bypubkey);
3774 PSLIST_DESTROY(&wg->wg_peers);
3775 kmem_free(wg, sizeof(*wg));
3776 wg_count_dec();
3777
3778 return 0;
3779 }
3780
3781 static struct wg_peer *
3782 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
3783 struct psref *psref)
3784 {
3785 struct radix_node_head *rnh;
3786 struct radix_node *rn;
3787 struct wg_peer *wgp = NULL;
3788 struct wg_allowedip *wga;
3789
3790 #ifdef WG_DEBUG_LOG
3791 char addrstr[128];
3792 sockaddr_format(sa, addrstr, sizeof(addrstr));
3793 WG_DLOG("sa=%s\n", addrstr);
3794 #endif
3795
3796 rw_enter(wg->wg_rwlock, RW_READER);
3797
3798 rnh = wg_rnh(wg, sa->sa_family);
3799 if (rnh == NULL)
3800 goto out;
3801
3802 rn = rnh->rnh_matchaddr(sa, rnh);
3803 if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
3804 goto out;
3805
3806 WG_TRACE("success");
3807
3808 wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
3809 wgp = wga->wga_peer;
3810 wg_get_peer(wgp, psref);
3811
3812 out:
3813 rw_exit(wg->wg_rwlock);
3814 return wgp;
3815 }
3816
3817 static void
3818 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
3819 struct wg_session *wgs, struct wg_msg_data *wgmd)
3820 {
3821
3822 memset(wgmd, 0, sizeof(*wgmd));
3823 wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
3824 wgmd->wgmd_receiver = wgs->wgs_remote_index;
3825 /* [W] 5.4.6: msg.counter := Nm^send */
3826 /* [W] 5.4.6: Nm^send := Nm^send + 1 */
3827 wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
3828 WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
3829 }
3830
3831 static int
3832 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
3833 const struct rtentry *rt)
3834 {
3835 struct wg_softc *wg = ifp->if_softc;
3836 struct wg_peer *wgp = NULL;
3837 struct wg_session *wgs = NULL;
3838 struct psref wgp_psref, wgs_psref;
3839 int bound;
3840 int error;
3841
3842 bound = curlwp_bind();
3843
3844 /* TODO make the nest limit configurable via sysctl */
3845 error = if_tunnel_check_nesting(ifp, m, 1);
3846 if (error) {
3847 WGLOG(LOG_ERR,
3848 "%s: tunneling loop detected and packet dropped\n",
3849 if_name(&wg->wg_if));
3850 goto out0;
3851 }
3852
3853 #ifdef ALTQ
3854 bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
3855 & ALTQF_ENABLED;
3856 if (altq)
3857 IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
3858 #endif
3859
3860 bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
3861
3862 m->m_flags &= ~(M_BCAST|M_MCAST);
3863
3864 wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
3865 if (wgp == NULL) {
3866 WG_TRACE("peer not found");
3867 error = EHOSTUNREACH;
3868 goto out0;
3869 }
3870
3871 /* Clear checksum-offload flags. */
3872 m->m_pkthdr.csum_flags = 0;
3873 m->m_pkthdr.csum_data = 0;
3874
3875 /* Check whether there's an established session. */
3876 wgs = wg_get_stable_session(wgp, &wgs_psref);
3877 if (wgs == NULL) {
3878 /*
3879 * No established session. If we're the first to try
3880 * sending data, schedule a handshake and queue the
3881 * packet for when the handshake is done; otherwise
3882 * just drop the packet and let the ongoing handshake
3883 * attempt continue. We could queue more data packets
3884 * but it's not clear that's worthwhile.
3885 */
3886 if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
3887 m = NULL; /* consume */
3888 WG_TRACE("queued first packet; init handshake");
3889 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3890 } else {
3891 WG_TRACE("first packet already queued, dropping");
3892 }
3893 goto out1;
3894 }
3895
3896 /* There's an established session. Toss it in the queue. */
3897 #ifdef ALTQ
3898 if (altq) {
3899 mutex_enter(ifp->if_snd.ifq_lock);
3900 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3901 M_SETCTX(m, wgp);
3902 ALTQ_ENQUEUE(&ifp->if_snd, m, error);
3903 m = NULL; /* consume */
3904 }
3905 mutex_exit(ifp->if_snd.ifq_lock);
3906 if (m == NULL) {
3907 wg_start(ifp);
3908 goto out2;
3909 }
3910 }
3911 #endif
3912 kpreempt_disable();
3913 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
3914 M_SETCTX(m, wgp);
3915 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
3916 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
3917 if_name(&wg->wg_if));
3918 error = ENOBUFS;
3919 goto out3;
3920 }
3921 m = NULL; /* consumed */
3922 error = 0;
3923 out3: kpreempt_enable();
3924
3925 #ifdef ALTQ
3926 out2:
3927 #endif
3928 wg_put_session(wgs, &wgs_psref);
3929 out1: wg_put_peer(wgp, &wgp_psref);
3930 out0: if (m)
3931 m_freem(m);
3932 curlwp_bindx(bound);
3933 return error;
3934 }
3935
3936 static int
3937 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
3938 {
3939 struct psref psref;
3940 struct wg_sockaddr *wgsa;
3941 int error;
3942 struct socket *so;
3943
3944 wgsa = wg_get_endpoint_sa(wgp, &psref);
3945 so = wg_get_so_by_peer(wgp, wgsa);
3946 solock(so);
3947 if (wgsatosa(wgsa)->sa_family == AF_INET) {
3948 error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
3949 } else {
3950 #ifdef INET6
3951 error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
3952 NULL, curlwp);
3953 #else
3954 m_freem(m);
3955 error = EPFNOSUPPORT;
3956 #endif
3957 }
3958 sounlock(so);
3959 wg_put_sa(wgp, wgsa, &psref);
3960
3961 return error;
3962 }
3963
3964 /* Inspired by pppoe_get_mbuf */
3965 static struct mbuf *
3966 wg_get_mbuf(size_t leading_len, size_t len)
3967 {
3968 struct mbuf *m;
3969
3970 KASSERT(leading_len <= MCLBYTES);
3971 KASSERT(len <= MCLBYTES - leading_len);
3972
3973 m = m_gethdr(M_DONTWAIT, MT_DATA);
3974 if (m == NULL)
3975 return NULL;
3976 if (len + leading_len > MHLEN) {
3977 m_clget(m, M_DONTWAIT);
3978 if ((m->m_flags & M_EXT) == 0) {
3979 m_free(m);
3980 return NULL;
3981 }
3982 }
3983 m->m_data += leading_len;
3984 m->m_pkthdr.len = m->m_len = len;
3985
3986 return m;
3987 }
3988
3989 static int
3990 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
3991 struct mbuf *m)
3992 {
3993 struct wg_softc *wg = wgp->wgp_sc;
3994 int error;
3995 size_t inner_len, padded_len, encrypted_len;
3996 char *padded_buf = NULL;
3997 size_t mlen;
3998 struct wg_msg_data *wgmd;
3999 bool free_padded_buf = false;
4000 struct mbuf *n;
4001 size_t leading_len = max_hdr + sizeof(struct udphdr);
4002
4003 mlen = m_length(m);
4004 inner_len = mlen;
4005 padded_len = roundup(mlen, 16);
4006 encrypted_len = padded_len + WG_AUTHTAG_LEN;
4007 WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
4008 inner_len, padded_len, encrypted_len);
4009 if (mlen != 0) {
4010 bool success;
4011 success = m_ensure_contig(&m, padded_len);
4012 if (success) {
4013 padded_buf = mtod(m, char *);
4014 } else {
4015 padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
4016 if (padded_buf == NULL) {
4017 error = ENOBUFS;
4018 goto end;
4019 }
4020 free_padded_buf = true;
4021 m_copydata(m, 0, mlen, padded_buf);
4022 }
4023 memset(padded_buf + mlen, 0, padded_len - inner_len);
4024 }
4025
4026 n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
4027 if (n == NULL) {
4028 error = ENOBUFS;
4029 goto end;
4030 }
4031 KASSERT(n->m_len >= sizeof(*wgmd));
4032 wgmd = mtod(n, struct wg_msg_data *);
4033 wg_fill_msg_data(wg, wgp, wgs, wgmd);
4034 /* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
4035 wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
4036 wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4037 padded_buf, padded_len,
4038 NULL, 0);
4039
4040 error = wg->wg_ops->send_data_msg(wgp, n);
4041 if (error == 0) {
4042 struct ifnet *ifp = &wg->wg_if;
4043 if_statadd(ifp, if_obytes, mlen);
4044 if_statinc(ifp, if_opackets);
4045 if (wgs->wgs_is_initiator &&
4046 wgs->wgs_time_last_data_sent == 0) {
4047 /*
4048 * [W] 6.2 Transport Message Limits
4049 * "if a peer is the initiator of a current secure
4050 * session, WireGuard will send a handshake initiation
4051 * message to begin a new secure session if, after
4052 * transmitting a transport data message, the current
4053 * secure session is REKEY-AFTER-TIME seconds old,"
4054 */
4055 wg_schedule_rekey_timer(wgp);
4056 }
4057 wgs->wgs_time_last_data_sent = time_uptime;
4058 if (wg_session_get_send_counter(wgs) >=
4059 wg_rekey_after_messages) {
4060 /*
4061 * [W] 6.2 Transport Message Limits
4062 * "WireGuard will try to create a new session, by
4063 * sending a handshake initiation message (section
4064 * 5.4.2), after it has sent REKEY-AFTER-MESSAGES
4065 * transport data messages..."
4066 */
4067 wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4068 }
4069 }
4070 end:
4071 m_freem(m);
4072 if (free_padded_buf)
4073 kmem_intr_free(padded_buf, padded_len);
4074 return error;
4075 }
4076
4077 static void
4078 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
4079 {
4080 pktqueue_t *pktq;
4081 size_t pktlen;
4082
4083 KASSERT(af == AF_INET || af == AF_INET6);
4084
4085 WG_TRACE("");
4086
4087 m_set_rcvif(m, ifp);
4088 pktlen = m->m_pkthdr.len;
4089
4090 bpf_mtap_af(ifp, af, m, BPF_D_IN);
4091
4092 switch (af) {
4093 case AF_INET:
4094 pktq = ip_pktq;
4095 break;
4096 #ifdef INET6
4097 case AF_INET6:
4098 pktq = ip6_pktq;
4099 break;
4100 #endif
4101 default:
4102 panic("invalid af=%d", af);
4103 }
4104
4105 kpreempt_disable();
4106 const u_int h = curcpu()->ci_index;
4107 if (__predict_true(pktq_enqueue(pktq, m, h))) {
4108 if_statadd(ifp, if_ibytes, pktlen);
4109 if_statinc(ifp, if_ipackets);
4110 } else {
4111 m_freem(m);
4112 }
4113 kpreempt_enable();
4114 }
4115
4116 static void
4117 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
4118 const uint8_t privkey[WG_STATIC_KEY_LEN])
4119 {
4120
4121 crypto_scalarmult_base(pubkey, privkey);
4122 }
4123
4124 static int
4125 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
4126 {
4127 struct radix_node_head *rnh;
4128 struct radix_node *rn;
4129 int error = 0;
4130
4131 rw_enter(wg->wg_rwlock, RW_WRITER);
4132 rnh = wg_rnh(wg, wga->wga_family);
4133 KASSERT(rnh != NULL);
4134 rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
4135 wga->wga_nodes);
4136 rw_exit(wg->wg_rwlock);
4137
4138 if (rn == NULL)
4139 error = EEXIST;
4140
4141 return error;
4142 }
4143
4144 static int
4145 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
4146 struct wg_peer **wgpp)
4147 {
4148 int error = 0;
4149 const void *pubkey;
4150 size_t pubkey_len;
4151 const void *psk;
4152 size_t psk_len;
4153 const char *name = NULL;
4154
4155 if (prop_dictionary_get_string(peer, "name", &name)) {
4156 if (strlen(name) > WG_PEER_NAME_MAXLEN) {
4157 error = EINVAL;
4158 goto out;
4159 }
4160 }
4161
4162 if (!prop_dictionary_get_data(peer, "public_key",
4163 &pubkey, &pubkey_len)) {
4164 error = EINVAL;
4165 goto out;
4166 }
4167 #ifdef WG_DEBUG_DUMP
4168 {
4169 char *hex = gethexdump(pubkey, pubkey_len);
4170 log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n%s\n",
4171 pubkey, pubkey_len, hex);
4172 puthexdump(hex, pubkey, pubkey_len);
4173 }
4174 #endif
4175
4176 struct wg_peer *wgp = wg_alloc_peer(wg);
4177 memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4178 if (name != NULL)
4179 strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4180
4181 if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4182 if (psk_len != sizeof(wgp->wgp_psk)) {
4183 error = EINVAL;
4184 goto out;
4185 }
4186 memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4187 }
4188
4189 const void *addr;
4190 size_t addr_len;
4191 struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4192
4193 if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4194 goto skip_endpoint;
4195 if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4196 addr_len > sizeof(*wgsatoss(wgsa))) {
4197 error = EINVAL;
4198 goto out;
4199 }
4200 memcpy(wgsatoss(wgsa), addr, addr_len);
4201 switch (wgsa_family(wgsa)) {
4202 case AF_INET:
4203 #ifdef INET6
4204 case AF_INET6:
4205 #endif
4206 break;
4207 default:
4208 error = EPFNOSUPPORT;
4209 goto out;
4210 }
4211 if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4212 error = EINVAL;
4213 goto out;
4214 }
4215 {
4216 char addrstr[128];
4217 sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4218 WG_DLOG("addr=%s\n", addrstr);
4219 }
4220 wgp->wgp_endpoint_available = true;
4221
4222 prop_array_t allowedips;
4223 skip_endpoint:
4224 allowedips = prop_dictionary_get(peer, "allowedips");
4225 if (allowedips == NULL)
4226 goto skip;
4227
4228 prop_object_iterator_t _it = prop_array_iterator(allowedips);
4229 prop_dictionary_t prop_allowedip;
4230 int j = 0;
4231 while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4232 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4233
4234 if (!prop_dictionary_get_int(prop_allowedip, "family",
4235 &wga->wga_family))
4236 continue;
4237 if (!prop_dictionary_get_data(prop_allowedip, "ip",
4238 &addr, &addr_len))
4239 continue;
4240 if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4241 &wga->wga_cidr))
4242 continue;
4243
4244 switch (wga->wga_family) {
4245 case AF_INET: {
4246 struct sockaddr_in sin;
4247 char addrstr[128];
4248 struct in_addr mask;
4249 struct sockaddr_in sin_mask;
4250
4251 if (addr_len != sizeof(struct in_addr))
4252 return EINVAL;
4253 memcpy(&wga->wga_addr4, addr, addr_len);
4254
4255 sockaddr_in_init(&sin, (const struct in_addr *)addr,
4256 0);
4257 sockaddr_copy(&wga->wga_sa_addr,
4258 sizeof(sin), sintosa(&sin));
4259
4260 sockaddr_format(sintosa(&sin),
4261 addrstr, sizeof(addrstr));
4262 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4263
4264 in_len2mask(&mask, wga->wga_cidr);
4265 sockaddr_in_init(&sin_mask, &mask, 0);
4266 sockaddr_copy(&wga->wga_sa_mask,
4267 sizeof(sin_mask), sintosa(&sin_mask));
4268
4269 break;
4270 }
4271 #ifdef INET6
4272 case AF_INET6: {
4273 struct sockaddr_in6 sin6;
4274 char addrstr[128];
4275 struct in6_addr mask;
4276 struct sockaddr_in6 sin6_mask;
4277
4278 if (addr_len != sizeof(struct in6_addr))
4279 return EINVAL;
4280 memcpy(&wga->wga_addr6, addr, addr_len);
4281
4282 sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4283 0, 0, 0);
4284 sockaddr_copy(&wga->wga_sa_addr,
4285 sizeof(sin6), sin6tosa(&sin6));
4286
4287 sockaddr_format(sin6tosa(&sin6),
4288 addrstr, sizeof(addrstr));
4289 WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4290
4291 in6_prefixlen2mask(&mask, wga->wga_cidr);
4292 sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4293 sockaddr_copy(&wga->wga_sa_mask,
4294 sizeof(sin6_mask), sin6tosa(&sin6_mask));
4295
4296 break;
4297 }
4298 #endif
4299 default:
4300 error = EINVAL;
4301 goto out;
4302 }
4303 wga->wga_peer = wgp;
4304
4305 error = wg_rtable_add_route(wg, wga);
4306 if (error != 0)
4307 goto out;
4308
4309 j++;
4310 }
4311 wgp->wgp_n_allowedips = j;
4312 skip:
4313 *wgpp = wgp;
4314 out:
4315 return error;
4316 }
4317
4318 static int
4319 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4320 {
4321 int error;
4322 char *buf;
4323
4324 WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
4325 if (ifd->ifd_len >= WG_MAX_PROPLEN)
4326 return E2BIG;
4327 buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4328 error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4329 if (error != 0)
4330 return error;
4331 buf[ifd->ifd_len] = '\0';
4332 #ifdef WG_DEBUG_DUMP
4333 log(LOG_DEBUG, "%.*s\n",
4334 (int)MIN(INT_MAX, ifd->ifd_len),
4335 (const char *)buf);
4336 #endif
4337 *_buf = buf;
4338 return 0;
4339 }
4340
4341 static int
4342 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4343 {
4344 int error;
4345 prop_dictionary_t prop_dict;
4346 char *buf = NULL;
4347 const void *privkey;
4348 size_t privkey_len;
4349
4350 error = wg_alloc_prop_buf(&buf, ifd);
4351 if (error != 0)
4352 return error;
4353 error = EINVAL;
4354 prop_dict = prop_dictionary_internalize(buf);
4355 if (prop_dict == NULL)
4356 goto out;
4357 if (!prop_dictionary_get_data(prop_dict, "private_key",
4358 &privkey, &privkey_len))
4359 goto out;
4360 #ifdef WG_DEBUG_DUMP
4361 {
4362 char *hex = gethexdump(privkey, privkey_len);
4363 log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n%s\n",
4364 privkey, privkey_len, hex);
4365 puthexdump(hex, privkey, privkey_len);
4366 }
4367 #endif
4368 if (privkey_len != WG_STATIC_KEY_LEN)
4369 goto out;
4370 memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4371 wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4372 error = 0;
4373
4374 out:
4375 kmem_free(buf, ifd->ifd_len + 1);
4376 return error;
4377 }
4378
4379 static int
4380 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4381 {
4382 int error;
4383 prop_dictionary_t prop_dict;
4384 char *buf = NULL;
4385 uint16_t port;
4386
4387 error = wg_alloc_prop_buf(&buf, ifd);
4388 if (error != 0)
4389 return error;
4390 error = EINVAL;
4391 prop_dict = prop_dictionary_internalize(buf);
4392 if (prop_dict == NULL)
4393 goto out;
4394 if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4395 goto out;
4396
4397 error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4398
4399 out:
4400 kmem_free(buf, ifd->ifd_len + 1);
4401 return error;
4402 }
4403
4404 static int
4405 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4406 {
4407 int error;
4408 prop_dictionary_t prop_dict;
4409 char *buf = NULL;
4410 struct wg_peer *wgp = NULL, *wgp0 __diagused;
4411
4412 error = wg_alloc_prop_buf(&buf, ifd);
4413 if (error != 0)
4414 return error;
4415 error = EINVAL;
4416 prop_dict = prop_dictionary_internalize(buf);
4417 if (prop_dict == NULL)
4418 goto out;
4419
4420 error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4421 if (error != 0)
4422 goto out;
4423
4424 mutex_enter(wg->wg_lock);
4425 if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4426 sizeof(wgp->wgp_pubkey)) != NULL ||
4427 (wgp->wgp_name[0] &&
4428 thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4429 strlen(wgp->wgp_name)) != NULL)) {
4430 mutex_exit(wg->wg_lock);
4431 wg_destroy_peer(wgp);
4432 error = EEXIST;
4433 goto out;
4434 }
4435 wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4436 sizeof(wgp->wgp_pubkey), wgp);
4437 KASSERT(wgp0 == wgp);
4438 if (wgp->wgp_name[0]) {
4439 wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4440 strlen(wgp->wgp_name), wgp);
4441 KASSERT(wgp0 == wgp);
4442 }
4443 WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4444 wg->wg_npeers++;
4445 mutex_exit(wg->wg_lock);
4446
4447 if_link_state_change(&wg->wg_if, LINK_STATE_UP);
4448
4449 out:
4450 kmem_free(buf, ifd->ifd_len + 1);
4451 return error;
4452 }
4453
4454 static int
4455 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4456 {
4457 int error;
4458 prop_dictionary_t prop_dict;
4459 char *buf = NULL;
4460 const char *name;
4461
4462 error = wg_alloc_prop_buf(&buf, ifd);
4463 if (error != 0)
4464 return error;
4465 error = EINVAL;
4466 prop_dict = prop_dictionary_internalize(buf);
4467 if (prop_dict == NULL)
4468 goto out;
4469
4470 if (!prop_dictionary_get_string(prop_dict, "name", &name))
4471 goto out;
4472 if (strlen(name) > WG_PEER_NAME_MAXLEN)
4473 goto out;
4474
4475 error = wg_destroy_peer_name(wg, name);
4476 out:
4477 kmem_free(buf, ifd->ifd_len + 1);
4478 return error;
4479 }
4480
4481 static bool
4482 wg_is_authorized(struct wg_softc *wg, u_long cmd)
4483 {
4484 int au = cmd == SIOCGDRVSPEC ?
4485 KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
4486 KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
4487 return kauth_authorize_network(kauth_cred_get(),
4488 KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
4489 (void *)cmd, NULL) == 0;
4490 }
4491
4492 static int
4493 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4494 {
4495 int error = ENOMEM;
4496 prop_dictionary_t prop_dict;
4497 prop_array_t peers = NULL;
4498 char *buf;
4499 struct wg_peer *wgp;
4500 int s, i;
4501
4502 prop_dict = prop_dictionary_create();
4503 if (prop_dict == NULL)
4504 goto error;
4505
4506 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4507 if (!prop_dictionary_set_data(prop_dict, "private_key",
4508 wg->wg_privkey, WG_STATIC_KEY_LEN))
4509 goto error;
4510 }
4511
4512 if (wg->wg_listen_port != 0) {
4513 if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4514 wg->wg_listen_port))
4515 goto error;
4516 }
4517
4518 if (wg->wg_npeers == 0)
4519 goto skip_peers;
4520
4521 peers = prop_array_create();
4522 if (peers == NULL)
4523 goto error;
4524
4525 s = pserialize_read_enter();
4526 i = 0;
4527 WG_PEER_READER_FOREACH(wgp, wg) {
4528 struct wg_sockaddr *wgsa;
4529 struct psref wgp_psref, wgsa_psref;
4530 prop_dictionary_t prop_peer;
4531
4532 wg_get_peer(wgp, &wgp_psref);
4533 pserialize_read_exit(s);
4534
4535 prop_peer = prop_dictionary_create();
4536 if (prop_peer == NULL)
4537 goto next;
4538
4539 if (strlen(wgp->wgp_name) > 0) {
4540 if (!prop_dictionary_set_string(prop_peer, "name",
4541 wgp->wgp_name))
4542 goto next;
4543 }
4544
4545 if (!prop_dictionary_set_data(prop_peer, "public_key",
4546 wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4547 goto next;
4548
4549 uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4550 if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4551 sizeof(wgp->wgp_psk))) {
4552 if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4553 if (!prop_dictionary_set_data(prop_peer,
4554 "preshared_key",
4555 wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4556 goto next;
4557 }
4558 }
4559
4560 wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
4561 CTASSERT(AF_UNSPEC == 0);
4562 if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
4563 !prop_dictionary_set_data(prop_peer, "endpoint",
4564 wgsatoss(wgsa),
4565 sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
4566 wg_put_sa(wgp, wgsa, &wgsa_psref);
4567 goto next;
4568 }
4569 wg_put_sa(wgp, wgsa, &wgsa_psref);
4570
4571 const struct timespec *t = &wgp->wgp_last_handshake_time;
4572
4573 if (!prop_dictionary_set_uint64(prop_peer,
4574 "last_handshake_time_sec", (uint64_t)t->tv_sec))
4575 goto next;
4576 if (!prop_dictionary_set_uint32(prop_peer,
4577 "last_handshake_time_nsec", (uint32_t)t->tv_nsec))
4578 goto next;
4579
4580 if (wgp->wgp_n_allowedips == 0)
4581 goto skip_allowedips;
4582
4583 prop_array_t allowedips = prop_array_create();
4584 if (allowedips == NULL)
4585 goto next;
4586 for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4587 struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4588 prop_dictionary_t prop_allowedip;
4589
4590 prop_allowedip = prop_dictionary_create();
4591 if (prop_allowedip == NULL)
4592 break;
4593
4594 if (!prop_dictionary_set_int(prop_allowedip, "family",
4595 wga->wga_family))
4596 goto _next;
4597 if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4598 wga->wga_cidr))
4599 goto _next;
4600
4601 switch (wga->wga_family) {
4602 case AF_INET:
4603 if (!prop_dictionary_set_data(prop_allowedip,
4604 "ip", &wga->wga_addr4,
4605 sizeof(wga->wga_addr4)))
4606 goto _next;
4607 break;
4608 #ifdef INET6
4609 case AF_INET6:
4610 if (!prop_dictionary_set_data(prop_allowedip,
4611 "ip", &wga->wga_addr6,
4612 sizeof(wga->wga_addr6)))
4613 goto _next;
4614 break;
4615 #endif
4616 default:
4617 break;
4618 }
4619 prop_array_set(allowedips, j, prop_allowedip);
4620 _next:
4621 prop_object_release(prop_allowedip);
4622 }
4623 prop_dictionary_set(prop_peer, "allowedips", allowedips);
4624 prop_object_release(allowedips);
4625
4626 skip_allowedips:
4627
4628 prop_array_set(peers, i, prop_peer);
4629 next:
4630 if (prop_peer)
4631 prop_object_release(prop_peer);
4632 i++;
4633
4634 s = pserialize_read_enter();
4635 wg_put_peer(wgp, &wgp_psref);
4636 }
4637 pserialize_read_exit(s);
4638
4639 prop_dictionary_set(prop_dict, "peers", peers);
4640 prop_object_release(peers);
4641 peers = NULL;
4642
4643 skip_peers:
4644 buf = prop_dictionary_externalize(prop_dict);
4645 if (buf == NULL)
4646 goto error;
4647 if (ifd->ifd_len < (strlen(buf) + 1)) {
4648 error = EINVAL;
4649 goto error;
4650 }
4651 error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4652
4653 free(buf, 0);
4654 error:
4655 if (peers != NULL)
4656 prop_object_release(peers);
4657 if (prop_dict != NULL)
4658 prop_object_release(prop_dict);
4659
4660 return error;
4661 }
4662
4663 static int
4664 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4665 {
4666 struct wg_softc *wg = ifp->if_softc;
4667 struct ifreq *ifr = data;
4668 struct ifaddr *ifa = data;
4669 struct ifdrv *ifd = data;
4670 int error = 0;
4671
4672 switch (cmd) {
4673 case SIOCINITIFADDR:
4674 if (ifa->ifa_addr->sa_family != AF_LINK &&
4675 (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
4676 (IFF_UP | IFF_RUNNING)) {
4677 ifp->if_flags |= IFF_UP;
4678 error = if_init(ifp);
4679 }
4680 return error;
4681 case SIOCADDMULTI:
4682 case SIOCDELMULTI:
4683 switch (ifr->ifr_addr.sa_family) {
4684 case AF_INET: /* IP supports Multicast */
4685 break;
4686 #ifdef INET6
4687 case AF_INET6: /* IP6 supports Multicast */
4688 break;
4689 #endif
4690 default: /* Other protocols doesn't support Multicast */
4691 error = EAFNOSUPPORT;
4692 break;
4693 }
4694 return error;
4695 case SIOCSDRVSPEC:
4696 if (!wg_is_authorized(wg, cmd)) {
4697 return EPERM;
4698 }
4699 switch (ifd->ifd_cmd) {
4700 case WG_IOCTL_SET_PRIVATE_KEY:
4701 error = wg_ioctl_set_private_key(wg, ifd);
4702 break;
4703 case WG_IOCTL_SET_LISTEN_PORT:
4704 error = wg_ioctl_set_listen_port(wg, ifd);
4705 break;
4706 case WG_IOCTL_ADD_PEER:
4707 error = wg_ioctl_add_peer(wg, ifd);
4708 break;
4709 case WG_IOCTL_DELETE_PEER:
4710 error = wg_ioctl_delete_peer(wg, ifd);
4711 break;
4712 default:
4713 error = EINVAL;
4714 break;
4715 }
4716 return error;
4717 case SIOCGDRVSPEC:
4718 return wg_ioctl_get(wg, ifd);
4719 case SIOCSIFFLAGS:
4720 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
4721 break;
4722 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4723 case IFF_RUNNING:
4724 /*
4725 * If interface is marked down and it is running,
4726 * then stop and disable it.
4727 */
4728 if_stop(ifp, 1);
4729 break;
4730 case IFF_UP:
4731 /*
4732 * If interface is marked up and it is stopped, then
4733 * start it.
4734 */
4735 error = if_init(ifp);
4736 break;
4737 default:
4738 break;
4739 }
4740 return error;
4741 #ifdef WG_RUMPKERNEL
4742 case SIOCSLINKSTR:
4743 error = wg_ioctl_linkstr(wg, ifd);
4744 if (error == 0)
4745 wg->wg_ops = &wg_ops_rumpuser;
4746 return error;
4747 #endif
4748 default:
4749 break;
4750 }
4751
4752 error = ifioctl_common(ifp, cmd, data);
4753
4754 #ifdef WG_RUMPKERNEL
4755 if (!wg_user_mode(wg))
4756 return error;
4757
4758 /* Do the same to the corresponding tun device on the host */
4759 /*
4760 * XXX Actually the command has not been handled yet. It
4761 * will be handled via pr_ioctl form doifioctl later.
4762 */
4763 switch (cmd) {
4764 case SIOCAIFADDR:
4765 case SIOCDIFADDR: {
4766 struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
4767 struct in_aliasreq *ifra = &_ifra;
4768 KASSERT(error == ENOTTY);
4769 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4770 IFNAMSIZ);
4771 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
4772 if (error == 0)
4773 error = ENOTTY;
4774 break;
4775 }
4776 #ifdef INET6
4777 case SIOCAIFADDR_IN6:
4778 case SIOCDIFADDR_IN6: {
4779 struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
4780 struct in6_aliasreq *ifra = &_ifra;
4781 KASSERT(error == ENOTTY);
4782 strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4783 IFNAMSIZ);
4784 error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
4785 if (error == 0)
4786 error = ENOTTY;
4787 break;
4788 }
4789 #endif
4790 }
4791 #endif /* WG_RUMPKERNEL */
4792
4793 return error;
4794 }
4795
4796 static int
4797 wg_init(struct ifnet *ifp)
4798 {
4799
4800 ifp->if_flags |= IFF_RUNNING;
4801
4802 /* TODO flush pending packets. */
4803 return 0;
4804 }
4805
4806 #ifdef ALTQ
4807 static void
4808 wg_start(struct ifnet *ifp)
4809 {
4810 struct mbuf *m;
4811
4812 for (;;) {
4813 IFQ_DEQUEUE(&ifp->if_snd, m);
4814 if (m == NULL)
4815 break;
4816
4817 kpreempt_disable();
4818 const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
4819 if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
4820 WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
4821 if_name(ifp));
4822 m_freem(m);
4823 }
4824 kpreempt_enable();
4825 }
4826 }
4827 #endif
4828
4829 static void
4830 wg_stop(struct ifnet *ifp, int disable)
4831 {
4832
4833 KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
4834 ifp->if_flags &= ~IFF_RUNNING;
4835
4836 /* Need to do something? */
4837 }
4838
4839 #ifdef WG_DEBUG_PARAMS
4840 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
4841 {
4842 const struct sysctlnode *node = NULL;
4843
4844 sysctl_createv(clog, 0, NULL, &node,
4845 CTLFLAG_PERMANENT,
4846 CTLTYPE_NODE, "wg",
4847 SYSCTL_DESCR("wg(4)"),
4848 NULL, 0, NULL, 0,
4849 CTL_NET, CTL_CREATE, CTL_EOL);
4850 sysctl_createv(clog, 0, &node, NULL,
4851 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4852 CTLTYPE_QUAD, "rekey_after_messages",
4853 SYSCTL_DESCR("session liftime by messages"),
4854 NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
4855 sysctl_createv(clog, 0, &node, NULL,
4856 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4857 CTLTYPE_INT, "rekey_after_time",
4858 SYSCTL_DESCR("session liftime"),
4859 NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
4860 sysctl_createv(clog, 0, &node, NULL,
4861 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4862 CTLTYPE_INT, "rekey_timeout",
4863 SYSCTL_DESCR("session handshake retry time"),
4864 NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
4865 sysctl_createv(clog, 0, &node, NULL,
4866 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4867 CTLTYPE_INT, "rekey_attempt_time",
4868 SYSCTL_DESCR("session handshake timeout"),
4869 NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
4870 sysctl_createv(clog, 0, &node, NULL,
4871 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4872 CTLTYPE_INT, "keepalive_timeout",
4873 SYSCTL_DESCR("keepalive timeout"),
4874 NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
4875 sysctl_createv(clog, 0, &node, NULL,
4876 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4877 CTLTYPE_BOOL, "force_underload",
4878 SYSCTL_DESCR("force to detemine under load"),
4879 NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
4880 }
4881 #endif
4882
4883 #ifdef WG_RUMPKERNEL
4884 static bool
4885 wg_user_mode(struct wg_softc *wg)
4886 {
4887
4888 return wg->wg_user != NULL;
4889 }
4890
4891 static int
4892 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
4893 {
4894 struct ifnet *ifp = &wg->wg_if;
4895 int error;
4896
4897 if (ifp->if_flags & IFF_UP)
4898 return EBUSY;
4899
4900 if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
4901 /* XXX do nothing */
4902 return 0;
4903 } else if (ifd->ifd_cmd != 0) {
4904 return EINVAL;
4905 } else if (wg->wg_user != NULL) {
4906 return EBUSY;
4907 }
4908
4909 /* Assume \0 included */
4910 if (ifd->ifd_len > IFNAMSIZ) {
4911 return E2BIG;
4912 } else if (ifd->ifd_len < 1) {
4913 return EINVAL;
4914 }
4915
4916 char tun_name[IFNAMSIZ];
4917 error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
4918 if (error != 0)
4919 return error;
4920
4921 if (strncmp(tun_name, "tun", 3) != 0)
4922 return EINVAL;
4923
4924 error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
4925
4926 return error;
4927 }
4928
4929 static int
4930 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
4931 {
4932 int error;
4933 struct psref psref;
4934 struct wg_sockaddr *wgsa;
4935 struct wg_softc *wg = wgp->wgp_sc;
4936 struct iovec iov[1];
4937
4938 wgsa = wg_get_endpoint_sa(wgp, &psref);
4939
4940 iov[0].iov_base = mtod(m, void *);
4941 iov[0].iov_len = m->m_len;
4942
4943 /* Send messages to a peer via an ordinary socket. */
4944 error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
4945
4946 wg_put_sa(wgp, wgsa, &psref);
4947
4948 m_freem(m);
4949
4950 return error;
4951 }
4952
4953 static void
4954 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
4955 {
4956 struct wg_softc *wg = ifp->if_softc;
4957 struct iovec iov[2];
4958 struct sockaddr_storage ss;
4959
4960 KASSERT(af == AF_INET || af == AF_INET6);
4961
4962 WG_TRACE("");
4963
4964 if (af == AF_INET) {
4965 struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
4966 struct ip *ip;
4967
4968 KASSERT(m->m_len >= sizeof(struct ip));
4969 ip = mtod(m, struct ip *);
4970 sockaddr_in_init(sin, &ip->ip_dst, 0);
4971 } else {
4972 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
4973 struct ip6_hdr *ip6;
4974
4975 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
4976 ip6 = mtod(m, struct ip6_hdr *);
4977 sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
4978 }
4979
4980 iov[0].iov_base = &ss;
4981 iov[0].iov_len = ss.ss_len;
4982 iov[1].iov_base = mtod(m, void *);
4983 iov[1].iov_len = m->m_len;
4984
4985 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4986
4987 /* Send decrypted packets to users via a tun. */
4988 rumpuser_wg_send_user(wg->wg_user, iov, 2);
4989
4990 m_freem(m);
4991 }
4992
4993 static int
4994 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
4995 {
4996 int error;
4997 uint16_t old_port = wg->wg_listen_port;
4998
4999 if (port != 0 && old_port == port)
5000 return 0;
5001
5002 error = rumpuser_wg_sock_bind(wg->wg_user, port);
5003 if (error == 0)
5004 wg->wg_listen_port = port;
5005 return error;
5006 }
5007
5008 /*
5009 * Receive user packets.
5010 */
5011 void
5012 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5013 {
5014 struct ifnet *ifp = &wg->wg_if;
5015 struct mbuf *m;
5016 const struct sockaddr *dst;
5017
5018 WG_TRACE("");
5019
5020 dst = iov[0].iov_base;
5021
5022 m = m_gethdr(M_DONTWAIT, MT_DATA);
5023 if (m == NULL)
5024 return;
5025 m->m_len = m->m_pkthdr.len = 0;
5026 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5027
5028 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
5029 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5030
5031 (void)wg_output(ifp, m, dst, NULL);
5032 }
5033
5034 /*
5035 * Receive packets from a peer.
5036 */
5037 void
5038 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5039 {
5040 struct mbuf *m;
5041 const struct sockaddr *src;
5042
5043 WG_TRACE("");
5044
5045 src = iov[0].iov_base;
5046
5047 m = m_gethdr(M_DONTWAIT, MT_DATA);
5048 if (m == NULL)
5049 return;
5050 m->m_len = m->m_pkthdr.len = 0;
5051 m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5052
5053 WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
5054 WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5055
5056 wg_handle_packet(wg, m, src);
5057 }
5058 #endif /* WG_RUMPKERNEL */
5059
5060 /*
5061 * Module infrastructure
5062 */
5063 #include "if_module.h"
5064
5065 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
5066