Home | History | Annotate | Line # | Download | only in net
if_wg.c revision 1.83
      1 /*	$NetBSD: if_wg.c,v 1.83 2024/07/24 22:32:07 kre Exp $	*/
      2 
      3 /*
      4  * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * This network interface aims to implement the WireGuard protocol.
     34  * The implementation is based on the paper of WireGuard as of
     35  * 2018-06-30 [1].  The paper is referred in the source code with label
     36  * [W].  Also the specification of the Noise protocol framework as of
     37  * 2018-07-11 [2] is referred with label [N].
     38  *
     39  * [1] https://www.wireguard.com/papers/wireguard.pdf
     40  * [2] http://noiseprotocol.org/noise.pdf
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.83 2024/07/24 22:32:07 kre Exp $");
     45 
     46 #ifdef _KERNEL_OPT
     47 #include "opt_altq_enabled.h"
     48 #include "opt_inet.h"
     49 #endif
     50 
     51 #include <sys/param.h>
     52 #include <sys/types.h>
     53 
     54 #include <sys/atomic.h>
     55 #include <sys/callout.h>
     56 #include <sys/cprng.h>
     57 #include <sys/cpu.h>
     58 #include <sys/device.h>
     59 #include <sys/domain.h>
     60 #include <sys/errno.h>
     61 #include <sys/intr.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/kernel.h>
     64 #include <sys/kmem.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/module.h>
     67 #include <sys/mutex.h>
     68 #include <sys/once.h>
     69 #include <sys/percpu.h>
     70 #include <sys/pserialize.h>
     71 #include <sys/psref.h>
     72 #include <sys/queue.h>
     73 #include <sys/rwlock.h>
     74 #include <sys/socket.h>
     75 #include <sys/socketvar.h>
     76 #include <sys/sockio.h>
     77 #include <sys/sysctl.h>
     78 #include <sys/syslog.h>
     79 #include <sys/systm.h>
     80 #include <sys/thmap.h>
     81 #include <sys/threadpool.h>
     82 #include <sys/time.h>
     83 #include <sys/timespec.h>
     84 #include <sys/workqueue.h>
     85 
     86 #include <net/bpf.h>
     87 #include <net/if.h>
     88 #include <net/if_types.h>
     89 #include <net/if_wg.h>
     90 #include <net/pktqueue.h>
     91 #include <net/route.h>
     92 
     93 #include <netinet/in.h>
     94 #include <netinet/in_pcb.h>
     95 #include <netinet/in_var.h>
     96 #include <netinet/ip.h>
     97 #include <netinet/ip_var.h>
     98 #include <netinet/udp.h>
     99 #include <netinet/udp_var.h>
    100 
    101 #ifdef INET6
    102 #include <netinet/ip6.h>
    103 #include <netinet6/in6_pcb.h>
    104 #include <netinet6/in6_var.h>
    105 #include <netinet6/ip6_var.h>
    106 #include <netinet6/udp6_var.h>
    107 #endif /* INET6 */
    108 
    109 #include <prop/proplib.h>
    110 
    111 #include <crypto/blake2/blake2s.h>
    112 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
    113 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
    114 #include <crypto/sodium/crypto_scalarmult.h>
    115 
    116 #include "ioconf.h"
    117 
    118 #ifdef WG_RUMPKERNEL
    119 #include "wg_user.h"
    120 #endif
    121 
    122 /*
    123  * Data structures
    124  * - struct wg_softc is an instance of wg interfaces
    125  *   - It has a list of peers (struct wg_peer)
    126  *   - It has a threadpool job that sends/receives handshake messages and
    127  *     runs event handlers
    128  *   - It has its own two routing tables: one is for IPv4 and the other IPv6
    129  * - struct wg_peer is a representative of a peer
    130  *   - It has a struct work to handle handshakes and timer tasks
    131  *   - It has a pair of session instances (struct wg_session)
    132  *   - It has a pair of endpoint instances (struct wg_sockaddr)
    133  *     - Normally one endpoint is used and the second one is used only on
    134  *       a peer migration (a change of peer's IP address)
    135  *   - It has a list of IP addresses and sub networks called allowedips
    136  *     (struct wg_allowedip)
    137  *     - A packets sent over a session is allowed if its destination matches
    138  *       any IP addresses or sub networks of the list
    139  * - struct wg_session represents a session of a secure tunnel with a peer
    140  *   - Two instances of sessions belong to a peer; a stable session and a
    141  *     unstable session
    142  *   - A handshake process of a session always starts with a unstable instance
    143  *   - Once a session is established, its instance becomes stable and the
    144  *     other becomes unstable instead
    145  *   - Data messages are always sent via a stable session
    146  *
    147  * Locking notes:
    148  * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
    149  *   - Changes to the peer list are serialized by wg_lock
    150  *   - The peer list may be read with pserialize(9) and psref(9)
    151  *   - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
    152  *     => XXX replace by pserialize when routing table is psz-safe
    153  * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
    154  *   only in thread context and serializes:
    155  *   - the stable and unstable session pointers
    156  *   - all unstable session state
    157  * - Packet processing may be done in softint context:
    158  *   - The stable session can be read under pserialize(9) or psref(9)
    159  *     - The stable session is always ESTABLISHED
    160  *     - On a session swap, we must wait for all readers to release a
    161  *       reference to a stable session before changing wgs_state and
    162  *       session states
    163  * - Lock order: wg_lock -> wgp_lock
    164  */
    165 
    166 
    167 #define WGLOG(level, fmt, args...)					      \
    168 	log(level, "%s: " fmt, __func__, ##args)
    169 
    170 // #define WG_DEBUG
    171 
    172 /* Debug options */
    173 #ifdef WG_DEBUG
    174 /* Output debug logs */
    175 #ifndef WG_DEBUG_LOG
    176 #define WG_DEBUG_LOG
    177 #endif
    178 /* Output trace logs */
    179 #ifndef WG_DEBUG_TRACE
    180 #define WG_DEBUG_TRACE
    181 #endif
    182 /* Output hash values, etc. */
    183 #ifndef WG_DEBUG_DUMP
    184 #define WG_DEBUG_DUMP
    185 #endif
    186 /* Make some internal parameters configurable for testing and debugging */
    187 #ifndef WG_DEBUG_PARAMS
    188 #define WG_DEBUG_PARAMS
    189 #endif
    190 #endif /* WG_DEBUG */
    191 
    192 #ifndef WG_DEBUG
    193 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) ||		    \
    194 	defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS)
    195 #   define WG_DEBUG
    196 # endif
    197 #endif
    198 
    199 #ifdef WG_DEBUG
    200 int wg_debug;
    201 #define WG_DEBUG_FLAGS_LOG	1
    202 #define WG_DEBUG_FLAGS_TRACE	2
    203 #define WG_DEBUG_FLAGS_DUMP	4
    204 #endif
    205 
    206 
    207 #ifdef WG_DEBUG_TRACE
    208 #define WG_TRACE(msg)	 do {						\
    209 	if (wg_debug & WG_DEBUG_FLAGS_TRACE)				\
    210 	    log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg));	\
    211 } while (0)
    212 #else
    213 #define WG_TRACE(msg)	__nothing
    214 #endif
    215 
    216 #ifdef WG_DEBUG_LOG
    217 #define WG_DLOG(fmt, args...)	 do {					\
    218 	if (wg_debug & WG_DEBUG_FLAGS_LOG)				\
    219 	    log(LOG_DEBUG, "%s: " fmt, __func__, ##args);		\
    220 } while (0)
    221 #else
    222 #define WG_DLOG(fmt, args...)	__nothing
    223 #endif
    224 
    225 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...)	do {		\
    226 	if (ppsratecheck(&(wgprc)->wgprc_lasttime,			\
    227 	    &(wgprc)->wgprc_curpps, 1)) {				\
    228 		log(level, fmt, ##args);				\
    229 	}								\
    230 } while (0)
    231 
    232 #ifdef WG_DEBUG_PARAMS
    233 static bool wg_force_underload = false;
    234 #endif
    235 
    236 #ifdef WG_DEBUG_DUMP
    237 
    238 static char *
    239 gethexdump(const char *p, size_t n)
    240 {
    241 	char *buf;
    242 	size_t i;
    243 
    244 	if (n > SIZE_MAX/3 - 1)
    245 		return NULL;
    246 	buf = kmem_alloc(3*n + 1, KM_NOSLEEP);
    247 	if (buf == NULL)
    248 		return NULL;
    249 	for (i = 0; i < n; i++)
    250 		snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
    251 	return buf;
    252 }
    253 
    254 static void
    255 puthexdump(char *buf, const void *p, size_t n)
    256 {
    257 
    258 	if (buf == NULL)
    259 		return;
    260 	kmem_free(buf, 3*n + 1);
    261 }
    262 
    263 #ifdef WG_RUMPKERNEL
    264 static void
    265 wg_dump_buf(const char *func, const char *buf, const size_t size)
    266 {
    267 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    268 		return;
    269 
    270 	char *hex = gethexdump(buf, size);
    271 
    272 	log(LOG_DEBUG, "%s: %s\n", func, hex ? hex : "(enomem)");
    273 	puthexdump(hex, buf, size);
    274 }
    275 #endif
    276 
    277 static void
    278 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
    279     const size_t size)
    280 {
    281 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    282 		return;
    283 
    284 	char *hex = gethexdump(hash, size);
    285 
    286 	log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex ? hex : "(enomem)");
    287 	puthexdump(hex, hash, size);
    288 }
    289 
    290 #define WG_DUMP_HASH(name, hash) \
    291 	wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
    292 #define WG_DUMP_HASH48(name, hash) \
    293 	wg_dump_hash(__func__, name, hash, 48)
    294 #define WG_DUMP_BUF(buf, size) \
    295 	wg_dump_buf(__func__, buf, size)
    296 #else
    297 #define WG_DUMP_HASH(name, hash)	__nothing
    298 #define WG_DUMP_HASH48(name, hash)	__nothing
    299 #define WG_DUMP_BUF(buf, size)	__nothing
    300 #endif /* WG_DEBUG_DUMP */
    301 
    302 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
    303 #define	WG_MAX_PROPLEN		32766
    304 
    305 #define WG_MTU			1420
    306 #define WG_ALLOWEDIPS		16
    307 
    308 #define CURVE25519_KEY_LEN	32
    309 #define TAI64N_LEN		sizeof(uint32_t) * 3
    310 #define POLY1305_AUTHTAG_LEN	16
    311 #define HMAC_BLOCK_LEN		64
    312 
    313 /* [N] 4.1: "DHLEN must be 32 or greater."  WireGuard chooses 32. */
    314 /* [N] 4.3: Hash functions */
    315 #define NOISE_DHLEN		32
    316 /* [N] 4.3: "Must be 32 or 64."  WireGuard chooses 32. */
    317 #define NOISE_HASHLEN		32
    318 #define NOISE_BLOCKLEN		64
    319 #define NOISE_HKDF_OUTPUT_LEN	NOISE_HASHLEN
    320 /* [N] 5.1: "k" */
    321 #define NOISE_CIPHER_KEY_LEN	32
    322 /*
    323  * [N] 9.2: "psk"
    324  *          "... psk is a 32-byte secret value provided by the application."
    325  */
    326 #define NOISE_PRESHARED_KEY_LEN	32
    327 
    328 #define WG_STATIC_KEY_LEN	CURVE25519_KEY_LEN
    329 #define WG_TIMESTAMP_LEN	TAI64N_LEN
    330 
    331 #define WG_PRESHARED_KEY_LEN	NOISE_PRESHARED_KEY_LEN
    332 
    333 #define WG_COOKIE_LEN		16
    334 #define WG_MAC_LEN		16
    335 #define WG_RANDVAL_LEN		24
    336 
    337 #define WG_EPHEMERAL_KEY_LEN	CURVE25519_KEY_LEN
    338 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
    339 #define WG_CHAINING_KEY_LEN	NOISE_HASHLEN
    340 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
    341 #define WG_HASH_LEN		NOISE_HASHLEN
    342 #define WG_CIPHER_KEY_LEN	NOISE_CIPHER_KEY_LEN
    343 #define WG_DH_OUTPUT_LEN	NOISE_DHLEN
    344 #define WG_KDF_OUTPUT_LEN	NOISE_HKDF_OUTPUT_LEN
    345 #define WG_AUTHTAG_LEN		POLY1305_AUTHTAG_LEN
    346 #define WG_DATA_KEY_LEN		32
    347 #define WG_SALT_LEN		24
    348 
    349 /*
    350  * The protocol messages
    351  */
    352 struct wg_msg {
    353 	uint32_t	wgm_type;
    354 } __packed;
    355 
    356 /* [W] 5.4.2 First Message: Initiator to Responder */
    357 struct wg_msg_init {
    358 	uint32_t	wgmi_type;
    359 	uint32_t	wgmi_sender;
    360 	uint8_t		wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
    361 	uint8_t		wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
    362 	uint8_t		wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
    363 	uint8_t		wgmi_mac1[WG_MAC_LEN];
    364 	uint8_t		wgmi_mac2[WG_MAC_LEN];
    365 } __packed;
    366 
    367 /* [W] 5.4.3 Second Message: Responder to Initiator */
    368 struct wg_msg_resp {
    369 	uint32_t	wgmr_type;
    370 	uint32_t	wgmr_sender;
    371 	uint32_t	wgmr_receiver;
    372 	uint8_t		wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
    373 	uint8_t		wgmr_empty[0 + WG_AUTHTAG_LEN];
    374 	uint8_t		wgmr_mac1[WG_MAC_LEN];
    375 	uint8_t		wgmr_mac2[WG_MAC_LEN];
    376 } __packed;
    377 
    378 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
    379 struct wg_msg_data {
    380 	uint32_t	wgmd_type;
    381 	uint32_t	wgmd_receiver;
    382 	uint64_t	wgmd_counter;
    383 	uint32_t	wgmd_packet[0];
    384 } __packed;
    385 
    386 /* [W] 5.4.7 Under Load: Cookie Reply Message */
    387 struct wg_msg_cookie {
    388 	uint32_t	wgmc_type;
    389 	uint32_t	wgmc_receiver;
    390 	uint8_t		wgmc_salt[WG_SALT_LEN];
    391 	uint8_t		wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
    392 } __packed;
    393 
    394 #define WG_MSG_TYPE_INIT		1
    395 #define WG_MSG_TYPE_RESP		2
    396 #define WG_MSG_TYPE_COOKIE		3
    397 #define WG_MSG_TYPE_DATA		4
    398 #define WG_MSG_TYPE_MAX			WG_MSG_TYPE_DATA
    399 
    400 /* Sliding windows */
    401 
    402 #define	SLIWIN_BITS	2048u
    403 #define	SLIWIN_TYPE	uint32_t
    404 #define	SLIWIN_BPW	NBBY*sizeof(SLIWIN_TYPE)
    405 #define	SLIWIN_WORDS	howmany(SLIWIN_BITS, SLIWIN_BPW)
    406 #define	SLIWIN_NPKT	(SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
    407 
    408 struct sliwin {
    409 	SLIWIN_TYPE	B[SLIWIN_WORDS];
    410 	uint64_t	T;
    411 };
    412 
    413 static void
    414 sliwin_reset(struct sliwin *W)
    415 {
    416 
    417 	memset(W, 0, sizeof(*W));
    418 }
    419 
    420 static int
    421 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
    422 {
    423 
    424 	/*
    425 	 * If it's more than one window older than the highest sequence
    426 	 * number we've seen, reject.
    427 	 */
    428 #ifdef __HAVE_ATOMIC64_LOADSTORE
    429 	if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
    430 		return EAUTH;
    431 #endif
    432 
    433 	/*
    434 	 * Otherwise, we need to take the lock to decide, so don't
    435 	 * reject just yet.  Caller must serialize a call to
    436 	 * sliwin_update in this case.
    437 	 */
    438 	return 0;
    439 }
    440 
    441 static int
    442 sliwin_update(struct sliwin *W, uint64_t S)
    443 {
    444 	unsigned word, bit;
    445 
    446 	/*
    447 	 * If it's more than one window older than the highest sequence
    448 	 * number we've seen, reject.
    449 	 */
    450 	if (S + SLIWIN_NPKT < W->T)
    451 		return EAUTH;
    452 
    453 	/*
    454 	 * If it's higher than the highest sequence number we've seen,
    455 	 * advance the window.
    456 	 */
    457 	if (S > W->T) {
    458 		uint64_t i = W->T / SLIWIN_BPW;
    459 		uint64_t j = S / SLIWIN_BPW;
    460 		unsigned k;
    461 
    462 		for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
    463 			W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
    464 #ifdef __HAVE_ATOMIC64_LOADSTORE
    465 		atomic_store_relaxed(&W->T, S);
    466 #else
    467 		W->T = S;
    468 #endif
    469 	}
    470 
    471 	/* Test and set the bit -- if already set, reject.  */
    472 	word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
    473 	bit = S % SLIWIN_BPW;
    474 	if (W->B[word] & (1UL << bit))
    475 		return EAUTH;
    476 	W->B[word] |= 1U << bit;
    477 
    478 	/* Accept!  */
    479 	return 0;
    480 }
    481 
    482 struct wg_session {
    483 	struct wg_peer	*wgs_peer;
    484 	struct psref_target
    485 			wgs_psref;
    486 
    487 	int		wgs_state;
    488 #define WGS_STATE_UNKNOWN	0
    489 #define WGS_STATE_INIT_ACTIVE	1
    490 #define WGS_STATE_INIT_PASSIVE	2
    491 #define WGS_STATE_ESTABLISHED	3
    492 #define WGS_STATE_DESTROYING	4
    493 
    494 	time_t		wgs_time_established;
    495 	time_t		wgs_time_last_data_sent;
    496 	bool		wgs_is_initiator;
    497 
    498 	uint32_t	wgs_local_index;
    499 	uint32_t	wgs_remote_index;
    500 #ifdef __HAVE_ATOMIC64_LOADSTORE
    501 	volatile uint64_t
    502 			wgs_send_counter;
    503 #else
    504 	kmutex_t	wgs_send_counter_lock;
    505 	uint64_t	wgs_send_counter;
    506 #endif
    507 
    508 	struct {
    509 		kmutex_t	lock;
    510 		struct sliwin	window;
    511 	}		*wgs_recvwin;
    512 
    513 	uint8_t		wgs_handshake_hash[WG_HASH_LEN];
    514 	uint8_t		wgs_chaining_key[WG_CHAINING_KEY_LEN];
    515 	uint8_t		wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
    516 	uint8_t		wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
    517 	uint8_t		wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
    518 	uint8_t		wgs_tkey_send[WG_DATA_KEY_LEN];
    519 	uint8_t		wgs_tkey_recv[WG_DATA_KEY_LEN];
    520 };
    521 
    522 struct wg_sockaddr {
    523 	union {
    524 		struct sockaddr_storage _ss;
    525 		struct sockaddr _sa;
    526 		struct sockaddr_in _sin;
    527 		struct sockaddr_in6 _sin6;
    528 	};
    529 	struct psref_target	wgsa_psref;
    530 };
    531 
    532 #define wgsatoss(wgsa)		(&(wgsa)->_ss)
    533 #define wgsatosa(wgsa)		(&(wgsa)->_sa)
    534 #define wgsatosin(wgsa)		(&(wgsa)->_sin)
    535 #define wgsatosin6(wgsa)	(&(wgsa)->_sin6)
    536 
    537 #define	wgsa_family(wgsa)	(wgsatosa(wgsa)->sa_family)
    538 
    539 struct wg_peer;
    540 struct wg_allowedip {
    541 	struct radix_node	wga_nodes[2];
    542 	struct wg_sockaddr	_wga_sa_addr;
    543 	struct wg_sockaddr	_wga_sa_mask;
    544 #define wga_sa_addr		_wga_sa_addr._sa
    545 #define wga_sa_mask		_wga_sa_mask._sa
    546 
    547 	int			wga_family;
    548 	uint8_t			wga_cidr;
    549 	union {
    550 		struct in_addr _ip4;
    551 		struct in6_addr _ip6;
    552 	} wga_addr;
    553 #define wga_addr4	wga_addr._ip4
    554 #define wga_addr6	wga_addr._ip6
    555 
    556 	struct wg_peer		*wga_peer;
    557 };
    558 
    559 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
    560 
    561 struct wg_ppsratecheck {
    562 	struct timeval		wgprc_lasttime;
    563 	int			wgprc_curpps;
    564 };
    565 
    566 struct wg_softc;
    567 struct wg_peer {
    568 	struct wg_softc		*wgp_sc;
    569 	char			wgp_name[WG_PEER_NAME_MAXLEN + 1];
    570 	struct pslist_entry	wgp_peerlist_entry;
    571 	pserialize_t		wgp_psz;
    572 	struct psref_target	wgp_psref;
    573 	kmutex_t		*wgp_lock;
    574 	kmutex_t		*wgp_intr_lock;
    575 
    576 	uint8_t	wgp_pubkey[WG_STATIC_KEY_LEN];
    577 	struct wg_sockaddr	*wgp_endpoint;
    578 	struct wg_sockaddr	*wgp_endpoint0;
    579 	volatile unsigned	wgp_endpoint_changing;
    580 	bool			wgp_endpoint_available;
    581 
    582 			/* The preshared key (optional) */
    583 	uint8_t		wgp_psk[WG_PRESHARED_KEY_LEN];
    584 
    585 	struct wg_session	*wgp_session_stable;
    586 	struct wg_session	*wgp_session_unstable;
    587 
    588 	/* first outgoing packet awaiting session initiation */
    589 	struct mbuf		*wgp_pending;
    590 
    591 	/* timestamp in big-endian */
    592 	wg_timestamp_t	wgp_timestamp_latest_init;
    593 
    594 	struct timespec		wgp_last_handshake_time;
    595 
    596 	callout_t		wgp_rekey_timer;
    597 	callout_t		wgp_handshake_timeout_timer;
    598 	callout_t		wgp_session_dtor_timer;
    599 
    600 	time_t			wgp_handshake_start_time;
    601 
    602 	int			wgp_n_allowedips;
    603 	struct wg_allowedip	wgp_allowedips[WG_ALLOWEDIPS];
    604 
    605 	time_t			wgp_latest_cookie_time;
    606 	uint8_t			wgp_latest_cookie[WG_COOKIE_LEN];
    607 	uint8_t			wgp_last_sent_mac1[WG_MAC_LEN];
    608 	bool			wgp_last_sent_mac1_valid;
    609 	uint8_t			wgp_last_sent_cookie[WG_COOKIE_LEN];
    610 	bool			wgp_last_sent_cookie_valid;
    611 
    612 	time_t			wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
    613 
    614 	time_t			wgp_last_genrandval_time;
    615 	uint32_t		wgp_randval;
    616 
    617 	struct wg_ppsratecheck	wgp_ppsratecheck;
    618 
    619 	struct work		wgp_work;
    620 	unsigned int		wgp_tasks;
    621 #define WGP_TASK_SEND_INIT_MESSAGE		__BIT(0)
    622 #define WGP_TASK_RETRY_HANDSHAKE		__BIT(1)
    623 #define WGP_TASK_ESTABLISH_SESSION		__BIT(2)
    624 #define WGP_TASK_ENDPOINT_CHANGED		__BIT(3)
    625 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE		__BIT(4)
    626 #define WGP_TASK_DESTROY_PREV_SESSION		__BIT(5)
    627 };
    628 
    629 struct wg_ops;
    630 
    631 struct wg_softc {
    632 	struct ifnet	wg_if;
    633 	LIST_ENTRY(wg_softc) wg_list;
    634 	kmutex_t	*wg_lock;
    635 	kmutex_t	*wg_intr_lock;
    636 	krwlock_t	*wg_rwlock;
    637 
    638 	uint8_t		wg_privkey[WG_STATIC_KEY_LEN];
    639 	uint8_t		wg_pubkey[WG_STATIC_KEY_LEN];
    640 
    641 	int		wg_npeers;
    642 	struct pslist_head	wg_peers;
    643 	struct thmap	*wg_peers_bypubkey;
    644 	struct thmap	*wg_peers_byname;
    645 	struct thmap	*wg_sessions_byindex;
    646 	uint16_t	wg_listen_port;
    647 
    648 	struct threadpool	*wg_threadpool;
    649 
    650 	struct threadpool_job	wg_job;
    651 	int			wg_upcalls;
    652 #define	WG_UPCALL_INET	__BIT(0)
    653 #define	WG_UPCALL_INET6	__BIT(1)
    654 
    655 #ifdef INET
    656 	struct socket		*wg_so4;
    657 	struct radix_node_head	*wg_rtable_ipv4;
    658 #endif
    659 #ifdef INET6
    660 	struct socket		*wg_so6;
    661 	struct radix_node_head	*wg_rtable_ipv6;
    662 #endif
    663 
    664 	struct wg_ppsratecheck	wg_ppsratecheck;
    665 
    666 	struct wg_ops		*wg_ops;
    667 
    668 #ifdef WG_RUMPKERNEL
    669 	struct wg_user		*wg_user;
    670 #endif
    671 };
    672 
    673 /* [W] 6.1 Preliminaries */
    674 #define WG_REKEY_AFTER_MESSAGES		(1ULL << 60)
    675 #define WG_REJECT_AFTER_MESSAGES	(UINT64_MAX - (1 << 13))
    676 #define WG_REKEY_AFTER_TIME		120
    677 #define WG_REJECT_AFTER_TIME		180
    678 #define WG_REKEY_ATTEMPT_TIME		 90
    679 #define WG_REKEY_TIMEOUT		  5
    680 #define WG_KEEPALIVE_TIMEOUT		 10
    681 
    682 #define WG_COOKIE_TIME			120
    683 #define WG_RANDVAL_TIME			(2 * 60)
    684 
    685 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
    686 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
    687 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
    688 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
    689 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
    690 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
    691 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
    692 
    693 static struct mbuf *
    694 		wg_get_mbuf(size_t, size_t);
    695 
    696 static int	wg_send_data_msg(struct wg_peer *, struct wg_session *,
    697 		    struct mbuf *);
    698 static int	wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
    699 		    const uint32_t, const uint8_t [WG_MAC_LEN],
    700 		    const struct sockaddr *);
    701 static int	wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
    702 		    struct wg_session *, const struct wg_msg_init *);
    703 static void	wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
    704 
    705 static struct wg_peer *
    706 		wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
    707 		    struct psref *);
    708 static struct wg_peer *
    709 		wg_lookup_peer_by_pubkey(struct wg_softc *,
    710 		    const uint8_t [WG_STATIC_KEY_LEN], struct psref *);
    711 
    712 static struct wg_session *
    713 		wg_lookup_session_by_index(struct wg_softc *,
    714 		    const uint32_t, struct psref *);
    715 
    716 static void	wg_update_endpoint_if_necessary(struct wg_peer *,
    717 		    const struct sockaddr *);
    718 
    719 static void	wg_schedule_rekey_timer(struct wg_peer *);
    720 static void	wg_schedule_session_dtor_timer(struct wg_peer *);
    721 
    722 static bool	wg_is_underload(struct wg_softc *, struct wg_peer *, int);
    723 static void	wg_calculate_keys(struct wg_session *, const bool);
    724 
    725 static void	wg_clear_states(struct wg_session *);
    726 
    727 static void	wg_get_peer(struct wg_peer *, struct psref *);
    728 static void	wg_put_peer(struct wg_peer *, struct psref *);
    729 
    730 static int	wg_send_so(struct wg_peer *, struct mbuf *);
    731 static int	wg_send_udp(struct wg_peer *, struct mbuf *);
    732 static int	wg_output(struct ifnet *, struct mbuf *,
    733 			   const struct sockaddr *, const struct rtentry *);
    734 static void	wg_input(struct ifnet *, struct mbuf *, const int);
    735 static int	wg_ioctl(struct ifnet *, u_long, void *);
    736 static int	wg_bind_port(struct wg_softc *, const uint16_t);
    737 static int	wg_init(struct ifnet *);
    738 #ifdef ALTQ
    739 static void	wg_start(struct ifnet *);
    740 #endif
    741 static void	wg_stop(struct ifnet *, int);
    742 
    743 static void	wg_peer_work(struct work *, void *);
    744 static void	wg_job(struct threadpool_job *);
    745 static void	wgintr(void *);
    746 static void	wg_purge_pending_packets(struct wg_peer *);
    747 
    748 static int	wg_clone_create(struct if_clone *, int);
    749 static int	wg_clone_destroy(struct ifnet *);
    750 
    751 struct wg_ops {
    752 	int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
    753 	int (*send_data_msg)(struct wg_peer *, struct mbuf *);
    754 	void (*input)(struct ifnet *, struct mbuf *, const int);
    755 	int (*bind_port)(struct wg_softc *, const uint16_t);
    756 };
    757 
    758 struct wg_ops wg_ops_rumpkernel = {
    759 	.send_hs_msg	= wg_send_so,
    760 	.send_data_msg	= wg_send_udp,
    761 	.input		= wg_input,
    762 	.bind_port	= wg_bind_port,
    763 };
    764 
    765 #ifdef WG_RUMPKERNEL
    766 static bool	wg_user_mode(struct wg_softc *);
    767 static int	wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
    768 
    769 static int	wg_send_user(struct wg_peer *, struct mbuf *);
    770 static void	wg_input_user(struct ifnet *, struct mbuf *, const int);
    771 static int	wg_bind_port_user(struct wg_softc *, const uint16_t);
    772 
    773 struct wg_ops wg_ops_rumpuser = {
    774 	.send_hs_msg	= wg_send_user,
    775 	.send_data_msg	= wg_send_user,
    776 	.input		= wg_input_user,
    777 	.bind_port	= wg_bind_port_user,
    778 };
    779 #endif
    780 
    781 #define WG_PEER_READER_FOREACH(wgp, wg)					\
    782 	PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    783 	    wgp_peerlist_entry)
    784 #define WG_PEER_WRITER_FOREACH(wgp, wg)					\
    785 	PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    786 	    wgp_peerlist_entry)
    787 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg)				\
    788 	PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
    789 #define WG_PEER_WRITER_REMOVE(wgp)					\
    790 	PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
    791 
    792 struct wg_route {
    793 	struct radix_node	wgr_nodes[2];
    794 	struct wg_peer		*wgr_peer;
    795 };
    796 
    797 static struct radix_node_head *
    798 wg_rnh(struct wg_softc *wg, const int family)
    799 {
    800 
    801 	switch (family) {
    802 		case AF_INET:
    803 			return wg->wg_rtable_ipv4;
    804 #ifdef INET6
    805 		case AF_INET6:
    806 			return wg->wg_rtable_ipv6;
    807 #endif
    808 		default:
    809 			return NULL;
    810 	}
    811 }
    812 
    813 
    814 /*
    815  * Global variables
    816  */
    817 static volatile unsigned wg_count __cacheline_aligned;
    818 
    819 struct psref_class *wg_psref_class __read_mostly;
    820 
    821 static struct if_clone wg_cloner =
    822     IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
    823 
    824 static struct pktqueue *wg_pktq __read_mostly;
    825 static struct workqueue *wg_wq __read_mostly;
    826 
    827 void wgattach(int);
    828 /* ARGSUSED */
    829 void
    830 wgattach(int count)
    831 {
    832 	/*
    833 	 * Nothing to do here, initialization is handled by the
    834 	 * module initialization code in wginit() below).
    835 	 */
    836 }
    837 
    838 static void
    839 wginit(void)
    840 {
    841 
    842 	wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
    843 
    844 	if_clone_attach(&wg_cloner);
    845 }
    846 
    847 /*
    848  * XXX Kludge: This should just happen in wginit, but workqueue_create
    849  * cannot be run until after CPUs have been detected, and wginit runs
    850  * before configure.
    851  */
    852 static int
    853 wginitqueues(void)
    854 {
    855 	int error __diagused;
    856 
    857 	wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
    858 	KASSERT(wg_pktq != NULL);
    859 
    860 	error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
    861 	    PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
    862 	KASSERT(error == 0);
    863 
    864 	return 0;
    865 }
    866 
    867 static void
    868 wg_guarantee_initialized(void)
    869 {
    870 	static ONCE_DECL(init);
    871 	int error __diagused;
    872 
    873 	error = RUN_ONCE(&init, wginitqueues);
    874 	KASSERT(error == 0);
    875 }
    876 
    877 static int
    878 wg_count_inc(void)
    879 {
    880 	unsigned o, n;
    881 
    882 	do {
    883 		o = atomic_load_relaxed(&wg_count);
    884 		if (o == UINT_MAX)
    885 			return ENFILE;
    886 		n = o + 1;
    887 	} while (atomic_cas_uint(&wg_count, o, n) != o);
    888 
    889 	return 0;
    890 }
    891 
    892 static void
    893 wg_count_dec(void)
    894 {
    895 	unsigned c __diagused;
    896 
    897 	c = atomic_dec_uint_nv(&wg_count);
    898 	KASSERT(c != UINT_MAX);
    899 }
    900 
    901 static int
    902 wgdetach(void)
    903 {
    904 
    905 	/* Prevent new interface creation.  */
    906 	if_clone_detach(&wg_cloner);
    907 
    908 	/* Check whether there are any existing interfaces.  */
    909 	if (atomic_load_relaxed(&wg_count)) {
    910 		/* Back out -- reattach the cloner.  */
    911 		if_clone_attach(&wg_cloner);
    912 		return EBUSY;
    913 	}
    914 
    915 	/* No interfaces left.  Nuke it.  */
    916 	workqueue_destroy(wg_wq);
    917 	pktq_destroy(wg_pktq);
    918 	psref_class_destroy(wg_psref_class);
    919 
    920 	return 0;
    921 }
    922 
    923 static void
    924 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
    925     uint8_t hash[WG_HASH_LEN])
    926 {
    927 	/* [W] 5.4: CONSTRUCTION */
    928 	const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
    929 	/* [W] 5.4: IDENTIFIER */
    930 	const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
    931 	struct blake2s state;
    932 
    933 	blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
    934 	    signature, strlen(signature));
    935 
    936 	CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
    937 	memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
    938 
    939 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    940 	blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
    941 	blake2s_update(&state, id, strlen(id));
    942 	blake2s_final(&state, hash);
    943 
    944 	WG_DUMP_HASH("ckey", ckey);
    945 	WG_DUMP_HASH("hash", hash);
    946 }
    947 
    948 static void
    949 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
    950     const size_t inputsize)
    951 {
    952 	struct blake2s state;
    953 
    954 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    955 	blake2s_update(&state, hash, WG_HASH_LEN);
    956 	blake2s_update(&state, input, inputsize);
    957 	blake2s_final(&state, hash);
    958 }
    959 
    960 static void
    961 wg_algo_mac(uint8_t out[], const size_t outsize,
    962     const uint8_t key[], const size_t keylen,
    963     const uint8_t input1[], const size_t input1len,
    964     const uint8_t input2[], const size_t input2len)
    965 {
    966 	struct blake2s state;
    967 
    968 	blake2s_init(&state, outsize, key, keylen);
    969 
    970 	blake2s_update(&state, input1, input1len);
    971 	if (input2 != NULL)
    972 		blake2s_update(&state, input2, input2len);
    973 	blake2s_final(&state, out);
    974 }
    975 
    976 static void
    977 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
    978     const uint8_t input1[], const size_t input1len,
    979     const uint8_t input2[], const size_t input2len)
    980 {
    981 	struct blake2s state;
    982 	/* [W] 5.4: LABEL-MAC1 */
    983 	const char *label = "mac1----";
    984 	uint8_t key[WG_HASH_LEN];
    985 
    986 	blake2s_init(&state, sizeof(key), NULL, 0);
    987 	blake2s_update(&state, label, strlen(label));
    988 	blake2s_update(&state, input1, input1len);
    989 	blake2s_final(&state, key);
    990 
    991 	blake2s_init(&state, outsize, key, sizeof(key));
    992 	if (input2 != NULL)
    993 		blake2s_update(&state, input2, input2len);
    994 	blake2s_final(&state, out);
    995 }
    996 
    997 static void
    998 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
    999     const uint8_t input1[], const size_t input1len)
   1000 {
   1001 	struct blake2s state;
   1002 	/* [W] 5.4: LABEL-COOKIE */
   1003 	const char *label = "cookie--";
   1004 
   1005 	blake2s_init(&state, outsize, NULL, 0);
   1006 	blake2s_update(&state, label, strlen(label));
   1007 	blake2s_update(&state, input1, input1len);
   1008 	blake2s_final(&state, out);
   1009 }
   1010 
   1011 static void
   1012 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
   1013     uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
   1014 {
   1015 
   1016 	CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1017 
   1018 	cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
   1019 	crypto_scalarmult_base(pubkey, privkey);
   1020 }
   1021 
   1022 static void
   1023 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
   1024     const uint8_t privkey[WG_STATIC_KEY_LEN],
   1025     const uint8_t pubkey[WG_STATIC_KEY_LEN])
   1026 {
   1027 
   1028 	CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1029 
   1030 	int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
   1031 	KASSERT(ret == 0);
   1032 }
   1033 
   1034 static void
   1035 wg_algo_hmac(uint8_t out[], const size_t outlen,
   1036     const uint8_t key[], const size_t keylen,
   1037     const uint8_t in[], const size_t inlen)
   1038 {
   1039 #define IPAD	0x36
   1040 #define OPAD	0x5c
   1041 	uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
   1042 	uint8_t ipad[HMAC_BLOCK_LEN];
   1043 	uint8_t opad[HMAC_BLOCK_LEN];
   1044 	size_t i;
   1045 	struct blake2s state;
   1046 
   1047 	KASSERT(outlen == WG_HASH_LEN);
   1048 	KASSERT(keylen <= HMAC_BLOCK_LEN);
   1049 
   1050 	memcpy(hmackey, key, keylen);
   1051 
   1052 	for (i = 0; i < sizeof(hmackey); i++) {
   1053 		ipad[i] = hmackey[i] ^ IPAD;
   1054 		opad[i] = hmackey[i] ^ OPAD;
   1055 	}
   1056 
   1057 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1058 	blake2s_update(&state, ipad, sizeof(ipad));
   1059 	blake2s_update(&state, in, inlen);
   1060 	blake2s_final(&state, out);
   1061 
   1062 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1063 	blake2s_update(&state, opad, sizeof(opad));
   1064 	blake2s_update(&state, out, WG_HASH_LEN);
   1065 	blake2s_final(&state, out);
   1066 #undef IPAD
   1067 #undef OPAD
   1068 }
   1069 
   1070 static void
   1071 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
   1072     uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
   1073     const uint8_t input[], const size_t inputlen)
   1074 {
   1075 	uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
   1076 	uint8_t one[1];
   1077 
   1078 	/*
   1079 	 * [N] 4.3: "an input_key_material byte sequence with length
   1080 	 * either zero bytes, 32 bytes, or DHLEN bytes."
   1081 	 */
   1082 	KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
   1083 
   1084 	WG_DUMP_HASH("ckey", ckey);
   1085 	if (input != NULL)
   1086 		WG_DUMP_HASH("input", input);
   1087 	wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
   1088 	    input, inputlen);
   1089 	WG_DUMP_HASH("tmp1", tmp1);
   1090 	one[0] = 1;
   1091 	wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1092 	    one, sizeof(one));
   1093 	WG_DUMP_HASH("out1", out1);
   1094 	if (out2 == NULL)
   1095 		return;
   1096 	memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
   1097 	tmp2[WG_KDF_OUTPUT_LEN] = 2;
   1098 	wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1099 	    tmp2, sizeof(tmp2));
   1100 	WG_DUMP_HASH("out2", out2);
   1101 	if (out3 == NULL)
   1102 		return;
   1103 	memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
   1104 	tmp2[WG_KDF_OUTPUT_LEN] = 3;
   1105 	wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1106 	    tmp2, sizeof(tmp2));
   1107 	WG_DUMP_HASH("out3", out3);
   1108 }
   1109 
   1110 static void __noinline
   1111 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
   1112     uint8_t cipher_key[WG_CIPHER_KEY_LEN],
   1113     const uint8_t local_key[WG_STATIC_KEY_LEN],
   1114     const uint8_t remote_key[WG_STATIC_KEY_LEN])
   1115 {
   1116 	uint8_t dhout[WG_DH_OUTPUT_LEN];
   1117 
   1118 	wg_algo_dh(dhout, local_key, remote_key);
   1119 	wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
   1120 
   1121 	WG_DUMP_HASH("dhout", dhout);
   1122 	WG_DUMP_HASH("ckey", ckey);
   1123 	if (cipher_key != NULL)
   1124 		WG_DUMP_HASH("cipher_key", cipher_key);
   1125 }
   1126 
   1127 static void
   1128 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
   1129     const uint64_t counter, const uint8_t plain[], const size_t plainsize,
   1130     const uint8_t auth[], size_t authlen)
   1131 {
   1132 	uint8_t nonce[(32 + 64) / 8] = {0};
   1133 	long long unsigned int outsize;
   1134 	int error __diagused;
   1135 
   1136 	le64enc(&nonce[4], counter);
   1137 
   1138 	error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
   1139 	    plainsize, auth, authlen, NULL, nonce, key);
   1140 	KASSERT(error == 0);
   1141 	KASSERT(outsize == expected_outsize);
   1142 }
   1143 
   1144 static int
   1145 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
   1146     const uint64_t counter, const uint8_t encrypted[],
   1147     const size_t encryptedsize, const uint8_t auth[], size_t authlen)
   1148 {
   1149 	uint8_t nonce[(32 + 64) / 8] = {0};
   1150 	long long unsigned int outsize;
   1151 	int error;
   1152 
   1153 	le64enc(&nonce[4], counter);
   1154 
   1155 	error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1156 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1157 	if (error == 0)
   1158 		KASSERT(outsize == expected_outsize);
   1159 	return error;
   1160 }
   1161 
   1162 static void
   1163 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
   1164     const uint8_t key[], const uint8_t plain[], const size_t plainsize,
   1165     const uint8_t auth[], size_t authlen,
   1166     const uint8_t nonce[WG_SALT_LEN])
   1167 {
   1168 	long long unsigned int outsize;
   1169 	int error __diagused;
   1170 
   1171 	CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
   1172 	error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
   1173 	    plain, plainsize, auth, authlen, NULL, nonce, key);
   1174 	KASSERT(error == 0);
   1175 	KASSERT(outsize == expected_outsize);
   1176 }
   1177 
   1178 static int
   1179 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
   1180     const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
   1181     const uint8_t auth[], size_t authlen,
   1182     const uint8_t nonce[WG_SALT_LEN])
   1183 {
   1184 	long long unsigned int outsize;
   1185 	int error;
   1186 
   1187 	error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1188 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1189 	if (error == 0)
   1190 		KASSERT(outsize == expected_outsize);
   1191 	return error;
   1192 }
   1193 
   1194 static void
   1195 wg_algo_tai64n(wg_timestamp_t timestamp)
   1196 {
   1197 	struct timespec ts;
   1198 
   1199 	/* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
   1200 	getnanotime(&ts);
   1201 	/* TAI64 label in external TAI64 format */
   1202 	be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
   1203 	/* second beginning from 1970 TAI */
   1204 	be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
   1205 	/* nanosecond in big-endian format */
   1206 	be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
   1207 }
   1208 
   1209 /*
   1210  * wg_get_stable_session(wgp, psref)
   1211  *
   1212  *	Get a passive reference to the current stable session, or
   1213  *	return NULL if there is no current stable session.
   1214  *
   1215  *	The pointer is always there but the session is not necessarily
   1216  *	ESTABLISHED; if it is not ESTABLISHED, return NULL.  However,
   1217  *	the session may transition from ESTABLISHED to DESTROYING while
   1218  *	holding the passive reference.
   1219  */
   1220 static struct wg_session *
   1221 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
   1222 {
   1223 	int s;
   1224 	struct wg_session *wgs;
   1225 
   1226 	s = pserialize_read_enter();
   1227 	wgs = atomic_load_consume(&wgp->wgp_session_stable);
   1228 	if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
   1229 		wgs = NULL;
   1230 	else
   1231 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   1232 	pserialize_read_exit(s);
   1233 
   1234 	return wgs;
   1235 }
   1236 
   1237 static void
   1238 wg_put_session(struct wg_session *wgs, struct psref *psref)
   1239 {
   1240 
   1241 	psref_release(psref, &wgs->wgs_psref, wg_psref_class);
   1242 }
   1243 
   1244 static void
   1245 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
   1246 {
   1247 	struct wg_peer *wgp = wgs->wgs_peer;
   1248 	struct wg_session *wgs0 __diagused;
   1249 	void *garbage;
   1250 
   1251 	KASSERT(mutex_owned(wgp->wgp_lock));
   1252 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1253 
   1254 	/* Remove the session from the table.  */
   1255 	wgs0 = thmap_del(wg->wg_sessions_byindex,
   1256 	    &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
   1257 	KASSERT(wgs0 == wgs);
   1258 	garbage = thmap_stage_gc(wg->wg_sessions_byindex);
   1259 
   1260 	/* Wait for passive references to drain.  */
   1261 	pserialize_perform(wgp->wgp_psz);
   1262 	psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
   1263 
   1264 	/* Free memory, zero state, and transition to UNKNOWN.  */
   1265 	thmap_gc(wg->wg_sessions_byindex, garbage);
   1266 	wg_clear_states(wgs);
   1267 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   1268 }
   1269 
   1270 /*
   1271  * wg_get_session_index(wg, wgs)
   1272  *
   1273  *	Choose a session index for wgs->wgs_local_index, and store it
   1274  *	in wg's table of sessions by index.
   1275  *
   1276  *	wgs must be the unstable session of its peer, and must be
   1277  *	transitioning out of the UNKNOWN state.
   1278  */
   1279 static void
   1280 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1281 {
   1282 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1283 	struct wg_session *wgs0;
   1284 	uint32_t index;
   1285 
   1286 	KASSERT(mutex_owned(wgp->wgp_lock));
   1287 	KASSERT(wgs == wgp->wgp_session_unstable);
   1288 	KASSERT(wgs->wgs_state == WGS_STATE_UNKNOWN);
   1289 
   1290 	do {
   1291 		/* Pick a uniform random index.  */
   1292 		index = cprng_strong32();
   1293 
   1294 		/* Try to take it.  */
   1295 		wgs->wgs_local_index = index;
   1296 		wgs0 = thmap_put(wg->wg_sessions_byindex,
   1297 		    &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
   1298 
   1299 		/* If someone else beat us, start over.  */
   1300 	} while (__predict_false(wgs0 != wgs));
   1301 }
   1302 
   1303 /*
   1304  * wg_put_session_index(wg, wgs)
   1305  *
   1306  *	Remove wgs from the table of sessions by index, wait for any
   1307  *	passive references to drain, and transition the session to the
   1308  *	UNKNOWN state.
   1309  *
   1310  *	wgs must be the unstable session of its peer, and must not be
   1311  *	UNKNOWN or ESTABLISHED.
   1312  */
   1313 static void
   1314 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1315 {
   1316 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1317 
   1318 	KASSERT(mutex_owned(wgp->wgp_lock));
   1319 	KASSERT(wgs == wgp->wgp_session_unstable);
   1320 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1321 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
   1322 
   1323 	wg_destroy_session(wg, wgs);
   1324 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   1325 }
   1326 
   1327 /*
   1328  * Handshake patterns
   1329  *
   1330  * [W] 5: "These messages use the "IK" pattern from Noise"
   1331  * [N] 7.5. Interactive handshake patterns (fundamental)
   1332  *     "The first character refers to the initiators static key:"
   1333  *     "I = Static key for initiator Immediately transmitted to responder,
   1334  *          despite reduced or absent identity hiding"
   1335  *     "The second character refers to the responders static key:"
   1336  *     "K = Static key for responder Known to initiator"
   1337  *     "IK:
   1338  *        <- s
   1339  *        ...
   1340  *        -> e, es, s, ss
   1341  *        <- e, ee, se"
   1342  * [N] 9.4. Pattern modifiers
   1343  *     "IKpsk2:
   1344  *        <- s
   1345  *        ...
   1346  *        -> e, es, s, ss
   1347  *        <- e, ee, se, psk"
   1348  */
   1349 static void
   1350 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
   1351     struct wg_session *wgs, struct wg_msg_init *wgmi)
   1352 {
   1353 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1354 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1355 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1356 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1357 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1358 
   1359 	KASSERT(mutex_owned(wgp->wgp_lock));
   1360 	KASSERT(wgs == wgp->wgp_session_unstable);
   1361 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
   1362 
   1363 	wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
   1364 	wgmi->wgmi_sender = wgs->wgs_local_index;
   1365 
   1366 	/* [W] 5.4.2: First Message: Initiator to Responder */
   1367 
   1368 	/* Ci := HASH(CONSTRUCTION) */
   1369 	/* Hi := HASH(Ci || IDENTIFIER) */
   1370 	wg_init_key_and_hash(ckey, hash);
   1371 	/* Hi := HASH(Hi || Sr^pub) */
   1372 	wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
   1373 
   1374 	WG_DUMP_HASH("hash", hash);
   1375 
   1376 	/* [N] 2.2: "e" */
   1377 	/* Ei^priv, Ei^pub := DH-GENERATE() */
   1378 	wg_algo_generate_keypair(pubkey, privkey);
   1379 	/* Ci := KDF1(Ci, Ei^pub) */
   1380 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1381 	/* msg.ephemeral := Ei^pub */
   1382 	memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
   1383 	/* Hi := HASH(Hi || msg.ephemeral) */
   1384 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1385 
   1386 	WG_DUMP_HASH("ckey", ckey);
   1387 	WG_DUMP_HASH("hash", hash);
   1388 
   1389 	/* [N] 2.2: "es" */
   1390 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1391 	wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
   1392 
   1393 	/* [N] 2.2: "s" */
   1394 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1395 	wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
   1396 	    cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1397 	    hash, sizeof(hash));
   1398 	/* Hi := HASH(Hi || msg.static) */
   1399 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1400 
   1401 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1402 
   1403 	/* [N] 2.2: "ss" */
   1404 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1405 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1406 
   1407 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1408 	wg_timestamp_t timestamp;
   1409 	wg_algo_tai64n(timestamp);
   1410 	wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1411 	    cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
   1412 	/* Hi := HASH(Hi || msg.timestamp) */
   1413 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1414 
   1415 	/* [W] 5.4.4 Cookie MACs */
   1416 	wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
   1417 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1418 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1419 	/* Need mac1 to decrypt a cookie from a cookie message */
   1420 	memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
   1421 	    sizeof(wgp->wgp_last_sent_mac1));
   1422 	wgp->wgp_last_sent_mac1_valid = true;
   1423 
   1424 	if (wgp->wgp_latest_cookie_time == 0 ||
   1425 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1426 		memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
   1427 	else {
   1428 		wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
   1429 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1430 		    (const uint8_t *)wgmi,
   1431 		    offsetof(struct wg_msg_init, wgmi_mac2),
   1432 		    NULL, 0);
   1433 	}
   1434 
   1435 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1436 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1437 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1438 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1439 	WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
   1440 }
   1441 
   1442 static void __noinline
   1443 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
   1444     const struct sockaddr *src)
   1445 {
   1446 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1447 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1448 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1449 	uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
   1450 	struct wg_peer *wgp;
   1451 	struct wg_session *wgs;
   1452 	int error, ret;
   1453 	struct psref psref_peer;
   1454 	uint8_t mac1[WG_MAC_LEN];
   1455 
   1456 	WG_TRACE("init msg received");
   1457 
   1458 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1459 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1460 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1461 
   1462 	/*
   1463 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1464 	 * "the responder, ..., must always reject messages with an invalid
   1465 	 *  msg.mac1"
   1466 	 */
   1467 	if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
   1468 		WG_DLOG("mac1 is invalid\n");
   1469 		return;
   1470 	}
   1471 
   1472 	/*
   1473 	 * [W] 5.4.2: First Message: Initiator to Responder
   1474 	 * "When the responder receives this message, it does the same
   1475 	 *  operations so that its final state variables are identical,
   1476 	 *  replacing the operands of the DH function to produce equivalent
   1477 	 *  values."
   1478 	 *  Note that the following comments of operations are just copies of
   1479 	 *  the initiator's ones.
   1480 	 */
   1481 
   1482 	/* Ci := HASH(CONSTRUCTION) */
   1483 	/* Hi := HASH(Ci || IDENTIFIER) */
   1484 	wg_init_key_and_hash(ckey, hash);
   1485 	/* Hi := HASH(Hi || Sr^pub) */
   1486 	wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
   1487 
   1488 	/* [N] 2.2: "e" */
   1489 	/* Ci := KDF1(Ci, Ei^pub) */
   1490 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
   1491 	    sizeof(wgmi->wgmi_ephemeral));
   1492 	/* Hi := HASH(Hi || msg.ephemeral) */
   1493 	wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
   1494 
   1495 	WG_DUMP_HASH("ckey", ckey);
   1496 
   1497 	/* [N] 2.2: "es" */
   1498 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1499 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
   1500 
   1501 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1502 
   1503 	/* [N] 2.2: "s" */
   1504 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1505 	error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
   1506 	    wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
   1507 	if (error != 0) {
   1508 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   1509 		    "%s: wg_algo_aead_dec for secret key failed\n",
   1510 		    if_name(&wg->wg_if));
   1511 		return;
   1512 	}
   1513 	/* Hi := HASH(Hi || msg.static) */
   1514 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1515 
   1516 	wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
   1517 	if (wgp == NULL) {
   1518 		WG_DLOG("peer not found\n");
   1519 		return;
   1520 	}
   1521 
   1522 	/*
   1523 	 * Lock the peer to serialize access to cookie state.
   1524 	 *
   1525 	 * XXX Can we safely avoid holding the lock across DH?  Take it
   1526 	 * just to verify mac2 and then unlock/DH/lock?
   1527 	 */
   1528 	mutex_enter(wgp->wgp_lock);
   1529 
   1530 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
   1531 		WG_TRACE("under load");
   1532 		/*
   1533 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1534 		 * "the responder, ..., and when under load may reject messages
   1535 		 *  with an invalid msg.mac2.  If the responder receives a
   1536 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1537 		 *  and is under load, it may respond with a cookie reply
   1538 		 *  message"
   1539 		 */
   1540 		uint8_t zero[WG_MAC_LEN] = {0};
   1541 		if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
   1542 			WG_TRACE("sending a cookie message: no cookie included");
   1543 			(void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1544 			    wgmi->wgmi_mac1, src);
   1545 			goto out;
   1546 		}
   1547 		if (!wgp->wgp_last_sent_cookie_valid) {
   1548 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1549 			(void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1550 			    wgmi->wgmi_mac1, src);
   1551 			goto out;
   1552 		}
   1553 		uint8_t mac2[WG_MAC_LEN];
   1554 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1555 		    WG_COOKIE_LEN, (const uint8_t *)wgmi,
   1556 		    offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
   1557 		if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
   1558 			WG_DLOG("mac2 is invalid\n");
   1559 			goto out;
   1560 		}
   1561 		WG_TRACE("under load, but continue to sending");
   1562 	}
   1563 
   1564 	/* [N] 2.2: "ss" */
   1565 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1566 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1567 
   1568 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1569 	wg_timestamp_t timestamp;
   1570 	error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
   1571 	    wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1572 	    hash, sizeof(hash));
   1573 	if (error != 0) {
   1574 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1575 		    "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
   1576 		    if_name(&wg->wg_if), wgp->wgp_name);
   1577 		goto out;
   1578 	}
   1579 	/* Hi := HASH(Hi || msg.timestamp) */
   1580 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1581 
   1582 	/*
   1583 	 * [W] 5.1 "The responder keeps track of the greatest timestamp
   1584 	 *      received per peer and discards packets containing
   1585 	 *      timestamps less than or equal to it."
   1586 	 */
   1587 	ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
   1588 	    sizeof(timestamp));
   1589 	if (ret <= 0) {
   1590 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1591 		    "%s: peer %s: invalid init msg: timestamp is old\n",
   1592 		    if_name(&wg->wg_if), wgp->wgp_name);
   1593 		goto out;
   1594 	}
   1595 	memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
   1596 
   1597 	/*
   1598 	 * Message is good -- we're committing to handle it now, unless
   1599 	 * we were already initiating a session.
   1600 	 */
   1601 	wgs = wgp->wgp_session_unstable;
   1602 	switch (wgs->wgs_state) {
   1603 	case WGS_STATE_UNKNOWN:		/* new session initiated by peer */
   1604 		wg_get_session_index(wg, wgs);
   1605 		break;
   1606 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, drop */
   1607 		WG_TRACE("Session already initializing, ignoring the message");
   1608 		goto out;
   1609 	case WGS_STATE_INIT_PASSIVE:	/* peer is retrying, start over */
   1610 		WG_TRACE("Session already initializing, destroying old states");
   1611 		wg_clear_states(wgs);
   1612 		/* keep session index */
   1613 		break;
   1614 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1615 		panic("unstable session can't be established");
   1616 		break;
   1617 	case WGS_STATE_DESTROYING:	/* rekey initiated by peer */
   1618 		WG_TRACE("Session destroying, but force to clear");
   1619 		callout_stop(&wgp->wgp_session_dtor_timer);
   1620 		wg_clear_states(wgs);
   1621 		/* keep session index */
   1622 		break;
   1623 	default:
   1624 		panic("invalid session state: %d", wgs->wgs_state);
   1625 	}
   1626 	wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
   1627 
   1628 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1629 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1630 	memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
   1631 	    sizeof(wgmi->wgmi_ephemeral));
   1632 
   1633 	wg_update_endpoint_if_necessary(wgp, src);
   1634 
   1635 	(void)wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
   1636 
   1637 	wg_calculate_keys(wgs, false);
   1638 	wg_clear_states(wgs);
   1639 
   1640 out:
   1641 	mutex_exit(wgp->wgp_lock);
   1642 	wg_put_peer(wgp, &psref_peer);
   1643 }
   1644 
   1645 static struct socket *
   1646 wg_get_so_by_af(struct wg_softc *wg, const int af)
   1647 {
   1648 
   1649 	switch (af) {
   1650 #ifdef INET
   1651 	case AF_INET:
   1652 		return wg->wg_so4;
   1653 #endif
   1654 #ifdef INET6
   1655 	case AF_INET6:
   1656 		return wg->wg_so6;
   1657 #endif
   1658 	default:
   1659 		panic("wg: no such af: %d", af);
   1660 	}
   1661 }
   1662 
   1663 static struct socket *
   1664 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
   1665 {
   1666 
   1667 	return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
   1668 }
   1669 
   1670 static struct wg_sockaddr *
   1671 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
   1672 {
   1673 	struct wg_sockaddr *wgsa;
   1674 	int s;
   1675 
   1676 	s = pserialize_read_enter();
   1677 	wgsa = atomic_load_consume(&wgp->wgp_endpoint);
   1678 	psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
   1679 	pserialize_read_exit(s);
   1680 
   1681 	return wgsa;
   1682 }
   1683 
   1684 static void
   1685 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
   1686 {
   1687 
   1688 	psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
   1689 }
   1690 
   1691 static int
   1692 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
   1693 {
   1694 	int error;
   1695 	struct socket *so;
   1696 	struct psref psref;
   1697 	struct wg_sockaddr *wgsa;
   1698 
   1699 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   1700 	so = wg_get_so_by_peer(wgp, wgsa);
   1701 	error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
   1702 	wg_put_sa(wgp, wgsa, &psref);
   1703 
   1704 	return error;
   1705 }
   1706 
   1707 static int
   1708 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
   1709 {
   1710 	int error;
   1711 	struct mbuf *m;
   1712 	struct wg_msg_init *wgmi;
   1713 	struct wg_session *wgs;
   1714 
   1715 	KASSERT(mutex_owned(wgp->wgp_lock));
   1716 
   1717 	wgs = wgp->wgp_session_unstable;
   1718 	/* XXX pull dispatch out into wg_task_send_init_message */
   1719 	switch (wgs->wgs_state) {
   1720 	case WGS_STATE_UNKNOWN:		/* new session initiated by us */
   1721 		wg_get_session_index(wg, wgs);
   1722 		break;
   1723 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, stop */
   1724 		WG_TRACE("Session already initializing, skip starting new one");
   1725 		return EBUSY;
   1726 	case WGS_STATE_INIT_PASSIVE:	/* peer was trying -- XXX what now? */
   1727 		WG_TRACE("Session already initializing, destroying old states");
   1728 		wg_clear_states(wgs);
   1729 		/* keep session index */
   1730 		break;
   1731 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1732 		panic("unstable session can't be established");
   1733 		break;
   1734 	case WGS_STATE_DESTROYING:	/* rekey initiated by us too early */
   1735 		WG_TRACE("Session destroying");
   1736 		/* XXX should wait? */
   1737 		return EBUSY;
   1738 	}
   1739 	wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
   1740 
   1741 	m = m_gethdr(M_WAIT, MT_DATA);
   1742 	if (sizeof(*wgmi) > MHLEN) {
   1743 		m_clget(m, M_WAIT);
   1744 		CTASSERT(sizeof(*wgmi) <= MCLBYTES);
   1745 	}
   1746 	m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
   1747 	wgmi = mtod(m, struct wg_msg_init *);
   1748 	wg_fill_msg_init(wg, wgp, wgs, wgmi);
   1749 
   1750 	error = wg->wg_ops->send_hs_msg(wgp, m);
   1751 	if (error == 0) {
   1752 		WG_TRACE("init msg sent");
   1753 
   1754 		if (wgp->wgp_handshake_start_time == 0)
   1755 			wgp->wgp_handshake_start_time = time_uptime;
   1756 		callout_schedule(&wgp->wgp_handshake_timeout_timer,
   1757 		    MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
   1758 	} else {
   1759 		wg_put_session_index(wg, wgs);
   1760 		/* Initiation failed; toss packet waiting for it if any.  */
   1761 		m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   1762 		m_freem(m);
   1763 	}
   1764 
   1765 	return error;
   1766 }
   1767 
   1768 static void
   1769 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   1770     struct wg_session *wgs, struct wg_msg_resp *wgmr,
   1771     const struct wg_msg_init *wgmi)
   1772 {
   1773 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   1774 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
   1775 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   1776 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1777 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1778 
   1779 	KASSERT(mutex_owned(wgp->wgp_lock));
   1780 	KASSERT(wgs == wgp->wgp_session_unstable);
   1781 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
   1782 
   1783 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   1784 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   1785 
   1786 	wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
   1787 	wgmr->wgmr_sender = wgs->wgs_local_index;
   1788 	wgmr->wgmr_receiver = wgmi->wgmi_sender;
   1789 
   1790 	/* [W] 5.4.3 Second Message: Responder to Initiator */
   1791 
   1792 	/* [N] 2.2: "e" */
   1793 	/* Er^priv, Er^pub := DH-GENERATE() */
   1794 	wg_algo_generate_keypair(pubkey, privkey);
   1795 	/* Cr := KDF1(Cr, Er^pub) */
   1796 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1797 	/* msg.ephemeral := Er^pub */
   1798 	memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
   1799 	/* Hr := HASH(Hr || msg.ephemeral) */
   1800 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1801 
   1802 	WG_DUMP_HASH("ckey", ckey);
   1803 	WG_DUMP_HASH("hash", hash);
   1804 
   1805 	/* [N] 2.2: "ee" */
   1806 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   1807 	wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
   1808 
   1809 	/* [N] 2.2: "se" */
   1810 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   1811 	wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
   1812 
   1813 	/* [N] 9.2: "psk" */
   1814     {
   1815 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   1816 	/* Cr, r, k := KDF3(Cr, Q) */
   1817 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   1818 	    sizeof(wgp->wgp_psk));
   1819 	/* Hr := HASH(Hr || r) */
   1820 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   1821     }
   1822 
   1823 	/* msg.empty := AEAD(k, 0, e, Hr) */
   1824 	wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
   1825 	    cipher_key, 0, NULL, 0, hash, sizeof(hash));
   1826 	/* Hr := HASH(Hr || msg.empty) */
   1827 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   1828 
   1829 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   1830 
   1831 	/* [W] 5.4.4: Cookie MACs */
   1832 	/* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
   1833 	wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
   1834 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1835 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   1836 	/* Need mac1 to decrypt a cookie from a cookie message */
   1837 	memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
   1838 	    sizeof(wgp->wgp_last_sent_mac1));
   1839 	wgp->wgp_last_sent_mac1_valid = true;
   1840 
   1841 	if (wgp->wgp_latest_cookie_time == 0 ||
   1842 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1843 		/* msg.mac2 := 0^16 */
   1844 		memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
   1845 	else {
   1846 		/* msg.mac2 := MAC(Lm, msg_b) */
   1847 		wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
   1848 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1849 		    (const uint8_t *)wgmr,
   1850 		    offsetof(struct wg_msg_resp, wgmr_mac2),
   1851 		    NULL, 0);
   1852 	}
   1853 
   1854 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1855 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1856 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1857 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1858 	wgs->wgs_remote_index = wgmi->wgmi_sender;
   1859 	WG_DLOG("sender=%x\n", wgs->wgs_local_index);
   1860 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   1861 }
   1862 
   1863 static void
   1864 wg_swap_sessions(struct wg_peer *wgp)
   1865 {
   1866 	struct wg_session *wgs, *wgs_prev;
   1867 
   1868 	KASSERT(mutex_owned(wgp->wgp_lock));
   1869 
   1870 	wgs = wgp->wgp_session_unstable;
   1871 	KASSERT(wgs->wgs_state == WGS_STATE_ESTABLISHED);
   1872 
   1873 	wgs_prev = wgp->wgp_session_stable;
   1874 	KASSERT(wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
   1875 	    wgs_prev->wgs_state == WGS_STATE_UNKNOWN);
   1876 	atomic_store_release(&wgp->wgp_session_stable, wgs);
   1877 	wgp->wgp_session_unstable = wgs_prev;
   1878 }
   1879 
   1880 static void __noinline
   1881 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
   1882     const struct sockaddr *src)
   1883 {
   1884 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   1885 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
   1886 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   1887 	struct wg_peer *wgp;
   1888 	struct wg_session *wgs;
   1889 	struct psref psref;
   1890 	int error;
   1891 	uint8_t mac1[WG_MAC_LEN];
   1892 	struct wg_session *wgs_prev;
   1893 	struct mbuf *m;
   1894 
   1895 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1896 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1897 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   1898 
   1899 	/*
   1900 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1901 	 * "the responder, ..., must always reject messages with an invalid
   1902 	 *  msg.mac1"
   1903 	 */
   1904 	if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
   1905 		WG_DLOG("mac1 is invalid\n");
   1906 		return;
   1907 	}
   1908 
   1909 	WG_TRACE("resp msg received");
   1910 	wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
   1911 	if (wgs == NULL) {
   1912 		WG_TRACE("No session found");
   1913 		return;
   1914 	}
   1915 
   1916 	wgp = wgs->wgs_peer;
   1917 
   1918 	mutex_enter(wgp->wgp_lock);
   1919 
   1920 	/* If we weren't waiting for a handshake response, drop it.  */
   1921 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
   1922 		WG_TRACE("peer sent spurious handshake response, ignoring");
   1923 		goto out;
   1924 	}
   1925 
   1926 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
   1927 		WG_TRACE("under load");
   1928 		/*
   1929 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1930 		 * "the responder, ..., and when under load may reject messages
   1931 		 *  with an invalid msg.mac2.  If the responder receives a
   1932 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1933 		 *  and is under load, it may respond with a cookie reply
   1934 		 *  message"
   1935 		 */
   1936 		uint8_t zero[WG_MAC_LEN] = {0};
   1937 		if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
   1938 			WG_TRACE("sending a cookie message: no cookie included");
   1939 			(void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   1940 			    wgmr->wgmr_mac1, src);
   1941 			goto out;
   1942 		}
   1943 		if (!wgp->wgp_last_sent_cookie_valid) {
   1944 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1945 			(void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   1946 			    wgmr->wgmr_mac1, src);
   1947 			goto out;
   1948 		}
   1949 		uint8_t mac2[WG_MAC_LEN];
   1950 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1951 		    WG_COOKIE_LEN, (const uint8_t *)wgmr,
   1952 		    offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
   1953 		if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
   1954 			WG_DLOG("mac2 is invalid\n");
   1955 			goto out;
   1956 		}
   1957 		WG_TRACE("under load, but continue to sending");
   1958 	}
   1959 
   1960 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   1961 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   1962 
   1963 	/*
   1964 	 * [W] 5.4.3 Second Message: Responder to Initiator
   1965 	 * "When the initiator receives this message, it does the same
   1966 	 *  operations so that its final state variables are identical,
   1967 	 *  replacing the operands of the DH function to produce equivalent
   1968 	 *  values."
   1969 	 *  Note that the following comments of operations are just copies of
   1970 	 *  the initiator's ones.
   1971 	 */
   1972 
   1973 	/* [N] 2.2: "e" */
   1974 	/* Cr := KDF1(Cr, Er^pub) */
   1975 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
   1976 	    sizeof(wgmr->wgmr_ephemeral));
   1977 	/* Hr := HASH(Hr || msg.ephemeral) */
   1978 	wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
   1979 
   1980 	WG_DUMP_HASH("ckey", ckey);
   1981 	WG_DUMP_HASH("hash", hash);
   1982 
   1983 	/* [N] 2.2: "ee" */
   1984 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   1985 	wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
   1986 	    wgmr->wgmr_ephemeral);
   1987 
   1988 	/* [N] 2.2: "se" */
   1989 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   1990 	wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
   1991 
   1992 	/* [N] 9.2: "psk" */
   1993     {
   1994 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   1995 	/* Cr, r, k := KDF3(Cr, Q) */
   1996 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   1997 	    sizeof(wgp->wgp_psk));
   1998 	/* Hr := HASH(Hr || r) */
   1999 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   2000     }
   2001 
   2002     {
   2003 	uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
   2004 	/* msg.empty := AEAD(k, 0, e, Hr) */
   2005 	error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
   2006 	    sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
   2007 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   2008 	if (error != 0) {
   2009 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2010 		    "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
   2011 		    if_name(&wg->wg_if), wgp->wgp_name);
   2012 		goto out;
   2013 	}
   2014 	/* Hr := HASH(Hr || msg.empty) */
   2015 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   2016     }
   2017 
   2018 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
   2019 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
   2020 	wgs->wgs_remote_index = wgmr->wgmr_sender;
   2021 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   2022 
   2023 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
   2024 	wgs->wgs_state = WGS_STATE_ESTABLISHED;
   2025 	wgs->wgs_time_established = time_uptime;
   2026 	wgs->wgs_time_last_data_sent = 0;
   2027 	wgs->wgs_is_initiator = true;
   2028 	wg_calculate_keys(wgs, true);
   2029 	wg_clear_states(wgs);
   2030 	WG_TRACE("WGS_STATE_ESTABLISHED");
   2031 
   2032 	callout_stop(&wgp->wgp_handshake_timeout_timer);
   2033 
   2034 	wg_swap_sessions(wgp);
   2035 	KASSERT(wgs == wgp->wgp_session_stable);
   2036 	wgs_prev = wgp->wgp_session_unstable;
   2037 	getnanotime(&wgp->wgp_last_handshake_time);
   2038 	wgp->wgp_handshake_start_time = 0;
   2039 	wgp->wgp_last_sent_mac1_valid = false;
   2040 	wgp->wgp_last_sent_cookie_valid = false;
   2041 
   2042 	wg_schedule_rekey_timer(wgp);
   2043 
   2044 	wg_update_endpoint_if_necessary(wgp, src);
   2045 
   2046 	/*
   2047 	 * If we had a data packet queued up, send it; otherwise send a
   2048 	 * keepalive message -- either way we have to send something
   2049 	 * immediately or else the responder will never answer.
   2050 	 */
   2051 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   2052 		kpreempt_disable();
   2053 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
   2054 		M_SETCTX(m, wgp);
   2055 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   2056 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   2057 			    if_name(&wg->wg_if));
   2058 			m_freem(m);
   2059 		}
   2060 		kpreempt_enable();
   2061 	} else {
   2062 		wg_send_keepalive_msg(wgp, wgs);
   2063 	}
   2064 
   2065 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   2066 		/* Wait for wg_get_stable_session to drain.  */
   2067 		pserialize_perform(wgp->wgp_psz);
   2068 
   2069 		/* Transition ESTABLISHED->DESTROYING.  */
   2070 		wgs_prev->wgs_state = WGS_STATE_DESTROYING;
   2071 
   2072 		/* We can't destroy the old session immediately */
   2073 		wg_schedule_session_dtor_timer(wgp);
   2074 	} else {
   2075 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   2076 		    "state=%d", wgs_prev->wgs_state);
   2077 	}
   2078 
   2079 out:
   2080 	mutex_exit(wgp->wgp_lock);
   2081 	wg_put_session(wgs, &psref);
   2082 }
   2083 
   2084 static int
   2085 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   2086     struct wg_session *wgs, const struct wg_msg_init *wgmi)
   2087 {
   2088 	int error;
   2089 	struct mbuf *m;
   2090 	struct wg_msg_resp *wgmr;
   2091 
   2092 	KASSERT(mutex_owned(wgp->wgp_lock));
   2093 	KASSERT(wgs == wgp->wgp_session_unstable);
   2094 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
   2095 
   2096 	m = m_gethdr(M_WAIT, MT_DATA);
   2097 	if (sizeof(*wgmr) > MHLEN) {
   2098 		m_clget(m, M_WAIT);
   2099 		CTASSERT(sizeof(*wgmr) <= MCLBYTES);
   2100 	}
   2101 	m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
   2102 	wgmr = mtod(m, struct wg_msg_resp *);
   2103 	wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
   2104 
   2105 	error = wg->wg_ops->send_hs_msg(wgp, m);
   2106 	if (error == 0)
   2107 		WG_TRACE("resp msg sent");
   2108 	return error;
   2109 }
   2110 
   2111 static struct wg_peer *
   2112 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
   2113     const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
   2114 {
   2115 	struct wg_peer *wgp;
   2116 
   2117 	int s = pserialize_read_enter();
   2118 	wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
   2119 	if (wgp != NULL)
   2120 		wg_get_peer(wgp, psref);
   2121 	pserialize_read_exit(s);
   2122 
   2123 	return wgp;
   2124 }
   2125 
   2126 static void
   2127 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
   2128     struct wg_msg_cookie *wgmc, const uint32_t sender,
   2129     const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
   2130 {
   2131 	uint8_t cookie[WG_COOKIE_LEN];
   2132 	uint8_t key[WG_HASH_LEN];
   2133 	uint8_t addr[sizeof(struct in6_addr)];
   2134 	size_t addrlen;
   2135 	uint16_t uh_sport; /* be */
   2136 
   2137 	KASSERT(mutex_owned(wgp->wgp_lock));
   2138 
   2139 	wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
   2140 	wgmc->wgmc_receiver = sender;
   2141 	cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
   2142 
   2143 	/*
   2144 	 * [W] 5.4.7: Under Load: Cookie Reply Message
   2145 	 * "The secret variable, Rm, changes every two minutes to a
   2146 	 * random value"
   2147 	 */
   2148 	if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
   2149 		wgp->wgp_randval = cprng_strong32();
   2150 		wgp->wgp_last_genrandval_time = time_uptime;
   2151 	}
   2152 
   2153 	switch (src->sa_family) {
   2154 	case AF_INET: {
   2155 		const struct sockaddr_in *sin = satocsin(src);
   2156 		addrlen = sizeof(sin->sin_addr);
   2157 		memcpy(addr, &sin->sin_addr, addrlen);
   2158 		uh_sport = sin->sin_port;
   2159 		break;
   2160 	    }
   2161 #ifdef INET6
   2162 	case AF_INET6: {
   2163 		const struct sockaddr_in6 *sin6 = satocsin6(src);
   2164 		addrlen = sizeof(sin6->sin6_addr);
   2165 		memcpy(addr, &sin6->sin6_addr, addrlen);
   2166 		uh_sport = sin6->sin6_port;
   2167 		break;
   2168 	    }
   2169 #endif
   2170 	default:
   2171 		panic("invalid af=%d", src->sa_family);
   2172 	}
   2173 
   2174 	wg_algo_mac(cookie, sizeof(cookie),
   2175 	    (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
   2176 	    addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
   2177 	wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
   2178 	    sizeof(wg->wg_pubkey));
   2179 	wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
   2180 	    cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
   2181 
   2182 	/* Need to store to calculate mac2 */
   2183 	memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
   2184 	wgp->wgp_last_sent_cookie_valid = true;
   2185 }
   2186 
   2187 static int
   2188 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
   2189     const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
   2190     const struct sockaddr *src)
   2191 {
   2192 	int error;
   2193 	struct mbuf *m;
   2194 	struct wg_msg_cookie *wgmc;
   2195 
   2196 	KASSERT(mutex_owned(wgp->wgp_lock));
   2197 
   2198 	m = m_gethdr(M_WAIT, MT_DATA);
   2199 	if (sizeof(*wgmc) > MHLEN) {
   2200 		m_clget(m, M_WAIT);
   2201 		CTASSERT(sizeof(*wgmc) <= MCLBYTES);
   2202 	}
   2203 	m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
   2204 	wgmc = mtod(m, struct wg_msg_cookie *);
   2205 	wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
   2206 
   2207 	error = wg->wg_ops->send_hs_msg(wgp, m);
   2208 	if (error == 0)
   2209 		WG_TRACE("cookie msg sent");
   2210 	return error;
   2211 }
   2212 
   2213 static bool
   2214 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
   2215 {
   2216 #ifdef WG_DEBUG_PARAMS
   2217 	if (wg_force_underload)
   2218 		return true;
   2219 #endif
   2220 
   2221 	/*
   2222 	 * XXX we don't have a means of a load estimation.  The purpose of
   2223 	 * the mechanism is a DoS mitigation, so we consider frequent handshake
   2224 	 * messages as (a kind of) load; if a message of the same type comes
   2225 	 * to a peer within 1 second, we consider we are under load.
   2226 	 */
   2227 	time_t last = wgp->wgp_last_msg_received_time[msgtype];
   2228 	wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
   2229 	return (time_uptime - last) == 0;
   2230 }
   2231 
   2232 static void
   2233 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
   2234 {
   2235 
   2236 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2237 
   2238 	/*
   2239 	 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
   2240 	 */
   2241 	if (initiator) {
   2242 		wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
   2243 		    wgs->wgs_chaining_key, NULL, 0);
   2244 	} else {
   2245 		wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
   2246 		    wgs->wgs_chaining_key, NULL, 0);
   2247 	}
   2248 	WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
   2249 	WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
   2250 }
   2251 
   2252 static uint64_t
   2253 wg_session_get_send_counter(struct wg_session *wgs)
   2254 {
   2255 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2256 	return atomic_load_relaxed(&wgs->wgs_send_counter);
   2257 #else
   2258 	uint64_t send_counter;
   2259 
   2260 	mutex_enter(&wgs->wgs_send_counter_lock);
   2261 	send_counter = wgs->wgs_send_counter;
   2262 	mutex_exit(&wgs->wgs_send_counter_lock);
   2263 
   2264 	return send_counter;
   2265 #endif
   2266 }
   2267 
   2268 static uint64_t
   2269 wg_session_inc_send_counter(struct wg_session *wgs)
   2270 {
   2271 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2272 	return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
   2273 #else
   2274 	uint64_t send_counter;
   2275 
   2276 	mutex_enter(&wgs->wgs_send_counter_lock);
   2277 	send_counter = wgs->wgs_send_counter++;
   2278 	mutex_exit(&wgs->wgs_send_counter_lock);
   2279 
   2280 	return send_counter;
   2281 #endif
   2282 }
   2283 
   2284 static void
   2285 wg_clear_states(struct wg_session *wgs)
   2286 {
   2287 
   2288 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2289 
   2290 	wgs->wgs_send_counter = 0;
   2291 	sliwin_reset(&wgs->wgs_recvwin->window);
   2292 
   2293 #define wgs_clear(v)	explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
   2294 	wgs_clear(handshake_hash);
   2295 	wgs_clear(chaining_key);
   2296 	wgs_clear(ephemeral_key_pub);
   2297 	wgs_clear(ephemeral_key_priv);
   2298 	wgs_clear(ephemeral_key_peer);
   2299 #undef wgs_clear
   2300 }
   2301 
   2302 static struct wg_session *
   2303 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
   2304     struct psref *psref)
   2305 {
   2306 	struct wg_session *wgs;
   2307 
   2308 	int s = pserialize_read_enter();
   2309 	wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
   2310 	if (wgs != NULL) {
   2311 		KASSERT(atomic_load_relaxed(&wgs->wgs_state) !=
   2312 		    WGS_STATE_UNKNOWN);
   2313 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   2314 	}
   2315 	pserialize_read_exit(s);
   2316 
   2317 	return wgs;
   2318 }
   2319 
   2320 static void
   2321 wg_schedule_rekey_timer(struct wg_peer *wgp)
   2322 {
   2323 	int timeout = MIN(wg_rekey_after_time, (unsigned)(INT_MAX / hz));
   2324 
   2325 	callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
   2326 }
   2327 
   2328 static void
   2329 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
   2330 {
   2331 	struct mbuf *m;
   2332 
   2333 	/*
   2334 	 * [W] 6.5 Passive Keepalive
   2335 	 * "A keepalive message is simply a transport data message with
   2336 	 *  a zero-length encapsulated encrypted inner-packet."
   2337 	 */
   2338 	WG_TRACE("");
   2339 	m = m_gethdr(M_WAIT, MT_DATA);
   2340 	wg_send_data_msg(wgp, wgs, m);
   2341 }
   2342 
   2343 static bool
   2344 wg_need_to_send_init_message(struct wg_session *wgs)
   2345 {
   2346 	/*
   2347 	 * [W] 6.2 Transport Message Limits
   2348 	 * "if a peer is the initiator of a current secure session,
   2349 	 *  WireGuard will send a handshake initiation message to begin
   2350 	 *  a new secure session ... if after receiving a transport data
   2351 	 *  message, the current secure session is (REJECT-AFTER-TIME 
   2352 	 *  KEEPALIVE-TIMEOUT  REKEY-TIMEOUT) seconds old and it has
   2353 	 *  not yet acted upon this event."
   2354 	 */
   2355 	return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
   2356 	    (time_uptime - wgs->wgs_time_established) >=
   2357 	    (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
   2358 }
   2359 
   2360 static void
   2361 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
   2362 {
   2363 
   2364 	mutex_enter(wgp->wgp_intr_lock);
   2365 	WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
   2366 	if (wgp->wgp_tasks == 0)
   2367 		/*
   2368 		 * XXX If the current CPU is already loaded -- e.g., if
   2369 		 * there's already a bunch of handshakes queued up --
   2370 		 * consider tossing this over to another CPU to
   2371 		 * distribute the load.
   2372 		 */
   2373 		workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
   2374 	wgp->wgp_tasks |= task;
   2375 	mutex_exit(wgp->wgp_intr_lock);
   2376 }
   2377 
   2378 static void
   2379 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
   2380 {
   2381 	struct wg_sockaddr *wgsa_prev;
   2382 
   2383 	WG_TRACE("Changing endpoint");
   2384 
   2385 	memcpy(wgp->wgp_endpoint0, new, new->sa_len);
   2386 	wgsa_prev = wgp->wgp_endpoint;
   2387 	atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
   2388 	wgp->wgp_endpoint0 = wgsa_prev;
   2389 	atomic_store_release(&wgp->wgp_endpoint_available, true);
   2390 
   2391 	wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
   2392 }
   2393 
   2394 static bool
   2395 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
   2396 {
   2397 	uint16_t packet_len;
   2398 	const struct ip *ip;
   2399 
   2400 	if (__predict_false(decrypted_len < sizeof(*ip))) {
   2401 		WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2402 		    sizeof(*ip));
   2403 		return false;
   2404 	}
   2405 
   2406 	ip = (const struct ip *)packet;
   2407 	if (ip->ip_v == 4)
   2408 		*af = AF_INET;
   2409 	else if (ip->ip_v == 6)
   2410 		*af = AF_INET6;
   2411 	else {
   2412 		WG_DLOG("ip_v=%d\n", ip->ip_v);
   2413 		return false;
   2414 	}
   2415 
   2416 	WG_DLOG("af=%d\n", *af);
   2417 
   2418 	switch (*af) {
   2419 #ifdef INET
   2420 	case AF_INET:
   2421 		packet_len = ntohs(ip->ip_len);
   2422 		break;
   2423 #endif
   2424 #ifdef INET6
   2425 	case AF_INET6: {
   2426 		const struct ip6_hdr *ip6;
   2427 
   2428 		if (__predict_false(decrypted_len < sizeof(*ip6))) {
   2429 			WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2430 			    sizeof(*ip6));
   2431 			return false;
   2432 		}
   2433 
   2434 		ip6 = (const struct ip6_hdr *)packet;
   2435 		packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
   2436 		break;
   2437 	}
   2438 #endif
   2439 	default:
   2440 		return false;
   2441 	}
   2442 
   2443 	if (packet_len > decrypted_len) {
   2444 		WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
   2445 		    decrypted_len);
   2446 		return false;
   2447 	}
   2448 
   2449 	return true;
   2450 }
   2451 
   2452 static bool
   2453 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
   2454     int af, char *packet)
   2455 {
   2456 	struct sockaddr_storage ss;
   2457 	struct sockaddr *sa;
   2458 	struct psref psref;
   2459 	struct wg_peer *wgp;
   2460 	bool ok;
   2461 
   2462 	/*
   2463 	 * II CRYPTOKEY ROUTING
   2464 	 * "it will only accept it if its source IP resolves in the
   2465 	 *  table to the public key used in the secure session for
   2466 	 *  decrypting it."
   2467 	 */
   2468 
   2469 	if (af == AF_INET) {
   2470 		const struct ip *ip = (const struct ip *)packet;
   2471 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   2472 		sockaddr_in_init(sin, &ip->ip_src, 0);
   2473 		sa = sintosa(sin);
   2474 #ifdef INET6
   2475 	} else {
   2476 		const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
   2477 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   2478 		sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
   2479 		sa = sin6tosa(sin6);
   2480 #endif
   2481 	}
   2482 
   2483 	wgp = wg_pick_peer_by_sa(wg, sa, &psref);
   2484 	ok = (wgp == wgp_expected);
   2485 	if (wgp != NULL)
   2486 		wg_put_peer(wgp, &psref);
   2487 
   2488 	return ok;
   2489 }
   2490 
   2491 static void
   2492 wg_session_dtor_timer(void *arg)
   2493 {
   2494 	struct wg_peer *wgp = arg;
   2495 
   2496 	WG_TRACE("enter");
   2497 
   2498 	wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
   2499 }
   2500 
   2501 static void
   2502 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
   2503 {
   2504 
   2505 	/* 1 second grace period */
   2506 	callout_schedule(&wgp->wgp_session_dtor_timer, hz);
   2507 }
   2508 
   2509 static bool
   2510 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
   2511 {
   2512 	if (sa1->sa_family != sa2->sa_family)
   2513 		return false;
   2514 
   2515 	switch (sa1->sa_family) {
   2516 #ifdef INET
   2517 	case AF_INET:
   2518 		return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
   2519 #endif
   2520 #ifdef INET6
   2521 	case AF_INET6:
   2522 		return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
   2523 #endif
   2524 	default:
   2525 		return false;
   2526 	}
   2527 }
   2528 
   2529 static void
   2530 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
   2531     const struct sockaddr *src)
   2532 {
   2533 	struct wg_sockaddr *wgsa;
   2534 	struct psref psref;
   2535 
   2536 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   2537 
   2538 #ifdef WG_DEBUG_LOG
   2539 	char oldaddr[128], newaddr[128];
   2540 	sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
   2541 	sockaddr_format(src, newaddr, sizeof(newaddr));
   2542 	WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
   2543 #endif
   2544 
   2545 	/*
   2546 	 * III: "Since the packet has authenticated correctly, the source IP of
   2547 	 * the outer UDP/IP packet is used to update the endpoint for peer..."
   2548 	 */
   2549 	if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
   2550 		!sockaddr_port_match(src, wgsatosa(wgsa)))) {
   2551 		/* XXX We can't change the endpoint twice in a short period */
   2552 		if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
   2553 			wg_change_endpoint(wgp, src);
   2554 		}
   2555 	}
   2556 
   2557 	wg_put_sa(wgp, wgsa, &psref);
   2558 }
   2559 
   2560 static void __noinline
   2561 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
   2562     const struct sockaddr *src)
   2563 {
   2564 	struct wg_msg_data *wgmd;
   2565 	char *encrypted_buf = NULL, *decrypted_buf;
   2566 	size_t encrypted_len, decrypted_len;
   2567 	struct wg_session *wgs;
   2568 	struct wg_peer *wgp;
   2569 	int state;
   2570 	size_t mlen;
   2571 	struct psref psref;
   2572 	int error, af;
   2573 	bool success, free_encrypted_buf = false, ok;
   2574 	struct mbuf *n;
   2575 
   2576 	KASSERT(m->m_len >= sizeof(struct wg_msg_data));
   2577 	wgmd = mtod(m, struct wg_msg_data *);
   2578 
   2579 	KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
   2580 	WG_TRACE("data");
   2581 
   2582 	/* Find the putative session, or drop.  */
   2583 	wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
   2584 	if (wgs == NULL) {
   2585 		WG_TRACE("No session found");
   2586 		m_freem(m);
   2587 		return;
   2588 	}
   2589 
   2590 	/*
   2591 	 * We are only ready to handle data when in INIT_PASSIVE,
   2592 	 * ESTABLISHED, or DESTROYING.  All transitions out of that
   2593 	 * state dissociate the session index and drain psrefs.
   2594 	 */
   2595 	state = atomic_load_relaxed(&wgs->wgs_state);
   2596 	switch (state) {
   2597 	case WGS_STATE_UNKNOWN:
   2598 		panic("wg session %p in unknown state has session index %u",
   2599 		    wgs, wgmd->wgmd_receiver);
   2600 	case WGS_STATE_INIT_ACTIVE:
   2601 		WG_TRACE("not yet ready for data");
   2602 		goto out;
   2603 	case WGS_STATE_INIT_PASSIVE:
   2604 	case WGS_STATE_ESTABLISHED:
   2605 	case WGS_STATE_DESTROYING:
   2606 		break;
   2607 	}
   2608 
   2609 	/*
   2610 	 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
   2611 	 * to update the endpoint if authentication succeeds.
   2612 	 */
   2613 	wgp = wgs->wgs_peer;
   2614 
   2615 	/*
   2616 	 * Reject outrageously wrong sequence numbers before doing any
   2617 	 * crypto work or taking any locks.
   2618 	 */
   2619 	error = sliwin_check_fast(&wgs->wgs_recvwin->window,
   2620 	    le64toh(wgmd->wgmd_counter));
   2621 	if (error) {
   2622 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2623 		    "%s: peer %s: out-of-window packet: %"PRIu64"\n",
   2624 		    if_name(&wg->wg_if), wgp->wgp_name,
   2625 		    le64toh(wgmd->wgmd_counter));
   2626 		goto out;
   2627 	}
   2628 
   2629 	/* Ensure the payload and authenticator are contiguous.  */
   2630 	mlen = m_length(m);
   2631 	encrypted_len = mlen - sizeof(*wgmd);
   2632 	if (encrypted_len < WG_AUTHTAG_LEN) {
   2633 		WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
   2634 		goto out;
   2635 	}
   2636 	success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
   2637 	if (success) {
   2638 		encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
   2639 	} else {
   2640 		encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
   2641 		if (encrypted_buf == NULL) {
   2642 			WG_DLOG("failed to allocate encrypted_buf\n");
   2643 			goto out;
   2644 		}
   2645 		m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
   2646 		free_encrypted_buf = true;
   2647 	}
   2648 	/* m_ensure_contig may change m regardless of its result */
   2649 	KASSERT(m->m_len >= sizeof(*wgmd));
   2650 	wgmd = mtod(m, struct wg_msg_data *);
   2651 
   2652 	/*
   2653 	 * Get a buffer for the plaintext.  Add WG_AUTHTAG_LEN to avoid
   2654 	 * a zero-length buffer (XXX).  Drop if plaintext is longer
   2655 	 * than MCLBYTES (XXX).
   2656 	 */
   2657 	decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
   2658 	if (decrypted_len > MCLBYTES) {
   2659 		/* FIXME handle larger data than MCLBYTES */
   2660 		WG_DLOG("couldn't handle larger data than MCLBYTES\n");
   2661 		goto out;
   2662 	}
   2663 	n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
   2664 	if (n == NULL) {
   2665 		WG_DLOG("wg_get_mbuf failed\n");
   2666 		goto out;
   2667 	}
   2668 	decrypted_buf = mtod(n, char *);
   2669 
   2670 	/* Decrypt and verify the packet.  */
   2671 	WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
   2672 	error = wg_algo_aead_dec(decrypted_buf,
   2673 	    encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
   2674 	    wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
   2675 	    encrypted_len, NULL, 0);
   2676 	if (error != 0) {
   2677 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2678 		    "%s: peer %s: failed to wg_algo_aead_dec\n",
   2679 		    if_name(&wg->wg_if), wgp->wgp_name);
   2680 		m_freem(n);
   2681 		goto out;
   2682 	}
   2683 	WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
   2684 
   2685 	/* Packet is genuine.  Reject it if a replay or just too old.  */
   2686 	mutex_enter(&wgs->wgs_recvwin->lock);
   2687 	error = sliwin_update(&wgs->wgs_recvwin->window,
   2688 	    le64toh(wgmd->wgmd_counter));
   2689 	mutex_exit(&wgs->wgs_recvwin->lock);
   2690 	if (error) {
   2691 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2692 		    "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
   2693 		    if_name(&wg->wg_if), wgp->wgp_name,
   2694 		    le64toh(wgmd->wgmd_counter));
   2695 		m_freem(n);
   2696 		goto out;
   2697 	}
   2698 
   2699 	/* We're done with m now; free it and chuck the pointers.  */
   2700 	m_freem(m);
   2701 	m = NULL;
   2702 	wgmd = NULL;
   2703 
   2704 	/*
   2705 	 * Validate the encapsulated packet header and get the address
   2706 	 * family, or drop.
   2707 	 */
   2708 	ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
   2709 	if (!ok) {
   2710 		m_freem(n);
   2711 		goto out;
   2712 	}
   2713 
   2714 	/*
   2715 	 * The packet is genuine.  Update the peer's endpoint if the
   2716 	 * source address changed.
   2717 	 *
   2718 	 * XXX How to prevent DoS by replaying genuine packets from the
   2719 	 * wrong source address?
   2720 	 */
   2721 	wg_update_endpoint_if_necessary(wgp, src);
   2722 
   2723 	/* Submit it into our network stack if routable.  */
   2724 	ok = wg_validate_route(wg, wgp, af, decrypted_buf);
   2725 	if (ok) {
   2726 		wg->wg_ops->input(&wg->wg_if, n, af);
   2727 	} else {
   2728 		char addrstr[INET6_ADDRSTRLEN];
   2729 		memset(addrstr, 0, sizeof(addrstr));
   2730 		if (af == AF_INET) {
   2731 			const struct ip *ip = (const struct ip *)decrypted_buf;
   2732 			IN_PRINT(addrstr, &ip->ip_src);
   2733 #ifdef INET6
   2734 		} else if (af == AF_INET6) {
   2735 			const struct ip6_hdr *ip6 =
   2736 			    (const struct ip6_hdr *)decrypted_buf;
   2737 			IN6_PRINT(addrstr, &ip6->ip6_src);
   2738 #endif
   2739 		}
   2740 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2741 		    "%s: peer %s: invalid source address (%s)\n",
   2742 		    if_name(&wg->wg_if), wgp->wgp_name, addrstr);
   2743 		m_freem(n);
   2744 		/*
   2745 		 * The inner address is invalid however the session is valid
   2746 		 * so continue the session processing below.
   2747 		 */
   2748 	}
   2749 	n = NULL;
   2750 
   2751 	/* Update the state machine if necessary.  */
   2752 	if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
   2753 		/*
   2754 		 * We were waiting for the initiator to send their
   2755 		 * first data transport message, and that has happened.
   2756 		 * Schedule a task to establish this session.
   2757 		 */
   2758 		wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
   2759 	} else {
   2760 		if (__predict_false(wg_need_to_send_init_message(wgs))) {
   2761 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   2762 		}
   2763 		/*
   2764 		 * [W] 6.5 Passive Keepalive
   2765 		 * "If a peer has received a validly-authenticated transport
   2766 		 *  data message (section 5.4.6), but does not have any packets
   2767 		 *  itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
   2768 		 *  a keepalive message."
   2769 		 */
   2770 		WG_DLOG("time_uptime=%ju wgs_time_last_data_sent=%ju\n",
   2771 		    (uintmax_t)time_uptime,
   2772 		    (uintmax_t)wgs->wgs_time_last_data_sent);
   2773 		if ((time_uptime - wgs->wgs_time_last_data_sent) >=
   2774 		    wg_keepalive_timeout) {
   2775 			WG_TRACE("Schedule sending keepalive message");
   2776 			/*
   2777 			 * We can't send a keepalive message here to avoid
   2778 			 * a deadlock;  we already hold the solock of a socket
   2779 			 * that is used to send the message.
   2780 			 */
   2781 			wg_schedule_peer_task(wgp,
   2782 			    WGP_TASK_SEND_KEEPALIVE_MESSAGE);
   2783 		}
   2784 	}
   2785 out:
   2786 	wg_put_session(wgs, &psref);
   2787 	m_freem(m);
   2788 	if (free_encrypted_buf)
   2789 		kmem_intr_free(encrypted_buf, encrypted_len);
   2790 }
   2791 
   2792 static void __noinline
   2793 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
   2794 {
   2795 	struct wg_session *wgs;
   2796 	struct wg_peer *wgp;
   2797 	struct psref psref;
   2798 	int error;
   2799 	uint8_t key[WG_HASH_LEN];
   2800 	uint8_t cookie[WG_COOKIE_LEN];
   2801 
   2802 	WG_TRACE("cookie msg received");
   2803 
   2804 	/* Find the putative session.  */
   2805 	wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
   2806 	if (wgs == NULL) {
   2807 		WG_TRACE("No session found");
   2808 		return;
   2809 	}
   2810 
   2811 	/* Lock the peer so we can update the cookie state.  */
   2812 	wgp = wgs->wgs_peer;
   2813 	mutex_enter(wgp->wgp_lock);
   2814 
   2815 	if (!wgp->wgp_last_sent_mac1_valid) {
   2816 		WG_TRACE("No valid mac1 sent (or expired)");
   2817 		goto out;
   2818 	}
   2819 
   2820 	/* Decrypt the cookie and store it for later handshake retry.  */
   2821 	wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
   2822 	    sizeof(wgp->wgp_pubkey));
   2823 	error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
   2824 	    wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
   2825 	    wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
   2826 	    wgmc->wgmc_salt);
   2827 	if (error != 0) {
   2828 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2829 		    "%s: peer %s: wg_algo_aead_dec for cookie failed: "
   2830 		    "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
   2831 		goto out;
   2832 	}
   2833 	/*
   2834 	 * [W] 6.6: Interaction with Cookie Reply System
   2835 	 * "it should simply store the decrypted cookie value from the cookie
   2836 	 *  reply message, and wait for the expiration of the REKEY-TIMEOUT
   2837 	 *  timer for retrying a handshake initiation message."
   2838 	 */
   2839 	wgp->wgp_latest_cookie_time = time_uptime;
   2840 	memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
   2841 out:
   2842 	mutex_exit(wgp->wgp_lock);
   2843 	wg_put_session(wgs, &psref);
   2844 }
   2845 
   2846 static struct mbuf *
   2847 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
   2848 {
   2849 	struct wg_msg wgm;
   2850 	size_t mbuflen;
   2851 	size_t msglen;
   2852 
   2853 	/*
   2854 	 * Get the mbuf chain length.  It is already guaranteed, by
   2855 	 * wg_overudp_cb, to be large enough for a struct wg_msg.
   2856 	 */
   2857 	mbuflen = m_length(m);
   2858 	KASSERT(mbuflen >= sizeof(struct wg_msg));
   2859 
   2860 	/*
   2861 	 * Copy the message header (32-bit message type) out -- we'll
   2862 	 * worry about contiguity and alignment later.
   2863 	 */
   2864 	m_copydata(m, 0, sizeof(wgm), &wgm);
   2865 	switch (le32toh(wgm.wgm_type)) {
   2866 	case WG_MSG_TYPE_INIT:
   2867 		msglen = sizeof(struct wg_msg_init);
   2868 		break;
   2869 	case WG_MSG_TYPE_RESP:
   2870 		msglen = sizeof(struct wg_msg_resp);
   2871 		break;
   2872 	case WG_MSG_TYPE_COOKIE:
   2873 		msglen = sizeof(struct wg_msg_cookie);
   2874 		break;
   2875 	case WG_MSG_TYPE_DATA:
   2876 		msglen = sizeof(struct wg_msg_data);
   2877 		break;
   2878 	default:
   2879 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   2880 		    "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
   2881 		    le32toh(wgm.wgm_type));
   2882 		goto error;
   2883 	}
   2884 
   2885 	/* Verify the mbuf chain is long enough for this type of message.  */
   2886 	if (__predict_false(mbuflen < msglen)) {
   2887 		WG_DLOG("Invalid msg size: mbuflen=%lu type=%u\n", mbuflen,
   2888 		    le32toh(wgm.wgm_type));
   2889 		goto error;
   2890 	}
   2891 
   2892 	/* Make the message header contiguous if necessary.  */
   2893 	if (__predict_false(m->m_len < msglen)) {
   2894 		m = m_pullup(m, msglen);
   2895 		if (m == NULL)
   2896 			return NULL;
   2897 	}
   2898 
   2899 	return m;
   2900 
   2901 error:
   2902 	m_freem(m);
   2903 	return NULL;
   2904 }
   2905 
   2906 static void
   2907 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
   2908     const struct sockaddr *src)
   2909 {
   2910 	struct wg_msg *wgm;
   2911 
   2912 	KASSERT(curlwp->l_pflag & LP_BOUND);
   2913 
   2914 	m = wg_validate_msg_header(wg, m);
   2915 	if (__predict_false(m == NULL))
   2916 		return;
   2917 
   2918 	KASSERT(m->m_len >= sizeof(struct wg_msg));
   2919 	wgm = mtod(m, struct wg_msg *);
   2920 	switch (le32toh(wgm->wgm_type)) {
   2921 	case WG_MSG_TYPE_INIT:
   2922 		wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
   2923 		break;
   2924 	case WG_MSG_TYPE_RESP:
   2925 		wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
   2926 		break;
   2927 	case WG_MSG_TYPE_COOKIE:
   2928 		wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
   2929 		break;
   2930 	case WG_MSG_TYPE_DATA:
   2931 		wg_handle_msg_data(wg, m, src);
   2932 		/* wg_handle_msg_data frees m for us */
   2933 		return;
   2934 	default:
   2935 		panic("invalid message type: %d", le32toh(wgm->wgm_type));
   2936 	}
   2937 
   2938 	m_freem(m);
   2939 }
   2940 
   2941 static void
   2942 wg_receive_packets(struct wg_softc *wg, const int af)
   2943 {
   2944 
   2945 	for (;;) {
   2946 		int error, flags;
   2947 		struct socket *so;
   2948 		struct mbuf *m = NULL;
   2949 		struct uio dummy_uio;
   2950 		struct mbuf *paddr = NULL;
   2951 		struct sockaddr *src;
   2952 
   2953 		so = wg_get_so_by_af(wg, af);
   2954 		flags = MSG_DONTWAIT;
   2955 		dummy_uio.uio_resid = 1000000000;
   2956 
   2957 		error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
   2958 		    &flags);
   2959 		if (error || m == NULL) {
   2960 			//if (error == EWOULDBLOCK)
   2961 			return;
   2962 		}
   2963 
   2964 		KASSERT(paddr != NULL);
   2965 		KASSERT(paddr->m_len >= sizeof(struct sockaddr));
   2966 		src = mtod(paddr, struct sockaddr *);
   2967 
   2968 		wg_handle_packet(wg, m, src);
   2969 	}
   2970 }
   2971 
   2972 static void
   2973 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
   2974 {
   2975 
   2976 	psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
   2977 }
   2978 
   2979 static void
   2980 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
   2981 {
   2982 
   2983 	psref_release(psref, &wgp->wgp_psref, wg_psref_class);
   2984 }
   2985 
   2986 static void
   2987 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
   2988 {
   2989 	struct wg_session *wgs;
   2990 
   2991 	WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
   2992 
   2993 	KASSERT(mutex_owned(wgp->wgp_lock));
   2994 
   2995 	if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
   2996 		WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
   2997 		    if_name(&wg->wg_if));
   2998 		/* XXX should do something? */
   2999 		return;
   3000 	}
   3001 
   3002 	wgs = wgp->wgp_session_stable;
   3003 	if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
   3004 		/* XXX What if the unstable session is already INIT_ACTIVE?  */
   3005 		wg_send_handshake_msg_init(wg, wgp);
   3006 	} else {
   3007 		/* rekey */
   3008 		wgs = wgp->wgp_session_unstable;
   3009 		if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   3010 			wg_send_handshake_msg_init(wg, wgp);
   3011 	}
   3012 }
   3013 
   3014 static void
   3015 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
   3016 {
   3017 	struct wg_session *wgs;
   3018 
   3019 	WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
   3020 
   3021 	KASSERT(mutex_owned(wgp->wgp_lock));
   3022 	KASSERT(wgp->wgp_handshake_start_time != 0);
   3023 
   3024 	wgs = wgp->wgp_session_unstable;
   3025 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   3026 		return;
   3027 
   3028 	/*
   3029 	 * XXX no real need to assign a new index here, but we do need
   3030 	 * to transition to UNKNOWN temporarily
   3031 	 */
   3032 	wg_put_session_index(wg, wgs);
   3033 
   3034 	/* [W] 6.4 Handshake Initiation Retransmission */
   3035 	if ((time_uptime - wgp->wgp_handshake_start_time) >
   3036 	    wg_rekey_attempt_time) {
   3037 		/* Give up handshaking */
   3038 		wgp->wgp_handshake_start_time = 0;
   3039 		WG_TRACE("give up");
   3040 
   3041 		/*
   3042 		 * If a new data packet comes, handshaking will be retried
   3043 		 * and a new session would be established at that time,
   3044 		 * however we don't want to send pending packets then.
   3045 		 */
   3046 		wg_purge_pending_packets(wgp);
   3047 		return;
   3048 	}
   3049 
   3050 	wg_task_send_init_message(wg, wgp);
   3051 }
   3052 
   3053 static void
   3054 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
   3055 {
   3056 	struct wg_session *wgs, *wgs_prev;
   3057 	struct mbuf *m;
   3058 
   3059 	KASSERT(mutex_owned(wgp->wgp_lock));
   3060 
   3061 	wgs = wgp->wgp_session_unstable;
   3062 	if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
   3063 		/* XXX Can this happen?  */
   3064 		return;
   3065 
   3066 	wgs->wgs_state = WGS_STATE_ESTABLISHED;
   3067 	wgs->wgs_time_established = time_uptime;
   3068 	wgs->wgs_time_last_data_sent = 0;
   3069 	wgs->wgs_is_initiator = false;
   3070 	WG_TRACE("WGS_STATE_ESTABLISHED");
   3071 
   3072 	wg_swap_sessions(wgp);
   3073 	KASSERT(wgs == wgp->wgp_session_stable);
   3074 	wgs_prev = wgp->wgp_session_unstable;
   3075 	getnanotime(&wgp->wgp_last_handshake_time);
   3076 	wgp->wgp_handshake_start_time = 0;
   3077 	wgp->wgp_last_sent_mac1_valid = false;
   3078 	wgp->wgp_last_sent_cookie_valid = false;
   3079 
   3080 	/* If we had a data packet queued up, send it.  */
   3081 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   3082 		kpreempt_disable();
   3083 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
   3084 		M_SETCTX(m, wgp);
   3085 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   3086 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   3087 			    if_name(&wg->wg_if));
   3088 			m_freem(m);
   3089 		}
   3090 		kpreempt_enable();
   3091 	}
   3092 
   3093 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   3094 		/* Wait for wg_get_stable_session to drain.  */
   3095 		pserialize_perform(wgp->wgp_psz);
   3096 
   3097 		/* Transition ESTABLISHED->DESTROYING.  */
   3098 		wgs_prev->wgs_state = WGS_STATE_DESTROYING;
   3099 
   3100 		/* We can't destroy the old session immediately */
   3101 		wg_schedule_session_dtor_timer(wgp);
   3102 	} else {
   3103 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   3104 		    "state=%d", wgs_prev->wgs_state);
   3105 		wg_clear_states(wgs_prev);
   3106 		wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
   3107 	}
   3108 }
   3109 
   3110 static void
   3111 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
   3112 {
   3113 
   3114 	WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
   3115 
   3116 	KASSERT(mutex_owned(wgp->wgp_lock));
   3117 
   3118 	if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
   3119 		pserialize_perform(wgp->wgp_psz);
   3120 		mutex_exit(wgp->wgp_lock);
   3121 		psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
   3122 		    wg_psref_class);
   3123 		psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
   3124 		    wg_psref_class);
   3125 		mutex_enter(wgp->wgp_lock);
   3126 		atomic_store_release(&wgp->wgp_endpoint_changing, 0);
   3127 	}
   3128 }
   3129 
   3130 static void
   3131 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
   3132 {
   3133 	struct wg_session *wgs;
   3134 
   3135 	WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
   3136 
   3137 	KASSERT(mutex_owned(wgp->wgp_lock));
   3138 
   3139 	wgs = wgp->wgp_session_stable;
   3140 	if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
   3141 		return;
   3142 
   3143 	wg_send_keepalive_msg(wgp, wgs);
   3144 }
   3145 
   3146 static void
   3147 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
   3148 {
   3149 	struct wg_session *wgs;
   3150 
   3151 	WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
   3152 
   3153 	KASSERT(mutex_owned(wgp->wgp_lock));
   3154 
   3155 	wgs = wgp->wgp_session_unstable;
   3156 	if (wgs->wgs_state == WGS_STATE_DESTROYING) {
   3157 		wg_put_session_index(wg, wgs);
   3158 	}
   3159 }
   3160 
   3161 static void
   3162 wg_peer_work(struct work *wk, void *cookie)
   3163 {
   3164 	struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
   3165 	struct wg_softc *wg = wgp->wgp_sc;
   3166 	unsigned int tasks;
   3167 
   3168 	mutex_enter(wgp->wgp_intr_lock);
   3169 	while ((tasks = wgp->wgp_tasks) != 0) {
   3170 		wgp->wgp_tasks = 0;
   3171 		mutex_exit(wgp->wgp_intr_lock);
   3172 
   3173 		mutex_enter(wgp->wgp_lock);
   3174 		if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
   3175 			wg_task_send_init_message(wg, wgp);
   3176 		if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
   3177 			wg_task_retry_handshake(wg, wgp);
   3178 		if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
   3179 			wg_task_establish_session(wg, wgp);
   3180 		if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
   3181 			wg_task_endpoint_changed(wg, wgp);
   3182 		if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
   3183 			wg_task_send_keepalive_message(wg, wgp);
   3184 		if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
   3185 			wg_task_destroy_prev_session(wg, wgp);
   3186 		mutex_exit(wgp->wgp_lock);
   3187 
   3188 		mutex_enter(wgp->wgp_intr_lock);
   3189 	}
   3190 	mutex_exit(wgp->wgp_intr_lock);
   3191 }
   3192 
   3193 static void
   3194 wg_job(struct threadpool_job *job)
   3195 {
   3196 	struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
   3197 	int bound, upcalls;
   3198 
   3199 	mutex_enter(wg->wg_intr_lock);
   3200 	while ((upcalls = wg->wg_upcalls) != 0) {
   3201 		wg->wg_upcalls = 0;
   3202 		mutex_exit(wg->wg_intr_lock);
   3203 		bound = curlwp_bind();
   3204 		if (ISSET(upcalls, WG_UPCALL_INET))
   3205 			wg_receive_packets(wg, AF_INET);
   3206 		if (ISSET(upcalls, WG_UPCALL_INET6))
   3207 			wg_receive_packets(wg, AF_INET6);
   3208 		curlwp_bindx(bound);
   3209 		mutex_enter(wg->wg_intr_lock);
   3210 	}
   3211 	threadpool_job_done(job);
   3212 	mutex_exit(wg->wg_intr_lock);
   3213 }
   3214 
   3215 static int
   3216 wg_bind_port(struct wg_softc *wg, const uint16_t port)
   3217 {
   3218 	int error;
   3219 	uint16_t old_port = wg->wg_listen_port;
   3220 
   3221 	if (port != 0 && old_port == port)
   3222 		return 0;
   3223 
   3224 	struct sockaddr_in _sin, *sin = &_sin;
   3225 	sin->sin_len = sizeof(*sin);
   3226 	sin->sin_family = AF_INET;
   3227 	sin->sin_addr.s_addr = INADDR_ANY;
   3228 	sin->sin_port = htons(port);
   3229 
   3230 	error = sobind(wg->wg_so4, sintosa(sin), curlwp);
   3231 	if (error != 0)
   3232 		return error;
   3233 
   3234 #ifdef INET6
   3235 	struct sockaddr_in6 _sin6, *sin6 = &_sin6;
   3236 	sin6->sin6_len = sizeof(*sin6);
   3237 	sin6->sin6_family = AF_INET6;
   3238 	sin6->sin6_addr = in6addr_any;
   3239 	sin6->sin6_port = htons(port);
   3240 
   3241 	error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
   3242 	if (error != 0)
   3243 		return error;
   3244 #endif
   3245 
   3246 	wg->wg_listen_port = port;
   3247 
   3248 	return 0;
   3249 }
   3250 
   3251 static void
   3252 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
   3253 {
   3254 	struct wg_softc *wg = cookie;
   3255 	int reason;
   3256 
   3257 	reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
   3258 	    WG_UPCALL_INET :
   3259 	    WG_UPCALL_INET6;
   3260 
   3261 	mutex_enter(wg->wg_intr_lock);
   3262 	wg->wg_upcalls |= reason;
   3263 	threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
   3264 	mutex_exit(wg->wg_intr_lock);
   3265 }
   3266 
   3267 static int
   3268 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
   3269     struct sockaddr *src, void *arg)
   3270 {
   3271 	struct wg_softc *wg = arg;
   3272 	struct wg_msg wgm;
   3273 	struct mbuf *m = *mp;
   3274 
   3275 	WG_TRACE("enter");
   3276 
   3277 	/* Verify the mbuf chain is long enough to have a wg msg header.  */
   3278 	KASSERT(offset <= m_length(m));
   3279 	if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
   3280 		/* drop on the floor */
   3281 		m_freem(m);
   3282 		return -1;
   3283 	}
   3284 
   3285 	/*
   3286 	 * Copy the message header (32-bit message type) out -- we'll
   3287 	 * worry about contiguity and alignment later.
   3288 	 */
   3289 	m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
   3290 	WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
   3291 
   3292 	/*
   3293 	 * Handle DATA packets promptly as they arrive.  Other packets
   3294 	 * may require expensive public-key crypto and are not as
   3295 	 * sensitive to latency, so defer them to the worker thread.
   3296 	 */
   3297 	switch (le32toh(wgm.wgm_type)) {
   3298 	case WG_MSG_TYPE_DATA:
   3299 		/* handle immediately */
   3300 		m_adj(m, offset);
   3301 		if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
   3302 			m = m_pullup(m, sizeof(struct wg_msg_data));
   3303 			if (m == NULL)
   3304 				return -1;
   3305 		}
   3306 		wg_handle_msg_data(wg, m, src);
   3307 		*mp = NULL;
   3308 		return 1;
   3309 	case WG_MSG_TYPE_INIT:
   3310 	case WG_MSG_TYPE_RESP:
   3311 	case WG_MSG_TYPE_COOKIE:
   3312 		/* pass through to so_receive in wg_receive_packets */
   3313 		return 0;
   3314 	default:
   3315 		/* drop on the floor */
   3316 		m_freem(m);
   3317 		return -1;
   3318 	}
   3319 }
   3320 
   3321 static int
   3322 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
   3323 {
   3324 	int error;
   3325 	struct socket *so;
   3326 
   3327 	error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
   3328 	if (error != 0)
   3329 		return error;
   3330 
   3331 	solock(so);
   3332 	so->so_upcallarg = wg;
   3333 	so->so_upcall = wg_so_upcall;
   3334 	so->so_rcv.sb_flags |= SB_UPCALL;
   3335 	inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
   3336 	sounlock(so);
   3337 
   3338 	*sop = so;
   3339 
   3340 	return 0;
   3341 }
   3342 
   3343 static bool
   3344 wg_session_hit_limits(struct wg_session *wgs)
   3345 {
   3346 
   3347 	/*
   3348 	 * [W] 6.2: Transport Message Limits
   3349 	 * "After REJECT-AFTER-MESSAGES transport data messages or after the
   3350 	 *  current secure session is REJECT-AFTER-TIME seconds old, whichever
   3351 	 *  comes first, WireGuard will refuse to send any more transport data
   3352 	 *  messages using the current secure session, ..."
   3353 	 */
   3354 	KASSERT(wgs->wgs_time_established != 0);
   3355 	if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
   3356 		WG_DLOG("The session hits REJECT_AFTER_TIME\n");
   3357 		return true;
   3358 	} else if (wg_session_get_send_counter(wgs) >
   3359 	    wg_reject_after_messages) {
   3360 		WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
   3361 		return true;
   3362 	}
   3363 
   3364 	return false;
   3365 }
   3366 
   3367 static void
   3368 wgintr(void *cookie)
   3369 {
   3370 	struct wg_peer *wgp;
   3371 	struct wg_session *wgs;
   3372 	struct mbuf *m;
   3373 	struct psref psref;
   3374 
   3375 	while ((m = pktq_dequeue(wg_pktq)) != NULL) {
   3376 		wgp = M_GETCTX(m, struct wg_peer *);
   3377 		if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
   3378 			WG_TRACE("no stable session");
   3379 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3380 			goto next0;
   3381 		}
   3382 		if (__predict_false(wg_session_hit_limits(wgs))) {
   3383 			WG_TRACE("stable session hit limits");
   3384 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3385 			goto next1;
   3386 		}
   3387 		wg_send_data_msg(wgp, wgs, m);
   3388 		m = NULL;	/* consumed */
   3389 next1:		wg_put_session(wgs, &psref);
   3390 next0:		m_freem(m);
   3391 		/* XXX Yield to avoid userland starvation?  */
   3392 	}
   3393 }
   3394 
   3395 static void
   3396 wg_rekey_timer(void *arg)
   3397 {
   3398 	struct wg_peer *wgp = arg;
   3399 
   3400 	wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3401 }
   3402 
   3403 static void
   3404 wg_purge_pending_packets(struct wg_peer *wgp)
   3405 {
   3406 	struct mbuf *m;
   3407 
   3408 	m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   3409 	m_freem(m);
   3410 	pktq_barrier(wg_pktq);
   3411 }
   3412 
   3413 static void
   3414 wg_handshake_timeout_timer(void *arg)
   3415 {
   3416 	struct wg_peer *wgp = arg;
   3417 
   3418 	WG_TRACE("enter");
   3419 
   3420 	wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
   3421 }
   3422 
   3423 static struct wg_peer *
   3424 wg_alloc_peer(struct wg_softc *wg)
   3425 {
   3426 	struct wg_peer *wgp;
   3427 
   3428 	wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
   3429 
   3430 	wgp->wgp_sc = wg;
   3431 	callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
   3432 	callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
   3433 	callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
   3434 	callout_setfunc(&wgp->wgp_handshake_timeout_timer,
   3435 	    wg_handshake_timeout_timer, wgp);
   3436 	callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
   3437 	callout_setfunc(&wgp->wgp_session_dtor_timer,
   3438 	    wg_session_dtor_timer, wgp);
   3439 	PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
   3440 	wgp->wgp_endpoint_changing = false;
   3441 	wgp->wgp_endpoint_available = false;
   3442 	wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3443 	wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3444 	wgp->wgp_psz = pserialize_create();
   3445 	psref_target_init(&wgp->wgp_psref, wg_psref_class);
   3446 
   3447 	wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
   3448 	wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
   3449 	psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3450 	psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3451 
   3452 	struct wg_session *wgs;
   3453 	wgp->wgp_session_stable =
   3454 	    kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
   3455 	wgp->wgp_session_unstable =
   3456 	    kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
   3457 	wgs = wgp->wgp_session_stable;
   3458 	wgs->wgs_peer = wgp;
   3459 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3460 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3461 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3462 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3463 #endif
   3464 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3465 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3466 
   3467 	wgs = wgp->wgp_session_unstable;
   3468 	wgs->wgs_peer = wgp;
   3469 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3470 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3471 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3472 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3473 #endif
   3474 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3475 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3476 
   3477 	return wgp;
   3478 }
   3479 
   3480 static void
   3481 wg_destroy_peer(struct wg_peer *wgp)
   3482 {
   3483 	struct wg_session *wgs;
   3484 	struct wg_softc *wg = wgp->wgp_sc;
   3485 
   3486 	/* Prevent new packets from this peer on any source address.  */
   3487 	rw_enter(wg->wg_rwlock, RW_WRITER);
   3488 	for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
   3489 		struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
   3490 		struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
   3491 		struct radix_node *rn;
   3492 
   3493 		KASSERT(rnh != NULL);
   3494 		rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
   3495 		    &wga->wga_sa_mask, rnh);
   3496 		if (rn == NULL) {
   3497 			char addrstr[128];
   3498 			sockaddr_format(&wga->wga_sa_addr, addrstr,
   3499 			    sizeof(addrstr));
   3500 			WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
   3501 			    if_name(&wg->wg_if), addrstr);
   3502 		}
   3503 	}
   3504 	rw_exit(wg->wg_rwlock);
   3505 
   3506 	/* Purge pending packets.  */
   3507 	wg_purge_pending_packets(wgp);
   3508 
   3509 	/* Halt all packet processing and timeouts.  */
   3510 	callout_halt(&wgp->wgp_rekey_timer, NULL);
   3511 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
   3512 	callout_halt(&wgp->wgp_session_dtor_timer, NULL);
   3513 
   3514 	/* Wait for any queued work to complete.  */
   3515 	workqueue_wait(wg_wq, &wgp->wgp_work);
   3516 
   3517 	wgs = wgp->wgp_session_unstable;
   3518 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3519 		mutex_enter(wgp->wgp_lock);
   3520 		wg_destroy_session(wg, wgs);
   3521 		mutex_exit(wgp->wgp_lock);
   3522 	}
   3523 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3524 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3525 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3526 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3527 #endif
   3528 	kmem_free(wgs, sizeof(*wgs));
   3529 
   3530 	wgs = wgp->wgp_session_stable;
   3531 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3532 		mutex_enter(wgp->wgp_lock);
   3533 		wg_destroy_session(wg, wgs);
   3534 		mutex_exit(wgp->wgp_lock);
   3535 	}
   3536 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3537 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3538 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3539 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3540 #endif
   3541 	kmem_free(wgs, sizeof(*wgs));
   3542 
   3543 	psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3544 	psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3545 	kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
   3546 	kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
   3547 
   3548 	pserialize_destroy(wgp->wgp_psz);
   3549 	mutex_obj_free(wgp->wgp_intr_lock);
   3550 	mutex_obj_free(wgp->wgp_lock);
   3551 
   3552 	kmem_free(wgp, sizeof(*wgp));
   3553 }
   3554 
   3555 static void
   3556 wg_destroy_all_peers(struct wg_softc *wg)
   3557 {
   3558 	struct wg_peer *wgp, *wgp0 __diagused;
   3559 	void *garbage_byname, *garbage_bypubkey;
   3560 
   3561 restart:
   3562 	garbage_byname = garbage_bypubkey = NULL;
   3563 	mutex_enter(wg->wg_lock);
   3564 	WG_PEER_WRITER_FOREACH(wgp, wg) {
   3565 		if (wgp->wgp_name[0]) {
   3566 			wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
   3567 			    strlen(wgp->wgp_name));
   3568 			KASSERT(wgp0 == wgp);
   3569 			garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3570 		}
   3571 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3572 		    sizeof(wgp->wgp_pubkey));
   3573 		KASSERT(wgp0 == wgp);
   3574 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3575 		WG_PEER_WRITER_REMOVE(wgp);
   3576 		wg->wg_npeers--;
   3577 		mutex_enter(wgp->wgp_lock);
   3578 		pserialize_perform(wgp->wgp_psz);
   3579 		mutex_exit(wgp->wgp_lock);
   3580 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3581 		break;
   3582 	}
   3583 	mutex_exit(wg->wg_lock);
   3584 
   3585 	if (wgp == NULL)
   3586 		return;
   3587 
   3588 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3589 
   3590 	wg_destroy_peer(wgp);
   3591 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3592 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3593 
   3594 	goto restart;
   3595 }
   3596 
   3597 static int
   3598 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
   3599 {
   3600 	struct wg_peer *wgp, *wgp0 __diagused;
   3601 	void *garbage_byname, *garbage_bypubkey;
   3602 
   3603 	mutex_enter(wg->wg_lock);
   3604 	wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
   3605 	if (wgp != NULL) {
   3606 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3607 		    sizeof(wgp->wgp_pubkey));
   3608 		KASSERT(wgp0 == wgp);
   3609 		garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3610 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3611 		WG_PEER_WRITER_REMOVE(wgp);
   3612 		wg->wg_npeers--;
   3613 		if (wg->wg_npeers == 0)
   3614 			if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
   3615 		mutex_enter(wgp->wgp_lock);
   3616 		pserialize_perform(wgp->wgp_psz);
   3617 		mutex_exit(wgp->wgp_lock);
   3618 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3619 	}
   3620 	mutex_exit(wg->wg_lock);
   3621 
   3622 	if (wgp == NULL)
   3623 		return ENOENT;
   3624 
   3625 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3626 
   3627 	wg_destroy_peer(wgp);
   3628 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3629 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3630 
   3631 	return 0;
   3632 }
   3633 
   3634 static int
   3635 wg_if_attach(struct wg_softc *wg)
   3636 {
   3637 
   3638 	wg->wg_if.if_addrlen = 0;
   3639 	wg->wg_if.if_mtu = WG_MTU;
   3640 	wg->wg_if.if_flags = IFF_MULTICAST;
   3641 	wg->wg_if.if_extflags = IFEF_MPSAFE;
   3642 	wg->wg_if.if_ioctl = wg_ioctl;
   3643 	wg->wg_if.if_output = wg_output;
   3644 	wg->wg_if.if_init = wg_init;
   3645 #ifdef ALTQ
   3646 	wg->wg_if.if_start = wg_start;
   3647 #endif
   3648 	wg->wg_if.if_stop = wg_stop;
   3649 	wg->wg_if.if_type = IFT_OTHER;
   3650 	wg->wg_if.if_dlt = DLT_NULL;
   3651 	wg->wg_if.if_softc = wg;
   3652 #ifdef ALTQ
   3653 	IFQ_SET_READY(&wg->wg_if.if_snd);
   3654 #endif
   3655 	if_initialize(&wg->wg_if);
   3656 
   3657 	wg->wg_if.if_link_state = LINK_STATE_DOWN;
   3658 	if_alloc_sadl(&wg->wg_if);
   3659 	if_register(&wg->wg_if);
   3660 
   3661 	bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
   3662 
   3663 	return 0;
   3664 }
   3665 
   3666 static void
   3667 wg_if_detach(struct wg_softc *wg)
   3668 {
   3669 	struct ifnet *ifp = &wg->wg_if;
   3670 
   3671 	bpf_detach(ifp);
   3672 	if_detach(ifp);
   3673 }
   3674 
   3675 static int
   3676 wg_clone_create(struct if_clone *ifc, int unit)
   3677 {
   3678 	struct wg_softc *wg;
   3679 	int error;
   3680 
   3681 	wg_guarantee_initialized();
   3682 
   3683 	error = wg_count_inc();
   3684 	if (error)
   3685 		return error;
   3686 
   3687 	wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
   3688 
   3689 	if_initname(&wg->wg_if, ifc->ifc_name, unit);
   3690 
   3691 	PSLIST_INIT(&wg->wg_peers);
   3692 	wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
   3693 	wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
   3694 	wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
   3695 	wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3696 	wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3697 	wg->wg_rwlock = rw_obj_alloc();
   3698 	threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
   3699 	    "%s", if_name(&wg->wg_if));
   3700 	wg->wg_ops = &wg_ops_rumpkernel;
   3701 
   3702 	error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
   3703 	if (error)
   3704 		goto fail0;
   3705 
   3706 #ifdef INET
   3707 	error = wg_socreate(wg, AF_INET, &wg->wg_so4);
   3708 	if (error)
   3709 		goto fail1;
   3710 	rn_inithead((void **)&wg->wg_rtable_ipv4,
   3711 	    offsetof(struct sockaddr_in, sin_addr) * NBBY);
   3712 #endif
   3713 #ifdef INET6
   3714 	error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
   3715 	if (error)
   3716 		goto fail2;
   3717 	rn_inithead((void **)&wg->wg_rtable_ipv6,
   3718 	    offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
   3719 #endif
   3720 
   3721 	error = wg_if_attach(wg);
   3722 	if (error)
   3723 		goto fail3;
   3724 
   3725 	return 0;
   3726 
   3727 fail4: __unused
   3728 	wg_if_detach(wg);
   3729 fail3:	wg_destroy_all_peers(wg);
   3730 #ifdef INET6
   3731 	solock(wg->wg_so6);
   3732 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   3733 	sounlock(wg->wg_so6);
   3734 #endif
   3735 #ifdef INET
   3736 	solock(wg->wg_so4);
   3737 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   3738 	sounlock(wg->wg_so4);
   3739 #endif
   3740 	mutex_enter(wg->wg_intr_lock);
   3741 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   3742 	mutex_exit(wg->wg_intr_lock);
   3743 #ifdef INET6
   3744 	if (wg->wg_rtable_ipv6 != NULL)
   3745 		free(wg->wg_rtable_ipv6, M_RTABLE);
   3746 	soclose(wg->wg_so6);
   3747 fail2:
   3748 #endif
   3749 #ifdef INET
   3750 	if (wg->wg_rtable_ipv4 != NULL)
   3751 		free(wg->wg_rtable_ipv4, M_RTABLE);
   3752 	soclose(wg->wg_so4);
   3753 fail1:
   3754 #endif
   3755 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   3756 fail0:	threadpool_job_destroy(&wg->wg_job);
   3757 	rw_obj_free(wg->wg_rwlock);
   3758 	mutex_obj_free(wg->wg_intr_lock);
   3759 	mutex_obj_free(wg->wg_lock);
   3760 	thmap_destroy(wg->wg_sessions_byindex);
   3761 	thmap_destroy(wg->wg_peers_byname);
   3762 	thmap_destroy(wg->wg_peers_bypubkey);
   3763 	PSLIST_DESTROY(&wg->wg_peers);
   3764 	kmem_free(wg, sizeof(*wg));
   3765 	wg_count_dec();
   3766 	return error;
   3767 }
   3768 
   3769 static int
   3770 wg_clone_destroy(struct ifnet *ifp)
   3771 {
   3772 	struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
   3773 
   3774 #ifdef WG_RUMPKERNEL
   3775 	if (wg_user_mode(wg)) {
   3776 		rumpuser_wg_destroy(wg->wg_user);
   3777 		wg->wg_user = NULL;
   3778 	}
   3779 #endif
   3780 
   3781 	wg_if_detach(wg);
   3782 	wg_destroy_all_peers(wg);
   3783 #ifdef INET6
   3784 	solock(wg->wg_so6);
   3785 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   3786 	sounlock(wg->wg_so6);
   3787 #endif
   3788 #ifdef INET
   3789 	solock(wg->wg_so4);
   3790 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   3791 	sounlock(wg->wg_so4);
   3792 #endif
   3793 	mutex_enter(wg->wg_intr_lock);
   3794 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   3795 	mutex_exit(wg->wg_intr_lock);
   3796 #ifdef INET6
   3797 	if (wg->wg_rtable_ipv6 != NULL)
   3798 		free(wg->wg_rtable_ipv6, M_RTABLE);
   3799 	soclose(wg->wg_so6);
   3800 #endif
   3801 #ifdef INET
   3802 	if (wg->wg_rtable_ipv4 != NULL)
   3803 		free(wg->wg_rtable_ipv4, M_RTABLE);
   3804 	soclose(wg->wg_so4);
   3805 #endif
   3806 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   3807 	threadpool_job_destroy(&wg->wg_job);
   3808 	rw_obj_free(wg->wg_rwlock);
   3809 	mutex_obj_free(wg->wg_intr_lock);
   3810 	mutex_obj_free(wg->wg_lock);
   3811 	thmap_destroy(wg->wg_sessions_byindex);
   3812 	thmap_destroy(wg->wg_peers_byname);
   3813 	thmap_destroy(wg->wg_peers_bypubkey);
   3814 	PSLIST_DESTROY(&wg->wg_peers);
   3815 	kmem_free(wg, sizeof(*wg));
   3816 	wg_count_dec();
   3817 
   3818 	return 0;
   3819 }
   3820 
   3821 static struct wg_peer *
   3822 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
   3823     struct psref *psref)
   3824 {
   3825 	struct radix_node_head *rnh;
   3826 	struct radix_node *rn;
   3827 	struct wg_peer *wgp = NULL;
   3828 	struct wg_allowedip *wga;
   3829 
   3830 #ifdef WG_DEBUG_LOG
   3831 	char addrstr[128];
   3832 	sockaddr_format(sa, addrstr, sizeof(addrstr));
   3833 	WG_DLOG("sa=%s\n", addrstr);
   3834 #endif
   3835 
   3836 	rw_enter(wg->wg_rwlock, RW_READER);
   3837 
   3838 	rnh = wg_rnh(wg, sa->sa_family);
   3839 	if (rnh == NULL)
   3840 		goto out;
   3841 
   3842 	rn = rnh->rnh_matchaddr(sa, rnh);
   3843 	if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
   3844 		goto out;
   3845 
   3846 	WG_TRACE("success");
   3847 
   3848 	wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
   3849 	wgp = wga->wga_peer;
   3850 	wg_get_peer(wgp, psref);
   3851 
   3852 out:
   3853 	rw_exit(wg->wg_rwlock);
   3854 	return wgp;
   3855 }
   3856 
   3857 static void
   3858 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
   3859     struct wg_session *wgs, struct wg_msg_data *wgmd)
   3860 {
   3861 
   3862 	memset(wgmd, 0, sizeof(*wgmd));
   3863 	wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
   3864 	wgmd->wgmd_receiver = wgs->wgs_remote_index;
   3865 	/* [W] 5.4.6: msg.counter := Nm^send */
   3866 	/* [W] 5.4.6: Nm^send := Nm^send + 1 */
   3867 	wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
   3868 	WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
   3869 }
   3870 
   3871 static int
   3872 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
   3873     const struct rtentry *rt)
   3874 {
   3875 	struct wg_softc *wg = ifp->if_softc;
   3876 	struct wg_peer *wgp = NULL;
   3877 	struct wg_session *wgs = NULL;
   3878 	struct psref wgp_psref, wgs_psref;
   3879 	int bound;
   3880 	int error;
   3881 
   3882 	bound = curlwp_bind();
   3883 
   3884 	/* TODO make the nest limit configurable via sysctl */
   3885 	error = if_tunnel_check_nesting(ifp, m, 1);
   3886 	if (error) {
   3887 		WGLOG(LOG_ERR,
   3888 		    "%s: tunneling loop detected and packet dropped\n",
   3889 		    if_name(&wg->wg_if));
   3890 		goto out0;
   3891 	}
   3892 
   3893 #ifdef ALTQ
   3894 	bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
   3895 	    & ALTQF_ENABLED;
   3896 	if (altq)
   3897 		IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
   3898 #endif
   3899 
   3900 	bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
   3901 
   3902 	m->m_flags &= ~(M_BCAST|M_MCAST);
   3903 
   3904 	wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
   3905 	if (wgp == NULL) {
   3906 		WG_TRACE("peer not found");
   3907 		error = EHOSTUNREACH;
   3908 		goto out0;
   3909 	}
   3910 
   3911 	/* Clear checksum-offload flags. */
   3912 	m->m_pkthdr.csum_flags = 0;
   3913 	m->m_pkthdr.csum_data = 0;
   3914 
   3915 	/* Check whether there's an established session.  */
   3916 	wgs = wg_get_stable_session(wgp, &wgs_psref);
   3917 	if (wgs == NULL) {
   3918 		/*
   3919 		 * No established session.  If we're the first to try
   3920 		 * sending data, schedule a handshake and queue the
   3921 		 * packet for when the handshake is done; otherwise
   3922 		 * just drop the packet and let the ongoing handshake
   3923 		 * attempt continue.  We could queue more data packets
   3924 		 * but it's not clear that's worthwhile.
   3925 		 */
   3926 		if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
   3927 			m = NULL; /* consume */
   3928 			WG_TRACE("queued first packet; init handshake");
   3929 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3930 		} else {
   3931 			WG_TRACE("first packet already queued, dropping");
   3932 		}
   3933 		goto out1;
   3934 	}
   3935 
   3936 	/* There's an established session.  Toss it in the queue.  */
   3937 #ifdef ALTQ
   3938 	if (altq) {
   3939 		mutex_enter(ifp->if_snd.ifq_lock);
   3940 		if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   3941 			M_SETCTX(m, wgp);
   3942 			ALTQ_ENQUEUE(&ifp->if_snd, m, error);
   3943 			m = NULL; /* consume */
   3944 		}
   3945 		mutex_exit(ifp->if_snd.ifq_lock);
   3946 		if (m == NULL) {
   3947 			wg_start(ifp);
   3948 			goto out2;
   3949 		}
   3950 	}
   3951 #endif
   3952 	kpreempt_disable();
   3953 	const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   3954 	M_SETCTX(m, wgp);
   3955 	if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   3956 		WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   3957 		    if_name(&wg->wg_if));
   3958 		error = ENOBUFS;
   3959 		goto out3;
   3960 	}
   3961 	m = NULL;		/* consumed */
   3962 	error = 0;
   3963 out3:	kpreempt_enable();
   3964 
   3965 #ifdef ALTQ
   3966 out2:
   3967 #endif
   3968 	wg_put_session(wgs, &wgs_psref);
   3969 out1:	wg_put_peer(wgp, &wgp_psref);
   3970 out0:	m_freem(m);
   3971 	curlwp_bindx(bound);
   3972 	return error;
   3973 }
   3974 
   3975 static int
   3976 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
   3977 {
   3978 	struct psref psref;
   3979 	struct wg_sockaddr *wgsa;
   3980 	int error;
   3981 	struct socket *so;
   3982 
   3983 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   3984 	so = wg_get_so_by_peer(wgp, wgsa);
   3985 	solock(so);
   3986 	if (wgsatosa(wgsa)->sa_family == AF_INET) {
   3987 		error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
   3988 	} else {
   3989 #ifdef INET6
   3990 		error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
   3991 		    NULL, curlwp);
   3992 #else
   3993 		m_freem(m);
   3994 		error = EPFNOSUPPORT;
   3995 #endif
   3996 	}
   3997 	sounlock(so);
   3998 	wg_put_sa(wgp, wgsa, &psref);
   3999 
   4000 	return error;
   4001 }
   4002 
   4003 /* Inspired by pppoe_get_mbuf */
   4004 static struct mbuf *
   4005 wg_get_mbuf(size_t leading_len, size_t len)
   4006 {
   4007 	struct mbuf *m;
   4008 
   4009 	KASSERT(leading_len <= MCLBYTES);
   4010 	KASSERT(len <= MCLBYTES - leading_len);
   4011 
   4012 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   4013 	if (m == NULL)
   4014 		return NULL;
   4015 	if (len + leading_len > MHLEN) {
   4016 		m_clget(m, M_DONTWAIT);
   4017 		if ((m->m_flags & M_EXT) == 0) {
   4018 			m_free(m);
   4019 			return NULL;
   4020 		}
   4021 	}
   4022 	m->m_data += leading_len;
   4023 	m->m_pkthdr.len = m->m_len = len;
   4024 
   4025 	return m;
   4026 }
   4027 
   4028 static int
   4029 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
   4030     struct mbuf *m)
   4031 {
   4032 	struct wg_softc *wg = wgp->wgp_sc;
   4033 	int error;
   4034 	size_t inner_len, padded_len, encrypted_len;
   4035 	char *padded_buf = NULL;
   4036 	size_t mlen;
   4037 	struct wg_msg_data *wgmd;
   4038 	bool free_padded_buf = false;
   4039 	struct mbuf *n;
   4040 	size_t leading_len = max_hdr + sizeof(struct udphdr);
   4041 
   4042 	mlen = m_length(m);
   4043 	inner_len = mlen;
   4044 	padded_len = roundup(mlen, 16);
   4045 	encrypted_len = padded_len + WG_AUTHTAG_LEN;
   4046 	WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
   4047 	    inner_len, padded_len, encrypted_len);
   4048 	if (mlen != 0) {
   4049 		bool success;
   4050 		success = m_ensure_contig(&m, padded_len);
   4051 		if (success) {
   4052 			padded_buf = mtod(m, char *);
   4053 		} else {
   4054 			padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
   4055 			if (padded_buf == NULL) {
   4056 				error = ENOBUFS;
   4057 				goto end;
   4058 			}
   4059 			free_padded_buf = true;
   4060 			m_copydata(m, 0, mlen, padded_buf);
   4061 		}
   4062 		memset(padded_buf + mlen, 0, padded_len - inner_len);
   4063 	}
   4064 
   4065 	n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
   4066 	if (n == NULL) {
   4067 		error = ENOBUFS;
   4068 		goto end;
   4069 	}
   4070 	KASSERT(n->m_len >= sizeof(*wgmd));
   4071 	wgmd = mtod(n, struct wg_msg_data *);
   4072 	wg_fill_msg_data(wg, wgp, wgs, wgmd);
   4073 	/* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
   4074 	wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
   4075 	    wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
   4076 	    padded_buf, padded_len,
   4077 	    NULL, 0);
   4078 
   4079 	error = wg->wg_ops->send_data_msg(wgp, n);
   4080 	if (error == 0) {
   4081 		struct ifnet *ifp = &wg->wg_if;
   4082 		if_statadd(ifp, if_obytes, mlen);
   4083 		if_statinc(ifp, if_opackets);
   4084 		if (wgs->wgs_is_initiator &&
   4085 		    wgs->wgs_time_last_data_sent == 0) {
   4086 			/*
   4087 			 * [W] 6.2 Transport Message Limits
   4088 			 * "if a peer is the initiator of a current secure
   4089 			 *  session, WireGuard will send a handshake initiation
   4090 			 *  message to begin a new secure session if, after
   4091 			 *  transmitting a transport data message, the current
   4092 			 *  secure session is REKEY-AFTER-TIME seconds old,"
   4093 			 */
   4094 			wg_schedule_rekey_timer(wgp);
   4095 		}
   4096 		wgs->wgs_time_last_data_sent = time_uptime;
   4097 		if (wg_session_get_send_counter(wgs) >=
   4098 		    wg_rekey_after_messages) {
   4099 			/*
   4100 			 * [W] 6.2 Transport Message Limits
   4101 			 * "WireGuard will try to create a new session, by
   4102 			 *  sending a handshake initiation message (section
   4103 			 *  5.4.2), after it has sent REKEY-AFTER-MESSAGES
   4104 			 *  transport data messages..."
   4105 			 */
   4106 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   4107 		}
   4108 	}
   4109 end:
   4110 	m_freem(m);
   4111 	if (free_padded_buf)
   4112 		kmem_intr_free(padded_buf, padded_len);
   4113 	return error;
   4114 }
   4115 
   4116 static void
   4117 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
   4118 {
   4119 	pktqueue_t *pktq;
   4120 	size_t pktlen;
   4121 
   4122 	KASSERT(af == AF_INET || af == AF_INET6);
   4123 
   4124 	WG_TRACE("");
   4125 
   4126 	m_set_rcvif(m, ifp);
   4127 	pktlen = m->m_pkthdr.len;
   4128 
   4129 	bpf_mtap_af(ifp, af, m, BPF_D_IN);
   4130 
   4131 	switch (af) {
   4132 	case AF_INET:
   4133 		pktq = ip_pktq;
   4134 		break;
   4135 #ifdef INET6
   4136 	case AF_INET6:
   4137 		pktq = ip6_pktq;
   4138 		break;
   4139 #endif
   4140 	default:
   4141 		panic("invalid af=%d", af);
   4142 	}
   4143 
   4144 	kpreempt_disable();
   4145 	const u_int h = curcpu()->ci_index;
   4146 	if (__predict_true(pktq_enqueue(pktq, m, h))) {
   4147 		if_statadd(ifp, if_ibytes, pktlen);
   4148 		if_statinc(ifp, if_ipackets);
   4149 	} else {
   4150 		m_freem(m);
   4151 	}
   4152 	kpreempt_enable();
   4153 }
   4154 
   4155 static void
   4156 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
   4157     const uint8_t privkey[WG_STATIC_KEY_LEN])
   4158 {
   4159 
   4160 	crypto_scalarmult_base(pubkey, privkey);
   4161 }
   4162 
   4163 static int
   4164 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
   4165 {
   4166 	struct radix_node_head *rnh;
   4167 	struct radix_node *rn;
   4168 	int error = 0;
   4169 
   4170 	rw_enter(wg->wg_rwlock, RW_WRITER);
   4171 	rnh = wg_rnh(wg, wga->wga_family);
   4172 	KASSERT(rnh != NULL);
   4173 	rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
   4174 	    wga->wga_nodes);
   4175 	rw_exit(wg->wg_rwlock);
   4176 
   4177 	if (rn == NULL)
   4178 		error = EEXIST;
   4179 
   4180 	return error;
   4181 }
   4182 
   4183 static int
   4184 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
   4185     struct wg_peer **wgpp)
   4186 {
   4187 	int error = 0;
   4188 	const void *pubkey;
   4189 	size_t pubkey_len;
   4190 	const void *psk;
   4191 	size_t psk_len;
   4192 	const char *name = NULL;
   4193 
   4194 	if (prop_dictionary_get_string(peer, "name", &name)) {
   4195 		if (strlen(name) > WG_PEER_NAME_MAXLEN) {
   4196 			error = EINVAL;
   4197 			goto out;
   4198 		}
   4199 	}
   4200 
   4201 	if (!prop_dictionary_get_data(peer, "public_key",
   4202 		&pubkey, &pubkey_len)) {
   4203 		error = EINVAL;
   4204 		goto out;
   4205 	}
   4206 #ifdef WG_DEBUG_DUMP
   4207         if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4208 		char *hex = gethexdump(pubkey, pubkey_len);
   4209 		log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n%s\n",
   4210 		    pubkey, pubkey_len, hex);
   4211 		puthexdump(hex, pubkey, pubkey_len);
   4212 	}
   4213 #endif
   4214 
   4215 	struct wg_peer *wgp = wg_alloc_peer(wg);
   4216 	memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
   4217 	if (name != NULL)
   4218 		strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
   4219 
   4220 	if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
   4221 		if (psk_len != sizeof(wgp->wgp_psk)) {
   4222 			error = EINVAL;
   4223 			goto out;
   4224 		}
   4225 		memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
   4226 	}
   4227 
   4228 	const void *addr;
   4229 	size_t addr_len;
   4230 	struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
   4231 
   4232 	if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
   4233 		goto skip_endpoint;
   4234 	if (addr_len < sizeof(*wgsatosa(wgsa)) ||
   4235 	    addr_len > sizeof(*wgsatoss(wgsa))) {
   4236 		error = EINVAL;
   4237 		goto out;
   4238 	}
   4239 	memcpy(wgsatoss(wgsa), addr, addr_len);
   4240 	switch (wgsa_family(wgsa)) {
   4241 	case AF_INET:
   4242 #ifdef INET6
   4243 	case AF_INET6:
   4244 #endif
   4245 		break;
   4246 	default:
   4247 		error = EPFNOSUPPORT;
   4248 		goto out;
   4249 	}
   4250 	if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
   4251 		error = EINVAL;
   4252 		goto out;
   4253 	}
   4254     {
   4255 	char addrstr[128];
   4256 	sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
   4257 	WG_DLOG("addr=%s\n", addrstr);
   4258     }
   4259 	wgp->wgp_endpoint_available = true;
   4260 
   4261 	prop_array_t allowedips;
   4262 skip_endpoint:
   4263 	allowedips = prop_dictionary_get(peer, "allowedips");
   4264 	if (allowedips == NULL)
   4265 		goto skip;
   4266 
   4267 	prop_object_iterator_t _it = prop_array_iterator(allowedips);
   4268 	prop_dictionary_t prop_allowedip;
   4269 	int j = 0;
   4270 	while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
   4271 		struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4272 
   4273 		if (!prop_dictionary_get_int(prop_allowedip, "family",
   4274 			&wga->wga_family))
   4275 			continue;
   4276 		if (!prop_dictionary_get_data(prop_allowedip, "ip",
   4277 			&addr, &addr_len))
   4278 			continue;
   4279 		if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
   4280 			&wga->wga_cidr))
   4281 			continue;
   4282 
   4283 		switch (wga->wga_family) {
   4284 		case AF_INET: {
   4285 			struct sockaddr_in sin;
   4286 			char addrstr[128];
   4287 			struct in_addr mask;
   4288 			struct sockaddr_in sin_mask;
   4289 
   4290 			if (addr_len != sizeof(struct in_addr))
   4291 				return EINVAL;
   4292 			memcpy(&wga->wga_addr4, addr, addr_len);
   4293 
   4294 			sockaddr_in_init(&sin, (const struct in_addr *)addr,
   4295 			    0);
   4296 			sockaddr_copy(&wga->wga_sa_addr,
   4297 			    sizeof(sin), sintosa(&sin));
   4298 
   4299 			sockaddr_format(sintosa(&sin),
   4300 			    addrstr, sizeof(addrstr));
   4301 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4302 
   4303 			in_len2mask(&mask, wga->wga_cidr);
   4304 			sockaddr_in_init(&sin_mask, &mask, 0);
   4305 			sockaddr_copy(&wga->wga_sa_mask,
   4306 			    sizeof(sin_mask), sintosa(&sin_mask));
   4307 
   4308 			break;
   4309 		    }
   4310 #ifdef INET6
   4311 		case AF_INET6: {
   4312 			struct sockaddr_in6 sin6;
   4313 			char addrstr[128];
   4314 			struct in6_addr mask;
   4315 			struct sockaddr_in6 sin6_mask;
   4316 
   4317 			if (addr_len != sizeof(struct in6_addr))
   4318 				return EINVAL;
   4319 			memcpy(&wga->wga_addr6, addr, addr_len);
   4320 
   4321 			sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
   4322 			    0, 0, 0);
   4323 			sockaddr_copy(&wga->wga_sa_addr,
   4324 			    sizeof(sin6), sin6tosa(&sin6));
   4325 
   4326 			sockaddr_format(sin6tosa(&sin6),
   4327 			    addrstr, sizeof(addrstr));
   4328 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4329 
   4330 			in6_prefixlen2mask(&mask, wga->wga_cidr);
   4331 			sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
   4332 			sockaddr_copy(&wga->wga_sa_mask,
   4333 			    sizeof(sin6_mask), sin6tosa(&sin6_mask));
   4334 
   4335 			break;
   4336 		    }
   4337 #endif
   4338 		default:
   4339 			error = EINVAL;
   4340 			goto out;
   4341 		}
   4342 		wga->wga_peer = wgp;
   4343 
   4344 		error = wg_rtable_add_route(wg, wga);
   4345 		if (error != 0)
   4346 			goto out;
   4347 
   4348 		j++;
   4349 	}
   4350 	wgp->wgp_n_allowedips = j;
   4351 skip:
   4352 	*wgpp = wgp;
   4353 out:
   4354 	return error;
   4355 }
   4356 
   4357 static int
   4358 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
   4359 {
   4360 	int error;
   4361 	char *buf;
   4362 
   4363 	WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
   4364 	if (ifd->ifd_len >= WG_MAX_PROPLEN)
   4365 		return E2BIG;
   4366 	buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
   4367 	error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
   4368 	if (error != 0)
   4369 		return error;
   4370 	buf[ifd->ifd_len] = '\0';
   4371 #ifdef WG_DEBUG_DUMP
   4372 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4373 		log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
   4374 		    (const char *)buf);
   4375 	}
   4376 #endif
   4377 	*_buf = buf;
   4378 	return 0;
   4379 }
   4380 
   4381 static int
   4382 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
   4383 {
   4384 	int error;
   4385 	prop_dictionary_t prop_dict;
   4386 	char *buf = NULL;
   4387 	const void *privkey;
   4388 	size_t privkey_len;
   4389 
   4390 	error = wg_alloc_prop_buf(&buf, ifd);
   4391 	if (error != 0)
   4392 		return error;
   4393 	error = EINVAL;
   4394 	prop_dict = prop_dictionary_internalize(buf);
   4395 	if (prop_dict == NULL)
   4396 		goto out;
   4397 	if (!prop_dictionary_get_data(prop_dict, "private_key",
   4398 		&privkey, &privkey_len))
   4399 		goto out;
   4400 #ifdef WG_DEBUG_DUMP
   4401 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4402 		char *hex = gethexdump(privkey, privkey_len);
   4403 		log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n%s\n",
   4404 		    privkey, privkey_len, hex);
   4405 		puthexdump(hex, privkey, privkey_len);
   4406 	}
   4407 #endif
   4408 	if (privkey_len != WG_STATIC_KEY_LEN)
   4409 		goto out;
   4410 	memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
   4411 	wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
   4412 	error = 0;
   4413 
   4414 out:
   4415 	kmem_free(buf, ifd->ifd_len + 1);
   4416 	return error;
   4417 }
   4418 
   4419 static int
   4420 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
   4421 {
   4422 	int error;
   4423 	prop_dictionary_t prop_dict;
   4424 	char *buf = NULL;
   4425 	uint16_t port;
   4426 
   4427 	error = wg_alloc_prop_buf(&buf, ifd);
   4428 	if (error != 0)
   4429 		return error;
   4430 	error = EINVAL;
   4431 	prop_dict = prop_dictionary_internalize(buf);
   4432 	if (prop_dict == NULL)
   4433 		goto out;
   4434 	if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
   4435 		goto out;
   4436 
   4437 	error = wg->wg_ops->bind_port(wg, (uint16_t)port);
   4438 
   4439 out:
   4440 	kmem_free(buf, ifd->ifd_len + 1);
   4441 	return error;
   4442 }
   4443 
   4444 static int
   4445 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4446 {
   4447 	int error;
   4448 	prop_dictionary_t prop_dict;
   4449 	char *buf = NULL;
   4450 	struct wg_peer *wgp = NULL, *wgp0 __diagused;
   4451 
   4452 	error = wg_alloc_prop_buf(&buf, ifd);
   4453 	if (error != 0)
   4454 		return error;
   4455 	error = EINVAL;
   4456 	prop_dict = prop_dictionary_internalize(buf);
   4457 	if (prop_dict == NULL)
   4458 		goto out;
   4459 
   4460 	error = wg_handle_prop_peer(wg, prop_dict, &wgp);
   4461 	if (error != 0)
   4462 		goto out;
   4463 
   4464 	mutex_enter(wg->wg_lock);
   4465 	if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4466 		sizeof(wgp->wgp_pubkey)) != NULL ||
   4467 	    (wgp->wgp_name[0] &&
   4468 		thmap_get(wg->wg_peers_byname, wgp->wgp_name,
   4469 		    strlen(wgp->wgp_name)) != NULL)) {
   4470 		mutex_exit(wg->wg_lock);
   4471 		wg_destroy_peer(wgp);
   4472 		error = EEXIST;
   4473 		goto out;
   4474 	}
   4475 	wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4476 	    sizeof(wgp->wgp_pubkey), wgp);
   4477 	KASSERT(wgp0 == wgp);
   4478 	if (wgp->wgp_name[0]) {
   4479 		wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
   4480 		    strlen(wgp->wgp_name), wgp);
   4481 		KASSERT(wgp0 == wgp);
   4482 	}
   4483 	WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
   4484 	wg->wg_npeers++;
   4485 	mutex_exit(wg->wg_lock);
   4486 
   4487 	if_link_state_change(&wg->wg_if, LINK_STATE_UP);
   4488 
   4489 out:
   4490 	kmem_free(buf, ifd->ifd_len + 1);
   4491 	return error;
   4492 }
   4493 
   4494 static int
   4495 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4496 {
   4497 	int error;
   4498 	prop_dictionary_t prop_dict;
   4499 	char *buf = NULL;
   4500 	const char *name;
   4501 
   4502 	error = wg_alloc_prop_buf(&buf, ifd);
   4503 	if (error != 0)
   4504 		return error;
   4505 	error = EINVAL;
   4506 	prop_dict = prop_dictionary_internalize(buf);
   4507 	if (prop_dict == NULL)
   4508 		goto out;
   4509 
   4510 	if (!prop_dictionary_get_string(prop_dict, "name", &name))
   4511 		goto out;
   4512 	if (strlen(name) > WG_PEER_NAME_MAXLEN)
   4513 		goto out;
   4514 
   4515 	error = wg_destroy_peer_name(wg, name);
   4516 out:
   4517 	kmem_free(buf, ifd->ifd_len + 1);
   4518 	return error;
   4519 }
   4520 
   4521 static bool
   4522 wg_is_authorized(struct wg_softc *wg, u_long cmd)
   4523 {
   4524 	int au = cmd == SIOCGDRVSPEC ?
   4525 	    KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
   4526 	    KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
   4527 	return kauth_authorize_network(kauth_cred_get(),
   4528 	    KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
   4529 	    (void *)cmd, NULL) == 0;
   4530 }
   4531 
   4532 static int
   4533 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
   4534 {
   4535 	int error = ENOMEM;
   4536 	prop_dictionary_t prop_dict;
   4537 	prop_array_t peers = NULL;
   4538 	char *buf;
   4539 	struct wg_peer *wgp;
   4540 	int s, i;
   4541 
   4542 	prop_dict = prop_dictionary_create();
   4543 	if (prop_dict == NULL)
   4544 		goto error;
   4545 
   4546 	if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   4547 		if (!prop_dictionary_set_data(prop_dict, "private_key",
   4548 			wg->wg_privkey, WG_STATIC_KEY_LEN))
   4549 			goto error;
   4550 	}
   4551 
   4552 	if (wg->wg_listen_port != 0) {
   4553 		if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
   4554 			wg->wg_listen_port))
   4555 			goto error;
   4556 	}
   4557 
   4558 	if (wg->wg_npeers == 0)
   4559 		goto skip_peers;
   4560 
   4561 	peers = prop_array_create();
   4562 	if (peers == NULL)
   4563 		goto error;
   4564 
   4565 	s = pserialize_read_enter();
   4566 	i = 0;
   4567 	WG_PEER_READER_FOREACH(wgp, wg) {
   4568 		struct wg_sockaddr *wgsa;
   4569 		struct psref wgp_psref, wgsa_psref;
   4570 		prop_dictionary_t prop_peer;
   4571 
   4572 		wg_get_peer(wgp, &wgp_psref);
   4573 		pserialize_read_exit(s);
   4574 
   4575 		prop_peer = prop_dictionary_create();
   4576 		if (prop_peer == NULL)
   4577 			goto next;
   4578 
   4579 		if (strlen(wgp->wgp_name) > 0) {
   4580 			if (!prop_dictionary_set_string(prop_peer, "name",
   4581 				wgp->wgp_name))
   4582 				goto next;
   4583 		}
   4584 
   4585 		if (!prop_dictionary_set_data(prop_peer, "public_key",
   4586 			wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
   4587 			goto next;
   4588 
   4589 		uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
   4590 		if (!consttime_memequal(wgp->wgp_psk, psk_zero,
   4591 			sizeof(wgp->wgp_psk))) {
   4592 			if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   4593 				if (!prop_dictionary_set_data(prop_peer,
   4594 					"preshared_key",
   4595 					wgp->wgp_psk, sizeof(wgp->wgp_psk)))
   4596 					goto next;
   4597 			}
   4598 		}
   4599 
   4600 		wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
   4601 		CTASSERT(AF_UNSPEC == 0);
   4602 		if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
   4603 		    !prop_dictionary_set_data(prop_peer, "endpoint",
   4604 			wgsatoss(wgsa),
   4605 			sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
   4606 			wg_put_sa(wgp, wgsa, &wgsa_psref);
   4607 			goto next;
   4608 		}
   4609 		wg_put_sa(wgp, wgsa, &wgsa_psref);
   4610 
   4611 		const struct timespec *t = &wgp->wgp_last_handshake_time;
   4612 
   4613 		if (!prop_dictionary_set_uint64(prop_peer,
   4614 			"last_handshake_time_sec", (uint64_t)t->tv_sec))
   4615 			goto next;
   4616 		if (!prop_dictionary_set_uint32(prop_peer,
   4617 			"last_handshake_time_nsec", (uint32_t)t->tv_nsec))
   4618 			goto next;
   4619 
   4620 		if (wgp->wgp_n_allowedips == 0)
   4621 			goto skip_allowedips;
   4622 
   4623 		prop_array_t allowedips = prop_array_create();
   4624 		if (allowedips == NULL)
   4625 			goto next;
   4626 		for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
   4627 			struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4628 			prop_dictionary_t prop_allowedip;
   4629 
   4630 			prop_allowedip = prop_dictionary_create();
   4631 			if (prop_allowedip == NULL)
   4632 				break;
   4633 
   4634 			if (!prop_dictionary_set_int(prop_allowedip, "family",
   4635 				wga->wga_family))
   4636 				goto _next;
   4637 			if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
   4638 				wga->wga_cidr))
   4639 				goto _next;
   4640 
   4641 			switch (wga->wga_family) {
   4642 			case AF_INET:
   4643 				if (!prop_dictionary_set_data(prop_allowedip,
   4644 					"ip", &wga->wga_addr4,
   4645 					sizeof(wga->wga_addr4)))
   4646 					goto _next;
   4647 				break;
   4648 #ifdef INET6
   4649 			case AF_INET6:
   4650 				if (!prop_dictionary_set_data(prop_allowedip,
   4651 					"ip", &wga->wga_addr6,
   4652 					sizeof(wga->wga_addr6)))
   4653 					goto _next;
   4654 				break;
   4655 #endif
   4656 			default:
   4657 				break;
   4658 			}
   4659 			prop_array_set(allowedips, j, prop_allowedip);
   4660 		_next:
   4661 			prop_object_release(prop_allowedip);
   4662 		}
   4663 		prop_dictionary_set(prop_peer, "allowedips", allowedips);
   4664 		prop_object_release(allowedips);
   4665 
   4666 	skip_allowedips:
   4667 
   4668 		prop_array_set(peers, i, prop_peer);
   4669 	next:
   4670 		if (prop_peer)
   4671 			prop_object_release(prop_peer);
   4672 		i++;
   4673 
   4674 		s = pserialize_read_enter();
   4675 		wg_put_peer(wgp, &wgp_psref);
   4676 	}
   4677 	pserialize_read_exit(s);
   4678 
   4679 	prop_dictionary_set(prop_dict, "peers", peers);
   4680 	prop_object_release(peers);
   4681 	peers = NULL;
   4682 
   4683 skip_peers:
   4684 	buf = prop_dictionary_externalize(prop_dict);
   4685 	if (buf == NULL)
   4686 		goto error;
   4687 	if (ifd->ifd_len < (strlen(buf) + 1)) {
   4688 		error = EINVAL;
   4689 		goto error;
   4690 	}
   4691 	error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
   4692 
   4693 	free(buf, 0);
   4694 error:
   4695 	if (peers != NULL)
   4696 		prop_object_release(peers);
   4697 	if (prop_dict != NULL)
   4698 		prop_object_release(prop_dict);
   4699 
   4700 	return error;
   4701 }
   4702 
   4703 static int
   4704 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   4705 {
   4706 	struct wg_softc *wg = ifp->if_softc;
   4707 	struct ifreq *ifr = data;
   4708 	struct ifaddr *ifa = data;
   4709 	struct ifdrv *ifd = data;
   4710 	int error = 0;
   4711 
   4712 	switch (cmd) {
   4713 	case SIOCINITIFADDR:
   4714 		if (ifa->ifa_addr->sa_family != AF_LINK &&
   4715 		    (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   4716 		    (IFF_UP | IFF_RUNNING)) {
   4717 			ifp->if_flags |= IFF_UP;
   4718 			error = if_init(ifp);
   4719 		}
   4720 		return error;
   4721 	case SIOCADDMULTI:
   4722 	case SIOCDELMULTI:
   4723 		switch (ifr->ifr_addr.sa_family) {
   4724 		case AF_INET:	/* IP supports Multicast */
   4725 			break;
   4726 #ifdef INET6
   4727 		case AF_INET6:	/* IP6 supports Multicast */
   4728 			break;
   4729 #endif
   4730 		default:  /* Other protocols doesn't support Multicast */
   4731 			error = EAFNOSUPPORT;
   4732 			break;
   4733 		}
   4734 		return error;
   4735 	case SIOCSDRVSPEC:
   4736 		if (!wg_is_authorized(wg, cmd)) {
   4737 			return EPERM;
   4738 		}
   4739 		switch (ifd->ifd_cmd) {
   4740 		case WG_IOCTL_SET_PRIVATE_KEY:
   4741 			error = wg_ioctl_set_private_key(wg, ifd);
   4742 			break;
   4743 		case WG_IOCTL_SET_LISTEN_PORT:
   4744 			error = wg_ioctl_set_listen_port(wg, ifd);
   4745 			break;
   4746 		case WG_IOCTL_ADD_PEER:
   4747 			error = wg_ioctl_add_peer(wg, ifd);
   4748 			break;
   4749 		case WG_IOCTL_DELETE_PEER:
   4750 			error = wg_ioctl_delete_peer(wg, ifd);
   4751 			break;
   4752 		default:
   4753 			error = EINVAL;
   4754 			break;
   4755 		}
   4756 		return error;
   4757 	case SIOCGDRVSPEC:
   4758 		return wg_ioctl_get(wg, ifd);
   4759 	case SIOCSIFFLAGS:
   4760 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   4761 			break;
   4762 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   4763 		case IFF_RUNNING:
   4764 			/*
   4765 			 * If interface is marked down and it is running,
   4766 			 * then stop and disable it.
   4767 			 */
   4768 			if_stop(ifp, 1);
   4769 			break;
   4770 		case IFF_UP:
   4771 			/*
   4772 			 * If interface is marked up and it is stopped, then
   4773 			 * start it.
   4774 			 */
   4775 			error = if_init(ifp);
   4776 			break;
   4777 		default:
   4778 			break;
   4779 		}
   4780 		return error;
   4781 #ifdef WG_RUMPKERNEL
   4782 	case SIOCSLINKSTR:
   4783 		error = wg_ioctl_linkstr(wg, ifd);
   4784 		if (error == 0)
   4785 			wg->wg_ops = &wg_ops_rumpuser;
   4786 		return error;
   4787 #endif
   4788 	default:
   4789 		break;
   4790 	}
   4791 
   4792 	error = ifioctl_common(ifp, cmd, data);
   4793 
   4794 #ifdef WG_RUMPKERNEL
   4795 	if (!wg_user_mode(wg))
   4796 		return error;
   4797 
   4798 	/* Do the same to the corresponding tun device on the host */
   4799 	/*
   4800 	 * XXX Actually the command has not been handled yet.  It
   4801 	 *     will be handled via pr_ioctl form doifioctl later.
   4802 	 */
   4803 	switch (cmd) {
   4804 	case SIOCAIFADDR:
   4805 	case SIOCDIFADDR: {
   4806 		struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
   4807 		struct in_aliasreq *ifra = &_ifra;
   4808 		KASSERT(error == ENOTTY);
   4809 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   4810 		    IFNAMSIZ);
   4811 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
   4812 		if (error == 0)
   4813 			error = ENOTTY;
   4814 		break;
   4815 	}
   4816 #ifdef INET6
   4817 	case SIOCAIFADDR_IN6:
   4818 	case SIOCDIFADDR_IN6: {
   4819 		struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
   4820 		struct in6_aliasreq *ifra = &_ifra;
   4821 		KASSERT(error == ENOTTY);
   4822 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   4823 		    IFNAMSIZ);
   4824 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
   4825 		if (error == 0)
   4826 			error = ENOTTY;
   4827 		break;
   4828 	}
   4829 #endif
   4830 	}
   4831 #endif /* WG_RUMPKERNEL */
   4832 
   4833 	return error;
   4834 }
   4835 
   4836 static int
   4837 wg_init(struct ifnet *ifp)
   4838 {
   4839 
   4840 	ifp->if_flags |= IFF_RUNNING;
   4841 
   4842 	/* TODO flush pending packets. */
   4843 	return 0;
   4844 }
   4845 
   4846 #ifdef ALTQ
   4847 static void
   4848 wg_start(struct ifnet *ifp)
   4849 {
   4850 	struct mbuf *m;
   4851 
   4852 	for (;;) {
   4853 		IFQ_DEQUEUE(&ifp->if_snd, m);
   4854 		if (m == NULL)
   4855 			break;
   4856 
   4857 		kpreempt_disable();
   4858 		const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   4859 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   4860 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   4861 			    if_name(ifp));
   4862 			m_freem(m);
   4863 		}
   4864 		kpreempt_enable();
   4865 	}
   4866 }
   4867 #endif
   4868 
   4869 static void
   4870 wg_stop(struct ifnet *ifp, int disable)
   4871 {
   4872 
   4873 	KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
   4874 	ifp->if_flags &= ~IFF_RUNNING;
   4875 
   4876 	/* Need to do something? */
   4877 }
   4878 
   4879 #ifdef WG_DEBUG_PARAMS
   4880 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
   4881 {
   4882 	const struct sysctlnode *node = NULL;
   4883 
   4884 	sysctl_createv(clog, 0, NULL, &node,
   4885 	    CTLFLAG_PERMANENT,
   4886 	    CTLTYPE_NODE, "wg",
   4887 	    SYSCTL_DESCR("wg(4)"),
   4888 	    NULL, 0, NULL, 0,
   4889 	    CTL_NET, CTL_CREATE, CTL_EOL);
   4890 	sysctl_createv(clog, 0, &node, NULL,
   4891 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4892 	    CTLTYPE_QUAD, "rekey_after_messages",
   4893 	    SYSCTL_DESCR("session liftime by messages"),
   4894 	    NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
   4895 	sysctl_createv(clog, 0, &node, NULL,
   4896 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4897 	    CTLTYPE_INT, "rekey_after_time",
   4898 	    SYSCTL_DESCR("session liftime"),
   4899 	    NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
   4900 	sysctl_createv(clog, 0, &node, NULL,
   4901 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4902 	    CTLTYPE_INT, "rekey_timeout",
   4903 	    SYSCTL_DESCR("session handshake retry time"),
   4904 	    NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
   4905 	sysctl_createv(clog, 0, &node, NULL,
   4906 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4907 	    CTLTYPE_INT, "rekey_attempt_time",
   4908 	    SYSCTL_DESCR("session handshake timeout"),
   4909 	    NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
   4910 	sysctl_createv(clog, 0, &node, NULL,
   4911 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4912 	    CTLTYPE_INT, "keepalive_timeout",
   4913 	    SYSCTL_DESCR("keepalive timeout"),
   4914 	    NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
   4915 	sysctl_createv(clog, 0, &node, NULL,
   4916 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4917 	    CTLTYPE_BOOL, "force_underload",
   4918 	    SYSCTL_DESCR("force to detemine under load"),
   4919 	    NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
   4920 	sysctl_createv(clog, 0, &node, NULL,
   4921 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4922 	    CTLTYPE_INT, "debug",
   4923 	    SYSCTL_DESCR("set debug flags 1=debug 2=trace 4=dump"),
   4924 	    NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
   4925 }
   4926 #endif
   4927 
   4928 #ifdef WG_RUMPKERNEL
   4929 static bool
   4930 wg_user_mode(struct wg_softc *wg)
   4931 {
   4932 
   4933 	return wg->wg_user != NULL;
   4934 }
   4935 
   4936 static int
   4937 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
   4938 {
   4939 	struct ifnet *ifp = &wg->wg_if;
   4940 	int error;
   4941 
   4942 	if (ifp->if_flags & IFF_UP)
   4943 		return EBUSY;
   4944 
   4945 	if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
   4946 		/* XXX do nothing */
   4947 		return 0;
   4948 	} else if (ifd->ifd_cmd != 0) {
   4949 		return EINVAL;
   4950 	} else if (wg->wg_user != NULL) {
   4951 		return EBUSY;
   4952 	}
   4953 
   4954 	/* Assume \0 included */
   4955 	if (ifd->ifd_len > IFNAMSIZ) {
   4956 		return E2BIG;
   4957 	} else if (ifd->ifd_len < 1) {
   4958 		return EINVAL;
   4959 	}
   4960 
   4961 	char tun_name[IFNAMSIZ];
   4962 	error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
   4963 	if (error != 0)
   4964 		return error;
   4965 
   4966 	if (strncmp(tun_name, "tun", 3) != 0)
   4967 		return EINVAL;
   4968 
   4969 	error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
   4970 
   4971 	return error;
   4972 }
   4973 
   4974 static int
   4975 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
   4976 {
   4977 	int error;
   4978 	struct psref psref;
   4979 	struct wg_sockaddr *wgsa;
   4980 	struct wg_softc *wg = wgp->wgp_sc;
   4981 	struct iovec iov[1];
   4982 
   4983 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   4984 
   4985 	iov[0].iov_base = mtod(m, void *);
   4986 	iov[0].iov_len = m->m_len;
   4987 
   4988 	/* Send messages to a peer via an ordinary socket. */
   4989 	error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
   4990 
   4991 	wg_put_sa(wgp, wgsa, &psref);
   4992 
   4993 	m_freem(m);
   4994 
   4995 	return error;
   4996 }
   4997 
   4998 static void
   4999 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
   5000 {
   5001 	struct wg_softc *wg = ifp->if_softc;
   5002 	struct iovec iov[2];
   5003 	struct sockaddr_storage ss;
   5004 
   5005 	KASSERT(af == AF_INET || af == AF_INET6);
   5006 
   5007 	WG_TRACE("");
   5008 
   5009 	if (af == AF_INET) {
   5010 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   5011 		struct ip *ip;
   5012 
   5013 		KASSERT(m->m_len >= sizeof(struct ip));
   5014 		ip = mtod(m, struct ip *);
   5015 		sockaddr_in_init(sin, &ip->ip_dst, 0);
   5016 	} else {
   5017 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   5018 		struct ip6_hdr *ip6;
   5019 
   5020 		KASSERT(m->m_len >= sizeof(struct ip6_hdr));
   5021 		ip6 = mtod(m, struct ip6_hdr *);
   5022 		sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
   5023 	}
   5024 
   5025 	iov[0].iov_base = &ss;
   5026 	iov[0].iov_len = ss.ss_len;
   5027 	iov[1].iov_base = mtod(m, void *);
   5028 	iov[1].iov_len = m->m_len;
   5029 
   5030 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5031 
   5032 	/* Send decrypted packets to users via a tun. */
   5033 	rumpuser_wg_send_user(wg->wg_user, iov, 2);
   5034 
   5035 	m_freem(m);
   5036 }
   5037 
   5038 static int
   5039 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
   5040 {
   5041 	int error;
   5042 	uint16_t old_port = wg->wg_listen_port;
   5043 
   5044 	if (port != 0 && old_port == port)
   5045 		return 0;
   5046 
   5047 	error = rumpuser_wg_sock_bind(wg->wg_user, port);
   5048 	if (error == 0)
   5049 		wg->wg_listen_port = port;
   5050 	return error;
   5051 }
   5052 
   5053 /*
   5054  * Receive user packets.
   5055  */
   5056 void
   5057 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5058 {
   5059 	struct ifnet *ifp = &wg->wg_if;
   5060 	struct mbuf *m;
   5061 	const struct sockaddr *dst;
   5062 
   5063 	WG_TRACE("");
   5064 
   5065 	dst = iov[0].iov_base;
   5066 
   5067 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5068 	if (m == NULL)
   5069 		return;
   5070 	m->m_len = m->m_pkthdr.len = 0;
   5071 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5072 
   5073 	WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
   5074 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5075 
   5076 	(void)wg_output(ifp, m, dst, NULL);
   5077 }
   5078 
   5079 /*
   5080  * Receive packets from a peer.
   5081  */
   5082 void
   5083 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5084 {
   5085 	struct mbuf *m;
   5086 	const struct sockaddr *src;
   5087 	int bound;
   5088 
   5089 	WG_TRACE("");
   5090 
   5091 	src = iov[0].iov_base;
   5092 
   5093 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5094 	if (m == NULL)
   5095 		return;
   5096 	m->m_len = m->m_pkthdr.len = 0;
   5097 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5098 
   5099 	WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
   5100 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5101 
   5102 	bound = curlwp_bind();
   5103 	wg_handle_packet(wg, m, src);
   5104 	curlwp_bindx(bound);
   5105 }
   5106 #endif /* WG_RUMPKERNEL */
   5107 
   5108 /*
   5109  * Module infrastructure
   5110  */
   5111 #include "if_module.h"
   5112 
   5113 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
   5114