Home | History | Annotate | Line # | Download | only in net
if_wg.c revision 1.86
      1 /*	$NetBSD: if_wg.c,v 1.86 2024/07/25 00:24:02 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * This network interface aims to implement the WireGuard protocol.
     34  * The implementation is based on the paper of WireGuard as of
     35  * 2018-06-30 [1].  The paper is referred in the source code with label
     36  * [W].  Also the specification of the Noise protocol framework as of
     37  * 2018-07-11 [2] is referred with label [N].
     38  *
     39  * [1] https://www.wireguard.com/papers/wireguard.pdf
     40  * [2] http://noiseprotocol.org/noise.pdf
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.86 2024/07/25 00:24:02 christos Exp $");
     45 
     46 #ifdef _KERNEL_OPT
     47 #include "opt_altq_enabled.h"
     48 #include "opt_inet.h"
     49 #endif
     50 
     51 #include <sys/param.h>
     52 #include <sys/types.h>
     53 
     54 #include <sys/atomic.h>
     55 #include <sys/callout.h>
     56 #include <sys/cprng.h>
     57 #include <sys/cpu.h>
     58 #include <sys/device.h>
     59 #include <sys/domain.h>
     60 #include <sys/errno.h>
     61 #include <sys/intr.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/kernel.h>
     64 #include <sys/kmem.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/module.h>
     67 #include <sys/mutex.h>
     68 #include <sys/once.h>
     69 #include <sys/percpu.h>
     70 #include <sys/pserialize.h>
     71 #include <sys/psref.h>
     72 #include <sys/queue.h>
     73 #include <sys/rwlock.h>
     74 #include <sys/socket.h>
     75 #include <sys/socketvar.h>
     76 #include <sys/sockio.h>
     77 #include <sys/sysctl.h>
     78 #include <sys/syslog.h>
     79 #include <sys/systm.h>
     80 #include <sys/thmap.h>
     81 #include <sys/threadpool.h>
     82 #include <sys/time.h>
     83 #include <sys/timespec.h>
     84 #include <sys/workqueue.h>
     85 
     86 #include <lib/libkern/libkern.h>
     87 
     88 #include <net/bpf.h>
     89 #include <net/if.h>
     90 #include <net/if_types.h>
     91 #include <net/if_wg.h>
     92 #include <net/pktqueue.h>
     93 #include <net/route.h>
     94 
     95 #include <netinet/in.h>
     96 #include <netinet/in_pcb.h>
     97 #include <netinet/in_var.h>
     98 #include <netinet/ip.h>
     99 #include <netinet/ip_var.h>
    100 #include <netinet/udp.h>
    101 #include <netinet/udp_var.h>
    102 
    103 #ifdef INET6
    104 #include <netinet/ip6.h>
    105 #include <netinet6/in6_pcb.h>
    106 #include <netinet6/in6_var.h>
    107 #include <netinet6/ip6_var.h>
    108 #include <netinet6/udp6_var.h>
    109 #endif /* INET6 */
    110 
    111 #include <prop/proplib.h>
    112 
    113 #include <crypto/blake2/blake2s.h>
    114 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
    115 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
    116 #include <crypto/sodium/crypto_scalarmult.h>
    117 
    118 #include "ioconf.h"
    119 
    120 #ifdef WG_RUMPKERNEL
    121 #include "wg_user.h"
    122 #endif
    123 
    124 /*
    125  * Data structures
    126  * - struct wg_softc is an instance of wg interfaces
    127  *   - It has a list of peers (struct wg_peer)
    128  *   - It has a threadpool job that sends/receives handshake messages and
    129  *     runs event handlers
    130  *   - It has its own two routing tables: one is for IPv4 and the other IPv6
    131  * - struct wg_peer is a representative of a peer
    132  *   - It has a struct work to handle handshakes and timer tasks
    133  *   - It has a pair of session instances (struct wg_session)
    134  *   - It has a pair of endpoint instances (struct wg_sockaddr)
    135  *     - Normally one endpoint is used and the second one is used only on
    136  *       a peer migration (a change of peer's IP address)
    137  *   - It has a list of IP addresses and sub networks called allowedips
    138  *     (struct wg_allowedip)
    139  *     - A packets sent over a session is allowed if its destination matches
    140  *       any IP addresses or sub networks of the list
    141  * - struct wg_session represents a session of a secure tunnel with a peer
    142  *   - Two instances of sessions belong to a peer; a stable session and a
    143  *     unstable session
    144  *   - A handshake process of a session always starts with a unstable instance
    145  *   - Once a session is established, its instance becomes stable and the
    146  *     other becomes unstable instead
    147  *   - Data messages are always sent via a stable session
    148  *
    149  * Locking notes:
    150  * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
    151  *   - Changes to the peer list are serialized by wg_lock
    152  *   - The peer list may be read with pserialize(9) and psref(9)
    153  *   - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
    154  *     => XXX replace by pserialize when routing table is psz-safe
    155  * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
    156  *   only in thread context and serializes:
    157  *   - the stable and unstable session pointers
    158  *   - all unstable session state
    159  * - Packet processing may be done in softint context:
    160  *   - The stable session can be read under pserialize(9) or psref(9)
    161  *     - The stable session is always ESTABLISHED
    162  *     - On a session swap, we must wait for all readers to release a
    163  *       reference to a stable session before changing wgs_state and
    164  *       session states
    165  * - Lock order: wg_lock -> wgp_lock
    166  */
    167 
    168 
    169 #define WGLOG(level, fmt, args...)					      \
    170 	log(level, "%s: " fmt, __func__, ##args)
    171 
    172 #define WG_DEBUG
    173 
    174 /* Debug options */
    175 #ifdef WG_DEBUG
    176 /* Output debug logs */
    177 #ifndef WG_DEBUG_LOG
    178 #define WG_DEBUG_LOG
    179 #endif
    180 /* Output trace logs */
    181 #ifndef WG_DEBUG_TRACE
    182 #define WG_DEBUG_TRACE
    183 #endif
    184 /* Output hash values, etc. */
    185 #ifndef WG_DEBUG_DUMP
    186 #define WG_DEBUG_DUMP
    187 #endif
    188 /* debug packets */
    189 #ifndef WG_DEBUG_PACKET
    190 #define WG_DEBUG_PACKET
    191 #endif
    192 /* Make some internal parameters configurable for testing and debugging */
    193 #ifndef WG_DEBUG_PARAMS
    194 #define WG_DEBUG_PARAMS
    195 #endif
    196 #endif /* WG_DEBUG */
    197 
    198 #ifndef WG_DEBUG
    199 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) ||		    \
    200 	defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS)
    201 #   define WG_DEBUG
    202 # endif
    203 #endif
    204 
    205 #ifdef WG_DEBUG
    206 int wg_debug;
    207 #define WG_DEBUG_FLAGS_LOG	1
    208 #define WG_DEBUG_FLAGS_TRACE	2
    209 #define WG_DEBUG_FLAGS_DUMP	4
    210 #define WG_DEBUG_FLAGS_PACKET	8
    211 #endif
    212 
    213 
    214 #ifdef WG_DEBUG_TRACE
    215 #define WG_TRACE(msg)	 do {						\
    216 	if (wg_debug & WG_DEBUG_FLAGS_TRACE)				\
    217 	    log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg));	\
    218 } while (0)
    219 #else
    220 #define WG_TRACE(msg)	__nothing
    221 #endif
    222 
    223 #ifdef WG_DEBUG_LOG
    224 #define WG_DLOG(fmt, args...)	 do {					\
    225 	if (wg_debug & WG_DEBUG_FLAGS_LOG)				\
    226 	    log(LOG_DEBUG, "%s: " fmt, __func__, ##args);		\
    227 } while (0)
    228 #else
    229 #define WG_DLOG(fmt, args...)	__nothing
    230 #endif
    231 
    232 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...)	do {		\
    233 	if (ppsratecheck(&(wgprc)->wgprc_lasttime,			\
    234 	    &(wgprc)->wgprc_curpps, 1)) {				\
    235 		log(level, fmt, ##args);				\
    236 	}								\
    237 } while (0)
    238 
    239 #ifdef WG_DEBUG_PARAMS
    240 static bool wg_force_underload = false;
    241 #endif
    242 
    243 #ifdef WG_DEBUG_DUMP
    244 
    245 static char *
    246 gethexdump(const void *vp, size_t n)
    247 {
    248 	char *buf;
    249 	const uint8_t *p = vp;
    250 	size_t i;
    251 
    252 	if (n > (SIZE_MAX - 1) / 3)
    253 		return NULL;
    254 	buf = kmem_alloc(3 * n + 1, KM_NOSLEEP);
    255 	if (buf == NULL)
    256 		return NULL;
    257 	for (i = 0; i < n; i++)
    258 		snprintf(buf + 3 * i, 3 + 1, " %02hhx", p[i]);
    259 	return buf;
    260 }
    261 
    262 static void
    263 puthexdump(char *buf, const void *p, size_t n)
    264 {
    265 
    266 	if (buf == NULL)
    267 		return;
    268 	kmem_free(buf, 3*n + 1);
    269 }
    270 
    271 #ifdef WG_RUMPKERNEL
    272 static void
    273 wg_dump_buf(const char *func, const char *buf, const size_t size)
    274 {
    275 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    276 		return;
    277 
    278 	char *hex = gethexdump(buf, size);
    279 
    280 	log(LOG_DEBUG, "%s: %s\n", func, hex ? hex : "(enomem)");
    281 	puthexdump(hex, buf, size);
    282 }
    283 #endif
    284 
    285 static void
    286 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
    287     const size_t size)
    288 {
    289 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    290 		return;
    291 
    292 	char *hex = gethexdump(hash, size);
    293 
    294 	log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex ? hex : "(enomem)");
    295 	puthexdump(hex, hash, size);
    296 }
    297 
    298 #define WG_DUMP_HASH(name, hash) \
    299 	wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
    300 #define WG_DUMP_HASH48(name, hash) \
    301 	wg_dump_hash(__func__, name, hash, 48)
    302 #define WG_DUMP_BUF(buf, size) \
    303 	wg_dump_buf(__func__, buf, size)
    304 #else
    305 #define WG_DUMP_HASH(name, hash)	__nothing
    306 #define WG_DUMP_HASH48(name, hash)	__nothing
    307 #define WG_DUMP_BUF(buf, size)	__nothing
    308 #endif /* WG_DEBUG_DUMP */
    309 
    310 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
    311 #define	WG_MAX_PROPLEN		32766
    312 
    313 #define WG_MTU			1420
    314 #define WG_ALLOWEDIPS		16
    315 
    316 #define CURVE25519_KEY_LEN	32
    317 #define TAI64N_LEN		sizeof(uint32_t) * 3
    318 #define POLY1305_AUTHTAG_LEN	16
    319 #define HMAC_BLOCK_LEN		64
    320 
    321 /* [N] 4.1: "DHLEN must be 32 or greater."  WireGuard chooses 32. */
    322 /* [N] 4.3: Hash functions */
    323 #define NOISE_DHLEN		32
    324 /* [N] 4.3: "Must be 32 or 64."  WireGuard chooses 32. */
    325 #define NOISE_HASHLEN		32
    326 #define NOISE_BLOCKLEN		64
    327 #define NOISE_HKDF_OUTPUT_LEN	NOISE_HASHLEN
    328 /* [N] 5.1: "k" */
    329 #define NOISE_CIPHER_KEY_LEN	32
    330 /*
    331  * [N] 9.2: "psk"
    332  *          "... psk is a 32-byte secret value provided by the application."
    333  */
    334 #define NOISE_PRESHARED_KEY_LEN	32
    335 
    336 #define WG_STATIC_KEY_LEN	CURVE25519_KEY_LEN
    337 #define WG_TIMESTAMP_LEN	TAI64N_LEN
    338 
    339 #define WG_PRESHARED_KEY_LEN	NOISE_PRESHARED_KEY_LEN
    340 
    341 #define WG_COOKIE_LEN		16
    342 #define WG_MAC_LEN		16
    343 #define WG_RANDVAL_LEN		24
    344 
    345 #define WG_EPHEMERAL_KEY_LEN	CURVE25519_KEY_LEN
    346 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
    347 #define WG_CHAINING_KEY_LEN	NOISE_HASHLEN
    348 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
    349 #define WG_HASH_LEN		NOISE_HASHLEN
    350 #define WG_CIPHER_KEY_LEN	NOISE_CIPHER_KEY_LEN
    351 #define WG_DH_OUTPUT_LEN	NOISE_DHLEN
    352 #define WG_KDF_OUTPUT_LEN	NOISE_HKDF_OUTPUT_LEN
    353 #define WG_AUTHTAG_LEN		POLY1305_AUTHTAG_LEN
    354 #define WG_DATA_KEY_LEN		32
    355 #define WG_SALT_LEN		24
    356 
    357 /*
    358  * The protocol messages
    359  */
    360 struct wg_msg {
    361 	uint32_t	wgm_type;
    362 } __packed;
    363 
    364 /* [W] 5.4.2 First Message: Initiator to Responder */
    365 struct wg_msg_init {
    366 	uint32_t	wgmi_type;
    367 	uint32_t	wgmi_sender;
    368 	uint8_t		wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
    369 	uint8_t		wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
    370 	uint8_t		wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
    371 	uint8_t		wgmi_mac1[WG_MAC_LEN];
    372 	uint8_t		wgmi_mac2[WG_MAC_LEN];
    373 } __packed;
    374 
    375 /* [W] 5.4.3 Second Message: Responder to Initiator */
    376 struct wg_msg_resp {
    377 	uint32_t	wgmr_type;
    378 	uint32_t	wgmr_sender;
    379 	uint32_t	wgmr_receiver;
    380 	uint8_t		wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
    381 	uint8_t		wgmr_empty[0 + WG_AUTHTAG_LEN];
    382 	uint8_t		wgmr_mac1[WG_MAC_LEN];
    383 	uint8_t		wgmr_mac2[WG_MAC_LEN];
    384 } __packed;
    385 
    386 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
    387 struct wg_msg_data {
    388 	uint32_t	wgmd_type;
    389 	uint32_t	wgmd_receiver;
    390 	uint64_t	wgmd_counter;
    391 	uint32_t	wgmd_packet[0];
    392 } __packed;
    393 
    394 /* [W] 5.4.7 Under Load: Cookie Reply Message */
    395 struct wg_msg_cookie {
    396 	uint32_t	wgmc_type;
    397 	uint32_t	wgmc_receiver;
    398 	uint8_t		wgmc_salt[WG_SALT_LEN];
    399 	uint8_t		wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
    400 } __packed;
    401 
    402 #define WG_MSG_TYPE_INIT		1
    403 #define WG_MSG_TYPE_RESP		2
    404 #define WG_MSG_TYPE_COOKIE		3
    405 #define WG_MSG_TYPE_DATA		4
    406 #define WG_MSG_TYPE_MAX			WG_MSG_TYPE_DATA
    407 
    408 /* Sliding windows */
    409 
    410 #define	SLIWIN_BITS	2048u
    411 #define	SLIWIN_TYPE	uint32_t
    412 #define	SLIWIN_BPW	NBBY*sizeof(SLIWIN_TYPE)
    413 #define	SLIWIN_WORDS	howmany(SLIWIN_BITS, SLIWIN_BPW)
    414 #define	SLIWIN_NPKT	(SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
    415 
    416 struct sliwin {
    417 	SLIWIN_TYPE	B[SLIWIN_WORDS];
    418 	uint64_t	T;
    419 };
    420 
    421 static void
    422 sliwin_reset(struct sliwin *W)
    423 {
    424 
    425 	memset(W, 0, sizeof(*W));
    426 }
    427 
    428 static int
    429 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
    430 {
    431 
    432 	/*
    433 	 * If it's more than one window older than the highest sequence
    434 	 * number we've seen, reject.
    435 	 */
    436 #ifdef __HAVE_ATOMIC64_LOADSTORE
    437 	if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
    438 		return EAUTH;
    439 #endif
    440 
    441 	/*
    442 	 * Otherwise, we need to take the lock to decide, so don't
    443 	 * reject just yet.  Caller must serialize a call to
    444 	 * sliwin_update in this case.
    445 	 */
    446 	return 0;
    447 }
    448 
    449 static int
    450 sliwin_update(struct sliwin *W, uint64_t S)
    451 {
    452 	unsigned word, bit;
    453 
    454 	/*
    455 	 * If it's more than one window older than the highest sequence
    456 	 * number we've seen, reject.
    457 	 */
    458 	if (S + SLIWIN_NPKT < W->T)
    459 		return EAUTH;
    460 
    461 	/*
    462 	 * If it's higher than the highest sequence number we've seen,
    463 	 * advance the window.
    464 	 */
    465 	if (S > W->T) {
    466 		uint64_t i = W->T / SLIWIN_BPW;
    467 		uint64_t j = S / SLIWIN_BPW;
    468 		unsigned k;
    469 
    470 		for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
    471 			W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
    472 #ifdef __HAVE_ATOMIC64_LOADSTORE
    473 		atomic_store_relaxed(&W->T, S);
    474 #else
    475 		W->T = S;
    476 #endif
    477 	}
    478 
    479 	/* Test and set the bit -- if already set, reject.  */
    480 	word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
    481 	bit = S % SLIWIN_BPW;
    482 	if (W->B[word] & (1UL << bit))
    483 		return EAUTH;
    484 	W->B[word] |= 1U << bit;
    485 
    486 	/* Accept!  */
    487 	return 0;
    488 }
    489 
    490 struct wg_session {
    491 	struct wg_peer	*wgs_peer;
    492 	struct psref_target
    493 			wgs_psref;
    494 
    495 	int		wgs_state;
    496 #define WGS_STATE_UNKNOWN	0
    497 #define WGS_STATE_INIT_ACTIVE	1
    498 #define WGS_STATE_INIT_PASSIVE	2
    499 #define WGS_STATE_ESTABLISHED	3
    500 #define WGS_STATE_DESTROYING	4
    501 
    502 	time_t		wgs_time_established;
    503 	time_t		wgs_time_last_data_sent;
    504 	bool		wgs_is_initiator;
    505 
    506 	uint32_t	wgs_local_index;
    507 	uint32_t	wgs_remote_index;
    508 #ifdef __HAVE_ATOMIC64_LOADSTORE
    509 	volatile uint64_t
    510 			wgs_send_counter;
    511 #else
    512 	kmutex_t	wgs_send_counter_lock;
    513 	uint64_t	wgs_send_counter;
    514 #endif
    515 
    516 	struct {
    517 		kmutex_t	lock;
    518 		struct sliwin	window;
    519 	}		*wgs_recvwin;
    520 
    521 	uint8_t		wgs_handshake_hash[WG_HASH_LEN];
    522 	uint8_t		wgs_chaining_key[WG_CHAINING_KEY_LEN];
    523 	uint8_t		wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
    524 	uint8_t		wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
    525 	uint8_t		wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
    526 	uint8_t		wgs_tkey_send[WG_DATA_KEY_LEN];
    527 	uint8_t		wgs_tkey_recv[WG_DATA_KEY_LEN];
    528 };
    529 
    530 struct wg_sockaddr {
    531 	union {
    532 		struct sockaddr_storage _ss;
    533 		struct sockaddr _sa;
    534 		struct sockaddr_in _sin;
    535 		struct sockaddr_in6 _sin6;
    536 	};
    537 	struct psref_target	wgsa_psref;
    538 };
    539 
    540 #define wgsatoss(wgsa)		(&(wgsa)->_ss)
    541 #define wgsatosa(wgsa)		(&(wgsa)->_sa)
    542 #define wgsatosin(wgsa)		(&(wgsa)->_sin)
    543 #define wgsatosin6(wgsa)	(&(wgsa)->_sin6)
    544 
    545 #define	wgsa_family(wgsa)	(wgsatosa(wgsa)->sa_family)
    546 
    547 struct wg_peer;
    548 struct wg_allowedip {
    549 	struct radix_node	wga_nodes[2];
    550 	struct wg_sockaddr	_wga_sa_addr;
    551 	struct wg_sockaddr	_wga_sa_mask;
    552 #define wga_sa_addr		_wga_sa_addr._sa
    553 #define wga_sa_mask		_wga_sa_mask._sa
    554 
    555 	int			wga_family;
    556 	uint8_t			wga_cidr;
    557 	union {
    558 		struct in_addr _ip4;
    559 		struct in6_addr _ip6;
    560 	} wga_addr;
    561 #define wga_addr4	wga_addr._ip4
    562 #define wga_addr6	wga_addr._ip6
    563 
    564 	struct wg_peer		*wga_peer;
    565 };
    566 
    567 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
    568 
    569 struct wg_ppsratecheck {
    570 	struct timeval		wgprc_lasttime;
    571 	int			wgprc_curpps;
    572 };
    573 
    574 struct wg_softc;
    575 struct wg_peer {
    576 	struct wg_softc		*wgp_sc;
    577 	char			wgp_name[WG_PEER_NAME_MAXLEN + 1];
    578 	struct pslist_entry	wgp_peerlist_entry;
    579 	pserialize_t		wgp_psz;
    580 	struct psref_target	wgp_psref;
    581 	kmutex_t		*wgp_lock;
    582 	kmutex_t		*wgp_intr_lock;
    583 
    584 	uint8_t	wgp_pubkey[WG_STATIC_KEY_LEN];
    585 	struct wg_sockaddr	*wgp_endpoint;
    586 	struct wg_sockaddr	*wgp_endpoint0;
    587 	volatile unsigned	wgp_endpoint_changing;
    588 	bool			wgp_endpoint_available;
    589 
    590 			/* The preshared key (optional) */
    591 	uint8_t		wgp_psk[WG_PRESHARED_KEY_LEN];
    592 
    593 	struct wg_session	*wgp_session_stable;
    594 	struct wg_session	*wgp_session_unstable;
    595 
    596 	/* first outgoing packet awaiting session initiation */
    597 	struct mbuf		*wgp_pending;
    598 
    599 	/* timestamp in big-endian */
    600 	wg_timestamp_t	wgp_timestamp_latest_init;
    601 
    602 	struct timespec		wgp_last_handshake_time;
    603 
    604 	callout_t		wgp_rekey_timer;
    605 	callout_t		wgp_handshake_timeout_timer;
    606 	callout_t		wgp_session_dtor_timer;
    607 
    608 	time_t			wgp_handshake_start_time;
    609 
    610 	int			wgp_n_allowedips;
    611 	struct wg_allowedip	wgp_allowedips[WG_ALLOWEDIPS];
    612 
    613 	time_t			wgp_latest_cookie_time;
    614 	uint8_t			wgp_latest_cookie[WG_COOKIE_LEN];
    615 	uint8_t			wgp_last_sent_mac1[WG_MAC_LEN];
    616 	bool			wgp_last_sent_mac1_valid;
    617 	uint8_t			wgp_last_sent_cookie[WG_COOKIE_LEN];
    618 	bool			wgp_last_sent_cookie_valid;
    619 
    620 	time_t			wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
    621 
    622 	time_t			wgp_last_genrandval_time;
    623 	uint32_t		wgp_randval;
    624 
    625 	struct wg_ppsratecheck	wgp_ppsratecheck;
    626 
    627 	struct work		wgp_work;
    628 	unsigned int		wgp_tasks;
    629 #define WGP_TASK_SEND_INIT_MESSAGE		__BIT(0)
    630 #define WGP_TASK_RETRY_HANDSHAKE		__BIT(1)
    631 #define WGP_TASK_ESTABLISH_SESSION		__BIT(2)
    632 #define WGP_TASK_ENDPOINT_CHANGED		__BIT(3)
    633 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE		__BIT(4)
    634 #define WGP_TASK_DESTROY_PREV_SESSION		__BIT(5)
    635 };
    636 
    637 struct wg_ops;
    638 
    639 struct wg_softc {
    640 	struct ifnet	wg_if;
    641 	LIST_ENTRY(wg_softc) wg_list;
    642 	kmutex_t	*wg_lock;
    643 	kmutex_t	*wg_intr_lock;
    644 	krwlock_t	*wg_rwlock;
    645 
    646 	uint8_t		wg_privkey[WG_STATIC_KEY_LEN];
    647 	uint8_t		wg_pubkey[WG_STATIC_KEY_LEN];
    648 
    649 	int		wg_npeers;
    650 	struct pslist_head	wg_peers;
    651 	struct thmap	*wg_peers_bypubkey;
    652 	struct thmap	*wg_peers_byname;
    653 	struct thmap	*wg_sessions_byindex;
    654 	uint16_t	wg_listen_port;
    655 
    656 	struct threadpool	*wg_threadpool;
    657 
    658 	struct threadpool_job	wg_job;
    659 	int			wg_upcalls;
    660 #define	WG_UPCALL_INET	__BIT(0)
    661 #define	WG_UPCALL_INET6	__BIT(1)
    662 
    663 #ifdef INET
    664 	struct socket		*wg_so4;
    665 	struct radix_node_head	*wg_rtable_ipv4;
    666 #endif
    667 #ifdef INET6
    668 	struct socket		*wg_so6;
    669 	struct radix_node_head	*wg_rtable_ipv6;
    670 #endif
    671 
    672 	struct wg_ppsratecheck	wg_ppsratecheck;
    673 
    674 	struct wg_ops		*wg_ops;
    675 
    676 #ifdef WG_RUMPKERNEL
    677 	struct wg_user		*wg_user;
    678 #endif
    679 };
    680 
    681 /* [W] 6.1 Preliminaries */
    682 #define WG_REKEY_AFTER_MESSAGES		(1ULL << 60)
    683 #define WG_REJECT_AFTER_MESSAGES	(UINT64_MAX - (1 << 13))
    684 #define WG_REKEY_AFTER_TIME		120
    685 #define WG_REJECT_AFTER_TIME		180
    686 #define WG_REKEY_ATTEMPT_TIME		 90
    687 #define WG_REKEY_TIMEOUT		  5
    688 #define WG_KEEPALIVE_TIMEOUT		 10
    689 
    690 #define WG_COOKIE_TIME			120
    691 #define WG_RANDVAL_TIME			(2 * 60)
    692 
    693 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
    694 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
    695 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
    696 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
    697 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
    698 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
    699 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
    700 
    701 static struct mbuf *
    702 		wg_get_mbuf(size_t, size_t);
    703 
    704 static int	wg_send_data_msg(struct wg_peer *, struct wg_session *,
    705 		    struct mbuf *);
    706 static int	wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
    707 		    const uint32_t, const uint8_t [WG_MAC_LEN],
    708 		    const struct sockaddr *);
    709 static int	wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
    710 		    struct wg_session *, const struct wg_msg_init *);
    711 static void	wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
    712 
    713 static struct wg_peer *
    714 		wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
    715 		    struct psref *);
    716 static struct wg_peer *
    717 		wg_lookup_peer_by_pubkey(struct wg_softc *,
    718 		    const uint8_t [WG_STATIC_KEY_LEN], struct psref *);
    719 
    720 static struct wg_session *
    721 		wg_lookup_session_by_index(struct wg_softc *,
    722 		    const uint32_t, struct psref *);
    723 
    724 static void	wg_update_endpoint_if_necessary(struct wg_peer *,
    725 		    const struct sockaddr *);
    726 
    727 static void	wg_schedule_rekey_timer(struct wg_peer *);
    728 static void	wg_schedule_session_dtor_timer(struct wg_peer *);
    729 
    730 static bool	wg_is_underload(struct wg_softc *, struct wg_peer *, int);
    731 static void	wg_calculate_keys(struct wg_session *, const bool);
    732 
    733 static void	wg_clear_states(struct wg_session *);
    734 
    735 static void	wg_get_peer(struct wg_peer *, struct psref *);
    736 static void	wg_put_peer(struct wg_peer *, struct psref *);
    737 
    738 static int	wg_send_so(struct wg_peer *, struct mbuf *);
    739 static int	wg_send_udp(struct wg_peer *, struct mbuf *);
    740 static int	wg_output(struct ifnet *, struct mbuf *,
    741 			   const struct sockaddr *, const struct rtentry *);
    742 static void	wg_input(struct ifnet *, struct mbuf *, const int);
    743 static int	wg_ioctl(struct ifnet *, u_long, void *);
    744 static int	wg_bind_port(struct wg_softc *, const uint16_t);
    745 static int	wg_init(struct ifnet *);
    746 #ifdef ALTQ
    747 static void	wg_start(struct ifnet *);
    748 #endif
    749 static void	wg_stop(struct ifnet *, int);
    750 
    751 static void	wg_peer_work(struct work *, void *);
    752 static void	wg_job(struct threadpool_job *);
    753 static void	wgintr(void *);
    754 static void	wg_purge_pending_packets(struct wg_peer *);
    755 
    756 static int	wg_clone_create(struct if_clone *, int);
    757 static int	wg_clone_destroy(struct ifnet *);
    758 
    759 struct wg_ops {
    760 	int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
    761 	int (*send_data_msg)(struct wg_peer *, struct mbuf *);
    762 	void (*input)(struct ifnet *, struct mbuf *, const int);
    763 	int (*bind_port)(struct wg_softc *, const uint16_t);
    764 };
    765 
    766 struct wg_ops wg_ops_rumpkernel = {
    767 	.send_hs_msg	= wg_send_so,
    768 	.send_data_msg	= wg_send_udp,
    769 	.input		= wg_input,
    770 	.bind_port	= wg_bind_port,
    771 };
    772 
    773 #ifdef WG_RUMPKERNEL
    774 static bool	wg_user_mode(struct wg_softc *);
    775 static int	wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
    776 
    777 static int	wg_send_user(struct wg_peer *, struct mbuf *);
    778 static void	wg_input_user(struct ifnet *, struct mbuf *, const int);
    779 static int	wg_bind_port_user(struct wg_softc *, const uint16_t);
    780 
    781 struct wg_ops wg_ops_rumpuser = {
    782 	.send_hs_msg	= wg_send_user,
    783 	.send_data_msg	= wg_send_user,
    784 	.input		= wg_input_user,
    785 	.bind_port	= wg_bind_port_user,
    786 };
    787 #endif
    788 
    789 #define WG_PEER_READER_FOREACH(wgp, wg)					\
    790 	PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    791 	    wgp_peerlist_entry)
    792 #define WG_PEER_WRITER_FOREACH(wgp, wg)					\
    793 	PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    794 	    wgp_peerlist_entry)
    795 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg)				\
    796 	PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
    797 #define WG_PEER_WRITER_REMOVE(wgp)					\
    798 	PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
    799 
    800 struct wg_route {
    801 	struct radix_node	wgr_nodes[2];
    802 	struct wg_peer		*wgr_peer;
    803 };
    804 
    805 static struct radix_node_head *
    806 wg_rnh(struct wg_softc *wg, const int family)
    807 {
    808 
    809 	switch (family) {
    810 		case AF_INET:
    811 			return wg->wg_rtable_ipv4;
    812 #ifdef INET6
    813 		case AF_INET6:
    814 			return wg->wg_rtable_ipv6;
    815 #endif
    816 		default:
    817 			return NULL;
    818 	}
    819 }
    820 
    821 
    822 /*
    823  * Global variables
    824  */
    825 static volatile unsigned wg_count __cacheline_aligned;
    826 
    827 struct psref_class *wg_psref_class __read_mostly;
    828 
    829 static struct if_clone wg_cloner =
    830     IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
    831 
    832 static struct pktqueue *wg_pktq __read_mostly;
    833 static struct workqueue *wg_wq __read_mostly;
    834 
    835 void wgattach(int);
    836 /* ARGSUSED */
    837 void
    838 wgattach(int count)
    839 {
    840 	/*
    841 	 * Nothing to do here, initialization is handled by the
    842 	 * module initialization code in wginit() below).
    843 	 */
    844 }
    845 
    846 static void
    847 wginit(void)
    848 {
    849 
    850 	wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
    851 
    852 	if_clone_attach(&wg_cloner);
    853 }
    854 
    855 /*
    856  * XXX Kludge: This should just happen in wginit, but workqueue_create
    857  * cannot be run until after CPUs have been detected, and wginit runs
    858  * before configure.
    859  */
    860 static int
    861 wginitqueues(void)
    862 {
    863 	int error __diagused;
    864 
    865 	wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
    866 	KASSERT(wg_pktq != NULL);
    867 
    868 	error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
    869 	    PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
    870 	KASSERT(error == 0);
    871 
    872 	return 0;
    873 }
    874 
    875 static void
    876 wg_guarantee_initialized(void)
    877 {
    878 	static ONCE_DECL(init);
    879 	int error __diagused;
    880 
    881 	error = RUN_ONCE(&init, wginitqueues);
    882 	KASSERT(error == 0);
    883 }
    884 
    885 static int
    886 wg_count_inc(void)
    887 {
    888 	unsigned o, n;
    889 
    890 	do {
    891 		o = atomic_load_relaxed(&wg_count);
    892 		if (o == UINT_MAX)
    893 			return ENFILE;
    894 		n = o + 1;
    895 	} while (atomic_cas_uint(&wg_count, o, n) != o);
    896 
    897 	return 0;
    898 }
    899 
    900 static void
    901 wg_count_dec(void)
    902 {
    903 	unsigned c __diagused;
    904 
    905 	c = atomic_dec_uint_nv(&wg_count);
    906 	KASSERT(c != UINT_MAX);
    907 }
    908 
    909 static int
    910 wgdetach(void)
    911 {
    912 
    913 	/* Prevent new interface creation.  */
    914 	if_clone_detach(&wg_cloner);
    915 
    916 	/* Check whether there are any existing interfaces.  */
    917 	if (atomic_load_relaxed(&wg_count)) {
    918 		/* Back out -- reattach the cloner.  */
    919 		if_clone_attach(&wg_cloner);
    920 		return EBUSY;
    921 	}
    922 
    923 	/* No interfaces left.  Nuke it.  */
    924 	workqueue_destroy(wg_wq);
    925 	pktq_destroy(wg_pktq);
    926 	psref_class_destroy(wg_psref_class);
    927 
    928 	return 0;
    929 }
    930 
    931 static void
    932 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
    933     uint8_t hash[WG_HASH_LEN])
    934 {
    935 	/* [W] 5.4: CONSTRUCTION */
    936 	const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
    937 	/* [W] 5.4: IDENTIFIER */
    938 	const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
    939 	struct blake2s state;
    940 
    941 	blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
    942 	    signature, strlen(signature));
    943 
    944 	CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
    945 	memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
    946 
    947 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    948 	blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
    949 	blake2s_update(&state, id, strlen(id));
    950 	blake2s_final(&state, hash);
    951 
    952 	WG_DUMP_HASH("ckey", ckey);
    953 	WG_DUMP_HASH("hash", hash);
    954 }
    955 
    956 static void
    957 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
    958     const size_t inputsize)
    959 {
    960 	struct blake2s state;
    961 
    962 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    963 	blake2s_update(&state, hash, WG_HASH_LEN);
    964 	blake2s_update(&state, input, inputsize);
    965 	blake2s_final(&state, hash);
    966 }
    967 
    968 static void
    969 wg_algo_mac(uint8_t out[], const size_t outsize,
    970     const uint8_t key[], const size_t keylen,
    971     const uint8_t input1[], const size_t input1len,
    972     const uint8_t input2[], const size_t input2len)
    973 {
    974 	struct blake2s state;
    975 
    976 	blake2s_init(&state, outsize, key, keylen);
    977 
    978 	blake2s_update(&state, input1, input1len);
    979 	if (input2 != NULL)
    980 		blake2s_update(&state, input2, input2len);
    981 	blake2s_final(&state, out);
    982 }
    983 
    984 static void
    985 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
    986     const uint8_t input1[], const size_t input1len,
    987     const uint8_t input2[], const size_t input2len)
    988 {
    989 	struct blake2s state;
    990 	/* [W] 5.4: LABEL-MAC1 */
    991 	const char *label = "mac1----";
    992 	uint8_t key[WG_HASH_LEN];
    993 
    994 	blake2s_init(&state, sizeof(key), NULL, 0);
    995 	blake2s_update(&state, label, strlen(label));
    996 	blake2s_update(&state, input1, input1len);
    997 	blake2s_final(&state, key);
    998 
    999 	blake2s_init(&state, outsize, key, sizeof(key));
   1000 	if (input2 != NULL)
   1001 		blake2s_update(&state, input2, input2len);
   1002 	blake2s_final(&state, out);
   1003 }
   1004 
   1005 static void
   1006 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
   1007     const uint8_t input1[], const size_t input1len)
   1008 {
   1009 	struct blake2s state;
   1010 	/* [W] 5.4: LABEL-COOKIE */
   1011 	const char *label = "cookie--";
   1012 
   1013 	blake2s_init(&state, outsize, NULL, 0);
   1014 	blake2s_update(&state, label, strlen(label));
   1015 	blake2s_update(&state, input1, input1len);
   1016 	blake2s_final(&state, out);
   1017 }
   1018 
   1019 static void
   1020 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
   1021     uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
   1022 {
   1023 
   1024 	CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1025 
   1026 	cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
   1027 	crypto_scalarmult_base(pubkey, privkey);
   1028 }
   1029 
   1030 static void
   1031 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
   1032     const uint8_t privkey[WG_STATIC_KEY_LEN],
   1033     const uint8_t pubkey[WG_STATIC_KEY_LEN])
   1034 {
   1035 
   1036 	CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1037 
   1038 	int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
   1039 	KASSERT(ret == 0);
   1040 }
   1041 
   1042 static void
   1043 wg_algo_hmac(uint8_t out[], const size_t outlen,
   1044     const uint8_t key[], const size_t keylen,
   1045     const uint8_t in[], const size_t inlen)
   1046 {
   1047 #define IPAD	0x36
   1048 #define OPAD	0x5c
   1049 	uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
   1050 	uint8_t ipad[HMAC_BLOCK_LEN];
   1051 	uint8_t opad[HMAC_BLOCK_LEN];
   1052 	size_t i;
   1053 	struct blake2s state;
   1054 
   1055 	KASSERT(outlen == WG_HASH_LEN);
   1056 	KASSERT(keylen <= HMAC_BLOCK_LEN);
   1057 
   1058 	memcpy(hmackey, key, keylen);
   1059 
   1060 	for (i = 0; i < sizeof(hmackey); i++) {
   1061 		ipad[i] = hmackey[i] ^ IPAD;
   1062 		opad[i] = hmackey[i] ^ OPAD;
   1063 	}
   1064 
   1065 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1066 	blake2s_update(&state, ipad, sizeof(ipad));
   1067 	blake2s_update(&state, in, inlen);
   1068 	blake2s_final(&state, out);
   1069 
   1070 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1071 	blake2s_update(&state, opad, sizeof(opad));
   1072 	blake2s_update(&state, out, WG_HASH_LEN);
   1073 	blake2s_final(&state, out);
   1074 #undef IPAD
   1075 #undef OPAD
   1076 }
   1077 
   1078 static void
   1079 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
   1080     uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
   1081     const uint8_t input[], const size_t inputlen)
   1082 {
   1083 	uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
   1084 	uint8_t one[1];
   1085 
   1086 	/*
   1087 	 * [N] 4.3: "an input_key_material byte sequence with length
   1088 	 * either zero bytes, 32 bytes, or DHLEN bytes."
   1089 	 */
   1090 	KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
   1091 
   1092 	WG_DUMP_HASH("ckey", ckey);
   1093 	if (input != NULL)
   1094 		WG_DUMP_HASH("input", input);
   1095 	wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
   1096 	    input, inputlen);
   1097 	WG_DUMP_HASH("tmp1", tmp1);
   1098 	one[0] = 1;
   1099 	wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1100 	    one, sizeof(one));
   1101 	WG_DUMP_HASH("out1", out1);
   1102 	if (out2 == NULL)
   1103 		return;
   1104 	memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
   1105 	tmp2[WG_KDF_OUTPUT_LEN] = 2;
   1106 	wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1107 	    tmp2, sizeof(tmp2));
   1108 	WG_DUMP_HASH("out2", out2);
   1109 	if (out3 == NULL)
   1110 		return;
   1111 	memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
   1112 	tmp2[WG_KDF_OUTPUT_LEN] = 3;
   1113 	wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1114 	    tmp2, sizeof(tmp2));
   1115 	WG_DUMP_HASH("out3", out3);
   1116 }
   1117 
   1118 static void __noinline
   1119 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
   1120     uint8_t cipher_key[WG_CIPHER_KEY_LEN],
   1121     const uint8_t local_key[WG_STATIC_KEY_LEN],
   1122     const uint8_t remote_key[WG_STATIC_KEY_LEN])
   1123 {
   1124 	uint8_t dhout[WG_DH_OUTPUT_LEN];
   1125 
   1126 	wg_algo_dh(dhout, local_key, remote_key);
   1127 	wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
   1128 
   1129 	WG_DUMP_HASH("dhout", dhout);
   1130 	WG_DUMP_HASH("ckey", ckey);
   1131 	if (cipher_key != NULL)
   1132 		WG_DUMP_HASH("cipher_key", cipher_key);
   1133 }
   1134 
   1135 static void
   1136 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
   1137     const uint64_t counter, const uint8_t plain[], const size_t plainsize,
   1138     const uint8_t auth[], size_t authlen)
   1139 {
   1140 	uint8_t nonce[(32 + 64) / 8] = {0};
   1141 	long long unsigned int outsize;
   1142 	int error __diagused;
   1143 
   1144 	le64enc(&nonce[4], counter);
   1145 
   1146 	error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
   1147 	    plainsize, auth, authlen, NULL, nonce, key);
   1148 	KASSERT(error == 0);
   1149 	KASSERT(outsize == expected_outsize);
   1150 }
   1151 
   1152 static int
   1153 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
   1154     const uint64_t counter, const uint8_t encrypted[],
   1155     const size_t encryptedsize, const uint8_t auth[], size_t authlen)
   1156 {
   1157 	uint8_t nonce[(32 + 64) / 8] = {0};
   1158 	long long unsigned int outsize;
   1159 	int error;
   1160 
   1161 	le64enc(&nonce[4], counter);
   1162 
   1163 	error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1164 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1165 	if (error == 0)
   1166 		KASSERT(outsize == expected_outsize);
   1167 	return error;
   1168 }
   1169 
   1170 static void
   1171 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
   1172     const uint8_t key[], const uint8_t plain[], const size_t plainsize,
   1173     const uint8_t auth[], size_t authlen,
   1174     const uint8_t nonce[WG_SALT_LEN])
   1175 {
   1176 	long long unsigned int outsize;
   1177 	int error __diagused;
   1178 
   1179 	CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
   1180 	error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
   1181 	    plain, plainsize, auth, authlen, NULL, nonce, key);
   1182 	KASSERT(error == 0);
   1183 	KASSERT(outsize == expected_outsize);
   1184 }
   1185 
   1186 static int
   1187 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
   1188     const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
   1189     const uint8_t auth[], size_t authlen,
   1190     const uint8_t nonce[WG_SALT_LEN])
   1191 {
   1192 	long long unsigned int outsize;
   1193 	int error;
   1194 
   1195 	error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1196 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1197 	if (error == 0)
   1198 		KASSERT(outsize == expected_outsize);
   1199 	return error;
   1200 }
   1201 
   1202 static void
   1203 wg_algo_tai64n(wg_timestamp_t timestamp)
   1204 {
   1205 	struct timespec ts;
   1206 
   1207 	/* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
   1208 	getnanotime(&ts);
   1209 	/* TAI64 label in external TAI64 format */
   1210 	be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
   1211 	/* second beginning from 1970 TAI */
   1212 	be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
   1213 	/* nanosecond in big-endian format */
   1214 	be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
   1215 }
   1216 
   1217 /*
   1218  * wg_get_stable_session(wgp, psref)
   1219  *
   1220  *	Get a passive reference to the current stable session, or
   1221  *	return NULL if there is no current stable session.
   1222  *
   1223  *	The pointer is always there but the session is not necessarily
   1224  *	ESTABLISHED; if it is not ESTABLISHED, return NULL.  However,
   1225  *	the session may transition from ESTABLISHED to DESTROYING while
   1226  *	holding the passive reference.
   1227  */
   1228 static struct wg_session *
   1229 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
   1230 {
   1231 	int s;
   1232 	struct wg_session *wgs;
   1233 
   1234 	s = pserialize_read_enter();
   1235 	wgs = atomic_load_consume(&wgp->wgp_session_stable);
   1236 	if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
   1237 		wgs = NULL;
   1238 	else
   1239 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   1240 	pserialize_read_exit(s);
   1241 
   1242 	return wgs;
   1243 }
   1244 
   1245 static void
   1246 wg_put_session(struct wg_session *wgs, struct psref *psref)
   1247 {
   1248 
   1249 	psref_release(psref, &wgs->wgs_psref, wg_psref_class);
   1250 }
   1251 
   1252 static void
   1253 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
   1254 {
   1255 	struct wg_peer *wgp = wgs->wgs_peer;
   1256 	struct wg_session *wgs0 __diagused;
   1257 	void *garbage;
   1258 
   1259 	KASSERT(mutex_owned(wgp->wgp_lock));
   1260 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1261 
   1262 	/* Remove the session from the table.  */
   1263 	wgs0 = thmap_del(wg->wg_sessions_byindex,
   1264 	    &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
   1265 	KASSERT(wgs0 == wgs);
   1266 	garbage = thmap_stage_gc(wg->wg_sessions_byindex);
   1267 
   1268 	/* Wait for passive references to drain.  */
   1269 	pserialize_perform(wgp->wgp_psz);
   1270 	psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
   1271 
   1272 	/* Free memory, zero state, and transition to UNKNOWN.  */
   1273 	thmap_gc(wg->wg_sessions_byindex, garbage);
   1274 	wg_clear_states(wgs);
   1275 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   1276 }
   1277 
   1278 /*
   1279  * wg_get_session_index(wg, wgs)
   1280  *
   1281  *	Choose a session index for wgs->wgs_local_index, and store it
   1282  *	in wg's table of sessions by index.
   1283  *
   1284  *	wgs must be the unstable session of its peer, and must be
   1285  *	transitioning out of the UNKNOWN state.
   1286  */
   1287 static void
   1288 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1289 {
   1290 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1291 	struct wg_session *wgs0;
   1292 	uint32_t index;
   1293 
   1294 	KASSERT(mutex_owned(wgp->wgp_lock));
   1295 	KASSERT(wgs == wgp->wgp_session_unstable);
   1296 	KASSERT(wgs->wgs_state == WGS_STATE_UNKNOWN);
   1297 
   1298 	do {
   1299 		/* Pick a uniform random index.  */
   1300 		index = cprng_strong32();
   1301 
   1302 		/* Try to take it.  */
   1303 		wgs->wgs_local_index = index;
   1304 		wgs0 = thmap_put(wg->wg_sessions_byindex,
   1305 		    &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
   1306 
   1307 		/* If someone else beat us, start over.  */
   1308 	} while (__predict_false(wgs0 != wgs));
   1309 }
   1310 
   1311 /*
   1312  * wg_put_session_index(wg, wgs)
   1313  *
   1314  *	Remove wgs from the table of sessions by index, wait for any
   1315  *	passive references to drain, and transition the session to the
   1316  *	UNKNOWN state.
   1317  *
   1318  *	wgs must be the unstable session of its peer, and must not be
   1319  *	UNKNOWN or ESTABLISHED.
   1320  */
   1321 static void
   1322 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1323 {
   1324 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1325 
   1326 	KASSERT(mutex_owned(wgp->wgp_lock));
   1327 	KASSERT(wgs == wgp->wgp_session_unstable);
   1328 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1329 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
   1330 
   1331 	wg_destroy_session(wg, wgs);
   1332 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   1333 }
   1334 
   1335 /*
   1336  * Handshake patterns
   1337  *
   1338  * [W] 5: "These messages use the "IK" pattern from Noise"
   1339  * [N] 7.5. Interactive handshake patterns (fundamental)
   1340  *     "The first character refers to the initiators static key:"
   1341  *     "I = Static key for initiator Immediately transmitted to responder,
   1342  *          despite reduced or absent identity hiding"
   1343  *     "The second character refers to the responders static key:"
   1344  *     "K = Static key for responder Known to initiator"
   1345  *     "IK:
   1346  *        <- s
   1347  *        ...
   1348  *        -> e, es, s, ss
   1349  *        <- e, ee, se"
   1350  * [N] 9.4. Pattern modifiers
   1351  *     "IKpsk2:
   1352  *        <- s
   1353  *        ...
   1354  *        -> e, es, s, ss
   1355  *        <- e, ee, se, psk"
   1356  */
   1357 static void
   1358 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
   1359     struct wg_session *wgs, struct wg_msg_init *wgmi)
   1360 {
   1361 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1362 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1363 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1364 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1365 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1366 
   1367 	KASSERT(mutex_owned(wgp->wgp_lock));
   1368 	KASSERT(wgs == wgp->wgp_session_unstable);
   1369 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
   1370 
   1371 	wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
   1372 	wgmi->wgmi_sender = wgs->wgs_local_index;
   1373 
   1374 	/* [W] 5.4.2: First Message: Initiator to Responder */
   1375 
   1376 	/* Ci := HASH(CONSTRUCTION) */
   1377 	/* Hi := HASH(Ci || IDENTIFIER) */
   1378 	wg_init_key_and_hash(ckey, hash);
   1379 	/* Hi := HASH(Hi || Sr^pub) */
   1380 	wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
   1381 
   1382 	WG_DUMP_HASH("hash", hash);
   1383 
   1384 	/* [N] 2.2: "e" */
   1385 	/* Ei^priv, Ei^pub := DH-GENERATE() */
   1386 	wg_algo_generate_keypair(pubkey, privkey);
   1387 	/* Ci := KDF1(Ci, Ei^pub) */
   1388 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1389 	/* msg.ephemeral := Ei^pub */
   1390 	memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
   1391 	/* Hi := HASH(Hi || msg.ephemeral) */
   1392 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1393 
   1394 	WG_DUMP_HASH("ckey", ckey);
   1395 	WG_DUMP_HASH("hash", hash);
   1396 
   1397 	/* [N] 2.2: "es" */
   1398 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1399 	wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
   1400 
   1401 	/* [N] 2.2: "s" */
   1402 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1403 	wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
   1404 	    cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1405 	    hash, sizeof(hash));
   1406 	/* Hi := HASH(Hi || msg.static) */
   1407 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1408 
   1409 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1410 
   1411 	/* [N] 2.2: "ss" */
   1412 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1413 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1414 
   1415 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1416 	wg_timestamp_t timestamp;
   1417 	wg_algo_tai64n(timestamp);
   1418 	wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1419 	    cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
   1420 	/* Hi := HASH(Hi || msg.timestamp) */
   1421 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1422 
   1423 	/* [W] 5.4.4 Cookie MACs */
   1424 	wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
   1425 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1426 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1427 	/* Need mac1 to decrypt a cookie from a cookie message */
   1428 	memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
   1429 	    sizeof(wgp->wgp_last_sent_mac1));
   1430 	wgp->wgp_last_sent_mac1_valid = true;
   1431 
   1432 	if (wgp->wgp_latest_cookie_time == 0 ||
   1433 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1434 		memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
   1435 	else {
   1436 		wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
   1437 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1438 		    (const uint8_t *)wgmi,
   1439 		    offsetof(struct wg_msg_init, wgmi_mac2),
   1440 		    NULL, 0);
   1441 	}
   1442 
   1443 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1444 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1445 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1446 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1447 	WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
   1448 }
   1449 
   1450 static void __noinline
   1451 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
   1452     const struct sockaddr *src)
   1453 {
   1454 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1455 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1456 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1457 	uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
   1458 	struct wg_peer *wgp;
   1459 	struct wg_session *wgs;
   1460 	int error, ret;
   1461 	struct psref psref_peer;
   1462 	uint8_t mac1[WG_MAC_LEN];
   1463 
   1464 	WG_TRACE("init msg received");
   1465 
   1466 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1467 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1468 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1469 
   1470 	/*
   1471 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1472 	 * "the responder, ..., must always reject messages with an invalid
   1473 	 *  msg.mac1"
   1474 	 */
   1475 	if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
   1476 		WG_DLOG("mac1 is invalid\n");
   1477 		return;
   1478 	}
   1479 
   1480 	/*
   1481 	 * [W] 5.4.2: First Message: Initiator to Responder
   1482 	 * "When the responder receives this message, it does the same
   1483 	 *  operations so that its final state variables are identical,
   1484 	 *  replacing the operands of the DH function to produce equivalent
   1485 	 *  values."
   1486 	 *  Note that the following comments of operations are just copies of
   1487 	 *  the initiator's ones.
   1488 	 */
   1489 
   1490 	/* Ci := HASH(CONSTRUCTION) */
   1491 	/* Hi := HASH(Ci || IDENTIFIER) */
   1492 	wg_init_key_and_hash(ckey, hash);
   1493 	/* Hi := HASH(Hi || Sr^pub) */
   1494 	wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
   1495 
   1496 	/* [N] 2.2: "e" */
   1497 	/* Ci := KDF1(Ci, Ei^pub) */
   1498 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
   1499 	    sizeof(wgmi->wgmi_ephemeral));
   1500 	/* Hi := HASH(Hi || msg.ephemeral) */
   1501 	wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
   1502 
   1503 	WG_DUMP_HASH("ckey", ckey);
   1504 
   1505 	/* [N] 2.2: "es" */
   1506 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1507 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
   1508 
   1509 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1510 
   1511 	/* [N] 2.2: "s" */
   1512 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1513 	error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
   1514 	    wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
   1515 	if (error != 0) {
   1516 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   1517 		    "%s: wg_algo_aead_dec for secret key failed\n",
   1518 		    if_name(&wg->wg_if));
   1519 		return;
   1520 	}
   1521 	/* Hi := HASH(Hi || msg.static) */
   1522 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1523 
   1524 	wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
   1525 	if (wgp == NULL) {
   1526 		WG_DLOG("peer not found\n");
   1527 		return;
   1528 	}
   1529 
   1530 	/*
   1531 	 * Lock the peer to serialize access to cookie state.
   1532 	 *
   1533 	 * XXX Can we safely avoid holding the lock across DH?  Take it
   1534 	 * just to verify mac2 and then unlock/DH/lock?
   1535 	 */
   1536 	mutex_enter(wgp->wgp_lock);
   1537 
   1538 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
   1539 		WG_TRACE("under load");
   1540 		/*
   1541 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1542 		 * "the responder, ..., and when under load may reject messages
   1543 		 *  with an invalid msg.mac2.  If the responder receives a
   1544 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1545 		 *  and is under load, it may respond with a cookie reply
   1546 		 *  message"
   1547 		 */
   1548 		uint8_t zero[WG_MAC_LEN] = {0};
   1549 		if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
   1550 			WG_TRACE("sending a cookie message: no cookie included");
   1551 			(void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1552 			    wgmi->wgmi_mac1, src);
   1553 			goto out;
   1554 		}
   1555 		if (!wgp->wgp_last_sent_cookie_valid) {
   1556 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1557 			(void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1558 			    wgmi->wgmi_mac1, src);
   1559 			goto out;
   1560 		}
   1561 		uint8_t mac2[WG_MAC_LEN];
   1562 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1563 		    WG_COOKIE_LEN, (const uint8_t *)wgmi,
   1564 		    offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
   1565 		if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
   1566 			WG_DLOG("mac2 is invalid\n");
   1567 			goto out;
   1568 		}
   1569 		WG_TRACE("under load, but continue to sending");
   1570 	}
   1571 
   1572 	/* [N] 2.2: "ss" */
   1573 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1574 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1575 
   1576 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1577 	wg_timestamp_t timestamp;
   1578 	error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
   1579 	    wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1580 	    hash, sizeof(hash));
   1581 	if (error != 0) {
   1582 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1583 		    "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
   1584 		    if_name(&wg->wg_if), wgp->wgp_name);
   1585 		goto out;
   1586 	}
   1587 	/* Hi := HASH(Hi || msg.timestamp) */
   1588 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1589 
   1590 	/*
   1591 	 * [W] 5.1 "The responder keeps track of the greatest timestamp
   1592 	 *      received per peer and discards packets containing
   1593 	 *      timestamps less than or equal to it."
   1594 	 */
   1595 	ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
   1596 	    sizeof(timestamp));
   1597 	if (ret <= 0) {
   1598 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1599 		    "%s: peer %s: invalid init msg: timestamp is old\n",
   1600 		    if_name(&wg->wg_if), wgp->wgp_name);
   1601 		goto out;
   1602 	}
   1603 	memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
   1604 
   1605 	/*
   1606 	 * Message is good -- we're committing to handle it now, unless
   1607 	 * we were already initiating a session.
   1608 	 */
   1609 	wgs = wgp->wgp_session_unstable;
   1610 	switch (wgs->wgs_state) {
   1611 	case WGS_STATE_UNKNOWN:		/* new session initiated by peer */
   1612 		wg_get_session_index(wg, wgs);
   1613 		break;
   1614 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, drop */
   1615 		WG_TRACE("Session already initializing, ignoring the message");
   1616 		goto out;
   1617 	case WGS_STATE_INIT_PASSIVE:	/* peer is retrying, start over */
   1618 		WG_TRACE("Session already initializing, destroying old states");
   1619 		wg_clear_states(wgs);
   1620 		/* keep session index */
   1621 		break;
   1622 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1623 		panic("unstable session can't be established");
   1624 		break;
   1625 	case WGS_STATE_DESTROYING:	/* rekey initiated by peer */
   1626 		WG_TRACE("Session destroying, but force to clear");
   1627 		callout_stop(&wgp->wgp_session_dtor_timer);
   1628 		wg_clear_states(wgs);
   1629 		/* keep session index */
   1630 		break;
   1631 	default:
   1632 		panic("invalid session state: %d", wgs->wgs_state);
   1633 	}
   1634 	wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
   1635 
   1636 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1637 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1638 	memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
   1639 	    sizeof(wgmi->wgmi_ephemeral));
   1640 
   1641 	wg_update_endpoint_if_necessary(wgp, src);
   1642 
   1643 	(void)wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
   1644 
   1645 	wg_calculate_keys(wgs, false);
   1646 	wg_clear_states(wgs);
   1647 
   1648 out:
   1649 	mutex_exit(wgp->wgp_lock);
   1650 	wg_put_peer(wgp, &psref_peer);
   1651 }
   1652 
   1653 static struct socket *
   1654 wg_get_so_by_af(struct wg_softc *wg, const int af)
   1655 {
   1656 
   1657 	switch (af) {
   1658 #ifdef INET
   1659 	case AF_INET:
   1660 		return wg->wg_so4;
   1661 #endif
   1662 #ifdef INET6
   1663 	case AF_INET6:
   1664 		return wg->wg_so6;
   1665 #endif
   1666 	default:
   1667 		panic("wg: no such af: %d", af);
   1668 	}
   1669 }
   1670 
   1671 static struct socket *
   1672 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
   1673 {
   1674 
   1675 	return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
   1676 }
   1677 
   1678 static struct wg_sockaddr *
   1679 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
   1680 {
   1681 	struct wg_sockaddr *wgsa;
   1682 	int s;
   1683 
   1684 	s = pserialize_read_enter();
   1685 	wgsa = atomic_load_consume(&wgp->wgp_endpoint);
   1686 	psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
   1687 	pserialize_read_exit(s);
   1688 
   1689 	return wgsa;
   1690 }
   1691 
   1692 static void
   1693 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
   1694 {
   1695 
   1696 	psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
   1697 }
   1698 
   1699 static int
   1700 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
   1701 {
   1702 	int error;
   1703 	struct socket *so;
   1704 	struct psref psref;
   1705 	struct wg_sockaddr *wgsa;
   1706 
   1707 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   1708 	so = wg_get_so_by_peer(wgp, wgsa);
   1709 	error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
   1710 	wg_put_sa(wgp, wgsa, &psref);
   1711 
   1712 	return error;
   1713 }
   1714 
   1715 static int
   1716 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
   1717 {
   1718 	int error;
   1719 	struct mbuf *m;
   1720 	struct wg_msg_init *wgmi;
   1721 	struct wg_session *wgs;
   1722 
   1723 	KASSERT(mutex_owned(wgp->wgp_lock));
   1724 
   1725 	wgs = wgp->wgp_session_unstable;
   1726 	/* XXX pull dispatch out into wg_task_send_init_message */
   1727 	switch (wgs->wgs_state) {
   1728 	case WGS_STATE_UNKNOWN:		/* new session initiated by us */
   1729 		wg_get_session_index(wg, wgs);
   1730 		break;
   1731 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, stop */
   1732 		WG_TRACE("Session already initializing, skip starting new one");
   1733 		return EBUSY;
   1734 	case WGS_STATE_INIT_PASSIVE:	/* peer was trying -- XXX what now? */
   1735 		WG_TRACE("Session already initializing, destroying old states");
   1736 		wg_clear_states(wgs);
   1737 		/* keep session index */
   1738 		break;
   1739 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1740 		panic("unstable session can't be established");
   1741 		break;
   1742 	case WGS_STATE_DESTROYING:	/* rekey initiated by us too early */
   1743 		WG_TRACE("Session destroying");
   1744 		/* XXX should wait? */
   1745 		return EBUSY;
   1746 	}
   1747 	wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
   1748 
   1749 	m = m_gethdr(M_WAIT, MT_DATA);
   1750 	if (sizeof(*wgmi) > MHLEN) {
   1751 		m_clget(m, M_WAIT);
   1752 		CTASSERT(sizeof(*wgmi) <= MCLBYTES);
   1753 	}
   1754 	m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
   1755 	wgmi = mtod(m, struct wg_msg_init *);
   1756 	wg_fill_msg_init(wg, wgp, wgs, wgmi);
   1757 
   1758 	error = wg->wg_ops->send_hs_msg(wgp, m);
   1759 	if (error == 0) {
   1760 		WG_TRACE("init msg sent");
   1761 
   1762 		if (wgp->wgp_handshake_start_time == 0)
   1763 			wgp->wgp_handshake_start_time = time_uptime;
   1764 		callout_schedule(&wgp->wgp_handshake_timeout_timer,
   1765 		    MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
   1766 	} else {
   1767 		wg_put_session_index(wg, wgs);
   1768 		/* Initiation failed; toss packet waiting for it if any.  */
   1769 		m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   1770 		m_freem(m);
   1771 	}
   1772 
   1773 	return error;
   1774 }
   1775 
   1776 static void
   1777 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   1778     struct wg_session *wgs, struct wg_msg_resp *wgmr,
   1779     const struct wg_msg_init *wgmi)
   1780 {
   1781 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   1782 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
   1783 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   1784 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1785 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1786 
   1787 	KASSERT(mutex_owned(wgp->wgp_lock));
   1788 	KASSERT(wgs == wgp->wgp_session_unstable);
   1789 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
   1790 
   1791 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   1792 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   1793 
   1794 	wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
   1795 	wgmr->wgmr_sender = wgs->wgs_local_index;
   1796 	wgmr->wgmr_receiver = wgmi->wgmi_sender;
   1797 
   1798 	/* [W] 5.4.3 Second Message: Responder to Initiator */
   1799 
   1800 	/* [N] 2.2: "e" */
   1801 	/* Er^priv, Er^pub := DH-GENERATE() */
   1802 	wg_algo_generate_keypair(pubkey, privkey);
   1803 	/* Cr := KDF1(Cr, Er^pub) */
   1804 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1805 	/* msg.ephemeral := Er^pub */
   1806 	memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
   1807 	/* Hr := HASH(Hr || msg.ephemeral) */
   1808 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1809 
   1810 	WG_DUMP_HASH("ckey", ckey);
   1811 	WG_DUMP_HASH("hash", hash);
   1812 
   1813 	/* [N] 2.2: "ee" */
   1814 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   1815 	wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
   1816 
   1817 	/* [N] 2.2: "se" */
   1818 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   1819 	wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
   1820 
   1821 	/* [N] 9.2: "psk" */
   1822     {
   1823 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   1824 	/* Cr, r, k := KDF3(Cr, Q) */
   1825 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   1826 	    sizeof(wgp->wgp_psk));
   1827 	/* Hr := HASH(Hr || r) */
   1828 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   1829     }
   1830 
   1831 	/* msg.empty := AEAD(k, 0, e, Hr) */
   1832 	wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
   1833 	    cipher_key, 0, NULL, 0, hash, sizeof(hash));
   1834 	/* Hr := HASH(Hr || msg.empty) */
   1835 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   1836 
   1837 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   1838 
   1839 	/* [W] 5.4.4: Cookie MACs */
   1840 	/* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
   1841 	wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
   1842 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1843 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   1844 	/* Need mac1 to decrypt a cookie from a cookie message */
   1845 	memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
   1846 	    sizeof(wgp->wgp_last_sent_mac1));
   1847 	wgp->wgp_last_sent_mac1_valid = true;
   1848 
   1849 	if (wgp->wgp_latest_cookie_time == 0 ||
   1850 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1851 		/* msg.mac2 := 0^16 */
   1852 		memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
   1853 	else {
   1854 		/* msg.mac2 := MAC(Lm, msg_b) */
   1855 		wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
   1856 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1857 		    (const uint8_t *)wgmr,
   1858 		    offsetof(struct wg_msg_resp, wgmr_mac2),
   1859 		    NULL, 0);
   1860 	}
   1861 
   1862 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1863 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1864 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1865 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1866 	wgs->wgs_remote_index = wgmi->wgmi_sender;
   1867 	WG_DLOG("sender=%x\n", wgs->wgs_local_index);
   1868 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   1869 }
   1870 
   1871 static void
   1872 wg_swap_sessions(struct wg_peer *wgp)
   1873 {
   1874 	struct wg_session *wgs, *wgs_prev;
   1875 
   1876 	KASSERT(mutex_owned(wgp->wgp_lock));
   1877 
   1878 	wgs = wgp->wgp_session_unstable;
   1879 	KASSERT(wgs->wgs_state == WGS_STATE_ESTABLISHED);
   1880 
   1881 	wgs_prev = wgp->wgp_session_stable;
   1882 	KASSERT(wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
   1883 	    wgs_prev->wgs_state == WGS_STATE_UNKNOWN);
   1884 	atomic_store_release(&wgp->wgp_session_stable, wgs);
   1885 	wgp->wgp_session_unstable = wgs_prev;
   1886 }
   1887 
   1888 static void __noinline
   1889 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
   1890     const struct sockaddr *src)
   1891 {
   1892 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   1893 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
   1894 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   1895 	struct wg_peer *wgp;
   1896 	struct wg_session *wgs;
   1897 	struct psref psref;
   1898 	int error;
   1899 	uint8_t mac1[WG_MAC_LEN];
   1900 	struct wg_session *wgs_prev;
   1901 	struct mbuf *m;
   1902 
   1903 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1904 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1905 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   1906 
   1907 	/*
   1908 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1909 	 * "the responder, ..., must always reject messages with an invalid
   1910 	 *  msg.mac1"
   1911 	 */
   1912 	if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
   1913 		WG_DLOG("mac1 is invalid\n");
   1914 		return;
   1915 	}
   1916 
   1917 	WG_TRACE("resp msg received");
   1918 	wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
   1919 	if (wgs == NULL) {
   1920 		WG_TRACE("No session found");
   1921 		return;
   1922 	}
   1923 
   1924 	wgp = wgs->wgs_peer;
   1925 
   1926 	mutex_enter(wgp->wgp_lock);
   1927 
   1928 	/* If we weren't waiting for a handshake response, drop it.  */
   1929 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
   1930 		WG_TRACE("peer sent spurious handshake response, ignoring");
   1931 		goto out;
   1932 	}
   1933 
   1934 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
   1935 		WG_TRACE("under load");
   1936 		/*
   1937 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1938 		 * "the responder, ..., and when under load may reject messages
   1939 		 *  with an invalid msg.mac2.  If the responder receives a
   1940 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1941 		 *  and is under load, it may respond with a cookie reply
   1942 		 *  message"
   1943 		 */
   1944 		uint8_t zero[WG_MAC_LEN] = {0};
   1945 		if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
   1946 			WG_TRACE("sending a cookie message: no cookie included");
   1947 			(void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   1948 			    wgmr->wgmr_mac1, src);
   1949 			goto out;
   1950 		}
   1951 		if (!wgp->wgp_last_sent_cookie_valid) {
   1952 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1953 			(void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   1954 			    wgmr->wgmr_mac1, src);
   1955 			goto out;
   1956 		}
   1957 		uint8_t mac2[WG_MAC_LEN];
   1958 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1959 		    WG_COOKIE_LEN, (const uint8_t *)wgmr,
   1960 		    offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
   1961 		if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
   1962 			WG_DLOG("mac2 is invalid\n");
   1963 			goto out;
   1964 		}
   1965 		WG_TRACE("under load, but continue to sending");
   1966 	}
   1967 
   1968 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   1969 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   1970 
   1971 	/*
   1972 	 * [W] 5.4.3 Second Message: Responder to Initiator
   1973 	 * "When the initiator receives this message, it does the same
   1974 	 *  operations so that its final state variables are identical,
   1975 	 *  replacing the operands of the DH function to produce equivalent
   1976 	 *  values."
   1977 	 *  Note that the following comments of operations are just copies of
   1978 	 *  the initiator's ones.
   1979 	 */
   1980 
   1981 	/* [N] 2.2: "e" */
   1982 	/* Cr := KDF1(Cr, Er^pub) */
   1983 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
   1984 	    sizeof(wgmr->wgmr_ephemeral));
   1985 	/* Hr := HASH(Hr || msg.ephemeral) */
   1986 	wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
   1987 
   1988 	WG_DUMP_HASH("ckey", ckey);
   1989 	WG_DUMP_HASH("hash", hash);
   1990 
   1991 	/* [N] 2.2: "ee" */
   1992 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   1993 	wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
   1994 	    wgmr->wgmr_ephemeral);
   1995 
   1996 	/* [N] 2.2: "se" */
   1997 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   1998 	wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
   1999 
   2000 	/* [N] 9.2: "psk" */
   2001     {
   2002 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   2003 	/* Cr, r, k := KDF3(Cr, Q) */
   2004 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   2005 	    sizeof(wgp->wgp_psk));
   2006 	/* Hr := HASH(Hr || r) */
   2007 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   2008     }
   2009 
   2010     {
   2011 	uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
   2012 	/* msg.empty := AEAD(k, 0, e, Hr) */
   2013 	error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
   2014 	    sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
   2015 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   2016 	if (error != 0) {
   2017 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2018 		    "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
   2019 		    if_name(&wg->wg_if), wgp->wgp_name);
   2020 		goto out;
   2021 	}
   2022 	/* Hr := HASH(Hr || msg.empty) */
   2023 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   2024     }
   2025 
   2026 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
   2027 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
   2028 	wgs->wgs_remote_index = wgmr->wgmr_sender;
   2029 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   2030 
   2031 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
   2032 	wgs->wgs_state = WGS_STATE_ESTABLISHED;
   2033 	wgs->wgs_time_established = time_uptime;
   2034 	wgs->wgs_time_last_data_sent = 0;
   2035 	wgs->wgs_is_initiator = true;
   2036 	wg_calculate_keys(wgs, true);
   2037 	wg_clear_states(wgs);
   2038 	WG_TRACE("WGS_STATE_ESTABLISHED");
   2039 
   2040 	callout_stop(&wgp->wgp_handshake_timeout_timer);
   2041 
   2042 	wg_swap_sessions(wgp);
   2043 	KASSERT(wgs == wgp->wgp_session_stable);
   2044 	wgs_prev = wgp->wgp_session_unstable;
   2045 	getnanotime(&wgp->wgp_last_handshake_time);
   2046 	wgp->wgp_handshake_start_time = 0;
   2047 	wgp->wgp_last_sent_mac1_valid = false;
   2048 	wgp->wgp_last_sent_cookie_valid = false;
   2049 
   2050 	wg_schedule_rekey_timer(wgp);
   2051 
   2052 	wg_update_endpoint_if_necessary(wgp, src);
   2053 
   2054 	/*
   2055 	 * If we had a data packet queued up, send it; otherwise send a
   2056 	 * keepalive message -- either way we have to send something
   2057 	 * immediately or else the responder will never answer.
   2058 	 */
   2059 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   2060 		kpreempt_disable();
   2061 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
   2062 		M_SETCTX(m, wgp);
   2063 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   2064 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   2065 			    if_name(&wg->wg_if));
   2066 			m_freem(m);
   2067 		}
   2068 		kpreempt_enable();
   2069 	} else {
   2070 		wg_send_keepalive_msg(wgp, wgs);
   2071 	}
   2072 
   2073 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   2074 		/* Wait for wg_get_stable_session to drain.  */
   2075 		pserialize_perform(wgp->wgp_psz);
   2076 
   2077 		/* Transition ESTABLISHED->DESTROYING.  */
   2078 		wgs_prev->wgs_state = WGS_STATE_DESTROYING;
   2079 
   2080 		/* We can't destroy the old session immediately */
   2081 		wg_schedule_session_dtor_timer(wgp);
   2082 	} else {
   2083 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   2084 		    "state=%d", wgs_prev->wgs_state);
   2085 	}
   2086 
   2087 out:
   2088 	mutex_exit(wgp->wgp_lock);
   2089 	wg_put_session(wgs, &psref);
   2090 }
   2091 
   2092 static int
   2093 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   2094     struct wg_session *wgs, const struct wg_msg_init *wgmi)
   2095 {
   2096 	int error;
   2097 	struct mbuf *m;
   2098 	struct wg_msg_resp *wgmr;
   2099 
   2100 	KASSERT(mutex_owned(wgp->wgp_lock));
   2101 	KASSERT(wgs == wgp->wgp_session_unstable);
   2102 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
   2103 
   2104 	m = m_gethdr(M_WAIT, MT_DATA);
   2105 	if (sizeof(*wgmr) > MHLEN) {
   2106 		m_clget(m, M_WAIT);
   2107 		CTASSERT(sizeof(*wgmr) <= MCLBYTES);
   2108 	}
   2109 	m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
   2110 	wgmr = mtod(m, struct wg_msg_resp *);
   2111 	wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
   2112 
   2113 	error = wg->wg_ops->send_hs_msg(wgp, m);
   2114 	if (error == 0)
   2115 		WG_TRACE("resp msg sent");
   2116 	return error;
   2117 }
   2118 
   2119 static struct wg_peer *
   2120 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
   2121     const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
   2122 {
   2123 	struct wg_peer *wgp;
   2124 
   2125 	int s = pserialize_read_enter();
   2126 	wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
   2127 	if (wgp != NULL)
   2128 		wg_get_peer(wgp, psref);
   2129 	pserialize_read_exit(s);
   2130 
   2131 	return wgp;
   2132 }
   2133 
   2134 static void
   2135 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
   2136     struct wg_msg_cookie *wgmc, const uint32_t sender,
   2137     const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
   2138 {
   2139 	uint8_t cookie[WG_COOKIE_LEN];
   2140 	uint8_t key[WG_HASH_LEN];
   2141 	uint8_t addr[sizeof(struct in6_addr)];
   2142 	size_t addrlen;
   2143 	uint16_t uh_sport; /* be */
   2144 
   2145 	KASSERT(mutex_owned(wgp->wgp_lock));
   2146 
   2147 	wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
   2148 	wgmc->wgmc_receiver = sender;
   2149 	cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
   2150 
   2151 	/*
   2152 	 * [W] 5.4.7: Under Load: Cookie Reply Message
   2153 	 * "The secret variable, Rm, changes every two minutes to a
   2154 	 * random value"
   2155 	 */
   2156 	if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
   2157 		wgp->wgp_randval = cprng_strong32();
   2158 		wgp->wgp_last_genrandval_time = time_uptime;
   2159 	}
   2160 
   2161 	switch (src->sa_family) {
   2162 	case AF_INET: {
   2163 		const struct sockaddr_in *sin = satocsin(src);
   2164 		addrlen = sizeof(sin->sin_addr);
   2165 		memcpy(addr, &sin->sin_addr, addrlen);
   2166 		uh_sport = sin->sin_port;
   2167 		break;
   2168 	    }
   2169 #ifdef INET6
   2170 	case AF_INET6: {
   2171 		const struct sockaddr_in6 *sin6 = satocsin6(src);
   2172 		addrlen = sizeof(sin6->sin6_addr);
   2173 		memcpy(addr, &sin6->sin6_addr, addrlen);
   2174 		uh_sport = sin6->sin6_port;
   2175 		break;
   2176 	    }
   2177 #endif
   2178 	default:
   2179 		panic("invalid af=%d", src->sa_family);
   2180 	}
   2181 
   2182 	wg_algo_mac(cookie, sizeof(cookie),
   2183 	    (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
   2184 	    addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
   2185 	wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
   2186 	    sizeof(wg->wg_pubkey));
   2187 	wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
   2188 	    cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
   2189 
   2190 	/* Need to store to calculate mac2 */
   2191 	memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
   2192 	wgp->wgp_last_sent_cookie_valid = true;
   2193 }
   2194 
   2195 static int
   2196 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
   2197     const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
   2198     const struct sockaddr *src)
   2199 {
   2200 	int error;
   2201 	struct mbuf *m;
   2202 	struct wg_msg_cookie *wgmc;
   2203 
   2204 	KASSERT(mutex_owned(wgp->wgp_lock));
   2205 
   2206 	m = m_gethdr(M_WAIT, MT_DATA);
   2207 	if (sizeof(*wgmc) > MHLEN) {
   2208 		m_clget(m, M_WAIT);
   2209 		CTASSERT(sizeof(*wgmc) <= MCLBYTES);
   2210 	}
   2211 	m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
   2212 	wgmc = mtod(m, struct wg_msg_cookie *);
   2213 	wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
   2214 
   2215 	error = wg->wg_ops->send_hs_msg(wgp, m);
   2216 	if (error == 0)
   2217 		WG_TRACE("cookie msg sent");
   2218 	return error;
   2219 }
   2220 
   2221 static bool
   2222 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
   2223 {
   2224 #ifdef WG_DEBUG_PARAMS
   2225 	if (wg_force_underload)
   2226 		return true;
   2227 #endif
   2228 
   2229 	/*
   2230 	 * XXX we don't have a means of a load estimation.  The purpose of
   2231 	 * the mechanism is a DoS mitigation, so we consider frequent handshake
   2232 	 * messages as (a kind of) load; if a message of the same type comes
   2233 	 * to a peer within 1 second, we consider we are under load.
   2234 	 */
   2235 	time_t last = wgp->wgp_last_msg_received_time[msgtype];
   2236 	wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
   2237 	return (time_uptime - last) == 0;
   2238 }
   2239 
   2240 static void
   2241 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
   2242 {
   2243 
   2244 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2245 
   2246 	/*
   2247 	 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
   2248 	 */
   2249 	if (initiator) {
   2250 		wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
   2251 		    wgs->wgs_chaining_key, NULL, 0);
   2252 	} else {
   2253 		wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
   2254 		    wgs->wgs_chaining_key, NULL, 0);
   2255 	}
   2256 	WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
   2257 	WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
   2258 }
   2259 
   2260 static uint64_t
   2261 wg_session_get_send_counter(struct wg_session *wgs)
   2262 {
   2263 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2264 	return atomic_load_relaxed(&wgs->wgs_send_counter);
   2265 #else
   2266 	uint64_t send_counter;
   2267 
   2268 	mutex_enter(&wgs->wgs_send_counter_lock);
   2269 	send_counter = wgs->wgs_send_counter;
   2270 	mutex_exit(&wgs->wgs_send_counter_lock);
   2271 
   2272 	return send_counter;
   2273 #endif
   2274 }
   2275 
   2276 static uint64_t
   2277 wg_session_inc_send_counter(struct wg_session *wgs)
   2278 {
   2279 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2280 	return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
   2281 #else
   2282 	uint64_t send_counter;
   2283 
   2284 	mutex_enter(&wgs->wgs_send_counter_lock);
   2285 	send_counter = wgs->wgs_send_counter++;
   2286 	mutex_exit(&wgs->wgs_send_counter_lock);
   2287 
   2288 	return send_counter;
   2289 #endif
   2290 }
   2291 
   2292 static void
   2293 wg_clear_states(struct wg_session *wgs)
   2294 {
   2295 
   2296 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2297 
   2298 	wgs->wgs_send_counter = 0;
   2299 	sliwin_reset(&wgs->wgs_recvwin->window);
   2300 
   2301 #define wgs_clear(v)	explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
   2302 	wgs_clear(handshake_hash);
   2303 	wgs_clear(chaining_key);
   2304 	wgs_clear(ephemeral_key_pub);
   2305 	wgs_clear(ephemeral_key_priv);
   2306 	wgs_clear(ephemeral_key_peer);
   2307 #undef wgs_clear
   2308 }
   2309 
   2310 static struct wg_session *
   2311 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
   2312     struct psref *psref)
   2313 {
   2314 	struct wg_session *wgs;
   2315 
   2316 	int s = pserialize_read_enter();
   2317 	wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
   2318 	if (wgs != NULL) {
   2319 		KASSERT(atomic_load_relaxed(&wgs->wgs_state) !=
   2320 		    WGS_STATE_UNKNOWN);
   2321 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   2322 	}
   2323 	pserialize_read_exit(s);
   2324 
   2325 	return wgs;
   2326 }
   2327 
   2328 static void
   2329 wg_schedule_rekey_timer(struct wg_peer *wgp)
   2330 {
   2331 	int timeout = MIN(wg_rekey_after_time, (unsigned)(INT_MAX / hz));
   2332 
   2333 	callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
   2334 }
   2335 
   2336 static void
   2337 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
   2338 {
   2339 	struct mbuf *m;
   2340 
   2341 	/*
   2342 	 * [W] 6.5 Passive Keepalive
   2343 	 * "A keepalive message is simply a transport data message with
   2344 	 *  a zero-length encapsulated encrypted inner-packet."
   2345 	 */
   2346 	WG_TRACE("");
   2347 	m = m_gethdr(M_WAIT, MT_DATA);
   2348 	wg_send_data_msg(wgp, wgs, m);
   2349 }
   2350 
   2351 static bool
   2352 wg_need_to_send_init_message(struct wg_session *wgs)
   2353 {
   2354 	/*
   2355 	 * [W] 6.2 Transport Message Limits
   2356 	 * "if a peer is the initiator of a current secure session,
   2357 	 *  WireGuard will send a handshake initiation message to begin
   2358 	 *  a new secure session ... if after receiving a transport data
   2359 	 *  message, the current secure session is (REJECT-AFTER-TIME 
   2360 	 *  KEEPALIVE-TIMEOUT  REKEY-TIMEOUT) seconds old and it has
   2361 	 *  not yet acted upon this event."
   2362 	 */
   2363 	return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
   2364 	    (time_uptime - wgs->wgs_time_established) >=
   2365 	    (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
   2366 }
   2367 
   2368 static void
   2369 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
   2370 {
   2371 
   2372 	mutex_enter(wgp->wgp_intr_lock);
   2373 	WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
   2374 	if (wgp->wgp_tasks == 0)
   2375 		/*
   2376 		 * XXX If the current CPU is already loaded -- e.g., if
   2377 		 * there's already a bunch of handshakes queued up --
   2378 		 * consider tossing this over to another CPU to
   2379 		 * distribute the load.
   2380 		 */
   2381 		workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
   2382 	wgp->wgp_tasks |= task;
   2383 	mutex_exit(wgp->wgp_intr_lock);
   2384 }
   2385 
   2386 static void
   2387 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
   2388 {
   2389 	struct wg_sockaddr *wgsa_prev;
   2390 
   2391 	WG_TRACE("Changing endpoint");
   2392 
   2393 	memcpy(wgp->wgp_endpoint0, new, new->sa_len);
   2394 	wgsa_prev = wgp->wgp_endpoint;
   2395 	atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
   2396 	wgp->wgp_endpoint0 = wgsa_prev;
   2397 	atomic_store_release(&wgp->wgp_endpoint_available, true);
   2398 
   2399 	wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
   2400 }
   2401 
   2402 static bool
   2403 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
   2404 {
   2405 	uint16_t packet_len;
   2406 	const struct ip *ip;
   2407 
   2408 	if (__predict_false(decrypted_len < sizeof(*ip))) {
   2409 		WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2410 		    sizeof(*ip));
   2411 		return false;
   2412 	}
   2413 
   2414 	ip = (const struct ip *)packet;
   2415 	if (ip->ip_v == 4)
   2416 		*af = AF_INET;
   2417 	else if (ip->ip_v == 6)
   2418 		*af = AF_INET6;
   2419 	else {
   2420 		WG_DLOG("ip_v=%d\n", ip->ip_v);
   2421 		return false;
   2422 	}
   2423 
   2424 	WG_DLOG("af=%d\n", *af);
   2425 
   2426 	switch (*af) {
   2427 #ifdef INET
   2428 	case AF_INET:
   2429 		packet_len = ntohs(ip->ip_len);
   2430 		break;
   2431 #endif
   2432 #ifdef INET6
   2433 	case AF_INET6: {
   2434 		const struct ip6_hdr *ip6;
   2435 
   2436 		if (__predict_false(decrypted_len < sizeof(*ip6))) {
   2437 			WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2438 			    sizeof(*ip6));
   2439 			return false;
   2440 		}
   2441 
   2442 		ip6 = (const struct ip6_hdr *)packet;
   2443 		packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
   2444 		break;
   2445 	}
   2446 #endif
   2447 	default:
   2448 		return false;
   2449 	}
   2450 
   2451 	if (packet_len > decrypted_len) {
   2452 		WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
   2453 		    decrypted_len);
   2454 		return false;
   2455 	}
   2456 
   2457 	return true;
   2458 }
   2459 
   2460 static bool
   2461 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
   2462     int af, char *packet)
   2463 {
   2464 	struct sockaddr_storage ss;
   2465 	struct sockaddr *sa;
   2466 	struct psref psref;
   2467 	struct wg_peer *wgp;
   2468 	bool ok;
   2469 
   2470 	/*
   2471 	 * II CRYPTOKEY ROUTING
   2472 	 * "it will only accept it if its source IP resolves in the
   2473 	 *  table to the public key used in the secure session for
   2474 	 *  decrypting it."
   2475 	 */
   2476 
   2477 	if (af == AF_INET) {
   2478 		const struct ip *ip = (const struct ip *)packet;
   2479 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   2480 		sockaddr_in_init(sin, &ip->ip_src, 0);
   2481 		sa = sintosa(sin);
   2482 #ifdef INET6
   2483 	} else {
   2484 		const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
   2485 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   2486 		sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
   2487 		sa = sin6tosa(sin6);
   2488 #endif
   2489 	}
   2490 
   2491 	wgp = wg_pick_peer_by_sa(wg, sa, &psref);
   2492 	ok = (wgp == wgp_expected);
   2493 	if (wgp != NULL)
   2494 		wg_put_peer(wgp, &psref);
   2495 
   2496 	return ok;
   2497 }
   2498 
   2499 static void
   2500 wg_session_dtor_timer(void *arg)
   2501 {
   2502 	struct wg_peer *wgp = arg;
   2503 
   2504 	WG_TRACE("enter");
   2505 
   2506 	wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
   2507 }
   2508 
   2509 static void
   2510 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
   2511 {
   2512 
   2513 	/* 1 second grace period */
   2514 	callout_schedule(&wgp->wgp_session_dtor_timer, hz);
   2515 }
   2516 
   2517 static bool
   2518 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
   2519 {
   2520 	if (sa1->sa_family != sa2->sa_family)
   2521 		return false;
   2522 
   2523 	switch (sa1->sa_family) {
   2524 #ifdef INET
   2525 	case AF_INET:
   2526 		return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
   2527 #endif
   2528 #ifdef INET6
   2529 	case AF_INET6:
   2530 		return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
   2531 #endif
   2532 	default:
   2533 		return false;
   2534 	}
   2535 }
   2536 
   2537 static void
   2538 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
   2539     const struct sockaddr *src)
   2540 {
   2541 	struct wg_sockaddr *wgsa;
   2542 	struct psref psref;
   2543 
   2544 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   2545 
   2546 #ifdef WG_DEBUG_LOG
   2547 	char oldaddr[128], newaddr[128];
   2548 	sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
   2549 	sockaddr_format(src, newaddr, sizeof(newaddr));
   2550 	WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
   2551 #endif
   2552 
   2553 	/*
   2554 	 * III: "Since the packet has authenticated correctly, the source IP of
   2555 	 * the outer UDP/IP packet is used to update the endpoint for peer..."
   2556 	 */
   2557 	if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
   2558 		!sockaddr_port_match(src, wgsatosa(wgsa)))) {
   2559 		/* XXX We can't change the endpoint twice in a short period */
   2560 		if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
   2561 			wg_change_endpoint(wgp, src);
   2562 		}
   2563 	}
   2564 
   2565 	wg_put_sa(wgp, wgsa, &psref);
   2566 }
   2567 
   2568 static void __noinline
   2569 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
   2570     const struct sockaddr *src)
   2571 {
   2572 	struct wg_msg_data *wgmd;
   2573 	char *encrypted_buf = NULL, *decrypted_buf;
   2574 	size_t encrypted_len, decrypted_len;
   2575 	struct wg_session *wgs;
   2576 	struct wg_peer *wgp;
   2577 	int state;
   2578 	size_t mlen;
   2579 	struct psref psref;
   2580 	int error, af;
   2581 	bool success, free_encrypted_buf = false, ok;
   2582 	struct mbuf *n;
   2583 
   2584 	KASSERT(m->m_len >= sizeof(struct wg_msg_data));
   2585 	wgmd = mtod(m, struct wg_msg_data *);
   2586 
   2587 	KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
   2588 	WG_TRACE("data");
   2589 
   2590 	/* Find the putative session, or drop.  */
   2591 	wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
   2592 	if (wgs == NULL) {
   2593 		WG_TRACE("No session found");
   2594 		m_freem(m);
   2595 		return;
   2596 	}
   2597 
   2598 	/*
   2599 	 * We are only ready to handle data when in INIT_PASSIVE,
   2600 	 * ESTABLISHED, or DESTROYING.  All transitions out of that
   2601 	 * state dissociate the session index and drain psrefs.
   2602 	 */
   2603 	state = atomic_load_relaxed(&wgs->wgs_state);
   2604 	switch (state) {
   2605 	case WGS_STATE_UNKNOWN:
   2606 		panic("wg session %p in unknown state has session index %u",
   2607 		    wgs, wgmd->wgmd_receiver);
   2608 	case WGS_STATE_INIT_ACTIVE:
   2609 		WG_TRACE("not yet ready for data");
   2610 		goto out;
   2611 	case WGS_STATE_INIT_PASSIVE:
   2612 	case WGS_STATE_ESTABLISHED:
   2613 	case WGS_STATE_DESTROYING:
   2614 		break;
   2615 	}
   2616 
   2617 	/*
   2618 	 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
   2619 	 * to update the endpoint if authentication succeeds.
   2620 	 */
   2621 	wgp = wgs->wgs_peer;
   2622 
   2623 	/*
   2624 	 * Reject outrageously wrong sequence numbers before doing any
   2625 	 * crypto work or taking any locks.
   2626 	 */
   2627 	error = sliwin_check_fast(&wgs->wgs_recvwin->window,
   2628 	    le64toh(wgmd->wgmd_counter));
   2629 	if (error) {
   2630 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2631 		    "%s: peer %s: out-of-window packet: %"PRIu64"\n",
   2632 		    if_name(&wg->wg_if), wgp->wgp_name,
   2633 		    le64toh(wgmd->wgmd_counter));
   2634 		goto out;
   2635 	}
   2636 
   2637 	/* Ensure the payload and authenticator are contiguous.  */
   2638 	mlen = m_length(m);
   2639 	encrypted_len = mlen - sizeof(*wgmd);
   2640 	if (encrypted_len < WG_AUTHTAG_LEN) {
   2641 		WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
   2642 		goto out;
   2643 	}
   2644 	success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
   2645 	if (success) {
   2646 		encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
   2647 	} else {
   2648 		encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
   2649 		if (encrypted_buf == NULL) {
   2650 			WG_DLOG("failed to allocate encrypted_buf\n");
   2651 			goto out;
   2652 		}
   2653 		m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
   2654 		free_encrypted_buf = true;
   2655 	}
   2656 	/* m_ensure_contig may change m regardless of its result */
   2657 	KASSERT(m->m_len >= sizeof(*wgmd));
   2658 	wgmd = mtod(m, struct wg_msg_data *);
   2659 
   2660 	/*
   2661 	 * Get a buffer for the plaintext.  Add WG_AUTHTAG_LEN to avoid
   2662 	 * a zero-length buffer (XXX).  Drop if plaintext is longer
   2663 	 * than MCLBYTES (XXX).
   2664 	 */
   2665 	decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
   2666 	if (decrypted_len > MCLBYTES) {
   2667 		/* FIXME handle larger data than MCLBYTES */
   2668 		WG_DLOG("couldn't handle larger data than MCLBYTES\n");
   2669 		goto out;
   2670 	}
   2671 	n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
   2672 	if (n == NULL) {
   2673 		WG_DLOG("wg_get_mbuf failed\n");
   2674 		goto out;
   2675 	}
   2676 	decrypted_buf = mtod(n, char *);
   2677 
   2678 	/* Decrypt and verify the packet.  */
   2679 	WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
   2680 	error = wg_algo_aead_dec(decrypted_buf,
   2681 	    encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
   2682 	    wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
   2683 	    encrypted_len, NULL, 0);
   2684 	if (error != 0) {
   2685 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2686 		    "%s: peer %s: failed to wg_algo_aead_dec\n",
   2687 		    if_name(&wg->wg_if), wgp->wgp_name);
   2688 		m_freem(n);
   2689 		goto out;
   2690 	}
   2691 	WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
   2692 
   2693 	/* Packet is genuine.  Reject it if a replay or just too old.  */
   2694 	mutex_enter(&wgs->wgs_recvwin->lock);
   2695 	error = sliwin_update(&wgs->wgs_recvwin->window,
   2696 	    le64toh(wgmd->wgmd_counter));
   2697 	mutex_exit(&wgs->wgs_recvwin->lock);
   2698 	if (error) {
   2699 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2700 		    "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
   2701 		    if_name(&wg->wg_if), wgp->wgp_name,
   2702 		    le64toh(wgmd->wgmd_counter));
   2703 		m_freem(n);
   2704 		goto out;
   2705 	}
   2706 
   2707 #ifdef WG_DEBUG_PACKET
   2708 	if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
   2709 		hexdump(aprint_debug, "wgmd", wgmd, sizeof(*wgmd));
   2710 		hexdump(aprint_debug, "decrypted_buf", decrypted_buf,
   2711 		    decrypted_len);
   2712 	}
   2713 #endif
   2714 	/* We're done with m now; free it and chuck the pointers.  */
   2715 	m_freem(m);
   2716 	m = NULL;
   2717 	wgmd = NULL;
   2718 
   2719 	/*
   2720 	 * Validate the encapsulated packet header and get the address
   2721 	 * family, or drop.
   2722 	 */
   2723 	ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
   2724 	if (!ok) {
   2725 		m_freem(n);
   2726 		goto out;
   2727 	}
   2728 
   2729 	/*
   2730 	 * The packet is genuine.  Update the peer's endpoint if the
   2731 	 * source address changed.
   2732 	 *
   2733 	 * XXX How to prevent DoS by replaying genuine packets from the
   2734 	 * wrong source address?
   2735 	 */
   2736 	wg_update_endpoint_if_necessary(wgp, src);
   2737 
   2738 	/* Submit it into our network stack if routable.  */
   2739 	ok = wg_validate_route(wg, wgp, af, decrypted_buf);
   2740 	if (ok) {
   2741 		wg->wg_ops->input(&wg->wg_if, n, af);
   2742 	} else {
   2743 		char addrstr[INET6_ADDRSTRLEN];
   2744 		memset(addrstr, 0, sizeof(addrstr));
   2745 		if (af == AF_INET) {
   2746 			const struct ip *ip = (const struct ip *)decrypted_buf;
   2747 			IN_PRINT(addrstr, &ip->ip_src);
   2748 #ifdef INET6
   2749 		} else if (af == AF_INET6) {
   2750 			const struct ip6_hdr *ip6 =
   2751 			    (const struct ip6_hdr *)decrypted_buf;
   2752 			IN6_PRINT(addrstr, &ip6->ip6_src);
   2753 #endif
   2754 		}
   2755 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2756 		    "%s: peer %s: invalid source address (%s)\n",
   2757 		    if_name(&wg->wg_if), wgp->wgp_name, addrstr);
   2758 		m_freem(n);
   2759 		/*
   2760 		 * The inner address is invalid however the session is valid
   2761 		 * so continue the session processing below.
   2762 		 */
   2763 	}
   2764 	n = NULL;
   2765 
   2766 	/* Update the state machine if necessary.  */
   2767 	if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
   2768 		/*
   2769 		 * We were waiting for the initiator to send their
   2770 		 * first data transport message, and that has happened.
   2771 		 * Schedule a task to establish this session.
   2772 		 */
   2773 		wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
   2774 	} else {
   2775 		if (__predict_false(wg_need_to_send_init_message(wgs))) {
   2776 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   2777 		}
   2778 		/*
   2779 		 * [W] 6.5 Passive Keepalive
   2780 		 * "If a peer has received a validly-authenticated transport
   2781 		 *  data message (section 5.4.6), but does not have any packets
   2782 		 *  itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
   2783 		 *  a keepalive message."
   2784 		 */
   2785 		WG_DLOG("time_uptime=%ju wgs_time_last_data_sent=%ju\n",
   2786 		    (uintmax_t)time_uptime,
   2787 		    (uintmax_t)wgs->wgs_time_last_data_sent);
   2788 		if ((time_uptime - wgs->wgs_time_last_data_sent) >=
   2789 		    wg_keepalive_timeout) {
   2790 			WG_TRACE("Schedule sending keepalive message");
   2791 			/*
   2792 			 * We can't send a keepalive message here to avoid
   2793 			 * a deadlock;  we already hold the solock of a socket
   2794 			 * that is used to send the message.
   2795 			 */
   2796 			wg_schedule_peer_task(wgp,
   2797 			    WGP_TASK_SEND_KEEPALIVE_MESSAGE);
   2798 		}
   2799 	}
   2800 out:
   2801 	wg_put_session(wgs, &psref);
   2802 	m_freem(m);
   2803 	if (free_encrypted_buf)
   2804 		kmem_intr_free(encrypted_buf, encrypted_len);
   2805 }
   2806 
   2807 static void __noinline
   2808 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
   2809 {
   2810 	struct wg_session *wgs;
   2811 	struct wg_peer *wgp;
   2812 	struct psref psref;
   2813 	int error;
   2814 	uint8_t key[WG_HASH_LEN];
   2815 	uint8_t cookie[WG_COOKIE_LEN];
   2816 
   2817 	WG_TRACE("cookie msg received");
   2818 
   2819 	/* Find the putative session.  */
   2820 	wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
   2821 	if (wgs == NULL) {
   2822 		WG_TRACE("No session found");
   2823 		return;
   2824 	}
   2825 
   2826 	/* Lock the peer so we can update the cookie state.  */
   2827 	wgp = wgs->wgs_peer;
   2828 	mutex_enter(wgp->wgp_lock);
   2829 
   2830 	if (!wgp->wgp_last_sent_mac1_valid) {
   2831 		WG_TRACE("No valid mac1 sent (or expired)");
   2832 		goto out;
   2833 	}
   2834 
   2835 	/* Decrypt the cookie and store it for later handshake retry.  */
   2836 	wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
   2837 	    sizeof(wgp->wgp_pubkey));
   2838 	error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
   2839 	    wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
   2840 	    wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
   2841 	    wgmc->wgmc_salt);
   2842 	if (error != 0) {
   2843 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2844 		    "%s: peer %s: wg_algo_aead_dec for cookie failed: "
   2845 		    "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
   2846 		goto out;
   2847 	}
   2848 	/*
   2849 	 * [W] 6.6: Interaction with Cookie Reply System
   2850 	 * "it should simply store the decrypted cookie value from the cookie
   2851 	 *  reply message, and wait for the expiration of the REKEY-TIMEOUT
   2852 	 *  timer for retrying a handshake initiation message."
   2853 	 */
   2854 	wgp->wgp_latest_cookie_time = time_uptime;
   2855 	memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
   2856 out:
   2857 	mutex_exit(wgp->wgp_lock);
   2858 	wg_put_session(wgs, &psref);
   2859 }
   2860 
   2861 static struct mbuf *
   2862 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
   2863 {
   2864 	struct wg_msg wgm;
   2865 	size_t mbuflen;
   2866 	size_t msglen;
   2867 
   2868 	/*
   2869 	 * Get the mbuf chain length.  It is already guaranteed, by
   2870 	 * wg_overudp_cb, to be large enough for a struct wg_msg.
   2871 	 */
   2872 	mbuflen = m_length(m);
   2873 	KASSERT(mbuflen >= sizeof(struct wg_msg));
   2874 
   2875 	/*
   2876 	 * Copy the message header (32-bit message type) out -- we'll
   2877 	 * worry about contiguity and alignment later.
   2878 	 */
   2879 	m_copydata(m, 0, sizeof(wgm), &wgm);
   2880 	switch (le32toh(wgm.wgm_type)) {
   2881 	case WG_MSG_TYPE_INIT:
   2882 		msglen = sizeof(struct wg_msg_init);
   2883 		break;
   2884 	case WG_MSG_TYPE_RESP:
   2885 		msglen = sizeof(struct wg_msg_resp);
   2886 		break;
   2887 	case WG_MSG_TYPE_COOKIE:
   2888 		msglen = sizeof(struct wg_msg_cookie);
   2889 		break;
   2890 	case WG_MSG_TYPE_DATA:
   2891 		msglen = sizeof(struct wg_msg_data);
   2892 		break;
   2893 	default:
   2894 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   2895 		    "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
   2896 		    le32toh(wgm.wgm_type));
   2897 		goto error;
   2898 	}
   2899 
   2900 	/* Verify the mbuf chain is long enough for this type of message.  */
   2901 	if (__predict_false(mbuflen < msglen)) {
   2902 		WG_DLOG("Invalid msg size: mbuflen=%lu type=%u\n", mbuflen,
   2903 		    le32toh(wgm.wgm_type));
   2904 		goto error;
   2905 	}
   2906 
   2907 	/* Make the message header contiguous if necessary.  */
   2908 	if (__predict_false(m->m_len < msglen)) {
   2909 		m = m_pullup(m, msglen);
   2910 		if (m == NULL)
   2911 			return NULL;
   2912 	}
   2913 
   2914 	return m;
   2915 
   2916 error:
   2917 	m_freem(m);
   2918 	return NULL;
   2919 }
   2920 
   2921 static void
   2922 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
   2923     const struct sockaddr *src)
   2924 {
   2925 	struct wg_msg *wgm;
   2926 
   2927 	KASSERT(curlwp->l_pflag & LP_BOUND);
   2928 
   2929 	m = wg_validate_msg_header(wg, m);
   2930 	if (__predict_false(m == NULL))
   2931 		return;
   2932 
   2933 	KASSERT(m->m_len >= sizeof(struct wg_msg));
   2934 	wgm = mtod(m, struct wg_msg *);
   2935 	switch (le32toh(wgm->wgm_type)) {
   2936 	case WG_MSG_TYPE_INIT:
   2937 		wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
   2938 		break;
   2939 	case WG_MSG_TYPE_RESP:
   2940 		wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
   2941 		break;
   2942 	case WG_MSG_TYPE_COOKIE:
   2943 		wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
   2944 		break;
   2945 	case WG_MSG_TYPE_DATA:
   2946 		wg_handle_msg_data(wg, m, src);
   2947 		/* wg_handle_msg_data frees m for us */
   2948 		return;
   2949 	default:
   2950 		panic("invalid message type: %d", le32toh(wgm->wgm_type));
   2951 	}
   2952 
   2953 	m_freem(m);
   2954 }
   2955 
   2956 static void
   2957 wg_receive_packets(struct wg_softc *wg, const int af)
   2958 {
   2959 
   2960 	for (;;) {
   2961 		int error, flags;
   2962 		struct socket *so;
   2963 		struct mbuf *m = NULL;
   2964 		struct uio dummy_uio;
   2965 		struct mbuf *paddr = NULL;
   2966 		struct sockaddr *src;
   2967 
   2968 		so = wg_get_so_by_af(wg, af);
   2969 		flags = MSG_DONTWAIT;
   2970 		dummy_uio.uio_resid = 1000000000;
   2971 
   2972 		error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
   2973 		    &flags);
   2974 		if (error || m == NULL) {
   2975 			//if (error == EWOULDBLOCK)
   2976 			return;
   2977 		}
   2978 
   2979 		KASSERT(paddr != NULL);
   2980 		KASSERT(paddr->m_len >= sizeof(struct sockaddr));
   2981 		src = mtod(paddr, struct sockaddr *);
   2982 
   2983 		wg_handle_packet(wg, m, src);
   2984 	}
   2985 }
   2986 
   2987 static void
   2988 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
   2989 {
   2990 
   2991 	psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
   2992 }
   2993 
   2994 static void
   2995 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
   2996 {
   2997 
   2998 	psref_release(psref, &wgp->wgp_psref, wg_psref_class);
   2999 }
   3000 
   3001 static void
   3002 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
   3003 {
   3004 	struct wg_session *wgs;
   3005 
   3006 	WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
   3007 
   3008 	KASSERT(mutex_owned(wgp->wgp_lock));
   3009 
   3010 	if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
   3011 		WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
   3012 		    if_name(&wg->wg_if));
   3013 		/* XXX should do something? */
   3014 		return;
   3015 	}
   3016 
   3017 	wgs = wgp->wgp_session_stable;
   3018 	if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
   3019 		/* XXX What if the unstable session is already INIT_ACTIVE?  */
   3020 		wg_send_handshake_msg_init(wg, wgp);
   3021 	} else {
   3022 		/* rekey */
   3023 		wgs = wgp->wgp_session_unstable;
   3024 		if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   3025 			wg_send_handshake_msg_init(wg, wgp);
   3026 	}
   3027 }
   3028 
   3029 static void
   3030 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
   3031 {
   3032 	struct wg_session *wgs;
   3033 
   3034 	WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
   3035 
   3036 	KASSERT(mutex_owned(wgp->wgp_lock));
   3037 	KASSERT(wgp->wgp_handshake_start_time != 0);
   3038 
   3039 	wgs = wgp->wgp_session_unstable;
   3040 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   3041 		return;
   3042 
   3043 	/*
   3044 	 * XXX no real need to assign a new index here, but we do need
   3045 	 * to transition to UNKNOWN temporarily
   3046 	 */
   3047 	wg_put_session_index(wg, wgs);
   3048 
   3049 	/* [W] 6.4 Handshake Initiation Retransmission */
   3050 	if ((time_uptime - wgp->wgp_handshake_start_time) >
   3051 	    wg_rekey_attempt_time) {
   3052 		/* Give up handshaking */
   3053 		wgp->wgp_handshake_start_time = 0;
   3054 		WG_TRACE("give up");
   3055 
   3056 		/*
   3057 		 * If a new data packet comes, handshaking will be retried
   3058 		 * and a new session would be established at that time,
   3059 		 * however we don't want to send pending packets then.
   3060 		 */
   3061 		wg_purge_pending_packets(wgp);
   3062 		return;
   3063 	}
   3064 
   3065 	wg_task_send_init_message(wg, wgp);
   3066 }
   3067 
   3068 static void
   3069 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
   3070 {
   3071 	struct wg_session *wgs, *wgs_prev;
   3072 	struct mbuf *m;
   3073 
   3074 	KASSERT(mutex_owned(wgp->wgp_lock));
   3075 
   3076 	wgs = wgp->wgp_session_unstable;
   3077 	if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
   3078 		/* XXX Can this happen?  */
   3079 		return;
   3080 
   3081 	wgs->wgs_state = WGS_STATE_ESTABLISHED;
   3082 	wgs->wgs_time_established = time_uptime;
   3083 	wgs->wgs_time_last_data_sent = 0;
   3084 	wgs->wgs_is_initiator = false;
   3085 	WG_TRACE("WGS_STATE_ESTABLISHED");
   3086 
   3087 	wg_swap_sessions(wgp);
   3088 	KASSERT(wgs == wgp->wgp_session_stable);
   3089 	wgs_prev = wgp->wgp_session_unstable;
   3090 	getnanotime(&wgp->wgp_last_handshake_time);
   3091 	wgp->wgp_handshake_start_time = 0;
   3092 	wgp->wgp_last_sent_mac1_valid = false;
   3093 	wgp->wgp_last_sent_cookie_valid = false;
   3094 
   3095 	/* If we had a data packet queued up, send it.  */
   3096 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   3097 		kpreempt_disable();
   3098 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
   3099 		M_SETCTX(m, wgp);
   3100 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   3101 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   3102 			    if_name(&wg->wg_if));
   3103 			m_freem(m);
   3104 		}
   3105 		kpreempt_enable();
   3106 	}
   3107 
   3108 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   3109 		/* Wait for wg_get_stable_session to drain.  */
   3110 		pserialize_perform(wgp->wgp_psz);
   3111 
   3112 		/* Transition ESTABLISHED->DESTROYING.  */
   3113 		wgs_prev->wgs_state = WGS_STATE_DESTROYING;
   3114 
   3115 		/* We can't destroy the old session immediately */
   3116 		wg_schedule_session_dtor_timer(wgp);
   3117 	} else {
   3118 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   3119 		    "state=%d", wgs_prev->wgs_state);
   3120 		wg_clear_states(wgs_prev);
   3121 		wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
   3122 	}
   3123 }
   3124 
   3125 static void
   3126 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
   3127 {
   3128 
   3129 	WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
   3130 
   3131 	KASSERT(mutex_owned(wgp->wgp_lock));
   3132 
   3133 	if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
   3134 		pserialize_perform(wgp->wgp_psz);
   3135 		mutex_exit(wgp->wgp_lock);
   3136 		psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
   3137 		    wg_psref_class);
   3138 		psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
   3139 		    wg_psref_class);
   3140 		mutex_enter(wgp->wgp_lock);
   3141 		atomic_store_release(&wgp->wgp_endpoint_changing, 0);
   3142 	}
   3143 }
   3144 
   3145 static void
   3146 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
   3147 {
   3148 	struct wg_session *wgs;
   3149 
   3150 	WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
   3151 
   3152 	KASSERT(mutex_owned(wgp->wgp_lock));
   3153 
   3154 	wgs = wgp->wgp_session_stable;
   3155 	if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
   3156 		return;
   3157 
   3158 	wg_send_keepalive_msg(wgp, wgs);
   3159 }
   3160 
   3161 static void
   3162 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
   3163 {
   3164 	struct wg_session *wgs;
   3165 
   3166 	WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
   3167 
   3168 	KASSERT(mutex_owned(wgp->wgp_lock));
   3169 
   3170 	wgs = wgp->wgp_session_unstable;
   3171 	if (wgs->wgs_state == WGS_STATE_DESTROYING) {
   3172 		wg_put_session_index(wg, wgs);
   3173 	}
   3174 }
   3175 
   3176 static void
   3177 wg_peer_work(struct work *wk, void *cookie)
   3178 {
   3179 	struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
   3180 	struct wg_softc *wg = wgp->wgp_sc;
   3181 	unsigned int tasks;
   3182 
   3183 	mutex_enter(wgp->wgp_intr_lock);
   3184 	while ((tasks = wgp->wgp_tasks) != 0) {
   3185 		wgp->wgp_tasks = 0;
   3186 		mutex_exit(wgp->wgp_intr_lock);
   3187 
   3188 		mutex_enter(wgp->wgp_lock);
   3189 		if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
   3190 			wg_task_send_init_message(wg, wgp);
   3191 		if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
   3192 			wg_task_retry_handshake(wg, wgp);
   3193 		if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
   3194 			wg_task_establish_session(wg, wgp);
   3195 		if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
   3196 			wg_task_endpoint_changed(wg, wgp);
   3197 		if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
   3198 			wg_task_send_keepalive_message(wg, wgp);
   3199 		if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
   3200 			wg_task_destroy_prev_session(wg, wgp);
   3201 		mutex_exit(wgp->wgp_lock);
   3202 
   3203 		mutex_enter(wgp->wgp_intr_lock);
   3204 	}
   3205 	mutex_exit(wgp->wgp_intr_lock);
   3206 }
   3207 
   3208 static void
   3209 wg_job(struct threadpool_job *job)
   3210 {
   3211 	struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
   3212 	int bound, upcalls;
   3213 
   3214 	mutex_enter(wg->wg_intr_lock);
   3215 	while ((upcalls = wg->wg_upcalls) != 0) {
   3216 		wg->wg_upcalls = 0;
   3217 		mutex_exit(wg->wg_intr_lock);
   3218 		bound = curlwp_bind();
   3219 		if (ISSET(upcalls, WG_UPCALL_INET))
   3220 			wg_receive_packets(wg, AF_INET);
   3221 		if (ISSET(upcalls, WG_UPCALL_INET6))
   3222 			wg_receive_packets(wg, AF_INET6);
   3223 		curlwp_bindx(bound);
   3224 		mutex_enter(wg->wg_intr_lock);
   3225 	}
   3226 	threadpool_job_done(job);
   3227 	mutex_exit(wg->wg_intr_lock);
   3228 }
   3229 
   3230 static int
   3231 wg_bind_port(struct wg_softc *wg, const uint16_t port)
   3232 {
   3233 	int error;
   3234 	uint16_t old_port = wg->wg_listen_port;
   3235 
   3236 	if (port != 0 && old_port == port)
   3237 		return 0;
   3238 
   3239 	struct sockaddr_in _sin, *sin = &_sin;
   3240 	sin->sin_len = sizeof(*sin);
   3241 	sin->sin_family = AF_INET;
   3242 	sin->sin_addr.s_addr = INADDR_ANY;
   3243 	sin->sin_port = htons(port);
   3244 
   3245 	error = sobind(wg->wg_so4, sintosa(sin), curlwp);
   3246 	if (error != 0)
   3247 		return error;
   3248 
   3249 #ifdef INET6
   3250 	struct sockaddr_in6 _sin6, *sin6 = &_sin6;
   3251 	sin6->sin6_len = sizeof(*sin6);
   3252 	sin6->sin6_family = AF_INET6;
   3253 	sin6->sin6_addr = in6addr_any;
   3254 	sin6->sin6_port = htons(port);
   3255 
   3256 	error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
   3257 	if (error != 0)
   3258 		return error;
   3259 #endif
   3260 
   3261 	wg->wg_listen_port = port;
   3262 
   3263 	return 0;
   3264 }
   3265 
   3266 static void
   3267 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
   3268 {
   3269 	struct wg_softc *wg = cookie;
   3270 	int reason;
   3271 
   3272 	reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
   3273 	    WG_UPCALL_INET :
   3274 	    WG_UPCALL_INET6;
   3275 
   3276 	mutex_enter(wg->wg_intr_lock);
   3277 	wg->wg_upcalls |= reason;
   3278 	threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
   3279 	mutex_exit(wg->wg_intr_lock);
   3280 }
   3281 
   3282 static int
   3283 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
   3284     struct sockaddr *src, void *arg)
   3285 {
   3286 	struct wg_softc *wg = arg;
   3287 	struct wg_msg wgm;
   3288 	struct mbuf *m = *mp;
   3289 
   3290 	WG_TRACE("enter");
   3291 
   3292 	/* Verify the mbuf chain is long enough to have a wg msg header.  */
   3293 	KASSERT(offset <= m_length(m));
   3294 	if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
   3295 		/* drop on the floor */
   3296 		m_freem(m);
   3297 		return -1;
   3298 	}
   3299 
   3300 	/*
   3301 	 * Copy the message header (32-bit message type) out -- we'll
   3302 	 * worry about contiguity and alignment later.
   3303 	 */
   3304 	m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
   3305 	WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
   3306 
   3307 	/*
   3308 	 * Handle DATA packets promptly as they arrive.  Other packets
   3309 	 * may require expensive public-key crypto and are not as
   3310 	 * sensitive to latency, so defer them to the worker thread.
   3311 	 */
   3312 	switch (le32toh(wgm.wgm_type)) {
   3313 	case WG_MSG_TYPE_DATA:
   3314 		/* handle immediately */
   3315 		m_adj(m, offset);
   3316 		if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
   3317 			m = m_pullup(m, sizeof(struct wg_msg_data));
   3318 			if (m == NULL)
   3319 				return -1;
   3320 		}
   3321 		wg_handle_msg_data(wg, m, src);
   3322 		*mp = NULL;
   3323 		return 1;
   3324 	case WG_MSG_TYPE_INIT:
   3325 	case WG_MSG_TYPE_RESP:
   3326 	case WG_MSG_TYPE_COOKIE:
   3327 		/* pass through to so_receive in wg_receive_packets */
   3328 		return 0;
   3329 	default:
   3330 		/* drop on the floor */
   3331 		m_freem(m);
   3332 		return -1;
   3333 	}
   3334 }
   3335 
   3336 static int
   3337 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
   3338 {
   3339 	int error;
   3340 	struct socket *so;
   3341 
   3342 	error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
   3343 	if (error != 0)
   3344 		return error;
   3345 
   3346 	solock(so);
   3347 	so->so_upcallarg = wg;
   3348 	so->so_upcall = wg_so_upcall;
   3349 	so->so_rcv.sb_flags |= SB_UPCALL;
   3350 	inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
   3351 	sounlock(so);
   3352 
   3353 	*sop = so;
   3354 
   3355 	return 0;
   3356 }
   3357 
   3358 static bool
   3359 wg_session_hit_limits(struct wg_session *wgs)
   3360 {
   3361 
   3362 	/*
   3363 	 * [W] 6.2: Transport Message Limits
   3364 	 * "After REJECT-AFTER-MESSAGES transport data messages or after the
   3365 	 *  current secure session is REJECT-AFTER-TIME seconds old, whichever
   3366 	 *  comes first, WireGuard will refuse to send any more transport data
   3367 	 *  messages using the current secure session, ..."
   3368 	 */
   3369 	KASSERT(wgs->wgs_time_established != 0);
   3370 	if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
   3371 		WG_DLOG("The session hits REJECT_AFTER_TIME\n");
   3372 		return true;
   3373 	} else if (wg_session_get_send_counter(wgs) >
   3374 	    wg_reject_after_messages) {
   3375 		WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
   3376 		return true;
   3377 	}
   3378 
   3379 	return false;
   3380 }
   3381 
   3382 static void
   3383 wgintr(void *cookie)
   3384 {
   3385 	struct wg_peer *wgp;
   3386 	struct wg_session *wgs;
   3387 	struct mbuf *m;
   3388 	struct psref psref;
   3389 
   3390 	while ((m = pktq_dequeue(wg_pktq)) != NULL) {
   3391 		wgp = M_GETCTX(m, struct wg_peer *);
   3392 		if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
   3393 			WG_TRACE("no stable session");
   3394 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3395 			goto next0;
   3396 		}
   3397 		if (__predict_false(wg_session_hit_limits(wgs))) {
   3398 			WG_TRACE("stable session hit limits");
   3399 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3400 			goto next1;
   3401 		}
   3402 		wg_send_data_msg(wgp, wgs, m);
   3403 		m = NULL;	/* consumed */
   3404 next1:		wg_put_session(wgs, &psref);
   3405 next0:		m_freem(m);
   3406 		/* XXX Yield to avoid userland starvation?  */
   3407 	}
   3408 }
   3409 
   3410 static void
   3411 wg_rekey_timer(void *arg)
   3412 {
   3413 	struct wg_peer *wgp = arg;
   3414 
   3415 	wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3416 }
   3417 
   3418 static void
   3419 wg_purge_pending_packets(struct wg_peer *wgp)
   3420 {
   3421 	struct mbuf *m;
   3422 
   3423 	m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   3424 	m_freem(m);
   3425 	pktq_barrier(wg_pktq);
   3426 }
   3427 
   3428 static void
   3429 wg_handshake_timeout_timer(void *arg)
   3430 {
   3431 	struct wg_peer *wgp = arg;
   3432 
   3433 	WG_TRACE("enter");
   3434 
   3435 	wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
   3436 }
   3437 
   3438 static struct wg_peer *
   3439 wg_alloc_peer(struct wg_softc *wg)
   3440 {
   3441 	struct wg_peer *wgp;
   3442 
   3443 	wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
   3444 
   3445 	wgp->wgp_sc = wg;
   3446 	callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
   3447 	callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
   3448 	callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
   3449 	callout_setfunc(&wgp->wgp_handshake_timeout_timer,
   3450 	    wg_handshake_timeout_timer, wgp);
   3451 	callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
   3452 	callout_setfunc(&wgp->wgp_session_dtor_timer,
   3453 	    wg_session_dtor_timer, wgp);
   3454 	PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
   3455 	wgp->wgp_endpoint_changing = false;
   3456 	wgp->wgp_endpoint_available = false;
   3457 	wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3458 	wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3459 	wgp->wgp_psz = pserialize_create();
   3460 	psref_target_init(&wgp->wgp_psref, wg_psref_class);
   3461 
   3462 	wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
   3463 	wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
   3464 	psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3465 	psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3466 
   3467 	struct wg_session *wgs;
   3468 	wgp->wgp_session_stable =
   3469 	    kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
   3470 	wgp->wgp_session_unstable =
   3471 	    kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
   3472 	wgs = wgp->wgp_session_stable;
   3473 	wgs->wgs_peer = wgp;
   3474 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3475 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3476 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3477 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3478 #endif
   3479 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3480 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3481 
   3482 	wgs = wgp->wgp_session_unstable;
   3483 	wgs->wgs_peer = wgp;
   3484 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3485 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3486 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3487 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3488 #endif
   3489 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3490 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3491 
   3492 	return wgp;
   3493 }
   3494 
   3495 static void
   3496 wg_destroy_peer(struct wg_peer *wgp)
   3497 {
   3498 	struct wg_session *wgs;
   3499 	struct wg_softc *wg = wgp->wgp_sc;
   3500 
   3501 	/* Prevent new packets from this peer on any source address.  */
   3502 	rw_enter(wg->wg_rwlock, RW_WRITER);
   3503 	for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
   3504 		struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
   3505 		struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
   3506 		struct radix_node *rn;
   3507 
   3508 		KASSERT(rnh != NULL);
   3509 		rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
   3510 		    &wga->wga_sa_mask, rnh);
   3511 		if (rn == NULL) {
   3512 			char addrstr[128];
   3513 			sockaddr_format(&wga->wga_sa_addr, addrstr,
   3514 			    sizeof(addrstr));
   3515 			WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
   3516 			    if_name(&wg->wg_if), addrstr);
   3517 		}
   3518 	}
   3519 	rw_exit(wg->wg_rwlock);
   3520 
   3521 	/* Purge pending packets.  */
   3522 	wg_purge_pending_packets(wgp);
   3523 
   3524 	/* Halt all packet processing and timeouts.  */
   3525 	callout_halt(&wgp->wgp_rekey_timer, NULL);
   3526 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
   3527 	callout_halt(&wgp->wgp_session_dtor_timer, NULL);
   3528 
   3529 	/* Wait for any queued work to complete.  */
   3530 	workqueue_wait(wg_wq, &wgp->wgp_work);
   3531 
   3532 	wgs = wgp->wgp_session_unstable;
   3533 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3534 		mutex_enter(wgp->wgp_lock);
   3535 		wg_destroy_session(wg, wgs);
   3536 		mutex_exit(wgp->wgp_lock);
   3537 	}
   3538 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3539 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3540 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3541 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3542 #endif
   3543 	kmem_free(wgs, sizeof(*wgs));
   3544 
   3545 	wgs = wgp->wgp_session_stable;
   3546 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3547 		mutex_enter(wgp->wgp_lock);
   3548 		wg_destroy_session(wg, wgs);
   3549 		mutex_exit(wgp->wgp_lock);
   3550 	}
   3551 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3552 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3553 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3554 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3555 #endif
   3556 	kmem_free(wgs, sizeof(*wgs));
   3557 
   3558 	psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3559 	psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3560 	kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
   3561 	kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
   3562 
   3563 	pserialize_destroy(wgp->wgp_psz);
   3564 	mutex_obj_free(wgp->wgp_intr_lock);
   3565 	mutex_obj_free(wgp->wgp_lock);
   3566 
   3567 	kmem_free(wgp, sizeof(*wgp));
   3568 }
   3569 
   3570 static void
   3571 wg_destroy_all_peers(struct wg_softc *wg)
   3572 {
   3573 	struct wg_peer *wgp, *wgp0 __diagused;
   3574 	void *garbage_byname, *garbage_bypubkey;
   3575 
   3576 restart:
   3577 	garbage_byname = garbage_bypubkey = NULL;
   3578 	mutex_enter(wg->wg_lock);
   3579 	WG_PEER_WRITER_FOREACH(wgp, wg) {
   3580 		if (wgp->wgp_name[0]) {
   3581 			wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
   3582 			    strlen(wgp->wgp_name));
   3583 			KASSERT(wgp0 == wgp);
   3584 			garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3585 		}
   3586 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3587 		    sizeof(wgp->wgp_pubkey));
   3588 		KASSERT(wgp0 == wgp);
   3589 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3590 		WG_PEER_WRITER_REMOVE(wgp);
   3591 		wg->wg_npeers--;
   3592 		mutex_enter(wgp->wgp_lock);
   3593 		pserialize_perform(wgp->wgp_psz);
   3594 		mutex_exit(wgp->wgp_lock);
   3595 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3596 		break;
   3597 	}
   3598 	mutex_exit(wg->wg_lock);
   3599 
   3600 	if (wgp == NULL)
   3601 		return;
   3602 
   3603 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3604 
   3605 	wg_destroy_peer(wgp);
   3606 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3607 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3608 
   3609 	goto restart;
   3610 }
   3611 
   3612 static int
   3613 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
   3614 {
   3615 	struct wg_peer *wgp, *wgp0 __diagused;
   3616 	void *garbage_byname, *garbage_bypubkey;
   3617 
   3618 	mutex_enter(wg->wg_lock);
   3619 	wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
   3620 	if (wgp != NULL) {
   3621 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3622 		    sizeof(wgp->wgp_pubkey));
   3623 		KASSERT(wgp0 == wgp);
   3624 		garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3625 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3626 		WG_PEER_WRITER_REMOVE(wgp);
   3627 		wg->wg_npeers--;
   3628 		if (wg->wg_npeers == 0)
   3629 			if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
   3630 		mutex_enter(wgp->wgp_lock);
   3631 		pserialize_perform(wgp->wgp_psz);
   3632 		mutex_exit(wgp->wgp_lock);
   3633 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3634 	}
   3635 	mutex_exit(wg->wg_lock);
   3636 
   3637 	if (wgp == NULL)
   3638 		return ENOENT;
   3639 
   3640 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3641 
   3642 	wg_destroy_peer(wgp);
   3643 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3644 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3645 
   3646 	return 0;
   3647 }
   3648 
   3649 static int
   3650 wg_if_attach(struct wg_softc *wg)
   3651 {
   3652 
   3653 	wg->wg_if.if_addrlen = 0;
   3654 	wg->wg_if.if_mtu = WG_MTU;
   3655 	wg->wg_if.if_flags = IFF_MULTICAST;
   3656 	wg->wg_if.if_extflags = IFEF_MPSAFE;
   3657 	wg->wg_if.if_ioctl = wg_ioctl;
   3658 	wg->wg_if.if_output = wg_output;
   3659 	wg->wg_if.if_init = wg_init;
   3660 #ifdef ALTQ
   3661 	wg->wg_if.if_start = wg_start;
   3662 #endif
   3663 	wg->wg_if.if_stop = wg_stop;
   3664 	wg->wg_if.if_type = IFT_OTHER;
   3665 	wg->wg_if.if_dlt = DLT_NULL;
   3666 	wg->wg_if.if_softc = wg;
   3667 #ifdef ALTQ
   3668 	IFQ_SET_READY(&wg->wg_if.if_snd);
   3669 #endif
   3670 	if_initialize(&wg->wg_if);
   3671 
   3672 	wg->wg_if.if_link_state = LINK_STATE_DOWN;
   3673 	if_alloc_sadl(&wg->wg_if);
   3674 	if_register(&wg->wg_if);
   3675 
   3676 	bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
   3677 
   3678 	return 0;
   3679 }
   3680 
   3681 static void
   3682 wg_if_detach(struct wg_softc *wg)
   3683 {
   3684 	struct ifnet *ifp = &wg->wg_if;
   3685 
   3686 	bpf_detach(ifp);
   3687 	if_detach(ifp);
   3688 }
   3689 
   3690 static int
   3691 wg_clone_create(struct if_clone *ifc, int unit)
   3692 {
   3693 	struct wg_softc *wg;
   3694 	int error;
   3695 
   3696 	wg_guarantee_initialized();
   3697 
   3698 	error = wg_count_inc();
   3699 	if (error)
   3700 		return error;
   3701 
   3702 	wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
   3703 
   3704 	if_initname(&wg->wg_if, ifc->ifc_name, unit);
   3705 
   3706 	PSLIST_INIT(&wg->wg_peers);
   3707 	wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
   3708 	wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
   3709 	wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
   3710 	wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3711 	wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3712 	wg->wg_rwlock = rw_obj_alloc();
   3713 	threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
   3714 	    "%s", if_name(&wg->wg_if));
   3715 	wg->wg_ops = &wg_ops_rumpkernel;
   3716 
   3717 	error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
   3718 	if (error)
   3719 		goto fail0;
   3720 
   3721 #ifdef INET
   3722 	error = wg_socreate(wg, AF_INET, &wg->wg_so4);
   3723 	if (error)
   3724 		goto fail1;
   3725 	rn_inithead((void **)&wg->wg_rtable_ipv4,
   3726 	    offsetof(struct sockaddr_in, sin_addr) * NBBY);
   3727 #endif
   3728 #ifdef INET6
   3729 	error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
   3730 	if (error)
   3731 		goto fail2;
   3732 	rn_inithead((void **)&wg->wg_rtable_ipv6,
   3733 	    offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
   3734 #endif
   3735 
   3736 	error = wg_if_attach(wg);
   3737 	if (error)
   3738 		goto fail3;
   3739 
   3740 	return 0;
   3741 
   3742 fail4: __unused
   3743 	wg_if_detach(wg);
   3744 fail3:	wg_destroy_all_peers(wg);
   3745 #ifdef INET6
   3746 	solock(wg->wg_so6);
   3747 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   3748 	sounlock(wg->wg_so6);
   3749 #endif
   3750 #ifdef INET
   3751 	solock(wg->wg_so4);
   3752 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   3753 	sounlock(wg->wg_so4);
   3754 #endif
   3755 	mutex_enter(wg->wg_intr_lock);
   3756 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   3757 	mutex_exit(wg->wg_intr_lock);
   3758 #ifdef INET6
   3759 	if (wg->wg_rtable_ipv6 != NULL)
   3760 		free(wg->wg_rtable_ipv6, M_RTABLE);
   3761 	soclose(wg->wg_so6);
   3762 fail2:
   3763 #endif
   3764 #ifdef INET
   3765 	if (wg->wg_rtable_ipv4 != NULL)
   3766 		free(wg->wg_rtable_ipv4, M_RTABLE);
   3767 	soclose(wg->wg_so4);
   3768 fail1:
   3769 #endif
   3770 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   3771 fail0:	threadpool_job_destroy(&wg->wg_job);
   3772 	rw_obj_free(wg->wg_rwlock);
   3773 	mutex_obj_free(wg->wg_intr_lock);
   3774 	mutex_obj_free(wg->wg_lock);
   3775 	thmap_destroy(wg->wg_sessions_byindex);
   3776 	thmap_destroy(wg->wg_peers_byname);
   3777 	thmap_destroy(wg->wg_peers_bypubkey);
   3778 	PSLIST_DESTROY(&wg->wg_peers);
   3779 	kmem_free(wg, sizeof(*wg));
   3780 	wg_count_dec();
   3781 	return error;
   3782 }
   3783 
   3784 static int
   3785 wg_clone_destroy(struct ifnet *ifp)
   3786 {
   3787 	struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
   3788 
   3789 #ifdef WG_RUMPKERNEL
   3790 	if (wg_user_mode(wg)) {
   3791 		rumpuser_wg_destroy(wg->wg_user);
   3792 		wg->wg_user = NULL;
   3793 	}
   3794 #endif
   3795 
   3796 	wg_if_detach(wg);
   3797 	wg_destroy_all_peers(wg);
   3798 #ifdef INET6
   3799 	solock(wg->wg_so6);
   3800 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   3801 	sounlock(wg->wg_so6);
   3802 #endif
   3803 #ifdef INET
   3804 	solock(wg->wg_so4);
   3805 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   3806 	sounlock(wg->wg_so4);
   3807 #endif
   3808 	mutex_enter(wg->wg_intr_lock);
   3809 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   3810 	mutex_exit(wg->wg_intr_lock);
   3811 #ifdef INET6
   3812 	if (wg->wg_rtable_ipv6 != NULL)
   3813 		free(wg->wg_rtable_ipv6, M_RTABLE);
   3814 	soclose(wg->wg_so6);
   3815 #endif
   3816 #ifdef INET
   3817 	if (wg->wg_rtable_ipv4 != NULL)
   3818 		free(wg->wg_rtable_ipv4, M_RTABLE);
   3819 	soclose(wg->wg_so4);
   3820 #endif
   3821 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   3822 	threadpool_job_destroy(&wg->wg_job);
   3823 	rw_obj_free(wg->wg_rwlock);
   3824 	mutex_obj_free(wg->wg_intr_lock);
   3825 	mutex_obj_free(wg->wg_lock);
   3826 	thmap_destroy(wg->wg_sessions_byindex);
   3827 	thmap_destroy(wg->wg_peers_byname);
   3828 	thmap_destroy(wg->wg_peers_bypubkey);
   3829 	PSLIST_DESTROY(&wg->wg_peers);
   3830 	kmem_free(wg, sizeof(*wg));
   3831 	wg_count_dec();
   3832 
   3833 	return 0;
   3834 }
   3835 
   3836 static struct wg_peer *
   3837 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
   3838     struct psref *psref)
   3839 {
   3840 	struct radix_node_head *rnh;
   3841 	struct radix_node *rn;
   3842 	struct wg_peer *wgp = NULL;
   3843 	struct wg_allowedip *wga;
   3844 
   3845 #ifdef WG_DEBUG_LOG
   3846 	char addrstr[128];
   3847 	sockaddr_format(sa, addrstr, sizeof(addrstr));
   3848 	WG_DLOG("sa=%s\n", addrstr);
   3849 #endif
   3850 
   3851 	rw_enter(wg->wg_rwlock, RW_READER);
   3852 
   3853 	rnh = wg_rnh(wg, sa->sa_family);
   3854 	if (rnh == NULL)
   3855 		goto out;
   3856 
   3857 	rn = rnh->rnh_matchaddr(sa, rnh);
   3858 	if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
   3859 		goto out;
   3860 
   3861 	WG_TRACE("success");
   3862 
   3863 	wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
   3864 	wgp = wga->wga_peer;
   3865 	wg_get_peer(wgp, psref);
   3866 
   3867 out:
   3868 	rw_exit(wg->wg_rwlock);
   3869 	return wgp;
   3870 }
   3871 
   3872 static void
   3873 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
   3874     struct wg_session *wgs, struct wg_msg_data *wgmd)
   3875 {
   3876 
   3877 	memset(wgmd, 0, sizeof(*wgmd));
   3878 	wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
   3879 	wgmd->wgmd_receiver = wgs->wgs_remote_index;
   3880 	/* [W] 5.4.6: msg.counter := Nm^send */
   3881 	/* [W] 5.4.6: Nm^send := Nm^send + 1 */
   3882 	wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
   3883 	WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
   3884 }
   3885 
   3886 static int
   3887 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
   3888     const struct rtentry *rt)
   3889 {
   3890 	struct wg_softc *wg = ifp->if_softc;
   3891 	struct wg_peer *wgp = NULL;
   3892 	struct wg_session *wgs = NULL;
   3893 	struct psref wgp_psref, wgs_psref;
   3894 	int bound;
   3895 	int error;
   3896 
   3897 	bound = curlwp_bind();
   3898 
   3899 	/* TODO make the nest limit configurable via sysctl */
   3900 	error = if_tunnel_check_nesting(ifp, m, 1);
   3901 	if (error) {
   3902 		WGLOG(LOG_ERR,
   3903 		    "%s: tunneling loop detected and packet dropped\n",
   3904 		    if_name(&wg->wg_if));
   3905 		goto out0;
   3906 	}
   3907 
   3908 #ifdef ALTQ
   3909 	bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
   3910 	    & ALTQF_ENABLED;
   3911 	if (altq)
   3912 		IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
   3913 #endif
   3914 
   3915 	bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
   3916 
   3917 	m->m_flags &= ~(M_BCAST|M_MCAST);
   3918 
   3919 	wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
   3920 	if (wgp == NULL) {
   3921 		WG_TRACE("peer not found");
   3922 		error = EHOSTUNREACH;
   3923 		goto out0;
   3924 	}
   3925 
   3926 	/* Clear checksum-offload flags. */
   3927 	m->m_pkthdr.csum_flags = 0;
   3928 	m->m_pkthdr.csum_data = 0;
   3929 
   3930 	/* Check whether there's an established session.  */
   3931 	wgs = wg_get_stable_session(wgp, &wgs_psref);
   3932 	if (wgs == NULL) {
   3933 		/*
   3934 		 * No established session.  If we're the first to try
   3935 		 * sending data, schedule a handshake and queue the
   3936 		 * packet for when the handshake is done; otherwise
   3937 		 * just drop the packet and let the ongoing handshake
   3938 		 * attempt continue.  We could queue more data packets
   3939 		 * but it's not clear that's worthwhile.
   3940 		 */
   3941 		if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
   3942 			m = NULL; /* consume */
   3943 			WG_TRACE("queued first packet; init handshake");
   3944 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3945 		} else {
   3946 			WG_TRACE("first packet already queued, dropping");
   3947 		}
   3948 		goto out1;
   3949 	}
   3950 
   3951 	/* There's an established session.  Toss it in the queue.  */
   3952 #ifdef ALTQ
   3953 	if (altq) {
   3954 		mutex_enter(ifp->if_snd.ifq_lock);
   3955 		if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   3956 			M_SETCTX(m, wgp);
   3957 			ALTQ_ENQUEUE(&ifp->if_snd, m, error);
   3958 			m = NULL; /* consume */
   3959 		}
   3960 		mutex_exit(ifp->if_snd.ifq_lock);
   3961 		if (m == NULL) {
   3962 			wg_start(ifp);
   3963 			goto out2;
   3964 		}
   3965 	}
   3966 #endif
   3967 	kpreempt_disable();
   3968 	const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   3969 	M_SETCTX(m, wgp);
   3970 	if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   3971 		WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   3972 		    if_name(&wg->wg_if));
   3973 		error = ENOBUFS;
   3974 		goto out3;
   3975 	}
   3976 	m = NULL;		/* consumed */
   3977 	error = 0;
   3978 out3:	kpreempt_enable();
   3979 
   3980 #ifdef ALTQ
   3981 out2:
   3982 #endif
   3983 	wg_put_session(wgs, &wgs_psref);
   3984 out1:	wg_put_peer(wgp, &wgp_psref);
   3985 out0:	m_freem(m);
   3986 	curlwp_bindx(bound);
   3987 	return error;
   3988 }
   3989 
   3990 static int
   3991 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
   3992 {
   3993 	struct psref psref;
   3994 	struct wg_sockaddr *wgsa;
   3995 	int error;
   3996 	struct socket *so;
   3997 
   3998 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   3999 	so = wg_get_so_by_peer(wgp, wgsa);
   4000 	solock(so);
   4001 	if (wgsatosa(wgsa)->sa_family == AF_INET) {
   4002 		error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
   4003 	} else {
   4004 #ifdef INET6
   4005 		error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
   4006 		    NULL, curlwp);
   4007 #else
   4008 		m_freem(m);
   4009 		error = EPFNOSUPPORT;
   4010 #endif
   4011 	}
   4012 	sounlock(so);
   4013 	wg_put_sa(wgp, wgsa, &psref);
   4014 
   4015 	return error;
   4016 }
   4017 
   4018 /* Inspired by pppoe_get_mbuf */
   4019 static struct mbuf *
   4020 wg_get_mbuf(size_t leading_len, size_t len)
   4021 {
   4022 	struct mbuf *m;
   4023 
   4024 	KASSERT(leading_len <= MCLBYTES);
   4025 	KASSERT(len <= MCLBYTES - leading_len);
   4026 
   4027 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   4028 	if (m == NULL)
   4029 		return NULL;
   4030 	if (len + leading_len > MHLEN) {
   4031 		m_clget(m, M_DONTWAIT);
   4032 		if ((m->m_flags & M_EXT) == 0) {
   4033 			m_free(m);
   4034 			return NULL;
   4035 		}
   4036 	}
   4037 	m->m_data += leading_len;
   4038 	m->m_pkthdr.len = m->m_len = len;
   4039 
   4040 	return m;
   4041 }
   4042 
   4043 static int
   4044 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
   4045     struct mbuf *m)
   4046 {
   4047 	struct wg_softc *wg = wgp->wgp_sc;
   4048 	int error;
   4049 	size_t inner_len, padded_len, encrypted_len;
   4050 	char *padded_buf = NULL;
   4051 	size_t mlen;
   4052 	struct wg_msg_data *wgmd;
   4053 	bool free_padded_buf = false;
   4054 	struct mbuf *n;
   4055 	size_t leading_len = max_hdr + sizeof(struct udphdr);
   4056 
   4057 	mlen = m_length(m);
   4058 	inner_len = mlen;
   4059 	padded_len = roundup(mlen, 16);
   4060 	encrypted_len = padded_len + WG_AUTHTAG_LEN;
   4061 	WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
   4062 	    inner_len, padded_len, encrypted_len);
   4063 	if (mlen != 0) {
   4064 		bool success;
   4065 		success = m_ensure_contig(&m, padded_len);
   4066 		if (success) {
   4067 			padded_buf = mtod(m, char *);
   4068 		} else {
   4069 			padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
   4070 			if (padded_buf == NULL) {
   4071 				error = ENOBUFS;
   4072 				goto end;
   4073 			}
   4074 			free_padded_buf = true;
   4075 			m_copydata(m, 0, mlen, padded_buf);
   4076 		}
   4077 		memset(padded_buf + mlen, 0, padded_len - inner_len);
   4078 	}
   4079 
   4080 	n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
   4081 	if (n == NULL) {
   4082 		error = ENOBUFS;
   4083 		goto end;
   4084 	}
   4085 	KASSERT(n->m_len >= sizeof(*wgmd));
   4086 	wgmd = mtod(n, struct wg_msg_data *);
   4087 	wg_fill_msg_data(wg, wgp, wgs, wgmd);
   4088 #ifdef WG_DEBUG_PACKET
   4089 	if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
   4090 		hexdump(aprint_debug, "wgmd", wgmd, sizeof(*wgmd));
   4091 		hexdump(aprint_debug, "padded_buf", padded_buf,
   4092 		    padded_len);
   4093 	}
   4094 #endif
   4095 	/* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
   4096 	wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
   4097 	    wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
   4098 	    padded_buf, padded_len,
   4099 	    NULL, 0);
   4100 
   4101 	error = wg->wg_ops->send_data_msg(wgp, n);
   4102 	if (error == 0) {
   4103 		struct ifnet *ifp = &wg->wg_if;
   4104 		if_statadd(ifp, if_obytes, mlen);
   4105 		if_statinc(ifp, if_opackets);
   4106 		if (wgs->wgs_is_initiator &&
   4107 		    wgs->wgs_time_last_data_sent == 0) {
   4108 			/*
   4109 			 * [W] 6.2 Transport Message Limits
   4110 			 * "if a peer is the initiator of a current secure
   4111 			 *  session, WireGuard will send a handshake initiation
   4112 			 *  message to begin a new secure session if, after
   4113 			 *  transmitting a transport data message, the current
   4114 			 *  secure session is REKEY-AFTER-TIME seconds old,"
   4115 			 */
   4116 			wg_schedule_rekey_timer(wgp);
   4117 		}
   4118 		wgs->wgs_time_last_data_sent = time_uptime;
   4119 		if (wg_session_get_send_counter(wgs) >=
   4120 		    wg_rekey_after_messages) {
   4121 			/*
   4122 			 * [W] 6.2 Transport Message Limits
   4123 			 * "WireGuard will try to create a new session, by
   4124 			 *  sending a handshake initiation message (section
   4125 			 *  5.4.2), after it has sent REKEY-AFTER-MESSAGES
   4126 			 *  transport data messages..."
   4127 			 */
   4128 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   4129 		}
   4130 	}
   4131 end:
   4132 	m_freem(m);
   4133 	if (free_padded_buf)
   4134 		kmem_intr_free(padded_buf, padded_len);
   4135 	return error;
   4136 }
   4137 
   4138 static void
   4139 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
   4140 {
   4141 	pktqueue_t *pktq;
   4142 	size_t pktlen;
   4143 
   4144 	KASSERT(af == AF_INET || af == AF_INET6);
   4145 
   4146 	WG_TRACE("");
   4147 
   4148 	m_set_rcvif(m, ifp);
   4149 	pktlen = m->m_pkthdr.len;
   4150 
   4151 	bpf_mtap_af(ifp, af, m, BPF_D_IN);
   4152 
   4153 	switch (af) {
   4154 	case AF_INET:
   4155 		pktq = ip_pktq;
   4156 		break;
   4157 #ifdef INET6
   4158 	case AF_INET6:
   4159 		pktq = ip6_pktq;
   4160 		break;
   4161 #endif
   4162 	default:
   4163 		panic("invalid af=%d", af);
   4164 	}
   4165 
   4166 	kpreempt_disable();
   4167 	const u_int h = curcpu()->ci_index;
   4168 	if (__predict_true(pktq_enqueue(pktq, m, h))) {
   4169 		if_statadd(ifp, if_ibytes, pktlen);
   4170 		if_statinc(ifp, if_ipackets);
   4171 	} else {
   4172 		m_freem(m);
   4173 	}
   4174 	kpreempt_enable();
   4175 }
   4176 
   4177 static void
   4178 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
   4179     const uint8_t privkey[WG_STATIC_KEY_LEN])
   4180 {
   4181 
   4182 	crypto_scalarmult_base(pubkey, privkey);
   4183 }
   4184 
   4185 static int
   4186 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
   4187 {
   4188 	struct radix_node_head *rnh;
   4189 	struct radix_node *rn;
   4190 	int error = 0;
   4191 
   4192 	rw_enter(wg->wg_rwlock, RW_WRITER);
   4193 	rnh = wg_rnh(wg, wga->wga_family);
   4194 	KASSERT(rnh != NULL);
   4195 	rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
   4196 	    wga->wga_nodes);
   4197 	rw_exit(wg->wg_rwlock);
   4198 
   4199 	if (rn == NULL)
   4200 		error = EEXIST;
   4201 
   4202 	return error;
   4203 }
   4204 
   4205 static int
   4206 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
   4207     struct wg_peer **wgpp)
   4208 {
   4209 	int error = 0;
   4210 	const void *pubkey;
   4211 	size_t pubkey_len;
   4212 	const void *psk;
   4213 	size_t psk_len;
   4214 	const char *name = NULL;
   4215 
   4216 	if (prop_dictionary_get_string(peer, "name", &name)) {
   4217 		if (strlen(name) > WG_PEER_NAME_MAXLEN) {
   4218 			error = EINVAL;
   4219 			goto out;
   4220 		}
   4221 	}
   4222 
   4223 	if (!prop_dictionary_get_data(peer, "public_key",
   4224 		&pubkey, &pubkey_len)) {
   4225 		error = EINVAL;
   4226 		goto out;
   4227 	}
   4228 #ifdef WG_DEBUG_DUMP
   4229         if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4230 		char *hex = gethexdump(pubkey, pubkey_len);
   4231 		log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n%s\n",
   4232 		    pubkey, pubkey_len, hex);
   4233 		puthexdump(hex, pubkey, pubkey_len);
   4234 	}
   4235 #endif
   4236 
   4237 	struct wg_peer *wgp = wg_alloc_peer(wg);
   4238 	memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
   4239 	if (name != NULL)
   4240 		strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
   4241 
   4242 	if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
   4243 		if (psk_len != sizeof(wgp->wgp_psk)) {
   4244 			error = EINVAL;
   4245 			goto out;
   4246 		}
   4247 		memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
   4248 	}
   4249 
   4250 	const void *addr;
   4251 	size_t addr_len;
   4252 	struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
   4253 
   4254 	if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
   4255 		goto skip_endpoint;
   4256 	if (addr_len < sizeof(*wgsatosa(wgsa)) ||
   4257 	    addr_len > sizeof(*wgsatoss(wgsa))) {
   4258 		error = EINVAL;
   4259 		goto out;
   4260 	}
   4261 	memcpy(wgsatoss(wgsa), addr, addr_len);
   4262 	switch (wgsa_family(wgsa)) {
   4263 	case AF_INET:
   4264 #ifdef INET6
   4265 	case AF_INET6:
   4266 #endif
   4267 		break;
   4268 	default:
   4269 		error = EPFNOSUPPORT;
   4270 		goto out;
   4271 	}
   4272 	if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
   4273 		error = EINVAL;
   4274 		goto out;
   4275 	}
   4276     {
   4277 	char addrstr[128];
   4278 	sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
   4279 	WG_DLOG("addr=%s\n", addrstr);
   4280     }
   4281 	wgp->wgp_endpoint_available = true;
   4282 
   4283 	prop_array_t allowedips;
   4284 skip_endpoint:
   4285 	allowedips = prop_dictionary_get(peer, "allowedips");
   4286 	if (allowedips == NULL)
   4287 		goto skip;
   4288 
   4289 	prop_object_iterator_t _it = prop_array_iterator(allowedips);
   4290 	prop_dictionary_t prop_allowedip;
   4291 	int j = 0;
   4292 	while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
   4293 		struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4294 
   4295 		if (!prop_dictionary_get_int(prop_allowedip, "family",
   4296 			&wga->wga_family))
   4297 			continue;
   4298 		if (!prop_dictionary_get_data(prop_allowedip, "ip",
   4299 			&addr, &addr_len))
   4300 			continue;
   4301 		if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
   4302 			&wga->wga_cidr))
   4303 			continue;
   4304 
   4305 		switch (wga->wga_family) {
   4306 		case AF_INET: {
   4307 			struct sockaddr_in sin;
   4308 			char addrstr[128];
   4309 			struct in_addr mask;
   4310 			struct sockaddr_in sin_mask;
   4311 
   4312 			if (addr_len != sizeof(struct in_addr))
   4313 				return EINVAL;
   4314 			memcpy(&wga->wga_addr4, addr, addr_len);
   4315 
   4316 			sockaddr_in_init(&sin, (const struct in_addr *)addr,
   4317 			    0);
   4318 			sockaddr_copy(&wga->wga_sa_addr,
   4319 			    sizeof(sin), sintosa(&sin));
   4320 
   4321 			sockaddr_format(sintosa(&sin),
   4322 			    addrstr, sizeof(addrstr));
   4323 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4324 
   4325 			in_len2mask(&mask, wga->wga_cidr);
   4326 			sockaddr_in_init(&sin_mask, &mask, 0);
   4327 			sockaddr_copy(&wga->wga_sa_mask,
   4328 			    sizeof(sin_mask), sintosa(&sin_mask));
   4329 
   4330 			break;
   4331 		    }
   4332 #ifdef INET6
   4333 		case AF_INET6: {
   4334 			struct sockaddr_in6 sin6;
   4335 			char addrstr[128];
   4336 			struct in6_addr mask;
   4337 			struct sockaddr_in6 sin6_mask;
   4338 
   4339 			if (addr_len != sizeof(struct in6_addr))
   4340 				return EINVAL;
   4341 			memcpy(&wga->wga_addr6, addr, addr_len);
   4342 
   4343 			sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
   4344 			    0, 0, 0);
   4345 			sockaddr_copy(&wga->wga_sa_addr,
   4346 			    sizeof(sin6), sin6tosa(&sin6));
   4347 
   4348 			sockaddr_format(sin6tosa(&sin6),
   4349 			    addrstr, sizeof(addrstr));
   4350 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4351 
   4352 			in6_prefixlen2mask(&mask, wga->wga_cidr);
   4353 			sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
   4354 			sockaddr_copy(&wga->wga_sa_mask,
   4355 			    sizeof(sin6_mask), sin6tosa(&sin6_mask));
   4356 
   4357 			break;
   4358 		    }
   4359 #endif
   4360 		default:
   4361 			error = EINVAL;
   4362 			goto out;
   4363 		}
   4364 		wga->wga_peer = wgp;
   4365 
   4366 		error = wg_rtable_add_route(wg, wga);
   4367 		if (error != 0)
   4368 			goto out;
   4369 
   4370 		j++;
   4371 	}
   4372 	wgp->wgp_n_allowedips = j;
   4373 skip:
   4374 	*wgpp = wgp;
   4375 out:
   4376 	return error;
   4377 }
   4378 
   4379 static int
   4380 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
   4381 {
   4382 	int error;
   4383 	char *buf;
   4384 
   4385 	WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
   4386 	if (ifd->ifd_len >= WG_MAX_PROPLEN)
   4387 		return E2BIG;
   4388 	buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
   4389 	error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
   4390 	if (error != 0)
   4391 		return error;
   4392 	buf[ifd->ifd_len] = '\0';
   4393 #ifdef WG_DEBUG_DUMP
   4394 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4395 		log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
   4396 		    (const char *)buf);
   4397 	}
   4398 #endif
   4399 	*_buf = buf;
   4400 	return 0;
   4401 }
   4402 
   4403 static int
   4404 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
   4405 {
   4406 	int error;
   4407 	prop_dictionary_t prop_dict;
   4408 	char *buf = NULL;
   4409 	const void *privkey;
   4410 	size_t privkey_len;
   4411 
   4412 	error = wg_alloc_prop_buf(&buf, ifd);
   4413 	if (error != 0)
   4414 		return error;
   4415 	error = EINVAL;
   4416 	prop_dict = prop_dictionary_internalize(buf);
   4417 	if (prop_dict == NULL)
   4418 		goto out;
   4419 	if (!prop_dictionary_get_data(prop_dict, "private_key",
   4420 		&privkey, &privkey_len))
   4421 		goto out;
   4422 #ifdef WG_DEBUG_DUMP
   4423 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4424 		char *hex = gethexdump(privkey, privkey_len);
   4425 		log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n%s\n",
   4426 		    privkey, privkey_len, hex);
   4427 		puthexdump(hex, privkey, privkey_len);
   4428 	}
   4429 #endif
   4430 	if (privkey_len != WG_STATIC_KEY_LEN)
   4431 		goto out;
   4432 	memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
   4433 	wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
   4434 	error = 0;
   4435 
   4436 out:
   4437 	kmem_free(buf, ifd->ifd_len + 1);
   4438 	return error;
   4439 }
   4440 
   4441 static int
   4442 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
   4443 {
   4444 	int error;
   4445 	prop_dictionary_t prop_dict;
   4446 	char *buf = NULL;
   4447 	uint16_t port;
   4448 
   4449 	error = wg_alloc_prop_buf(&buf, ifd);
   4450 	if (error != 0)
   4451 		return error;
   4452 	error = EINVAL;
   4453 	prop_dict = prop_dictionary_internalize(buf);
   4454 	if (prop_dict == NULL)
   4455 		goto out;
   4456 	if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
   4457 		goto out;
   4458 
   4459 	error = wg->wg_ops->bind_port(wg, (uint16_t)port);
   4460 
   4461 out:
   4462 	kmem_free(buf, ifd->ifd_len + 1);
   4463 	return error;
   4464 }
   4465 
   4466 static int
   4467 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4468 {
   4469 	int error;
   4470 	prop_dictionary_t prop_dict;
   4471 	char *buf = NULL;
   4472 	struct wg_peer *wgp = NULL, *wgp0 __diagused;
   4473 
   4474 	error = wg_alloc_prop_buf(&buf, ifd);
   4475 	if (error != 0)
   4476 		return error;
   4477 	error = EINVAL;
   4478 	prop_dict = prop_dictionary_internalize(buf);
   4479 	if (prop_dict == NULL)
   4480 		goto out;
   4481 
   4482 	error = wg_handle_prop_peer(wg, prop_dict, &wgp);
   4483 	if (error != 0)
   4484 		goto out;
   4485 
   4486 	mutex_enter(wg->wg_lock);
   4487 	if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4488 		sizeof(wgp->wgp_pubkey)) != NULL ||
   4489 	    (wgp->wgp_name[0] &&
   4490 		thmap_get(wg->wg_peers_byname, wgp->wgp_name,
   4491 		    strlen(wgp->wgp_name)) != NULL)) {
   4492 		mutex_exit(wg->wg_lock);
   4493 		wg_destroy_peer(wgp);
   4494 		error = EEXIST;
   4495 		goto out;
   4496 	}
   4497 	wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4498 	    sizeof(wgp->wgp_pubkey), wgp);
   4499 	KASSERT(wgp0 == wgp);
   4500 	if (wgp->wgp_name[0]) {
   4501 		wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
   4502 		    strlen(wgp->wgp_name), wgp);
   4503 		KASSERT(wgp0 == wgp);
   4504 	}
   4505 	WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
   4506 	wg->wg_npeers++;
   4507 	mutex_exit(wg->wg_lock);
   4508 
   4509 	if_link_state_change(&wg->wg_if, LINK_STATE_UP);
   4510 
   4511 out:
   4512 	kmem_free(buf, ifd->ifd_len + 1);
   4513 	return error;
   4514 }
   4515 
   4516 static int
   4517 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4518 {
   4519 	int error;
   4520 	prop_dictionary_t prop_dict;
   4521 	char *buf = NULL;
   4522 	const char *name;
   4523 
   4524 	error = wg_alloc_prop_buf(&buf, ifd);
   4525 	if (error != 0)
   4526 		return error;
   4527 	error = EINVAL;
   4528 	prop_dict = prop_dictionary_internalize(buf);
   4529 	if (prop_dict == NULL)
   4530 		goto out;
   4531 
   4532 	if (!prop_dictionary_get_string(prop_dict, "name", &name))
   4533 		goto out;
   4534 	if (strlen(name) > WG_PEER_NAME_MAXLEN)
   4535 		goto out;
   4536 
   4537 	error = wg_destroy_peer_name(wg, name);
   4538 out:
   4539 	kmem_free(buf, ifd->ifd_len + 1);
   4540 	return error;
   4541 }
   4542 
   4543 static bool
   4544 wg_is_authorized(struct wg_softc *wg, u_long cmd)
   4545 {
   4546 	int au = cmd == SIOCGDRVSPEC ?
   4547 	    KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
   4548 	    KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
   4549 	return kauth_authorize_network(kauth_cred_get(),
   4550 	    KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
   4551 	    (void *)cmd, NULL) == 0;
   4552 }
   4553 
   4554 static int
   4555 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
   4556 {
   4557 	int error = ENOMEM;
   4558 	prop_dictionary_t prop_dict;
   4559 	prop_array_t peers = NULL;
   4560 	char *buf;
   4561 	struct wg_peer *wgp;
   4562 	int s, i;
   4563 
   4564 	prop_dict = prop_dictionary_create();
   4565 	if (prop_dict == NULL)
   4566 		goto error;
   4567 
   4568 	if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   4569 		if (!prop_dictionary_set_data(prop_dict, "private_key",
   4570 			wg->wg_privkey, WG_STATIC_KEY_LEN))
   4571 			goto error;
   4572 	}
   4573 
   4574 	if (wg->wg_listen_port != 0) {
   4575 		if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
   4576 			wg->wg_listen_port))
   4577 			goto error;
   4578 	}
   4579 
   4580 	if (wg->wg_npeers == 0)
   4581 		goto skip_peers;
   4582 
   4583 	peers = prop_array_create();
   4584 	if (peers == NULL)
   4585 		goto error;
   4586 
   4587 	s = pserialize_read_enter();
   4588 	i = 0;
   4589 	WG_PEER_READER_FOREACH(wgp, wg) {
   4590 		struct wg_sockaddr *wgsa;
   4591 		struct psref wgp_psref, wgsa_psref;
   4592 		prop_dictionary_t prop_peer;
   4593 
   4594 		wg_get_peer(wgp, &wgp_psref);
   4595 		pserialize_read_exit(s);
   4596 
   4597 		prop_peer = prop_dictionary_create();
   4598 		if (prop_peer == NULL)
   4599 			goto next;
   4600 
   4601 		if (strlen(wgp->wgp_name) > 0) {
   4602 			if (!prop_dictionary_set_string(prop_peer, "name",
   4603 				wgp->wgp_name))
   4604 				goto next;
   4605 		}
   4606 
   4607 		if (!prop_dictionary_set_data(prop_peer, "public_key",
   4608 			wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
   4609 			goto next;
   4610 
   4611 		uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
   4612 		if (!consttime_memequal(wgp->wgp_psk, psk_zero,
   4613 			sizeof(wgp->wgp_psk))) {
   4614 			if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   4615 				if (!prop_dictionary_set_data(prop_peer,
   4616 					"preshared_key",
   4617 					wgp->wgp_psk, sizeof(wgp->wgp_psk)))
   4618 					goto next;
   4619 			}
   4620 		}
   4621 
   4622 		wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
   4623 		CTASSERT(AF_UNSPEC == 0);
   4624 		if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
   4625 		    !prop_dictionary_set_data(prop_peer, "endpoint",
   4626 			wgsatoss(wgsa),
   4627 			sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
   4628 			wg_put_sa(wgp, wgsa, &wgsa_psref);
   4629 			goto next;
   4630 		}
   4631 		wg_put_sa(wgp, wgsa, &wgsa_psref);
   4632 
   4633 		const struct timespec *t = &wgp->wgp_last_handshake_time;
   4634 
   4635 		if (!prop_dictionary_set_uint64(prop_peer,
   4636 			"last_handshake_time_sec", (uint64_t)t->tv_sec))
   4637 			goto next;
   4638 		if (!prop_dictionary_set_uint32(prop_peer,
   4639 			"last_handshake_time_nsec", (uint32_t)t->tv_nsec))
   4640 			goto next;
   4641 
   4642 		if (wgp->wgp_n_allowedips == 0)
   4643 			goto skip_allowedips;
   4644 
   4645 		prop_array_t allowedips = prop_array_create();
   4646 		if (allowedips == NULL)
   4647 			goto next;
   4648 		for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
   4649 			struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4650 			prop_dictionary_t prop_allowedip;
   4651 
   4652 			prop_allowedip = prop_dictionary_create();
   4653 			if (prop_allowedip == NULL)
   4654 				break;
   4655 
   4656 			if (!prop_dictionary_set_int(prop_allowedip, "family",
   4657 				wga->wga_family))
   4658 				goto _next;
   4659 			if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
   4660 				wga->wga_cidr))
   4661 				goto _next;
   4662 
   4663 			switch (wga->wga_family) {
   4664 			case AF_INET:
   4665 				if (!prop_dictionary_set_data(prop_allowedip,
   4666 					"ip", &wga->wga_addr4,
   4667 					sizeof(wga->wga_addr4)))
   4668 					goto _next;
   4669 				break;
   4670 #ifdef INET6
   4671 			case AF_INET6:
   4672 				if (!prop_dictionary_set_data(prop_allowedip,
   4673 					"ip", &wga->wga_addr6,
   4674 					sizeof(wga->wga_addr6)))
   4675 					goto _next;
   4676 				break;
   4677 #endif
   4678 			default:
   4679 				break;
   4680 			}
   4681 			prop_array_set(allowedips, j, prop_allowedip);
   4682 		_next:
   4683 			prop_object_release(prop_allowedip);
   4684 		}
   4685 		prop_dictionary_set(prop_peer, "allowedips", allowedips);
   4686 		prop_object_release(allowedips);
   4687 
   4688 	skip_allowedips:
   4689 
   4690 		prop_array_set(peers, i, prop_peer);
   4691 	next:
   4692 		if (prop_peer)
   4693 			prop_object_release(prop_peer);
   4694 		i++;
   4695 
   4696 		s = pserialize_read_enter();
   4697 		wg_put_peer(wgp, &wgp_psref);
   4698 	}
   4699 	pserialize_read_exit(s);
   4700 
   4701 	prop_dictionary_set(prop_dict, "peers", peers);
   4702 	prop_object_release(peers);
   4703 	peers = NULL;
   4704 
   4705 skip_peers:
   4706 	buf = prop_dictionary_externalize(prop_dict);
   4707 	if (buf == NULL)
   4708 		goto error;
   4709 	if (ifd->ifd_len < (strlen(buf) + 1)) {
   4710 		error = EINVAL;
   4711 		goto error;
   4712 	}
   4713 	error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
   4714 
   4715 	free(buf, 0);
   4716 error:
   4717 	if (peers != NULL)
   4718 		prop_object_release(peers);
   4719 	if (prop_dict != NULL)
   4720 		prop_object_release(prop_dict);
   4721 
   4722 	return error;
   4723 }
   4724 
   4725 static int
   4726 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   4727 {
   4728 	struct wg_softc *wg = ifp->if_softc;
   4729 	struct ifreq *ifr = data;
   4730 	struct ifaddr *ifa = data;
   4731 	struct ifdrv *ifd = data;
   4732 	int error = 0;
   4733 
   4734 	switch (cmd) {
   4735 	case SIOCINITIFADDR:
   4736 		if (ifa->ifa_addr->sa_family != AF_LINK &&
   4737 		    (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   4738 		    (IFF_UP | IFF_RUNNING)) {
   4739 			ifp->if_flags |= IFF_UP;
   4740 			error = if_init(ifp);
   4741 		}
   4742 		return error;
   4743 	case SIOCADDMULTI:
   4744 	case SIOCDELMULTI:
   4745 		switch (ifr->ifr_addr.sa_family) {
   4746 		case AF_INET:	/* IP supports Multicast */
   4747 			break;
   4748 #ifdef INET6
   4749 		case AF_INET6:	/* IP6 supports Multicast */
   4750 			break;
   4751 #endif
   4752 		default:  /* Other protocols doesn't support Multicast */
   4753 			error = EAFNOSUPPORT;
   4754 			break;
   4755 		}
   4756 		return error;
   4757 	case SIOCSDRVSPEC:
   4758 		if (!wg_is_authorized(wg, cmd)) {
   4759 			return EPERM;
   4760 		}
   4761 		switch (ifd->ifd_cmd) {
   4762 		case WG_IOCTL_SET_PRIVATE_KEY:
   4763 			error = wg_ioctl_set_private_key(wg, ifd);
   4764 			break;
   4765 		case WG_IOCTL_SET_LISTEN_PORT:
   4766 			error = wg_ioctl_set_listen_port(wg, ifd);
   4767 			break;
   4768 		case WG_IOCTL_ADD_PEER:
   4769 			error = wg_ioctl_add_peer(wg, ifd);
   4770 			break;
   4771 		case WG_IOCTL_DELETE_PEER:
   4772 			error = wg_ioctl_delete_peer(wg, ifd);
   4773 			break;
   4774 		default:
   4775 			error = EINVAL;
   4776 			break;
   4777 		}
   4778 		return error;
   4779 	case SIOCGDRVSPEC:
   4780 		return wg_ioctl_get(wg, ifd);
   4781 	case SIOCSIFFLAGS:
   4782 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   4783 			break;
   4784 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   4785 		case IFF_RUNNING:
   4786 			/*
   4787 			 * If interface is marked down and it is running,
   4788 			 * then stop and disable it.
   4789 			 */
   4790 			if_stop(ifp, 1);
   4791 			break;
   4792 		case IFF_UP:
   4793 			/*
   4794 			 * If interface is marked up and it is stopped, then
   4795 			 * start it.
   4796 			 */
   4797 			error = if_init(ifp);
   4798 			break;
   4799 		default:
   4800 			break;
   4801 		}
   4802 		return error;
   4803 #ifdef WG_RUMPKERNEL
   4804 	case SIOCSLINKSTR:
   4805 		error = wg_ioctl_linkstr(wg, ifd);
   4806 		if (error == 0)
   4807 			wg->wg_ops = &wg_ops_rumpuser;
   4808 		return error;
   4809 #endif
   4810 	default:
   4811 		break;
   4812 	}
   4813 
   4814 	error = ifioctl_common(ifp, cmd, data);
   4815 
   4816 #ifdef WG_RUMPKERNEL
   4817 	if (!wg_user_mode(wg))
   4818 		return error;
   4819 
   4820 	/* Do the same to the corresponding tun device on the host */
   4821 	/*
   4822 	 * XXX Actually the command has not been handled yet.  It
   4823 	 *     will be handled via pr_ioctl form doifioctl later.
   4824 	 */
   4825 	switch (cmd) {
   4826 	case SIOCAIFADDR:
   4827 	case SIOCDIFADDR: {
   4828 		struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
   4829 		struct in_aliasreq *ifra = &_ifra;
   4830 		KASSERT(error == ENOTTY);
   4831 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   4832 		    IFNAMSIZ);
   4833 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
   4834 		if (error == 0)
   4835 			error = ENOTTY;
   4836 		break;
   4837 	}
   4838 #ifdef INET6
   4839 	case SIOCAIFADDR_IN6:
   4840 	case SIOCDIFADDR_IN6: {
   4841 		struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
   4842 		struct in6_aliasreq *ifra = &_ifra;
   4843 		KASSERT(error == ENOTTY);
   4844 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   4845 		    IFNAMSIZ);
   4846 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
   4847 		if (error == 0)
   4848 			error = ENOTTY;
   4849 		break;
   4850 	}
   4851 #endif
   4852 	}
   4853 #endif /* WG_RUMPKERNEL */
   4854 
   4855 	return error;
   4856 }
   4857 
   4858 static int
   4859 wg_init(struct ifnet *ifp)
   4860 {
   4861 
   4862 	ifp->if_flags |= IFF_RUNNING;
   4863 
   4864 	/* TODO flush pending packets. */
   4865 	return 0;
   4866 }
   4867 
   4868 #ifdef ALTQ
   4869 static void
   4870 wg_start(struct ifnet *ifp)
   4871 {
   4872 	struct mbuf *m;
   4873 
   4874 	for (;;) {
   4875 		IFQ_DEQUEUE(&ifp->if_snd, m);
   4876 		if (m == NULL)
   4877 			break;
   4878 
   4879 		kpreempt_disable();
   4880 		const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   4881 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   4882 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   4883 			    if_name(ifp));
   4884 			m_freem(m);
   4885 		}
   4886 		kpreempt_enable();
   4887 	}
   4888 }
   4889 #endif
   4890 
   4891 static void
   4892 wg_stop(struct ifnet *ifp, int disable)
   4893 {
   4894 
   4895 	KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
   4896 	ifp->if_flags &= ~IFF_RUNNING;
   4897 
   4898 	/* Need to do something? */
   4899 }
   4900 
   4901 #ifdef WG_DEBUG_PARAMS
   4902 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
   4903 {
   4904 	const struct sysctlnode *node = NULL;
   4905 
   4906 	sysctl_createv(clog, 0, NULL, &node,
   4907 	    CTLFLAG_PERMANENT,
   4908 	    CTLTYPE_NODE, "wg",
   4909 	    SYSCTL_DESCR("wg(4)"),
   4910 	    NULL, 0, NULL, 0,
   4911 	    CTL_NET, CTL_CREATE, CTL_EOL);
   4912 	sysctl_createv(clog, 0, &node, NULL,
   4913 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4914 	    CTLTYPE_QUAD, "rekey_after_messages",
   4915 	    SYSCTL_DESCR("session liftime by messages"),
   4916 	    NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
   4917 	sysctl_createv(clog, 0, &node, NULL,
   4918 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4919 	    CTLTYPE_INT, "rekey_after_time",
   4920 	    SYSCTL_DESCR("session liftime"),
   4921 	    NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
   4922 	sysctl_createv(clog, 0, &node, NULL,
   4923 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4924 	    CTLTYPE_INT, "rekey_timeout",
   4925 	    SYSCTL_DESCR("session handshake retry time"),
   4926 	    NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
   4927 	sysctl_createv(clog, 0, &node, NULL,
   4928 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4929 	    CTLTYPE_INT, "rekey_attempt_time",
   4930 	    SYSCTL_DESCR("session handshake timeout"),
   4931 	    NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
   4932 	sysctl_createv(clog, 0, &node, NULL,
   4933 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4934 	    CTLTYPE_INT, "keepalive_timeout",
   4935 	    SYSCTL_DESCR("keepalive timeout"),
   4936 	    NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
   4937 	sysctl_createv(clog, 0, &node, NULL,
   4938 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4939 	    CTLTYPE_BOOL, "force_underload",
   4940 	    SYSCTL_DESCR("force to detemine under load"),
   4941 	    NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
   4942 	sysctl_createv(clog, 0, &node, NULL,
   4943 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4944 	    CTLTYPE_INT, "debug",
   4945 	    SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
   4946 	    NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
   4947 }
   4948 #endif
   4949 
   4950 #ifdef WG_RUMPKERNEL
   4951 static bool
   4952 wg_user_mode(struct wg_softc *wg)
   4953 {
   4954 
   4955 	return wg->wg_user != NULL;
   4956 }
   4957 
   4958 static int
   4959 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
   4960 {
   4961 	struct ifnet *ifp = &wg->wg_if;
   4962 	int error;
   4963 
   4964 	if (ifp->if_flags & IFF_UP)
   4965 		return EBUSY;
   4966 
   4967 	if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
   4968 		/* XXX do nothing */
   4969 		return 0;
   4970 	} else if (ifd->ifd_cmd != 0) {
   4971 		return EINVAL;
   4972 	} else if (wg->wg_user != NULL) {
   4973 		return EBUSY;
   4974 	}
   4975 
   4976 	/* Assume \0 included */
   4977 	if (ifd->ifd_len > IFNAMSIZ) {
   4978 		return E2BIG;
   4979 	} else if (ifd->ifd_len < 1) {
   4980 		return EINVAL;
   4981 	}
   4982 
   4983 	char tun_name[IFNAMSIZ];
   4984 	error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
   4985 	if (error != 0)
   4986 		return error;
   4987 
   4988 	if (strncmp(tun_name, "tun", 3) != 0)
   4989 		return EINVAL;
   4990 
   4991 	error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
   4992 
   4993 	return error;
   4994 }
   4995 
   4996 static int
   4997 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
   4998 {
   4999 	int error;
   5000 	struct psref psref;
   5001 	struct wg_sockaddr *wgsa;
   5002 	struct wg_softc *wg = wgp->wgp_sc;
   5003 	struct iovec iov[1];
   5004 
   5005 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   5006 
   5007 	iov[0].iov_base = mtod(m, void *);
   5008 	iov[0].iov_len = m->m_len;
   5009 
   5010 	/* Send messages to a peer via an ordinary socket. */
   5011 	error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
   5012 
   5013 	wg_put_sa(wgp, wgsa, &psref);
   5014 
   5015 	m_freem(m);
   5016 
   5017 	return error;
   5018 }
   5019 
   5020 static void
   5021 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
   5022 {
   5023 	struct wg_softc *wg = ifp->if_softc;
   5024 	struct iovec iov[2];
   5025 	struct sockaddr_storage ss;
   5026 
   5027 	KASSERT(af == AF_INET || af == AF_INET6);
   5028 
   5029 	WG_TRACE("");
   5030 
   5031 	if (af == AF_INET) {
   5032 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   5033 		struct ip *ip;
   5034 
   5035 		KASSERT(m->m_len >= sizeof(struct ip));
   5036 		ip = mtod(m, struct ip *);
   5037 		sockaddr_in_init(sin, &ip->ip_dst, 0);
   5038 	} else {
   5039 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   5040 		struct ip6_hdr *ip6;
   5041 
   5042 		KASSERT(m->m_len >= sizeof(struct ip6_hdr));
   5043 		ip6 = mtod(m, struct ip6_hdr *);
   5044 		sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
   5045 	}
   5046 
   5047 	iov[0].iov_base = &ss;
   5048 	iov[0].iov_len = ss.ss_len;
   5049 	iov[1].iov_base = mtod(m, void *);
   5050 	iov[1].iov_len = m->m_len;
   5051 
   5052 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5053 
   5054 	/* Send decrypted packets to users via a tun. */
   5055 	rumpuser_wg_send_user(wg->wg_user, iov, 2);
   5056 
   5057 	m_freem(m);
   5058 }
   5059 
   5060 static int
   5061 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
   5062 {
   5063 	int error;
   5064 	uint16_t old_port = wg->wg_listen_port;
   5065 
   5066 	if (port != 0 && old_port == port)
   5067 		return 0;
   5068 
   5069 	error = rumpuser_wg_sock_bind(wg->wg_user, port);
   5070 	if (error == 0)
   5071 		wg->wg_listen_port = port;
   5072 	return error;
   5073 }
   5074 
   5075 /*
   5076  * Receive user packets.
   5077  */
   5078 void
   5079 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5080 {
   5081 	struct ifnet *ifp = &wg->wg_if;
   5082 	struct mbuf *m;
   5083 	const struct sockaddr *dst;
   5084 
   5085 	WG_TRACE("");
   5086 
   5087 	dst = iov[0].iov_base;
   5088 
   5089 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5090 	if (m == NULL)
   5091 		return;
   5092 	m->m_len = m->m_pkthdr.len = 0;
   5093 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5094 
   5095 	WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
   5096 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5097 
   5098 	(void)wg_output(ifp, m, dst, NULL);
   5099 }
   5100 
   5101 /*
   5102  * Receive packets from a peer.
   5103  */
   5104 void
   5105 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5106 {
   5107 	struct mbuf *m;
   5108 	const struct sockaddr *src;
   5109 	int bound;
   5110 
   5111 	WG_TRACE("");
   5112 
   5113 	src = iov[0].iov_base;
   5114 
   5115 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5116 	if (m == NULL)
   5117 		return;
   5118 	m->m_len = m->m_pkthdr.len = 0;
   5119 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5120 
   5121 	WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
   5122 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5123 
   5124 	bound = curlwp_bind();
   5125 	wg_handle_packet(wg, m, src);
   5126 	curlwp_bindx(bound);
   5127 }
   5128 #endif /* WG_RUMPKERNEL */
   5129 
   5130 /*
   5131  * Module infrastructure
   5132  */
   5133 #include "if_module.h"
   5134 
   5135 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
   5136