Home | History | Annotate | Line # | Download | only in net
if_wg.c revision 1.89
      1 /*	$NetBSD: if_wg.c,v 1.89 2024/07/25 00:55:53 kre Exp $	*/
      2 
      3 /*
      4  * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * This network interface aims to implement the WireGuard protocol.
     34  * The implementation is based on the paper of WireGuard as of
     35  * 2018-06-30 [1].  The paper is referred in the source code with label
     36  * [W].  Also the specification of the Noise protocol framework as of
     37  * 2018-07-11 [2] is referred with label [N].
     38  *
     39  * [1] https://www.wireguard.com/papers/wireguard.pdf
     40  * [2] http://noiseprotocol.org/noise.pdf
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.89 2024/07/25 00:55:53 kre Exp $");
     45 
     46 #ifdef _KERNEL_OPT
     47 #include "opt_altq_enabled.h"
     48 #include "opt_inet.h"
     49 #endif
     50 
     51 #include <sys/param.h>
     52 #include <sys/types.h>
     53 
     54 #include <sys/atomic.h>
     55 #include <sys/callout.h>
     56 #include <sys/cprng.h>
     57 #include <sys/cpu.h>
     58 #include <sys/device.h>
     59 #include <sys/domain.h>
     60 #include <sys/errno.h>
     61 #include <sys/intr.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/kernel.h>
     64 #include <sys/kmem.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/module.h>
     67 #include <sys/mutex.h>
     68 #include <sys/once.h>
     69 #include <sys/percpu.h>
     70 #include <sys/pserialize.h>
     71 #include <sys/psref.h>
     72 #include <sys/queue.h>
     73 #include <sys/rwlock.h>
     74 #include <sys/socket.h>
     75 #include <sys/socketvar.h>
     76 #include <sys/sockio.h>
     77 #include <sys/sysctl.h>
     78 #include <sys/syslog.h>
     79 #include <sys/systm.h>
     80 #include <sys/thmap.h>
     81 #include <sys/threadpool.h>
     82 #include <sys/time.h>
     83 #include <sys/timespec.h>
     84 #include <sys/workqueue.h>
     85 
     86 #include <lib/libkern/libkern.h>
     87 
     88 #include <net/bpf.h>
     89 #include <net/if.h>
     90 #include <net/if_types.h>
     91 #include <net/if_wg.h>
     92 #include <net/pktqueue.h>
     93 #include <net/route.h>
     94 
     95 #include <netinet/in.h>
     96 #include <netinet/in_pcb.h>
     97 #include <netinet/in_var.h>
     98 #include <netinet/ip.h>
     99 #include <netinet/ip_var.h>
    100 #include <netinet/udp.h>
    101 #include <netinet/udp_var.h>
    102 
    103 #ifdef INET6
    104 #include <netinet/ip6.h>
    105 #include <netinet6/in6_pcb.h>
    106 #include <netinet6/in6_var.h>
    107 #include <netinet6/ip6_var.h>
    108 #include <netinet6/udp6_var.h>
    109 #endif /* INET6 */
    110 
    111 #include <prop/proplib.h>
    112 
    113 #include <crypto/blake2/blake2s.h>
    114 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
    115 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
    116 #include <crypto/sodium/crypto_scalarmult.h>
    117 
    118 #include "ioconf.h"
    119 
    120 #ifdef WG_RUMPKERNEL
    121 #include "wg_user.h"
    122 #endif
    123 
    124 /*
    125  * Data structures
    126  * - struct wg_softc is an instance of wg interfaces
    127  *   - It has a list of peers (struct wg_peer)
    128  *   - It has a threadpool job that sends/receives handshake messages and
    129  *     runs event handlers
    130  *   - It has its own two routing tables: one is for IPv4 and the other IPv6
    131  * - struct wg_peer is a representative of a peer
    132  *   - It has a struct work to handle handshakes and timer tasks
    133  *   - It has a pair of session instances (struct wg_session)
    134  *   - It has a pair of endpoint instances (struct wg_sockaddr)
    135  *     - Normally one endpoint is used and the second one is used only on
    136  *       a peer migration (a change of peer's IP address)
    137  *   - It has a list of IP addresses and sub networks called allowedips
    138  *     (struct wg_allowedip)
    139  *     - A packets sent over a session is allowed if its destination matches
    140  *       any IP addresses or sub networks of the list
    141  * - struct wg_session represents a session of a secure tunnel with a peer
    142  *   - Two instances of sessions belong to a peer; a stable session and a
    143  *     unstable session
    144  *   - A handshake process of a session always starts with a unstable instance
    145  *   - Once a session is established, its instance becomes stable and the
    146  *     other becomes unstable instead
    147  *   - Data messages are always sent via a stable session
    148  *
    149  * Locking notes:
    150  * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
    151  *   - Changes to the peer list are serialized by wg_lock
    152  *   - The peer list may be read with pserialize(9) and psref(9)
    153  *   - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
    154  *     => XXX replace by pserialize when routing table is psz-safe
    155  * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
    156  *   only in thread context and serializes:
    157  *   - the stable and unstable session pointers
    158  *   - all unstable session state
    159  * - Packet processing may be done in softint context:
    160  *   - The stable session can be read under pserialize(9) or psref(9)
    161  *     - The stable session is always ESTABLISHED
    162  *     - On a session swap, we must wait for all readers to release a
    163  *       reference to a stable session before changing wgs_state and
    164  *       session states
    165  * - Lock order: wg_lock -> wgp_lock
    166  */
    167 
    168 
    169 #define WGLOG(level, fmt, args...)					      \
    170 	log(level, "%s: " fmt, __func__, ##args)
    171 
    172 #define WG_DEBUG
    173 
    174 /* Debug options */
    175 #ifdef WG_DEBUG
    176 /* Output debug logs */
    177 #ifndef WG_DEBUG_LOG
    178 #define WG_DEBUG_LOG
    179 #endif
    180 /* Output trace logs */
    181 #ifndef WG_DEBUG_TRACE
    182 #define WG_DEBUG_TRACE
    183 #endif
    184 /* Output hash values, etc. */
    185 #ifndef WG_DEBUG_DUMP
    186 #define WG_DEBUG_DUMP
    187 #endif
    188 /* debug packets */
    189 #ifndef WG_DEBUG_PACKET
    190 #define WG_DEBUG_PACKET
    191 #endif
    192 /* Make some internal parameters configurable for testing and debugging */
    193 #ifndef WG_DEBUG_PARAMS
    194 #define WG_DEBUG_PARAMS
    195 #endif
    196 #endif /* WG_DEBUG */
    197 
    198 #ifndef WG_DEBUG
    199 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) ||		    \
    200 	defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS) ||		    \
    201 	defined(WG_DEBUG_PACKET)
    202 #   define WG_DEBUG
    203 # endif
    204 #endif
    205 
    206 #ifdef WG_DEBUG
    207 int wg_debug;
    208 #define WG_DEBUG_FLAGS_LOG	1
    209 #define WG_DEBUG_FLAGS_TRACE	2
    210 #define WG_DEBUG_FLAGS_DUMP	4
    211 #define WG_DEBUG_FLAGS_PACKET	8
    212 #endif
    213 
    214 
    215 #ifdef WG_DEBUG_TRACE
    216 #define WG_TRACE(msg)	 do {						\
    217 	if (wg_debug & WG_DEBUG_FLAGS_TRACE)				\
    218 	    log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg));	\
    219 } while (0)
    220 #else
    221 #define WG_TRACE(msg)	__nothing
    222 #endif
    223 
    224 #ifdef WG_DEBUG_LOG
    225 #define WG_DLOG(fmt, args...)	 do {					\
    226 	if (wg_debug & WG_DEBUG_FLAGS_LOG)				\
    227 	    log(LOG_DEBUG, "%s: " fmt, __func__, ##args);		\
    228 } while (0)
    229 #else
    230 #define WG_DLOG(fmt, args...)	__nothing
    231 #endif
    232 
    233 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...)	do {		\
    234 	if (ppsratecheck(&(wgprc)->wgprc_lasttime,			\
    235 	    &(wgprc)->wgprc_curpps, 1)) {				\
    236 		log(level, fmt, ##args);				\
    237 	}								\
    238 } while (0)
    239 
    240 #ifdef WG_DEBUG_PARAMS
    241 static bool wg_force_underload = false;
    242 #endif
    243 
    244 #ifdef WG_DEBUG_DUMP
    245 
    246 static char enomem[10] = "[enomem]";
    247 
    248 static char *
    249 gethexdump(const void *vp, size_t n)
    250 {
    251 	char *buf;
    252 	const uint8_t *p = vp;
    253 	size_t i;
    254 
    255 	if (n > (SIZE_MAX - 1) / 3)
    256 		return enomem;
    257 	buf = kmem_alloc(3 * n + 1, KM_NOSLEEP);
    258 	if (buf == NULL)
    259 		return enomem;
    260 	for (i = 0; i < n; i++)
    261 		snprintf(buf + 3 * i, 3 + 1, " %02hhx", p[i]);
    262 	return buf;
    263 }
    264 
    265 static void
    266 puthexdump(char *buf, const void *p, size_t n)
    267 {
    268 
    269 	if (buf == NULL || buf == enomem)
    270 		return;
    271 	kmem_free(buf, 3*n + 1);
    272 }
    273 
    274 #ifdef WG_RUMPKERNEL
    275 static void
    276 wg_dump_buf(const char *func, const char *buf, const size_t size)
    277 {
    278 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    279 		return;
    280 
    281 	char *hex = gethexdump(buf, size);
    282 
    283 	log(LOG_DEBUG, "%s: %s\n", func, hex);
    284 	puthexdump(hex, buf, size);
    285 }
    286 #endif
    287 
    288 static void
    289 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
    290     const size_t size)
    291 {
    292 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    293 		return;
    294 
    295 	char *hex = gethexdump(hash, size);
    296 
    297 	log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex);
    298 	puthexdump(hex, hash, size);
    299 }
    300 
    301 #define WG_DUMP_HASH(name, hash) \
    302 	wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
    303 #define WG_DUMP_HASH48(name, hash) \
    304 	wg_dump_hash(__func__, name, hash, 48)
    305 #define WG_DUMP_BUF(buf, size) \
    306 	wg_dump_buf(__func__, buf, size)
    307 #else
    308 #define WG_DUMP_HASH(name, hash)	__nothing
    309 #define WG_DUMP_HASH48(name, hash)	__nothing
    310 #define WG_DUMP_BUF(buf, size)	__nothing
    311 #endif /* WG_DEBUG_DUMP */
    312 
    313 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
    314 #define	WG_MAX_PROPLEN		32766
    315 
    316 #define WG_MTU			1420
    317 #define WG_ALLOWEDIPS		16
    318 
    319 #define CURVE25519_KEY_LEN	32
    320 #define TAI64N_LEN		sizeof(uint32_t) * 3
    321 #define POLY1305_AUTHTAG_LEN	16
    322 #define HMAC_BLOCK_LEN		64
    323 
    324 /* [N] 4.1: "DHLEN must be 32 or greater."  WireGuard chooses 32. */
    325 /* [N] 4.3: Hash functions */
    326 #define NOISE_DHLEN		32
    327 /* [N] 4.3: "Must be 32 or 64."  WireGuard chooses 32. */
    328 #define NOISE_HASHLEN		32
    329 #define NOISE_BLOCKLEN		64
    330 #define NOISE_HKDF_OUTPUT_LEN	NOISE_HASHLEN
    331 /* [N] 5.1: "k" */
    332 #define NOISE_CIPHER_KEY_LEN	32
    333 /*
    334  * [N] 9.2: "psk"
    335  *          "... psk is a 32-byte secret value provided by the application."
    336  */
    337 #define NOISE_PRESHARED_KEY_LEN	32
    338 
    339 #define WG_STATIC_KEY_LEN	CURVE25519_KEY_LEN
    340 #define WG_TIMESTAMP_LEN	TAI64N_LEN
    341 
    342 #define WG_PRESHARED_KEY_LEN	NOISE_PRESHARED_KEY_LEN
    343 
    344 #define WG_COOKIE_LEN		16
    345 #define WG_MAC_LEN		16
    346 #define WG_RANDVAL_LEN		24
    347 
    348 #define WG_EPHEMERAL_KEY_LEN	CURVE25519_KEY_LEN
    349 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
    350 #define WG_CHAINING_KEY_LEN	NOISE_HASHLEN
    351 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
    352 #define WG_HASH_LEN		NOISE_HASHLEN
    353 #define WG_CIPHER_KEY_LEN	NOISE_CIPHER_KEY_LEN
    354 #define WG_DH_OUTPUT_LEN	NOISE_DHLEN
    355 #define WG_KDF_OUTPUT_LEN	NOISE_HKDF_OUTPUT_LEN
    356 #define WG_AUTHTAG_LEN		POLY1305_AUTHTAG_LEN
    357 #define WG_DATA_KEY_LEN		32
    358 #define WG_SALT_LEN		24
    359 
    360 /*
    361  * The protocol messages
    362  */
    363 struct wg_msg {
    364 	uint32_t	wgm_type;
    365 } __packed;
    366 
    367 /* [W] 5.4.2 First Message: Initiator to Responder */
    368 struct wg_msg_init {
    369 	uint32_t	wgmi_type;
    370 	uint32_t	wgmi_sender;
    371 	uint8_t		wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
    372 	uint8_t		wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
    373 	uint8_t		wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
    374 	uint8_t		wgmi_mac1[WG_MAC_LEN];
    375 	uint8_t		wgmi_mac2[WG_MAC_LEN];
    376 } __packed;
    377 
    378 /* [W] 5.4.3 Second Message: Responder to Initiator */
    379 struct wg_msg_resp {
    380 	uint32_t	wgmr_type;
    381 	uint32_t	wgmr_sender;
    382 	uint32_t	wgmr_receiver;
    383 	uint8_t		wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
    384 	uint8_t		wgmr_empty[0 + WG_AUTHTAG_LEN];
    385 	uint8_t		wgmr_mac1[WG_MAC_LEN];
    386 	uint8_t		wgmr_mac2[WG_MAC_LEN];
    387 } __packed;
    388 
    389 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
    390 struct wg_msg_data {
    391 	uint32_t	wgmd_type;
    392 	uint32_t	wgmd_receiver;
    393 	uint64_t	wgmd_counter;
    394 	uint32_t	wgmd_packet[0];
    395 } __packed;
    396 
    397 /* [W] 5.4.7 Under Load: Cookie Reply Message */
    398 struct wg_msg_cookie {
    399 	uint32_t	wgmc_type;
    400 	uint32_t	wgmc_receiver;
    401 	uint8_t		wgmc_salt[WG_SALT_LEN];
    402 	uint8_t		wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
    403 } __packed;
    404 
    405 #define WG_MSG_TYPE_INIT		1
    406 #define WG_MSG_TYPE_RESP		2
    407 #define WG_MSG_TYPE_COOKIE		3
    408 #define WG_MSG_TYPE_DATA		4
    409 #define WG_MSG_TYPE_MAX			WG_MSG_TYPE_DATA
    410 
    411 /* Sliding windows */
    412 
    413 #define	SLIWIN_BITS	2048u
    414 #define	SLIWIN_TYPE	uint32_t
    415 #define	SLIWIN_BPW	NBBY*sizeof(SLIWIN_TYPE)
    416 #define	SLIWIN_WORDS	howmany(SLIWIN_BITS, SLIWIN_BPW)
    417 #define	SLIWIN_NPKT	(SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
    418 
    419 struct sliwin {
    420 	SLIWIN_TYPE	B[SLIWIN_WORDS];
    421 	uint64_t	T;
    422 };
    423 
    424 static void
    425 sliwin_reset(struct sliwin *W)
    426 {
    427 
    428 	memset(W, 0, sizeof(*W));
    429 }
    430 
    431 static int
    432 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
    433 {
    434 
    435 	/*
    436 	 * If it's more than one window older than the highest sequence
    437 	 * number we've seen, reject.
    438 	 */
    439 #ifdef __HAVE_ATOMIC64_LOADSTORE
    440 	if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
    441 		return EAUTH;
    442 #endif
    443 
    444 	/*
    445 	 * Otherwise, we need to take the lock to decide, so don't
    446 	 * reject just yet.  Caller must serialize a call to
    447 	 * sliwin_update in this case.
    448 	 */
    449 	return 0;
    450 }
    451 
    452 static int
    453 sliwin_update(struct sliwin *W, uint64_t S)
    454 {
    455 	unsigned word, bit;
    456 
    457 	/*
    458 	 * If it's more than one window older than the highest sequence
    459 	 * number we've seen, reject.
    460 	 */
    461 	if (S + SLIWIN_NPKT < W->T)
    462 		return EAUTH;
    463 
    464 	/*
    465 	 * If it's higher than the highest sequence number we've seen,
    466 	 * advance the window.
    467 	 */
    468 	if (S > W->T) {
    469 		uint64_t i = W->T / SLIWIN_BPW;
    470 		uint64_t j = S / SLIWIN_BPW;
    471 		unsigned k;
    472 
    473 		for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
    474 			W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
    475 #ifdef __HAVE_ATOMIC64_LOADSTORE
    476 		atomic_store_relaxed(&W->T, S);
    477 #else
    478 		W->T = S;
    479 #endif
    480 	}
    481 
    482 	/* Test and set the bit -- if already set, reject.  */
    483 	word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
    484 	bit = S % SLIWIN_BPW;
    485 	if (W->B[word] & (1UL << bit))
    486 		return EAUTH;
    487 	W->B[word] |= 1U << bit;
    488 
    489 	/* Accept!  */
    490 	return 0;
    491 }
    492 
    493 struct wg_session {
    494 	struct wg_peer	*wgs_peer;
    495 	struct psref_target
    496 			wgs_psref;
    497 
    498 	int		wgs_state;
    499 #define WGS_STATE_UNKNOWN	0
    500 #define WGS_STATE_INIT_ACTIVE	1
    501 #define WGS_STATE_INIT_PASSIVE	2
    502 #define WGS_STATE_ESTABLISHED	3
    503 #define WGS_STATE_DESTROYING	4
    504 
    505 	time_t		wgs_time_established;
    506 	time_t		wgs_time_last_data_sent;
    507 	bool		wgs_is_initiator;
    508 
    509 	uint32_t	wgs_local_index;
    510 	uint32_t	wgs_remote_index;
    511 #ifdef __HAVE_ATOMIC64_LOADSTORE
    512 	volatile uint64_t
    513 			wgs_send_counter;
    514 #else
    515 	kmutex_t	wgs_send_counter_lock;
    516 	uint64_t	wgs_send_counter;
    517 #endif
    518 
    519 	struct {
    520 		kmutex_t	lock;
    521 		struct sliwin	window;
    522 	}		*wgs_recvwin;
    523 
    524 	uint8_t		wgs_handshake_hash[WG_HASH_LEN];
    525 	uint8_t		wgs_chaining_key[WG_CHAINING_KEY_LEN];
    526 	uint8_t		wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
    527 	uint8_t		wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
    528 	uint8_t		wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
    529 	uint8_t		wgs_tkey_send[WG_DATA_KEY_LEN];
    530 	uint8_t		wgs_tkey_recv[WG_DATA_KEY_LEN];
    531 };
    532 
    533 struct wg_sockaddr {
    534 	union {
    535 		struct sockaddr_storage _ss;
    536 		struct sockaddr _sa;
    537 		struct sockaddr_in _sin;
    538 		struct sockaddr_in6 _sin6;
    539 	};
    540 	struct psref_target	wgsa_psref;
    541 };
    542 
    543 #define wgsatoss(wgsa)		(&(wgsa)->_ss)
    544 #define wgsatosa(wgsa)		(&(wgsa)->_sa)
    545 #define wgsatosin(wgsa)		(&(wgsa)->_sin)
    546 #define wgsatosin6(wgsa)	(&(wgsa)->_sin6)
    547 
    548 #define	wgsa_family(wgsa)	(wgsatosa(wgsa)->sa_family)
    549 
    550 struct wg_peer;
    551 struct wg_allowedip {
    552 	struct radix_node	wga_nodes[2];
    553 	struct wg_sockaddr	_wga_sa_addr;
    554 	struct wg_sockaddr	_wga_sa_mask;
    555 #define wga_sa_addr		_wga_sa_addr._sa
    556 #define wga_sa_mask		_wga_sa_mask._sa
    557 
    558 	int			wga_family;
    559 	uint8_t			wga_cidr;
    560 	union {
    561 		struct in_addr _ip4;
    562 		struct in6_addr _ip6;
    563 	} wga_addr;
    564 #define wga_addr4	wga_addr._ip4
    565 #define wga_addr6	wga_addr._ip6
    566 
    567 	struct wg_peer		*wga_peer;
    568 };
    569 
    570 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
    571 
    572 struct wg_ppsratecheck {
    573 	struct timeval		wgprc_lasttime;
    574 	int			wgprc_curpps;
    575 };
    576 
    577 struct wg_softc;
    578 struct wg_peer {
    579 	struct wg_softc		*wgp_sc;
    580 	char			wgp_name[WG_PEER_NAME_MAXLEN + 1];
    581 	struct pslist_entry	wgp_peerlist_entry;
    582 	pserialize_t		wgp_psz;
    583 	struct psref_target	wgp_psref;
    584 	kmutex_t		*wgp_lock;
    585 	kmutex_t		*wgp_intr_lock;
    586 
    587 	uint8_t	wgp_pubkey[WG_STATIC_KEY_LEN];
    588 	struct wg_sockaddr	*wgp_endpoint;
    589 	struct wg_sockaddr	*wgp_endpoint0;
    590 	volatile unsigned	wgp_endpoint_changing;
    591 	bool			wgp_endpoint_available;
    592 
    593 			/* The preshared key (optional) */
    594 	uint8_t		wgp_psk[WG_PRESHARED_KEY_LEN];
    595 
    596 	struct wg_session	*wgp_session_stable;
    597 	struct wg_session	*wgp_session_unstable;
    598 
    599 	/* first outgoing packet awaiting session initiation */
    600 	struct mbuf		*wgp_pending;
    601 
    602 	/* timestamp in big-endian */
    603 	wg_timestamp_t	wgp_timestamp_latest_init;
    604 
    605 	struct timespec		wgp_last_handshake_time;
    606 
    607 	callout_t		wgp_rekey_timer;
    608 	callout_t		wgp_handshake_timeout_timer;
    609 	callout_t		wgp_session_dtor_timer;
    610 
    611 	time_t			wgp_handshake_start_time;
    612 
    613 	int			wgp_n_allowedips;
    614 	struct wg_allowedip	wgp_allowedips[WG_ALLOWEDIPS];
    615 
    616 	time_t			wgp_latest_cookie_time;
    617 	uint8_t			wgp_latest_cookie[WG_COOKIE_LEN];
    618 	uint8_t			wgp_last_sent_mac1[WG_MAC_LEN];
    619 	bool			wgp_last_sent_mac1_valid;
    620 	uint8_t			wgp_last_sent_cookie[WG_COOKIE_LEN];
    621 	bool			wgp_last_sent_cookie_valid;
    622 
    623 	time_t			wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
    624 
    625 	time_t			wgp_last_genrandval_time;
    626 	uint32_t		wgp_randval;
    627 
    628 	struct wg_ppsratecheck	wgp_ppsratecheck;
    629 
    630 	struct work		wgp_work;
    631 	unsigned int		wgp_tasks;
    632 #define WGP_TASK_SEND_INIT_MESSAGE		__BIT(0)
    633 #define WGP_TASK_RETRY_HANDSHAKE		__BIT(1)
    634 #define WGP_TASK_ESTABLISH_SESSION		__BIT(2)
    635 #define WGP_TASK_ENDPOINT_CHANGED		__BIT(3)
    636 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE		__BIT(4)
    637 #define WGP_TASK_DESTROY_PREV_SESSION		__BIT(5)
    638 };
    639 
    640 struct wg_ops;
    641 
    642 struct wg_softc {
    643 	struct ifnet	wg_if;
    644 	LIST_ENTRY(wg_softc) wg_list;
    645 	kmutex_t	*wg_lock;
    646 	kmutex_t	*wg_intr_lock;
    647 	krwlock_t	*wg_rwlock;
    648 
    649 	uint8_t		wg_privkey[WG_STATIC_KEY_LEN];
    650 	uint8_t		wg_pubkey[WG_STATIC_KEY_LEN];
    651 
    652 	int		wg_npeers;
    653 	struct pslist_head	wg_peers;
    654 	struct thmap	*wg_peers_bypubkey;
    655 	struct thmap	*wg_peers_byname;
    656 	struct thmap	*wg_sessions_byindex;
    657 	uint16_t	wg_listen_port;
    658 
    659 	struct threadpool	*wg_threadpool;
    660 
    661 	struct threadpool_job	wg_job;
    662 	int			wg_upcalls;
    663 #define	WG_UPCALL_INET	__BIT(0)
    664 #define	WG_UPCALL_INET6	__BIT(1)
    665 
    666 #ifdef INET
    667 	struct socket		*wg_so4;
    668 	struct radix_node_head	*wg_rtable_ipv4;
    669 #endif
    670 #ifdef INET6
    671 	struct socket		*wg_so6;
    672 	struct radix_node_head	*wg_rtable_ipv6;
    673 #endif
    674 
    675 	struct wg_ppsratecheck	wg_ppsratecheck;
    676 
    677 	struct wg_ops		*wg_ops;
    678 
    679 #ifdef WG_RUMPKERNEL
    680 	struct wg_user		*wg_user;
    681 #endif
    682 };
    683 
    684 /* [W] 6.1 Preliminaries */
    685 #define WG_REKEY_AFTER_MESSAGES		(1ULL << 60)
    686 #define WG_REJECT_AFTER_MESSAGES	(UINT64_MAX - (1 << 13))
    687 #define WG_REKEY_AFTER_TIME		120
    688 #define WG_REJECT_AFTER_TIME		180
    689 #define WG_REKEY_ATTEMPT_TIME		 90
    690 #define WG_REKEY_TIMEOUT		  5
    691 #define WG_KEEPALIVE_TIMEOUT		 10
    692 
    693 #define WG_COOKIE_TIME			120
    694 #define WG_RANDVAL_TIME			(2 * 60)
    695 
    696 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
    697 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
    698 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
    699 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
    700 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
    701 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
    702 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
    703 
    704 static struct mbuf *
    705 		wg_get_mbuf(size_t, size_t);
    706 
    707 static int	wg_send_data_msg(struct wg_peer *, struct wg_session *,
    708 		    struct mbuf *);
    709 static int	wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
    710 		    const uint32_t, const uint8_t [WG_MAC_LEN],
    711 		    const struct sockaddr *);
    712 static int	wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
    713 		    struct wg_session *, const struct wg_msg_init *);
    714 static void	wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
    715 
    716 static struct wg_peer *
    717 		wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
    718 		    struct psref *);
    719 static struct wg_peer *
    720 		wg_lookup_peer_by_pubkey(struct wg_softc *,
    721 		    const uint8_t [WG_STATIC_KEY_LEN], struct psref *);
    722 
    723 static struct wg_session *
    724 		wg_lookup_session_by_index(struct wg_softc *,
    725 		    const uint32_t, struct psref *);
    726 
    727 static void	wg_update_endpoint_if_necessary(struct wg_peer *,
    728 		    const struct sockaddr *);
    729 
    730 static void	wg_schedule_rekey_timer(struct wg_peer *);
    731 static void	wg_schedule_session_dtor_timer(struct wg_peer *);
    732 
    733 static bool	wg_is_underload(struct wg_softc *, struct wg_peer *, int);
    734 static void	wg_calculate_keys(struct wg_session *, const bool);
    735 
    736 static void	wg_clear_states(struct wg_session *);
    737 
    738 static void	wg_get_peer(struct wg_peer *, struct psref *);
    739 static void	wg_put_peer(struct wg_peer *, struct psref *);
    740 
    741 static int	wg_send_so(struct wg_peer *, struct mbuf *);
    742 static int	wg_send_udp(struct wg_peer *, struct mbuf *);
    743 static int	wg_output(struct ifnet *, struct mbuf *,
    744 			   const struct sockaddr *, const struct rtentry *);
    745 static void	wg_input(struct ifnet *, struct mbuf *, const int);
    746 static int	wg_ioctl(struct ifnet *, u_long, void *);
    747 static int	wg_bind_port(struct wg_softc *, const uint16_t);
    748 static int	wg_init(struct ifnet *);
    749 #ifdef ALTQ
    750 static void	wg_start(struct ifnet *);
    751 #endif
    752 static void	wg_stop(struct ifnet *, int);
    753 
    754 static void	wg_peer_work(struct work *, void *);
    755 static void	wg_job(struct threadpool_job *);
    756 static void	wgintr(void *);
    757 static void	wg_purge_pending_packets(struct wg_peer *);
    758 
    759 static int	wg_clone_create(struct if_clone *, int);
    760 static int	wg_clone_destroy(struct ifnet *);
    761 
    762 struct wg_ops {
    763 	int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
    764 	int (*send_data_msg)(struct wg_peer *, struct mbuf *);
    765 	void (*input)(struct ifnet *, struct mbuf *, const int);
    766 	int (*bind_port)(struct wg_softc *, const uint16_t);
    767 };
    768 
    769 struct wg_ops wg_ops_rumpkernel = {
    770 	.send_hs_msg	= wg_send_so,
    771 	.send_data_msg	= wg_send_udp,
    772 	.input		= wg_input,
    773 	.bind_port	= wg_bind_port,
    774 };
    775 
    776 #ifdef WG_RUMPKERNEL
    777 static bool	wg_user_mode(struct wg_softc *);
    778 static int	wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
    779 
    780 static int	wg_send_user(struct wg_peer *, struct mbuf *);
    781 static void	wg_input_user(struct ifnet *, struct mbuf *, const int);
    782 static int	wg_bind_port_user(struct wg_softc *, const uint16_t);
    783 
    784 struct wg_ops wg_ops_rumpuser = {
    785 	.send_hs_msg	= wg_send_user,
    786 	.send_data_msg	= wg_send_user,
    787 	.input		= wg_input_user,
    788 	.bind_port	= wg_bind_port_user,
    789 };
    790 #endif
    791 
    792 #define WG_PEER_READER_FOREACH(wgp, wg)					\
    793 	PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    794 	    wgp_peerlist_entry)
    795 #define WG_PEER_WRITER_FOREACH(wgp, wg)					\
    796 	PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    797 	    wgp_peerlist_entry)
    798 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg)				\
    799 	PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
    800 #define WG_PEER_WRITER_REMOVE(wgp)					\
    801 	PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
    802 
    803 struct wg_route {
    804 	struct radix_node	wgr_nodes[2];
    805 	struct wg_peer		*wgr_peer;
    806 };
    807 
    808 static struct radix_node_head *
    809 wg_rnh(struct wg_softc *wg, const int family)
    810 {
    811 
    812 	switch (family) {
    813 		case AF_INET:
    814 			return wg->wg_rtable_ipv4;
    815 #ifdef INET6
    816 		case AF_INET6:
    817 			return wg->wg_rtable_ipv6;
    818 #endif
    819 		default:
    820 			return NULL;
    821 	}
    822 }
    823 
    824 
    825 /*
    826  * Global variables
    827  */
    828 static volatile unsigned wg_count __cacheline_aligned;
    829 
    830 struct psref_class *wg_psref_class __read_mostly;
    831 
    832 static struct if_clone wg_cloner =
    833     IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
    834 
    835 static struct pktqueue *wg_pktq __read_mostly;
    836 static struct workqueue *wg_wq __read_mostly;
    837 
    838 void wgattach(int);
    839 /* ARGSUSED */
    840 void
    841 wgattach(int count)
    842 {
    843 	/*
    844 	 * Nothing to do here, initialization is handled by the
    845 	 * module initialization code in wginit() below).
    846 	 */
    847 }
    848 
    849 static void
    850 wginit(void)
    851 {
    852 
    853 	wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
    854 
    855 	if_clone_attach(&wg_cloner);
    856 }
    857 
    858 /*
    859  * XXX Kludge: This should just happen in wginit, but workqueue_create
    860  * cannot be run until after CPUs have been detected, and wginit runs
    861  * before configure.
    862  */
    863 static int
    864 wginitqueues(void)
    865 {
    866 	int error __diagused;
    867 
    868 	wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
    869 	KASSERT(wg_pktq != NULL);
    870 
    871 	error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
    872 	    PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
    873 	KASSERT(error == 0);
    874 
    875 	return 0;
    876 }
    877 
    878 static void
    879 wg_guarantee_initialized(void)
    880 {
    881 	static ONCE_DECL(init);
    882 	int error __diagused;
    883 
    884 	error = RUN_ONCE(&init, wginitqueues);
    885 	KASSERT(error == 0);
    886 }
    887 
    888 static int
    889 wg_count_inc(void)
    890 {
    891 	unsigned o, n;
    892 
    893 	do {
    894 		o = atomic_load_relaxed(&wg_count);
    895 		if (o == UINT_MAX)
    896 			return ENFILE;
    897 		n = o + 1;
    898 	} while (atomic_cas_uint(&wg_count, o, n) != o);
    899 
    900 	return 0;
    901 }
    902 
    903 static void
    904 wg_count_dec(void)
    905 {
    906 	unsigned c __diagused;
    907 
    908 	c = atomic_dec_uint_nv(&wg_count);
    909 	KASSERT(c != UINT_MAX);
    910 }
    911 
    912 static int
    913 wgdetach(void)
    914 {
    915 
    916 	/* Prevent new interface creation.  */
    917 	if_clone_detach(&wg_cloner);
    918 
    919 	/* Check whether there are any existing interfaces.  */
    920 	if (atomic_load_relaxed(&wg_count)) {
    921 		/* Back out -- reattach the cloner.  */
    922 		if_clone_attach(&wg_cloner);
    923 		return EBUSY;
    924 	}
    925 
    926 	/* No interfaces left.  Nuke it.  */
    927 	workqueue_destroy(wg_wq);
    928 	pktq_destroy(wg_pktq);
    929 	psref_class_destroy(wg_psref_class);
    930 
    931 	return 0;
    932 }
    933 
    934 static void
    935 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
    936     uint8_t hash[WG_HASH_LEN])
    937 {
    938 	/* [W] 5.4: CONSTRUCTION */
    939 	const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
    940 	/* [W] 5.4: IDENTIFIER */
    941 	const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
    942 	struct blake2s state;
    943 
    944 	blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
    945 	    signature, strlen(signature));
    946 
    947 	CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
    948 	memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
    949 
    950 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    951 	blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
    952 	blake2s_update(&state, id, strlen(id));
    953 	blake2s_final(&state, hash);
    954 
    955 	WG_DUMP_HASH("ckey", ckey);
    956 	WG_DUMP_HASH("hash", hash);
    957 }
    958 
    959 static void
    960 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
    961     const size_t inputsize)
    962 {
    963 	struct blake2s state;
    964 
    965 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
    966 	blake2s_update(&state, hash, WG_HASH_LEN);
    967 	blake2s_update(&state, input, inputsize);
    968 	blake2s_final(&state, hash);
    969 }
    970 
    971 static void
    972 wg_algo_mac(uint8_t out[], const size_t outsize,
    973     const uint8_t key[], const size_t keylen,
    974     const uint8_t input1[], const size_t input1len,
    975     const uint8_t input2[], const size_t input2len)
    976 {
    977 	struct blake2s state;
    978 
    979 	blake2s_init(&state, outsize, key, keylen);
    980 
    981 	blake2s_update(&state, input1, input1len);
    982 	if (input2 != NULL)
    983 		blake2s_update(&state, input2, input2len);
    984 	blake2s_final(&state, out);
    985 }
    986 
    987 static void
    988 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
    989     const uint8_t input1[], const size_t input1len,
    990     const uint8_t input2[], const size_t input2len)
    991 {
    992 	struct blake2s state;
    993 	/* [W] 5.4: LABEL-MAC1 */
    994 	const char *label = "mac1----";
    995 	uint8_t key[WG_HASH_LEN];
    996 
    997 	blake2s_init(&state, sizeof(key), NULL, 0);
    998 	blake2s_update(&state, label, strlen(label));
    999 	blake2s_update(&state, input1, input1len);
   1000 	blake2s_final(&state, key);
   1001 
   1002 	blake2s_init(&state, outsize, key, sizeof(key));
   1003 	if (input2 != NULL)
   1004 		blake2s_update(&state, input2, input2len);
   1005 	blake2s_final(&state, out);
   1006 }
   1007 
   1008 static void
   1009 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
   1010     const uint8_t input1[], const size_t input1len)
   1011 {
   1012 	struct blake2s state;
   1013 	/* [W] 5.4: LABEL-COOKIE */
   1014 	const char *label = "cookie--";
   1015 
   1016 	blake2s_init(&state, outsize, NULL, 0);
   1017 	blake2s_update(&state, label, strlen(label));
   1018 	blake2s_update(&state, input1, input1len);
   1019 	blake2s_final(&state, out);
   1020 }
   1021 
   1022 static void
   1023 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
   1024     uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
   1025 {
   1026 
   1027 	CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1028 
   1029 	cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
   1030 	crypto_scalarmult_base(pubkey, privkey);
   1031 }
   1032 
   1033 static void
   1034 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
   1035     const uint8_t privkey[WG_STATIC_KEY_LEN],
   1036     const uint8_t pubkey[WG_STATIC_KEY_LEN])
   1037 {
   1038 
   1039 	CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1040 
   1041 	int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
   1042 	KASSERT(ret == 0);
   1043 }
   1044 
   1045 static void
   1046 wg_algo_hmac(uint8_t out[], const size_t outlen,
   1047     const uint8_t key[], const size_t keylen,
   1048     const uint8_t in[], const size_t inlen)
   1049 {
   1050 #define IPAD	0x36
   1051 #define OPAD	0x5c
   1052 	uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
   1053 	uint8_t ipad[HMAC_BLOCK_LEN];
   1054 	uint8_t opad[HMAC_BLOCK_LEN];
   1055 	size_t i;
   1056 	struct blake2s state;
   1057 
   1058 	KASSERT(outlen == WG_HASH_LEN);
   1059 	KASSERT(keylen <= HMAC_BLOCK_LEN);
   1060 
   1061 	memcpy(hmackey, key, keylen);
   1062 
   1063 	for (i = 0; i < sizeof(hmackey); i++) {
   1064 		ipad[i] = hmackey[i] ^ IPAD;
   1065 		opad[i] = hmackey[i] ^ OPAD;
   1066 	}
   1067 
   1068 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1069 	blake2s_update(&state, ipad, sizeof(ipad));
   1070 	blake2s_update(&state, in, inlen);
   1071 	blake2s_final(&state, out);
   1072 
   1073 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1074 	blake2s_update(&state, opad, sizeof(opad));
   1075 	blake2s_update(&state, out, WG_HASH_LEN);
   1076 	blake2s_final(&state, out);
   1077 #undef IPAD
   1078 #undef OPAD
   1079 }
   1080 
   1081 static void
   1082 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
   1083     uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
   1084     const uint8_t input[], const size_t inputlen)
   1085 {
   1086 	uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
   1087 	uint8_t one[1];
   1088 
   1089 	/*
   1090 	 * [N] 4.3: "an input_key_material byte sequence with length
   1091 	 * either zero bytes, 32 bytes, or DHLEN bytes."
   1092 	 */
   1093 	KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
   1094 
   1095 	WG_DUMP_HASH("ckey", ckey);
   1096 	if (input != NULL)
   1097 		WG_DUMP_HASH("input", input);
   1098 	wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
   1099 	    input, inputlen);
   1100 	WG_DUMP_HASH("tmp1", tmp1);
   1101 	one[0] = 1;
   1102 	wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1103 	    one, sizeof(one));
   1104 	WG_DUMP_HASH("out1", out1);
   1105 	if (out2 == NULL)
   1106 		return;
   1107 	memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
   1108 	tmp2[WG_KDF_OUTPUT_LEN] = 2;
   1109 	wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1110 	    tmp2, sizeof(tmp2));
   1111 	WG_DUMP_HASH("out2", out2);
   1112 	if (out3 == NULL)
   1113 		return;
   1114 	memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
   1115 	tmp2[WG_KDF_OUTPUT_LEN] = 3;
   1116 	wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1117 	    tmp2, sizeof(tmp2));
   1118 	WG_DUMP_HASH("out3", out3);
   1119 }
   1120 
   1121 static void __noinline
   1122 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
   1123     uint8_t cipher_key[WG_CIPHER_KEY_LEN],
   1124     const uint8_t local_key[WG_STATIC_KEY_LEN],
   1125     const uint8_t remote_key[WG_STATIC_KEY_LEN])
   1126 {
   1127 	uint8_t dhout[WG_DH_OUTPUT_LEN];
   1128 
   1129 	wg_algo_dh(dhout, local_key, remote_key);
   1130 	wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
   1131 
   1132 	WG_DUMP_HASH("dhout", dhout);
   1133 	WG_DUMP_HASH("ckey", ckey);
   1134 	if (cipher_key != NULL)
   1135 		WG_DUMP_HASH("cipher_key", cipher_key);
   1136 }
   1137 
   1138 static void
   1139 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
   1140     const uint64_t counter, const uint8_t plain[], const size_t plainsize,
   1141     const uint8_t auth[], size_t authlen)
   1142 {
   1143 	uint8_t nonce[(32 + 64) / 8] = {0};
   1144 	long long unsigned int outsize;
   1145 	int error __diagused;
   1146 
   1147 	le64enc(&nonce[4], counter);
   1148 
   1149 	error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
   1150 	    plainsize, auth, authlen, NULL, nonce, key);
   1151 	KASSERT(error == 0);
   1152 	KASSERT(outsize == expected_outsize);
   1153 }
   1154 
   1155 static int
   1156 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
   1157     const uint64_t counter, const uint8_t encrypted[],
   1158     const size_t encryptedsize, const uint8_t auth[], size_t authlen)
   1159 {
   1160 	uint8_t nonce[(32 + 64) / 8] = {0};
   1161 	long long unsigned int outsize;
   1162 	int error;
   1163 
   1164 	le64enc(&nonce[4], counter);
   1165 
   1166 	error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1167 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1168 	if (error == 0)
   1169 		KASSERT(outsize == expected_outsize);
   1170 	return error;
   1171 }
   1172 
   1173 static void
   1174 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
   1175     const uint8_t key[], const uint8_t plain[], const size_t plainsize,
   1176     const uint8_t auth[], size_t authlen,
   1177     const uint8_t nonce[WG_SALT_LEN])
   1178 {
   1179 	long long unsigned int outsize;
   1180 	int error __diagused;
   1181 
   1182 	CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
   1183 	error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
   1184 	    plain, plainsize, auth, authlen, NULL, nonce, key);
   1185 	KASSERT(error == 0);
   1186 	KASSERT(outsize == expected_outsize);
   1187 }
   1188 
   1189 static int
   1190 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
   1191     const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
   1192     const uint8_t auth[], size_t authlen,
   1193     const uint8_t nonce[WG_SALT_LEN])
   1194 {
   1195 	long long unsigned int outsize;
   1196 	int error;
   1197 
   1198 	error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1199 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1200 	if (error == 0)
   1201 		KASSERT(outsize == expected_outsize);
   1202 	return error;
   1203 }
   1204 
   1205 static void
   1206 wg_algo_tai64n(wg_timestamp_t timestamp)
   1207 {
   1208 	struct timespec ts;
   1209 
   1210 	/* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
   1211 	getnanotime(&ts);
   1212 	/* TAI64 label in external TAI64 format */
   1213 	be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
   1214 	/* second beginning from 1970 TAI */
   1215 	be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
   1216 	/* nanosecond in big-endian format */
   1217 	be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
   1218 }
   1219 
   1220 /*
   1221  * wg_get_stable_session(wgp, psref)
   1222  *
   1223  *	Get a passive reference to the current stable session, or
   1224  *	return NULL if there is no current stable session.
   1225  *
   1226  *	The pointer is always there but the session is not necessarily
   1227  *	ESTABLISHED; if it is not ESTABLISHED, return NULL.  However,
   1228  *	the session may transition from ESTABLISHED to DESTROYING while
   1229  *	holding the passive reference.
   1230  */
   1231 static struct wg_session *
   1232 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
   1233 {
   1234 	int s;
   1235 	struct wg_session *wgs;
   1236 
   1237 	s = pserialize_read_enter();
   1238 	wgs = atomic_load_consume(&wgp->wgp_session_stable);
   1239 	if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
   1240 		wgs = NULL;
   1241 	else
   1242 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   1243 	pserialize_read_exit(s);
   1244 
   1245 	return wgs;
   1246 }
   1247 
   1248 static void
   1249 wg_put_session(struct wg_session *wgs, struct psref *psref)
   1250 {
   1251 
   1252 	psref_release(psref, &wgs->wgs_psref, wg_psref_class);
   1253 }
   1254 
   1255 static void
   1256 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
   1257 {
   1258 	struct wg_peer *wgp = wgs->wgs_peer;
   1259 	struct wg_session *wgs0 __diagused;
   1260 	void *garbage;
   1261 
   1262 	KASSERT(mutex_owned(wgp->wgp_lock));
   1263 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1264 
   1265 	/* Remove the session from the table.  */
   1266 	wgs0 = thmap_del(wg->wg_sessions_byindex,
   1267 	    &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
   1268 	KASSERT(wgs0 == wgs);
   1269 	garbage = thmap_stage_gc(wg->wg_sessions_byindex);
   1270 
   1271 	/* Wait for passive references to drain.  */
   1272 	pserialize_perform(wgp->wgp_psz);
   1273 	psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
   1274 
   1275 	/* Free memory, zero state, and transition to UNKNOWN.  */
   1276 	thmap_gc(wg->wg_sessions_byindex, garbage);
   1277 	wg_clear_states(wgs);
   1278 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   1279 }
   1280 
   1281 /*
   1282  * wg_get_session_index(wg, wgs)
   1283  *
   1284  *	Choose a session index for wgs->wgs_local_index, and store it
   1285  *	in wg's table of sessions by index.
   1286  *
   1287  *	wgs must be the unstable session of its peer, and must be
   1288  *	transitioning out of the UNKNOWN state.
   1289  */
   1290 static void
   1291 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1292 {
   1293 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1294 	struct wg_session *wgs0;
   1295 	uint32_t index;
   1296 
   1297 	KASSERT(mutex_owned(wgp->wgp_lock));
   1298 	KASSERT(wgs == wgp->wgp_session_unstable);
   1299 	KASSERT(wgs->wgs_state == WGS_STATE_UNKNOWN);
   1300 
   1301 	do {
   1302 		/* Pick a uniform random index.  */
   1303 		index = cprng_strong32();
   1304 
   1305 		/* Try to take it.  */
   1306 		wgs->wgs_local_index = index;
   1307 		wgs0 = thmap_put(wg->wg_sessions_byindex,
   1308 		    &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
   1309 
   1310 		/* If someone else beat us, start over.  */
   1311 	} while (__predict_false(wgs0 != wgs));
   1312 }
   1313 
   1314 /*
   1315  * wg_put_session_index(wg, wgs)
   1316  *
   1317  *	Remove wgs from the table of sessions by index, wait for any
   1318  *	passive references to drain, and transition the session to the
   1319  *	UNKNOWN state.
   1320  *
   1321  *	wgs must be the unstable session of its peer, and must not be
   1322  *	UNKNOWN or ESTABLISHED.
   1323  */
   1324 static void
   1325 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1326 {
   1327 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1328 
   1329 	KASSERT(mutex_owned(wgp->wgp_lock));
   1330 	KASSERT(wgs == wgp->wgp_session_unstable);
   1331 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1332 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
   1333 
   1334 	wg_destroy_session(wg, wgs);
   1335 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   1336 }
   1337 
   1338 /*
   1339  * Handshake patterns
   1340  *
   1341  * [W] 5: "These messages use the "IK" pattern from Noise"
   1342  * [N] 7.5. Interactive handshake patterns (fundamental)
   1343  *     "The first character refers to the initiators static key:"
   1344  *     "I = Static key for initiator Immediately transmitted to responder,
   1345  *          despite reduced or absent identity hiding"
   1346  *     "The second character refers to the responders static key:"
   1347  *     "K = Static key for responder Known to initiator"
   1348  *     "IK:
   1349  *        <- s
   1350  *        ...
   1351  *        -> e, es, s, ss
   1352  *        <- e, ee, se"
   1353  * [N] 9.4. Pattern modifiers
   1354  *     "IKpsk2:
   1355  *        <- s
   1356  *        ...
   1357  *        -> e, es, s, ss
   1358  *        <- e, ee, se, psk"
   1359  */
   1360 static void
   1361 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
   1362     struct wg_session *wgs, struct wg_msg_init *wgmi)
   1363 {
   1364 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1365 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1366 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1367 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1368 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1369 
   1370 	KASSERT(mutex_owned(wgp->wgp_lock));
   1371 	KASSERT(wgs == wgp->wgp_session_unstable);
   1372 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
   1373 
   1374 	wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
   1375 	wgmi->wgmi_sender = wgs->wgs_local_index;
   1376 
   1377 	/* [W] 5.4.2: First Message: Initiator to Responder */
   1378 
   1379 	/* Ci := HASH(CONSTRUCTION) */
   1380 	/* Hi := HASH(Ci || IDENTIFIER) */
   1381 	wg_init_key_and_hash(ckey, hash);
   1382 	/* Hi := HASH(Hi || Sr^pub) */
   1383 	wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
   1384 
   1385 	WG_DUMP_HASH("hash", hash);
   1386 
   1387 	/* [N] 2.2: "e" */
   1388 	/* Ei^priv, Ei^pub := DH-GENERATE() */
   1389 	wg_algo_generate_keypair(pubkey, privkey);
   1390 	/* Ci := KDF1(Ci, Ei^pub) */
   1391 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1392 	/* msg.ephemeral := Ei^pub */
   1393 	memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
   1394 	/* Hi := HASH(Hi || msg.ephemeral) */
   1395 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1396 
   1397 	WG_DUMP_HASH("ckey", ckey);
   1398 	WG_DUMP_HASH("hash", hash);
   1399 
   1400 	/* [N] 2.2: "es" */
   1401 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1402 	wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
   1403 
   1404 	/* [N] 2.2: "s" */
   1405 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1406 	wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
   1407 	    cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1408 	    hash, sizeof(hash));
   1409 	/* Hi := HASH(Hi || msg.static) */
   1410 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1411 
   1412 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1413 
   1414 	/* [N] 2.2: "ss" */
   1415 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1416 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1417 
   1418 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1419 	wg_timestamp_t timestamp;
   1420 	wg_algo_tai64n(timestamp);
   1421 	wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1422 	    cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
   1423 	/* Hi := HASH(Hi || msg.timestamp) */
   1424 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1425 
   1426 	/* [W] 5.4.4 Cookie MACs */
   1427 	wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
   1428 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1429 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1430 	/* Need mac1 to decrypt a cookie from a cookie message */
   1431 	memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
   1432 	    sizeof(wgp->wgp_last_sent_mac1));
   1433 	wgp->wgp_last_sent_mac1_valid = true;
   1434 
   1435 	if (wgp->wgp_latest_cookie_time == 0 ||
   1436 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1437 		memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
   1438 	else {
   1439 		wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
   1440 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1441 		    (const uint8_t *)wgmi,
   1442 		    offsetof(struct wg_msg_init, wgmi_mac2),
   1443 		    NULL, 0);
   1444 	}
   1445 
   1446 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1447 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1448 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1449 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1450 	WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
   1451 }
   1452 
   1453 static void __noinline
   1454 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
   1455     const struct sockaddr *src)
   1456 {
   1457 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1458 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1459 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1460 	uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
   1461 	struct wg_peer *wgp;
   1462 	struct wg_session *wgs;
   1463 	int error, ret;
   1464 	struct psref psref_peer;
   1465 	uint8_t mac1[WG_MAC_LEN];
   1466 
   1467 	WG_TRACE("init msg received");
   1468 
   1469 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1470 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1471 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1472 
   1473 	/*
   1474 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1475 	 * "the responder, ..., must always reject messages with an invalid
   1476 	 *  msg.mac1"
   1477 	 */
   1478 	if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
   1479 		WG_DLOG("mac1 is invalid\n");
   1480 		return;
   1481 	}
   1482 
   1483 	/*
   1484 	 * [W] 5.4.2: First Message: Initiator to Responder
   1485 	 * "When the responder receives this message, it does the same
   1486 	 *  operations so that its final state variables are identical,
   1487 	 *  replacing the operands of the DH function to produce equivalent
   1488 	 *  values."
   1489 	 *  Note that the following comments of operations are just copies of
   1490 	 *  the initiator's ones.
   1491 	 */
   1492 
   1493 	/* Ci := HASH(CONSTRUCTION) */
   1494 	/* Hi := HASH(Ci || IDENTIFIER) */
   1495 	wg_init_key_and_hash(ckey, hash);
   1496 	/* Hi := HASH(Hi || Sr^pub) */
   1497 	wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
   1498 
   1499 	/* [N] 2.2: "e" */
   1500 	/* Ci := KDF1(Ci, Ei^pub) */
   1501 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
   1502 	    sizeof(wgmi->wgmi_ephemeral));
   1503 	/* Hi := HASH(Hi || msg.ephemeral) */
   1504 	wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
   1505 
   1506 	WG_DUMP_HASH("ckey", ckey);
   1507 
   1508 	/* [N] 2.2: "es" */
   1509 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1510 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
   1511 
   1512 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1513 
   1514 	/* [N] 2.2: "s" */
   1515 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1516 	error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
   1517 	    wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
   1518 	if (error != 0) {
   1519 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   1520 		    "%s: wg_algo_aead_dec for secret key failed\n",
   1521 		    if_name(&wg->wg_if));
   1522 		return;
   1523 	}
   1524 	/* Hi := HASH(Hi || msg.static) */
   1525 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1526 
   1527 	wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
   1528 	if (wgp == NULL) {
   1529 		WG_DLOG("peer not found\n");
   1530 		return;
   1531 	}
   1532 
   1533 	/*
   1534 	 * Lock the peer to serialize access to cookie state.
   1535 	 *
   1536 	 * XXX Can we safely avoid holding the lock across DH?  Take it
   1537 	 * just to verify mac2 and then unlock/DH/lock?
   1538 	 */
   1539 	mutex_enter(wgp->wgp_lock);
   1540 
   1541 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
   1542 		WG_TRACE("under load");
   1543 		/*
   1544 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1545 		 * "the responder, ..., and when under load may reject messages
   1546 		 *  with an invalid msg.mac2.  If the responder receives a
   1547 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1548 		 *  and is under load, it may respond with a cookie reply
   1549 		 *  message"
   1550 		 */
   1551 		uint8_t zero[WG_MAC_LEN] = {0};
   1552 		if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
   1553 			WG_TRACE("sending a cookie message: no cookie included");
   1554 			(void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1555 			    wgmi->wgmi_mac1, src);
   1556 			goto out;
   1557 		}
   1558 		if (!wgp->wgp_last_sent_cookie_valid) {
   1559 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1560 			(void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1561 			    wgmi->wgmi_mac1, src);
   1562 			goto out;
   1563 		}
   1564 		uint8_t mac2[WG_MAC_LEN];
   1565 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1566 		    WG_COOKIE_LEN, (const uint8_t *)wgmi,
   1567 		    offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
   1568 		if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
   1569 			WG_DLOG("mac2 is invalid\n");
   1570 			goto out;
   1571 		}
   1572 		WG_TRACE("under load, but continue to sending");
   1573 	}
   1574 
   1575 	/* [N] 2.2: "ss" */
   1576 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1577 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1578 
   1579 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1580 	wg_timestamp_t timestamp;
   1581 	error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
   1582 	    wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1583 	    hash, sizeof(hash));
   1584 	if (error != 0) {
   1585 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1586 		    "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
   1587 		    if_name(&wg->wg_if), wgp->wgp_name);
   1588 		goto out;
   1589 	}
   1590 	/* Hi := HASH(Hi || msg.timestamp) */
   1591 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1592 
   1593 	/*
   1594 	 * [W] 5.1 "The responder keeps track of the greatest timestamp
   1595 	 *      received per peer and discards packets containing
   1596 	 *      timestamps less than or equal to it."
   1597 	 */
   1598 	ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
   1599 	    sizeof(timestamp));
   1600 	if (ret <= 0) {
   1601 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1602 		    "%s: peer %s: invalid init msg: timestamp is old\n",
   1603 		    if_name(&wg->wg_if), wgp->wgp_name);
   1604 		goto out;
   1605 	}
   1606 	memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
   1607 
   1608 	/*
   1609 	 * Message is good -- we're committing to handle it now, unless
   1610 	 * we were already initiating a session.
   1611 	 */
   1612 	wgs = wgp->wgp_session_unstable;
   1613 	switch (wgs->wgs_state) {
   1614 	case WGS_STATE_UNKNOWN:		/* new session initiated by peer */
   1615 		wg_get_session_index(wg, wgs);
   1616 		break;
   1617 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, drop */
   1618 		WG_TRACE("Session already initializing, ignoring the message");
   1619 		goto out;
   1620 	case WGS_STATE_INIT_PASSIVE:	/* peer is retrying, start over */
   1621 		WG_TRACE("Session already initializing, destroying old states");
   1622 		wg_clear_states(wgs);
   1623 		/* keep session index */
   1624 		break;
   1625 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1626 		panic("unstable session can't be established");
   1627 		break;
   1628 	case WGS_STATE_DESTROYING:	/* rekey initiated by peer */
   1629 		WG_TRACE("Session destroying, but force to clear");
   1630 		callout_stop(&wgp->wgp_session_dtor_timer);
   1631 		wg_clear_states(wgs);
   1632 		/* keep session index */
   1633 		break;
   1634 	default:
   1635 		panic("invalid session state: %d", wgs->wgs_state);
   1636 	}
   1637 	wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
   1638 
   1639 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1640 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1641 	memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
   1642 	    sizeof(wgmi->wgmi_ephemeral));
   1643 
   1644 	wg_update_endpoint_if_necessary(wgp, src);
   1645 
   1646 	(void)wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
   1647 
   1648 	wg_calculate_keys(wgs, false);
   1649 	wg_clear_states(wgs);
   1650 
   1651 out:
   1652 	mutex_exit(wgp->wgp_lock);
   1653 	wg_put_peer(wgp, &psref_peer);
   1654 }
   1655 
   1656 static struct socket *
   1657 wg_get_so_by_af(struct wg_softc *wg, const int af)
   1658 {
   1659 
   1660 	switch (af) {
   1661 #ifdef INET
   1662 	case AF_INET:
   1663 		return wg->wg_so4;
   1664 #endif
   1665 #ifdef INET6
   1666 	case AF_INET6:
   1667 		return wg->wg_so6;
   1668 #endif
   1669 	default:
   1670 		panic("wg: no such af: %d", af);
   1671 	}
   1672 }
   1673 
   1674 static struct socket *
   1675 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
   1676 {
   1677 
   1678 	return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
   1679 }
   1680 
   1681 static struct wg_sockaddr *
   1682 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
   1683 {
   1684 	struct wg_sockaddr *wgsa;
   1685 	int s;
   1686 
   1687 	s = pserialize_read_enter();
   1688 	wgsa = atomic_load_consume(&wgp->wgp_endpoint);
   1689 	psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
   1690 	pserialize_read_exit(s);
   1691 
   1692 	return wgsa;
   1693 }
   1694 
   1695 static void
   1696 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
   1697 {
   1698 
   1699 	psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
   1700 }
   1701 
   1702 static int
   1703 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
   1704 {
   1705 	int error;
   1706 	struct socket *so;
   1707 	struct psref psref;
   1708 	struct wg_sockaddr *wgsa;
   1709 
   1710 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   1711 	so = wg_get_so_by_peer(wgp, wgsa);
   1712 	error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
   1713 	wg_put_sa(wgp, wgsa, &psref);
   1714 
   1715 	return error;
   1716 }
   1717 
   1718 static int
   1719 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
   1720 {
   1721 	int error;
   1722 	struct mbuf *m;
   1723 	struct wg_msg_init *wgmi;
   1724 	struct wg_session *wgs;
   1725 
   1726 	KASSERT(mutex_owned(wgp->wgp_lock));
   1727 
   1728 	wgs = wgp->wgp_session_unstable;
   1729 	/* XXX pull dispatch out into wg_task_send_init_message */
   1730 	switch (wgs->wgs_state) {
   1731 	case WGS_STATE_UNKNOWN:		/* new session initiated by us */
   1732 		wg_get_session_index(wg, wgs);
   1733 		break;
   1734 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, stop */
   1735 		WG_TRACE("Session already initializing, skip starting new one");
   1736 		return EBUSY;
   1737 	case WGS_STATE_INIT_PASSIVE:	/* peer was trying -- XXX what now? */
   1738 		WG_TRACE("Session already initializing, destroying old states");
   1739 		wg_clear_states(wgs);
   1740 		/* keep session index */
   1741 		break;
   1742 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1743 		panic("unstable session can't be established");
   1744 		break;
   1745 	case WGS_STATE_DESTROYING:	/* rekey initiated by us too early */
   1746 		WG_TRACE("Session destroying");
   1747 		/* XXX should wait? */
   1748 		return EBUSY;
   1749 	}
   1750 	wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
   1751 
   1752 	m = m_gethdr(M_WAIT, MT_DATA);
   1753 	if (sizeof(*wgmi) > MHLEN) {
   1754 		m_clget(m, M_WAIT);
   1755 		CTASSERT(sizeof(*wgmi) <= MCLBYTES);
   1756 	}
   1757 	m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
   1758 	wgmi = mtod(m, struct wg_msg_init *);
   1759 	wg_fill_msg_init(wg, wgp, wgs, wgmi);
   1760 
   1761 	error = wg->wg_ops->send_hs_msg(wgp, m);
   1762 	if (error == 0) {
   1763 		WG_TRACE("init msg sent");
   1764 
   1765 		if (wgp->wgp_handshake_start_time == 0)
   1766 			wgp->wgp_handshake_start_time = time_uptime;
   1767 		callout_schedule(&wgp->wgp_handshake_timeout_timer,
   1768 		    MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
   1769 	} else {
   1770 		wg_put_session_index(wg, wgs);
   1771 		/* Initiation failed; toss packet waiting for it if any.  */
   1772 		m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   1773 		m_freem(m);
   1774 	}
   1775 
   1776 	return error;
   1777 }
   1778 
   1779 static void
   1780 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   1781     struct wg_session *wgs, struct wg_msg_resp *wgmr,
   1782     const struct wg_msg_init *wgmi)
   1783 {
   1784 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   1785 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
   1786 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   1787 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1788 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1789 
   1790 	KASSERT(mutex_owned(wgp->wgp_lock));
   1791 	KASSERT(wgs == wgp->wgp_session_unstable);
   1792 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
   1793 
   1794 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   1795 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   1796 
   1797 	wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
   1798 	wgmr->wgmr_sender = wgs->wgs_local_index;
   1799 	wgmr->wgmr_receiver = wgmi->wgmi_sender;
   1800 
   1801 	/* [W] 5.4.3 Second Message: Responder to Initiator */
   1802 
   1803 	/* [N] 2.2: "e" */
   1804 	/* Er^priv, Er^pub := DH-GENERATE() */
   1805 	wg_algo_generate_keypair(pubkey, privkey);
   1806 	/* Cr := KDF1(Cr, Er^pub) */
   1807 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1808 	/* msg.ephemeral := Er^pub */
   1809 	memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
   1810 	/* Hr := HASH(Hr || msg.ephemeral) */
   1811 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1812 
   1813 	WG_DUMP_HASH("ckey", ckey);
   1814 	WG_DUMP_HASH("hash", hash);
   1815 
   1816 	/* [N] 2.2: "ee" */
   1817 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   1818 	wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
   1819 
   1820 	/* [N] 2.2: "se" */
   1821 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   1822 	wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
   1823 
   1824 	/* [N] 9.2: "psk" */
   1825     {
   1826 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   1827 	/* Cr, r, k := KDF3(Cr, Q) */
   1828 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   1829 	    sizeof(wgp->wgp_psk));
   1830 	/* Hr := HASH(Hr || r) */
   1831 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   1832     }
   1833 
   1834 	/* msg.empty := AEAD(k, 0, e, Hr) */
   1835 	wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
   1836 	    cipher_key, 0, NULL, 0, hash, sizeof(hash));
   1837 	/* Hr := HASH(Hr || msg.empty) */
   1838 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   1839 
   1840 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   1841 
   1842 	/* [W] 5.4.4: Cookie MACs */
   1843 	/* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
   1844 	wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
   1845 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1846 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   1847 	/* Need mac1 to decrypt a cookie from a cookie message */
   1848 	memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
   1849 	    sizeof(wgp->wgp_last_sent_mac1));
   1850 	wgp->wgp_last_sent_mac1_valid = true;
   1851 
   1852 	if (wgp->wgp_latest_cookie_time == 0 ||
   1853 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1854 		/* msg.mac2 := 0^16 */
   1855 		memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
   1856 	else {
   1857 		/* msg.mac2 := MAC(Lm, msg_b) */
   1858 		wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
   1859 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1860 		    (const uint8_t *)wgmr,
   1861 		    offsetof(struct wg_msg_resp, wgmr_mac2),
   1862 		    NULL, 0);
   1863 	}
   1864 
   1865 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1866 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1867 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1868 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1869 	wgs->wgs_remote_index = wgmi->wgmi_sender;
   1870 	WG_DLOG("sender=%x\n", wgs->wgs_local_index);
   1871 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   1872 }
   1873 
   1874 static void
   1875 wg_swap_sessions(struct wg_peer *wgp)
   1876 {
   1877 	struct wg_session *wgs, *wgs_prev;
   1878 
   1879 	KASSERT(mutex_owned(wgp->wgp_lock));
   1880 
   1881 	wgs = wgp->wgp_session_unstable;
   1882 	KASSERT(wgs->wgs_state == WGS_STATE_ESTABLISHED);
   1883 
   1884 	wgs_prev = wgp->wgp_session_stable;
   1885 	KASSERT(wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
   1886 	    wgs_prev->wgs_state == WGS_STATE_UNKNOWN);
   1887 	atomic_store_release(&wgp->wgp_session_stable, wgs);
   1888 	wgp->wgp_session_unstable = wgs_prev;
   1889 }
   1890 
   1891 static void __noinline
   1892 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
   1893     const struct sockaddr *src)
   1894 {
   1895 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   1896 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
   1897 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   1898 	struct wg_peer *wgp;
   1899 	struct wg_session *wgs;
   1900 	struct psref psref;
   1901 	int error;
   1902 	uint8_t mac1[WG_MAC_LEN];
   1903 	struct wg_session *wgs_prev;
   1904 	struct mbuf *m;
   1905 
   1906 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1907 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1908 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   1909 
   1910 	/*
   1911 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1912 	 * "the responder, ..., must always reject messages with an invalid
   1913 	 *  msg.mac1"
   1914 	 */
   1915 	if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
   1916 		WG_DLOG("mac1 is invalid\n");
   1917 		return;
   1918 	}
   1919 
   1920 	WG_TRACE("resp msg received");
   1921 	wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
   1922 	if (wgs == NULL) {
   1923 		WG_TRACE("No session found");
   1924 		return;
   1925 	}
   1926 
   1927 	wgp = wgs->wgs_peer;
   1928 
   1929 	mutex_enter(wgp->wgp_lock);
   1930 
   1931 	/* If we weren't waiting for a handshake response, drop it.  */
   1932 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
   1933 		WG_TRACE("peer sent spurious handshake response, ignoring");
   1934 		goto out;
   1935 	}
   1936 
   1937 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
   1938 		WG_TRACE("under load");
   1939 		/*
   1940 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1941 		 * "the responder, ..., and when under load may reject messages
   1942 		 *  with an invalid msg.mac2.  If the responder receives a
   1943 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1944 		 *  and is under load, it may respond with a cookie reply
   1945 		 *  message"
   1946 		 */
   1947 		uint8_t zero[WG_MAC_LEN] = {0};
   1948 		if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
   1949 			WG_TRACE("sending a cookie message: no cookie included");
   1950 			(void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   1951 			    wgmr->wgmr_mac1, src);
   1952 			goto out;
   1953 		}
   1954 		if (!wgp->wgp_last_sent_cookie_valid) {
   1955 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1956 			(void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   1957 			    wgmr->wgmr_mac1, src);
   1958 			goto out;
   1959 		}
   1960 		uint8_t mac2[WG_MAC_LEN];
   1961 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1962 		    WG_COOKIE_LEN, (const uint8_t *)wgmr,
   1963 		    offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
   1964 		if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
   1965 			WG_DLOG("mac2 is invalid\n");
   1966 			goto out;
   1967 		}
   1968 		WG_TRACE("under load, but continue to sending");
   1969 	}
   1970 
   1971 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   1972 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   1973 
   1974 	/*
   1975 	 * [W] 5.4.3 Second Message: Responder to Initiator
   1976 	 * "When the initiator receives this message, it does the same
   1977 	 *  operations so that its final state variables are identical,
   1978 	 *  replacing the operands of the DH function to produce equivalent
   1979 	 *  values."
   1980 	 *  Note that the following comments of operations are just copies of
   1981 	 *  the initiator's ones.
   1982 	 */
   1983 
   1984 	/* [N] 2.2: "e" */
   1985 	/* Cr := KDF1(Cr, Er^pub) */
   1986 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
   1987 	    sizeof(wgmr->wgmr_ephemeral));
   1988 	/* Hr := HASH(Hr || msg.ephemeral) */
   1989 	wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
   1990 
   1991 	WG_DUMP_HASH("ckey", ckey);
   1992 	WG_DUMP_HASH("hash", hash);
   1993 
   1994 	/* [N] 2.2: "ee" */
   1995 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   1996 	wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
   1997 	    wgmr->wgmr_ephemeral);
   1998 
   1999 	/* [N] 2.2: "se" */
   2000 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   2001 	wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
   2002 
   2003 	/* [N] 9.2: "psk" */
   2004     {
   2005 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   2006 	/* Cr, r, k := KDF3(Cr, Q) */
   2007 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   2008 	    sizeof(wgp->wgp_psk));
   2009 	/* Hr := HASH(Hr || r) */
   2010 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   2011     }
   2012 
   2013     {
   2014 	uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
   2015 	/* msg.empty := AEAD(k, 0, e, Hr) */
   2016 	error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
   2017 	    sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
   2018 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   2019 	if (error != 0) {
   2020 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2021 		    "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
   2022 		    if_name(&wg->wg_if), wgp->wgp_name);
   2023 		goto out;
   2024 	}
   2025 	/* Hr := HASH(Hr || msg.empty) */
   2026 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   2027     }
   2028 
   2029 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
   2030 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
   2031 	wgs->wgs_remote_index = wgmr->wgmr_sender;
   2032 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   2033 
   2034 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
   2035 	wgs->wgs_state = WGS_STATE_ESTABLISHED;
   2036 	wgs->wgs_time_established = time_uptime;
   2037 	wgs->wgs_time_last_data_sent = 0;
   2038 	wgs->wgs_is_initiator = true;
   2039 	wg_calculate_keys(wgs, true);
   2040 	wg_clear_states(wgs);
   2041 	WG_TRACE("WGS_STATE_ESTABLISHED");
   2042 
   2043 	callout_stop(&wgp->wgp_handshake_timeout_timer);
   2044 
   2045 	wg_swap_sessions(wgp);
   2046 	KASSERT(wgs == wgp->wgp_session_stable);
   2047 	wgs_prev = wgp->wgp_session_unstable;
   2048 	getnanotime(&wgp->wgp_last_handshake_time);
   2049 	wgp->wgp_handshake_start_time = 0;
   2050 	wgp->wgp_last_sent_mac1_valid = false;
   2051 	wgp->wgp_last_sent_cookie_valid = false;
   2052 
   2053 	wg_schedule_rekey_timer(wgp);
   2054 
   2055 	wg_update_endpoint_if_necessary(wgp, src);
   2056 
   2057 	/*
   2058 	 * If we had a data packet queued up, send it; otherwise send a
   2059 	 * keepalive message -- either way we have to send something
   2060 	 * immediately or else the responder will never answer.
   2061 	 */
   2062 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   2063 		kpreempt_disable();
   2064 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
   2065 		M_SETCTX(m, wgp);
   2066 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   2067 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   2068 			    if_name(&wg->wg_if));
   2069 			m_freem(m);
   2070 		}
   2071 		kpreempt_enable();
   2072 	} else {
   2073 		wg_send_keepalive_msg(wgp, wgs);
   2074 	}
   2075 
   2076 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   2077 		/* Wait for wg_get_stable_session to drain.  */
   2078 		pserialize_perform(wgp->wgp_psz);
   2079 
   2080 		/* Transition ESTABLISHED->DESTROYING.  */
   2081 		wgs_prev->wgs_state = WGS_STATE_DESTROYING;
   2082 
   2083 		/* We can't destroy the old session immediately */
   2084 		wg_schedule_session_dtor_timer(wgp);
   2085 	} else {
   2086 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   2087 		    "state=%d", wgs_prev->wgs_state);
   2088 	}
   2089 
   2090 out:
   2091 	mutex_exit(wgp->wgp_lock);
   2092 	wg_put_session(wgs, &psref);
   2093 }
   2094 
   2095 static int
   2096 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   2097     struct wg_session *wgs, const struct wg_msg_init *wgmi)
   2098 {
   2099 	int error;
   2100 	struct mbuf *m;
   2101 	struct wg_msg_resp *wgmr;
   2102 
   2103 	KASSERT(mutex_owned(wgp->wgp_lock));
   2104 	KASSERT(wgs == wgp->wgp_session_unstable);
   2105 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
   2106 
   2107 	m = m_gethdr(M_WAIT, MT_DATA);
   2108 	if (sizeof(*wgmr) > MHLEN) {
   2109 		m_clget(m, M_WAIT);
   2110 		CTASSERT(sizeof(*wgmr) <= MCLBYTES);
   2111 	}
   2112 	m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
   2113 	wgmr = mtod(m, struct wg_msg_resp *);
   2114 	wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
   2115 
   2116 	error = wg->wg_ops->send_hs_msg(wgp, m);
   2117 	if (error == 0)
   2118 		WG_TRACE("resp msg sent");
   2119 	return error;
   2120 }
   2121 
   2122 static struct wg_peer *
   2123 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
   2124     const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
   2125 {
   2126 	struct wg_peer *wgp;
   2127 
   2128 	int s = pserialize_read_enter();
   2129 	wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
   2130 	if (wgp != NULL)
   2131 		wg_get_peer(wgp, psref);
   2132 	pserialize_read_exit(s);
   2133 
   2134 	return wgp;
   2135 }
   2136 
   2137 static void
   2138 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
   2139     struct wg_msg_cookie *wgmc, const uint32_t sender,
   2140     const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
   2141 {
   2142 	uint8_t cookie[WG_COOKIE_LEN];
   2143 	uint8_t key[WG_HASH_LEN];
   2144 	uint8_t addr[sizeof(struct in6_addr)];
   2145 	size_t addrlen;
   2146 	uint16_t uh_sport; /* be */
   2147 
   2148 	KASSERT(mutex_owned(wgp->wgp_lock));
   2149 
   2150 	wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
   2151 	wgmc->wgmc_receiver = sender;
   2152 	cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
   2153 
   2154 	/*
   2155 	 * [W] 5.4.7: Under Load: Cookie Reply Message
   2156 	 * "The secret variable, Rm, changes every two minutes to a
   2157 	 * random value"
   2158 	 */
   2159 	if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
   2160 		wgp->wgp_randval = cprng_strong32();
   2161 		wgp->wgp_last_genrandval_time = time_uptime;
   2162 	}
   2163 
   2164 	switch (src->sa_family) {
   2165 	case AF_INET: {
   2166 		const struct sockaddr_in *sin = satocsin(src);
   2167 		addrlen = sizeof(sin->sin_addr);
   2168 		memcpy(addr, &sin->sin_addr, addrlen);
   2169 		uh_sport = sin->sin_port;
   2170 		break;
   2171 	    }
   2172 #ifdef INET6
   2173 	case AF_INET6: {
   2174 		const struct sockaddr_in6 *sin6 = satocsin6(src);
   2175 		addrlen = sizeof(sin6->sin6_addr);
   2176 		memcpy(addr, &sin6->sin6_addr, addrlen);
   2177 		uh_sport = sin6->sin6_port;
   2178 		break;
   2179 	    }
   2180 #endif
   2181 	default:
   2182 		panic("invalid af=%d", src->sa_family);
   2183 	}
   2184 
   2185 	wg_algo_mac(cookie, sizeof(cookie),
   2186 	    (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
   2187 	    addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
   2188 	wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
   2189 	    sizeof(wg->wg_pubkey));
   2190 	wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
   2191 	    cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
   2192 
   2193 	/* Need to store to calculate mac2 */
   2194 	memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
   2195 	wgp->wgp_last_sent_cookie_valid = true;
   2196 }
   2197 
   2198 static int
   2199 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
   2200     const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
   2201     const struct sockaddr *src)
   2202 {
   2203 	int error;
   2204 	struct mbuf *m;
   2205 	struct wg_msg_cookie *wgmc;
   2206 
   2207 	KASSERT(mutex_owned(wgp->wgp_lock));
   2208 
   2209 	m = m_gethdr(M_WAIT, MT_DATA);
   2210 	if (sizeof(*wgmc) > MHLEN) {
   2211 		m_clget(m, M_WAIT);
   2212 		CTASSERT(sizeof(*wgmc) <= MCLBYTES);
   2213 	}
   2214 	m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
   2215 	wgmc = mtod(m, struct wg_msg_cookie *);
   2216 	wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
   2217 
   2218 	error = wg->wg_ops->send_hs_msg(wgp, m);
   2219 	if (error == 0)
   2220 		WG_TRACE("cookie msg sent");
   2221 	return error;
   2222 }
   2223 
   2224 static bool
   2225 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
   2226 {
   2227 #ifdef WG_DEBUG_PARAMS
   2228 	if (wg_force_underload)
   2229 		return true;
   2230 #endif
   2231 
   2232 	/*
   2233 	 * XXX we don't have a means of a load estimation.  The purpose of
   2234 	 * the mechanism is a DoS mitigation, so we consider frequent handshake
   2235 	 * messages as (a kind of) load; if a message of the same type comes
   2236 	 * to a peer within 1 second, we consider we are under load.
   2237 	 */
   2238 	time_t last = wgp->wgp_last_msg_received_time[msgtype];
   2239 	wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
   2240 	return (time_uptime - last) == 0;
   2241 }
   2242 
   2243 static void
   2244 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
   2245 {
   2246 
   2247 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2248 
   2249 	/*
   2250 	 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
   2251 	 */
   2252 	if (initiator) {
   2253 		wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
   2254 		    wgs->wgs_chaining_key, NULL, 0);
   2255 	} else {
   2256 		wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
   2257 		    wgs->wgs_chaining_key, NULL, 0);
   2258 	}
   2259 	WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
   2260 	WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
   2261 }
   2262 
   2263 static uint64_t
   2264 wg_session_get_send_counter(struct wg_session *wgs)
   2265 {
   2266 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2267 	return atomic_load_relaxed(&wgs->wgs_send_counter);
   2268 #else
   2269 	uint64_t send_counter;
   2270 
   2271 	mutex_enter(&wgs->wgs_send_counter_lock);
   2272 	send_counter = wgs->wgs_send_counter;
   2273 	mutex_exit(&wgs->wgs_send_counter_lock);
   2274 
   2275 	return send_counter;
   2276 #endif
   2277 }
   2278 
   2279 static uint64_t
   2280 wg_session_inc_send_counter(struct wg_session *wgs)
   2281 {
   2282 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2283 	return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
   2284 #else
   2285 	uint64_t send_counter;
   2286 
   2287 	mutex_enter(&wgs->wgs_send_counter_lock);
   2288 	send_counter = wgs->wgs_send_counter++;
   2289 	mutex_exit(&wgs->wgs_send_counter_lock);
   2290 
   2291 	return send_counter;
   2292 #endif
   2293 }
   2294 
   2295 static void
   2296 wg_clear_states(struct wg_session *wgs)
   2297 {
   2298 
   2299 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2300 
   2301 	wgs->wgs_send_counter = 0;
   2302 	sliwin_reset(&wgs->wgs_recvwin->window);
   2303 
   2304 #define wgs_clear(v)	explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
   2305 	wgs_clear(handshake_hash);
   2306 	wgs_clear(chaining_key);
   2307 	wgs_clear(ephemeral_key_pub);
   2308 	wgs_clear(ephemeral_key_priv);
   2309 	wgs_clear(ephemeral_key_peer);
   2310 #undef wgs_clear
   2311 }
   2312 
   2313 static struct wg_session *
   2314 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
   2315     struct psref *psref)
   2316 {
   2317 	struct wg_session *wgs;
   2318 
   2319 	int s = pserialize_read_enter();
   2320 	wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
   2321 	if (wgs != NULL) {
   2322 		KASSERT(atomic_load_relaxed(&wgs->wgs_state) !=
   2323 		    WGS_STATE_UNKNOWN);
   2324 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   2325 	}
   2326 	pserialize_read_exit(s);
   2327 
   2328 	return wgs;
   2329 }
   2330 
   2331 static void
   2332 wg_schedule_rekey_timer(struct wg_peer *wgp)
   2333 {
   2334 	int timeout = MIN(wg_rekey_after_time, (unsigned)(INT_MAX / hz));
   2335 
   2336 	callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
   2337 }
   2338 
   2339 static void
   2340 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
   2341 {
   2342 	struct mbuf *m;
   2343 
   2344 	/*
   2345 	 * [W] 6.5 Passive Keepalive
   2346 	 * "A keepalive message is simply a transport data message with
   2347 	 *  a zero-length encapsulated encrypted inner-packet."
   2348 	 */
   2349 	WG_TRACE("");
   2350 	m = m_gethdr(M_WAIT, MT_DATA);
   2351 	wg_send_data_msg(wgp, wgs, m);
   2352 }
   2353 
   2354 static bool
   2355 wg_need_to_send_init_message(struct wg_session *wgs)
   2356 {
   2357 	/*
   2358 	 * [W] 6.2 Transport Message Limits
   2359 	 * "if a peer is the initiator of a current secure session,
   2360 	 *  WireGuard will send a handshake initiation message to begin
   2361 	 *  a new secure session ... if after receiving a transport data
   2362 	 *  message, the current secure session is (REJECT-AFTER-TIME 
   2363 	 *  KEEPALIVE-TIMEOUT  REKEY-TIMEOUT) seconds old and it has
   2364 	 *  not yet acted upon this event."
   2365 	 */
   2366 	return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
   2367 	    (time_uptime - wgs->wgs_time_established) >=
   2368 	    (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
   2369 }
   2370 
   2371 static void
   2372 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
   2373 {
   2374 
   2375 	mutex_enter(wgp->wgp_intr_lock);
   2376 	WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
   2377 	if (wgp->wgp_tasks == 0)
   2378 		/*
   2379 		 * XXX If the current CPU is already loaded -- e.g., if
   2380 		 * there's already a bunch of handshakes queued up --
   2381 		 * consider tossing this over to another CPU to
   2382 		 * distribute the load.
   2383 		 */
   2384 		workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
   2385 	wgp->wgp_tasks |= task;
   2386 	mutex_exit(wgp->wgp_intr_lock);
   2387 }
   2388 
   2389 static void
   2390 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
   2391 {
   2392 	struct wg_sockaddr *wgsa_prev;
   2393 
   2394 	WG_TRACE("Changing endpoint");
   2395 
   2396 	memcpy(wgp->wgp_endpoint0, new, new->sa_len);
   2397 	wgsa_prev = wgp->wgp_endpoint;
   2398 	atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
   2399 	wgp->wgp_endpoint0 = wgsa_prev;
   2400 	atomic_store_release(&wgp->wgp_endpoint_available, true);
   2401 
   2402 	wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
   2403 }
   2404 
   2405 static bool
   2406 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
   2407 {
   2408 	uint16_t packet_len;
   2409 	const struct ip *ip;
   2410 
   2411 	if (__predict_false(decrypted_len < sizeof(*ip))) {
   2412 		WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2413 		    sizeof(*ip));
   2414 		return false;
   2415 	}
   2416 
   2417 	ip = (const struct ip *)packet;
   2418 	if (ip->ip_v == 4)
   2419 		*af = AF_INET;
   2420 	else if (ip->ip_v == 6)
   2421 		*af = AF_INET6;
   2422 	else {
   2423 		WG_DLOG("ip_v=%d\n", ip->ip_v);
   2424 		return false;
   2425 	}
   2426 
   2427 	WG_DLOG("af=%d\n", *af);
   2428 
   2429 	switch (*af) {
   2430 #ifdef INET
   2431 	case AF_INET:
   2432 		packet_len = ntohs(ip->ip_len);
   2433 		break;
   2434 #endif
   2435 #ifdef INET6
   2436 	case AF_INET6: {
   2437 		const struct ip6_hdr *ip6;
   2438 
   2439 		if (__predict_false(decrypted_len < sizeof(*ip6))) {
   2440 			WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2441 			    sizeof(*ip6));
   2442 			return false;
   2443 		}
   2444 
   2445 		ip6 = (const struct ip6_hdr *)packet;
   2446 		packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
   2447 		break;
   2448 	}
   2449 #endif
   2450 	default:
   2451 		return false;
   2452 	}
   2453 
   2454 	if (packet_len > decrypted_len) {
   2455 		WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
   2456 		    decrypted_len);
   2457 		return false;
   2458 	}
   2459 
   2460 	return true;
   2461 }
   2462 
   2463 static bool
   2464 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
   2465     int af, char *packet)
   2466 {
   2467 	struct sockaddr_storage ss;
   2468 	struct sockaddr *sa;
   2469 	struct psref psref;
   2470 	struct wg_peer *wgp;
   2471 	bool ok;
   2472 
   2473 	/*
   2474 	 * II CRYPTOKEY ROUTING
   2475 	 * "it will only accept it if its source IP resolves in the
   2476 	 *  table to the public key used in the secure session for
   2477 	 *  decrypting it."
   2478 	 */
   2479 
   2480 	if (af == AF_INET) {
   2481 		const struct ip *ip = (const struct ip *)packet;
   2482 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   2483 		sockaddr_in_init(sin, &ip->ip_src, 0);
   2484 		sa = sintosa(sin);
   2485 #ifdef INET6
   2486 	} else {
   2487 		const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
   2488 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   2489 		sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
   2490 		sa = sin6tosa(sin6);
   2491 #endif
   2492 	}
   2493 
   2494 	wgp = wg_pick_peer_by_sa(wg, sa, &psref);
   2495 	ok = (wgp == wgp_expected);
   2496 	if (wgp != NULL)
   2497 		wg_put_peer(wgp, &psref);
   2498 
   2499 	return ok;
   2500 }
   2501 
   2502 static void
   2503 wg_session_dtor_timer(void *arg)
   2504 {
   2505 	struct wg_peer *wgp = arg;
   2506 
   2507 	WG_TRACE("enter");
   2508 
   2509 	wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
   2510 }
   2511 
   2512 static void
   2513 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
   2514 {
   2515 
   2516 	/* 1 second grace period */
   2517 	callout_schedule(&wgp->wgp_session_dtor_timer, hz);
   2518 }
   2519 
   2520 static bool
   2521 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
   2522 {
   2523 	if (sa1->sa_family != sa2->sa_family)
   2524 		return false;
   2525 
   2526 	switch (sa1->sa_family) {
   2527 #ifdef INET
   2528 	case AF_INET:
   2529 		return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
   2530 #endif
   2531 #ifdef INET6
   2532 	case AF_INET6:
   2533 		return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
   2534 #endif
   2535 	default:
   2536 		return false;
   2537 	}
   2538 }
   2539 
   2540 static void
   2541 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
   2542     const struct sockaddr *src)
   2543 {
   2544 	struct wg_sockaddr *wgsa;
   2545 	struct psref psref;
   2546 
   2547 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   2548 
   2549 #ifdef WG_DEBUG_LOG
   2550 	char oldaddr[128], newaddr[128];
   2551 	sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
   2552 	sockaddr_format(src, newaddr, sizeof(newaddr));
   2553 	WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
   2554 #endif
   2555 
   2556 	/*
   2557 	 * III: "Since the packet has authenticated correctly, the source IP of
   2558 	 * the outer UDP/IP packet is used to update the endpoint for peer..."
   2559 	 */
   2560 	if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
   2561 		!sockaddr_port_match(src, wgsatosa(wgsa)))) {
   2562 		/* XXX We can't change the endpoint twice in a short period */
   2563 		if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
   2564 			wg_change_endpoint(wgp, src);
   2565 		}
   2566 	}
   2567 
   2568 	wg_put_sa(wgp, wgsa, &psref);
   2569 }
   2570 
   2571 static void __noinline
   2572 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
   2573     const struct sockaddr *src)
   2574 {
   2575 	struct wg_msg_data *wgmd;
   2576 	char *encrypted_buf = NULL, *decrypted_buf;
   2577 	size_t encrypted_len, decrypted_len;
   2578 	struct wg_session *wgs;
   2579 	struct wg_peer *wgp;
   2580 	int state;
   2581 	size_t mlen;
   2582 	struct psref psref;
   2583 	int error, af;
   2584 	bool success, free_encrypted_buf = false, ok;
   2585 	struct mbuf *n;
   2586 
   2587 	KASSERT(m->m_len >= sizeof(struct wg_msg_data));
   2588 	wgmd = mtod(m, struct wg_msg_data *);
   2589 
   2590 	KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
   2591 	WG_TRACE("data");
   2592 
   2593 	/* Find the putative session, or drop.  */
   2594 	wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
   2595 	if (wgs == NULL) {
   2596 		WG_TRACE("No session found");
   2597 		m_freem(m);
   2598 		return;
   2599 	}
   2600 
   2601 	/*
   2602 	 * We are only ready to handle data when in INIT_PASSIVE,
   2603 	 * ESTABLISHED, or DESTROYING.  All transitions out of that
   2604 	 * state dissociate the session index and drain psrefs.
   2605 	 */
   2606 	state = atomic_load_relaxed(&wgs->wgs_state);
   2607 	switch (state) {
   2608 	case WGS_STATE_UNKNOWN:
   2609 		panic("wg session %p in unknown state has session index %u",
   2610 		    wgs, wgmd->wgmd_receiver);
   2611 	case WGS_STATE_INIT_ACTIVE:
   2612 		WG_TRACE("not yet ready for data");
   2613 		goto out;
   2614 	case WGS_STATE_INIT_PASSIVE:
   2615 	case WGS_STATE_ESTABLISHED:
   2616 	case WGS_STATE_DESTROYING:
   2617 		break;
   2618 	}
   2619 
   2620 	/*
   2621 	 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
   2622 	 * to update the endpoint if authentication succeeds.
   2623 	 */
   2624 	wgp = wgs->wgs_peer;
   2625 
   2626 	/*
   2627 	 * Reject outrageously wrong sequence numbers before doing any
   2628 	 * crypto work or taking any locks.
   2629 	 */
   2630 	error = sliwin_check_fast(&wgs->wgs_recvwin->window,
   2631 	    le64toh(wgmd->wgmd_counter));
   2632 	if (error) {
   2633 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2634 		    "%s: peer %s: out-of-window packet: %"PRIu64"\n",
   2635 		    if_name(&wg->wg_if), wgp->wgp_name,
   2636 		    le64toh(wgmd->wgmd_counter));
   2637 		goto out;
   2638 	}
   2639 
   2640 	/* Ensure the payload and authenticator are contiguous.  */
   2641 	mlen = m_length(m);
   2642 	encrypted_len = mlen - sizeof(*wgmd);
   2643 	if (encrypted_len < WG_AUTHTAG_LEN) {
   2644 		WG_DLOG("Short encrypted_len: %zu\n", encrypted_len);
   2645 		goto out;
   2646 	}
   2647 	success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
   2648 	if (success) {
   2649 		encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
   2650 	} else {
   2651 		encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
   2652 		if (encrypted_buf == NULL) {
   2653 			WG_DLOG("failed to allocate encrypted_buf\n");
   2654 			goto out;
   2655 		}
   2656 		m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
   2657 		free_encrypted_buf = true;
   2658 	}
   2659 	/* m_ensure_contig may change m regardless of its result */
   2660 	KASSERT(m->m_len >= sizeof(*wgmd));
   2661 	wgmd = mtod(m, struct wg_msg_data *);
   2662 
   2663 	/*
   2664 	 * Get a buffer for the plaintext.  Add WG_AUTHTAG_LEN to avoid
   2665 	 * a zero-length buffer (XXX).  Drop if plaintext is longer
   2666 	 * than MCLBYTES (XXX).
   2667 	 */
   2668 	decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
   2669 	if (decrypted_len > MCLBYTES) {
   2670 		/* FIXME handle larger data than MCLBYTES */
   2671 		WG_DLOG("couldn't handle larger data than MCLBYTES\n");
   2672 		goto out;
   2673 	}
   2674 	n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
   2675 	if (n == NULL) {
   2676 		WG_DLOG("wg_get_mbuf failed\n");
   2677 		goto out;
   2678 	}
   2679 	decrypted_buf = mtod(n, char *);
   2680 
   2681 	/* Decrypt and verify the packet.  */
   2682 	WG_DLOG("mlen=%zu, encrypted_len=%zu\n", mlen, encrypted_len);
   2683 	error = wg_algo_aead_dec(decrypted_buf,
   2684 	    encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
   2685 	    wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
   2686 	    encrypted_len, NULL, 0);
   2687 	if (error != 0) {
   2688 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2689 		    "%s: peer %s: failed to wg_algo_aead_dec\n",
   2690 		    if_name(&wg->wg_if), wgp->wgp_name);
   2691 		m_freem(n);
   2692 		goto out;
   2693 	}
   2694 	WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
   2695 
   2696 	/* Packet is genuine.  Reject it if a replay or just too old.  */
   2697 	mutex_enter(&wgs->wgs_recvwin->lock);
   2698 	error = sliwin_update(&wgs->wgs_recvwin->window,
   2699 	    le64toh(wgmd->wgmd_counter));
   2700 	mutex_exit(&wgs->wgs_recvwin->lock);
   2701 	if (error) {
   2702 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2703 		    "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
   2704 		    if_name(&wg->wg_if), wgp->wgp_name,
   2705 		    le64toh(wgmd->wgmd_counter));
   2706 		m_freem(n);
   2707 		goto out;
   2708 	}
   2709 
   2710 #ifdef WG_DEBUG_PACKET
   2711 	if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
   2712 		hexdump(aprint_debug, "wgmd", wgmd, sizeof(*wgmd));
   2713 		hexdump(aprint_debug, "decrypted_buf", decrypted_buf,
   2714 		    decrypted_len);
   2715 	}
   2716 #endif
   2717 	/* We're done with m now; free it and chuck the pointers.  */
   2718 	m_freem(m);
   2719 	m = NULL;
   2720 	wgmd = NULL;
   2721 
   2722 	/*
   2723 	 * Validate the encapsulated packet header and get the address
   2724 	 * family, or drop.
   2725 	 */
   2726 	ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
   2727 	if (!ok) {
   2728 		m_freem(n);
   2729 		goto out;
   2730 	}
   2731 
   2732 	/*
   2733 	 * The packet is genuine.  Update the peer's endpoint if the
   2734 	 * source address changed.
   2735 	 *
   2736 	 * XXX How to prevent DoS by replaying genuine packets from the
   2737 	 * wrong source address?
   2738 	 */
   2739 	wg_update_endpoint_if_necessary(wgp, src);
   2740 
   2741 	/* Submit it into our network stack if routable.  */
   2742 	ok = wg_validate_route(wg, wgp, af, decrypted_buf);
   2743 	if (ok) {
   2744 		wg->wg_ops->input(&wg->wg_if, n, af);
   2745 	} else {
   2746 		char addrstr[INET6_ADDRSTRLEN];
   2747 		memset(addrstr, 0, sizeof(addrstr));
   2748 		if (af == AF_INET) {
   2749 			const struct ip *ip = (const struct ip *)decrypted_buf;
   2750 			IN_PRINT(addrstr, &ip->ip_src);
   2751 #ifdef INET6
   2752 		} else if (af == AF_INET6) {
   2753 			const struct ip6_hdr *ip6 =
   2754 			    (const struct ip6_hdr *)decrypted_buf;
   2755 			IN6_PRINT(addrstr, &ip6->ip6_src);
   2756 #endif
   2757 		}
   2758 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2759 		    "%s: peer %s: invalid source address (%s)\n",
   2760 		    if_name(&wg->wg_if), wgp->wgp_name, addrstr);
   2761 		m_freem(n);
   2762 		/*
   2763 		 * The inner address is invalid however the session is valid
   2764 		 * so continue the session processing below.
   2765 		 */
   2766 	}
   2767 	n = NULL;
   2768 
   2769 	/* Update the state machine if necessary.  */
   2770 	if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
   2771 		/*
   2772 		 * We were waiting for the initiator to send their
   2773 		 * first data transport message, and that has happened.
   2774 		 * Schedule a task to establish this session.
   2775 		 */
   2776 		wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
   2777 	} else {
   2778 		if (__predict_false(wg_need_to_send_init_message(wgs))) {
   2779 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   2780 		}
   2781 		/*
   2782 		 * [W] 6.5 Passive Keepalive
   2783 		 * "If a peer has received a validly-authenticated transport
   2784 		 *  data message (section 5.4.6), but does not have any packets
   2785 		 *  itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
   2786 		 *  a keepalive message."
   2787 		 */
   2788 		WG_DLOG("time_uptime=%ju wgs_time_last_data_sent=%ju\n",
   2789 		    (uintmax_t)time_uptime,
   2790 		    (uintmax_t)wgs->wgs_time_last_data_sent);
   2791 		if ((time_uptime - wgs->wgs_time_last_data_sent) >=
   2792 		    wg_keepalive_timeout) {
   2793 			WG_TRACE("Schedule sending keepalive message");
   2794 			/*
   2795 			 * We can't send a keepalive message here to avoid
   2796 			 * a deadlock;  we already hold the solock of a socket
   2797 			 * that is used to send the message.
   2798 			 */
   2799 			wg_schedule_peer_task(wgp,
   2800 			    WGP_TASK_SEND_KEEPALIVE_MESSAGE);
   2801 		}
   2802 	}
   2803 out:
   2804 	wg_put_session(wgs, &psref);
   2805 	m_freem(m);
   2806 	if (free_encrypted_buf)
   2807 		kmem_intr_free(encrypted_buf, encrypted_len);
   2808 }
   2809 
   2810 static void __noinline
   2811 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
   2812 {
   2813 	struct wg_session *wgs;
   2814 	struct wg_peer *wgp;
   2815 	struct psref psref;
   2816 	int error;
   2817 	uint8_t key[WG_HASH_LEN];
   2818 	uint8_t cookie[WG_COOKIE_LEN];
   2819 
   2820 	WG_TRACE("cookie msg received");
   2821 
   2822 	/* Find the putative session.  */
   2823 	wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
   2824 	if (wgs == NULL) {
   2825 		WG_TRACE("No session found");
   2826 		return;
   2827 	}
   2828 
   2829 	/* Lock the peer so we can update the cookie state.  */
   2830 	wgp = wgs->wgs_peer;
   2831 	mutex_enter(wgp->wgp_lock);
   2832 
   2833 	if (!wgp->wgp_last_sent_mac1_valid) {
   2834 		WG_TRACE("No valid mac1 sent (or expired)");
   2835 		goto out;
   2836 	}
   2837 
   2838 	/* Decrypt the cookie and store it for later handshake retry.  */
   2839 	wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
   2840 	    sizeof(wgp->wgp_pubkey));
   2841 	error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
   2842 	    wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
   2843 	    wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
   2844 	    wgmc->wgmc_salt);
   2845 	if (error != 0) {
   2846 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2847 		    "%s: peer %s: wg_algo_aead_dec for cookie failed: "
   2848 		    "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
   2849 		goto out;
   2850 	}
   2851 	/*
   2852 	 * [W] 6.6: Interaction with Cookie Reply System
   2853 	 * "it should simply store the decrypted cookie value from the cookie
   2854 	 *  reply message, and wait for the expiration of the REKEY-TIMEOUT
   2855 	 *  timer for retrying a handshake initiation message."
   2856 	 */
   2857 	wgp->wgp_latest_cookie_time = time_uptime;
   2858 	memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
   2859 out:
   2860 	mutex_exit(wgp->wgp_lock);
   2861 	wg_put_session(wgs, &psref);
   2862 }
   2863 
   2864 static struct mbuf *
   2865 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
   2866 {
   2867 	struct wg_msg wgm;
   2868 	size_t mbuflen;
   2869 	size_t msglen;
   2870 
   2871 	/*
   2872 	 * Get the mbuf chain length.  It is already guaranteed, by
   2873 	 * wg_overudp_cb, to be large enough for a struct wg_msg.
   2874 	 */
   2875 	mbuflen = m_length(m);
   2876 	KASSERT(mbuflen >= sizeof(struct wg_msg));
   2877 
   2878 	/*
   2879 	 * Copy the message header (32-bit message type) out -- we'll
   2880 	 * worry about contiguity and alignment later.
   2881 	 */
   2882 	m_copydata(m, 0, sizeof(wgm), &wgm);
   2883 	switch (le32toh(wgm.wgm_type)) {
   2884 	case WG_MSG_TYPE_INIT:
   2885 		msglen = sizeof(struct wg_msg_init);
   2886 		break;
   2887 	case WG_MSG_TYPE_RESP:
   2888 		msglen = sizeof(struct wg_msg_resp);
   2889 		break;
   2890 	case WG_MSG_TYPE_COOKIE:
   2891 		msglen = sizeof(struct wg_msg_cookie);
   2892 		break;
   2893 	case WG_MSG_TYPE_DATA:
   2894 		msglen = sizeof(struct wg_msg_data);
   2895 		break;
   2896 	default:
   2897 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   2898 		    "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
   2899 		    le32toh(wgm.wgm_type));
   2900 		goto error;
   2901 	}
   2902 
   2903 	/* Verify the mbuf chain is long enough for this type of message.  */
   2904 	if (__predict_false(mbuflen < msglen)) {
   2905 		WG_DLOG("Invalid msg size: mbuflen=%zu type=%u\n", mbuflen,
   2906 		    le32toh(wgm.wgm_type));
   2907 		goto error;
   2908 	}
   2909 
   2910 	/* Make the message header contiguous if necessary.  */
   2911 	if (__predict_false(m->m_len < msglen)) {
   2912 		m = m_pullup(m, msglen);
   2913 		if (m == NULL)
   2914 			return NULL;
   2915 	}
   2916 
   2917 	return m;
   2918 
   2919 error:
   2920 	m_freem(m);
   2921 	return NULL;
   2922 }
   2923 
   2924 static void
   2925 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
   2926     const struct sockaddr *src)
   2927 {
   2928 	struct wg_msg *wgm;
   2929 
   2930 	KASSERT(curlwp->l_pflag & LP_BOUND);
   2931 
   2932 	m = wg_validate_msg_header(wg, m);
   2933 	if (__predict_false(m == NULL))
   2934 		return;
   2935 
   2936 	KASSERT(m->m_len >= sizeof(struct wg_msg));
   2937 	wgm = mtod(m, struct wg_msg *);
   2938 	switch (le32toh(wgm->wgm_type)) {
   2939 	case WG_MSG_TYPE_INIT:
   2940 		wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
   2941 		break;
   2942 	case WG_MSG_TYPE_RESP:
   2943 		wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
   2944 		break;
   2945 	case WG_MSG_TYPE_COOKIE:
   2946 		wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
   2947 		break;
   2948 	case WG_MSG_TYPE_DATA:
   2949 		wg_handle_msg_data(wg, m, src);
   2950 		/* wg_handle_msg_data frees m for us */
   2951 		return;
   2952 	default:
   2953 		panic("invalid message type: %d", le32toh(wgm->wgm_type));
   2954 	}
   2955 
   2956 	m_freem(m);
   2957 }
   2958 
   2959 static void
   2960 wg_receive_packets(struct wg_softc *wg, const int af)
   2961 {
   2962 
   2963 	for (;;) {
   2964 		int error, flags;
   2965 		struct socket *so;
   2966 		struct mbuf *m = NULL;
   2967 		struct uio dummy_uio;
   2968 		struct mbuf *paddr = NULL;
   2969 		struct sockaddr *src;
   2970 
   2971 		so = wg_get_so_by_af(wg, af);
   2972 		flags = MSG_DONTWAIT;
   2973 		dummy_uio.uio_resid = 1000000000;
   2974 
   2975 		error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
   2976 		    &flags);
   2977 		if (error || m == NULL) {
   2978 			//if (error == EWOULDBLOCK)
   2979 			return;
   2980 		}
   2981 
   2982 		KASSERT(paddr != NULL);
   2983 		KASSERT(paddr->m_len >= sizeof(struct sockaddr));
   2984 		src = mtod(paddr, struct sockaddr *);
   2985 
   2986 		wg_handle_packet(wg, m, src);
   2987 	}
   2988 }
   2989 
   2990 static void
   2991 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
   2992 {
   2993 
   2994 	psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
   2995 }
   2996 
   2997 static void
   2998 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
   2999 {
   3000 
   3001 	psref_release(psref, &wgp->wgp_psref, wg_psref_class);
   3002 }
   3003 
   3004 static void
   3005 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
   3006 {
   3007 	struct wg_session *wgs;
   3008 
   3009 	WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
   3010 
   3011 	KASSERT(mutex_owned(wgp->wgp_lock));
   3012 
   3013 	if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
   3014 		WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
   3015 		    if_name(&wg->wg_if));
   3016 		/* XXX should do something? */
   3017 		return;
   3018 	}
   3019 
   3020 	wgs = wgp->wgp_session_stable;
   3021 	if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
   3022 		/* XXX What if the unstable session is already INIT_ACTIVE?  */
   3023 		wg_send_handshake_msg_init(wg, wgp);
   3024 	} else {
   3025 		/* rekey */
   3026 		wgs = wgp->wgp_session_unstable;
   3027 		if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   3028 			wg_send_handshake_msg_init(wg, wgp);
   3029 	}
   3030 }
   3031 
   3032 static void
   3033 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
   3034 {
   3035 	struct wg_session *wgs;
   3036 
   3037 	WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
   3038 
   3039 	KASSERT(mutex_owned(wgp->wgp_lock));
   3040 	KASSERT(wgp->wgp_handshake_start_time != 0);
   3041 
   3042 	wgs = wgp->wgp_session_unstable;
   3043 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   3044 		return;
   3045 
   3046 	/*
   3047 	 * XXX no real need to assign a new index here, but we do need
   3048 	 * to transition to UNKNOWN temporarily
   3049 	 */
   3050 	wg_put_session_index(wg, wgs);
   3051 
   3052 	/* [W] 6.4 Handshake Initiation Retransmission */
   3053 	if ((time_uptime - wgp->wgp_handshake_start_time) >
   3054 	    wg_rekey_attempt_time) {
   3055 		/* Give up handshaking */
   3056 		wgp->wgp_handshake_start_time = 0;
   3057 		WG_TRACE("give up");
   3058 
   3059 		/*
   3060 		 * If a new data packet comes, handshaking will be retried
   3061 		 * and a new session would be established at that time,
   3062 		 * however we don't want to send pending packets then.
   3063 		 */
   3064 		wg_purge_pending_packets(wgp);
   3065 		return;
   3066 	}
   3067 
   3068 	wg_task_send_init_message(wg, wgp);
   3069 }
   3070 
   3071 static void
   3072 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
   3073 {
   3074 	struct wg_session *wgs, *wgs_prev;
   3075 	struct mbuf *m;
   3076 
   3077 	KASSERT(mutex_owned(wgp->wgp_lock));
   3078 
   3079 	wgs = wgp->wgp_session_unstable;
   3080 	if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
   3081 		/* XXX Can this happen?  */
   3082 		return;
   3083 
   3084 	wgs->wgs_state = WGS_STATE_ESTABLISHED;
   3085 	wgs->wgs_time_established = time_uptime;
   3086 	wgs->wgs_time_last_data_sent = 0;
   3087 	wgs->wgs_is_initiator = false;
   3088 	WG_TRACE("WGS_STATE_ESTABLISHED");
   3089 
   3090 	wg_swap_sessions(wgp);
   3091 	KASSERT(wgs == wgp->wgp_session_stable);
   3092 	wgs_prev = wgp->wgp_session_unstable;
   3093 	getnanotime(&wgp->wgp_last_handshake_time);
   3094 	wgp->wgp_handshake_start_time = 0;
   3095 	wgp->wgp_last_sent_mac1_valid = false;
   3096 	wgp->wgp_last_sent_cookie_valid = false;
   3097 
   3098 	/* If we had a data packet queued up, send it.  */
   3099 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   3100 		kpreempt_disable();
   3101 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
   3102 		M_SETCTX(m, wgp);
   3103 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   3104 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   3105 			    if_name(&wg->wg_if));
   3106 			m_freem(m);
   3107 		}
   3108 		kpreempt_enable();
   3109 	}
   3110 
   3111 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   3112 		/* Wait for wg_get_stable_session to drain.  */
   3113 		pserialize_perform(wgp->wgp_psz);
   3114 
   3115 		/* Transition ESTABLISHED->DESTROYING.  */
   3116 		wgs_prev->wgs_state = WGS_STATE_DESTROYING;
   3117 
   3118 		/* We can't destroy the old session immediately */
   3119 		wg_schedule_session_dtor_timer(wgp);
   3120 	} else {
   3121 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   3122 		    "state=%d", wgs_prev->wgs_state);
   3123 		wg_clear_states(wgs_prev);
   3124 		wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
   3125 	}
   3126 }
   3127 
   3128 static void
   3129 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
   3130 {
   3131 
   3132 	WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
   3133 
   3134 	KASSERT(mutex_owned(wgp->wgp_lock));
   3135 
   3136 	if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
   3137 		pserialize_perform(wgp->wgp_psz);
   3138 		mutex_exit(wgp->wgp_lock);
   3139 		psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
   3140 		    wg_psref_class);
   3141 		psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
   3142 		    wg_psref_class);
   3143 		mutex_enter(wgp->wgp_lock);
   3144 		atomic_store_release(&wgp->wgp_endpoint_changing, 0);
   3145 	}
   3146 }
   3147 
   3148 static void
   3149 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
   3150 {
   3151 	struct wg_session *wgs;
   3152 
   3153 	WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
   3154 
   3155 	KASSERT(mutex_owned(wgp->wgp_lock));
   3156 
   3157 	wgs = wgp->wgp_session_stable;
   3158 	if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
   3159 		return;
   3160 
   3161 	wg_send_keepalive_msg(wgp, wgs);
   3162 }
   3163 
   3164 static void
   3165 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
   3166 {
   3167 	struct wg_session *wgs;
   3168 
   3169 	WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
   3170 
   3171 	KASSERT(mutex_owned(wgp->wgp_lock));
   3172 
   3173 	wgs = wgp->wgp_session_unstable;
   3174 	if (wgs->wgs_state == WGS_STATE_DESTROYING) {
   3175 		wg_put_session_index(wg, wgs);
   3176 	}
   3177 }
   3178 
   3179 static void
   3180 wg_peer_work(struct work *wk, void *cookie)
   3181 {
   3182 	struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
   3183 	struct wg_softc *wg = wgp->wgp_sc;
   3184 	unsigned int tasks;
   3185 
   3186 	mutex_enter(wgp->wgp_intr_lock);
   3187 	while ((tasks = wgp->wgp_tasks) != 0) {
   3188 		wgp->wgp_tasks = 0;
   3189 		mutex_exit(wgp->wgp_intr_lock);
   3190 
   3191 		mutex_enter(wgp->wgp_lock);
   3192 		if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
   3193 			wg_task_send_init_message(wg, wgp);
   3194 		if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
   3195 			wg_task_retry_handshake(wg, wgp);
   3196 		if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
   3197 			wg_task_establish_session(wg, wgp);
   3198 		if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
   3199 			wg_task_endpoint_changed(wg, wgp);
   3200 		if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
   3201 			wg_task_send_keepalive_message(wg, wgp);
   3202 		if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
   3203 			wg_task_destroy_prev_session(wg, wgp);
   3204 		mutex_exit(wgp->wgp_lock);
   3205 
   3206 		mutex_enter(wgp->wgp_intr_lock);
   3207 	}
   3208 	mutex_exit(wgp->wgp_intr_lock);
   3209 }
   3210 
   3211 static void
   3212 wg_job(struct threadpool_job *job)
   3213 {
   3214 	struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
   3215 	int bound, upcalls;
   3216 
   3217 	mutex_enter(wg->wg_intr_lock);
   3218 	while ((upcalls = wg->wg_upcalls) != 0) {
   3219 		wg->wg_upcalls = 0;
   3220 		mutex_exit(wg->wg_intr_lock);
   3221 		bound = curlwp_bind();
   3222 		if (ISSET(upcalls, WG_UPCALL_INET))
   3223 			wg_receive_packets(wg, AF_INET);
   3224 		if (ISSET(upcalls, WG_UPCALL_INET6))
   3225 			wg_receive_packets(wg, AF_INET6);
   3226 		curlwp_bindx(bound);
   3227 		mutex_enter(wg->wg_intr_lock);
   3228 	}
   3229 	threadpool_job_done(job);
   3230 	mutex_exit(wg->wg_intr_lock);
   3231 }
   3232 
   3233 static int
   3234 wg_bind_port(struct wg_softc *wg, const uint16_t port)
   3235 {
   3236 	int error;
   3237 	uint16_t old_port = wg->wg_listen_port;
   3238 
   3239 	if (port != 0 && old_port == port)
   3240 		return 0;
   3241 
   3242 	struct sockaddr_in _sin, *sin = &_sin;
   3243 	sin->sin_len = sizeof(*sin);
   3244 	sin->sin_family = AF_INET;
   3245 	sin->sin_addr.s_addr = INADDR_ANY;
   3246 	sin->sin_port = htons(port);
   3247 
   3248 	error = sobind(wg->wg_so4, sintosa(sin), curlwp);
   3249 	if (error != 0)
   3250 		return error;
   3251 
   3252 #ifdef INET6
   3253 	struct sockaddr_in6 _sin6, *sin6 = &_sin6;
   3254 	sin6->sin6_len = sizeof(*sin6);
   3255 	sin6->sin6_family = AF_INET6;
   3256 	sin6->sin6_addr = in6addr_any;
   3257 	sin6->sin6_port = htons(port);
   3258 
   3259 	error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
   3260 	if (error != 0)
   3261 		return error;
   3262 #endif
   3263 
   3264 	wg->wg_listen_port = port;
   3265 
   3266 	return 0;
   3267 }
   3268 
   3269 static void
   3270 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
   3271 {
   3272 	struct wg_softc *wg = cookie;
   3273 	int reason;
   3274 
   3275 	reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
   3276 	    WG_UPCALL_INET :
   3277 	    WG_UPCALL_INET6;
   3278 
   3279 	mutex_enter(wg->wg_intr_lock);
   3280 	wg->wg_upcalls |= reason;
   3281 	threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
   3282 	mutex_exit(wg->wg_intr_lock);
   3283 }
   3284 
   3285 static int
   3286 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
   3287     struct sockaddr *src, void *arg)
   3288 {
   3289 	struct wg_softc *wg = arg;
   3290 	struct wg_msg wgm;
   3291 	struct mbuf *m = *mp;
   3292 
   3293 	WG_TRACE("enter");
   3294 
   3295 	/* Verify the mbuf chain is long enough to have a wg msg header.  */
   3296 	KASSERT(offset <= m_length(m));
   3297 	if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
   3298 		/* drop on the floor */
   3299 		m_freem(m);
   3300 		return -1;
   3301 	}
   3302 
   3303 	/*
   3304 	 * Copy the message header (32-bit message type) out -- we'll
   3305 	 * worry about contiguity and alignment later.
   3306 	 */
   3307 	m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
   3308 	WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
   3309 
   3310 	/*
   3311 	 * Handle DATA packets promptly as they arrive.  Other packets
   3312 	 * may require expensive public-key crypto and are not as
   3313 	 * sensitive to latency, so defer them to the worker thread.
   3314 	 */
   3315 	switch (le32toh(wgm.wgm_type)) {
   3316 	case WG_MSG_TYPE_DATA:
   3317 		/* handle immediately */
   3318 		m_adj(m, offset);
   3319 		if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
   3320 			m = m_pullup(m, sizeof(struct wg_msg_data));
   3321 			if (m == NULL)
   3322 				return -1;
   3323 		}
   3324 		wg_handle_msg_data(wg, m, src);
   3325 		*mp = NULL;
   3326 		return 1;
   3327 	case WG_MSG_TYPE_INIT:
   3328 	case WG_MSG_TYPE_RESP:
   3329 	case WG_MSG_TYPE_COOKIE:
   3330 		/* pass through to so_receive in wg_receive_packets */
   3331 		return 0;
   3332 	default:
   3333 		/* drop on the floor */
   3334 		m_freem(m);
   3335 		return -1;
   3336 	}
   3337 }
   3338 
   3339 static int
   3340 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
   3341 {
   3342 	int error;
   3343 	struct socket *so;
   3344 
   3345 	error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
   3346 	if (error != 0)
   3347 		return error;
   3348 
   3349 	solock(so);
   3350 	so->so_upcallarg = wg;
   3351 	so->so_upcall = wg_so_upcall;
   3352 	so->so_rcv.sb_flags |= SB_UPCALL;
   3353 	inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
   3354 	sounlock(so);
   3355 
   3356 	*sop = so;
   3357 
   3358 	return 0;
   3359 }
   3360 
   3361 static bool
   3362 wg_session_hit_limits(struct wg_session *wgs)
   3363 {
   3364 
   3365 	/*
   3366 	 * [W] 6.2: Transport Message Limits
   3367 	 * "After REJECT-AFTER-MESSAGES transport data messages or after the
   3368 	 *  current secure session is REJECT-AFTER-TIME seconds old, whichever
   3369 	 *  comes first, WireGuard will refuse to send any more transport data
   3370 	 *  messages using the current secure session, ..."
   3371 	 */
   3372 	KASSERT(wgs->wgs_time_established != 0);
   3373 	if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
   3374 		WG_DLOG("The session hits REJECT_AFTER_TIME\n");
   3375 		return true;
   3376 	} else if (wg_session_get_send_counter(wgs) >
   3377 	    wg_reject_after_messages) {
   3378 		WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
   3379 		return true;
   3380 	}
   3381 
   3382 	return false;
   3383 }
   3384 
   3385 static void
   3386 wgintr(void *cookie)
   3387 {
   3388 	struct wg_peer *wgp;
   3389 	struct wg_session *wgs;
   3390 	struct mbuf *m;
   3391 	struct psref psref;
   3392 
   3393 	while ((m = pktq_dequeue(wg_pktq)) != NULL) {
   3394 		wgp = M_GETCTX(m, struct wg_peer *);
   3395 		if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
   3396 			WG_TRACE("no stable session");
   3397 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3398 			goto next0;
   3399 		}
   3400 		if (__predict_false(wg_session_hit_limits(wgs))) {
   3401 			WG_TRACE("stable session hit limits");
   3402 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3403 			goto next1;
   3404 		}
   3405 		wg_send_data_msg(wgp, wgs, m);
   3406 		m = NULL;	/* consumed */
   3407 next1:		wg_put_session(wgs, &psref);
   3408 next0:		m_freem(m);
   3409 		/* XXX Yield to avoid userland starvation?  */
   3410 	}
   3411 }
   3412 
   3413 static void
   3414 wg_rekey_timer(void *arg)
   3415 {
   3416 	struct wg_peer *wgp = arg;
   3417 
   3418 	wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3419 }
   3420 
   3421 static void
   3422 wg_purge_pending_packets(struct wg_peer *wgp)
   3423 {
   3424 	struct mbuf *m;
   3425 
   3426 	m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   3427 	m_freem(m);
   3428 	pktq_barrier(wg_pktq);
   3429 }
   3430 
   3431 static void
   3432 wg_handshake_timeout_timer(void *arg)
   3433 {
   3434 	struct wg_peer *wgp = arg;
   3435 
   3436 	WG_TRACE("enter");
   3437 
   3438 	wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
   3439 }
   3440 
   3441 static struct wg_peer *
   3442 wg_alloc_peer(struct wg_softc *wg)
   3443 {
   3444 	struct wg_peer *wgp;
   3445 
   3446 	wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
   3447 
   3448 	wgp->wgp_sc = wg;
   3449 	callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
   3450 	callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
   3451 	callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
   3452 	callout_setfunc(&wgp->wgp_handshake_timeout_timer,
   3453 	    wg_handshake_timeout_timer, wgp);
   3454 	callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
   3455 	callout_setfunc(&wgp->wgp_session_dtor_timer,
   3456 	    wg_session_dtor_timer, wgp);
   3457 	PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
   3458 	wgp->wgp_endpoint_changing = false;
   3459 	wgp->wgp_endpoint_available = false;
   3460 	wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3461 	wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3462 	wgp->wgp_psz = pserialize_create();
   3463 	psref_target_init(&wgp->wgp_psref, wg_psref_class);
   3464 
   3465 	wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
   3466 	wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
   3467 	psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3468 	psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3469 
   3470 	struct wg_session *wgs;
   3471 	wgp->wgp_session_stable =
   3472 	    kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
   3473 	wgp->wgp_session_unstable =
   3474 	    kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
   3475 	wgs = wgp->wgp_session_stable;
   3476 	wgs->wgs_peer = wgp;
   3477 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3478 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3479 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3480 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3481 #endif
   3482 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3483 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3484 
   3485 	wgs = wgp->wgp_session_unstable;
   3486 	wgs->wgs_peer = wgp;
   3487 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3488 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3489 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3490 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3491 #endif
   3492 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3493 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3494 
   3495 	return wgp;
   3496 }
   3497 
   3498 static void
   3499 wg_destroy_peer(struct wg_peer *wgp)
   3500 {
   3501 	struct wg_session *wgs;
   3502 	struct wg_softc *wg = wgp->wgp_sc;
   3503 
   3504 	/* Prevent new packets from this peer on any source address.  */
   3505 	rw_enter(wg->wg_rwlock, RW_WRITER);
   3506 	for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
   3507 		struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
   3508 		struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
   3509 		struct radix_node *rn;
   3510 
   3511 		KASSERT(rnh != NULL);
   3512 		rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
   3513 		    &wga->wga_sa_mask, rnh);
   3514 		if (rn == NULL) {
   3515 			char addrstr[128];
   3516 			sockaddr_format(&wga->wga_sa_addr, addrstr,
   3517 			    sizeof(addrstr));
   3518 			WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
   3519 			    if_name(&wg->wg_if), addrstr);
   3520 		}
   3521 	}
   3522 	rw_exit(wg->wg_rwlock);
   3523 
   3524 	/* Purge pending packets.  */
   3525 	wg_purge_pending_packets(wgp);
   3526 
   3527 	/* Halt all packet processing and timeouts.  */
   3528 	callout_halt(&wgp->wgp_rekey_timer, NULL);
   3529 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
   3530 	callout_halt(&wgp->wgp_session_dtor_timer, NULL);
   3531 
   3532 	/* Wait for any queued work to complete.  */
   3533 	workqueue_wait(wg_wq, &wgp->wgp_work);
   3534 
   3535 	wgs = wgp->wgp_session_unstable;
   3536 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3537 		mutex_enter(wgp->wgp_lock);
   3538 		wg_destroy_session(wg, wgs);
   3539 		mutex_exit(wgp->wgp_lock);
   3540 	}
   3541 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3542 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3543 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3544 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3545 #endif
   3546 	kmem_free(wgs, sizeof(*wgs));
   3547 
   3548 	wgs = wgp->wgp_session_stable;
   3549 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3550 		mutex_enter(wgp->wgp_lock);
   3551 		wg_destroy_session(wg, wgs);
   3552 		mutex_exit(wgp->wgp_lock);
   3553 	}
   3554 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3555 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3556 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3557 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3558 #endif
   3559 	kmem_free(wgs, sizeof(*wgs));
   3560 
   3561 	psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3562 	psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3563 	kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
   3564 	kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
   3565 
   3566 	pserialize_destroy(wgp->wgp_psz);
   3567 	mutex_obj_free(wgp->wgp_intr_lock);
   3568 	mutex_obj_free(wgp->wgp_lock);
   3569 
   3570 	kmem_free(wgp, sizeof(*wgp));
   3571 }
   3572 
   3573 static void
   3574 wg_destroy_all_peers(struct wg_softc *wg)
   3575 {
   3576 	struct wg_peer *wgp, *wgp0 __diagused;
   3577 	void *garbage_byname, *garbage_bypubkey;
   3578 
   3579 restart:
   3580 	garbage_byname = garbage_bypubkey = NULL;
   3581 	mutex_enter(wg->wg_lock);
   3582 	WG_PEER_WRITER_FOREACH(wgp, wg) {
   3583 		if (wgp->wgp_name[0]) {
   3584 			wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
   3585 			    strlen(wgp->wgp_name));
   3586 			KASSERT(wgp0 == wgp);
   3587 			garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3588 		}
   3589 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3590 		    sizeof(wgp->wgp_pubkey));
   3591 		KASSERT(wgp0 == wgp);
   3592 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3593 		WG_PEER_WRITER_REMOVE(wgp);
   3594 		wg->wg_npeers--;
   3595 		mutex_enter(wgp->wgp_lock);
   3596 		pserialize_perform(wgp->wgp_psz);
   3597 		mutex_exit(wgp->wgp_lock);
   3598 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3599 		break;
   3600 	}
   3601 	mutex_exit(wg->wg_lock);
   3602 
   3603 	if (wgp == NULL)
   3604 		return;
   3605 
   3606 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3607 
   3608 	wg_destroy_peer(wgp);
   3609 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3610 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3611 
   3612 	goto restart;
   3613 }
   3614 
   3615 static int
   3616 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
   3617 {
   3618 	struct wg_peer *wgp, *wgp0 __diagused;
   3619 	void *garbage_byname, *garbage_bypubkey;
   3620 
   3621 	mutex_enter(wg->wg_lock);
   3622 	wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
   3623 	if (wgp != NULL) {
   3624 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   3625 		    sizeof(wgp->wgp_pubkey));
   3626 		KASSERT(wgp0 == wgp);
   3627 		garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   3628 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   3629 		WG_PEER_WRITER_REMOVE(wgp);
   3630 		wg->wg_npeers--;
   3631 		if (wg->wg_npeers == 0)
   3632 			if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
   3633 		mutex_enter(wgp->wgp_lock);
   3634 		pserialize_perform(wgp->wgp_psz);
   3635 		mutex_exit(wgp->wgp_lock);
   3636 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   3637 	}
   3638 	mutex_exit(wg->wg_lock);
   3639 
   3640 	if (wgp == NULL)
   3641 		return ENOENT;
   3642 
   3643 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   3644 
   3645 	wg_destroy_peer(wgp);
   3646 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   3647 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   3648 
   3649 	return 0;
   3650 }
   3651 
   3652 static int
   3653 wg_if_attach(struct wg_softc *wg)
   3654 {
   3655 
   3656 	wg->wg_if.if_addrlen = 0;
   3657 	wg->wg_if.if_mtu = WG_MTU;
   3658 	wg->wg_if.if_flags = IFF_MULTICAST;
   3659 	wg->wg_if.if_extflags = IFEF_MPSAFE;
   3660 	wg->wg_if.if_ioctl = wg_ioctl;
   3661 	wg->wg_if.if_output = wg_output;
   3662 	wg->wg_if.if_init = wg_init;
   3663 #ifdef ALTQ
   3664 	wg->wg_if.if_start = wg_start;
   3665 #endif
   3666 	wg->wg_if.if_stop = wg_stop;
   3667 	wg->wg_if.if_type = IFT_OTHER;
   3668 	wg->wg_if.if_dlt = DLT_NULL;
   3669 	wg->wg_if.if_softc = wg;
   3670 #ifdef ALTQ
   3671 	IFQ_SET_READY(&wg->wg_if.if_snd);
   3672 #endif
   3673 	if_initialize(&wg->wg_if);
   3674 
   3675 	wg->wg_if.if_link_state = LINK_STATE_DOWN;
   3676 	if_alloc_sadl(&wg->wg_if);
   3677 	if_register(&wg->wg_if);
   3678 
   3679 	bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
   3680 
   3681 	return 0;
   3682 }
   3683 
   3684 static void
   3685 wg_if_detach(struct wg_softc *wg)
   3686 {
   3687 	struct ifnet *ifp = &wg->wg_if;
   3688 
   3689 	bpf_detach(ifp);
   3690 	if_detach(ifp);
   3691 }
   3692 
   3693 static int
   3694 wg_clone_create(struct if_clone *ifc, int unit)
   3695 {
   3696 	struct wg_softc *wg;
   3697 	int error;
   3698 
   3699 	wg_guarantee_initialized();
   3700 
   3701 	error = wg_count_inc();
   3702 	if (error)
   3703 		return error;
   3704 
   3705 	wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
   3706 
   3707 	if_initname(&wg->wg_if, ifc->ifc_name, unit);
   3708 
   3709 	PSLIST_INIT(&wg->wg_peers);
   3710 	wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
   3711 	wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
   3712 	wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
   3713 	wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3714 	wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3715 	wg->wg_rwlock = rw_obj_alloc();
   3716 	threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
   3717 	    "%s", if_name(&wg->wg_if));
   3718 	wg->wg_ops = &wg_ops_rumpkernel;
   3719 
   3720 	error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
   3721 	if (error)
   3722 		goto fail0;
   3723 
   3724 #ifdef INET
   3725 	error = wg_socreate(wg, AF_INET, &wg->wg_so4);
   3726 	if (error)
   3727 		goto fail1;
   3728 	rn_inithead((void **)&wg->wg_rtable_ipv4,
   3729 	    offsetof(struct sockaddr_in, sin_addr) * NBBY);
   3730 #endif
   3731 #ifdef INET6
   3732 	error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
   3733 	if (error)
   3734 		goto fail2;
   3735 	rn_inithead((void **)&wg->wg_rtable_ipv6,
   3736 	    offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
   3737 #endif
   3738 
   3739 	error = wg_if_attach(wg);
   3740 	if (error)
   3741 		goto fail3;
   3742 
   3743 	return 0;
   3744 
   3745 fail4: __unused
   3746 	wg_if_detach(wg);
   3747 fail3:	wg_destroy_all_peers(wg);
   3748 #ifdef INET6
   3749 	solock(wg->wg_so6);
   3750 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   3751 	sounlock(wg->wg_so6);
   3752 #endif
   3753 #ifdef INET
   3754 	solock(wg->wg_so4);
   3755 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   3756 	sounlock(wg->wg_so4);
   3757 #endif
   3758 	mutex_enter(wg->wg_intr_lock);
   3759 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   3760 	mutex_exit(wg->wg_intr_lock);
   3761 #ifdef INET6
   3762 	if (wg->wg_rtable_ipv6 != NULL)
   3763 		free(wg->wg_rtable_ipv6, M_RTABLE);
   3764 	soclose(wg->wg_so6);
   3765 fail2:
   3766 #endif
   3767 #ifdef INET
   3768 	if (wg->wg_rtable_ipv4 != NULL)
   3769 		free(wg->wg_rtable_ipv4, M_RTABLE);
   3770 	soclose(wg->wg_so4);
   3771 fail1:
   3772 #endif
   3773 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   3774 fail0:	threadpool_job_destroy(&wg->wg_job);
   3775 	rw_obj_free(wg->wg_rwlock);
   3776 	mutex_obj_free(wg->wg_intr_lock);
   3777 	mutex_obj_free(wg->wg_lock);
   3778 	thmap_destroy(wg->wg_sessions_byindex);
   3779 	thmap_destroy(wg->wg_peers_byname);
   3780 	thmap_destroy(wg->wg_peers_bypubkey);
   3781 	PSLIST_DESTROY(&wg->wg_peers);
   3782 	kmem_free(wg, sizeof(*wg));
   3783 	wg_count_dec();
   3784 	return error;
   3785 }
   3786 
   3787 static int
   3788 wg_clone_destroy(struct ifnet *ifp)
   3789 {
   3790 	struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
   3791 
   3792 #ifdef WG_RUMPKERNEL
   3793 	if (wg_user_mode(wg)) {
   3794 		rumpuser_wg_destroy(wg->wg_user);
   3795 		wg->wg_user = NULL;
   3796 	}
   3797 #endif
   3798 
   3799 	wg_if_detach(wg);
   3800 	wg_destroy_all_peers(wg);
   3801 #ifdef INET6
   3802 	solock(wg->wg_so6);
   3803 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   3804 	sounlock(wg->wg_so6);
   3805 #endif
   3806 #ifdef INET
   3807 	solock(wg->wg_so4);
   3808 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   3809 	sounlock(wg->wg_so4);
   3810 #endif
   3811 	mutex_enter(wg->wg_intr_lock);
   3812 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   3813 	mutex_exit(wg->wg_intr_lock);
   3814 #ifdef INET6
   3815 	if (wg->wg_rtable_ipv6 != NULL)
   3816 		free(wg->wg_rtable_ipv6, M_RTABLE);
   3817 	soclose(wg->wg_so6);
   3818 #endif
   3819 #ifdef INET
   3820 	if (wg->wg_rtable_ipv4 != NULL)
   3821 		free(wg->wg_rtable_ipv4, M_RTABLE);
   3822 	soclose(wg->wg_so4);
   3823 #endif
   3824 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   3825 	threadpool_job_destroy(&wg->wg_job);
   3826 	rw_obj_free(wg->wg_rwlock);
   3827 	mutex_obj_free(wg->wg_intr_lock);
   3828 	mutex_obj_free(wg->wg_lock);
   3829 	thmap_destroy(wg->wg_sessions_byindex);
   3830 	thmap_destroy(wg->wg_peers_byname);
   3831 	thmap_destroy(wg->wg_peers_bypubkey);
   3832 	PSLIST_DESTROY(&wg->wg_peers);
   3833 	kmem_free(wg, sizeof(*wg));
   3834 	wg_count_dec();
   3835 
   3836 	return 0;
   3837 }
   3838 
   3839 static struct wg_peer *
   3840 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
   3841     struct psref *psref)
   3842 {
   3843 	struct radix_node_head *rnh;
   3844 	struct radix_node *rn;
   3845 	struct wg_peer *wgp = NULL;
   3846 	struct wg_allowedip *wga;
   3847 
   3848 #ifdef WG_DEBUG_LOG
   3849 	char addrstr[128];
   3850 	sockaddr_format(sa, addrstr, sizeof(addrstr));
   3851 	WG_DLOG("sa=%s\n", addrstr);
   3852 #endif
   3853 
   3854 	rw_enter(wg->wg_rwlock, RW_READER);
   3855 
   3856 	rnh = wg_rnh(wg, sa->sa_family);
   3857 	if (rnh == NULL)
   3858 		goto out;
   3859 
   3860 	rn = rnh->rnh_matchaddr(sa, rnh);
   3861 	if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
   3862 		goto out;
   3863 
   3864 	WG_TRACE("success");
   3865 
   3866 	wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
   3867 	wgp = wga->wga_peer;
   3868 	wg_get_peer(wgp, psref);
   3869 
   3870 out:
   3871 	rw_exit(wg->wg_rwlock);
   3872 	return wgp;
   3873 }
   3874 
   3875 static void
   3876 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
   3877     struct wg_session *wgs, struct wg_msg_data *wgmd)
   3878 {
   3879 
   3880 	memset(wgmd, 0, sizeof(*wgmd));
   3881 	wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
   3882 	wgmd->wgmd_receiver = wgs->wgs_remote_index;
   3883 	/* [W] 5.4.6: msg.counter := Nm^send */
   3884 	/* [W] 5.4.6: Nm^send := Nm^send + 1 */
   3885 	wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
   3886 	WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
   3887 }
   3888 
   3889 static int
   3890 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
   3891     const struct rtentry *rt)
   3892 {
   3893 	struct wg_softc *wg = ifp->if_softc;
   3894 	struct wg_peer *wgp = NULL;
   3895 	struct wg_session *wgs = NULL;
   3896 	struct psref wgp_psref, wgs_psref;
   3897 	int bound;
   3898 	int error;
   3899 
   3900 	bound = curlwp_bind();
   3901 
   3902 	/* TODO make the nest limit configurable via sysctl */
   3903 	error = if_tunnel_check_nesting(ifp, m, 1);
   3904 	if (error) {
   3905 		WGLOG(LOG_ERR,
   3906 		    "%s: tunneling loop detected and packet dropped\n",
   3907 		    if_name(&wg->wg_if));
   3908 		goto out0;
   3909 	}
   3910 
   3911 #ifdef ALTQ
   3912 	bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
   3913 	    & ALTQF_ENABLED;
   3914 	if (altq)
   3915 		IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
   3916 #endif
   3917 
   3918 	bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
   3919 
   3920 	m->m_flags &= ~(M_BCAST|M_MCAST);
   3921 
   3922 	wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
   3923 	if (wgp == NULL) {
   3924 		WG_TRACE("peer not found");
   3925 		error = EHOSTUNREACH;
   3926 		goto out0;
   3927 	}
   3928 
   3929 	/* Clear checksum-offload flags. */
   3930 	m->m_pkthdr.csum_flags = 0;
   3931 	m->m_pkthdr.csum_data = 0;
   3932 
   3933 	/* Check whether there's an established session.  */
   3934 	wgs = wg_get_stable_session(wgp, &wgs_psref);
   3935 	if (wgs == NULL) {
   3936 		/*
   3937 		 * No established session.  If we're the first to try
   3938 		 * sending data, schedule a handshake and queue the
   3939 		 * packet for when the handshake is done; otherwise
   3940 		 * just drop the packet and let the ongoing handshake
   3941 		 * attempt continue.  We could queue more data packets
   3942 		 * but it's not clear that's worthwhile.
   3943 		 */
   3944 		if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
   3945 			m = NULL; /* consume */
   3946 			WG_TRACE("queued first packet; init handshake");
   3947 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3948 		} else {
   3949 			WG_TRACE("first packet already queued, dropping");
   3950 		}
   3951 		goto out1;
   3952 	}
   3953 
   3954 	/* There's an established session.  Toss it in the queue.  */
   3955 #ifdef ALTQ
   3956 	if (altq) {
   3957 		mutex_enter(ifp->if_snd.ifq_lock);
   3958 		if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   3959 			M_SETCTX(m, wgp);
   3960 			ALTQ_ENQUEUE(&ifp->if_snd, m, error);
   3961 			m = NULL; /* consume */
   3962 		}
   3963 		mutex_exit(ifp->if_snd.ifq_lock);
   3964 		if (m == NULL) {
   3965 			wg_start(ifp);
   3966 			goto out2;
   3967 		}
   3968 	}
   3969 #endif
   3970 	kpreempt_disable();
   3971 	const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   3972 	M_SETCTX(m, wgp);
   3973 	if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   3974 		WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   3975 		    if_name(&wg->wg_if));
   3976 		error = ENOBUFS;
   3977 		goto out3;
   3978 	}
   3979 	m = NULL;		/* consumed */
   3980 	error = 0;
   3981 out3:	kpreempt_enable();
   3982 
   3983 #ifdef ALTQ
   3984 out2:
   3985 #endif
   3986 	wg_put_session(wgs, &wgs_psref);
   3987 out1:	wg_put_peer(wgp, &wgp_psref);
   3988 out0:	m_freem(m);
   3989 	curlwp_bindx(bound);
   3990 	return error;
   3991 }
   3992 
   3993 static int
   3994 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
   3995 {
   3996 	struct psref psref;
   3997 	struct wg_sockaddr *wgsa;
   3998 	int error;
   3999 	struct socket *so;
   4000 
   4001 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   4002 	so = wg_get_so_by_peer(wgp, wgsa);
   4003 	solock(so);
   4004 	if (wgsatosa(wgsa)->sa_family == AF_INET) {
   4005 		error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
   4006 	} else {
   4007 #ifdef INET6
   4008 		error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
   4009 		    NULL, curlwp);
   4010 #else
   4011 		m_freem(m);
   4012 		error = EPFNOSUPPORT;
   4013 #endif
   4014 	}
   4015 	sounlock(so);
   4016 	wg_put_sa(wgp, wgsa, &psref);
   4017 
   4018 	return error;
   4019 }
   4020 
   4021 /* Inspired by pppoe_get_mbuf */
   4022 static struct mbuf *
   4023 wg_get_mbuf(size_t leading_len, size_t len)
   4024 {
   4025 	struct mbuf *m;
   4026 
   4027 	KASSERT(leading_len <= MCLBYTES);
   4028 	KASSERT(len <= MCLBYTES - leading_len);
   4029 
   4030 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   4031 	if (m == NULL)
   4032 		return NULL;
   4033 	if (len + leading_len > MHLEN) {
   4034 		m_clget(m, M_DONTWAIT);
   4035 		if ((m->m_flags & M_EXT) == 0) {
   4036 			m_free(m);
   4037 			return NULL;
   4038 		}
   4039 	}
   4040 	m->m_data += leading_len;
   4041 	m->m_pkthdr.len = m->m_len = len;
   4042 
   4043 	return m;
   4044 }
   4045 
   4046 static int
   4047 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
   4048     struct mbuf *m)
   4049 {
   4050 	struct wg_softc *wg = wgp->wgp_sc;
   4051 	int error;
   4052 	size_t inner_len, padded_len, encrypted_len;
   4053 	char *padded_buf = NULL;
   4054 	size_t mlen;
   4055 	struct wg_msg_data *wgmd;
   4056 	bool free_padded_buf = false;
   4057 	struct mbuf *n;
   4058 	size_t leading_len = max_hdr + sizeof(struct udphdr);
   4059 
   4060 	mlen = m_length(m);
   4061 	inner_len = mlen;
   4062 	padded_len = roundup(mlen, 16);
   4063 	encrypted_len = padded_len + WG_AUTHTAG_LEN;
   4064 	WG_DLOG("inner=%zu, padded=%zu, encrypted_len=%zu\n",
   4065 	    inner_len, padded_len, encrypted_len);
   4066 	if (mlen != 0) {
   4067 		bool success;
   4068 		success = m_ensure_contig(&m, padded_len);
   4069 		if (success) {
   4070 			padded_buf = mtod(m, char *);
   4071 		} else {
   4072 			padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
   4073 			if (padded_buf == NULL) {
   4074 				error = ENOBUFS;
   4075 				goto end;
   4076 			}
   4077 			free_padded_buf = true;
   4078 			m_copydata(m, 0, mlen, padded_buf);
   4079 		}
   4080 		memset(padded_buf + mlen, 0, padded_len - inner_len);
   4081 	}
   4082 
   4083 	n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
   4084 	if (n == NULL) {
   4085 		error = ENOBUFS;
   4086 		goto end;
   4087 	}
   4088 	KASSERT(n->m_len >= sizeof(*wgmd));
   4089 	wgmd = mtod(n, struct wg_msg_data *);
   4090 	wg_fill_msg_data(wg, wgp, wgs, wgmd);
   4091 #ifdef WG_DEBUG_PACKET
   4092 	if (wg_debug & WG_DEBUG_FLAGS_PACKET) {
   4093 		hexdump(aprint_debug, "wgmd", wgmd, sizeof(*wgmd));
   4094 		hexdump(aprint_debug, "padded_buf", padded_buf,
   4095 		    padded_len);
   4096 	}
   4097 #endif
   4098 	/* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
   4099 	wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
   4100 	    wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
   4101 	    padded_buf, padded_len,
   4102 	    NULL, 0);
   4103 
   4104 	error = wg->wg_ops->send_data_msg(wgp, n);
   4105 	if (error == 0) {
   4106 		struct ifnet *ifp = &wg->wg_if;
   4107 		if_statadd(ifp, if_obytes, mlen);
   4108 		if_statinc(ifp, if_opackets);
   4109 		if (wgs->wgs_is_initiator &&
   4110 		    wgs->wgs_time_last_data_sent == 0) {
   4111 			/*
   4112 			 * [W] 6.2 Transport Message Limits
   4113 			 * "if a peer is the initiator of a current secure
   4114 			 *  session, WireGuard will send a handshake initiation
   4115 			 *  message to begin a new secure session if, after
   4116 			 *  transmitting a transport data message, the current
   4117 			 *  secure session is REKEY-AFTER-TIME seconds old,"
   4118 			 */
   4119 			wg_schedule_rekey_timer(wgp);
   4120 		}
   4121 		wgs->wgs_time_last_data_sent = time_uptime;
   4122 		if (wg_session_get_send_counter(wgs) >=
   4123 		    wg_rekey_after_messages) {
   4124 			/*
   4125 			 * [W] 6.2 Transport Message Limits
   4126 			 * "WireGuard will try to create a new session, by
   4127 			 *  sending a handshake initiation message (section
   4128 			 *  5.4.2), after it has sent REKEY-AFTER-MESSAGES
   4129 			 *  transport data messages..."
   4130 			 */
   4131 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   4132 		}
   4133 	}
   4134 end:
   4135 	m_freem(m);
   4136 	if (free_padded_buf)
   4137 		kmem_intr_free(padded_buf, padded_len);
   4138 	return error;
   4139 }
   4140 
   4141 static void
   4142 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
   4143 {
   4144 	pktqueue_t *pktq;
   4145 	size_t pktlen;
   4146 
   4147 	KASSERT(af == AF_INET || af == AF_INET6);
   4148 
   4149 	WG_TRACE("");
   4150 
   4151 	m_set_rcvif(m, ifp);
   4152 	pktlen = m->m_pkthdr.len;
   4153 
   4154 	bpf_mtap_af(ifp, af, m, BPF_D_IN);
   4155 
   4156 	switch (af) {
   4157 	case AF_INET:
   4158 		pktq = ip_pktq;
   4159 		break;
   4160 #ifdef INET6
   4161 	case AF_INET6:
   4162 		pktq = ip6_pktq;
   4163 		break;
   4164 #endif
   4165 	default:
   4166 		panic("invalid af=%d", af);
   4167 	}
   4168 
   4169 	kpreempt_disable();
   4170 	const u_int h = curcpu()->ci_index;
   4171 	if (__predict_true(pktq_enqueue(pktq, m, h))) {
   4172 		if_statadd(ifp, if_ibytes, pktlen);
   4173 		if_statinc(ifp, if_ipackets);
   4174 	} else {
   4175 		m_freem(m);
   4176 	}
   4177 	kpreempt_enable();
   4178 }
   4179 
   4180 static void
   4181 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
   4182     const uint8_t privkey[WG_STATIC_KEY_LEN])
   4183 {
   4184 
   4185 	crypto_scalarmult_base(pubkey, privkey);
   4186 }
   4187 
   4188 static int
   4189 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
   4190 {
   4191 	struct radix_node_head *rnh;
   4192 	struct radix_node *rn;
   4193 	int error = 0;
   4194 
   4195 	rw_enter(wg->wg_rwlock, RW_WRITER);
   4196 	rnh = wg_rnh(wg, wga->wga_family);
   4197 	KASSERT(rnh != NULL);
   4198 	rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
   4199 	    wga->wga_nodes);
   4200 	rw_exit(wg->wg_rwlock);
   4201 
   4202 	if (rn == NULL)
   4203 		error = EEXIST;
   4204 
   4205 	return error;
   4206 }
   4207 
   4208 static int
   4209 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
   4210     struct wg_peer **wgpp)
   4211 {
   4212 	int error = 0;
   4213 	const void *pubkey;
   4214 	size_t pubkey_len;
   4215 	const void *psk;
   4216 	size_t psk_len;
   4217 	const char *name = NULL;
   4218 
   4219 	if (prop_dictionary_get_string(peer, "name", &name)) {
   4220 		if (strlen(name) > WG_PEER_NAME_MAXLEN) {
   4221 			error = EINVAL;
   4222 			goto out;
   4223 		}
   4224 	}
   4225 
   4226 	if (!prop_dictionary_get_data(peer, "public_key",
   4227 		&pubkey, &pubkey_len)) {
   4228 		error = EINVAL;
   4229 		goto out;
   4230 	}
   4231 #ifdef WG_DEBUG_DUMP
   4232         if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4233 		char *hex = gethexdump(pubkey, pubkey_len);
   4234 		log(LOG_DEBUG, "pubkey=%p, pubkey_len=%zu\n%s\n",
   4235 		    pubkey, pubkey_len, hex);
   4236 		puthexdump(hex, pubkey, pubkey_len);
   4237 	}
   4238 #endif
   4239 
   4240 	struct wg_peer *wgp = wg_alloc_peer(wg);
   4241 	memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
   4242 	if (name != NULL)
   4243 		strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
   4244 
   4245 	if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
   4246 		if (psk_len != sizeof(wgp->wgp_psk)) {
   4247 			error = EINVAL;
   4248 			goto out;
   4249 		}
   4250 		memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
   4251 	}
   4252 
   4253 	const void *addr;
   4254 	size_t addr_len;
   4255 	struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
   4256 
   4257 	if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
   4258 		goto skip_endpoint;
   4259 	if (addr_len < sizeof(*wgsatosa(wgsa)) ||
   4260 	    addr_len > sizeof(*wgsatoss(wgsa))) {
   4261 		error = EINVAL;
   4262 		goto out;
   4263 	}
   4264 	memcpy(wgsatoss(wgsa), addr, addr_len);
   4265 	switch (wgsa_family(wgsa)) {
   4266 	case AF_INET:
   4267 #ifdef INET6
   4268 	case AF_INET6:
   4269 #endif
   4270 		break;
   4271 	default:
   4272 		error = EPFNOSUPPORT;
   4273 		goto out;
   4274 	}
   4275 	if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
   4276 		error = EINVAL;
   4277 		goto out;
   4278 	}
   4279     {
   4280 	char addrstr[128];
   4281 	sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
   4282 	WG_DLOG("addr=%s\n", addrstr);
   4283     }
   4284 	wgp->wgp_endpoint_available = true;
   4285 
   4286 	prop_array_t allowedips;
   4287 skip_endpoint:
   4288 	allowedips = prop_dictionary_get(peer, "allowedips");
   4289 	if (allowedips == NULL)
   4290 		goto skip;
   4291 
   4292 	prop_object_iterator_t _it = prop_array_iterator(allowedips);
   4293 	prop_dictionary_t prop_allowedip;
   4294 	int j = 0;
   4295 	while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
   4296 		struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4297 
   4298 		if (!prop_dictionary_get_int(prop_allowedip, "family",
   4299 			&wga->wga_family))
   4300 			continue;
   4301 		if (!prop_dictionary_get_data(prop_allowedip, "ip",
   4302 			&addr, &addr_len))
   4303 			continue;
   4304 		if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
   4305 			&wga->wga_cidr))
   4306 			continue;
   4307 
   4308 		switch (wga->wga_family) {
   4309 		case AF_INET: {
   4310 			struct sockaddr_in sin;
   4311 			char addrstr[128];
   4312 			struct in_addr mask;
   4313 			struct sockaddr_in sin_mask;
   4314 
   4315 			if (addr_len != sizeof(struct in_addr))
   4316 				return EINVAL;
   4317 			memcpy(&wga->wga_addr4, addr, addr_len);
   4318 
   4319 			sockaddr_in_init(&sin, (const struct in_addr *)addr,
   4320 			    0);
   4321 			sockaddr_copy(&wga->wga_sa_addr,
   4322 			    sizeof(sin), sintosa(&sin));
   4323 
   4324 			sockaddr_format(sintosa(&sin),
   4325 			    addrstr, sizeof(addrstr));
   4326 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4327 
   4328 			in_len2mask(&mask, wga->wga_cidr);
   4329 			sockaddr_in_init(&sin_mask, &mask, 0);
   4330 			sockaddr_copy(&wga->wga_sa_mask,
   4331 			    sizeof(sin_mask), sintosa(&sin_mask));
   4332 
   4333 			break;
   4334 		    }
   4335 #ifdef INET6
   4336 		case AF_INET6: {
   4337 			struct sockaddr_in6 sin6;
   4338 			char addrstr[128];
   4339 			struct in6_addr mask;
   4340 			struct sockaddr_in6 sin6_mask;
   4341 
   4342 			if (addr_len != sizeof(struct in6_addr))
   4343 				return EINVAL;
   4344 			memcpy(&wga->wga_addr6, addr, addr_len);
   4345 
   4346 			sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
   4347 			    0, 0, 0);
   4348 			sockaddr_copy(&wga->wga_sa_addr,
   4349 			    sizeof(sin6), sin6tosa(&sin6));
   4350 
   4351 			sockaddr_format(sin6tosa(&sin6),
   4352 			    addrstr, sizeof(addrstr));
   4353 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4354 
   4355 			in6_prefixlen2mask(&mask, wga->wga_cidr);
   4356 			sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
   4357 			sockaddr_copy(&wga->wga_sa_mask,
   4358 			    sizeof(sin6_mask), sin6tosa(&sin6_mask));
   4359 
   4360 			break;
   4361 		    }
   4362 #endif
   4363 		default:
   4364 			error = EINVAL;
   4365 			goto out;
   4366 		}
   4367 		wga->wga_peer = wgp;
   4368 
   4369 		error = wg_rtable_add_route(wg, wga);
   4370 		if (error != 0)
   4371 			goto out;
   4372 
   4373 		j++;
   4374 	}
   4375 	wgp->wgp_n_allowedips = j;
   4376 skip:
   4377 	*wgpp = wgp;
   4378 out:
   4379 	return error;
   4380 }
   4381 
   4382 static int
   4383 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
   4384 {
   4385 	int error;
   4386 	char *buf;
   4387 
   4388 	WG_DLOG("buf=%p, len=%zu\n", ifd->ifd_data, ifd->ifd_len);
   4389 	if (ifd->ifd_len >= WG_MAX_PROPLEN)
   4390 		return E2BIG;
   4391 	buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
   4392 	error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
   4393 	if (error != 0)
   4394 		return error;
   4395 	buf[ifd->ifd_len] = '\0';
   4396 #ifdef WG_DEBUG_DUMP
   4397 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4398 		log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
   4399 		    (const char *)buf);
   4400 	}
   4401 #endif
   4402 	*_buf = buf;
   4403 	return 0;
   4404 }
   4405 
   4406 static int
   4407 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
   4408 {
   4409 	int error;
   4410 	prop_dictionary_t prop_dict;
   4411 	char *buf = NULL;
   4412 	const void *privkey;
   4413 	size_t privkey_len;
   4414 
   4415 	error = wg_alloc_prop_buf(&buf, ifd);
   4416 	if (error != 0)
   4417 		return error;
   4418 	error = EINVAL;
   4419 	prop_dict = prop_dictionary_internalize(buf);
   4420 	if (prop_dict == NULL)
   4421 		goto out;
   4422 	if (!prop_dictionary_get_data(prop_dict, "private_key",
   4423 		&privkey, &privkey_len))
   4424 		goto out;
   4425 #ifdef WG_DEBUG_DUMP
   4426 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4427 		char *hex = gethexdump(privkey, privkey_len);
   4428 		log(LOG_DEBUG, "privkey=%p, privkey_len=%zu\n%s\n",
   4429 		    privkey, privkey_len, hex);
   4430 		puthexdump(hex, privkey, privkey_len);
   4431 	}
   4432 #endif
   4433 	if (privkey_len != WG_STATIC_KEY_LEN)
   4434 		goto out;
   4435 	memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
   4436 	wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
   4437 	error = 0;
   4438 
   4439 out:
   4440 	kmem_free(buf, ifd->ifd_len + 1);
   4441 	return error;
   4442 }
   4443 
   4444 static int
   4445 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
   4446 {
   4447 	int error;
   4448 	prop_dictionary_t prop_dict;
   4449 	char *buf = NULL;
   4450 	uint16_t port;
   4451 
   4452 	error = wg_alloc_prop_buf(&buf, ifd);
   4453 	if (error != 0)
   4454 		return error;
   4455 	error = EINVAL;
   4456 	prop_dict = prop_dictionary_internalize(buf);
   4457 	if (prop_dict == NULL)
   4458 		goto out;
   4459 	if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
   4460 		goto out;
   4461 
   4462 	error = wg->wg_ops->bind_port(wg, (uint16_t)port);
   4463 
   4464 out:
   4465 	kmem_free(buf, ifd->ifd_len + 1);
   4466 	return error;
   4467 }
   4468 
   4469 static int
   4470 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4471 {
   4472 	int error;
   4473 	prop_dictionary_t prop_dict;
   4474 	char *buf = NULL;
   4475 	struct wg_peer *wgp = NULL, *wgp0 __diagused;
   4476 
   4477 	error = wg_alloc_prop_buf(&buf, ifd);
   4478 	if (error != 0)
   4479 		return error;
   4480 	error = EINVAL;
   4481 	prop_dict = prop_dictionary_internalize(buf);
   4482 	if (prop_dict == NULL)
   4483 		goto out;
   4484 
   4485 	error = wg_handle_prop_peer(wg, prop_dict, &wgp);
   4486 	if (error != 0)
   4487 		goto out;
   4488 
   4489 	mutex_enter(wg->wg_lock);
   4490 	if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4491 		sizeof(wgp->wgp_pubkey)) != NULL ||
   4492 	    (wgp->wgp_name[0] &&
   4493 		thmap_get(wg->wg_peers_byname, wgp->wgp_name,
   4494 		    strlen(wgp->wgp_name)) != NULL)) {
   4495 		mutex_exit(wg->wg_lock);
   4496 		wg_destroy_peer(wgp);
   4497 		error = EEXIST;
   4498 		goto out;
   4499 	}
   4500 	wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4501 	    sizeof(wgp->wgp_pubkey), wgp);
   4502 	KASSERT(wgp0 == wgp);
   4503 	if (wgp->wgp_name[0]) {
   4504 		wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
   4505 		    strlen(wgp->wgp_name), wgp);
   4506 		KASSERT(wgp0 == wgp);
   4507 	}
   4508 	WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
   4509 	wg->wg_npeers++;
   4510 	mutex_exit(wg->wg_lock);
   4511 
   4512 	if_link_state_change(&wg->wg_if, LINK_STATE_UP);
   4513 
   4514 out:
   4515 	kmem_free(buf, ifd->ifd_len + 1);
   4516 	return error;
   4517 }
   4518 
   4519 static int
   4520 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4521 {
   4522 	int error;
   4523 	prop_dictionary_t prop_dict;
   4524 	char *buf = NULL;
   4525 	const char *name;
   4526 
   4527 	error = wg_alloc_prop_buf(&buf, ifd);
   4528 	if (error != 0)
   4529 		return error;
   4530 	error = EINVAL;
   4531 	prop_dict = prop_dictionary_internalize(buf);
   4532 	if (prop_dict == NULL)
   4533 		goto out;
   4534 
   4535 	if (!prop_dictionary_get_string(prop_dict, "name", &name))
   4536 		goto out;
   4537 	if (strlen(name) > WG_PEER_NAME_MAXLEN)
   4538 		goto out;
   4539 
   4540 	error = wg_destroy_peer_name(wg, name);
   4541 out:
   4542 	kmem_free(buf, ifd->ifd_len + 1);
   4543 	return error;
   4544 }
   4545 
   4546 static bool
   4547 wg_is_authorized(struct wg_softc *wg, u_long cmd)
   4548 {
   4549 	int au = cmd == SIOCGDRVSPEC ?
   4550 	    KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
   4551 	    KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
   4552 	return kauth_authorize_network(kauth_cred_get(),
   4553 	    KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
   4554 	    (void *)cmd, NULL) == 0;
   4555 }
   4556 
   4557 static int
   4558 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
   4559 {
   4560 	int error = ENOMEM;
   4561 	prop_dictionary_t prop_dict;
   4562 	prop_array_t peers = NULL;
   4563 	char *buf;
   4564 	struct wg_peer *wgp;
   4565 	int s, i;
   4566 
   4567 	prop_dict = prop_dictionary_create();
   4568 	if (prop_dict == NULL)
   4569 		goto error;
   4570 
   4571 	if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   4572 		if (!prop_dictionary_set_data(prop_dict, "private_key",
   4573 			wg->wg_privkey, WG_STATIC_KEY_LEN))
   4574 			goto error;
   4575 	}
   4576 
   4577 	if (wg->wg_listen_port != 0) {
   4578 		if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
   4579 			wg->wg_listen_port))
   4580 			goto error;
   4581 	}
   4582 
   4583 	if (wg->wg_npeers == 0)
   4584 		goto skip_peers;
   4585 
   4586 	peers = prop_array_create();
   4587 	if (peers == NULL)
   4588 		goto error;
   4589 
   4590 	s = pserialize_read_enter();
   4591 	i = 0;
   4592 	WG_PEER_READER_FOREACH(wgp, wg) {
   4593 		struct wg_sockaddr *wgsa;
   4594 		struct psref wgp_psref, wgsa_psref;
   4595 		prop_dictionary_t prop_peer;
   4596 
   4597 		wg_get_peer(wgp, &wgp_psref);
   4598 		pserialize_read_exit(s);
   4599 
   4600 		prop_peer = prop_dictionary_create();
   4601 		if (prop_peer == NULL)
   4602 			goto next;
   4603 
   4604 		if (strlen(wgp->wgp_name) > 0) {
   4605 			if (!prop_dictionary_set_string(prop_peer, "name",
   4606 				wgp->wgp_name))
   4607 				goto next;
   4608 		}
   4609 
   4610 		if (!prop_dictionary_set_data(prop_peer, "public_key",
   4611 			wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
   4612 			goto next;
   4613 
   4614 		uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
   4615 		if (!consttime_memequal(wgp->wgp_psk, psk_zero,
   4616 			sizeof(wgp->wgp_psk))) {
   4617 			if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   4618 				if (!prop_dictionary_set_data(prop_peer,
   4619 					"preshared_key",
   4620 					wgp->wgp_psk, sizeof(wgp->wgp_psk)))
   4621 					goto next;
   4622 			}
   4623 		}
   4624 
   4625 		wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
   4626 		CTASSERT(AF_UNSPEC == 0);
   4627 		if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
   4628 		    !prop_dictionary_set_data(prop_peer, "endpoint",
   4629 			wgsatoss(wgsa),
   4630 			sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
   4631 			wg_put_sa(wgp, wgsa, &wgsa_psref);
   4632 			goto next;
   4633 		}
   4634 		wg_put_sa(wgp, wgsa, &wgsa_psref);
   4635 
   4636 		const struct timespec *t = &wgp->wgp_last_handshake_time;
   4637 
   4638 		if (!prop_dictionary_set_uint64(prop_peer,
   4639 			"last_handshake_time_sec", (uint64_t)t->tv_sec))
   4640 			goto next;
   4641 		if (!prop_dictionary_set_uint32(prop_peer,
   4642 			"last_handshake_time_nsec", (uint32_t)t->tv_nsec))
   4643 			goto next;
   4644 
   4645 		if (wgp->wgp_n_allowedips == 0)
   4646 			goto skip_allowedips;
   4647 
   4648 		prop_array_t allowedips = prop_array_create();
   4649 		if (allowedips == NULL)
   4650 			goto next;
   4651 		for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
   4652 			struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4653 			prop_dictionary_t prop_allowedip;
   4654 
   4655 			prop_allowedip = prop_dictionary_create();
   4656 			if (prop_allowedip == NULL)
   4657 				break;
   4658 
   4659 			if (!prop_dictionary_set_int(prop_allowedip, "family",
   4660 				wga->wga_family))
   4661 				goto _next;
   4662 			if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
   4663 				wga->wga_cidr))
   4664 				goto _next;
   4665 
   4666 			switch (wga->wga_family) {
   4667 			case AF_INET:
   4668 				if (!prop_dictionary_set_data(prop_allowedip,
   4669 					"ip", &wga->wga_addr4,
   4670 					sizeof(wga->wga_addr4)))
   4671 					goto _next;
   4672 				break;
   4673 #ifdef INET6
   4674 			case AF_INET6:
   4675 				if (!prop_dictionary_set_data(prop_allowedip,
   4676 					"ip", &wga->wga_addr6,
   4677 					sizeof(wga->wga_addr6)))
   4678 					goto _next;
   4679 				break;
   4680 #endif
   4681 			default:
   4682 				break;
   4683 			}
   4684 			prop_array_set(allowedips, j, prop_allowedip);
   4685 		_next:
   4686 			prop_object_release(prop_allowedip);
   4687 		}
   4688 		prop_dictionary_set(prop_peer, "allowedips", allowedips);
   4689 		prop_object_release(allowedips);
   4690 
   4691 	skip_allowedips:
   4692 
   4693 		prop_array_set(peers, i, prop_peer);
   4694 	next:
   4695 		if (prop_peer)
   4696 			prop_object_release(prop_peer);
   4697 		i++;
   4698 
   4699 		s = pserialize_read_enter();
   4700 		wg_put_peer(wgp, &wgp_psref);
   4701 	}
   4702 	pserialize_read_exit(s);
   4703 
   4704 	prop_dictionary_set(prop_dict, "peers", peers);
   4705 	prop_object_release(peers);
   4706 	peers = NULL;
   4707 
   4708 skip_peers:
   4709 	buf = prop_dictionary_externalize(prop_dict);
   4710 	if (buf == NULL)
   4711 		goto error;
   4712 	if (ifd->ifd_len < (strlen(buf) + 1)) {
   4713 		error = EINVAL;
   4714 		goto error;
   4715 	}
   4716 	error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
   4717 
   4718 	free(buf, 0);
   4719 error:
   4720 	if (peers != NULL)
   4721 		prop_object_release(peers);
   4722 	if (prop_dict != NULL)
   4723 		prop_object_release(prop_dict);
   4724 
   4725 	return error;
   4726 }
   4727 
   4728 static int
   4729 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   4730 {
   4731 	struct wg_softc *wg = ifp->if_softc;
   4732 	struct ifreq *ifr = data;
   4733 	struct ifaddr *ifa = data;
   4734 	struct ifdrv *ifd = data;
   4735 	int error = 0;
   4736 
   4737 	switch (cmd) {
   4738 	case SIOCINITIFADDR:
   4739 		if (ifa->ifa_addr->sa_family != AF_LINK &&
   4740 		    (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   4741 		    (IFF_UP | IFF_RUNNING)) {
   4742 			ifp->if_flags |= IFF_UP;
   4743 			error = if_init(ifp);
   4744 		}
   4745 		return error;
   4746 	case SIOCADDMULTI:
   4747 	case SIOCDELMULTI:
   4748 		switch (ifr->ifr_addr.sa_family) {
   4749 		case AF_INET:	/* IP supports Multicast */
   4750 			break;
   4751 #ifdef INET6
   4752 		case AF_INET6:	/* IP6 supports Multicast */
   4753 			break;
   4754 #endif
   4755 		default:  /* Other protocols doesn't support Multicast */
   4756 			error = EAFNOSUPPORT;
   4757 			break;
   4758 		}
   4759 		return error;
   4760 	case SIOCSDRVSPEC:
   4761 		if (!wg_is_authorized(wg, cmd)) {
   4762 			return EPERM;
   4763 		}
   4764 		switch (ifd->ifd_cmd) {
   4765 		case WG_IOCTL_SET_PRIVATE_KEY:
   4766 			error = wg_ioctl_set_private_key(wg, ifd);
   4767 			break;
   4768 		case WG_IOCTL_SET_LISTEN_PORT:
   4769 			error = wg_ioctl_set_listen_port(wg, ifd);
   4770 			break;
   4771 		case WG_IOCTL_ADD_PEER:
   4772 			error = wg_ioctl_add_peer(wg, ifd);
   4773 			break;
   4774 		case WG_IOCTL_DELETE_PEER:
   4775 			error = wg_ioctl_delete_peer(wg, ifd);
   4776 			break;
   4777 		default:
   4778 			error = EINVAL;
   4779 			break;
   4780 		}
   4781 		return error;
   4782 	case SIOCGDRVSPEC:
   4783 		return wg_ioctl_get(wg, ifd);
   4784 	case SIOCSIFFLAGS:
   4785 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   4786 			break;
   4787 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   4788 		case IFF_RUNNING:
   4789 			/*
   4790 			 * If interface is marked down and it is running,
   4791 			 * then stop and disable it.
   4792 			 */
   4793 			if_stop(ifp, 1);
   4794 			break;
   4795 		case IFF_UP:
   4796 			/*
   4797 			 * If interface is marked up and it is stopped, then
   4798 			 * start it.
   4799 			 */
   4800 			error = if_init(ifp);
   4801 			break;
   4802 		default:
   4803 			break;
   4804 		}
   4805 		return error;
   4806 #ifdef WG_RUMPKERNEL
   4807 	case SIOCSLINKSTR:
   4808 		error = wg_ioctl_linkstr(wg, ifd);
   4809 		if (error == 0)
   4810 			wg->wg_ops = &wg_ops_rumpuser;
   4811 		return error;
   4812 #endif
   4813 	default:
   4814 		break;
   4815 	}
   4816 
   4817 	error = ifioctl_common(ifp, cmd, data);
   4818 
   4819 #ifdef WG_RUMPKERNEL
   4820 	if (!wg_user_mode(wg))
   4821 		return error;
   4822 
   4823 	/* Do the same to the corresponding tun device on the host */
   4824 	/*
   4825 	 * XXX Actually the command has not been handled yet.  It
   4826 	 *     will be handled via pr_ioctl form doifioctl later.
   4827 	 */
   4828 	switch (cmd) {
   4829 	case SIOCAIFADDR:
   4830 	case SIOCDIFADDR: {
   4831 		struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
   4832 		struct in_aliasreq *ifra = &_ifra;
   4833 		KASSERT(error == ENOTTY);
   4834 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   4835 		    IFNAMSIZ);
   4836 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
   4837 		if (error == 0)
   4838 			error = ENOTTY;
   4839 		break;
   4840 	}
   4841 #ifdef INET6
   4842 	case SIOCAIFADDR_IN6:
   4843 	case SIOCDIFADDR_IN6: {
   4844 		struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
   4845 		struct in6_aliasreq *ifra = &_ifra;
   4846 		KASSERT(error == ENOTTY);
   4847 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   4848 		    IFNAMSIZ);
   4849 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
   4850 		if (error == 0)
   4851 			error = ENOTTY;
   4852 		break;
   4853 	}
   4854 #endif
   4855 	}
   4856 #endif /* WG_RUMPKERNEL */
   4857 
   4858 	return error;
   4859 }
   4860 
   4861 static int
   4862 wg_init(struct ifnet *ifp)
   4863 {
   4864 
   4865 	ifp->if_flags |= IFF_RUNNING;
   4866 
   4867 	/* TODO flush pending packets. */
   4868 	return 0;
   4869 }
   4870 
   4871 #ifdef ALTQ
   4872 static void
   4873 wg_start(struct ifnet *ifp)
   4874 {
   4875 	struct mbuf *m;
   4876 
   4877 	for (;;) {
   4878 		IFQ_DEQUEUE(&ifp->if_snd, m);
   4879 		if (m == NULL)
   4880 			break;
   4881 
   4882 		kpreempt_disable();
   4883 		const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   4884 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   4885 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   4886 			    if_name(ifp));
   4887 			m_freem(m);
   4888 		}
   4889 		kpreempt_enable();
   4890 	}
   4891 }
   4892 #endif
   4893 
   4894 static void
   4895 wg_stop(struct ifnet *ifp, int disable)
   4896 {
   4897 
   4898 	KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
   4899 	ifp->if_flags &= ~IFF_RUNNING;
   4900 
   4901 	/* Need to do something? */
   4902 }
   4903 
   4904 #ifdef WG_DEBUG_PARAMS
   4905 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
   4906 {
   4907 	const struct sysctlnode *node = NULL;
   4908 
   4909 	sysctl_createv(clog, 0, NULL, &node,
   4910 	    CTLFLAG_PERMANENT,
   4911 	    CTLTYPE_NODE, "wg",
   4912 	    SYSCTL_DESCR("wg(4)"),
   4913 	    NULL, 0, NULL, 0,
   4914 	    CTL_NET, CTL_CREATE, CTL_EOL);
   4915 	sysctl_createv(clog, 0, &node, NULL,
   4916 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4917 	    CTLTYPE_QUAD, "rekey_after_messages",
   4918 	    SYSCTL_DESCR("session liftime by messages"),
   4919 	    NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
   4920 	sysctl_createv(clog, 0, &node, NULL,
   4921 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4922 	    CTLTYPE_INT, "rekey_after_time",
   4923 	    SYSCTL_DESCR("session liftime"),
   4924 	    NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
   4925 	sysctl_createv(clog, 0, &node, NULL,
   4926 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4927 	    CTLTYPE_INT, "rekey_timeout",
   4928 	    SYSCTL_DESCR("session handshake retry time"),
   4929 	    NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
   4930 	sysctl_createv(clog, 0, &node, NULL,
   4931 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4932 	    CTLTYPE_INT, "rekey_attempt_time",
   4933 	    SYSCTL_DESCR("session handshake timeout"),
   4934 	    NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
   4935 	sysctl_createv(clog, 0, &node, NULL,
   4936 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4937 	    CTLTYPE_INT, "keepalive_timeout",
   4938 	    SYSCTL_DESCR("keepalive timeout"),
   4939 	    NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
   4940 	sysctl_createv(clog, 0, &node, NULL,
   4941 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4942 	    CTLTYPE_BOOL, "force_underload",
   4943 	    SYSCTL_DESCR("force to detemine under load"),
   4944 	    NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
   4945 	sysctl_createv(clog, 0, &node, NULL,
   4946 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4947 	    CTLTYPE_INT, "debug",
   4948 	    SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
   4949 	    NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
   4950 }
   4951 #endif
   4952 
   4953 #ifdef WG_RUMPKERNEL
   4954 static bool
   4955 wg_user_mode(struct wg_softc *wg)
   4956 {
   4957 
   4958 	return wg->wg_user != NULL;
   4959 }
   4960 
   4961 static int
   4962 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
   4963 {
   4964 	struct ifnet *ifp = &wg->wg_if;
   4965 	int error;
   4966 
   4967 	if (ifp->if_flags & IFF_UP)
   4968 		return EBUSY;
   4969 
   4970 	if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
   4971 		/* XXX do nothing */
   4972 		return 0;
   4973 	} else if (ifd->ifd_cmd != 0) {
   4974 		return EINVAL;
   4975 	} else if (wg->wg_user != NULL) {
   4976 		return EBUSY;
   4977 	}
   4978 
   4979 	/* Assume \0 included */
   4980 	if (ifd->ifd_len > IFNAMSIZ) {
   4981 		return E2BIG;
   4982 	} else if (ifd->ifd_len < 1) {
   4983 		return EINVAL;
   4984 	}
   4985 
   4986 	char tun_name[IFNAMSIZ];
   4987 	error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
   4988 	if (error != 0)
   4989 		return error;
   4990 
   4991 	if (strncmp(tun_name, "tun", 3) != 0)
   4992 		return EINVAL;
   4993 
   4994 	error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
   4995 
   4996 	return error;
   4997 }
   4998 
   4999 static int
   5000 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
   5001 {
   5002 	int error;
   5003 	struct psref psref;
   5004 	struct wg_sockaddr *wgsa;
   5005 	struct wg_softc *wg = wgp->wgp_sc;
   5006 	struct iovec iov[1];
   5007 
   5008 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   5009 
   5010 	iov[0].iov_base = mtod(m, void *);
   5011 	iov[0].iov_len = m->m_len;
   5012 
   5013 	/* Send messages to a peer via an ordinary socket. */
   5014 	error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
   5015 
   5016 	wg_put_sa(wgp, wgsa, &psref);
   5017 
   5018 	m_freem(m);
   5019 
   5020 	return error;
   5021 }
   5022 
   5023 static void
   5024 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
   5025 {
   5026 	struct wg_softc *wg = ifp->if_softc;
   5027 	struct iovec iov[2];
   5028 	struct sockaddr_storage ss;
   5029 
   5030 	KASSERT(af == AF_INET || af == AF_INET6);
   5031 
   5032 	WG_TRACE("");
   5033 
   5034 	if (af == AF_INET) {
   5035 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   5036 		struct ip *ip;
   5037 
   5038 		KASSERT(m->m_len >= sizeof(struct ip));
   5039 		ip = mtod(m, struct ip *);
   5040 		sockaddr_in_init(sin, &ip->ip_dst, 0);
   5041 	} else {
   5042 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   5043 		struct ip6_hdr *ip6;
   5044 
   5045 		KASSERT(m->m_len >= sizeof(struct ip6_hdr));
   5046 		ip6 = mtod(m, struct ip6_hdr *);
   5047 		sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
   5048 	}
   5049 
   5050 	iov[0].iov_base = &ss;
   5051 	iov[0].iov_len = ss.ss_len;
   5052 	iov[1].iov_base = mtod(m, void *);
   5053 	iov[1].iov_len = m->m_len;
   5054 
   5055 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5056 
   5057 	/* Send decrypted packets to users via a tun. */
   5058 	rumpuser_wg_send_user(wg->wg_user, iov, 2);
   5059 
   5060 	m_freem(m);
   5061 }
   5062 
   5063 static int
   5064 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
   5065 {
   5066 	int error;
   5067 	uint16_t old_port = wg->wg_listen_port;
   5068 
   5069 	if (port != 0 && old_port == port)
   5070 		return 0;
   5071 
   5072 	error = rumpuser_wg_sock_bind(wg->wg_user, port);
   5073 	if (error == 0)
   5074 		wg->wg_listen_port = port;
   5075 	return error;
   5076 }
   5077 
   5078 /*
   5079  * Receive user packets.
   5080  */
   5081 void
   5082 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5083 {
   5084 	struct ifnet *ifp = &wg->wg_if;
   5085 	struct mbuf *m;
   5086 	const struct sockaddr *dst;
   5087 
   5088 	WG_TRACE("");
   5089 
   5090 	dst = iov[0].iov_base;
   5091 
   5092 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5093 	if (m == NULL)
   5094 		return;
   5095 	m->m_len = m->m_pkthdr.len = 0;
   5096 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5097 
   5098 	WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
   5099 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5100 
   5101 	(void)wg_output(ifp, m, dst, NULL);
   5102 }
   5103 
   5104 /*
   5105  * Receive packets from a peer.
   5106  */
   5107 void
   5108 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5109 {
   5110 	struct mbuf *m;
   5111 	const struct sockaddr *src;
   5112 	int bound;
   5113 
   5114 	WG_TRACE("");
   5115 
   5116 	src = iov[0].iov_base;
   5117 
   5118 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5119 	if (m == NULL)
   5120 		return;
   5121 	m->m_len = m->m_pkthdr.len = 0;
   5122 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5123 
   5124 	WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
   5125 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5126 
   5127 	bound = curlwp_bind();
   5128 	wg_handle_packet(wg, m, src);
   5129 	curlwp_bindx(bound);
   5130 }
   5131 #endif /* WG_RUMPKERNEL */
   5132 
   5133 /*
   5134  * Module infrastructure
   5135  */
   5136 #include "if_module.h"
   5137 
   5138 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
   5139