lpm.c revision 1.6 1 1.1 christos /*-
2 1.1 christos * Copyright (c) 2016 Mindaugas Rasiukevicius <rmind at noxt eu>
3 1.1 christos * All rights reserved.
4 1.1 christos *
5 1.1 christos * Redistribution and use in source and binary forms, with or without
6 1.1 christos * modification, are permitted provided that the following conditions
7 1.1 christos * are met:
8 1.1 christos * 1. Redistributions of source code must retain the above copyright
9 1.1 christos * notice, this list of conditions and the following disclaimer.
10 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 christos * notice, this list of conditions and the following disclaimer in the
12 1.1 christos * documentation and/or other materials provided with the distribution.
13 1.1 christos *
14 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 1.1 christos * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 1.1 christos * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 1.1 christos * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 1.1 christos * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 1.1 christos * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 1.1 christos * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 1.1 christos * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 1.1 christos * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 1.1 christos * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 1.1 christos * SUCH DAMAGE.
25 1.1 christos */
26 1.1 christos
27 1.1 christos /*
28 1.5 rmind * Longest Prefix Match (LPM) library supporting IPv4 and IPv6.
29 1.5 rmind *
30 1.5 rmind * Algorithm:
31 1.5 rmind *
32 1.5 rmind * Each prefix gets its own hash map and all added prefixes are saved
33 1.5 rmind * in a bitmap. On a lookup, we perform a linear scan of hash maps,
34 1.5 rmind * iterating through the added prefixes only. Usually, there are only
35 1.5 rmind * a few unique prefixes used and such simple algorithm is very efficient.
36 1.5 rmind * With many IPv6 prefixes, the linear scan might become a bottleneck.
37 1.1 christos */
38 1.1 christos
39 1.1 christos #if defined(_KERNEL)
40 1.1 christos #include <sys/cdefs.h>
41 1.6 christos __KERNEL_RCSID(0, "$NetBSD: lpm.c,v 1.6 2019/06/12 14:36:32 christos Exp $");
42 1.1 christos
43 1.1 christos #include <sys/param.h>
44 1.1 christos #include <sys/types.h>
45 1.1 christos #include <sys/malloc.h>
46 1.1 christos #include <sys/kmem.h>
47 1.1 christos #else
48 1.1 christos #include <sys/socket.h>
49 1.1 christos #include <arpa/inet.h>
50 1.1 christos
51 1.1 christos #include <stdio.h>
52 1.1 christos #include <stdlib.h>
53 1.1 christos #include <stdbool.h>
54 1.1 christos #include <stddef.h>
55 1.1 christos #include <string.h>
56 1.1 christos #include <strings.h>
57 1.1 christos #include <errno.h>
58 1.1 christos #include <assert.h>
59 1.1 christos #define kmem_alloc(a, b) malloc(a)
60 1.1 christos #define kmem_free(a, b) free(a)
61 1.1 christos #define kmem_zalloc(a, b) calloc(a, 1)
62 1.1 christos #endif
63 1.1 christos
64 1.1 christos #include "lpm.h"
65 1.1 christos
66 1.1 christos #define LPM_MAX_PREFIX (128)
67 1.1 christos #define LPM_MAX_WORDS (LPM_MAX_PREFIX >> 5)
68 1.1 christos #define LPM_TO_WORDS(x) ((x) >> 2)
69 1.1 christos #define LPM_HASH_STEP (8)
70 1.5 rmind #define LPM_LEN_IDX(len) ((len) >> 4)
71 1.1 christos
72 1.1 christos #ifdef DEBUG
73 1.5 rmind #define ASSERT assert
74 1.1 christos #else
75 1.5 rmind #define ASSERT(x)
76 1.1 christos #endif
77 1.1 christos
78 1.1 christos typedef struct lpm_ent {
79 1.1 christos struct lpm_ent *next;
80 1.1 christos void * val;
81 1.1 christos unsigned len;
82 1.1 christos uint8_t key[];
83 1.1 christos } lpm_ent_t;
84 1.1 christos
85 1.1 christos typedef struct {
86 1.5 rmind unsigned hashsize;
87 1.5 rmind unsigned nitems;
88 1.5 rmind lpm_ent_t ** bucket;
89 1.1 christos } lpm_hmap_t;
90 1.1 christos
91 1.1 christos struct lpm {
92 1.1 christos uint32_t bitmask[LPM_MAX_WORDS];
93 1.6 christos int flags;
94 1.5 rmind void * defvals[2];
95 1.1 christos lpm_hmap_t prefix[LPM_MAX_PREFIX + 1];
96 1.1 christos };
97 1.1 christos
98 1.5 rmind static const uint32_t zero_address[LPM_MAX_WORDS];
99 1.5 rmind
100 1.1 christos lpm_t *
101 1.6 christos lpm_create(int flags)
102 1.1 christos {
103 1.6 christos lpm_t *lpm = kmem_zalloc(sizeof(*lpm), KM_SLEEP);
104 1.6 christos lpm->flags = flags;
105 1.6 christos return lpm;
106 1.1 christos }
107 1.1 christos
108 1.1 christos void
109 1.1 christos lpm_clear(lpm_t *lpm, lpm_dtor_t dtor, void *arg)
110 1.1 christos {
111 1.1 christos for (unsigned n = 0; n <= LPM_MAX_PREFIX; n++) {
112 1.1 christos lpm_hmap_t *hmap = &lpm->prefix[n];
113 1.1 christos
114 1.1 christos if (!hmap->hashsize) {
115 1.1 christos KASSERT(!hmap->bucket);
116 1.1 christos continue;
117 1.1 christos }
118 1.1 christos for (unsigned i = 0; i < hmap->hashsize; i++) {
119 1.1 christos lpm_ent_t *entry = hmap->bucket[i];
120 1.1 christos
121 1.1 christos while (entry) {
122 1.1 christos lpm_ent_t *next = entry->next;
123 1.1 christos
124 1.1 christos if (dtor) {
125 1.1 christos dtor(arg, entry->key,
126 1.1 christos entry->len, entry->val);
127 1.1 christos }
128 1.1 christos kmem_free(entry,
129 1.1 christos offsetof(lpm_ent_t, key[entry->len]));
130 1.1 christos entry = next;
131 1.1 christos }
132 1.1 christos }
133 1.2 rmind kmem_free(hmap->bucket, hmap->hashsize * sizeof(lpm_ent_t *));
134 1.1 christos hmap->bucket = NULL;
135 1.1 christos hmap->hashsize = 0;
136 1.1 christos hmap->nitems = 0;
137 1.1 christos }
138 1.5 rmind if (dtor) {
139 1.5 rmind dtor(arg, zero_address, 4, lpm->defvals[0]);
140 1.5 rmind dtor(arg, zero_address, 16, lpm->defvals[1]);
141 1.5 rmind }
142 1.1 christos memset(lpm->bitmask, 0, sizeof(lpm->bitmask));
143 1.5 rmind memset(lpm->defvals, 0, sizeof(lpm->defvals));
144 1.1 christos }
145 1.1 christos
146 1.1 christos void
147 1.1 christos lpm_destroy(lpm_t *lpm)
148 1.1 christos {
149 1.1 christos lpm_clear(lpm, NULL, NULL);
150 1.1 christos kmem_free(lpm, sizeof(*lpm));
151 1.1 christos }
152 1.1 christos
153 1.1 christos /*
154 1.1 christos * fnv1a_hash: Fowler-Noll-Vo hash function (FNV-1a variant).
155 1.1 christos */
156 1.1 christos static uint32_t
157 1.1 christos fnv1a_hash(const void *buf, size_t len)
158 1.1 christos {
159 1.1 christos uint32_t hash = 2166136261UL;
160 1.1 christos const uint8_t *p = buf;
161 1.1 christos
162 1.1 christos while (len--) {
163 1.1 christos hash ^= *p++;
164 1.1 christos hash *= 16777619U;
165 1.1 christos }
166 1.1 christos return hash;
167 1.1 christos }
168 1.1 christos
169 1.1 christos static bool
170 1.6 christos hashmap_rehash(lpm_hmap_t *hmap, unsigned size, int flags)
171 1.1 christos {
172 1.1 christos lpm_ent_t **bucket;
173 1.5 rmind unsigned hashsize;
174 1.1 christos
175 1.1 christos for (hashsize = 1; hashsize < size; hashsize <<= 1) {
176 1.1 christos continue;
177 1.1 christos }
178 1.6 christos bucket = kmem_zalloc(hashsize * sizeof(lpm_ent_t *), flags);
179 1.6 christos if (bucket == NULL)
180 1.6 christos return false;
181 1.1 christos for (unsigned n = 0; n < hmap->hashsize; n++) {
182 1.1 christos lpm_ent_t *list = hmap->bucket[n];
183 1.1 christos
184 1.1 christos while (list) {
185 1.1 christos lpm_ent_t *entry = list;
186 1.1 christos uint32_t hash = fnv1a_hash(entry->key, entry->len);
187 1.5 rmind const unsigned i = hash & (hashsize - 1);
188 1.1 christos
189 1.1 christos list = entry->next;
190 1.1 christos entry->next = bucket[i];
191 1.1 christos bucket[i] = entry;
192 1.1 christos }
193 1.1 christos }
194 1.1 christos if (hmap->bucket)
195 1.2 rmind kmem_free(hmap->bucket, hmap->hashsize * sizeof(lpm_ent_t *));
196 1.1 christos hmap->bucket = bucket;
197 1.1 christos hmap->hashsize = hashsize;
198 1.1 christos return true;
199 1.1 christos }
200 1.1 christos
201 1.1 christos static lpm_ent_t *
202 1.6 christos hashmap_insert(lpm_hmap_t *hmap, const void *key, size_t len, int flags)
203 1.1 christos {
204 1.5 rmind const unsigned target = hmap->nitems + LPM_HASH_STEP;
205 1.1 christos const size_t entlen = offsetof(lpm_ent_t, key[len]);
206 1.1 christos uint32_t hash, i;
207 1.1 christos lpm_ent_t *entry;
208 1.1 christos
209 1.6 christos if (hmap->hashsize < target && !hashmap_rehash(hmap, target, flags)) {
210 1.1 christos return NULL;
211 1.1 christos }
212 1.1 christos
213 1.1 christos hash = fnv1a_hash(key, len);
214 1.1 christos i = hash & (hmap->hashsize - 1);
215 1.1 christos entry = hmap->bucket[i];
216 1.1 christos while (entry) {
217 1.1 christos if (entry->len == len && memcmp(entry->key, key, len) == 0) {
218 1.1 christos return entry;
219 1.1 christos }
220 1.1 christos entry = entry->next;
221 1.1 christos }
222 1.1 christos
223 1.6 christos if ((entry = kmem_alloc(entlen, flags)) != NULL) {
224 1.5 rmind memcpy(entry->key, key, len);
225 1.5 rmind entry->next = hmap->bucket[i];
226 1.5 rmind entry->len = len;
227 1.1 christos
228 1.5 rmind hmap->bucket[i] = entry;
229 1.5 rmind hmap->nitems++;
230 1.5 rmind }
231 1.1 christos return entry;
232 1.1 christos }
233 1.1 christos
234 1.1 christos static lpm_ent_t *
235 1.1 christos hashmap_lookup(lpm_hmap_t *hmap, const void *key, size_t len)
236 1.1 christos {
237 1.1 christos const uint32_t hash = fnv1a_hash(key, len);
238 1.5 rmind const unsigned i = hash & (hmap->hashsize - 1);
239 1.5 rmind lpm_ent_t *entry;
240 1.5 rmind
241 1.5 rmind if (hmap->hashsize == 0) {
242 1.5 rmind return NULL;
243 1.5 rmind }
244 1.5 rmind entry = hmap->bucket[i];
245 1.1 christos
246 1.1 christos while (entry) {
247 1.1 christos if (entry->len == len && memcmp(entry->key, key, len) == 0) {
248 1.1 christos return entry;
249 1.1 christos }
250 1.1 christos entry = entry->next;
251 1.1 christos }
252 1.1 christos return NULL;
253 1.1 christos }
254 1.1 christos
255 1.1 christos static int
256 1.1 christos hashmap_remove(lpm_hmap_t *hmap, const void *key, size_t len)
257 1.1 christos {
258 1.1 christos const uint32_t hash = fnv1a_hash(key, len);
259 1.5 rmind const unsigned i = hash & (hmap->hashsize - 1);
260 1.5 rmind lpm_ent_t *prev = NULL, *entry;
261 1.5 rmind
262 1.5 rmind if (hmap->hashsize == 0) {
263 1.5 rmind return -1;
264 1.5 rmind }
265 1.5 rmind entry = hmap->bucket[i];
266 1.1 christos
267 1.1 christos while (entry) {
268 1.1 christos if (entry->len == len && memcmp(entry->key, key, len) == 0) {
269 1.1 christos if (prev) {
270 1.1 christos prev->next = entry->next;
271 1.1 christos } else {
272 1.1 christos hmap->bucket[i] = entry->next;
273 1.1 christos }
274 1.3 rmind kmem_free(entry, offsetof(lpm_ent_t, key[len]));
275 1.1 christos return 0;
276 1.1 christos }
277 1.1 christos prev = entry;
278 1.1 christos entry = entry->next;
279 1.1 christos }
280 1.1 christos return -1;
281 1.1 christos }
282 1.1 christos
283 1.1 christos /*
284 1.1 christos * compute_prefix: given the address and prefix length, compute and
285 1.1 christos * return the address prefix.
286 1.1 christos */
287 1.1 christos static inline void
288 1.1 christos compute_prefix(const unsigned nwords, const uint32_t *addr,
289 1.1 christos unsigned preflen, uint32_t *prefix)
290 1.1 christos {
291 1.1 christos uint32_t addr2[4];
292 1.1 christos
293 1.1 christos if ((uintptr_t)addr & 3) {
294 1.1 christos /* Unaligned address: just copy for now. */
295 1.1 christos memcpy(addr2, addr, nwords * 4);
296 1.1 christos addr = addr2;
297 1.1 christos }
298 1.1 christos for (unsigned i = 0; i < nwords; i++) {
299 1.1 christos if (preflen == 0) {
300 1.1 christos prefix[i] = 0;
301 1.1 christos continue;
302 1.1 christos }
303 1.1 christos if (preflen < 32) {
304 1.1 christos uint32_t mask = htonl(0xffffffff << (32 - preflen));
305 1.1 christos prefix[i] = addr[i] & mask;
306 1.1 christos preflen = 0;
307 1.1 christos } else {
308 1.1 christos prefix[i] = addr[i];
309 1.1 christos preflen -= 32;
310 1.1 christos }
311 1.1 christos }
312 1.1 christos }
313 1.1 christos
314 1.1 christos /*
315 1.1 christos * lpm_insert: insert the CIDR into the LPM table.
316 1.1 christos *
317 1.1 christos * => Returns zero on success and -1 on failure.
318 1.1 christos */
319 1.1 christos int
320 1.1 christos lpm_insert(lpm_t *lpm, const void *addr,
321 1.1 christos size_t len, unsigned preflen, void *val)
322 1.1 christos {
323 1.1 christos const unsigned nwords = LPM_TO_WORDS(len);
324 1.1 christos uint32_t prefix[LPM_MAX_WORDS];
325 1.1 christos lpm_ent_t *entry;
326 1.5 rmind KASSERT(len == 4 || len == 16);
327 1.1 christos
328 1.1 christos if (preflen == 0) {
329 1.5 rmind /* 0-length prefix is a special case. */
330 1.5 rmind lpm->defvals[LPM_LEN_IDX(len)] = val;
331 1.1 christos return 0;
332 1.1 christos }
333 1.1 christos compute_prefix(nwords, addr, preflen, prefix);
334 1.6 christos entry = hashmap_insert(&lpm->prefix[preflen], prefix, len, lpm->flags);
335 1.1 christos if (entry) {
336 1.1 christos const unsigned n = --preflen >> 5;
337 1.1 christos lpm->bitmask[n] |= 0x80000000U >> (preflen & 31);
338 1.1 christos entry->val = val;
339 1.1 christos return 0;
340 1.1 christos }
341 1.1 christos return -1;
342 1.1 christos }
343 1.1 christos
344 1.1 christos /*
345 1.1 christos * lpm_remove: remove the specified prefix.
346 1.1 christos */
347 1.1 christos int
348 1.1 christos lpm_remove(lpm_t *lpm, const void *addr, size_t len, unsigned preflen)
349 1.1 christos {
350 1.1 christos const unsigned nwords = LPM_TO_WORDS(len);
351 1.1 christos uint32_t prefix[LPM_MAX_WORDS];
352 1.5 rmind KASSERT(len == 4 || len == 16);
353 1.1 christos
354 1.1 christos if (preflen == 0) {
355 1.5 rmind lpm->defvals[LPM_LEN_IDX(len)] = NULL;
356 1.1 christos return 0;
357 1.1 christos }
358 1.1 christos compute_prefix(nwords, addr, preflen, prefix);
359 1.1 christos return hashmap_remove(&lpm->prefix[preflen], prefix, len);
360 1.1 christos }
361 1.1 christos
362 1.1 christos /*
363 1.1 christos * lpm_lookup: find the longest matching prefix given the IP address.
364 1.1 christos *
365 1.1 christos * => Returns the associated value on success or NULL on failure.
366 1.1 christos */
367 1.1 christos void *
368 1.1 christos lpm_lookup(lpm_t *lpm, const void *addr, size_t len)
369 1.1 christos {
370 1.1 christos const unsigned nwords = LPM_TO_WORDS(len);
371 1.1 christos unsigned i, n = nwords;
372 1.1 christos uint32_t prefix[LPM_MAX_WORDS];
373 1.1 christos
374 1.1 christos while (n--) {
375 1.1 christos uint32_t bitmask = lpm->bitmask[n];
376 1.1 christos
377 1.1 christos while ((i = ffs(bitmask)) != 0) {
378 1.1 christos const unsigned preflen = (32 * n) + (32 - --i);
379 1.1 christos lpm_hmap_t *hmap = &lpm->prefix[preflen];
380 1.1 christos lpm_ent_t *entry;
381 1.1 christos
382 1.1 christos compute_prefix(nwords, addr, preflen, prefix);
383 1.1 christos entry = hashmap_lookup(hmap, prefix, len);
384 1.1 christos if (entry) {
385 1.1 christos return entry->val;
386 1.1 christos }
387 1.1 christos bitmask &= ~(1U << i);
388 1.1 christos }
389 1.1 christos }
390 1.5 rmind return lpm->defvals[LPM_LEN_IDX(len)];
391 1.5 rmind }
392 1.5 rmind
393 1.5 rmind /*
394 1.5 rmind * lpm_lookup_prefix: return the value associated with a prefix
395 1.5 rmind *
396 1.5 rmind * => Returns the associated value on success or NULL on failure.
397 1.5 rmind */
398 1.5 rmind void *
399 1.5 rmind lpm_lookup_prefix(lpm_t *lpm, const void *addr, size_t len, unsigned preflen)
400 1.5 rmind {
401 1.5 rmind const unsigned nwords = LPM_TO_WORDS(len);
402 1.5 rmind uint32_t prefix[LPM_MAX_WORDS];
403 1.5 rmind lpm_ent_t *entry;
404 1.5 rmind KASSERT(len == 4 || len == 16);
405 1.5 rmind
406 1.5 rmind if (preflen == 0) {
407 1.5 rmind return lpm->defvals[LPM_LEN_IDX(len)];
408 1.5 rmind }
409 1.5 rmind compute_prefix(nwords, addr, preflen, prefix);
410 1.5 rmind entry = hashmap_lookup(&lpm->prefix[preflen], prefix, len);
411 1.5 rmind if (entry) {
412 1.5 rmind return entry->val;
413 1.5 rmind }
414 1.5 rmind return NULL;
415 1.1 christos }
416 1.1 christos
417 1.1 christos #if !defined(_KERNEL)
418 1.1 christos /*
419 1.1 christos * lpm_strtobin: convert CIDR string to the binary IP address and mask.
420 1.1 christos *
421 1.1 christos * => The address will be in the network byte order.
422 1.1 christos * => Returns 0 on success or -1 on failure.
423 1.1 christos */
424 1.1 christos int
425 1.1 christos lpm_strtobin(const char *cidr, void *addr, size_t *len, unsigned *preflen)
426 1.1 christos {
427 1.1 christos char *p, buf[INET6_ADDRSTRLEN];
428 1.1 christos
429 1.1 christos strncpy(buf, cidr, sizeof(buf));
430 1.1 christos buf[sizeof(buf) - 1] = '\0';
431 1.1 christos
432 1.1 christos if ((p = strchr(buf, '/')) != NULL) {
433 1.1 christos const ptrdiff_t off = p - buf;
434 1.1 christos *preflen = atoi(&buf[off + 1]);
435 1.1 christos buf[off] = '\0';
436 1.1 christos } else {
437 1.1 christos *preflen = LPM_MAX_PREFIX;
438 1.1 christos }
439 1.1 christos
440 1.1 christos if (inet_pton(AF_INET6, buf, addr) == 1) {
441 1.1 christos *len = 16;
442 1.1 christos return 0;
443 1.1 christos }
444 1.1 christos if (inet_pton(AF_INET, buf, addr) == 1) {
445 1.1 christos if (*preflen == LPM_MAX_PREFIX) {
446 1.1 christos *preflen = 32;
447 1.1 christos }
448 1.1 christos *len = 4;
449 1.1 christos return 0;
450 1.1 christos }
451 1.1 christos return -1;
452 1.1 christos }
453 1.1 christos #endif
454