Home | History | Annotate | Line # | Download | only in npf
      1   1.1     rmind /*-
      2  1.32     rmind  * Copyright (c) 2014-2020 Mindaugas Rasiukevicius <rmind at noxt eu>
      3   1.1     rmind  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      4   1.1     rmind  * All rights reserved.
      5   1.1     rmind  *
      6   1.1     rmind  * This material is based upon work partially supported by The
      7   1.1     rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      8   1.1     rmind  *
      9   1.1     rmind  * Redistribution and use in source and binary forms, with or without
     10   1.1     rmind  * modification, are permitted provided that the following conditions
     11   1.1     rmind  * are met:
     12   1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     13   1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     14   1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     16   1.1     rmind  *    documentation and/or other materials provided with the distribution.
     17   1.1     rmind  *
     18   1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19   1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20   1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21   1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22   1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23   1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24   1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25   1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26   1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27   1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28   1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     29   1.1     rmind  */
     30   1.1     rmind 
     31   1.1     rmind /*
     32   1.1     rmind  * NPF connection tracking for stateful filtering and translation.
     33   1.1     rmind  *
     34   1.1     rmind  * Overview
     35   1.1     rmind  *
     36  1.26     rmind  *	Packets can be incoming or outgoing with respect to an interface.
     37   1.1     rmind  *	Connection direction is identified by the direction of its first
     38  1.26     rmind  *	packet.  The meaning of incoming/outgoing packet in the context of
     39  1.26     rmind  *	connection direction can be confusing.  Therefore, we will use the
     40  1.26     rmind  *	terms "forwards stream" and "backwards stream", where packets in
     41  1.26     rmind  *	the forwards stream mean the packets travelling in the direction
     42  1.26     rmind  *	as the connection direction.
     43  1.26     rmind  *
     44  1.26     rmind  *	All connections have two keys and thus two entries:
     45   1.1     rmind  *
     46  1.27     rmind  *	- npf_conn_getforwkey(con)        -- for the forwards stream;
     47  1.27     rmind  *	- npf_conn_getbackkey(con, alen)  -- for the backwards stream.
     48  1.27     rmind  *
     49  1.27     rmind  *	Note: the keys are stored in npf_conn_t::c_keys[], which is used
     50  1.27     rmind  *	to allocate variable-length npf_conn_t structures based on whether
     51  1.32     rmind  *	the IPv4 or IPv6 addresses are used.
     52   1.1     rmind  *
     53  1.32     rmind  *	The key is an n-tuple used to identify the connection flow: see the
     54  1.32     rmind  *	npf_connkey.c source file for the description of the key layouts.
     55  1.32     rmind  *	The key may be formed using translated values in a case of NAT.
     56   1.1     rmind  *
     57  1.32     rmind  *	Connections can serve two purposes: for the implicit passing and/or
     58   1.1     rmind  *	to accommodate the dynamic NAT.  Connections for the former purpose
     59   1.1     rmind  *	are created by the rules with "stateful" attribute and are used for
     60   1.1     rmind  *	stateful filtering.  Such connections indicate that the packet of
     61   1.1     rmind  *	the backwards stream should be passed without inspection of the
     62   1.1     rmind  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     63   1.1     rmind  *	with a connection.  Such connections are created by the NAT policies
     64   1.1     rmind  *	and they have a relationship with NAT translation structure via
     65   1.1     rmind  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     66   1.1     rmind  *	which is a common case.
     67   1.1     rmind  *
     68   1.1     rmind  * Connection life-cycle
     69   1.1     rmind  *
     70   1.1     rmind  *	Connections are established when a packet matches said rule or
     71   1.1     rmind  *	NAT policy.  Both keys of the established connection are inserted
     72   1.1     rmind  *	into the connection database.  A garbage collection thread
     73   1.1     rmind  *	periodically scans all connections and depending on connection
     74   1.1     rmind  *	properties (e.g. last activity time, protocol) removes connection
     75   1.1     rmind  *	entries and expires the actual connections.
     76   1.1     rmind  *
     77   1.1     rmind  *	Each connection has a reference count.  The reference is acquired
     78   1.1     rmind  *	on lookup and should be released by the caller.  It guarantees that
     79   1.1     rmind  *	the connection will not be destroyed, although it may be expired.
     80   1.1     rmind  *
     81  1.32     rmind  * Synchronization
     82   1.1     rmind  *
     83  1.32     rmind  *	Connection database is accessed in a lock-free manner by the main
     84   1.1     rmind  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     85   1.1     rmind  *	are always called from a software interrupt, the database is
     86  1.32     rmind  *	protected using EBR.  The main place which can destroy a connection
     87  1.32     rmind  *	is npf_conn_worker().  The database itself can be replaced and
     88  1.32     rmind  *	destroyed in npf_conn_reload().
     89   1.1     rmind  *
     90   1.1     rmind  * ALG support
     91   1.1     rmind  *
     92   1.1     rmind  *	Application-level gateways (ALGs) can override generic connection
     93   1.1     rmind  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     94   1.1     rmind  *	performing their own lookup using different key.  Recursive call
     95   1.1     rmind  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     96   1.1     rmind  *	npf_conn_lookup() function for this purpose.
     97   1.1     rmind  *
     98   1.1     rmind  * Lock order
     99   1.1     rmind  *
    100  1.35  riastrad  *	npf_t::config_lock ->
    101   1.6     rmind  *		conn_lock ->
    102   1.6     rmind  *			npf_conn_t::c_lock
    103   1.1     rmind  */
    104   1.1     rmind 
    105  1.22  christos #ifdef _KERNEL
    106   1.1     rmind #include <sys/cdefs.h>
    107  1.35  riastrad __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.35 2023/01/22 18:39:35 riastradh Exp $");
    108   1.1     rmind 
    109   1.1     rmind #include <sys/param.h>
    110   1.1     rmind #include <sys/types.h>
    111   1.1     rmind 
    112   1.1     rmind #include <netinet/in.h>
    113   1.1     rmind #include <netinet/tcp.h>
    114   1.1     rmind 
    115   1.1     rmind #include <sys/atomic.h>
    116   1.1     rmind #include <sys/kmem.h>
    117   1.1     rmind #include <sys/mutex.h>
    118   1.1     rmind #include <net/pfil.h>
    119   1.1     rmind #include <sys/pool.h>
    120   1.1     rmind #include <sys/queue.h>
    121   1.1     rmind #include <sys/systm.h>
    122  1.22  christos #endif
    123   1.1     rmind 
    124   1.1     rmind #define __NPF_CONN_PRIVATE
    125   1.1     rmind #include "npf_conn.h"
    126   1.1     rmind #include "npf_impl.h"
    127   1.1     rmind 
    128  1.27     rmind /* A helper to select the IPv4 or IPv6 connection cache. */
    129  1.27     rmind #define	NPF_CONNCACHE(alen)	(((alen) >> 4) & 0x1)
    130  1.27     rmind 
    131   1.1     rmind /*
    132   1.1     rmind  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    133   1.1     rmind  */
    134   1.1     rmind CTASSERT(PFIL_ALL == (0x001 | 0x002));
    135   1.1     rmind #define	CONN_ACTIVE	0x004	/* visible on inspection */
    136   1.1     rmind #define	CONN_PASS	0x008	/* perform implicit passing */
    137   1.1     rmind #define	CONN_EXPIRE	0x010	/* explicitly expire */
    138   1.1     rmind #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    139   1.1     rmind 
    140   1.6     rmind enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
    141   1.1     rmind 
    142  1.32     rmind static int	npf_conn_export(npf_t *, npf_conn_t *, nvlist_t *);
    143   1.1     rmind 
    144   1.1     rmind /*
    145  1.32     rmind  * npf_conn_sys{init,fini}: initialize/destroy connection tracking.
    146   1.1     rmind  */
    147   1.1     rmind 
    148   1.1     rmind void
    149  1.29  christos npf_conn_init(npf_t *npf)
    150   1.1     rmind {
    151  1.32     rmind 	npf_conn_params_t *params = npf_param_allocgroup(npf,
    152  1.32     rmind 	    NPF_PARAMS_CONN, sizeof(npf_conn_params_t));
    153  1.32     rmind 	npf_param_t param_map[] = {
    154  1.32     rmind 		{
    155  1.32     rmind 			"state.key.interface",
    156  1.32     rmind 			&params->connkey_interface,
    157  1.32     rmind 			.default_val = 1, // true
    158  1.32     rmind 			.min = 0, .max = 1
    159  1.32     rmind 		},
    160  1.32     rmind 		{
    161  1.32     rmind 			"state.key.direction",
    162  1.32     rmind 			&params->connkey_direction,
    163  1.32     rmind 			.default_val = 1, // true
    164  1.32     rmind 			.min = 0, .max = 1
    165  1.32     rmind 		},
    166  1.32     rmind 	};
    167  1.32     rmind 	npf_param_register(npf, param_map, __arraycount(param_map));
    168  1.32     rmind 
    169  1.27     rmind 	npf->conn_cache[0] = pool_cache_init(
    170  1.27     rmind 	    offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V4WORDS * 2]),
    171  1.27     rmind 	    0, 0, 0, "npfcn4pl", NULL, IPL_NET, NULL, NULL, NULL);
    172  1.27     rmind 	npf->conn_cache[1] = pool_cache_init(
    173  1.27     rmind 	    offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V6WORDS * 2]),
    174  1.27     rmind 	    0, 0, 0, "npfcn6pl", NULL, IPL_NET, NULL, NULL, NULL);
    175  1.27     rmind 
    176  1.22  christos 	mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
    177  1.32     rmind 	atomic_store_relaxed(&npf->conn_tracking, CONN_TRACKING_OFF);
    178  1.22  christos 	npf->conn_db = npf_conndb_create();
    179  1.27     rmind 	npf_conndb_sysinit(npf);
    180  1.32     rmind 
    181  1.32     rmind 	npf_worker_addfunc(npf, npf_conn_worker);
    182   1.1     rmind }
    183   1.1     rmind 
    184   1.1     rmind void
    185  1.22  christos npf_conn_fini(npf_t *npf)
    186   1.1     rmind {
    187  1.32     rmind 	const size_t len = sizeof(npf_conn_params_t);
    188  1.27     rmind 
    189   1.6     rmind 	/* Note: the caller should have flushed the connections. */
    190  1.32     rmind 	KASSERT(atomic_load_relaxed(&npf->conn_tracking) == CONN_TRACKING_OFF);
    191   1.1     rmind 
    192  1.22  christos 	npf_conndb_destroy(npf->conn_db);
    193  1.27     rmind 	pool_cache_destroy(npf->conn_cache[0]);
    194  1.27     rmind 	pool_cache_destroy(npf->conn_cache[1]);
    195  1.22  christos 	mutex_destroy(&npf->conn_lock);
    196  1.32     rmind 
    197  1.32     rmind 	npf_param_freegroup(npf, NPF_PARAMS_CONN, len);
    198  1.32     rmind 	npf_conndb_sysfini(npf);
    199   1.1     rmind }
    200   1.1     rmind 
    201   1.1     rmind /*
    202   1.6     rmind  * npf_conn_load: perform the load by flushing the current connection
    203   1.6     rmind  * database and replacing it with the new one or just destroying.
    204   1.1     rmind  *
    205   1.6     rmind  * => The caller must disable the connection tracking and ensure that
    206   1.6     rmind  *    there are no connection database lookups or references in-flight.
    207   1.1     rmind  */
    208   1.6     rmind void
    209  1.22  christos npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
    210   1.1     rmind {
    211   1.6     rmind 	npf_conndb_t *odb = NULL;
    212   1.1     rmind 
    213  1.22  christos 	KASSERT(npf_config_locked_p(npf));
    214   1.1     rmind 
    215   1.1     rmind 	/*
    216   1.6     rmind 	 * The connection database is in the quiescent state.
    217   1.6     rmind 	 * Prevent G/C thread from running and install a new database.
    218   1.1     rmind 	 */
    219  1.22  christos 	mutex_enter(&npf->conn_lock);
    220   1.6     rmind 	if (ndb) {
    221  1.32     rmind 		KASSERT(atomic_load_relaxed(&npf->conn_tracking)
    222  1.32     rmind 		    == CONN_TRACKING_OFF);
    223  1.32     rmind 		odb = atomic_load_relaxed(&npf->conn_db);
    224  1.34  riastrad 		atomic_store_release(&npf->conn_db, ndb);
    225   1.6     rmind 	}
    226   1.6     rmind 	if (track) {
    227   1.6     rmind 		/* After this point lookups start flying in. */
    228  1.32     rmind 		membar_producer();
    229  1.32     rmind 		atomic_store_relaxed(&npf->conn_tracking, CONN_TRACKING_ON);
    230   1.1     rmind 	}
    231  1.22  christos 	mutex_exit(&npf->conn_lock);
    232   1.1     rmind 
    233   1.1     rmind 	if (odb) {
    234   1.6     rmind 		/*
    235   1.6     rmind 		 * Flush all, no sync since the caller did it for us.
    236   1.6     rmind 		 * Also, release the pool cache memory.
    237   1.6     rmind 		 */
    238  1.26     rmind 		npf_conndb_gc(npf, odb, true, false);
    239   1.1     rmind 		npf_conndb_destroy(odb);
    240  1.27     rmind 		pool_cache_invalidate(npf->conn_cache[0]);
    241  1.27     rmind 		pool_cache_invalidate(npf->conn_cache[1]);
    242   1.1     rmind 	}
    243   1.1     rmind }
    244   1.1     rmind 
    245   1.1     rmind /*
    246   1.1     rmind  * npf_conn_tracking: enable/disable connection tracking.
    247   1.1     rmind  */
    248   1.1     rmind void
    249  1.22  christos npf_conn_tracking(npf_t *npf, bool track)
    250   1.1     rmind {
    251  1.22  christos 	KASSERT(npf_config_locked_p(npf));
    252  1.32     rmind 	atomic_store_relaxed(&npf->conn_tracking,
    253  1.32     rmind 	    track ? CONN_TRACKING_ON : CONN_TRACKING_OFF);
    254   1.1     rmind }
    255   1.1     rmind 
    256   1.6     rmind static inline bool
    257   1.1     rmind npf_conn_trackable_p(const npf_cache_t *npc)
    258   1.1     rmind {
    259  1.22  christos 	const npf_t *npf = npc->npc_ctx;
    260  1.22  christos 
    261   1.1     rmind 	/*
    262   1.1     rmind 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    263   1.1     rmind 	 * not cached - protocol is not supported or packet is invalid.
    264   1.1     rmind 	 */
    265  1.32     rmind 	if (atomic_load_relaxed(&npf->conn_tracking) != CONN_TRACKING_ON) {
    266   1.1     rmind 		return false;
    267   1.1     rmind 	}
    268   1.1     rmind 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    269   1.1     rmind 		return false;
    270   1.1     rmind 	}
    271   1.1     rmind 	return true;
    272   1.1     rmind }
    273   1.1     rmind 
    274  1.22  christos static inline void
    275  1.22  christos conn_update_atime(npf_conn_t *con)
    276  1.22  christos {
    277  1.22  christos 	struct timespec tsnow;
    278  1.22  christos 
    279  1.22  christos 	getnanouptime(&tsnow);
    280  1.32     rmind 	atomic_store_relaxed(&con->c_atime, tsnow.tv_sec);
    281  1.22  christos }
    282  1.22  christos 
    283   1.1     rmind /*
    284  1.27     rmind  * npf_conn_check: check that:
    285  1.27     rmind  *
    286  1.27     rmind  *	- the connection is active;
    287  1.27     rmind  *
    288  1.27     rmind  *	- the packet is travelling in the right direction with the respect
    289  1.27     rmind  *	  to the connection direction (if interface-id is not zero);
    290  1.27     rmind  *
    291  1.27     rmind  *	- the packet is travelling on the same interface as the
    292  1.27     rmind  *	  connection interface (if interface-id is not zero).
    293  1.18  christos  */
    294  1.18  christos static bool
    295  1.27     rmind npf_conn_check(const npf_conn_t *con, const nbuf_t *nbuf,
    296  1.32     rmind     const unsigned di, const npf_flow_t flow)
    297  1.18  christos {
    298  1.32     rmind 	const uint32_t flags = atomic_load_relaxed(&con->c_flags);
    299  1.32     rmind 	const unsigned ifid = atomic_load_relaxed(&con->c_ifid);
    300  1.32     rmind 	bool active;
    301  1.18  christos 
    302  1.27     rmind 	active = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    303  1.27     rmind 	if (__predict_false(!active)) {
    304  1.18  christos 		return false;
    305  1.18  christos 	}
    306  1.27     rmind 	if (ifid && nbuf) {
    307  1.32     rmind 		const bool match = (flags & PFIL_ALL) == di;
    308  1.32     rmind 		npf_flow_t pflow = match ? NPF_FLOW_FORW : NPF_FLOW_BACK;
    309  1.32     rmind 
    310  1.32     rmind 		if (__predict_false(flow != pflow)) {
    311  1.27     rmind 			return false;
    312  1.27     rmind 		}
    313  1.27     rmind 		if (__predict_false(ifid != nbuf->nb_ifid)) {
    314  1.27     rmind 			return false;
    315  1.27     rmind 		}
    316  1.18  christos 	}
    317  1.18  christos 	return true;
    318  1.18  christos }
    319  1.18  christos 
    320  1.18  christos /*
    321   1.1     rmind  * npf_conn_lookup: lookup if there is an established connection.
    322   1.1     rmind  *
    323   1.1     rmind  * => If found, we will hold a reference for the caller.
    324   1.1     rmind  */
    325   1.1     rmind npf_conn_t *
    326  1.32     rmind npf_conn_lookup(const npf_cache_t *npc, const unsigned di, npf_flow_t *flow)
    327   1.1     rmind {
    328  1.22  christos 	npf_t *npf = npc->npc_ctx;
    329   1.4     rmind 	const nbuf_t *nbuf = npc->npc_nbuf;
    330   1.1     rmind 	npf_conn_t *con;
    331   1.1     rmind 	npf_connkey_t key;
    332   1.1     rmind 
    333   1.1     rmind 	/* Construct a key and lookup for a connection in the store. */
    334  1.32     rmind 	if (!npf_conn_conkey(npc, &key, di, NPF_FLOW_FORW)) {
    335   1.1     rmind 		return NULL;
    336   1.1     rmind 	}
    337  1.32     rmind 	con = npf_conndb_lookup(npf, &key, flow);
    338   1.1     rmind 	if (con == NULL) {
    339   1.1     rmind 		return NULL;
    340   1.1     rmind 	}
    341  1.32     rmind 	KASSERT(npc->npc_proto == atomic_load_relaxed(&con->c_proto));
    342   1.1     rmind 
    343  1.27     rmind 	/* Extra checks for the connection and packet. */
    344  1.32     rmind 	if (!npf_conn_check(con, nbuf, di, *flow)) {
    345   1.1     rmind 		atomic_dec_uint(&con->c_refcnt);
    346   1.1     rmind 		return NULL;
    347   1.1     rmind 	}
    348   1.1     rmind 
    349   1.1     rmind 	/* Update the last activity time. */
    350  1.22  christos 	conn_update_atime(con);
    351   1.1     rmind 	return con;
    352   1.1     rmind }
    353   1.1     rmind 
    354   1.1     rmind /*
    355   1.1     rmind  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    356   1.1     rmind  *
    357   1.1     rmind  * => If found, we will hold a reference for the caller.
    358   1.1     rmind  */
    359   1.1     rmind npf_conn_t *
    360  1.32     rmind npf_conn_inspect(npf_cache_t *npc, const unsigned di, int *error)
    361   1.1     rmind {
    362   1.4     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    363  1.32     rmind 	npf_flow_t flow;
    364   1.1     rmind 	npf_conn_t *con;
    365  1.32     rmind 	bool ok;
    366   1.1     rmind 
    367   1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    368   1.1     rmind 	if (!npf_conn_trackable_p(npc)) {
    369   1.1     rmind 		return NULL;
    370   1.1     rmind 	}
    371   1.1     rmind 
    372   1.1     rmind 	/* Query ALG which may lookup connection for us. */
    373   1.4     rmind 	if ((con = npf_alg_conn(npc, di)) != NULL) {
    374   1.1     rmind 		/* Note: reference is held. */
    375   1.1     rmind 		return con;
    376   1.1     rmind 	}
    377   1.1     rmind 	if (nbuf_head_mbuf(nbuf) == NULL) {
    378   1.1     rmind 		*error = ENOMEM;
    379   1.1     rmind 		return NULL;
    380   1.1     rmind 	}
    381   1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    382   1.1     rmind 
    383  1.32     rmind 	/* The main lookup of the connection (acquires a reference). */
    384  1.32     rmind 	if ((con = npf_conn_lookup(npc, di, &flow)) == NULL) {
    385   1.1     rmind 		return NULL;
    386   1.1     rmind 	}
    387   1.1     rmind 
    388   1.1     rmind 	/* Inspect the protocol data and handle state changes. */
    389   1.1     rmind 	mutex_enter(&con->c_lock);
    390  1.32     rmind 	ok = npf_state_inspect(npc, &con->c_state, flow);
    391   1.1     rmind 	mutex_exit(&con->c_lock);
    392   1.1     rmind 
    393  1.17     rmind 	/* If invalid state: let the rules deal with it. */
    394   1.1     rmind 	if (__predict_false(!ok)) {
    395   1.1     rmind 		npf_conn_release(con);
    396  1.22  christos 		npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
    397  1.17     rmind 		return NULL;
    398  1.17     rmind 	}
    399  1.32     rmind #if 0
    400  1.17     rmind 	/*
    401  1.32     rmind 	 * TODO -- determine when this might be wanted/used.
    402  1.32     rmind 	 *
    403  1.32     rmind 	 * Note: skipping the connection lookup and ruleset inspection
    404  1.32     rmind 	 * on other interfaces will also bypass dynamic NAT.
    405  1.17     rmind 	 */
    406  1.32     rmind 	if (atomic_load_relaxed(&con->c_flags) & CONN_GPASS) {
    407  1.32     rmind 		/*
    408  1.32     rmind 		 * Note: if tagging fails, then give this packet a chance
    409  1.32     rmind 		 * to go through a regular ruleset.
    410  1.32     rmind 		 */
    411  1.32     rmind 		(void)nbuf_add_tag(nbuf, NPF_NTAG_PASS);
    412   1.1     rmind 	}
    413  1.32     rmind #endif
    414   1.1     rmind 	return con;
    415   1.1     rmind }
    416   1.1     rmind 
    417   1.1     rmind /*
    418   1.1     rmind  * npf_conn_establish: create a new connection, insert into the global list.
    419   1.1     rmind  *
    420   1.1     rmind  * => Connection is created with the reference held for the caller.
    421   1.1     rmind  * => Connection will be activated on the first reference release.
    422   1.1     rmind  */
    423   1.1     rmind npf_conn_t *
    424  1.32     rmind npf_conn_establish(npf_cache_t *npc, const unsigned di, bool global)
    425   1.1     rmind {
    426  1.22  christos 	npf_t *npf = npc->npc_ctx;
    427  1.27     rmind 	const unsigned alen = npc->npc_alen;
    428  1.27     rmind 	const unsigned idx = NPF_CONNCACHE(alen);
    429   1.4     rmind 	const nbuf_t *nbuf = npc->npc_nbuf;
    430  1.27     rmind 	npf_connkey_t *fw, *bk;
    431  1.32     rmind 	npf_conndb_t *conn_db;
    432   1.1     rmind 	npf_conn_t *con;
    433  1.15     rmind 	int error = 0;
    434   1.1     rmind 
    435   1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    436   1.1     rmind 
    437   1.1     rmind 	if (!npf_conn_trackable_p(npc)) {
    438   1.1     rmind 		return NULL;
    439   1.1     rmind 	}
    440   1.1     rmind 
    441  1.32     rmind 	/* Allocate and initialize the new connection. */
    442  1.27     rmind 	con = pool_cache_get(npf->conn_cache[idx], PR_NOWAIT);
    443   1.1     rmind 	if (__predict_false(!con)) {
    444  1.22  christos 		npf_worker_signal(npf);
    445   1.1     rmind 		return NULL;
    446   1.1     rmind 	}
    447   1.1     rmind 	NPF_PRINTF(("NPF: create conn %p\n", con));
    448  1.22  christos 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
    449   1.1     rmind 
    450   1.1     rmind 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    451  1.32     rmind 	atomic_store_relaxed(&con->c_flags, di & PFIL_ALL);
    452  1.32     rmind 	atomic_store_relaxed(&con->c_refcnt, 0);
    453   1.1     rmind 	con->c_rproc = NULL;
    454   1.1     rmind 	con->c_nat = NULL;
    455   1.1     rmind 
    456  1.27     rmind 	con->c_proto = npc->npc_proto;
    457  1.27     rmind 	CTASSERT(sizeof(con->c_proto) >= sizeof(npc->npc_proto));
    458  1.29  christos 	con->c_alen = alen;
    459  1.27     rmind 
    460  1.15     rmind 	/* Initialize the protocol state. */
    461   1.4     rmind 	if (!npf_state_init(npc, &con->c_state)) {
    462  1.29  christos 		npf_conn_destroy(npf, con);
    463  1.15     rmind 		return NULL;
    464   1.1     rmind 	}
    465  1.27     rmind 	KASSERT(npf_iscached(npc, NPC_IP46));
    466   1.1     rmind 
    467  1.27     rmind 	fw = npf_conn_getforwkey(con);
    468  1.27     rmind 	bk = npf_conn_getbackkey(con, alen);
    469   1.1     rmind 
    470   1.1     rmind 	/*
    471   1.1     rmind 	 * Construct "forwards" and "backwards" keys.  Also, set the
    472   1.1     rmind 	 * interface ID for this connection (unless it is global).
    473   1.1     rmind 	 */
    474  1.32     rmind 	if (!npf_conn_conkey(npc, fw, di, NPF_FLOW_FORW) ||
    475  1.32     rmind 	    !npf_conn_conkey(npc, bk, di ^ PFIL_ALL, NPF_FLOW_BACK)) {
    476  1.29  christos 		npf_conn_destroy(npf, con);
    477  1.15     rmind 		return NULL;
    478   1.1     rmind 	}
    479  1.27     rmind 	con->c_ifid = global ? nbuf->nb_ifid : 0;
    480   1.1     rmind 
    481  1.15     rmind 	/*
    482  1.15     rmind 	 * Set last activity time for a new connection and acquire
    483  1.15     rmind 	 * a reference for the caller before we make it visible.
    484  1.15     rmind 	 */
    485  1.22  christos 	conn_update_atime(con);
    486  1.32     rmind 	atomic_store_relaxed(&con->c_refcnt, 1);
    487   1.1     rmind 
    488   1.1     rmind 	/*
    489   1.1     rmind 	 * Insert both keys (entries representing directions) of the
    490  1.15     rmind 	 * connection.  At this point it becomes visible, but we activate
    491  1.15     rmind 	 * the connection later.
    492   1.1     rmind 	 */
    493  1.15     rmind 	mutex_enter(&con->c_lock);
    494  1.34  riastrad 	conn_db = atomic_load_consume(&npf->conn_db);
    495  1.32     rmind 	if (!npf_conndb_insert(conn_db, fw, con, NPF_FLOW_FORW)) {
    496  1.15     rmind 		error = EISCONN;
    497   1.1     rmind 		goto err;
    498   1.1     rmind 	}
    499  1.32     rmind 	if (!npf_conndb_insert(conn_db, bk, con, NPF_FLOW_BACK)) {
    500  1.15     rmind 		npf_conn_t *ret __diagused;
    501  1.32     rmind 		ret = npf_conndb_remove(conn_db, fw);
    502  1.15     rmind 		KASSERT(ret == con);
    503  1.15     rmind 		error = EISCONN;
    504  1.15     rmind 		goto err;
    505  1.15     rmind 	}
    506  1.15     rmind err:
    507  1.15     rmind 	/*
    508  1.15     rmind 	 * If we have hit the duplicate: mark the connection as expired
    509  1.15     rmind 	 * and let the G/C thread to take care of it.  We cannot do it
    510  1.15     rmind 	 * here since there might be references acquired already.
    511  1.15     rmind 	 */
    512  1.15     rmind 	if (error) {
    513  1.16     rmind 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    514  1.16     rmind 		atomic_dec_uint(&con->c_refcnt);
    515  1.22  christos 		npf_stats_inc(npf, NPF_STAT_RACE_CONN);
    516  1.15     rmind 	} else {
    517  1.15     rmind 		NPF_PRINTF(("NPF: establish conn %p\n", con));
    518   1.1     rmind 	}
    519   1.1     rmind 
    520   1.1     rmind 	/* Finally, insert into the connection list. */
    521  1.32     rmind 	npf_conndb_enqueue(conn_db, con);
    522  1.15     rmind 	mutex_exit(&con->c_lock);
    523  1.15     rmind 
    524  1.15     rmind 	return error ? NULL : con;
    525   1.1     rmind }
    526   1.1     rmind 
    527  1.26     rmind void
    528  1.22  christos npf_conn_destroy(npf_t *npf, npf_conn_t *con)
    529   1.1     rmind {
    530  1.29  christos 	const unsigned idx __unused = NPF_CONNCACHE(con->c_alen);
    531  1.27     rmind 
    532  1.32     rmind 	KASSERT(atomic_load_relaxed(&con->c_refcnt) == 0);
    533  1.15     rmind 
    534   1.1     rmind 	if (con->c_nat) {
    535   1.1     rmind 		/* Release any NAT structures. */
    536  1.32     rmind 		npf_nat_destroy(con, con->c_nat);
    537   1.1     rmind 	}
    538   1.1     rmind 	if (con->c_rproc) {
    539   1.1     rmind 		/* Release the rule procedure. */
    540   1.1     rmind 		npf_rproc_release(con->c_rproc);
    541   1.1     rmind 	}
    542   1.1     rmind 
    543   1.1     rmind 	/* Destroy the state. */
    544   1.1     rmind 	npf_state_destroy(&con->c_state);
    545   1.1     rmind 	mutex_destroy(&con->c_lock);
    546   1.1     rmind 
    547   1.1     rmind 	/* Free the structure, increase the counter. */
    548  1.27     rmind 	pool_cache_put(npf->conn_cache[idx], con);
    549  1.22  christos 	npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
    550   1.1     rmind 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    551   1.1     rmind }
    552   1.1     rmind 
    553   1.1     rmind /*
    554   1.1     rmind  * npf_conn_setnat: associate NAT entry with the connection, update and
    555   1.1     rmind  * re-insert connection entry using the translation values.
    556  1.16     rmind  *
    557  1.16     rmind  * => The caller must be holding a reference.
    558   1.1     rmind  */
    559   1.1     rmind int
    560   1.1     rmind npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    561  1.27     rmind     npf_nat_t *nt, unsigned ntype)
    562   1.1     rmind {
    563  1.32     rmind 	static const unsigned nat_type_which[] = {
    564  1.32     rmind 		/* See the description in npf_nat_which(). */
    565   1.1     rmind 		[NPF_NATOUT] = NPF_DST,
    566   1.1     rmind 		[NPF_NATIN] = NPF_SRC,
    567   1.1     rmind 	};
    568  1.22  christos 	npf_t *npf = npc->npc_ctx;
    569   1.2     rmind 	npf_conn_t *ret __diagused;
    570  1.32     rmind 	npf_conndb_t *conn_db;
    571  1.32     rmind 	npf_connkey_t *bk;
    572   1.1     rmind 	npf_addr_t *taddr;
    573   1.1     rmind 	in_port_t tport;
    574  1.32     rmind 	uint32_t flags;
    575   1.1     rmind 
    576  1.32     rmind 	KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
    577   1.1     rmind 
    578   1.1     rmind 	npf_nat_gettrans(nt, &taddr, &tport);
    579   1.1     rmind 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    580   1.1     rmind 
    581   1.1     rmind 	/* Acquire the lock and check for the races. */
    582   1.1     rmind 	mutex_enter(&con->c_lock);
    583  1.32     rmind 	flags = atomic_load_relaxed(&con->c_flags);
    584  1.32     rmind 	if (__predict_false(flags & CONN_EXPIRE)) {
    585   1.1     rmind 		/* The connection got expired. */
    586   1.1     rmind 		mutex_exit(&con->c_lock);
    587   1.1     rmind 		return EINVAL;
    588   1.1     rmind 	}
    589  1.32     rmind 	KASSERT((flags & CONN_REMOVED) == 0);
    590  1.15     rmind 
    591   1.1     rmind 	if (__predict_false(con->c_nat != NULL)) {
    592   1.1     rmind 		/* Race with a duplicate packet. */
    593   1.1     rmind 		mutex_exit(&con->c_lock);
    594  1.22  christos 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    595   1.1     rmind 		return EISCONN;
    596   1.1     rmind 	}
    597   1.1     rmind 
    598  1.27     rmind 	/* Remove the "backwards" key. */
    599  1.34  riastrad 	conn_db = atomic_load_consume(&npf->conn_db);
    600  1.32     rmind 	bk = npf_conn_getbackkey(con, con->c_alen);
    601  1.32     rmind 	ret = npf_conndb_remove(conn_db, bk);
    602   1.1     rmind 	KASSERT(ret == con);
    603   1.1     rmind 
    604   1.1     rmind 	/* Set the source/destination IDs to the translation values. */
    605  1.32     rmind 	npf_conn_adjkey(bk, taddr, tport, nat_type_which[ntype]);
    606   1.1     rmind 
    607  1.27     rmind 	/* Finally, re-insert the "backwards" key. */
    608  1.32     rmind 	if (!npf_conndb_insert(conn_db, bk, con, NPF_FLOW_BACK)) {
    609   1.1     rmind 		/*
    610   1.1     rmind 		 * Race: we have hit the duplicate, remove the "forwards"
    611  1.27     rmind 		 * key and expire our connection; it is no longer valid.
    612   1.1     rmind 		 */
    613  1.32     rmind 		npf_connkey_t *fw = npf_conn_getforwkey(con);
    614  1.32     rmind 		ret = npf_conndb_remove(conn_db, fw);
    615  1.15     rmind 		KASSERT(ret == con);
    616  1.15     rmind 
    617   1.1     rmind 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    618   1.1     rmind 		mutex_exit(&con->c_lock);
    619   1.1     rmind 
    620  1.22  christos 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    621   1.1     rmind 		return EISCONN;
    622   1.1     rmind 	}
    623   1.1     rmind 
    624   1.1     rmind 	/* Associate the NAT entry and release the lock. */
    625   1.1     rmind 	con->c_nat = nt;
    626   1.1     rmind 	mutex_exit(&con->c_lock);
    627   1.1     rmind 	return 0;
    628   1.1     rmind }
    629   1.1     rmind 
    630   1.1     rmind /*
    631   1.1     rmind  * npf_conn_expire: explicitly mark connection as expired.
    632  1.32     rmind  *
    633  1.32     rmind  * => Must be called with: a) reference held  b) the relevant lock held.
    634  1.32     rmind  *    The relevant lock should prevent from connection destruction, e.g.
    635  1.32     rmind  *    npf_t::conn_lock or npf_natpolicy_t::n_lock.
    636   1.1     rmind  */
    637   1.1     rmind void
    638   1.1     rmind npf_conn_expire(npf_conn_t *con)
    639   1.1     rmind {
    640   1.1     rmind 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    641   1.1     rmind }
    642   1.1     rmind 
    643   1.1     rmind /*
    644   1.1     rmind  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    645   1.1     rmind  */
    646   1.1     rmind bool
    647  1.23  christos npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
    648   1.1     rmind {
    649  1.32     rmind 	KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
    650  1.32     rmind 	if (__predict_true(atomic_load_relaxed(&con->c_flags) & CONN_PASS)) {
    651  1.32     rmind 		mi->mi_retfl = atomic_load_relaxed(&con->c_retfl);
    652  1.24     rmind 		mi->mi_rid = con->c_rid;
    653   1.1     rmind 		*rp = con->c_rproc;
    654   1.1     rmind 		return true;
    655   1.1     rmind 	}
    656   1.1     rmind 	return false;
    657   1.1     rmind }
    658   1.1     rmind 
    659   1.1     rmind /*
    660   1.1     rmind  * npf_conn_setpass: mark connection as a "pass" one and associate the
    661   1.1     rmind  * rule procedure with it.
    662   1.1     rmind  */
    663   1.1     rmind void
    664  1.23  christos npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
    665   1.1     rmind {
    666  1.32     rmind 	KASSERT((atomic_load_relaxed(&con->c_flags) & CONN_ACTIVE) == 0);
    667  1.32     rmind 	KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
    668   1.1     rmind 	KASSERT(con->c_rproc == NULL);
    669   1.1     rmind 
    670   1.1     rmind 	/*
    671   1.1     rmind 	 * No need for atomic since the connection is not yet active.
    672   1.1     rmind 	 * If rproc is set, the caller transfers its reference to us,
    673   1.1     rmind 	 * which will be released on npf_conn_destroy().
    674   1.1     rmind 	 */
    675  1.14     rmind 	atomic_or_uint(&con->c_flags, CONN_PASS);
    676   1.1     rmind 	con->c_rproc = rp;
    677  1.24     rmind 	if (rp) {
    678  1.24     rmind 		con->c_rid = mi->mi_rid;
    679  1.24     rmind 		con->c_retfl = mi->mi_retfl;
    680  1.24     rmind 	}
    681   1.1     rmind }
    682   1.1     rmind 
    683   1.1     rmind /*
    684   1.1     rmind  * npf_conn_release: release a reference, which might allow G/C thread
    685   1.1     rmind  * to destroy this connection.
    686   1.1     rmind  */
    687   1.1     rmind void
    688   1.1     rmind npf_conn_release(npf_conn_t *con)
    689   1.1     rmind {
    690  1.32     rmind 	const unsigned flags = atomic_load_relaxed(&con->c_flags);
    691  1.32     rmind 
    692  1.32     rmind 	if ((flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    693   1.1     rmind 		/* Activate: after this, connection is globally visible. */
    694  1.14     rmind 		atomic_or_uint(&con->c_flags, CONN_ACTIVE);
    695   1.1     rmind 	}
    696  1.32     rmind 	KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
    697   1.1     rmind 	atomic_dec_uint(&con->c_refcnt);
    698   1.1     rmind }
    699   1.1     rmind 
    700   1.1     rmind /*
    701  1.32     rmind  * npf_conn_getnat: return the associated NAT entry, if any.
    702   1.1     rmind  */
    703   1.1     rmind npf_nat_t *
    704  1.32     rmind npf_conn_getnat(const npf_conn_t *con)
    705   1.1     rmind {
    706   1.1     rmind 	return con->c_nat;
    707   1.1     rmind }
    708   1.1     rmind 
    709   1.1     rmind /*
    710   1.1     rmind  * npf_conn_expired: criterion to check if connection is expired.
    711   1.1     rmind  */
    712  1.26     rmind bool
    713  1.27     rmind npf_conn_expired(npf_t *npf, const npf_conn_t *con, uint64_t tsnow)
    714   1.1     rmind {
    715  1.32     rmind 	const unsigned flags = atomic_load_relaxed(&con->c_flags);
    716  1.27     rmind 	const int etime = npf_state_etime(npf, &con->c_state, con->c_proto);
    717  1.22  christos 	int elapsed;
    718   1.1     rmind 
    719  1.32     rmind 	if (__predict_false(flags & CONN_EXPIRE)) {
    720   1.1     rmind 		/* Explicitly marked to be expired. */
    721   1.1     rmind 		return true;
    722   1.1     rmind 	}
    723  1.22  christos 
    724  1.22  christos 	/*
    725  1.22  christos 	 * Note: another thread may update 'atime' and it might
    726  1.22  christos 	 * become greater than 'now'.
    727  1.22  christos 	 */
    728  1.32     rmind 	elapsed = (int64_t)tsnow - atomic_load_relaxed(&con->c_atime);
    729  1.22  christos 	return elapsed > etime;
    730   1.1     rmind }
    731   1.1     rmind 
    732   1.1     rmind /*
    733  1.26     rmind  * npf_conn_remove: unlink the connection and mark as expired.
    734   1.1     rmind  */
    735   1.7     rmind void
    736  1.26     rmind npf_conn_remove(npf_conndb_t *cd, npf_conn_t *con)
    737   1.1     rmind {
    738  1.26     rmind 	/* Remove both entries of the connection. */
    739  1.26     rmind 	mutex_enter(&con->c_lock);
    740  1.32     rmind 	if ((atomic_load_relaxed(&con->c_flags) & CONN_REMOVED) == 0) {
    741  1.27     rmind 		npf_connkey_t *fw, *bk;
    742  1.26     rmind 		npf_conn_t *ret __diagused;
    743   1.1     rmind 
    744  1.27     rmind 		fw = npf_conn_getforwkey(con);
    745  1.27     rmind 		ret = npf_conndb_remove(cd, fw);
    746  1.26     rmind 		KASSERT(ret == con);
    747  1.27     rmind 
    748  1.27     rmind 		bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
    749  1.27     rmind 		ret = npf_conndb_remove(cd, bk);
    750  1.26     rmind 		KASSERT(ret == con);
    751   1.1     rmind 	}
    752   1.6     rmind 
    753  1.26     rmind 	/* Flag the removal and expiration. */
    754  1.26     rmind 	atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    755  1.26     rmind 	mutex_exit(&con->c_lock);
    756   1.1     rmind }
    757   1.1     rmind 
    758   1.6     rmind /*
    759  1.32     rmind  * npf_conn_worker: G/C to run from a worker thread or via npfk_gc().
    760   1.6     rmind  */
    761  1.22  christos void
    762  1.22  christos npf_conn_worker(npf_t *npf)
    763   1.1     rmind {
    764  1.34  riastrad 	npf_conndb_t *conn_db = atomic_load_consume(&npf->conn_db);
    765  1.32     rmind 	npf_conndb_gc(npf, conn_db, false, true);
    766   1.1     rmind }
    767   1.1     rmind 
    768   1.1     rmind /*
    769  1.10     rmind  * npf_conndb_export: construct a list of connections prepared for saving.
    770   1.1     rmind  * Note: this is expected to be an expensive operation.
    771   1.1     rmind  */
    772   1.1     rmind int
    773  1.32     rmind npf_conndb_export(npf_t *npf, nvlist_t *nvl)
    774   1.1     rmind {
    775  1.26     rmind 	npf_conn_t *head, *con;
    776  1.32     rmind 	npf_conndb_t *conn_db;
    777   1.1     rmind 
    778   1.1     rmind 	/*
    779   1.1     rmind 	 * Note: acquire conn_lock to prevent from the database
    780   1.1     rmind 	 * destruction and G/C thread.
    781   1.1     rmind 	 */
    782  1.22  christos 	mutex_enter(&npf->conn_lock);
    783  1.32     rmind 	if (atomic_load_relaxed(&npf->conn_tracking) != CONN_TRACKING_ON) {
    784  1.22  christos 		mutex_exit(&npf->conn_lock);
    785   1.1     rmind 		return 0;
    786   1.1     rmind 	}
    787  1.32     rmind 	conn_db = atomic_load_relaxed(&npf->conn_db);
    788  1.32     rmind 	head = npf_conndb_getlist(conn_db);
    789  1.26     rmind 	con = head;
    790   1.1     rmind 	while (con) {
    791  1.32     rmind 		nvlist_t *con_nvl;
    792   1.1     rmind 
    793  1.32     rmind 		con_nvl = nvlist_create(0);
    794  1.32     rmind 		if (npf_conn_export(npf, con, con_nvl) == 0) {
    795  1.32     rmind 			nvlist_append_nvlist_array(nvl, "conn-list", con_nvl);
    796   1.1     rmind 		}
    797  1.32     rmind 		nvlist_destroy(con_nvl);
    798  1.32     rmind 
    799  1.32     rmind 		if ((con = npf_conndb_getnext(conn_db, con)) == head) {
    800  1.26     rmind 			break;
    801  1.26     rmind 		}
    802   1.1     rmind 	}
    803  1.22  christos 	mutex_exit(&npf->conn_lock);
    804   1.5     joerg 	return 0;
    805   1.1     rmind }
    806   1.1     rmind 
    807   1.1     rmind /*
    808  1.32     rmind  * npf_conn_export: serialize a single connection.
    809  1.10     rmind  */
    810  1.32     rmind static int
    811  1.32     rmind npf_conn_export(npf_t *npf, npf_conn_t *con, nvlist_t *nvl)
    812  1.10     rmind {
    813  1.32     rmind 	nvlist_t *knvl;
    814  1.27     rmind 	npf_connkey_t *fw, *bk;
    815  1.32     rmind 	unsigned flags, alen;
    816  1.10     rmind 
    817  1.32     rmind 	flags = atomic_load_relaxed(&con->c_flags);
    818  1.32     rmind 	if ((flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
    819  1.32     rmind 		return ESRCH;
    820  1.10     rmind 	}
    821  1.32     rmind 	nvlist_add_number(nvl, "flags", flags);
    822  1.32     rmind 	nvlist_add_number(nvl, "proto", con->c_proto);
    823  1.10     rmind 	if (con->c_ifid) {
    824  1.30     rmind 		char ifname[IFNAMSIZ];
    825  1.30     rmind 		npf_ifmap_copyname(npf, con->c_ifid, ifname, sizeof(ifname));
    826  1.32     rmind 		nvlist_add_string(nvl, "ifname", ifname);
    827  1.10     rmind 	}
    828  1.32     rmind 	nvlist_add_binary(nvl, "state", &con->c_state, sizeof(npf_state_t));
    829  1.10     rmind 
    830  1.27     rmind 	fw = npf_conn_getforwkey(con);
    831  1.27     rmind 	alen = NPF_CONNKEY_ALEN(fw);
    832  1.29  christos 	KASSERT(alen == con->c_alen);
    833  1.27     rmind 	bk = npf_conn_getbackkey(con, alen);
    834  1.27     rmind 
    835  1.32     rmind 	knvl = npf_connkey_export(npf, fw);
    836  1.32     rmind 	nvlist_move_nvlist(nvl, "forw-key", knvl);
    837  1.10     rmind 
    838  1.32     rmind 	knvl = npf_connkey_export(npf, bk);
    839  1.32     rmind 	nvlist_move_nvlist(nvl, "back-key", knvl);
    840  1.10     rmind 
    841  1.27     rmind 	/* Let the address length be based on on first key. */
    842  1.32     rmind 	nvlist_add_number(nvl, "alen", alen);
    843  1.27     rmind 
    844  1.10     rmind 	if (con->c_nat) {
    845  1.32     rmind 		npf_nat_export(npf, con->c_nat, nvl);
    846  1.10     rmind 	}
    847  1.32     rmind 	return 0;
    848  1.10     rmind }
    849  1.10     rmind 
    850  1.10     rmind /*
    851   1.6     rmind  * npf_conn_import: fully reconstruct a single connection from a
    852  1.25     rmind  * nvlist and insert into the given database.
    853   1.1     rmind  */
    854   1.1     rmind int
    855  1.25     rmind npf_conn_import(npf_t *npf, npf_conndb_t *cd, const nvlist_t *cdict,
    856   1.6     rmind     npf_ruleset_t *natlist)
    857   1.1     rmind {
    858   1.1     rmind 	npf_conn_t *con;
    859   1.1     rmind 	npf_connkey_t *fw, *bk;
    860  1.25     rmind 	const nvlist_t *nat, *conkey;
    861  1.32     rmind 	unsigned flags, alen, idx;
    862  1.10     rmind 	const char *ifname;
    863  1.25     rmind 	const void *state;
    864  1.25     rmind 	size_t len;
    865   1.1     rmind 
    866  1.27     rmind 	/*
    867  1.27     rmind 	 * To determine the length of the connection, which depends
    868  1.27     rmind 	 * on the address length in the connection keys.
    869  1.27     rmind 	 */
    870  1.27     rmind 	alen = dnvlist_get_number(cdict, "alen", 0);
    871  1.27     rmind 	idx = NPF_CONNCACHE(alen);
    872  1.27     rmind 
    873  1.32     rmind 	/* Allocate a connection and initialize it (clear first). */
    874  1.27     rmind 	con = pool_cache_get(npf->conn_cache[idx], PR_WAITOK);
    875   1.1     rmind 	memset(con, 0, sizeof(npf_conn_t));
    876   1.1     rmind 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    877  1.22  christos 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
    878   1.1     rmind 
    879  1.25     rmind 	con->c_proto = dnvlist_get_number(cdict, "proto", 0);
    880  1.32     rmind 	flags = dnvlist_get_number(cdict, "flags", 0);
    881  1.32     rmind 	flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
    882  1.32     rmind 	atomic_store_relaxed(&con->c_flags, flags);
    883  1.22  christos 	conn_update_atime(con);
    884   1.1     rmind 
    885  1.25     rmind 	ifname = dnvlist_get_string(cdict, "ifname", NULL);
    886  1.25     rmind 	if (ifname && (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
    887  1.10     rmind 		goto err;
    888  1.10     rmind 	}
    889  1.10     rmind 
    890  1.25     rmind 	state = dnvlist_get_binary(cdict, "state", &len, NULL, 0);
    891  1.25     rmind 	if (!state || len != sizeof(npf_state_t)) {
    892   1.1     rmind 		goto err;
    893   1.1     rmind 	}
    894  1.25     rmind 	memcpy(&con->c_state, state, sizeof(npf_state_t));
    895   1.1     rmind 
    896  1.11     rmind 	/* Reconstruct NAT association, if any. */
    897  1.25     rmind 	if ((nat = dnvlist_get_nvlist(cdict, "nat", NULL)) != NULL &&
    898  1.25     rmind 	    (con->c_nat = npf_nat_import(npf, nat, natlist, con)) == NULL) {
    899  1.11     rmind 		goto err;
    900  1.11     rmind 	}
    901   1.1     rmind 
    902   1.1     rmind 	/*
    903   1.1     rmind 	 * Fetch and copy the keys for each direction.
    904   1.1     rmind 	 */
    905  1.27     rmind 	fw = npf_conn_getforwkey(con);
    906  1.25     rmind 	conkey = dnvlist_get_nvlist(cdict, "forw-key", NULL);
    907  1.32     rmind 	if (conkey == NULL || !npf_connkey_import(npf, conkey, fw)) {
    908   1.1     rmind 		goto err;
    909   1.1     rmind 	}
    910  1.27     rmind 	bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
    911  1.25     rmind 	conkey = dnvlist_get_nvlist(cdict, "back-key", NULL);
    912  1.32     rmind 	if (conkey == NULL || !npf_connkey_import(npf, conkey, bk)) {
    913   1.1     rmind 		goto err;
    914   1.1     rmind 	}
    915  1.27     rmind 
    916  1.27     rmind 	/* Guard against the contradicting address lengths. */
    917  1.27     rmind 	if (NPF_CONNKEY_ALEN(fw) != alen || NPF_CONNKEY_ALEN(bk) != alen) {
    918  1.27     rmind 		goto err;
    919  1.27     rmind 	}
    920   1.1     rmind 
    921   1.1     rmind 	/* Insert the entries and the connection itself. */
    922  1.32     rmind 	if (!npf_conndb_insert(cd, fw, con, NPF_FLOW_FORW)) {
    923   1.1     rmind 		goto err;
    924   1.1     rmind 	}
    925  1.32     rmind 	if (!npf_conndb_insert(cd, bk, con, NPF_FLOW_BACK)) {
    926   1.1     rmind 		npf_conndb_remove(cd, fw);
    927   1.1     rmind 		goto err;
    928   1.1     rmind 	}
    929  1.12     rmind 
    930  1.12     rmind 	NPF_PRINTF(("NPF: imported conn %p\n", con));
    931   1.1     rmind 	npf_conndb_enqueue(cd, con);
    932   1.1     rmind 	return 0;
    933   1.1     rmind err:
    934  1.29  christos 	npf_conn_destroy(npf, con);
    935   1.1     rmind 	return EINVAL;
    936   1.1     rmind }
    937   1.1     rmind 
    938  1.32     rmind /*
    939  1.32     rmind  * npf_conn_find: lookup a connection in the list of connections
    940  1.32     rmind  */
    941  1.20  christos int
    942  1.32     rmind npf_conn_find(npf_t *npf, const nvlist_t *req, nvlist_t *resp)
    943  1.20  christos {
    944  1.32     rmind 	const nvlist_t *key_nv;
    945  1.32     rmind 	npf_conn_t *con;
    946  1.20  christos 	npf_connkey_t key;
    947  1.32     rmind 	npf_flow_t flow;
    948  1.32     rmind 	int error;
    949  1.20  christos 
    950  1.32     rmind 	key_nv = dnvlist_get_nvlist(req, "key", NULL);
    951  1.32     rmind 	if (!key_nv || !npf_connkey_import(npf, key_nv, &key)) {
    952  1.20  christos 		return EINVAL;
    953  1.25     rmind 	}
    954  1.32     rmind 	con = npf_conndb_lookup(npf, &key, &flow);
    955  1.20  christos 	if (con == NULL) {
    956  1.20  christos 		return ESRCH;
    957  1.20  christos 	}
    958  1.32     rmind 	if (!npf_conn_check(con, NULL, 0, NPF_FLOW_FORW)) {
    959  1.20  christos 		atomic_dec_uint(&con->c_refcnt);
    960  1.20  christos 		return ESRCH;
    961  1.20  christos 	}
    962  1.32     rmind 	error = npf_conn_export(npf, con, resp);
    963  1.32     rmind 	nvlist_add_number(resp, "flow", flow);
    964  1.20  christos 	atomic_dec_uint(&con->c_refcnt);
    965  1.32     rmind 	return error;
    966  1.20  christos }
    967  1.20  christos 
    968   1.1     rmind #if defined(DDB) || defined(_NPF_TESTING)
    969   1.1     rmind 
    970   1.1     rmind void
    971  1.27     rmind npf_conn_print(npf_conn_t *con)
    972   1.1     rmind {
    973  1.27     rmind 	const npf_connkey_t *fw = npf_conn_getforwkey(con);
    974  1.27     rmind 	const npf_connkey_t *bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
    975  1.32     rmind 	const unsigned flags = atomic_load_relaxed(&con->c_flags);
    976  1.27     rmind 	const unsigned proto = con->c_proto;
    977  1.22  christos 	struct timespec tspnow;
    978   1.1     rmind 
    979  1.22  christos 	getnanouptime(&tspnow);
    980  1.22  christos 	printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
    981  1.32     rmind 	    proto, flags, (long)(tspnow.tv_sec - con->c_atime),
    982  1.27     rmind 	    npf_state_etime(npf_getkernctx(), &con->c_state, proto));
    983  1.27     rmind 	npf_connkey_print(fw);
    984  1.27     rmind 	npf_connkey_print(bk);
    985   1.1     rmind 	npf_state_dump(&con->c_state);
    986   1.1     rmind 	if (con->c_nat) {
    987   1.1     rmind 		npf_nat_dump(con->c_nat);
    988   1.1     rmind 	}
    989   1.1     rmind }
    990   1.1     rmind 
    991   1.1     rmind #endif
    992